Document | Document Title |
---|---|
US08836565B1 |
Analog to digital converter and signal converting method
An analog to digital converter can operate in a sampling mode or in a comparing mode. The analog to digital converter comprises: a comparator; a first capacitor, comprising a first terminal coupled to a first input terminal of the comparator; a second capacitor; a first switch module; a control unit, for controlling the conductive states of the first switch module corresponding to the sampling mode or the comparing mode. The first capacitor samples a value of a first input signal and the second capacitor samples a value of a first reference signal via the first switch module in the sampling mode. The first capacitor and the second capacitor are not coupled to each other in the sampling mode. The first capacitor and the second capacitor are coupled in series via the first switch module in the comparing mode. |
US08836563B2 |
Analog to digital converter (ADC) with comparator function for analog signals
This disclosure relates to analog to digital converter (ADC) component with a comparator function for analog signals. |
US08836557B2 |
Sub-Nyquist sampling of short pulses
A method for signal processing includes accepting an analog signal, which consists of a sequence of pulses confined to a finite time interval. The analog signal is sampled at a sampling rate that is lower than a Nyquist rate of the analog signal and with samples taken at sample times that are independent of respective pulse shapes of the pulses and respective time positions of the pulses in the time interval. The sampled analog signal is processed. |
US08836553B2 |
DSP reciever with high speed low BER ADC
Methods and apparatuses are described for a DSP receiver with an analog-to-digital converter (ADC) having high speed, low BER performance with low power and area requirements. Speed is increased for multi-path ADC configurations by resolving a conventional bottleneck. ADC performance is improved by integrating calibration and error detection and correction, such as distributed offset calibration and redundant comparators. Power and area requirements are dramatically reduced by using low BER rectification to nearly halve the number of comparators in a conventional high speed, low BER flash ADC. |
US08836550B2 |
System and method for digitally correcting mismatches in multipath ADCs
A system and method of reducing the effects of nonidealities of ADCs in multipath converters is disclosed. The system and method employs a variety of measure and correction blocks to determine statistical properties of the output stream of the multipath converter and to apply corrections to the operation of the subconverters of the multipath converter based upon differences in the measured statistics and expected target values, either explicit or implicit, for those statistics. A variety of examples of possible measure and configuration blocks are disclosed, as is the cascading of the measure and correction blocks to correct multiple errors in the output of the multipath converter. Feedforward (purely digital) and feedback (analog and digital) solutions are both disclosed. |
US08836549B2 |
Use of logic circuit embedded into comparator for foreground offset cancellation
A system and method are described herein that provide for the calibration of the offset of a comparator on a per-comparator basis. An injection is made to the comparator at determined injection points using a low-power DAC, to calibrate the offset of the comparator. The DAC can be selectively controlled by a digital codeword that is generated based on an output of the comparator and the comparator's offset. Further embodiments of the invention present a system and method for calibrating the offset of a comparator of a flash ADC in each stage of a pipeline ADC. The system and method may provide for the calibration in a manner without affecting the speed of the pipeline ADC or adding significant power to the pipeline ADC. |
US08836541B2 |
Rotorcraft having lighting equipment with a plurality of headlights operated for landing, winching, and searching
A rotorcraft (1) having on-board lighting equipment for lighting the surrounding environment. The lighting equipment comprises a plurality of headlights (2, 2′, 3, 3′) that are allocated to respective specific lighting functions in landing and in winching. The headlights (2, 2′, 3, 3′) are also operated to perform a searching lighting function. Control means determine which headlights (2, 2′, 3, 3′) are to be operated depending on a lighting function selected by an operator and depending on where the headlights are located on the rotorcraft (1). A search zone (4, 4′) for illuminating is identified by identification means on the basis of a lighting command common to the headlights (2, 2′, 3, 3′). Coordination means cause the headlights (2, 2′, 3, 3′) to converge on the identified search zone (4, 4′), while taking account of their respective locations on the rotorcraft (1). |
US08836539B2 |
Combined loop type auto-mobile sensor using loop coil and parking information system the same
Provided are a loop type automobile sensing device formed integrally with a small loop coil, which has the automobile sensing sensitivity of a related art loop type automobile sensing device using a large loop coil, so as to greatly facilitate installing and maintaining of the loop type automobile sensing device and to expand the application scope of the loop type automobile sensing device, and a parking information system using the loop type automobile sensing device. In addition, the loop type automobile sensing device integrally formed with the loop coil is provided in plurality as automobile sensors to detect the presence and moving state of an automobile according to a signal from the automobile sensors, to control operations of a plurality of cameras, warning lamps, and display devices installed to a parking lot, and to notify parking information and automobile movement information. |
US08836524B2 |
Detecting device and battery box using the same
A detecting device is used for detecting a battery leak, a positive terminal of the battery is electrically connected to a first contact, a negative terminal of the battery is electrically connected to a second contact. The detecting device includes a first conductor, a second conductor electrically connected to the second contact, and a warning unit electrically connected between the first contact and the first conductor. The second conductor being electrically connected to the first conductor through electrolyte leaked out of the battery, thus the warning unit will be actuated to produce a warning signal. |
US08836518B2 |
Predicting the potential for severe weather
Methods and apparatuses, including computer program products, are described for predicting the potential for severe weather. Data associated with lightning activity is received by a computing device. A location, a movement speed, a movement direction, and a lightning rate of one or more cells of lightning activity are determined by the computing device based on the received data. The lightning rate is compared, by the computing device, to a threshold lightning rate. One or more geographical areas at risk are determined by the computing device based on the location, the movement speed and the movement direction of the one or more cells of lightning activity. An alert is issued by the computing device to one or more remote devices monitoring the geographical areas when the lightning exceeds a value of the threshold lightning rate. |
US08836513B2 |
Communication system incorporated in an ingestible product
The system of the present invention includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature. The system can also be associated with food and communicate data about ingestion of food material to a receiver. |
US08836509B2 |
Security device
A security device for protecting stored sensitive data includes a closed housing including an array of conductor paths and tamper detecting means adapted to detect a change in impedance of the array of conductor paths above a predetermined threshold value. |
US08836508B2 |
Apparatus and method for securing a portable electronic device
Anti-theft protection systems and methods for portable devices, such as portable electronic devices, that are unattended during use. The anti-theft protection systems and methods use a combination of measures including mechanical aspects, such as tethering the device to an object that is difficult to move, and electronic aspects that detect unauthorized movement and or alarm the user or other responsible party if unauthorized movement occurs. |
US08836499B2 |
Self adapting alert device
Methods and apparatuses are disclosed that allow an electronic device to autonomously adapt one or more user alerts to the current operating environment of the electronic device. For example, some embodiments may include a method comprising providing a plurality of alert devices in an electronic device, determining an operating environment of the electronic device using a sensor of the electronic device, and actuating at least one of the plurality of alert devices that corresponds to the determined operating environment. |
US08836494B2 |
Lighting device with animated sequential light for a motor vehicle
A lighting device has a first panel, which has an underside and an upper side, and a plurality of lighting elements which illuminate the first panel from the underside. The first panel has a plurality of transparent and non-transparent elements which are arranged one adjacent to the other in an alternating fashion and which each extend completely from the underside to the upper side. The lighting elements are controlled by a control device which is designed to bring about a predefinable spatial brightness profile in a space on the upper side of the first panel. |
US08836493B2 |
Haptic pedal system
An apparatus for providing haptic feedback to an operator of a vehicle is described including a pedal, torque motor, actuator and controller. The pedal is rotatable between a closed position and an open position. The torque motor applies rotational force to the pedal. The actuator is rotatably positioned between the torque motor and pedal. The controller provides haptic feedback to the operator by sending a haptic signal via the torque motor, actuator and pedal in which rotational force is applied to the pedal to rotate the pedal toward the closed position. |
US08836491B2 |
Occupant detection
A system and method for detecting an occupant in a vehicle capture successive images from an infrared camera that are analyzed to detect thermal characteristics of an occupant as well as movement. If an operator of the vehicle has exited the vehicle, the vehicle is deactivated, an occupant is detected, and a temperature in the cabin of the vehicle is higher or lower than desired, a report is made to the operator via a mobile phone or key fob. |
US08836486B2 |
Portable transmitter
A portable transmitter has an inner cover, an outer cover, outer knobs, a cover, a circuit substrate, etc. The cover has projection parts made of elastic material. Each projection part projects toward a corresponding opening part of the outer cover through a corresponding penetration hole of the inner case. The front end of the projection part is contacted to the corresponding outer knob. The opposite part of the projection part is contacted to a corresponding tact switch formed on the circuit substrate while the projection part is elastically deformed and the inner case accommodates the cover. Each of the outer knobs is placed in the corresponding opening part of the outer case while the outer peripheral part of the outer knob is pushed onto the outer peripheral part of the wall surface of the opening part formed in the outer case by repulsive elastic force applied from the cover. |
US08836483B2 |
Optical remote control system and light source control method therefor
The present invention discloses an optical remote control system, and a method for controlling a light source of the system. The system includes: a light source including a plurality of lighting units, the light source generating at least one light beam; an image sensor receiving an image including the light beam; and a processor determining a number or positions of the lighting units which are activated according to an area of the light beam in the image. |
US08836481B2 |
Transponders and methods for operating a transponder
In a method for operating a transponder (1, 41), the transponder (1, 4) receives a signal from a transmitter (2, 42). The signal comprises an information about a reference sensitivity and the transponder (1, 41) has an input sensitivity such that the transponder (1, 41) detects only signals above a certain power corresponding to the input sensitivity. In response to the received signal, the input sensitivity of the transponder (1, 41) is adjusted to the reference sensitivity. |
US08836480B2 |
Radio frequency identification tag and arrangement and method of associating tag data from the tag with code data from an optical code on the tag
A radio frequency identification (RFID) tag includes a substrate, and an optical code and an RFID assembly on the substrate. The optical code is encoded with code data. The RFID assembly contains tag data. The RFID assembly is operative for reading the optical code to obtain the code data, for associating the tag data with the code data, and for sending the associated tag data and the associated code data by radio frequency away from the RFID tag upon interrogation of the RFID tag by an RF interrogator. |
US08836473B2 |
Dynamic keypad and fingerprinting sequence authentication
Systems and methods for authenticating a user's identity at an ATM are provided. Apparatus for implementing the systems and methods may include a first fingerprint scanner and a second fingerprint scanner. Each of the first fingerprint scanner and the second fingerprint scanner may capture at least a portion of the user's biometric information. The apparatus may also include a first display and a second display. The first display may be located proximal to the first fingerprint scanner. The second display may be located proximal to the second fingerprint scanner. Each of the first display and the second display may be configured to display at least one of a plurality of numerical digits. The apparatus may further include a receiver. The receiver may receive information from the first fingerprint scanner, the information relating to user biometric information input into the first fingerprint scanner. |
US08836470B2 |
System and method for interfacing facility access with control
A system for interfacing facility access with control employs an electronic bridge that transparently conveys data between functional devices, such as remotely located card readers and door strikes, and a network incorporating a control and monitor computer that has access to a database of user identifications and permissions. The electronic bridge is flexibly configured to accept a wide range of protocols used by the devices and converts messages to data packets without prior knowledge of the length of the message. |
US08836466B2 |
Monitoring system, device, monitoring method, and monitoring program
In a monitoring system, a first device among devices includes a generating unit that generates third data indicating a string of an identical section when strings each indicated in first data and second data acquired through communications with the devices are identical to each other by a predetermined proportion or more, and a first transmitting unit that transmits the third data generated by the generating unit and information for identifying the third data to a second device included in the devices. The second device includes a second transmitting unit that transmits, when a string indicated in fourth data to be transmitted to the first device includes the string indicated in the third data, fifth data indicating a string obtained by excluding the string indicated in the third data from the string indicated in the fourth data, and the information for identifying the third data to the first device. |
US08836464B2 |
Explosion-proof and flameproof ejection type safety surge-absorbing module
An explosion-proof and flameproof ejection type safety surge-absorbing module includes a protective member and a surge-absorbing unit. The protective member includes a base and an upper lid coupled with the base. The base has two corresponding partitions extending upwards. The surge-absorbing unit includes a body, two connecting leads, and a resilient metallic plate. The body has two sides defining two electrode surfaces. One of the electrode surfaces is connected with one of the connecting leads. The resilient metallic plate has a first end welded to the electrode surface with a contact component and a second end curved and striding across an outer side of one of the partitions to penetrate through the bottom of the base. When the body of the surge-absorbing unit is overheated due to high temperature caused by a surge, the contact component will melt so the resilient metallic plate is ejected away from the electrode. |
US08836463B2 |
Voltage converter inductor having a nonlinear inductance value
Single phase inductors have non-linear inductance values, and M-phase coupled inductors having non-linear leakage inductance values. Each inductor includes, for example, at least one of the following: a saturable magnetic element, a gap of non-uniform thickness, a core formed of a distributed gap material, or a non-homogeneous core. A DC-to-DC converter includes an inductor having a non-linear inductance value, a switching subsystem, and an output filer. Another DC-to-DC converter includes an output filter, a coupled inductor having non-linear leakage inductance values, and switching subsystems. |
US08836461B2 |
Method for making magnetic components with M-phase coupling, and related inductor structures
An M phase coupled inductor includes a magnetic core including a first end magnetic element, a second end magnetic element, and M legs disposed between and connecting the first and second end magnetic elements. M is an integer greater than one. The coupled inductor further includes M windings, where each winding has a substantially rectangular cross section. Each one of the M windings is at least partially wound about a respective leg. |
US08836460B2 |
Folded conical inductor
A semiconductor inductor structure may include a first spiral structure, located on a first metal layer, having a first outer-spiral electrically conductive track and a first inner-spiral electrically conductive track separated from the first outer-spiral electrically conductive track by a first dielectric material. A second spiral structure, located on a second metal layer, having a second outer-spiral electrically conductive track and a second inner-spiral electrically conductive track separated from the second outer-spiral electrically conductive track by a second dielectric material may also be provided. The first outer-spiral electrically conductive track may be electrically coupled to the second outer-spiral electrically conductive track and the first inner-spiral electrically conductive track may be electrically coupled to the second inner-spiral electrically conductive track. The first outer-spiral conductive track is laterally offset relative to the second outer-spiral conductive track and the first inner-spiral conductive track is laterally offset relative to the second inner-spiral conductive track. |
US08836457B2 |
Contactless switch structure
A contactless switch structure is provided that may turn on and off an electrical signal in a contactless manner, allow a worn operating portion in the structure to be easily replaced, and prevent decrease of the sensitivity caused by foreign material such as dust. A contactless switch structure according to the invention includes a replaceable member to be detachably set to a target portion to which the contactless switch structure is to be set, the replaceable member having an aperture at an end section thereof and a virtual boundary defined by the aperture at the end section; and a detection element and a detector closely opposed across the virtual boundary in the normal state, the detection element and the detector being placed on the replaceable member side and the target portion side of the virtual boundary, respectively. |
US08836451B2 |
Wideband high frequency bandpass filter
A wideband high frequency bandpass filter uses a metamaterial transmission line composed of an open-circuit resonator and a short-circuit resonator to realize a bandpass filter at the band of 60 GHz. The bandpass filter has an ultra-wide passband resulting from the coupling of the two resonators in the resonant modes thereof. The ultra wide passband formed by resonance coupling includes a left-handed passband and a right-handed passband. The two passbands jointly provides a passband ranging from 57.4 GHz to 63.6 GHz and having a bandwidth of 6.2 GHz. The stopbands of the bandpass filter are respectively extended downward from 57.4 GHz to the DC current and extended upward from 63.6 GHz to 109.4 GHz. The bandpass filter of the present invention can be applied to wireless transmission at the band of 60 GHz. |
US08836447B2 |
Tuner and front-end circuit thereof
A tuner includes a plurality of paths, and at least one of the paths includes a front-end filter circuit, an amplifier, and a trace filter. The trace filter includes a varactor and an inductor, which are coupled to an output end of the amplifier. Further, the amplifier and the varactor of the tuner are packed in a complementary metal-oxide semiconductor (CMOS) chip. |
US08836443B2 |
Integrated circuits with configurable inductors
Integrated circuits with phase-locked loops are provided. Phase-locked loops may include an oscillator, a phase-frequency detector, a charge pump, a loop filter, a voltage-controlled oscillator, and a programmable divider. The voltage-controlled oscillator may include multiple inductors, an oscillator circuit, and a buffer circuit. A selected one of the multiple inductors may be actively connected to the oscillator circuit. The voltage-controlled oscillators may have multiple oscillator circuits. Each oscillator circuit may be connected to a respective inductor, may include a varactor, and may be powered by a respective voltage regulator. Each oscillator circuit may be coupled to a respective input transistor pair in the buffer circuit through associated coupling capacitors. A selected one of the oscillator circuits may be turned on during normal operation by supplying a high voltage to the selected one of the oscillator circuit and by supply a ground voltage to the remaining oscillator circuits. |
US08836439B2 |
Dynamic frequency tuning of electric and magnetic metamaterial response
A geometrically modifiable resonator is comprised of a resonator disposed on a substrate, and a means for geometrically modifying the resonator. The geometrically modifiable resonator can achieve active optical and/or electronic control of the frequency response in metamaterials and/or frequency selective surfaces, potentially with sub-picosecond response times. Additionally, the methods taught here can be applied to discrete geometrically modifiable circuit components such as inductors and capacitors. Principally, controlled conductivity regions, using either reversible photodoping or voltage induced depletion activation, are used to modify the geometries of circuit components, thus allowing frequency tuning of resonators without otherwise affecting the bulk substrate electrical properties. The concept is valid over any frequency range in which metamaterials are designed to operate. |
US08836438B2 |
Oscillator element and method for producing the oscillator element
An oscillator element according to one embodiment of the present invention includes a magnetoresistive element having a magnetization free layer, magnetization fixed layer, and a tunnel barrier layer. Provided on the magnetization free layer are a protection layer and an electrode having a point contact section where the electrode is partially in electrical contact with the protection layers. An interlayer insulating film is provided between the electrode and the protection layer. The area of the interface between the magnetization free layer and the tunnel barrier layer is larger than the surface area of the point contact section. Moreover, a portion of the protection layer in contact with the interlayer insulating film has a smaller thickness in a surface normal direction than the portion of the protection layer in contact with the electrode. |
US08836436B2 |
Ovenized crystal oscillator assembly
An oscillator assembly which, in one embodiment, is an ovenized crystal oscillator assembly including an enclosure defined by a base and a lid which is seated on the base. The components of the oscillator assembly are supported by the base and located under the lid. The base and the lid together define an interior oven and are both preferably made of an insulative thermoplastic material to maximize the heat retention and oven performance of the oscillator assembly. In one embodiment, the lid and the base incorporate a clip for securing the lid to the base. |
US08836430B1 |
Wideband distributed amplifier with integral bypass
An improved distributed amplifier (200) includes an input transmission line (201) terminated with an input lead configured to accept an input signal and an output transmission line (202) terminated with an output lead configured to output an output signal. A number of parallel amplifier cells (204N) are connected to the input transmission line (201) and the output transmission line (202) that collectively amplify the input signal from the input lead to produce an amplified output signal at the output lead. A bypass switch (212, 300) is connected to the input and output transmission lines (201, 202). The bypass switch (212, 300) is operative to convert either the input transmission line (201, 301) or the output transmission line (202, 302) into a bypass line configured to bypass the parallel amplifier cells (204N) of the distributed amplifier (200) and provide a direct path between the input and output transmission lines (201, 202) to produce a bypassed output signal at the output lead. |
US08836427B2 |
Folded cascode operational amplifier
A folded cascode operational amplifier is disclosed. The folded cascode operational amplifier includes a first current source, a second current source, and a first voltage terminal connected to the first current source and the second current source. The folded cascode operational amplifier also includes a first input-transistor connected to the first current source in series, and a second input-transistor connected to the second current source in series. Further, the folded cascode operational amplifier includes a tail current source connected to a connection point between the first input-transistor and the second input-transistor, a load current source, and a second voltage terminal connected to the tail current source and the load current source. The folded cascode operational amplifier also includes an output-transistor connected to the load current source, and an output-terminal arranged between the second current source and the second input-transistor and connected to the output-transistor. The second current source is a mirroring current source of the first current source, and a ratio of a current passing through the second current source to a current passing through the first current source is greater than one. |
US08836424B2 |
Amplifier circuit, method and mobile communication device
An amplifier circuit includes a gain controller, a first amplifier, and a second amplifier which is coupled in series to the first amplifier, the second amplifier comprising a plurality of amplifying units. The gain controller is configured to receive a desired gain value and provide, based on the received desired gain value, a gain adjust signal to the first amplifier, and activate, based on the received desired gain value, a certain combination of amplifying units of the plurality of amplifying units of the second amplifier, such that a combined gain of the first amplifier and the active amplifying units of the second amplifier corresponds to the received desired gain value. |
US08836421B2 |
Apparatus and method for use with an amplifier circuit
An output network for use with a multi-transistor amplifier circuit comprises N transistors configured to provide a Chireix outphasing behavior. The N transistors coupled to receive different amplitude and/or phase signals relative to a source signal. The output network comprises: a plurality of branches arranged in a hierarchical structure between N input nodes and an output node; at least one branch connection arranged between the input nodes and the output node, wherein each branch connection is arranged to couple first and second branches from an input side to a single branch on an output side. The hierarchical structure is arranged asymmetrically such that at least one branch connection comprises a different number of input nodes ultimately connected to its first branch compared to the number of input nodes ultimately connected to its second branch. |
US08836420B2 |
Analog circuit and display device and electronic device
The invention provides an analog circuit that decreases an effect of variation of a transistor. By flowing a bias current in a compensation operation, a voltage between the gate and source of the transistor to be compensated is held in a capacitor. In a normal operation, the voltage stored in the compensation operation is added to a signal voltage. As the capacitor holds the voltage according to the characteristics of the transistor to be compensated, the effect of variation can be decreased by adding the voltage stored in the capacitor to the signal voltage. Further, an analog circuit which decreases the effect of variation can be provided by applying the aforementioned basis to a differential circuit, an operational amplifier and the like. |
US08836419B2 |
PWM comparator and class D amplifier
The present disclosure generally relates to a PWM comparator and a class D amplifier. The PWM comparator described above introduces current feedback mechanism, basing the waveform state of received high frequency triangle signal and the level state of output signal of the PWM comparator, the hysteresis is changing dynamically. In the same resolution, the noise resistance ability of the PWM comparator described above is much better than that of the conventional PWM comparators which has a fixed hysteresis, thus the PWM comparator can work stably even if the duty cycle of output signal is nearly 100%. |
US08836415B2 |
Voltage control circuit
A control circuit includes a basic input output system (BIOS) chip, an embedded controller (EC), and a regulation unit. The BIOS chip outputs control signals corresponding to various operating frequencies of an electronic element. A digital-to-analog conversion unit of the EC receives the control signals, and outputs different types of analog voltages to the regulation unit. The regulation unit provides a proper voltage to the electronic element in relation to the operating frequency of the electronic element. |
US08836412B2 |
Charge pump with a power-controlled clock buffer to reduce power consumption and output voltage ripple
A charge pump system includes a charge pump that receives its clock signals, generated by an oscillator circuit, though a clock buffer. The clock buffer is power-controlled to reduce power consumption and output voltage ripple. The buffer is formed of a series of inverter that are connected to the power supply level through a clamping element, such as a transistor whose gate is controlled by a regulation signal based on feedback from the pump's output. |
US08836411B2 |
Charge pump systems and methods
Digital multilevel memory systems and methods include a charge pump for generating regulated high voltages for various memory operations. The charge pump may include a plurality of pump stages. Aspects of exemplary systems may include charge pumps that performs orderly charging and discharging at low voltage operation conditions. Additional aspects may include features that enable state by state pumping, for example, circuitry that avoids cascaded short circuits among pump stages. Each pump stage may also include circuitry that discharges its nodes, such as via self-discharge through associated pump interconnection(s). Further aspects may also include features that: assist power-up in the various pump stages, double voltage, shift high voltage levels, provide anti-parallel circuit configurations, and/or enable buffering or precharging features, such as self-buffering and self-precharging circuitry. |
US08836410B2 |
Internal voltage compensation circuit
An internal voltage compensation circuit is provided which includes a power up signal generator configured to generate a power up signal, a select signal generator configured to compare a level of a first external voltage with a level of a second external voltage to generate first and second select signals, wherein the second select signal is generated in response to the power up signal, and a voltage compensation unit configured to electrically connect an internal voltage to the first external voltage or the second external voltage in response to the first and second select signals. |
US08836409B1 |
Systems and methods for configuring a switch
An apparatus includes: a switch having a first transistor, the first transistor having a gate, wherein the switch is connected between a first pad and a second pad; and a first biasing circuit coupled to the gate of the first transistor, wherein the first biasing circuit is configured for outputting a first voltage, the first voltage being the lowest one of (1) a voltage of the first pad, (2) a voltage of the second pad, and (3) a ground voltage; wherein the gate of the first transistor is driven by the first voltage from the first biasing circuit in response to an enable signal being set for configuring the switch to be off. |
US08836405B2 |
System and method for synchronizing a local clock with a remote clock
A system for synchronizing a first clock and a second clock includes a receiver associated with the first clock, configured to receive a remote pulse from the second clock. The remote pulse has a pulse repetition frequency and spectral characteristics that are known to the local clock. The system also includes a local pulse emitter configured to create a local pulse at the first clock, and optics configured to align the local pulse and the remote pulse. The system further includes an interferometer configured to create an interference pattern between the local pulse and the remote pulse. A controller is provided that is configured to calculate a time delay between the first clock and the second clock based on the interference pattern between the local pulse and the remote pulse. |
US08836404B2 |
Circuit for preventing reverse conduction
In one embodiment, a circuit includes a resistance including first and second terminals. The first terminal of the resistance is coupled to ground. The circuit also includes a first switching element including first, second, and third terminals. The first terminal of the first switching element is coupled to an output of an integrated circuit and the second terminal of the first switching element is coupled to a voltage supply of the integrated circuit. Additionally, the circuit includes a second switching element including first, second, and third terminals. The first terminal of the second switching element is coupled to an enable input of the integrated circuit. Furthermore, the second terminal of the second switching element is coupled to the third terminal of the first switching element and to the second terminal of the resistance. Moreover, the third terminal of the second switching element is coupled to the ground. |
US08836402B2 |
Phase splitter
A phase splitter includes: a first signal path; and a second signal path, wherein the phase splitter outputs an internal signal of the first signal path as a first phase signal, and mixes an output signal of the first signal path with an output signal of the second signal path, thereby outputting a second phase signal having a predetermined phase difference from the first phase signal. |
US08836400B2 |
Positive edge preset flip-flop with dual-port slave latch
In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. Clock signals CKT and CLKZ and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CKT and CLN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CKT, CLKZ, RET, RETN, SS, SSN and PREN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode. |
US08836398B2 |
Negative edge flip-flop with dual-port slave latch
In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. The clock signals CLK and CLKN and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CLK and CLN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CLK, CLKN, RET, RETN, SS and SSN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode. |
US08836391B2 |
Plesiochronous clock generation for parallel wireline transceivers
A method for plesiochronous clock generation for parallel wireline transceivers, includes: inputting, into at least one decoder, at least one digital frequency mismatch number; decoding, with the at least one decoder, the at least one digital frequency mismatch number to obtain at least one digital frequency divider number that represents a transmit frequency associated with at least one signal; inputting the at least one digital frequency divider number into at least one fractional-N phase lock loop; and utilizing, by the at least one fractional-N phase lock loop, the at least one digital frequency divider number and an analog reference signal produced by a reference oscillator to produce a resultant signal at the transmit frequency; wherein the at least one decoder and the at least one fractional-N phase lock loop are contained on a single integrated circuit. |
US08836385B2 |
Frequency converter and switching method thereof
A frequency converter includes a comparator, an error computation unit and a calibration unit. The comparator receives a reference voltage signal and a triangle wave signal, and outputs a switching signal. The switching signal is fed back to the error computation unit to calculate an error signal by computing the reference signal and the switching signal. The calibration unit calibrates the triangle wave signal or the reference voltage signal according to the error signal. |
US08836380B2 |
Bootstrap circuit
A semiconductor device, includes: a first field effect transistor having one terminal to which a first electrical potential is given; a second field effect transistor having one terminal to which a second electrical potential smaller than the first electrical potential is given; a controller that controls each electrical potential of each control terminal of the first field effect transistor and the second field effect transistor; a capacitor element having one end connected to the control terminal of the first field effect transistor, the capacitor element being charged by the control of the controller; and a load element connected between another terminal of the first field effect transistor and another terminal of the second field effect transistor. |
US08836379B2 |
Clock selection circuit and method
The invention provides a clock select circuit and method which uses feedback arrangements between latches in different branches, with each branch for coupling an associated clock signal to the circuit output. An override circuit is provided in one of the feedback arrangements for preventing a latching delay in that feedback arrangement. This enables rapid switching between clocks in both directions. |
US08836378B2 |
Direct sampling circuit
Provided is a direct sampling circuit in which signal mixing between systems is avoided, even when signal systems in which time sharing is integrated are used together by time sharing. History capacitors (153, 155) are connected at a preceding step to a switched capacitor filter (160) for each system, buffer capacitors (173, 175) are connected at a subsequent step to the switched capacitor filter (160) for each system, and the history capacitors and buffer capacitors, which are connected to a rotation capacitor of the switched capacitor filter (160), are switched for each time-sharing system that is input. |
US08836376B2 |
Comparator and A/D converter
A comparator includes: a differential amplifier of which operational state is switched in response to a clock-signal, and which outputs a first intermediate-output corresponding to a first input-signal and a second intermediate-output corresponding to a second input-signal; a differential latch circuit of which operational state is switched in response to the clock-signal, and a state of which is changed depending on the first intermediate-output and the second intermediate-output; a first adjuster configured to adjust a threshold of the differential latch circuit with respect to a change of a state of the first intermediate-output and a change of a state of the second intermediate-output; and a second adjuster configured to adjust a threshold variation of the differential latch circuit with respect to a change of a state of the first intermediate-output and a change of a state of the second intermediate-output. |
US08836372B1 |
Minimizing power consumption in asynchronous dataflow architectures
A digital signal processing apparatus includes a digital circuit device having one or more elements configured to process digital data; a power supply configured to deliver a controllable operating voltage for the one or more elements; control logic configured to receive feedback signals from each of the one or more elements, the feedback signals indicative of a rate at which data is moving through each individual element; and the control logic configured to output a control signal to the power supply so as to cause the power supply to reduce the operating voltage for the one or more elements responsive to a decreasing workload detected therein, and to cause the power supply to increase the operating voltage for the one or more pipelines responsive to an increasing workload detected therein. |
US08836371B2 |
Systems and methods for reduced coupling between digital signal lines
Methods and systems are disclosed for reduced coupling between digital signal lines. For disclosed embodiments, return-to-zero signaling is dynamically blocked so that high logic levels remain high through entire clock cycles where the next data to be output is also at high logic levels. The dynamically blocked return-to-zero signaling reduces capacitive coupling between digital signal lines, such as clock and data signal lines, that are in close proximity to each other by reducing current flow that would otherwise occur with return-to-zero signaling. The dynamically blocked return-to-zero signaling can be used in a wide variety of environments and implementations. |
US08836370B2 |
Semiconductor apparatus
A semiconductor apparatus includes a power supply changing unit. The power supply changing unit is configured to receive an enable signal and power supply voltage, generate first voltage or second voltage according to the enable signal, change a voltage level of the second voltage according to a level signal, and supply the first voltage or the second voltage as a driving voltage of an internal circuit, wherein the internal circuit receives a first input signal to output a second input signal. |
US08836368B2 |
Non-LUT field-programmable gate arrays
New logic blocks capable of replacing the use of Look-Up Tables (LUTs) in integrated circuits, such as Field-Programmable Gate Arrays (FPGAs), are disclosed herein. In one embodiment, the new logic block is an AND-Inverter Cone (AIC), which is a binary tree including one or more AND gates with a programmable conditional inversion and a number of intermediary outputs. Compared to LUTs, AICs are richer in terms of input and output bandwidth, because the area of the AICs grows only linearly with the number of inputs. Also, the delay grows only logarithmically with the input count. The new logic blocks can map circuits more efficiently than LUTs, because the AICs are multi-output blocks and can cover more logic depth due to the higher input bandwidth. |
US08836367B2 |
Signal transceiver and adaptive impedance switch circuit
A signal transceiver includes a connector for receiving a signal, a band-pass filter coupled to the connector for filtering the signal, a front-end module for demodulating the signal and an adaptive impedance switch circuit coupled between the band-pass filter and the front-end module for switching an impedance value between the band-pass filter and the front-end module. |
US08836364B2 |
Voltage test devices used in LCD panels and a system thereof
A voltage test device used in liquid crystal display (LCD) panels, including test solder pads and test lines, is proposed. The test solder pads are connected to an LCD panel through the test lines. Each of the test lines includes a switch test line and a signal-inputting test line. The voltage test device further includes a first connector. The switch test line includes a first portion of the switch test line and a second portion of the switch test line. The first portion of the switch test line is connected to the second portion of the switch test line through the first connector. The first connector is used for preventing the electric current in excess of a predetermined threshold from flowing inside the LCD panel. Meanwhile, a voltage testing system used in LCD panels is proposed. |
US08836363B2 |
Probe card partition scheme
A method of probe card partitioning for testing an integrated circuit die includes providing a first probe card partition layout having a first number of distinct sections. Each distinct section uses a distinct probe card for testing. The first probe card partition layout is repartitioned into a second probe card partition layout having a second number of distinct sections. The second number is less than the first number. |
US08836360B2 |
Semiconductor device including integrated circuit
A semiconductor device that can be manufactured with reduced costs and that includes a first connecting terminal, a second connecting terminal, a third connecting terminal, and a first circuit module configured to operate in response a first signal and a second signal. When a mode signal is in a first state, the first circuit module receives the first signal from the first connecting terminal and receives the second signal from the second connecting terminal. Otherwise, when the mode signal is in a second state, the first circuit module receives the first signal from the first connecting terminal and receives the second signal from the third connecting terminal. A memory module including at least one such memory device may also be provided. |
US08836355B2 |
Dynamic testing based on thermal and stress conditions
A plurality of sets of test conditions of a die in a stacked system is established, wherein the plurality of test conditions are functions of temperatures of the die, and wherein the stacked system comprises a plurality of stacked dies. A temperature of the die is measured. A respective set of test conditions of the die is found from the plurality of sets of test conditions, wherein the set of test conditions corresponds to the temperature. The die is at the temperature using the set of test conditions to generate test results. |
US08836353B2 |
Digitally displaying inspection system for ESD protection chip
The present invention provides a digitally displaying inspection system for ESD protection chip, which includes an LVDS connector, a display system, first, second, and the third data lines, a power supply, and a resistor. The first, second, and third data lines each have an end electrically connected to the LVDS connector and an opposite end electrically connected to the display system. The display system includes a logic operation module and a digital display module electrically connected to the logic operation module. The logic operation module is electrically connected to the first, second, and third data lines. When an ESD protection chip is electrically connected to the LVDS connector, the logic operation module samples signals on the first, second, and third data lines and drive, after carrying out logic operations, the digital display module to display character signs, which can identify if the ESD protection chip is incorrectly connected. |
US08836352B2 |
System and method for using an integrated circuit pin as both a current limiting input and an open-drain output
An integrated circuit comprises at least one pin and has at least one resistor connected between a reference voltage and the at least one pin. Current measurement circuitry applies a voltage across the at least one resistor and measures a current at the at least one pin responsive to the applied voltage in a first mode of operation. The measured current enables determination of a current limit set point for the integrated circuit. In a second mode of operation, the at least one resistor comprises a pull up resistor and the at least one pin that is connected to the at least one resistor comprises an open-drain output. |
US08836351B2 |
Chloride detection
A high electron mobility transistor (HEMT) capable of performing as a chlorine sensor is disclosed. In one implementation, a silver chloride layer can be provided on a gate region of the HEMT. In one application, the HEMTs can be used for the measurement and detection of chloride in bio-sensing applications. In another application, the HEMTs can be used for the detection of chloride in water for environmental and health applications. |
US08836349B2 |
Capacitive sensor
A sensor includes a variable capacitor, a fixed capacitor, an inductor, a switch that electrically connects the variable capacitor with the inductor or the fixed capacitor with the inductor, an oscillator that generates a periodic signal, and a controller connected to the switch, the oscillator, and the inductor. The controller operates the switch, identifies a frequency of a first oscillation of the variable capacitor and the inductor based on the periodic signal from the oscillator, identifies a frequency of a second oscillation of the fixed capacitor and the inductor based on the periodic signal from the oscillator, and identifies a capacitance of the variable capacitor based on a ratio of the frequency of the first oscillation to the frequency of the second oscillation. |
US08836343B2 |
Fuel property detection device and method for determining detection of property of fuel
First, second, and third electrodes are exposed to a fuel passage. The third electrode defines a first gap with the first electrode and defines a second gap with the second electrode. A property detection unit detects a property of fuel according to a summation of a first capacitance of the first gap and a second capacitance of the second gap. A correct-erroneous determination unit determines whether the property detected with the property detection unit is correct or erroneous according to a ratio of the summation and the first capacitance. |
US08836340B2 |
Assembled battery system and failure detection method of assembled battery system
An assembled battery system is disclosed that includes a plurality of serially-connected battery cells; voltage detecting lines connectable at one ends to electrodes of the battery cells of the assembled battery; electric resistors serially-connected at one ends to the other ends of the voltage detecting lines; capacitors connected to the other ends of the electric resistors, each of the capacitors being configured to electrically interconnect one of the voltage detecting lines and the other voltage detecting line; voltage measuring circuits connected respectively to each of the voltage detecting lines; electrically openable short-circuiting switches arranged between the capacitors and the voltage measuring circuits and parallel-connected to the capacitors; and a monitoring circuit that detects a difference between a first measurement result and a second measurement result with respect to each of the short-circuiting switches and a failure of the voltage detecting lines, the short-circuiting switches or the voltage measuring circuits. |
US08836336B2 |
Combining different electromagnetic data to characterize a subterranean structure
First electromagnetic data is acquired for a subterranean structure using a first survey technique, and second electromagnetic data is acquired for the subterranean structure using a second, different survey technique in which static positioning of at least one electromagnetic source is employed. The first and second electromagnetic data are combined to characterize the subterranean structure. |
US08836335B2 |
Multi-capacitor system for electromagnetic logging tool
An apparatus for estimating a property of an earth formation penetrated by a borehole includes: a borehole carrier; a first switchable-magnet; a first energy storage device coupled to the first switchable magnet; a second switchable-magnet; a second energy storage device coupled to the second switchable-magnet; at least one voltage source having a first polarity and a second polarity opposite of the first polarity; and an electrical circuit configured to charge the first energy storage device and the second energy storage device at the same time and to sequentially discharge the first energy storage device and the second energy storage device, the electrical circuit being further configured to charge the first and second energy storage devices to the first polarity and then charge the first and second energy storage devices to the second polarity after the first and second energy storage devices are discharged. |
US08836331B2 |
Volume hologram resin composition, surface relief hologram resin composition, and hologram layer, hologram transfer foil and brittle hologram label using the same
The major object of the invention is to provide a volume-type hologram resin composition and a surface relief-type hologram resin composition having a high effect of preventing forgery and excellent in foil cutting, as well as a hologram layer and a hologram transfer foil using thereof. To achieve the object, there is provided a volume-type hologram resin composition having at least one kind of photopolymerizable compound, a photopolymerization initiator and fine particles, wherein the fine particles show magnetic resonance. |
US08836330B2 |
Magnetic resonance imaging apparatus and magnetic resonance imaging method
According to one embodiment, an MRI apparatus includes a calculation unit and an imaging unit. The calculation unit calculates “a value of a parameter having an upper limit” for “a plurality of patterns of scan orders for a plurality of scan operations for an object” respectively. The imaging unit generates image data for each of the scan operations by performing the plurality of scan operations based on a result of the calculation. |
US08836326B2 |
Rotation angle detection device
When the zero-crossing of one of the output signals of magnetic sensors has been detected, a rotation angle computing device identifies a magnetic pole sensed by the first magnetic sensor based on the other two output signals. Subsequently, the rotation angle computing device identifies the magnetic pole sensed by the second magnetic sensor and the magnetic pole sensed by the third magnetic sensor based on the magnetic pole sensed by the first magnetic sensor. After that, the rotation angle computing device corrects the amplitude of the output signal of each magnetic sensor based on the identified magnetic poles respectively sensed by the magnetic sensors. Then, the rotation angle computing device computes the electric angle θe of the rotor based on the corrected output signals. |
US08836316B2 |
Selectable phase power supply system
A power supply system to provide power for a central processing unit (CPU) includes a bridge circuit, a pulse width modulation (PWM) controller and a pulse adjusting driver circuit. The bridge circuit detects a work state of the PWM controller to obtain a feedback signal output from the PWM controller, and provides the feedback signal to the CPU. The CPU outputs a control signal to the bridge circuit according to a work state of the CPU and the feedback signal, and the bridge circuit outputs a PWM signal to the pulse adjusting driver circuit according to the control signal. The pulse adjusting driver circuit receives a first driving signal provided by an external circuit, and adjusts the first driving signal according to the PWM signal to generate at least one second driving signal to drive the CPU. |
US08836313B2 |
Constant current source and solid imaging apparatus using the same
A constant current source has a first current source circuit for outputting a first current; a second current source circuit for outputting a second current according to a reference voltage; a current comparison circuit for comparing magnitudes of the first and second currents; and a current adjustment unit for adjusting a current value of the first current output from the first current source circuit in accordance with a comparison result of the current comparison circuit. |
US08836311B2 |
Power converter with switching circuits
Provided is a power converter having a switching circuit wherein a surge voltage of a plurality of switching elements connected in series is suppressed and loss is not concentrated to a specific switching element. The switching circuit is provided with: a non-latching type switching element having two main terminals and one control terminal; a voltage detecting means which detects a voltage applied between the main terminals of the switching element; a control current supply for supplying the control terminal with a control signal corresponding to the voltage detected by the voltage detector; and a delay device for delaying the control signal. |
US08836308B2 |
Step-down type DC-DC regulator
A first transistor coupled between a power supply line and an inductor, a second transistor coupled between a source of the first transistor and a reference voltage line, and a third transistor coupled between the source of the first transistor and a load are included, and efficiency deterioration caused by a dead time is improved by keeping a current flow through a current path of an inductor, a load, and the third transistor during the dead time by supplying a voltage which is less than a threshold voltage and approximately the threshold voltage to a gate of the third transistor as a gate voltage. |
US08836304B2 |
Switching mode power supply with virtual current sensing and associated methods
The present technology is related generally to a switching mode power supply with virtual current sensing. The switching mode power supply comprises a power stage that includes a first power switch and a second power switch coupled in series. The switching mode power supply senses a first current flowing through the first power switch during on-time and provides a virtual current sense signal that is proportional to a second current flowing through the second power switch during on-time. The switching mode power supply further combines the real current sense signal and the virtual current sense signal to form a current sense signal, which is sent to the controller to realize desired control. |
US08836303B2 |
Active leakage consuming module for LDO regulator
An active leakage consuming module (1001) is to be added to an LDO regulator without modification of the structure of this latter. The module provides a low-power operating mode with reduced current consumption, without impairing an operation of the LDO regulator for higher currents output by said LDO regulator. The module comprises a leakage current path (54) and control means (40, 50) for conducting consumed current below a threshold out of a pull-down path of the LDO regulator. |
US08836300B2 |
Step-down switching regulator
A step-down switching regulator includes a switching element performing switching in accordance with an input control signal to charge an inductor with an input voltage; a synchronous rectification element performing switching in accordance with an input control signal to discharge the inductor; a power supply circuit part generating and outputting a supply voltage; a capacitor connected to the connection of the switching element and the inductor; a first drive circuit part controlling the switching of the switching element in accordance with an input control signal; a second drive circuit part controlling the switching of the synchronous rectification element in accordance with another input control signal; and a control circuit part generating and outputting the control signals to the first and second drive circuit parts so that the predetermined constant voltage is output from an output terminal, wherein the second drive circuit part is supplied with power from the capacitor. |
US08836296B2 |
Power conversion apparatus
A three-phase rectification circuit rectifies output voltage of a three-phase AC power supply, a step-up converter circuit steps up the output voltage, and a smoothing device smoothes the stepped-up output voltage. A voltage detection circuit detects output voltage VoL of the smoothing device, and an AC current component detection circuit extracts AC component included in output current of the three-phase rectification circuit and outputs a detection signal ViL corresponding to the AC component. A control circuit calculates a deviation ΔVdc1 (=Vs−VoL−ViL) among an output voltage instruction Vs for output voltage of the step-up converter circuit and detection signals VoL and ViL obtained by the detection circuits, and generates a pulse signal for suppressing the deviation ΔVdc1 to zero, thereby performing PWM control for a switching device of the step-up converter circuit. |
US08836290B2 |
Battery cell monitoring and balancing circuit
A monitoring circuit for accurately monitoring a voltage level from each of a plurality of battery cells of a battery pack includes an analog to digital converter (ADC) and a processor. The ADC is configured to accept an analog voltage signal from each of the plurality of battery cells and convert each analog voltage signal to a digital signal representative of an accurate voltage level of each battery cell. The processor receives such signals and provides a safety alert signal based on at least one of the signals. The ADC resolution may be adjustable. A balancing circuit provides a balancing signal if at least two of the digital signals indicate a voltage difference between two cells is greater than a battery cell balance threshold. An electronic device including such monitoring and balancing circuits is also provided. Various methods are also provided. |
US08836288B2 |
Battery heating circuits and methods using transformers
Circuit and method for heating a battery. The heating circuit includes a switch unit, a switching control module, a one-way semiconductor component, a damping component and a transformer. The switching control module is electrically connected with the switch unit. The battery, the damping component, a first winding of the transformer, and the switch unit are connected in a first loop with each other to constitute a battery discharging circuit. The battery, the damping component, a second winding of the transformer, and the one-way semiconductor component are connected in a second loop with each other to constitute a battery charging circuit. |
US08836287B2 |
Time-domain multiplexing of power and data
Circuits, methods, and apparatus that may allow an electronic device to control a power adapter. One example may provide an electronic system where an electronic device may control a power adapter through a communication channel. Data transferred in the communication channel may include the temperature of the power adapter, the charging capability of the adapter, and other types of data. In one example, power and data may share the same two wires, and the power and data may be time-division multiplexed. That is, the two wires may convey power and data at different times. Another example may include circuitry to detect a connection between the electronic device and the power adapter. Once a connection is detected, power may be transferred from the power adapter to the electronic device. This power transfer may be interrupted on occasion to transfer data between the power adapter to the electronic device. |
US08836285B2 |
Power management system
Provided is a power management system capable of controlling charge and discharge of storage batteries according to power requirement of load even when handling electric power of large scale. A system controller receives load-related information data including the power requirement of load and storage battery-related information data including a state of a storage battery assembly including multiple storage batteries and creates an overall charge-discharge control instruction for the entire power management system based on the load-related information data and the storage battery-related information data. A hierarchical charge-discharge control apparatus receives the overall charge-discharge control instruction from the system controller and performs charge-discharge control of the multiple storage batteries, classified into hierarchical levels, on a hierarchical level basis. |
US08836283B2 |
Battery recharging base station
The present invention is related to a rechargeable base station system having a base station connected to a DIN rail assembly. The base station has a base featuring side walls, and a receiving unit rotatably connected to the side walls. The receiving unit has an opened end configured to receive a rechargeable device, and at least one electrical contact which contacts the rechargeable device so as to charge the rechargeable device. The DIN rail assembly has power connection elements that provide power from a power source to the base station when the base station is attached to the DIN rail assembly. The base station can include a battery which provides power to charge the rechargeable device when power from the power source is interrupted. Multiple base stations can be connected to the DIN rail assembly thereby allowing for multiple rechargeable devices to be charged from a single DIN rail assembly. |
US08836277B2 |
Battery heating circuits and methods using resonance components in series based on current limiting and voltage inversion with bi-directionality and common inductance
Circuit and method for heating a battery. The circuit includes the battery including parasitic damping and current storage components. A first switch unit and first charge storage component are parts of a battery discharging circuit. A second current storage component is in series with the first charge storage component and a one-way semiconductor component. The one-way semiconductor component and second current storage component are in parallel with the first switch unit. The first charge storage component, second current storage component, and the one-way semiconductor component are parts of a battery charging circuit. A second switch unit is in parallel to the first charge storage component and the second current storage component. The second switch unit and the second current storage component are parts of a voltage regulation and polarity inversion circuit for the first charge storage component. The circuit heats the battery by discharging and charging the battery. |
US08836275B2 |
Charging and discharging management apparatus and mobile terminal
Embodiments of the present invention disclose a charging and discharging management apparatus and a mobile terminal. The charging and discharging management apparatus may include a charging and discharging management chip, primary battery positive and negative electrode contacts, secondary battery positive and negative electrode contacts, and electronic switches connected to the primary battery positive and negative electrode contacts and the secondary battery positive and negative electrode contacts, a detecting unit configured to detect in-place states of a primary battery and a secondary battery, and an electronic switch controlling unit connected to the detecting unit and configured to control the electronic switches to be on/off according to the in-place states of the batteries to enable the charging and discharging management chip to perform charging and discharging management for a battery in place. |
US08836274B2 |
System and method for displaying battery information before executing and operating system
A system and method are described for displaying battery condition information on a display of a portable computer. After powering on the portable computer, battery condition information of a battery of the portable computer is retrieved. The retrieved battery condition information is displayed on the display of the portable computer and operating system (OS) loaded into an executable memory of the portable computer is executed. |
US08836273B2 |
Power reception control device, power reception device, non-contact power transmission system, electronic instrument and power reception control method
A power reception control device provided in a power reception device of a non-contact power transmission system includes a power-reception-side control circuit that controls an operation of the power reception device, and a power supply control signal output terminal that supplies a power supply control signal to a charge control device, the power supply control signal controlling power supply to a battery. The power-reception-side control circuit controls a timing at which the power supply control signal (ICUTX) is output from the power supply control signal output terminal. The operation of the charge control device is compulsorily controlled using the power supply control signal (ICUTX). |
US08836269B2 |
Method for detecting blockages of electrically commutated electric motors
A method for detecting blockages of unipolar stepper motors by analyzing the motor current supply, comprising impressing a current into one or more motor windings using a controllable switch, wherein the switch selectively connects a respective motor winding connection to a supply voltage connection and wherein the connections of each motor winding lying at a common potential are permanently connected to a second supply voltage connection, wherein a current feed variant has phases between the switching of the motor windings, in which phases the motor winding connections are switched with high resistance; detecting the voltage at a motor winding connection at least for the high-resistance phase and comparing the voltage to a threshold; detecting a time interval for which the voltage is greater than the threshold; comparing interval lengths for several motor winding connections, and detecting a blockage based on the comparisons of interval lengths. |
US08836266B2 |
Small motor controller
A small motor controller (SMC) system includes a motor configured to control a position of a rotor, a sensor configured to detect position information of the rotor by detecting a feature on the rotor, the sensor including a detection zone having a first side and a second side, and a motor control unit. The motor control unit is configured to determine a position of the rotor corresponding to one of the first side of the detection zone and the second side of the detection zone based on whether the feature on the rotor is detected crossing the first side or the second side, respectively. |
US08836265B2 |
Numerical control device
In order to obtain an NC device that can easily shift by an arbitrary amount a main spindle single-revolution reference signal without being dependant on hardware and while rotating a main spindle, the NC device includes a main spindle reference angle correction amount setting unit for inputting a correction angle of a reference point, a main spindle within-single-revolution feed-back position correction unit for correcting the reference point by a correction angle set by the main spindle reference angle correction amount setting unit, and a main spindle within-single-revolution command position correction unit for correcting a main spindle within-single-revolution command position by the correction angle set by the main spindle reference angle correction amount setting unit. |
US08836259B2 |
Sensorless BLDC motor systems and driving methods of sensorless BLDC motor
Provided is a sensorless BLDC motor system. The sensorless BLDC motor system includes a BLDC motor, a comparator, a motor controller, a three-phase inverter, and a mode selector. The BLDC motor includes first to third coils. The comparator compares a voltage of a specific coil of the first to third coils with a neutral-point voltage to output the compared result. The voltage of the specific coil becomes equal to the neutral-point voltage and a specific time elapses, and then the motor controller generates first and second coil control signals based on the compared result. The three-phase inverter supplies a source voltage or ground voltage to the specific coil, or floats the specific coil, in response to the first and second coil control signals. The mode selector selects a driving mode of the BLDC motor by adjusting the specific time. |
US08836256B2 |
Switched reluctance motor torque estimation
A drive system has a switched reluctance motor (SR motor) and a control system configured to determine an estimated total torque of SR motor as a function of the phase voltages and phase currents of the phases of the SR motor. |
US08836254B2 |
Control of an electrical machine
A method of controlling an electrical machine that includes selecting an edge of a rotor-position signal as a reference edge and commutating a phase winding of the electrical machine at times relative to the reference edge. The rotor-position signal has at least four edges per mechanical cycle, each of the edges being associated with a respective zero-crossing in back EMF or minimum in inductance of the phase winding. The angular position of at least one of the edges relative to its respective zero-crossing or minimum is different to that of the other edges. The reference edge is then selected from the edges such that the angular position of the reference edge relative to its respective zero-crossing or minimum is the same with each power on of the electrical machine. Additionally, a controller and control system that implement the method. |
US08836253B2 |
Control apparatus for AC rotary machine
A control apparatus for an AC rotary machine includes: a current detection section detecting current from a power converter to the AC rotary machine; and a control section generating a three-phase AC voltage instruction to the power converter, based on current detected by the current detection section and a torque instruction. The control section includes: an observer calculating a magnetic flux estimated value of the AC rotary machine, based on detected current and the voltage instruction; a current instruction calculation unit calculating current instruction values on rotational two axes, based on the torque instruction and the magnetic flux estimated value from the observer; and a voltage instruction calculation unit calculating the voltage instruction, based on the current instruction values from the current instruction calculation unit and the magnetic flux estimated value from the observer. |
US08836251B2 |
Drive system and machine
The present invention relates to a drive system with energy recovery for driving a machine, in particular for driving a crane, wherein the drive system includes at least one fuel cell unit, at least one capacitive energy storage unit and at least one drive motor, and wherein the fuel cell unit and the energy storage unit are connected in parallel and feed at least one drive motor. According to the invention, the capacitive energy storage unit is dimensioned such that the differential voltage occurring during operation between the fuel cell unit and the capacitive energy storage unit is minimized to such an extent that the current caused by the voltage within the parallel connection of fuel cell unit and energy storage unit does not exceed a defined safe limit value, wherein the fuel cell unit and the energy storage unit are directly coupled with each other and with the remaining drive components without DC/DC converter. The invention furthermore relates to a machine which includes the drive system according to the invention. |
US08836248B2 |
Monitoring a condition of a solid state charge device in electrostatic printing
An apparatus to monitor a condition of a solid state charge device (SSCD) useful in electrostatic printing includes a power supply and a frequency detector. The power supply provides current to the SSCD, and includes a resonant controller. The frequency detector senses a frequency associated with the current, and since the frequency is representative of the condition of the SSCD, the frequency detector thereby monitors the condition of the SSCD. A method of monitoring the condition of the SSCD includes providing current to the SSCD using a power supply, and sensing a frequency associated with the current. The power supply includes a resonant controller, and the frequency is representative of the condition of the SSCD, and thus the method thereby monitors the condition of the SSCD. A corresponding computer-readable medium is also disclosed. |
US08836241B2 |
LED driving circuit and driving controller for controlling the same
A driving controller for driving a load is disclosed. The driving circuit includes a driving power supply and the driving controller. The driving power supply provides a first power source to the load. The controller is coupled to a second power source to receive an electric power for operating. The controller controls the amount of the electric power to the load when operating in a first mode and stops the driving power supply from providing the electric power to the load when operating in a second mode. The controller operates exclusively in the first mode before the driving power supply provides the first power source to the load. |
US08836240B2 |
Dim mode start for electrodeless lamp ballast
A ballast for energizing a lamp at a lighting level selected from a plurality of lamp lighting levels. The ballast includes a buck converter circuit configured to receive a DC voltage signal having a substantially constant magnitude. The buck converter circuit has a duty cycle for generating a lamp voltage output signal from the DC voltage signal. The lamp voltage output signal has a magnitude that is varied by the duty cycle to energize the lamp at the plurality of lamp lighting levels. A controller is configured to receive a dim input signal indicative of the selected lamp lighting level and to provide a control signal to the buck converter circuit as a function of the dim input signal. The control signal indicates a particular duty cycle corresponding to a lamp voltage output signal having a magnitude for energizing the lamp at the selected lamp lighting level. |
US08836236B1 |
LED offset voltage dimmer
An LED driver has a power supply configured to receive power from a power input. A primary controller configured to receive power from the power supply and output power to a power output. The power output is configured to be connected to LED lights. A dimmer provides a dimming signal, and the dimmer has an adjustable voltage circuit. An offset voltage is added to a ground path on the adjustable voltage circuit. The offset voltage can be created by a silicon diode adding the offset voltage to a transformer's secondary winding ground path on a DC regulated voltage circuit. The adjustable voltage circuit can be formed as the DC regulated voltage circuit. The DC regulated voltage circuit is a 10 VDC regulated voltage circuit. |
US08836235B2 |
Apparatus for automatically controlling the illumination of LED lighting
The present invention relates to an apparatus for automatically controlling illuminance, which transmits a dimming signal based on the zero-crossing of AC power using an illuminance control electronic switch. An apparatus for automatically controlling illuminance of Light-Emitting Diode (LED) lighting according to an embodiment of the present invention includes a dimming control electronic switch for, if manipulation of a switch by a user is sensed during supply of Alternating Current (AC) power to an LED lamp, interrupting supply of the AC power during a preset period of time based on zero-crossing of the AC power, and an LED lamp control device for controlling illuminance of the LED lamp by detecting supply and interruption of the AC power. |
US08836233B2 |
Light source apparatus and driving apparatus thereof
A light source driving apparatus including a voltage converting unit, a switching unit, a feedback unit and a control unit is provided. The voltage converting unit provides a driving current to drive a light source module. The switching unit is controlled to be conducted or not by a switch signal. The feedback unit detects a load status of the light source module, and provides a feedback signal accordingly. The control unit modulates pulse widths of the switch signal according to the feedback signal, a signal upper limitation, and a signal lower limitation, so as to control the switching unit to be conducted. The voltage converting unit includes an energy storage element. When the switching unit is conducted, the energy storage element stores a part of energy provided by the input power source. When the switching unit is not conducted, the energy storage element provides the driving current. |
US08836231B2 |
Modularized LED lamp
A modularized LED lamp is disclosed. Embodiments of the present invention provide an LED lamp in which digital and/or analog communication takes place between the LED module and the power supply unit (PSU) of the lamp. A controller in the LED module sends signals to the PSU, allowing separation of the two parts so that each part can be manufactured independently as opposed to being manufactured as a calibrated, matched pair. The LED module, by way of its controller, provides information to the PSU that allows the power supply to adjust its drive current appropriately. The PSU controller can also respond to operating temperature variations of the LEDs in order to provide thermal shutdown, brightness compensation, and other control if needed. In some embodiments, a controller in the PSU also responds to an external dimming input. |
US08836212B2 |
Light emissive printed article printed with quantum dot ink
A light emissive printed articles (101) include printing with ink that includes quantum dots in lieu of pigment. A pump light that emits light with photon energies sufficient to excite the quantum dot ink (102) is used to drive light emission. |
US08836205B2 |
Cyclotron
A cyclotron includes a superconductive coil that is disposed in a vacuum vessel, a cooling unit that cools the superconductive coil, a basic support member that is installed in the vacuum vessel and supports the superconductive coil in the vacuum vessel, and a support member for quenching that is fixed to one of the superconductive coil and the vacuum vessel and forms a predetermined gap with the other thereof. |
US08836200B2 |
Torsional mode ultrasonic generator
Apparatus (5,50) for generating torsional-mode ultrasonic vibrations comprises a stack of axially-polarized piezo-electric ceramic rings (10) having a torsional converter (1,51,53) mounted coaxially to either one face of the stack or to two opposite faces thereof. Each torsional converter (1,51,53) has a cross-sectional inhomogeneity comprising a plurality of helically-extending grooves (2,55) extending substantially from end to end of the converter. The grooves (2,55) each have a length, measured axially along the converter (1,51,53), of approximately half the wavelength of ultrasonic vibrations therein. When the stack is energized, the stack and the converter (1) or converters (51,53) resonate together in a purely torsional-mode vibration. The apparatus (5,50) is compact and axisymmetric, and is straightforward to incorporate into a simple tool handpiece. The ultrasonic vibrations may be transmitted along a conventional elongate waveguide (3) of a tool to a distal operative tip (35). A very high amplitude torsional oscillation may thus be induced at the operative tip (35) of the tool. Alternatively, a further converter element (32) may be located at a distal end of the waveguide (3) in order partially to convert torsional-mode to longitudinal-mode vibrations for tool operative tips requiring combined-mode oscillations. |
US08836198B2 |
Brush holder of slip ring
A brush holder of the present invention is formed by a plurality of brush holder units in serial connection. Each brush holder unit includes an insulating base, a brush frame, and two carbon brushes. The insulating base has a protrusion and a recess on opposite sides. The brush frame has a main body received in the recess and two branches projected from opposite ends of the main body. The carbon brushes are provided on the branches of the brush frame. The protrusion of the brush holder unit is inserted into the recess of another brush holder unit to serially connect the brush holder units as well as to secure the brush frame in the recess. Therefore, the brush holder may be formed by serially connecting the brush holder units in a fast and easy way, and it provides a stable signal transmission. |
US08836192B2 |
Axial gap rotating electrical machine and rotor used therefor
In the axial gap rotating electrical machine, the rotor includes a rotor yoke that is formed by wrapping amorphous ribbon wound toroidal core, which is obtained by winding an amorphous magnetic metal ribbon into a toroidal core. Magnets having plural poles are circumferentially disposed on a stator-facing surface of the amorphous ribbon wound toroidal core. |
US08836189B2 |
Spindle motor having lubricant filled bearing clearance
There is provided a spindle motor including: a sleeve rotatably supporting a shaft and having an insertion groove provided in a top surface thereof; and a rotor case mounted on a top end of the shaft and including a protruding wall part inserted into the insertion groove, wherein a lubricant, provided to generate a dynamic pressure when the shaft rotates, forms an interface with air in a clearance formed by the protruding wall part and the insertion groove. |
US08836188B2 |
Motor with internal driver
A motor with an internal driver having a shell, having a stator, a rotor and a drive shaft attached to said rotor in an internal thereof; a front cover; a rear cover; ends of a drive shaft penetrating through holes of the front and rear covers to the external. The inner surface of the rear cover includes outer and inner circumferential walls and a receiving space defined by the outer and inner circumferential walls and the inner surface of the rear cover. A driver is provided within said receiving space and the outer surface of the rear cover is provided with a bearing slot to receive a bearing. An inner diameter of the inner circumferential wall is greater than the drive shaft. Said inner diameter of said inner circumferential wall is smaller than the annular diameter of the bearing in the bearing slot. |
US08836187B2 |
Vehicle drive device
A vehicle drive device includes an input member coupled to an internal combustion engine; an output member coupled to a wheel; a rotating electrical machine; a fluid coupling; and a case containing at least the rotating electrical machine and the fluid coupling. The fluid coupling includes an input and an output that is paired with the input. The rotating electrical machine includes a rotor and a rotor support that extends radially inward from the rotor in an axial direction with respect to the coupling input, and supports the rotor via a support bearing. A power transmission member is formed by coupling at least the rotor support and the coupling input together so that at least the rotor support and the coupling input rotate together. A movement restricting mechanism restricts axial movement of the power transmission member toward the axial direction. |
US08836186B2 |
Bus bar device, stator, motor and manufacturing method for stator
A bus bar device electrically connects a plurality of coils arranged along a circumferential direction of the bus bar device to form an annular shape in entirety. A plurality of bus bars is arranged so that a plurality of layers is formed in a radial direction of the bus bar device. Each of the bus bars is formed from an arc-shaped conductive wire. A plurality of connection wires is respectively connected to the plurality of coils. The connection wires are arranged to overlap the bus bars and intersect the bus bars in the axial direction. Intersection portions at which the bus bars and the connection wires intersect include connection intersection portions at which the connection wires are electrically connected to the bus bars. |
US08836179B2 |
Systems and methods of energy harvesting with positive displacement motor
A system to harvest energy from shaft rotation includes a housing, a curved shaft disposed within the housing, and a magnetostrictive material embedded in the housing. A rotation of the curved shaft strains the magnetostrictive material, generating an electrical current in a conductor disposed proximate to the magnetostrictive material. |
US08836176B2 |
Uninterruptible power supply for a medical appliance
An apparatus for metered supply of a liquid medicament having a power supply which not only allows the primary battery to be replaced without interrupting the insulin supply, but also makes it possible to bridge uncontrolled short-term interruptions in the current supply or voltage supply resulting from bouncing of the battery contacts, while also providing an adequate emergency power reserve is disclosed. |
US08836175B1 |
Power distribution system for rack-mounted equipment
A system includes a rack, one or more computing devices, and one or more rack power distribution units. The computing devices include one or more power supply units. The rack power distribution units include a set of power output receptacles. A set of power inputs on the power supply units matches the set of output receptacles on the rack power distribution units. |
US08836174B2 |
Energy saving switch of continuously powered transformers
An additional miniature switch or jumper switch to be integrated within the power connector of any device that is using transformer but that does not need to be connected to it all the time. The energy saving switch will disconnect the primary winding of the transformer from the voltage source when the device does not need to be powered. The energy saving switch could also be integrated within the turn-on/off circuit of any devices that is using transformer continuously plugged to a voltage source to power the device that may be turned-off either with an interrupter (mechanical or even electronically with remote control). The energy saving switch operates when a transformer is not in use but still wasting energy while connected to a voltage supply. The energy saving switch will simply disconnect the primary winding of the transformer when no device is connected or when the device is turned-off. |
US08836172B2 |
Efficient near-field wireless energy transfer using adiabatic system variations
Disclosed is a method for transferring energy wirelessly including transferring energy wirelessly from a first resonator structure to an intermediate resonator structure, wherein the coupling rate between the first resonator structure and the intermediate resonator structure is κ1B, transferring energy wirelessly from the intermediate resonator structure to a second resonator structure, wherein the coupling rate between the intermediate resonator structure and the second resonator structure is κB2, and during the wireless energy transfers, adjusting at least one of the coupling rates κ1B and κB2 to reduce energy accumulation in the intermediate resonator structure and improve wireless energy transfer from the first resonator structure to the second resonator structure through the intermediate resonator structure. |
US08836170B2 |
Wireless power feeding system and wireless power feeding method
An object is to provide a power feeding system and a power feeding method which are more convenient for a power feeding user at the power receiving end. An object is to provide a power feeding system and a power feeding method which also allow a power feeding provider (a company) which feeds power (at the power transmitting end) to supply power without waste. A power feeding device which wirelessly supplies power to a power receiver detects the position and the resonant frequency of the power receiver to be supplied with power, and controls the frequency of a power signal to be transmitted to the power receiver on the basis of the information. An efficient power feeding service can be offered by transmitting a power signal to the power receiver at an optimum frequency for high power transmission efficiency. |
US08836169B2 |
Center-tapped solar array and power distribution system for same
A center-tapped solar array includes a plurality of series-connected solar cells connected between a positive terminal and a negative terminal for generating an output voltage. A center-tapped terminal connected to ground is connected to the plurality of series-connected solar cells at a midpoint between the positive and negative terminals. As a result, the positive terminal of the solar array has a positive voltage relative to ground greater than the center-tapped terminal and the negative terminal has a negative voltage relative to ground less than the center-tapped terminal. |
US08836166B2 |
Power management with over voltage protection
This document discusses, among other things, systems and methods to provide an internal supply rail with over voltage protection using a host power source, an external power source, and a switch configured to receive indications of host and external power source validity. In an example, the switch can be configured to provide the internal supply rail using the host power source when the indication of host power source validity indicates a valid host power source and the external power source when the indication of host power source validity indicates an invalid host power source and the indication of external power source validity indicates a valid external power source. |
US08836161B2 |
Rolling stock system and control method thereof
A breaker 162 is opened when a pantograph 101 is lowered. The pantograph 101 is connected to an overhead wire 200. Voltage and its phase of the overhead wire are detected by a detector 161. Power is supplied from a power storage device 150c to a tertiary winding 112c via a power converter 14c such that a primary side of the main transformer 110 has the same voltage and phase as the overhead wire so as to reversely excite the main transformer 110. When the voltage of the main transformer 110 has the same phase as the voltage of the overhead wire 200, the breaker 162 is turned on and then the pantograph 101 is raised, to connect the overhead wire 200 and the main transformer 110 to each other, thereby preventing the occurrence of an excitation inrush current to the main transformer 110. |
US08836158B2 |
Horizontal axis wind turbine systems and methods
A system for operating a horizontal axis wind turbine includes a turbine rotor and a rotor blade adapted to rotate about a horizontal axis, two vertical shafts, a plurality of gears adapted to translate a rotational motion of the turbine rotor into counter-rotating vertical rotational motions of the shafts, and two generators fixed to a tower, adapted to translate a rotational motion of the shafts into electrical power. A method of operating a horizontal axis wind turbine system includes obtaining a turbine rotor and a rotor blade adapted to rotate about a horizontal axis, obtaining two vertical shafts, obtaining a plurality of gears, and obtaining two generators fixed to a tower, translating a rotational motion of the turbine rotor into counter-rotating vertical rotational motions of the shafts using the gears, and translating a rotational motion of the shafts into electrical power using the generators. |
US08836157B2 |
Power generation device
A power generation device for a vehicle comprises a housing adapted to removably affix to a rear of a vehicle and a rotatable support member for rotatably supporting a first device, the rotatable support member operatively connected to the housing, wherein the first device includes rotor blades for producing electrical energy when exposed to a flow of air. Further, the rotatable support member is adapted to be articulated between a range from a first position, wherein the rotatable support member and the rotor blades of the first device are disposed within the housing, and a second position, wherein the rotatable support member and the rotor blades of the first device are disposed outside of the housing. |
US08836154B2 |
Wind turbine control methods for improving the production of energy
Method of operation of a variable speed wind turbine (11) having control means for its regulation tracking a power vs. generator speed curve (31) comprising a nominal zone (39) where the power is kept constant at a nominal value, a first sub-nominal zone (33) where the generator speed is kept constant at its coupling value, a second sub-nominal zone (35) where both generator speed and power are allowed to increase/decrease in line with wind speed and a third sub-nominal zone (37) between the second sub-nominal zone (35) and the nominal zone (39) that comprises a first vertical segment (41) at a generator speed nr2 higher than the generator nominal speed nr1 and a second vertical segment (43) at the generator nominal speed nr1 connecting with the nominal zone (39), each of both segments (41, 43) to be followed in function of the wind speed changes for optimizing the energy production. |
US08836153B2 |
Wave-power aggregate to extract energy from wave motion in a fluid and the use of a wave-power aggregate
The present invention relates to a wave-power aggregate and a method of extracting energy from wave motion in a liquid by means of a wave-power aggregate. The wave-power aggregate comprises a container which is situated at least partially in the liquid and also comprises an inflow and an outflow. The container is arranged to, under the influence of said wave motion, to let a first part of the container arrange itself in a first position and a second part of the container in a second position, where the first and second position corresponds to different potential energy states. The method comprises the steps of: alternately supplying the container with at least a first and a second fluid respectively via the inflow, where the density of the fluids differs. at least during an initial stage of the method controlling a flow resistance in at least one of the first and second fluids through the container. |
US08836151B2 |
Starter generator arranged within the flywheel housing in an internal combustion engine
An arrangement connectable to an internal combustion engine having a crankshaft, the arrangement including a flywheel, which is connectable to the crankshaft and coupled by a coupling device to output elements. An intermediate piece is arranged in a torque-transmitting manner between the flywheel and the coupling device. A starter generator is arranged within a flywheel housing and operatively connected to the crankshaft. The intermediate piece has in the center thereof an opening in which a shaft body is mounted in an axially movable manner, and the shaft body is connected to the coupling device by means of a flexible transmission element. |
US08836147B2 |
Bonding structure of multilayer copper bonding wire
A bonding structure of a ball-bonded portion is obtained by bonding a ball portion formed on a front end of a multilayer copper bonding wire. The multilayer copper bonding wire includes a core member that is mainly composed of copper, and an outer layer that is formed on the core member and is mainly composed of at least one noble metal selected from a group of Pd, Au, Ag and Pt. Further, a first concentrated portion of such noble metal(s) is formed in a ball-root region located at a boundary with the copper bonding wire in a surface region of the ball-bonded portion. |
US08836145B2 |
Power semiconductor device with reduced contact resistance
A semiconductor device that includes an electrode of one material and a conductive material of lower resistivity formed over the electrode and a process for fabricating the semiconductor device. |
US08836144B2 |
Wafer level package structure
The present invention provides a semiconductor package structure, which includes a die, a plurality of bonding wires, an encapsulant, and a plurality of first external terminals. The die has an active surface and a back surface. A first end of each of the bonding wires is connected to the back surface of the die, and a second end opposite to the first end is electrically connected to the active surface of the die. The encapsulant covers the back surface of the die and the bonding wires, wherein a portion of each of the bonding wires is exposed from the encapsulant. The first external terminals are disposed on the top surface of the encapsulant, and cover the exposed portions of the bonding wires respectively and are electrically connected to the bonding wires. |
US08836143B2 |
Chip package with coplanarity controlling feature
A chip package includes a substrate, an integrated circuit proximate a top surface of the substrate, and a cap comprising encapsulant that encapsulates the integrated circuit on at least a portion of the top surface of the substrate. The chip package further includes at least one extension feature positioned on at least a portion of the top surface of the substrate. The at least one extension feature also comprises the encapsulant and extends from the cap to a perimeter of the substrate. |
US08836137B2 |
Method for creating a 3D stacked multichip module
A 3D stacked multichip module comprises a stack of W IC die. Each die has a patterned conductor layer, including an electrical contact region with electrical conductors and, in some examples, device circuitry over a substrate. The electrical conductors of the stacked die are aligned. Electrical connectors extend into the stack to contact landing pads on the electrical conductors to create a 3D stacked multichip module. The electrical connectors may pass through vertical vias in the electrical contact regions. The landing pads may be arranged in a stair stepped arrangement. The stacked multichip module may be made using a set of N etch masks with 2N-1 being less than W and 2N being greater than or equal to W, with the etch masks alternatingly covering and exposing 2n-1 landing pads for each mask n=1, 2 . . . N. |
US08836133B2 |
Chip-level humidity protection
An electronic apparatus includes a semiconductor substrate, a device structure supported by the semiconductor substrate, and a guard ring surrounding the device structure. The guard ring includes a plurality of conductive structures spaced apart from one another, supported by the semiconductor substrate, and coupled to a voltage source to establish an operating voltage for the guard ring. |
US08836127B2 |
Interconnect with flexible dielectric layer
An integrated circuit device has a dual damascene structure including a lower via portion and an upper line portion. The lower via portion is formed in a polyimide layer, and the upper line portion is formed in an inter-metal dielectric (IMD) layer formed of USG or polyimide. A passivation layer is formed on the IMD layer, and a bond pad is formed overlying the passivation layer to electrically connect the upper line portion. |
US08836126B2 |
Semiconductor device having insulating layers containing oxygen and a barrier layer containing manganese
A semiconductor device includes an insulating layer formed over a semiconductor substrate, the insulating layer including oxygen, a first wire formed in the insulating layer, and a second wire formed in the insulating layer over the first wire and containing manganese, oxygen, and copper, the second wire having a projection portion formed in the insulating layer and extending downwardly but spaced apart from the first wire. |
US08836125B2 |
Flexible electronic devices and related methods
A packaged electronic device includes a flexible circuit structure and a die. The flexible circuit structure includes a first structural layer and electrical conductors. The die is bonded to the flexible circuit structure by a flexible attachment layer. The die includes interconnects in electrical contact with die circuitry and extending through the die, through the flexible attachment layer, and into electrical contact with respective electrical conductors at first ends. A flexible second structural layer is disposed on the die and exposed portions of the electrical conductors, wherein the die and the electrical conductors are encapsulated by the first structural layer and the second structural layer. The first structural layer and/or the second structural layer include a plurality of openings defining respective exposed areas on the electrical conductors at second ends. |
US08836121B2 |
Circuit board with twinned CU circuit layer and method for manufacturing the same
A circuit board with twinned Cu circuit layer and a method for manufacturing the same are disclosed, wherein the method comprises the following steps: (A) providing a substrate with a first circuit layer formed thereon, wherein the first circuit layer comprises a conductive pad; (B) forming a first dielectric layer on the surface of the substrate; (C) forming plural openings in the first dielectric layer, wherein each opening penetrates through the first dielectric layer and communicates with the conductive pad to expose the conductive pad; (D) forming a Cu seeding layer in the openings; (E) forming a nano-twinned Cu layer in the openings with an electroplating process; and (F) annealing the substrate to transfer the material of the Cu seeding layer into nano-twinned Cu, wherein the nano-twinned Cu layer and the transferred Cu seeding layer are formed into a second circuit layer. |
US08836119B2 |
Semiconductor device
There is provided a semiconductor device. The semiconductor device includes: a silicon substrate; a copper post connected to one surface of the silicon substrate; a semiconductor element having a linear expansion coefficient different from that of the silicon substrate; a metal layer provided between the semiconductor element and the silicon substrate to cover the copper post; a first alloy layer provided between the copper post and the semiconductor element, wherein the first alloy layer includes alloy of gold and a metal of the metal layer; and a second alloy layer provided between the metal layer and the semiconductor element, wherein the second alloy layer includes alloy of gold and the metal of the metal layer. |
US08836118B2 |
Electronic device packages including bump buffer spring pads and methods of manufacturing the same
Electronic device packages and related methods are provided. The electronic device package includes a first substrate having a first contact portion disposed thereon, a bump having a first contact surface connected to the first contact portion and a second contact surface disposed opposite to the first contact surface, and a buffer spring pad portion between the first contact portion of the first substrate and the first contact surface of the bump. The buffer spring pad portion includes at least two different conductive material layers which are stacked. |
US08836117B2 |
Electronic device having a contact recess and related methods
An electronic device may include a bottom interconnect layer and an integrated circuit (IC) carried by the bottom interconnect layer. The electronic device may further include an encapsulation material on the bottom interconnect layer and laterally surrounding the IC. The electronic device may further include electrically conductive pillars on the bottom interconnect layer extending through the encapsulation material. At least one electrically conductive pillar and adjacent portions of encapsulation material may have a reduced height with respect to adjacent portions of the IC and the encapsulation material and may define at least one contact recess. The at least one contact recess may be spaced inwardly from a periphery of the encapsulation material. |
US08836114B2 |
Semiconductor device and method of forming Fo-WLCSP having conductive layers and conductive vias separated by polymer layers
A Fo-WLCSP has a first polymer layer formed around a semiconductor die. First conductive vias are formed through the first polymer layer around a perimeter of the semiconductor die. A first interconnect structure is formed over a first surface of the first polymer layer and electrically connected to the first conductive vias. The first interconnect structure has a second polymer layer and a plurality of second vias formed through the second polymer layer. A second interconnect structure is formed over a second surface of the first polymer layer and electrically connected to the first conductive vias. The second interconnect structure has a third polymer layer and a plurality of third vias formed through the third polymer layer. A semiconductor package can be mounted to the WLCSP in a PoP arrangement. The semiconductor package is electrically connected to the WLCSP through the first interconnect structure or second interconnect structure. |
US08836110B2 |
Heat spreader for use within a packaged semiconductor device
A packaged semiconductor device includes a package substrate, an integrated circuit (IC) die mounted on the package substrate, and a heat spreader mounted on the package substrate. The heat spreader surrounds at least a portion of the IC die and includes a lid with a plurality of openings. An inner portion of the heat spreader includes a plurality of thermally conductive protrusions adjacent the die. |
US08836109B2 |
Semiconductor device and method of manufacturing a semiconductor device
A semiconductor device includes a substrate having a via region and a circuit region, an insulation interlayer formed on a top surface of the substrate, a through electrode having a first surface and a second surface, wherein the through electrode penetrates the via region of the substrate and the second surface is substantially coplanar with a bottom surface of the substrate, a first upper wiring formed on a portion of the first surface of the through electrode, a plurality of via contacts formed on a portion of a top surface of the first upper wiring, and a second upper wiring formed on the plurality of via contacts. |
US08836104B2 |
Apparatus for chip thermal stress relief
Various stress relief structures are provided for effectively reducing thermal stress on a semiconductor chip in a chip package. Trenches on a metal substrate are created in groups in two-dimension, where each trench is opened from top or bottom surface of the metal substrate and in various shapes. The metal substrate is partitioned into many smaller substrates depending on the number of trench groups and partitions, and is attached to a semiconductor chip for stress relief. In an alternative embodiment, a plurality of cylindrical metal structures are used together with a metal substrate in a chip package for the purpose of heat removal and thermal stress relief on a semiconductor chip. In another alternative embodiment, a metal foam is used together with a semiconductor chip to create a chip package. In another alternative embodiment, a semiconductor chip is sandwiched between a heat sink and a circuit board by solder bumps directly with underfill on the circuit board. |
US08836093B2 |
Lead frame and flip chip package device thereof
The present invention relates to the field of semiconductor chip packages, and more specifically to a lead frame and flip chip package device thereof. In one embodiment, a lead frame for electrically connecting a chip to outside leads, can include a plurality of lead fingers, where each of the plurality of lead fingers comprises a plurality of outburst regions extending from an edge thereof. In one embodiment, a flip chip package device can include: a chip and a plurality of solder bumps, where one surface of the chip is connected to a first surface of each of the plurality of solder bumps; and the lead frame, where second surfaces of each of the plurality solder bumps are connected with corresponding outburst regions of the lead frame to connect the chip to the lead frame through the solder bumps. |
US08836087B2 |
Gap-fill keyhole repair using printable dielectric material
Disposable gate structures are formed on a semiconductor substrate. A planarization dielectric layer is deposited over the disposable gate structures and planarized to provide a top surface that is coplanar with top surface of the disposable gate structures. The planarization dielectric layer at this point includes gap-fill keyholes between narrowly spaced disposable gate structures. A printable dielectric layer is deposited over the planarization dielectric layer to fill the gap-fill keyholes. Areas of the printable dielectric layer over the gap-fill keyholes are illuminated with radiation that cross-links cross-linkable bonds in the material of the printable dielectric layer. Non-crosslinked portions of the printable dielectric layer are subsequently removed selective to crosslinked portions of the printable dielectric layer, which fills at least the upper portion of each gate-fill keyhole. The disposable gate structures are removed to form gate cavities. The gate cavities are filled with a gate dielectric and a gate electrode. |
US08836086B2 |
Semiconductor light emitting chip and method for processing substrate
Disclosed is a semiconductor light emitting chip (20) that is composed of: a substrate (10), which has the C plane of a sapphire single crystal as the front surface, and the side surfaces (25, 26) configured of planes that intersect all the planes equivalent to the M plane of the sapphire single crystal, and which includes modified regions (23, 24) in the side surfaces (25, 26), the modified regions being formed by laser radiation; and a light emitting element (12), which is provided on the substrate front surface (10a) of the substrate (10). In the semiconductor light emitting chip, a tilt of the substrate side surfaces with respect to the substrate front surface is suppressed. Also disclosed is a method for processing the substrate. |
US08836085B2 |
Cost-effective TSV formation
A device includes a substrate having a first surface, and a second surface opposite the first surface. A through-substrate via (TSV) extends from the first surface to the second surface of the substrate. A dielectric layer is disposed over the substrate. A metal pad is disposed in the dielectric layer and physically contacting the TSV, wherein the metal pad and the TSV are formed of a same material, and wherein no layer formed of a material different from the same material is between and spacing the TSV and the metal pad apart from each other. |
US08836084B2 |
Structure for reducing integrated circuit corner peeling
A crack prevention structure that reduces integrated circuit corner peeling and reduces cracking is disclosed. The crack prevention structure comprises a semiconductor substrate; a first plurality of dielectric layers of a first material disposed over the semiconductor substrate; a second plurality of dielectric layers of a second material different than the first material, disposed on the first plurality of dielectric layers, wherein the first plurality of dielectric layers and the second plurality of dielectric layers meet at an interface; and a plurality of metal structures and a plurality of via structures formed through the interface of the first plurality of dielectric layers and the second plurality of dielectric layers. |
US08836079B2 |
Metal-on-metal (MoM) capacitors having laterally displaced layers, and related systems and methods
Metal-on-Metal (MoM) capacitors having laterally displaced layers and related systems and methods are disclosed. In one embodiment, a MoM capacitor includes a plurality of vertically stacked layers that are laterally displaced relative to one another. Lateral displacement of the layers minimizes cumulative surface process variations making a more reliable and uniform capacitor. |
US08836077B2 |
Semiconductor device and method for manufacturing the same
A semiconductor device according to an embodiment of the present invention includes fuse patterns spaced apart from each other by a predetermined distance over a first interlayer insulation film; a second interlayer insulation film disposed between the fuse patterns over the first interlayer insulation film; and a capping film pattern formed over the fuse patterns and the second interlayer insulation films, the capping film pattern including a slot exposing the second interlayer insulation film. |
US08836071B2 |
Gallium nitride-based schottky barrier diode with aluminum gallium nitride surface layer
A method of fabricating a Schottky diode using gallium nitride (GaN) materials includes providing an n-type GaN substrate having a first surface and a second surface. The second surface opposes the first surface. The method also includes forming an ohmic metal contact electrically coupled to the first surface of the n-type GaN substrate and forming an n-type GaN epitaxial layer coupled to the second surface of the n-type GaN substrate. The method further includes forming an n-type aluminum gallium nitride (AlGaN) surface layer coupled to the n-type GaN epitaxial layer and forming a Schottky contact electrically coupled to the n-type AlGaN surface layer. |
US08836070B2 |
Photo diode, method of manufacturing the photo-diode, and photo sensor including the photo diode
A photo diode includes an intrinsic region on a substrate, a P+ doping region in a first portion of the intrinsic region, and an oxide semiconductor region. The oxide semiconductor region is spaced apart from the P+ doping region on a second portion of the intrinsic region and the second portion of the intrinsic region is different from the first portion of the intrinsic region. |
US08836065B2 |
Solid-state imaging device
According to one embodiment, a solid-state imaging device includes a semiconductor substrate including a pixel area and a peripheral circuit area, an interconnection structure provided on a first principal surface of the semiconductor substrate and including first interconnection layers electrically connected to the peripheral circuit area, a second interconnection layer provided in the peripheral circuit area and on a second principal surface of the semiconductor substrate, a third interconnection layer provided above the second interconnection layer with an insulating layer therebetween, and through electrodes electrically connecting the second interconnection layer to the third interconnection layer. |
US08836060B2 |
Spin device, driving method of the same, and production method of the same
The present disclosure provides a spin device including: a graphene; a first ferromagnetic electrode and a second electrode that are in electrical contact with and sandwich the graphene; a third ferromagnetic electrode and a fourth electrode that sandwich the graphene at a position apart from the first and second electrodes in electrical contact with the graphene; a current applying portion that applies an electric current between the first ferromagnetic electrode and the second electrode; and a voltage-signal detecting portion that detects spin accumulation information as a voltage signal via the third ferromagnetic electrode and the fourth electrode. The spin accumulation information is generated, by application of the electric current, in a part of the graphene that is sandwiched between the third and fourth electrodes. The first and third ferromagnetic electrodes are disposed on the same surface of the graphene, and the second and fourth electrodes are non-magnetic or ferromagnetic electrodes. |
US08836055B2 |
MEMS structures and methods for forming the same
A device includes a micro-electro-mechanical system (MEMS) device, which includes a movable element and a fixed element. The movable element and the fixed element form two capacitor plates of a capacitor, with an air-gap between the movable element and the fixed element acting as a capacitor insulator of the capacitor. At least one of the movable element and the fixed element has a rugged surface. |
US08836054B2 |
Semiconductor chip capable of improving mounting reliability and semiconductor package having the same
A semiconductor chip includes a semiconductor chip body having a first surface and a second surface that faces away from the first surface, and including a plurality of bonding pads disposed on the first surface. Also, the semiconductor chip includes a distance maintaining member attached to the first surface of the semiconductor chip body and electrically connected with a circuit pattern. |
US08836053B2 |
Hybrid integrated component and method for the manufacture thereof
A component system includes at least one MEMS element, a cap for a micromechanical structure of the MEMS element, and at least one ASIC substrate. The micromechanical structure of the MEMS element is implemented in the functional layer of an SOI wafer. The MEMS element is mounted face down, with the structured functional layer on the ASIC substrate, and the cap is implemented in the substrate of the SOI wafer. The ASIC substrate includes a starting substrate provided with a layered structure on both sides. At least one circuit level is implemented in each case both in the MEMS-side layered structure and in the rear-side layered structure of the ASIC substrate. In the ASIC substrate, at least one ASIC through contact is implemented which electrically contacts at least one circuit level of the rear-side layered structure and/or at least one circuit level of the MEMS-side layered structure. |
US08836052B2 |
Electromechanical transducer and method of manufacturing the same
An electromechanical transducer includes multiple elements each having multiple cells, with each cell including a first electrode formed from a conductive substrate, and a second electrode opposed to a first face of the conductive substrate and across a gap. The multiple cells of each of the elements are electrically connected, and the conductive substrate is divided for each of the elements by grooves extending from the first face to a second face which is opposite from the first face. In addition, insulating films are formed on opposing side walls of the conductive substrate and define each of the grooves, wherein a gap width of each of the grooves is narrower on the second face side of the conductive substrate than on the first face side of the conductive substrate. |
US08836051B2 |
Method for producing semiconductor device and semiconductor device
A method for producing a semiconductor device includes a first step including forming a planar silicon layer and forming first and second pillar-shaped silicon layers; a second step including forming a gate insulating film around each of the first and second pillar-shaped silicon layers, forming a metal film and a polysilicon film around the gate insulating film, the thickness of the polysilicon film being smaller than half of a distance between the first and second pillar-shaped silicon layers, forming a third resist, and forming a gate line; and a third step including depositing a fourth resist so that a portion of the polysilicon film on an upper side wall of each of the first and second pillar-shaped silicon layers is exposed, removing the exposed portion of the polysilicon film, removing the fourth resist, and removing the metal film to form first and second gate electrodes. |
US08836049B2 |
Semiconductor structure and process thereof
A semiconductor structure includes a work function metal layer, a (work function) metal oxide layer and a main electrode. The work function metal layer is located on a substrate. The (work function) metal oxide layer is located on the work function metal layer. The main electrode is located on the (work function) metal oxide layer. Moreover a semiconductor process forming said semiconductor structure is also provided. |
US08836048B2 |
Field effect transistor device having a hybrid metal gate stack
A semiconductor device including a gate structure present on a channel portion of a semiconductor substrate and at least one gate sidewall spacer adjacent to the gate structure. In one embodiment, the gate structure includes a work function metal layer present on a gate dielectric layer, a metal semiconductor alloy layer present on a work function metal layer, and a dielectric capping layer present on the metal semiconductor alloy layer. The at least one gate sidewall spacer and the dielectric capping layer may encapsulate the metal semiconductor alloy layer within the gate structure. |
US08836047B2 |
Reducing defect rate during deposition of a channel semiconductor alloy into an in situ recessed active region
When forming sophisticated high-k metal gate electrode structures on the basis of a threshold voltage adjusting semiconductor alloy, a highly efficient in situ process technique may be applied in order to form a recess in dedicated active regions and refilling the recess with a semiconductor alloy. In order to reduce or avoid etch-related irregularities during the recessing of the active regions, the degree of aluminum contamination during the previous processing, in particular during the formation of the trench isolation regions, may be controlled. |
US08836046B2 |
Semiconductor devices including protruding insulation portions between active fins
A semiconductor device can include a field insulation layer including a planar major surface extending in first and second orthogonal directions and a protruding portion that protrudes a particular distance from the major surface relative to the first and second orthogonal directions. First and second multi-channel active fins can extend on the field insulation layer, and can be separated from one another by the protruding portion. A conductive layer can extend from an uppermost surface of the protruding portion to cross over the protruding portion between the first and second multi-channel active fins. |
US08836040B2 |
Shared-diffusion standard cell architecture
A semiconductor standard cell includes an N-type diffusion area and a P-type diffusion area, both extending across the cell and also outside of the cell. The cell also includes a conductive gate above each diffusion area to create a semiconductive device. A pair of dummy gates are also above the N-type diffusion area and the P-type diffusion area creating a pair of dummy devices. The pair of dummy gates are disposed at opposite edges of the cell. The cell further includes a first conductive line configured to couple the dummy devices to power for disabling the dummy devices. |
US08836037B2 |
Structure and method to form input/output devices
A limited number of cycles of atomic layer deposition (ALD) of Hi-K material followed by deposition of an interlayer dielectric and application of further Hi-K material and optional but preferred annealing provides increased Hi-K material content and increased breakdown voltage for input/output (I/O) transistors compared with logic transistors formed on the same chip or wafer while providing scalability of the inversion layer of the I/O and logic transistors without significantly compromising performance or bias temperature instability (BTI) parameters. |
US08836032B2 |
Fin-based adjustable resistor
According to one exemplary embodiment, a fin-based adjustable resistor includes a fin channel of a first conductivity type, and a gate surrounding the fin channel. The fin-based adjustable resistor also includes first and second terminals of the first conductivity type being contiguous with the fin channel, and being situated on opposite sides of the fin channel. The fin channel is lower doped relative to the first and second terminals. The resistance of the fin channel between the first and second terminals is adjusted by varying a voltage applied to the gate so as to achieve the fin-based adjustable resistor. The gate can be on at least two sides of the fin channel. Upon application of a depletion voltage, the fin channel can be depleted before an inversion is formed in the fin channel. |
US08836024B2 |
Electronic device including a trench and a conductive structure therein having a contact within a Schottky region and a process of forming the same
An electronic device can include a transistor structure, including a patterned semiconductor layer overlying a substrate, wherein the patterned semiconductor layer defines first and second trenches. The electronic device can also include a first conductive structure within the first trench, a gate electrode within the first trench and overlying the first conductive structure, a first insulating member within the second trench, and a second conductive structure within the second trench. The second conductive structure can include a first portion and a second portion overlying the first portion, the first insulating member can be disposed between the patterned semiconductor layer and the first portion of the second conductive structure; and the second portion of the second conductive structure can contact the patterned semiconductor layer at a Schottky region. Processes of forming the electronic device can take advantage of integrating formation of the Schottky region into a contact process flow. |
US08836016B2 |
Semiconductor structures and methods with high mobility and high energy bandgap materials
An embodiment is a structure comprising a substrate, a high energy bandgap material, and a high carrier mobility material. The substrate comprises a first isolation region and a second isolation region. Each of first and second isolation regions extends below a first surface of the substrate between the first and second isolation regions. The high energy bandgap material is over the first surface of the substrate and is disposed between the first and second isolation regions. The high carrier mobility material is over the high energy bandgap material. The high carrier mobility material extends higher than respective top surfaces of the first and second isolation regions to form a fin. |
US08836014B2 |
Double-gate electronic memory cell and method of manufacturing such a cell
An electronic memory cell includes a first selection transistor gate surmounting a first part of the channel and a lateral spacer disposed against a lateral flank of the selection transistor gate, a part of the lateral spacer forming a memory transistor gate surmounting a second part of the channel. The memory transistor gate includes a stack of the ONO type and a conductive zone including a lateral face inclined at an angle α strictly between 0 and 90° with respect to the plane of the substrate. |
US08836012B2 |
Spacer design to prevent trapped electrons
Charge-trapping field effect transistors may be formed into an array on a wafer suitable to be a NAND memory device. A thick oxide layer is applied over the gates to ensure that the gap between the gates is filled. The filled gap substantially prevents nitride from being trapped, which could otherwise decrease the yield of the devices. This technique, and its variations, are useful for a range of semiconductor devices. |
US08836010B2 |
Nonvolatile semiconductor memory device and method of manufacturing the same
A nonvolatile semiconductor memory device including a memory cell configured to store data and a resistor element provided around the memory cell. The memory cell includes a charge storage layer provided above a substrate, a first semiconductor layer formed on a top surface of the charge storage layer via an insulating layer, and a first low resistive layer formed on a top surface of the first semiconductor layer and having resistance lower than that of the first semiconductor layer. The resistor element includes a second semiconductor layer formed on the same layer as the first semiconductor layer, and a second low resistive layer formed on the same layer as the first low resistive layer and on a top surface of the second semiconductor layer, having resistance lower than that of the second semiconductor layer. |
US08836009B2 |
Flash memory
A MONOS Charge-Trapping flash (CTF), with record thinnest 3.6 nm ENT trapping layer, has a large 3.1 V 10-year extrapolated retention window at 125° C. and excellent 106 endurance at a fast 100 μs and ±16 V program/erase. This is achieved using As+-implanted higher κ trapping layer with deep 5.1 eV work-function of As. In contrast, the un-implanted device only has a small 10-year retention window of 1.9 V at 125° C. A MoN—[SiO2—LaAlO3]—[Ge—HfON]—[LaAlO3—SiO2]—Si CTF device is also provided with record-thinnest 2.5-nm Equivalent-Si3N4-Thickness (ENT) trapping layer, large 4.4 V initial memory window, 3.2 V 10-year extrapolated retention window at 125° C., and 3.6 V endurance window at 106 cycles, under very fast 100 μs and low ±16 V program/erase. These were achieved using Ge reaction with HfON trapping layer for better charge-trapping and retention. |
US08836001B2 |
Semiconductor device having buried bit line, and method for fabricating the same
A method for fabricating a semiconductor device includes forming at least one body having two sidewalls by vertically etching a semiconductor substrate, forming a protective layer having open parts that expose portions of the both sidewalls of the body, forming a buffer layer that fills the open parts, and forming a buried bit line in the body by siliciding the buffer layer and a portion of the body between the buffer layer. |
US08836000B1 |
Bottom-type perpendicular magnetic tunnel junction (pMTJ) element with thermally stable amorphous blocking layers
The invention provides a bottom-type perpendicular magnetic tunnel junction (pMTJ) element with thermally stable amorphous blocking layers for high-density nonvolatile data storage. The first blocking layer, preferably formed of an amorphous nonmagnetic film, blocks a polycrystalline diffusion barrier layer with a body-center-cubic (bcc) <110> texture in order for the keeper and lower reference layers of the bottom-type pMTJ element to freely grow with a face-centered-cubic (fcc) <111> texture, thereby developing strong perpendicular magnetic anisotropy (PMA). The second blocking layer, preferably formed of an amorphous ferromagnetic film, blocks the keeper and lower reference layers of the bottom-type pMTJ element in order for the upper reference, barrier and storage layers of the bottom-type pMTJ element to freely grow with a <001> texture, thereby exhibiting a strong tunneling magnetoresistance (TMR) effect. |
US08835997B2 |
Low extension dose implants in SRAM fabrication
A static random access memory fabrication array includes at least one p-type field effect transistor, including a gate stack and isolating spacers forming a gate having a gate length Lgate and an effective gate length, Leff and a source and drain region adjacent the gate stack, wherein the source and drain regions are formed from a low extension dose implant that decreases a difference between Lgate and Leff. |
US08835994B2 |
Reduced corner leakage in SOI structure and method
A structural alternative to retro doping to reduce transistor leakage is provided by providing a liner in a trench, undercutting a conduction channel region in an active semiconductor layer, etching a side, corner and/or bottom of the conduction channel where the undercut exposes semiconductor material in the active layer and replacing the removed portion of the conduction channel with insulator. This shaping of the conduction channel increases the distance to adjacent circuit elements which, if charged, could otherwise induce a voltage and cause a change in back-channel threshold in regions of the conduction channel and narrows and reduces cross-sectional area of the channel where the conduction in the channel is not well-controlled; both of which effects significantly reduce leakage of the transistor. |
US08835992B2 |
Electronic device comprising electrical contact pads
An electronic device and a method of fabricating the same are provided. The electronic device includes: a photodiode layer; a wiring layer formed on the first surface of the photodiode layer; a plurality of electrical contact pads formed on the wiring layer; a passivation layer formed on the wiring layer and the electrical contact pads; an antireflective layer formed on the second surface of the photodiode layer; a color filter layer formed on the antireflective layer; a dielectric layer formed on the antireflective layer and the color filter layer; and a microlens layer formed on the dielectric layer, allowing the color filter layer, the dielectric layer and the microlens layer to define an active region within which the electrical contact pads are positioned. As the electrical contact pads are positioned within the active region, an area of the substrate used for an inactive region can be eliminated. |
US08835984B2 |
Sensors using high electron mobility transistors
Embodiments of the invention include sensors comprising AlGaAs/GaAs high electron mobility transistors (HEMTs), inGaP/GaAs HEMTs. InAlAs/InGaAs HEMTs, AlGaAs/InGaAs PHEMTs, InAlAs/InGaAs PHEMTs, Sb based HEMTs, or InAs based HEMTs, the HEMTs having functionalization at a gate surface with target receptors. The target receptors allow sensitivity to targets (or substrates) for detecting breast cancer, prostate cancer, kidney injury, chloride, glucose, metals or pEI where a signal is generated by the HEMI when a solution is contacted with the sensor. The solution can be blood, saliva, urine, breath condensate, or any solution suspected of containing any specific analyte for the sensor. |
US08835981B2 |
Solid-state image sensor
According to embodiments of the present invention, a solid-state image sensor has a semiconductor element substrate having a plurality of photo electric conversion elements, an interlaminar insulating film having wires, formed at a first surface of the semiconductor element substrate, a color filter having a plurality of dye films of a plurality of colors, formed at a second surface of the semiconductor element substrate, a micro lens array having a plurality of micro lenses, formed above the color filter, a plurality of inner lenses formed between the photoelectric conversion elements and the dye films, and a shroud that surrounds each of the inner lenses, formed above the second surface of the semiconductor element substrate. |
US08835980B2 |
Semiconductor wafer, photoelectric conversion device, method of producing semiconductor wafer, and method of producing photoelectric conversion device
Provided is a semiconductor wafer including: a base wafer containing silicon; an inhibitor that has been formed on the base wafer, has an aperture in which a surface of the base wafer is exposed, and inhibits crystal growth; and a light-absorptive structure that has been formed inside the aperture in contact with a surface of the base wafer exposed inside the aperture, where the light-absorptive structure includes a first semiconductor and a second semiconductor. |
US08835979B1 |
Compound-barrier infrared photodetector
Using a multiple layer, varied composition barrier layer in place of the typical single layer barrier layer of an infrared photodetector results in a device with increased sensitivity and reduced dark current. A first barrier is adjacent the semiconductor contact; a second barrier layer is between the first barrier layer and the absorber layer. The barrier layers may be doped N type or P type with Beryllium, Carbon, Silicon or Tellurium. The energy bandgap is designed to facilitate minority carrier current flow in the contact region and block minority current flow outside the contact region. |
US08835972B2 |
Light emitting device, method for fabricating the light emitting device, light emitting device package and lighting system
Provided is a light emitting device. The light emitting device includes a light emitting structure layer including a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer, a first electrode electrically connected to the first conductive type semiconductor layer, an insulating support member under the light emitting structure layer, and a plurality of conductive layers between the light emitting structure layer and the insulating support member. At least one of the plurality of conductive layers has a width greater than that of the light emitting structure layer and includes a contact part disposed further outward from a sidewall of the light emitting structure layer. |
US08835968B2 |
LED lens and LED package using the same
An LED lens includes a recess disposed in a quadrangular bottom surface of the LED lens and configured to have a light source disposed therein, wherein an internal surface of the recess, including lateral surfaces and top surfaces, is a light incident surface. The LED lens further includes a top surface forming a light exit surface, having a size greater than that of the bottom surface, and having a quadrangular shape; and lateral surfaces of the LED lens, disposed between the top and bottom surfaces of the LED lens, forming a reflective surface, and guiding light incident to the LED lens through the light incident surface to the light exit surface. The top surfaces of the light incident surface form an inverted quadrangular pyramid. |
US08835965B2 |
Application of semiconductor quantum dot phosphors in nanopillar light emitting diodes
A quantum well-based p-i-n light emitting diode is provided that includes nanopillars with an average linear dimension of between 50 nanometers and 1 micron. The nanopillars include a laminar layer of quantum wells capable of non-radiative energy transfer to quantum dot nanocrystals. Quantum dot-Quantum well coupling through the side walls of the nanopillar-configured LED structure achieves a close proximity between quantum wells and quantum dots while retaining the overlying contact electrode structures. A white LED with attractive properties relative to conventional incandescent and fluorescence lighting devices is produced. |
US08835964B2 |
Light-emitting devices with vertical light-extraction mechanism
A light-emitting device comprises a lattice structure to minimize the horizontal waveguide effect by reducing light traveling distance in the light-absorption medium of the light-emitting devices, and to enhance light extraction from the light-emitting layer. The lattice structure includes sidewalls and/or rods embedded in the light-absorption medium and dividing the light-absorption medium into a plurality of area units. The area units are completely isolated or partially separated from each other by the sidewalls. Also provided is a method of fabricating a light-emitting device that comprises a lattice structure, which lattice structure includes sidewalls and/or rods embedded in the light-absorption medium and dividing the light-absorption medium into a plurality of area units. |
US08835963B2 |
Light converting and emitting device with minimal edge recombination
Light emitting system (100), particularly, light emitting systems that utilize semiconductor wavelength converting regions (104), and methods of producing such systems are disclosed. The light emitting systems and methods of producing such systems seek to frustrate recombination of free carriers that are associated with wavelength converting regions. |
US08835962B2 |
Cavity electroluminescent devices with integrated microlenses
Herein is provided electroluminescent devices, and methods for their use and production. In some embodiments, the devices contain embedded optical features that act as lenses to direct photons emitted from an electroluminescent material. The lensing effect from the optical features allows increased light extraction from the devices compared with devices lacking such features. In some embodiments the devices are prepared using a plurality of etching and deposition steps. |
US08835958B2 |
Light emitting diode package with improved optical lens structure
An LED package includes a substrate, two electrodes, an LED die and a lens. The substrate includes a top surface, a bottom surface, a plurality of side surfaces interconnecting the top surface with the bottom surface, and two opposite notches depressed downward from lateral peripheral portions of the top surface. The two electrodes penetrate through the substrate, and each of the two electrodes is exposed at both the top surface and the bottom surface of the substrate. The LED die is arranged on the substrate and electrically connected to the two electrodes. The lens is arranged on the substrate and covers the LED die. The lens includes a contacting surface adjoining the top surface of the substrate, and two protrusions extending from lateral peripheral portions of the contacting surface and respectively embedded in the two notches. |
US08835956B2 |
Display substrate and method of manufacturing the same
A display substrate includes a substrate, a pixel part, a pad part and a sacrificial electrode. The substrate includes a display area and a peripheral area. The pixel part is on the display area and includes a switching element, and a pixel electrode electrically connected to the switching element. The pad part is on the peripheral area and contacts a terminal of an external device. The pad part includes a pad electrode a contact electrode. The pad electrode includes a first metal layer, and a second metal layer on the first metal layer, and the contact electrode contacts the second metal layer. The sacrificial electrode is spaced apart from the pad electrode and contacts the contact electrode. An exposed portion of the sacrificial electrode is exposed to an external side of the display substrate. |
US08835955B2 |
IIIOxNy on single crystal SOI substrate and III n growth platform
A silicon-on-insulator (SOI) substrate structure and method of fabrication including a single crystal silicon substrate, a layer of single crystal rare earth oxide formed on the substrate, a layer of engineered single crystal silicon formed on the layer of single crystal rare earth oxide, and a single crystal insulator layer of IIIOxNy formed on the engineered single crystal silicon layer. In some embodiments the III material in the insulator layer includes more than on III material. In a preferred embodiment the single crystal rare earth oxide includes Gd2O3 and the single crystal insulator layer of IIIOxNy includes one of AlOxNy and AlGaOxNy. |
US08835952B2 |
Submounts for semiconductor light emitting devices and methods of forming packaged light emitting devices including dispensed encapsulants
A submount for mounting an LED chip includes a substrate, a die attach pad configured to receive an LED chip on an upper surface of the substrate, a first meniscus control feature on the substrate surrounding the die attach pad and defining a first encapsulant region of the upper surface of the substrate, and a second meniscus control feature on the substrate surrounding the first encapsulant region and defining a second encapsulant region of the upper surface of the substrate. The first and second meniscus control features may be substantially coplanar with the die attach pad. A packaged LED includes a submount as described above and further includes an LED chip on the die attach pad, a first encapsulant on the substrate within the first encapsulant region, and a second encapsulant on the substrate within the second encapsulant region and covering the first encapsulant. Method embodiments are also disclosed. |
US08835951B2 |
Light emitting device
The first wavelength converting member, the light emitting element, and the second wavelength converting member are disposed in this order toward the opening of the recess portion on the bottom surface of the housing member through a light transmissive supporting member, and spaced away from the side surface of the recess portion. The first wavelength converting member is a plate shape member made of a composite of an inorganic binder made of an inorganic material and a fluorescent material. A light scattering surface is formed on at least a portion of the side surface of the recess portion, which is irradiated with the light emitted from the side surfaces of the wavelength converting member in parallel with the principal surface of the first wavelength converting member. |
US08835950B2 |
Semiconductor device
A semiconductor device has an active layer, a first semiconductor layer of first conductive type, an overflow prevention layer disposed between the active layer and the first semiconductor layer, which is doped with impurities of first conductive type and which prevents overflow of electrons or holes, a second semiconductor layer of first conductive type disposed at least one of between the active layer and the overflow prevention layer and between the overflow prevention layer and the first semiconductor layer, and an impurity diffusion prevention layer disposed between the first semiconductor layer and the active layer, which has a band gap smaller than those of the overflow prevention layer, the first semiconductor layer and the second semiconductor layer and which prevents diffusion of impurities of first conductive type. |
US08835948B2 |
Stacked LED device with diagonal bonding pads
A semiconductor light emitting device includes a substrate and a first epitaxial structure over the substrate. The first epitaxial structure includes a first doped layer, a first light emitting layer, and a second doped layer. A first electrode is coupled to the first doped layer. A second electrode is coupled to the second doped layer facing the same direction as the first electrode. A second epitaxial structure includes a third doped layer, a second light emitting layer, and a fourth doped layer. A third electrode is coupled to the third doped layer facing the same direction as the first electrode. A fourth electrode is coupled to the fourth doped layer facing the same direction as the first electrode. An adhesive layer is between the first epitaxial structure and the second epitaxial structure. |
US08835944B2 |
Lighting device
In a first aspect of the present invention, a lighting device including a metal plate, an electrical insulation layer that is smaller in size than an outline of the metal plate and arranged on an upper surface of the metal plate, a light-emitting element mounted on the electrical insulation layer, and a first connecting electrode and a second connecting electrode electrically connected to the light-emitting element and arranged on the electrical insulation layer. |
US08835942B2 |
LED module
An LED module includes at least two LED package units and at least one connecting unit. Each LED package unit includes at least one first engaging portion, at least one first conductive portion, and at least one LED chip connected electrically to the first engaging portion. The connecting unit includes at least two second engaging portions, and at least one second conductive portion having two opposite end sections extending respectively to the second engaging portions. When the second engaging portions of the connecting unit engaged with the first engaging portions of the LED package units, respectively, the end sections of the second conductive portion contact electrically and respectively the corresponding first conductive portions so as to connect electrically the LED chips of the LED package units. |
US08835936B2 |
Source and drain doping using doped raised source and drain regions
A method comprises providing a semiconductor structure comprising a substrate, an electrically insulating layer on the substrate and a semiconductor feature on the electrically insulating layer. A gate structure is formed on the semiconductor feature. An in situ doped semiconductor material is deposited on portions of the semiconductor feature adjacent the gate structure. Dopant is diffused from the in situ doped semiconductor material into the portions of the semiconductor feature adjacent the gate structure, the diffusion of the dopant into the portions of the semiconductor feature adjacent the gate structure forming doped source and drain regions in the semiconductor feature. |
US08835931B2 |
Optoelectronic component and method for producing an optoelectronic component
An optoelectronic component for mixing electromagnetic radiation having different wavelengths, more particularly in the far field. A first semiconductor chip for emitting electromagnetic radiation in a first spectral range is provided on a carrier. Furthermore, at least one a second semiconductor chip for emitting electromagnetic radiation in a second spectral range is provided on the carrier. The first and second spectral ranges differ from one another. The first semiconductor chip and the second semiconductor chip are arranged in a single package. The first semiconductor chip is optically isolated from the second semiconductor chip by a barrier. The first semiconductor chip and the second semiconductor chip are arranged centosymmetrically about a common center o(Z) of symmetry. |
US08835929B2 |
Pixel structure and thin film transistor
A pixel structure including a first thin film transistor (TFT), a second TFT and a storage capacitor is provided. The source electrode of the first TFT is connected to the gate electrode of the second TFT, and the semiconductor layer of the second TFT protrudes out two opposite side of the gate electrode of the second TFT. A thin film transistor including a gate electrode, a capacitance compensation structure, a semiconductor layer, a dielectric layer, a drain electrode and a source electrode is also provided. The capacitance compensation structure is electrically connected to the gate electrode. The semiconductor layer partially overlaps the gate electrode, and extends to overlap the capacitance compensation structure. |
US08835926B2 |
Organic light emitting display device
An organic light emitting display device includes a substrate having transmitting and pixel regions, the pixel regions being separated by the transmitting regions, at least one thin film transistor in each of the pixel regions, a plurality of transparent first conductive lines electrically connected to the thin film transistors and extending across the transmitting regions, a plurality of second conductive lines electrically connected to the thin film transistors and extending across the transmitting regions, a passivation layer, a plurality of pixel electrodes on the passivation layer, the pixel electrodes being separated and positioned to correspond to respective pixel regions, each of the pixel electrodes being electrically connected to and overlapping a corresponding thin film transistor, an opposite electrode overlapping the pixel electrodes in the transmitting and pixel regions, and an organic emission layer between the pixel electrodes and the opposite electrode. |
US08835924B2 |
Photo-detecting device and method of making a photo-detecting device
A photo-detecting device including a plurality of pixels, each including at least one alternate stack of photodiodes and electrically conducting electrodes. Each photodiode includes one intrinsic amorphous semiconductor layer in contact with one doped amorphous semiconductor layer distinct from the amorphous semiconductor layers in other photodiodes, and is arranged between two electrodes. Each pair of photodiodes includes one of the electrodes arranged between photodiodes. In each pixel: each electrode includes an electrically conducting portion not superposed on other electrodes of the pixel and electrically connected to one interconnection hole filled with an electrically conducting material; and portions of an electrically conducting material are superposed approximately on each of non-superposed portions of electrodes. |
US08835922B2 |
Monitoring pad and semiconductor device including the same
A method of manufacturing a semiconductor device and a semiconductor device package are disclosed. A method of manufacturing a semiconductor device comprises the steps of testing the semiconductor device using at least a first monitoring pad connected to an internal circuit of the semiconductor device via at least a first fuse circuit; after testing the semiconductor device, electrically disconnecting the first monitoring pad from the internal circuit by opening the first fuse circuit; and after testing of the semiconductor device, electrically connecting at least a first auxiliary pad to the first monitoring pad with at least a first connecting terminal, wherein the first auxiliary pad is connected, through at least a first conductive line, to at least a first power pad of the semiconductor device. |
US08835921B2 |
Oxide semiconductor film and semiconductor device
Provided is an oxide semiconductor film which has more stable electric characteristics and essentially consists of indium zinc oxide. In addition, provided is a highly reliable semiconductor device which has stable electric characteristics by using the oxide semiconductor film. The oxide semiconductor film essentially consisting of indium zinc oxide has a hexagonal crystal structure in which the a-b plane is substantially parallel to a surface of the oxide semiconductor film and a rhombohedral crystal structure in which the a-b plane is substantially parallel to the surface of the oxide semiconductor film. |
US08835920B2 |
Semiconductor device and method for manufacturing the same
It is an object to manufacture and provide a highly reliable display device including a thin film transistor with a high aperture ratio which has stable electric characteristics. In a manufacturing method of a semiconductor device having a thin film transistor in which a semiconductor layer including a channel formation region is formed using an oxide semiconductor film, a heat treatment for reducing moisture and the like which are impurities and for improving the purity of the oxide semiconductor film (a heat treatment for dehydration or dehydrogenation) is performed. Further, an aperture ratio is improved by forming a gate electrode layer, a source electrode layer, and a drain electrode layer using conductive films having light transmitting properties. |
US08835917B2 |
Semiconductor device, power diode, and rectifier
An object is to provide a semiconductor device having electrical characteristics such as high withstand voltage, low reverse saturation current, and high on-state current. In particular, an object is to provide a power diode and a rectifier which include non-linear elements. An embodiment of the present invention is a semiconductor device including a first electrode, a gate insulating layer covering the first electrode, an oxide semiconductor layer in contact with the gate insulating layer and overlapping with the first electrode, a pair of second electrodes covering end portions of the oxide semiconductor layer, an insulating layer covering the pair of second electrodes and the oxide semiconductor layer, and a third electrode in contact with the insulating layer and between the pair of second electrodes. The pair of second electrodes are in contact with end surfaces of the oxide semiconductor layer. |
US08835916B2 |
Organic thin film and organic electroluminescent element containing same in light-emitting layer
In an organic thin film (a light emitting layer) of an organic EL element, an organic thin film having an emitting material which is made up of an organic polymer main backbone polymerized with a molecular chain, which emits light having a maximum value at a wavelength different from a wavelength at which an emission spectrum emitted by the main backbone itself has a maximum value, and nanosized particles which are mixed into the emitting material is used as the light emitting layer. According to the above configuration, the maximum values of the emission spectra of light emitted by the molecular chain and the main backbone of the emitting material can be increased. Moreover, the light which has the emission spectra having the plural maximum values can be generated without depending on the plural emitting materials, so that the light emitting layer can be manufactured easily. |
US08835913B2 |
Transistor structure
A transistor structure comprises a patterned N-type transparent oxide semiconductor formed over a substrate as a base, and a patterned p-type organic polymer semiconductor formed on the patterned N-type transparent oxide semiconductor comprising a first portion and a second portion so that the patterned N-type transparent oxide semiconductor and the first portion and the second portion of the patterned p-type organic polymer semiconductor form heterojunctions therebetween respectively, wherein the first portion of the patterned p-type organic polymer semiconductor is used as an emitter, and the second portion of the patterned p-type organic polymer semiconductor is used as a collector. |
US08835912B2 |
Organic light-emitting diode and display device having the same
The present invention discloses an OLED panel and the OLED display device thereof. The OLED panel includes a metallic absorbing film, disposed on a light-out side of the OLED panel and grounded, for absorbing electromagnetic radiation produced by the OLED panel. The present invention uses the metallic absorbing film integrating on a glass substrate on a light-out side so that the metallic absorbing film absorbs the electromagnetic radiation from the OLED panel effectively and has the advantages of a simple structure and cheap material. |
US08835906B2 |
Sensor, semiconductor wafer, and method of producing semiconductor wafer
A sensor includes: a base wafer containing silicon; a seed member provided directly or indirectly on the base wafer; and a photothermal absorber that is made of a Group 3-5 compound semiconductor lattice-matching or pseudo lattice-matching the seed member and being capable of generating a carrier upon absorbing light or heat, where the photothermal absorber outputs an electric signal in response to incident light to be introduced into the photothermal absorber or heat to be applied to the photothermal absorber. A semiconductor wafer includes: a base wafer containing silicon; a seed member provided directly or indirectly on the base wafer; and a photothermal absorber that is made of a Group 3-5 compound semiconductor lattice-matching or pseudo lattice-matching the seed member and being capable of generating a carrier upon absorbing light or heat. |
US08835899B2 |
Graphene electronic device and method of fabricating the same
A graphene electronic device and a method of fabricating the graphene electronic device are provided. The graphene electronic device may include a graphene channel layer formed on a hydrophobic polymer layer, and a passivation layer formed on the graphene channel layer. The hydrophobic polymer layer may prevent or reduce adsorption of impurities to transferred graphene, and a passivation layer may also prevent or reduce adsorption of impurities to a heat-treated graphene channel layer. |
US08835897B2 |
Nonvolatile memory device having variable resistance memory cells
A nonvolatile memory device according to an embodiment of the present invention includes: a first wire embedded in a first wiring groove extending in an X direction formed in a first interlayer insulating film; a second interlayer insulating film formed above the first interlayer insulating film; a second wire embedded in a second wiring groove extending in a Y direction formed in the second interlayer insulating film; and a variable resistance memory cell including a variable resistive layer and a rectifying layer arranged to be held between the first wire and the second wire in a position where the first wire and the second wire intersect. A dimension in a plane perpendicular to a thickness direction of the variable resistance memory cell is specified by widths of the first and second wires. |
US08835891B2 |
Integrated circuitry, methods of forming memory cells, and methods of patterning platinum-containing material
Some embodiments include methods of patterning platinum-containing material. An opening may be formed to extend into an oxide. Platinum-containing material may be formed over and directly against an upper surface of the oxide, and within the opening. The platinum-containing material within the opening may be a plug having a lateral periphery. The lateral periphery of the plug may be directly against the oxide. The platinum-containing material may be subjected to polishing to remove the platinum-containing material from over the upper surface of the oxide. The polishing may delaminate the platinum-containing material from the oxide, and may remove the platinum-containing material from over the oxide with an effective selectivity for the platinum-containing material relative to the oxide of at least about 5:1. Some embodiments include methods of forming memory cells. Some embodiments include integrated circuitry having platinum-containing material within an opening in an oxide and directly against the oxide. |
US08835890B2 |
ReRAM cells including TaXSiYN embedded resistors
Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. A ReRAM cell includes an embedded resistor and a resistive switching layer connected in series with this resistor. The resistor is configured to prevent over-programming of the cell by limiting electrical currents through the resistive switching layer. Unlike the resistive switching layer, which changes its resistance in order to store data, the embedded resistor maintains a substantially constant resistance during operation of the cell. The embedded resistor is formed from tantalum nitride and silicon nitride. The atomic ratio of tantalum and silicon may be specifically selected to yield resistors with desired densities and resistivities as well as ability to remain amorphous when subjected to various annealing conditions. The embedded resistor may also function as a diffusion barrier layer and prevent migration of components between one of the electrodes and the resistive switching layer. |
US08835889B1 |
Parallel shunt paths in thermally assisted magnetic memory cells
A thermally assisted magnetic memory cell device includes a substrate, a first electrode disposed on the substrate, a magnetic tunnel junction disposed on the first electrode, a second electrode disposed on the magnetic tunnel junction, a conductive hard mask disposed on the second electrode and a parallel shunt path coupled to the magnetic tunnel junction, thereby electrically coupling the first and second electrodes. |
US08835888B2 |
Integrated pod optical bench design
In an integrated gimbal and High-Powered Multiband Laser (HPMBL) for use in an infrared countermeasure apparatus in a pod mounted on an aircraft, the improvement comprises an optical bench that connects the optical path between side-by-side mounted gimbal and high power laser; and a kinematic mounting system that prevents optical bench bending. |
US08835881B2 |
Drift correction method and pattern writing data generation method
A writing area of a sample is divided into a plurality of stripes having a width corresponding to an area density of a pattern to be written on the sample with a charged-particle beam. The writing is stopped when writing of at least one stripe is terminated, and a drift amount is measured. An irradiation position of the charged-particle beam is corrected with the use of the drift amount. When the average value of the area density is more than a predetermined value, a stripe has a width smaller than the reference width, and when the average value of the area density is less than the predetermined value, the stripe has a width larger than the reference width. The width of the stripe is preferably a width corresponding to the variation of a drift from the beginning of irradiation with the charged-particle beam. |
US08835880B2 |
Charged particle-beam processing using a cluster source
A cluster source is used to assist charged particle beam processing. For example, a protective layer is applied using a cluster source and a precursor gas. The large mass of the cluster and the low energy per atom or molecule in the cluster restricts damage to within a few nanometers of the surface. Fullerenes or clusters of fullerenes, bismuth, gold or Xe can be used with a precursor gas to deposit material onto a surface, or can be used with an etchant gas to etch the surface. Clusters can also be used to deposit material directly onto the surface to form a protective layer for charged particle beam processing or to provide energy to activate an etchant gas. |
US08835879B1 |
Reduction of deposition by separation of ion beam and neutral flow
Ion implantation systems that separate the flow of ions from the flow of neutral particles are disclosed. The separation of neutral particles from ions can be achieved by manipulating the flow of ions in the system through variations in electrical or magnetic fields disposed within the implantation system. The path of neutral particles is less affected by electrical and magnetic fields than ions. The separation of these flows may also be accomplished by diverting the neutral particles from the ion beam, such as via an introduced gas flow or a flow blockage. Both separation techniques can be combined in some embodiments. |
US08835877B2 |
System and methods of photon-based radiotherapy and radiosurgery delivery
Photon-based radiosurgery is widely used for treating local and regional tumors. The key to improving the quality of radiosurgery is to increase the dose falloff rate from high dose regions inside the tumor to low dose regions of nearby healthy tissues and structures. Dynamic photon painting (DPP) further increases dose falloff rate by treating a target by moving a beam source along a dynamic trajectory, where the speed, direction and even dose rate of the beam source change constantly during irradiation. DPP creates dose gradient that rivals proton Bragg Peak and outperforms Gamma Knife® radiosurgery. |
US08835876B2 |
Inspection apparatus for sheet
An inspection apparatus for a sheet of paper subjected to a process to impart a translucent property such as a “watermark” or a “security window” includes: an inspection cylinder in which a surface facing the sheet of paper is provided with a luminescence-producing portion; UV-LED illuminators which irradiate the sheet of paper with light containing the ultraviolet rays; a color camera which images the sheet of paper; an ultraviolet cut filter which eliminates the ultraviolet rays in the light emitted from the UV-LED illuminators and reflected off the sheet of paper as well as the luminescence-producing portion and makes only the light having wavelengths longer than wavelengths of the ultraviolet rays incident on the color camera; and a control device which determines appropriateness of a processed portion on the sheet of paper having the translucent property on the basis of luminescence in a visible light range produced by the luminescence-producing portion and made incident on the color camera. |
US08835873B2 |
Continuous sterilization system
A continuous sterilization system is provided which reliably supports a sterilization target so that the sterilization target is not tipped over during a sterilization process and can stably ensure uniform irradiation periods on any portion of inner and outer surfaces and moreover, a portion sterilized by electron beam irradiation is not contaminated again. The continuous sterilization system is provided with a first conveying means, a first electron beam accelerator, a second conveying means, a second electron beam accelerator, and a third electron beam accelerator. |
US08835871B2 |
Electron cyclotron resonance ion source device
An electron cyclotron resonance ion source device includes a plasma chamber configured to contain a plasma; a high-frequency system configured to transmit a high-frequency wave into the chamber; a magnetic field generator configured to generate a magnetic field in the chamber; an accelerating tube including an isolating structure and an extraction system, the magnetic field generator for generating a magnetic field being entirely located downstream of the isolating structure. |
US08835868B2 |
Multi charged particle beam writing apparatus
A multi charged particle beam writing apparatus includes a stage to mount a target object thereon and to be movable, an emission unit to emit a charged particle beam, an aperture member, in which a plurality of openings are formed, to produce multiple beams by letting a region including the whole of a plurality of openings be irradiated with the charged particle beam and letting portions of the charged particle beam respectively pass through a corresponding opening of a plurality of openings, a reduction optical system to reduce the multiple beams, and a doublet lens, arranged at the subsequent stage of the reduction optical system, in which a magnification is 1 and directions of magnetic fluxes are opposite. |
US08835860B2 |
X-ray image sensing device and X-ray image sensing module
An x-ray image sensing device is provided which includes: a first scintillator layer and a second scintillator layer overlapping with each other and having different energy absorptions of an incident light emitted from an x-ray source such that a first scintillator light and a second scintillator light are emitted from the first scintillator layer and the second scintillator layer, respectively, wherein the first scintillator light and the second scintillator light have different wavelengths; a first photodiode disposed at a side of the first and the second scintillator layers opposite to the X-ray source; and a second photodiode disposed at the side of the first and the second scintillator layers opposite to the X-ray source, wherein the first photodiode and the second photodiode are capable of sensing the first scintillator light and the second scintillator light. |
US08835858B2 |
Systems and methods for attenuation compensation in nuclear medicine imaging based on emission data
Systems and methods for attenuation compensation in nuclear medicine imaging based on emission data are provided. One method includes acquiring emission data at a plurality of energy windows for a person having administered thereto a radiopharmaceutical comprising at least one radioactive isotope. The method also includes performing a preliminary reconstruction of the acquired emission data to create one or more preliminary images of a peak energy window and a scatter energy window and determining a body outline of the person from at least one of the reconstructed preliminary image of the peak energy window or of the scatter energy window. The method further includes identifying a heart contour and segmenting at least the left lung. The method additionally includes defining an attenuation map based on the body outline and segmented left lung and reconstructing an image of a region of interest of the person using an iterative joint estimation reconstruction. |
US08835854B2 |
Method and device for IR spectroscopy measurements with fiber optic needle probe
A method of non-destructively determining the condition of a material, said method including providing an elongated probe containing a plurality of optical fibers, said elongated probe coupled to an infrared spectrometer, said tip of said elongated probe positioned near said material, said elongated probe including said tip having a width of less than about 2.0 mm; and, making an infrared spectroscopy measurement of said material by providing infrared light from said infrared spectrometer through at least one of said plurality of optical fibers and collecting at least a portion of said infrared light reflected from a material juxtaposed near said tip through at least another of said plurality of optical fibers to provide said reflected light to said infrared spectrometer. |
US08835853B2 |
Photoconductive element
Provided is a photoconductive element which solves a problem inherent in an element for generating/detecting a terahertz wave by photoexcitation that terahertz wave generation efficiency is limited by distortions and defects of a low temperature grown semiconductor. The photoconductive element includes: a semiconductor substrate; a semiconductor low temperature growth layer; and a semiconductor layer, which is positioned between the semiconductor low temperature growth layer and the semiconductor substrate and is thinner than the semiconductor low temperature growth layer, in which the semiconductor low temperature growth layer includes a semiconductor which lattice-matches with the semiconductor layer and does not lattice-match with the semiconductor substrate. |
US08835852B2 |
Semiconductor optoelectronic device
A manufacture having an electrical response to incident photons includes a semiconductor substrate; a chalcogen-doped semiconductor active layer on a first side of the substrate; a first contact in electrical contact with the active layer; and a second contact in electrical contact with the substrate; wherein, photons incident upon the active layer cause a variation in current between the first and second contacts. |
US08835847B2 |
Sample holding apparatus for electron microscope, and electron microscope apparatus
A sample holding apparatus for electron microscope includes: a sample holding assembly including an assembly of three components of an upper diaphragm holding part, a sample holding plate and a lower diaphragm holding part; and a holding part that holds the sample holding assembly replaceably. The sample holding assembly includes a cell defined between a diaphragm of the upper diaphragm holding part and a diaphragm of the lower diaphragm holding part, and a flow channel connected to the cell, in which a sample mounted at a protrusion of the sample holding plate is placed. The diaphragm of the upper diaphragm holding part, the sample and the diaphragm of the lower diaphragm holding part are disposed along an optical axis of an electron beam. |
US08835838B2 |
Method and apparatus for analysis and ion source
An ion source is formed by a chamber 2. A capillary tube 6 forms an inlet to the chamber. A heater 7 is associated with the capillary tube to heat air drawn into the chamber. An electrode 4 is provided in the chamber and maintained at a voltage in the range 100 to 500 volts. In use the source is connected to an analyzer such as a mass spectrometer 10. The capillary tube is open to the atmosphere. Pressure in the chamber is reduced, and pressure in the analyzer is further reduced. An electrical potential is applied to the electrode to create a discharge within the chamber. Ionization of air molecules within the chamber leads to ionization of any sample molecules present in the chamber. Ions are swept into the analyzer for analysis. |
US08835837B2 |
System and method for grouping precursor and fragment ions using selected ion chromatograms
LC/MS data generated by an LC/MS system is analyzed to determine groupings of ions associated with originating molecules. Ions are grouped initially according to retention time, for example, using retention time or chromatographic peaks in mass chromatograms. After initial groupings are determined based on retention time, ion peak shapes are compared to determine whether ions should be excluded. Ions having peak shapes not matching other ions, or alternatively a reference peak shape, are excluded from the group. |
US08835835B2 |
Biomarkers of ionizing radiation
The present invention provides novel radiation associated markers. The radiation associated markers may be one or more of albumin, LTGF-β, or any protein or peptide listed in any one of Tables 1, 2, 3, 4, 5, and 6 provided herein. The present invention also provides methods of assessing exposure to ionizing radiation by determining the presence of one or more radiation associated markers. The methods may optionally include quantifying one or more of the radiation associated markers. The methods may further include comparing the amount of one or more radiation associated markers in the sample determined to be present in the sample with either (i) the amount determined for temporally matched, normal samples or (ii) the amount determined for samples obtained from individuals or subjects that have not been exposed to an elevated level of ionizing radiation. |
US08835833B2 |
Two-dimensional magneto-optical trap for neutral atoms
A two-dimensional (2D) magneto-optical trap (MOT) for alkali neutral atoms establishes a zero magnetic field along the longitudinal symmetry axis. Two of three pairs of trapping laser beams do not follow the symmetry axes of the quadruple magnetic field and are aligned with a large non-zero degree angles to the longitudinal axis. In a dark-line 2D MOT configuration, there are two orthogonal repumping beams. In each repumping beam, an opaque line is imaged to the longitudinal axis, and the overlap of these two line images creates a dark line volume in the longitudinal axis where there is no repumping light. The zero magnetic field along the longitudinal axis allows the cold atoms maintain a long ground-state coherence time without switching off the MOT magnetic field, which makes it possible to operate the MOT at a high repetition rate and a high duty cycle. |
US08835831B2 |
Polarized light detecting device and fabrication methods of the same
Described herein is a device operable to detect polarized light comprising: a substrate; a first subpixel; a second subpixel adjacent to the first subpixel; a first plurality of features in the first subpixel and a second plurality of features in the second subpixel, wherein the first plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a first direction parallel to the substrate and the second plurality of features extend essentially perpendicularly from the substrate and extend essentially in parallel in a second direction parallel to the substrate; wherein the first direction and the second direction are different; the first plurality of features and the second plurality of features react differently to the polarized light. |
US08835822B2 |
Field director assembly having arc-resistant conductive vanes
A field director assembly includes electrically conductive vanes configured to prevent arcing in an unloaded microwave oven. |
US08835821B2 |
Microwave oven with one-touch button user interface
A cooking oven, particularly a microwave oven, provides for detecting food data and for adjusting food heating and/or cooking process. The oven particularly includes an user interface with at least one socket-shaped seat adapted to receive a removable plug-shaped button which stores the food data and which is adapted to be pressed by the user for starting the heating and/or cooking process or for programming such heating or cooking. |
US08835819B2 |
Heating device and method for manufacturing the heating device
A heating device is provided, comprising a shaped body, which has at least two regions comprising different compositions of a ceramic material with a positive temperature coefficient of electrical resistance. A method for manufacturing a heating device is furthermore specified. |
US08835817B2 |
Heating unit comprising a heat resistance element shaped as a conductive pattern
A heating unit with a resistive element formed as a conducting pattern, which resistive element is bound to a substrate, such as a base plate, on which the resistive element is extended, and which resistive element is arranged to be placed under the influence of an electrical voltage. The invention is wherein the resistive element and the said base have the same or essentially the same coefficients of thermal expansion, and in that the resistive element has been bound to the substrate by sintering. |
US08835804B2 |
Beam homogenizer
A system for homogenizing the intensity profile of light includes a plurality of fiber coupled light sources for emitting fiber output beams from fiber output ends, and a light pipe optically coupled to the fiber output beams for producing a uniform light pipe output beam, an interleaver that transmits a first set of fiber output beams and reflects a second set of fiber output beams so that the principal rays of the fiber output beams propagate in a common plane, a first optical element for converging the principal rays, and a second optical element for telecentrically imaging the beams into the light pipe such that the principal rays of the beams propagate parallel to each other and the beams are focused in the light pipe in a focal plane transverse to the direction of propagation. |
US08835802B2 |
Cleaving wafers from silicon crystals
A method of creating thin wafers of single crystal silicon wherein an ingot of single-crystal silicon with a (111) axis is flattened and polished at one end normal to the axis, and a notch with a vertex in the (111) plane is produced on a side or edge of the ingot, such that the distance between this vertex and said end is the desired thickness of a wafer to be cleaved from the ingot and such this vertex is in the desired plane of cleavage. Light of a wavelength able to penetrate into the silicon crystal without significant absorption, when the intensity of the beam is low, but is efficiently absorbed and converted to heat when the intensity of the beam is high, is focused to an elongated volume with an axis of elongation in the desired cleavage plane, parallel to and a short distance from said notch edge. Heating and the resulting transient local expansion of the silicon in this illuminated volume causes tensile stress at the vertex of said notch, substantially normal to the desired cleavage plane, thereby causing fracture of the crystal in the chosen cleavage plane. Movement of the illuminated volume relative to the ingot allows the fracture to propagate across the desired cleavage plane, thereby completely severing the wafer from the rest of the ingot. |
US08835801B2 |
Laser processing method
A display device is manufactured by forming a semiconductor film over a substrate and irradiating the film with laser light. The laser light is generated from an oscillator, passes through an attenuator that includes a filter, and passes through an optical system after passing through the attenuator. A first region of the semiconductor film is irradiated with the laser light passed through the optical system such that one point of the first region of the semiconductor film is irradiated with at least two shots. A second region of the semiconductor film is also irradiated with the laser light passed through the optical system such that one point of the second region of the semiconductor film is irradiated with at least two shots. The first region and the second region have a portion at which they overlap, and the semiconductor film is etched into semiconductor layers for transistors in areas outside the portion. |
US08835797B2 |
Method and device for the plasma treatment of running metal substrates
The invention relates to a method and a device for the plasma treatment of metal substrates or insulating substrates (3) running substantially continuously through a vacuum chamber having a treatment zone (2), the plasma being sustained by radiofrequency inductive coupling in the treatment zone (2) by means of an inductor (4) connected to a radiofrequency generator, in which the inductor (4) is protected from any contamination by the material emitted by the surface of the substrates (3) by means of a Faraday cage (7), which is positioned between the plasma and the inductor (4), and in which the Faraday cage (7) is on average electrically biassed positively with respect to the substrates (3) or with respect to a counter-electrode present in the plasma. |
US08835791B2 |
Pushrod assembly for circuit breaker
A pushrod assembly for a circuit breaker having a pushrod with an insulating body, an insulating housing surrounding the push rod, a first insulating shield connected to the pushrod and a second insulating shield connected to the housing. The first insulating shield and the second insulating shield are arranged inside the housing such that an electrical path through a fluid inside the housing is longer than the distance of a first end and a second end of the push rod. |
US08835789B2 |
Apparatuses and methods for using a capacitive touch controller with a conductive surface
An apparatus includes a surface; the surface has a conductive layer within a thickness of the surface. A trench is formed in the conductive layer to define a touch area, the touch area is isolated from the rest of the conductive layer. A conductive pickup is mounted on a back side of the surface over the touch area and the conductive pickup is electrically connected to a capacitive touch controller, such that when a user touches the touch area on a front side of the conductive the touch controller responds to the user's touch. |
US08835783B2 |
Switch and method for producing the same
A switch has a manipulator that is supported by a housing and swung on one side and the other side, a power switch mechanism that brings contact portions of a movable piece and a fixed terminal into contact with each other when the manipulator is swung onto one side, the movable piece and the fixed terminal being disposed opposite each other in the housing, a returning spring that biases the manipulator in a swing manipulation direction when the manipulator is swung onto the other side, and a power retaining and releasing mechanism that includes a retaining portion and a releasing portion, the retaining portion regulating a restoring force of the returning spring according to the swing manipulation of the manipulator onto one side to retain a contact state of the contact portions of the movable piece and the fixed terminal. |
US08835782B2 |
Contact arm assembly for switchgear circuit breaker having improved cooling fins and contact fingers to maximize heat rejection
A contact arm assembly (10) for a switchgear circuit breaker includes a contact arm (11) having a groove (42) in an outer periphery surface thereof. At least one contact finger (13) has a body (38) and a ball member (40) extending from the body. The ball member is received in the groove so that the contact finger makes contact with the contact arm. The contact arm includes a shaft (14) having a longitudinal axis, first and second ends (18, 28), and a constant outside diameter. A plurality of annular rings (16) extends from the outside diameter of the shaft. The rings are spaced along the longitudinal axis to define cooling fins. Diameters of the rings gradually decrease from the first end to generally the center of the shaft, and then gradually increase to the second end of the shaft. |
US08835781B2 |
Toggle switch lockout clip and method
A toggle switch lockout clip including a clip body having a central region and including a latch portion protruding from the central region, the latch portion including an extension member and a hook member connected to the extension member to define a hook gap, a leg portion protruding from the central region away from the latch portion, a first side portion opposed from a second side portion, wherein the first and second side portions extend from the central region and define a gap therebetween, and an engagement portion positioned between the first and second side portions. |
US08835780B2 |
Power seat switch to present simultaneous activation
A switch actuating assembly for an automobile seat has a switch operating member moveable along a first path to operate a first switch associated with a first function and moveable along a second path to operate a second switch associated with a second function. To inhibit operation of both functions simultaneously a guide controls movement of the switch operating member. Guide members act between the switch operating member and the guide so that movement of the switch operating member along one of the paths upon movement of the switch operating member along the other of the paths from a rest position. An interlock is provided between the switch operating members of a pair of switch assemblies so that only one function of one of the switch assemblies can be operated at a time. |
US08835778B2 |
Grommet and method of mounting thereof
A grommet (10) according to an embodiment of the present invention includes a wire harness connecting part (11) which is liquid-tightly connected to a wire harness (20), a panel connecting part (13) which can be liquid-tightly connected to a panel opening (31), an extending part (12) shape-changeably extending between the wire harness connecting part (11) and the panel connecting part (13), and an extending-part-shape maintaining part (12a) which maintains a shape of the extending part (12) in a state where a distance between the wire harness connecting part (11) and the panel connecting part (13) in a length direction of the wire harness (20) is shorter than that of the case where the panel connecting part (13) is liquid-tightly connected to the panel opening (31). |
US08835777B2 |
Electronic device
An electronic device having a slide cover slidably attached in an openable/closable manner to a device case, and conceals a recording paper ejection opening in the device case; a waterproof gasket provided on either one of the slide cover and the device case in a part positioned in periphery of the recording paper ejection opening, and arranged between the slide cover and the device case surrounding the recording paper ejection opening, when the slide cover conceals the recording paper ejection opening; and a guide member which does not come in contact with the waterproof gasket on another side of the slide cover and the device case with which the waterproof gasket meets face to face during a sliding motion of the slide cover, and the waterproof gasket presses on both sides between the slide cover and the device case when the sliding motion is completed. |
US08835776B2 |
Guideway mechanism
An exemplary guideway mechanism includes four branches each including two parallel rails, four groups of connecting blocks each including four connecting blocks arranged at four corners of an imaginary square, and four supporting brackets each connecting one corresponding group of connecting blocks. Adjacent ends of the rails of each branch respectively connect two adjacent connecting blocks. Each of two ends of each rail connects one corresponding connecting block. Two adjacent rails respectively located in two adjacent branches are perpendicular to each other and connected together by a respective connecting block of one corresponding group of connecting blocks. The other two rails respectively located in the two adjacent branches connect another two respective connecting blocks of the one corresponding group of connecting blocks. The whole guideway mechanism is frame-shaped. |
US08835773B2 |
Wiring board and method of manufacturing the same
A method of manufacturing a wiring board for use in mounting of an electronic component includes: forming an outermost wiring layer on a surface side where the electronic component is mounted; forming an insulating layer so as to cover the wiring layer; and forming a concave portion in the insulating layer. The concave portion is formed by removing, using a mask formed in a required shape by patterning, an exposed portion of the insulating layer in a step-like shape until a surface of a pad defined at a portion of the wiring layer is exposed. The concave portion is preferably formed by removing the portion of the insulating layer by sand blast. |
US08835768B2 |
Flexible circuit board
In a flexible circuit board, signal wirings and ground wirings are provided on one main surface of a base film formed of a thermoset resin. A coverlay film formed of a thermoplastic resin is adhered to and integrated with the signal wirings, ground wirings, and base film. External terminals 15 are disposed in a predetermined conductor pattern on one main surface of the coverlay film, and a plated layer is formed on each of the external terminals. A first ground layer and a rear side resin film are adhered in this order below the base film to be integrated. |
US08835763B1 |
Shield for protecting electrical boxes
A paint shield for protecting and covering an electrical junction box typically mounted in a wall of a structure is disclosed. Junction boxes used for outlets and switches typically include an inner surface defined by side walls meeting top and bottom walls at corners of the box. The paint shield engages the junction box only at the corners so allow easy insertion and removal of the paint shield. The paint shield can also be configured to enclose a light switch or outlet protruding from the junction box and beyond the plane of the wall surface. |
US08835760B2 |
Electric junction box
Disclosed is an electric junction box in which a pair of cassette blocks is arranged at intervals to each other in a component-attaching direction, capable of downsizing without increase of the number of component. The electric junction box comprises a pair of cassette blocks, configured to attach electric components thereto, arranged at intervals mutually in a component-attaching direction; and a cross-sectionally U-shaped bus bar attached to one cassette block, electrically connected to the electric components, a middle of the bus bar being arranged in a direction perpendicular to the component-attaching direction, both ends of the U-shaped bus bar being arranged in the component-attaching direction, wherein the electric components attached to the other cassette block are opposed to the middle of the bus bar. |
US08835759B1 |
Support containers and vehicles including same
A support container includes a base and a lid. The base includes a base wall, a pair of substantially vertical, elongated flanges, and a lower flange. The base wall at least partially defines a receptacle. The lower flange cooperates with the pair of substantially vertical, elongated flanges to define a slot. The lid includes an upper portion, a side wall, and an upper flange. The side wall extends substantially downwardly from the upper portion and defines a pair of substantially vertical, elongated channels. Each of the substantially vertical, elongated flanges extends away from the base wall and the receptacle. When the lid is installed on the base, the side wall substantially covers the slot, the pair of substantially vertical, elongated flanges nests extensively within the pair of substantially vertical, elongated channels, and the lower and upper flanges cooperate with one another to define a conduit for the receptacle. |
US08835751B2 |
Photovoltaic module
A photovoltaic module includes an encapsulated photovoltaic element and an infrared-transmissive decorative overlay simulating conventional roofing. |
US08835746B2 |
Device for aligning a concentration photovoltaic module
A concentration photovoltaic module includes a radiator, solar cell units, a datum plate, an optical unit and an alignment unit. The radiator includes apertures defined therein. The solar cell units are located on the radiator. The datum plate is located on the radiator. From a lower face of the datum plate extend positioning columns corresponding to the apertures defined in the radiator. The datum plate is provided with marks corresponding to some of the solar cell units. The optical unit is provided with lines near edges thereof. The alignment unit includes a board and light sources. The board is formed with corners corresponding to the lines provided on the datum plate. The light sources are located on the board. The light sources cast light on the solar cell units through the marks. |
US08835742B2 |
Thermoelectric device and method of manufacturing the same
A thermoelectric device and a method of manufacturing the same are provided. The thermoelectric device may include a nanowire having nanoparticles which are disposed on one of an exterior surface of the nanowire and an interior of the nanowire. |
US08835741B2 |
Method and system for turning pages containing musical scores with an electronic foot pedal
The various embodiments herein provide an electronic foot pedal assembly for turning pages of musical scores in a digital musical score file in a computing device. The method comprises installing a driver application for an electronic foot pedal in a computing device, installing an image viewer application in the computing device, downloading and installing a digital musical score on the computing device, opening the installed digital musical score file in the computing device, stamping the left foot pedal for opening a previous page of musical scores in a digital musical score file, stamping the right foot pedal for opening a next page of musical scores in a digital musical score file and stamping the left foot pedal continuously for opening a home page of musical scores in a digital musical score. |
US08835738B2 |
Musical systems and methods
Musical performance/input systems, methods, and products can accept user inputs via a user interface, generate, sound, store, and/or modify one or more musical tones. The user interface can present one or more regions corresponding to related chords. A set of related chords and/or a set of rhythmic patterns are generated based on a selected instrument and a selected style of music. The related chords can be modified via one or more effects units. |
US08835736B2 |
Instrument game system and method
A game system and method that uses an instrument as an input encourages a user to play along with the game's soundtrack on an instrument (e.g. guitar, bass, etc.). The game cues the player to play notes and/or chords on the instrument at an appropriate time and then data is collected from the instrument via a connection between the instrument and the apparatus running the game. The game then scores the user based on note/chord and timing information it receives. |
US08835731B1 |
Chord playing attachment apparatus
A removable chord playing attachment and related method is disclosed. The chord playing attachment may be attached to a guitar or similar stringed instrument, and the user may use the chord playing attachment to learn to play the instrument. The present invention discloses a design that does not function as a capo, which allows the user play chords in standard keys. The present invention includes a specially configured nut or connector or anchor that forms a removable connection with a chord playing unit. The present invention encourages novices to learn to play the instrument in stages and eventually remove the invention entirely. A companion teaching manual is also disclosed. |
US08835728B2 |
Plants and seeds of hybrid corn variety CH727917
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH727917. The invention thus relates to the plants, seeds and tissue cultures of the variety CH727917, and to methods for producing a corn plant produced by crossing a corn plant of variety CH727917 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH727917. |
US08835724B1 |
Maize inbred PH1C8P
A novel maize variety designated PH1C8P and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH1C8P with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH1C8P through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH1C8P or a locus conversion of PH1C8P with another maize variety. |
US08835721B2 |
Broccoli hybrid PX 05181808 and parents thereof
The invention provides seed and plants of broccoli hybrid PX 05181808 and the parent lines thereof. The invention thus relates to the plants, seeds and tissue cultures of broccoli hybrid PX 05181808 and the parent lines thereof, and to methods for producing a broccoli plant produced by crossing such plants with themselves or with another broccoli plant, such as a plant of another genotype. The invention further relates to seeds and plants produced by such crossing. The invention further relates to parts of such plants. |
US08835714B2 |
Sugar and lipid metabolism regulators in plants II
Isolated nucleic acids and proteins associated with lipid and sugar metabolism regulation are provided. In particular, lipid metabolism proteins (LMP) and encoding nucleic acids originating from Arabidopsis thaliana are provided. The nucleic acids and proteins are used in methods of producing transgenic plants and modulating levels of seed storage compounds. Preferably, the seed storage compounds are lipids, fatty acids, starches or seed storage proteins. |
US08835708B2 |
Apparatus for body treatment consisting of a shell made of at least two complementary portions
Apparatus formed by a shell that may be placed around a part of the body, wherein said shell comprises: an inlet that may be connected to a gas source and an outlet to evacuate the gases present inside the shell; at least two complementary portions defining between them a cavity with a cross section that is larger than that of the part of the body to be treated, characterized in that the walls of the two complementary portions have an average heat conduction that is lower than 65 mW/m·K measured according to EN-12667. |
US08835707B2 |
Method of asbestos detoxification
An asbestos detoxification method comprising a step B1 of impregnating an existing asbestos layer with an asbestos melting agent and detaching the existing asbestos layer; a step B2 of pulverizing the existing asbestos layer; a step B3 of loading the pulverized material obtained in step B2 into a melting furnace; a step B4 of heating a resin subsidiary material used in the disposal of the asbestos layer to vaporize the resin portion thereof and further converting the vaporized resin portion into plastic oil; a step B5 of combusting either or both of the plastic oil obtained in step B4 and a fuel; and a step B6 of heating and melting the pulverized material that is in the melting furnace with the use of the heat obtained in step B5. By this detoxification method, it is possible not only to detoxify asbestos sprayed onto a surface of a base material such as a base material of a building, or asbestos-containing building material at low energy, but also to detoxify and recycle various subsidiary materials that are used in the detoxification and are required to be disposed of as specially controlled industrial waste, at the same time. |
US08835698B2 |
Method for producing fluorinated organic compounds
Disclosed are processes for the production of fluorinated olefins, preferably adapted to commercialization of CF3CF═CH2 (1234yf). In certain preferred embodiments the processes comprise first exposing a compound of Formula (IA) C(X)2═CClC(X)3 (IA) where each X is independently F, Cl or H, preferably CCl2═CClCH2Cl, to one or more sets of reaction conditions, but preferably a substantially single set of reaction conditions, effective to produce at least one chlorofluoropropane, preferably in accordance with Formula (IB): CF3CClX′C(X′)3 Formula (IB) where each X′ is independently F, Cl or H, and then exposing the compound of Formula (IB) to one or more sets of reaction conditions, but preferably a substantially single set of reaction conditions, effective to produce a compound of Formula (II) CF3CF═CHZ (II) where Z is H, F, Cl, I or Br. |
US08835695B2 |
Method for oxidizing hydrocarbons with oxygen
A method for oxidizing saturated hydrocarbons with oxygen, preferably saturated cyclic hydrocarbons such as cyclohexane, to produce alkyl hydroperoxide is described. A method for oxidizing saturated hydrocarbons with oxygen in a plurality of consecutive steps to control the rate of the reaction and obtain a high degree of alkyl hydroperoxide selectivity is also described. The described methods can relate to methods for condensing oxidation gases recovered in an oxidation reactor and recycling thereof. |
US08835691B2 |
Process for homogeneously catalyzed, highly selective direct amination of primary alcohols with ammonia to primary amines with a high volume ratio of liquid phase to gas phase and/or high pressures
The present invention relates to a process for preparing primary amines comprising the process steps A) provision of a solution of a primary alcohol in a fluid, nongaseous phase, B) contacting of the phase with free ammonia and/or at least one ammonia-releasing compound and a homogeneous catalyst and optionally C) isolation of the primary amine formed in process step B), characterized in that the volume ratio of the volume of the liquid phase to the volume of the gas phase in process step B is greater than 0.05 and/or in that process step B is carried out at pressures greater than 10 bar. |
US08835689B2 |
Substituted 4-aminocyclohexane derivatives
The invention relates to compounds that have an affinity to the μ-opioid receptor and the ORL 1-receptor, methods for their production, medications containing these compounds and the use of these compounds for the treatment of pain and other conditions. |
US08835688B2 |
Optimized introduction of the starting materials for a process for preparing aromatic amines by hydrogenation of nitroaromatics
The invention relates to a process for preparing aromatic amines by hydrogenation of corresponding nitroaromatics by means of hydrogen, and also an apparatus suitable for this purpose. In particular, the invention relates to a process for preparing toluenediamine (TDA) by hydrogenation of dinitrotoluene (DNT). |
US08835685B2 |
Process for the preparation of contrast agents
The present invention relates to a process for the preparation of 5-[(2-hydroxyacyl)amino]-2,4,6-triiodo-1,3-benzendicarboxamidic derivatives comprising the Smiles rearrangement of a suitable precursor, by contact of an aqueous solution of this latter with an anion exchanger solid phase. |
US08835683B2 |
Process for preparing formic acid
Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid, tertiary amine (I) and water is produced by combining tertiary amine (I) and a formic acid source in the presence of water, water and organic decomposition products of the tertiary amine (I) are removed and formic acid is removed by distillation from the resulting liquid stream in a distillation apparatus, wherein the stream comprising water and organic decomposition products of the tertiary amine (I) which have been separated off is separated into two liquid phases, the upper liquid phase is removed and the lower, water-comprising liquid phase is recirculated to the formic acid source. |
US08835681B2 |
Methanol carbonylation process with rhodium catalyst and a lanthanide metal co-catalyst
A carbonylation process for making acetic acid using a metallic co-catalyst composition, effective as a rhodium stabilizer and/or rate promoter, at molar ratios of metal/rhodium of about 0.5 to 40. The process includes reacting methanol with carbon monoxide in the presence of a rhodium-based catalytic metal complex with about 1 to 20 weight percent methyl iodide, less than about 8 weight % water and about 0.5 to about 30 weight percent methyl acetate. The crude acetic acid is flashed and further purified. This process is stable in the absence of a lithium iodide cocatalyst, or in low concentrations of lithium iodide, with an STY greater than 10 mol/L/hr. |
US08835680B1 |
Stereospecific synthesis process for tretinoin compounds
A stereospecific synthesis process for tretinoin compounds comprises the following steps: using substituted triphenyl phosphine salt and β-formyl crotonic acid as raw material to carry out WITTIG reaction under the action of alkali; then adjusting the pH of the reaction liquid to 5-10; adding palladium compound or rhodium compound to carry out isomerization directly and obtain tretinoin compounds with desired configuration. The product yield of the process is high and the intermediate product in the reaction dose not need to be separated. The process is easy to operate and can save the production cost and as well is suitable for industrial production. |
US08835675B2 |
Polymerizable phosphonic acid derivative and adhesive composition comprising the same
The present invention is directed to compounds and adhesives finding special utility in dental applications. Compounds of formulae: are of special interest, wherein: R represents a polymerizable group of the structure wherein R1 represents a hydrogen atom or methyl group; A represents an oxygen atom or a sulfur atom; Xqs represent independently an oxygen atom or a sulfur atom; Yqs represent independently hydrogen atom; Zqs may independently represent D-R2 where D represents a single carbon atom and R2 represents phenyl; p is an integer from 1 to 10; and q is an integer from 1 to p. |
US08835674B2 |
Conjugated diene phosphinate compounds, preparation method and use thereof
This invention relates to conjugated diene phosphinate compounds for making halogen free phosphinate-containing flame retardants, inimer and metal extractants, method for preparing said compounds from unsaturated ketones or aldehydes, and the 5 use thereof. The compounds of the present invention having the following formula (III), wherein R1, R2, R3, R4, R5 and R6 represent, independently, hydrogen, alkyl, aryl, alkaryl, aralkyl, cycloalkyl, heterocycloalkyl, or alkenyl groups; R7 represents hydrogen, alkyl, aryl, alkaryl, aralkyl, cycloalkyl, alkenyl groups, or metals selected from the group consisting of Na, Li, Ca. |
US08835671B2 |
Crosslinked zwitterionic hydrogels
Zwitterionic crosslinking agents, crosslinked zwitterionic hydrogels prepared from copolymerization of zwitterionic monomers with the zwitterionic crosslinking agent, methods for making crosslinked zwitterionic hydrogels, and devices that include and methods that use the crosslinked zwitterionic hydrogels. |
US08835670B2 |
Method for synthesis of lactic acid and its derivatives
A method for synthesis of lactic acid and its derivatives is provided. First, a mixture is prepared, which includes: at least one carbohydrate-containing raw material, at least one alcohol, at least one composite catalyst containing metal chloride(s) (MCln) and tin-containing compound(s), and at least one solvent, wherein M is selected from a group consisting of Li+, Na+ K+, Mg2+, Ca2+, Sr2+, Ga3+, In3+, Sb3+, Bi3+, Cr3+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+, and n represents 1, 2 or 3. Then, the mixture is heated to obtain lactic acid and its derivatives. By using the above catalyst and method, it is capable of converting carbohydrate-containing raw material to lactic acid and its derivatives directly in a more efficient and economical way. |
US08835669B2 |
Method for producing fluorosulfuric acid ester
Fluorosulfuric acid esters can be produced by reacting alcohols with sulfuryl fluoride (SO2F2) in the presence of a base and water. As a substrate thereof, optically active secondary alcohols are preferable, and optically active α-hydroxyesters and optically active 4-hydroxyprolines are particularly preferable. By performing the reaction in a two-phase system in the presence of a reaction solvent immiscible with water, a desired reaction proceeds particularly well. The present invention is a production method solving all the problems involved in conventional techniques while being industrially practicable. |
US08835667B2 |
Electrolyte formulations
The present invention relates to electrolyte formulations comprising at least one compound of formula (I) Ma+[B(Rf)(CN)x(F)y]a— (I) in which Ma+ is an inorganic or organic cation, Rf denotes straight-chain or branched perfluoroalkyl groups having 1 to 4 C atoms, C6F5, C6H5, partially fluorinated phenyl or phenyl which is monosubstituted or disubstituted by perfluoroalkyl groups having 1 to 4 C atoms, a is 1 or 2, x is 1, 2 or 3, y is 0, 1 or 2 and x+y is 3 and their use in an electrochemical and/or optoelectronic device such as a photovoltaic cell, a capacitor, a light emitting device, an electrochromic or photo-electrochromic device, an electrochemical sensor and/or biosensor, preferably their use in a dye or quantum dot sensitized solar cell. |
US08835665B2 |
Recovery of multiple compounds and recyclable water from thin stillage
Methods for recovery of recyclable water and/or fermentation co-products from thin stillage process streams. Microbial metabolites plant derivatives and/or plant extractives are removed from thin stillage after which water is recovered and recycled. Thin stillage is commingled with polar organic solvents or with oil to react microbial metabolites, plant derivatives and/or plant extractives. The reacted organic solvents are then separated from the processed thin stillage. Thin stillage may be commingled with an oil to re act with certain organic compounds, after which, the reacted oil is separated from the processed thin stillage is further extracted with one or more polar organic solvents. Alternatively, thin stillage may be first processed with one or more polar organic solvents, and then processed with an oil. Useful organic compounds may be recovered from the reacted oil and reacted organic solvents. |
US08835656B2 |
Linker and support for solid phase synthesis of nucleic acid
The invention provides a universal linker capable of synthesizing nucleic acid having a hydroxy group at the 3′ terminal, a universal support carrying the linker, and a synthesis method of nucleic acid using the universal support. The linker contains a compound represented by the formula wherein each symbol is as defined in the specification. |
US08835655B2 |
Process for preparing olopatadine and/or a pharmaceutically acceptable salt thereof
The present invention relates to a process for the preparation of olopatadine and, more particularly, to an improved method of synthesizing olopatadine which comprises reacting a dibenz[b,e]oxepin-11-one derivative of formula (III) and a suitable reagent under Witting condition, and to the intermediate 11-[(Z)-3-(dimethylamino)-propylidene]-6-11-dihydrodibenz[b,e]-oxepin-2-acet-amide p-toluensulfonate salt. |
US08835654B2 |
Method and compositions for treating amyloid-related diseases
Methods, compounds, pharmaceutical compositions and kits are described for treating or preventing amyloid-related disease. |
US08835652B2 |
Delta crystalline form of the arginine salt of perindopril, a process for its preparation, and pharmaceutical compositions containing it
Delta crystalline form of the compound of formula (I): characterised by its X-ray powder diffraction diagram. Medicinal products containing the same which are useful in the treatment of cardiovascular diseases. |
US08835650B1 |
Substituted imidazolium compounds for treating disease
The present disclosure relates to therapeutic compositions comprising substituted imidazoliums having multiple acidic groups. The compounds may be used to treat diseases or conditions such as those associated with bone, cancer, or pain. Compositions, dosage forms, methods of treating diseases or conditions, methods of preparation, and other related embodiments related to the substituted imidazoliums are also described herein. |
US08835646B2 |
Organic compounds
The present invention provides a compound of formula I: Said compound is inhibitor of aldosterone synthase and aromatase, and thus can be employed for the treatment of a disorder or disease mediated by aldosterone synthase or aromatase. Accordingly, the compound of formula I can be used in treatment of hypokalemia, hypertension, congestive heart failure, atrial fibrillation, renal failure, in particular, chronic renal failure, restenosis, atherosclerosis, syndrome X, obesity, nephropathy, post-myocardial infarction, coronary heart diseases, inflammation, increased formation of collagen, fibrosis such as cardiac or myocardiac fibrosis and remodeling following hypertension and endothelial dysfunction, gynecomastia, osteoporosis, prostate cancer, endometriosis, uterine fibroids, dysfunctional uterine bleeding, endometrial hyperplasia, polycystic ovarian disease, infertility, fibrocystic breast disease, breast cancer and fibrocystic mastopathy. Finally, the present invention also provides a pharmaceutical composition. |
US08835645B2 |
Process for preparing cyanimino-1,3-thiazolidines
The present invention relates to a process for preparing cyanimino-1,3-thiazolidines, which are important building blocks for the preparation of crop protection active ingredients and pharmaceuticals, by the following scheme: where A is an alkali metal and X represents an acid radical. |
US08835644B2 |
Broad spectrum benzothiophene-nitrothiazolide and other antimicrobials
The invention provides novel antimicrobial chemical entities based on a nitrothiazolide backbone that exhibit antibacterial and antiparasitic action against a wide range of human pathogens. The new classes of compounds show extended action against Gram positive bacteria including MRSA drug resistant pathogens. In the Gram-positive organisms, they specifically target and functionally inhibit microbial attachment to surfaces and biofilm formation. In Gram-negative bacteria, including enteroaggregative E. coli strains, these compounds function as pilicides by inhibiting the assembly of pilin subunits into adhesive filaments. Several of these compounds show potent antimicrobial action against Gram positive bacteria, perhaps involving novel targets. Many of the benzothiophene derivatives exhibit antimicrobial activity in the low micrograms per ml range and in blocking biofilm formation in the nanomolar range; ranges considered are well within the range of utility as therapeutics. |
US08835641B2 |
Fluorescent markers and use thereof for labeling specific protein targets
Novel fluorescent markers of Formula I: are disclosed herein, wherein X and Y are independently or together absent or are independently selected from R and R1 are independently selected from H and alkyl; Ar is phenyl or heteroaryl; L is absent or a spacer selected from the group consisting of —NH—; —(CH2)nNH—; —NHSO2—; —(CH2)nNHCO—; -(cycloalkyl)NHCO—; —(CH2)nNHSO2—; -(cycloalkyl)NHSO2—; —CONH(CH2)nNHCO—; —CONH(cycloalkyl)NHCO—; —NHCO(CH2)nNHCO—; —NHCO(cycloalkyl)NHCO—; —(CH2)nSO2NH—; -(cycloalkyl)SO2NH—; —(CH2)nNHCSNH—; -(cycloalkyl)NHCSNH—; —CR═CR1—; —C≡C—; —(CH2)nN═CH—; -(cycloalkyl)N═CH—; —N═CH(CH2)—; —N═CH(cycloalkyl)-; n is an integer ranging from 1 to 5; F is a fluorophore selected from the group consisting of fluorescein, rhodamine, eosin, thionine, safranin, coumarin, methoxycoumarin, dansyl, BODIPY and BODIPY derivatives; and wherein X, Y and L may be positioned in a 1,3,5; 1,2,3; 1,3,4 or in a 3,4,5 configuration respectively. |
US08835639B2 |
Process for making modulators of cystic fibrosis transmembrane conductance regulator
The invention provides a process for the preparation of a compound of Formula 1, comprising coupling a carboxylic acid of Formula 2 with an aniline of Formula 3 in the presence of a coupling agent. |
US08835637B2 |
Iridium-based complexes for ECL
Novel iridium-based Ir(III) luminescent complexes, conjugates comprising these complexes as a label and their application, for example in the electrochemiluminescence based detection of an analyte. |
US08835622B2 |
Expression cassettes for seed-specific expression in plants
The present invention relates to materials and methods for the expression of a gene of interest specifically in seeds of plants, even more specifically in oilseed plants. In particular, the invention provides an expression cassette for regulating seed-specific expression in plants. |
US08835619B2 |
Heat shock proteins from Mycobacterium leprae and uses thereof
The present invention is directed to heat shock proteins from Mycobacterium leprae as well as their encoding polynucleotides and vectors and host cells containing these polynucleotides. These heat shock proteins and their encoding polynucleotides are useful in detection of Mycobacterium leprae. In addition, the heat shock protein can be used as an adjuvant in a pharmaceutical composition containing an antigen to induce or enhance the immune response against the antigen. Further, the heat shock protein may be used to treat atopic conditions or as a vaccine against Mycobacterium leprae. Alternatively, the heat shock protein can be used to form a fusion protein with an antigen to induce or enhance the immune response against the antigen. |
US08835618B2 |
Mutations of the parkin gene
The invention concerns nucleic acids coding for mutated or truncated forms of the human parkin gene, or forms comprising multiplication of exons, and the corresponding proteins and antibodies. The invention also concerns methods and kits for identifying mutations of the parkin gene, and for studying compounds for therapeutic purposes. |
US08835609B2 |
Antigen binding sites to non-functional oligomeric P2X7 receptors and methods of use thereof
The invention relates to purinergic receptors, to antibodies and related fragments thereof for binding to said receptors, to production of said antibodies and fragments and to use of said antibodies and fragments for cancer detection and therapy. In particular the antibodies described bind specifically to non-functional P2X7 receptors expressed by live cells. |
US08835605B2 |
Uses of cancer-targeting peptides in cancer diagnosis
Cancer-targeting peptides and uses thereof in cancer diagnosis. |
US08835603B2 |
Agents for the treatment of celiac disease
The invention provides agents and vaccines for treating and diagnosing celiac disease. In particular, the present invention provides a combination of three peptides that are useful for treating and diagnosing celiac disease in a large proportion of patients. |
US08835599B2 |
Segmented degradable polymers and conjugates made therefrom
The present invention provides, among other things, segmented, degradable polymeric reagents suitable for reaction with biologically active agents to form conjugates, the polymeric reagents comprising one or more polymer chains divided or separated by one or more degradable linkages into polymer segments having a molecular weight suitable for renal clearance. The polymeric reagents can have a substantially linear structure, a branched structure, or a multiarm structure. Each structure includes one or more linkages capable of degradation in vivo. |
US08835594B2 |
Method and apparatus for processing of plastic material
The invention relates to an apparatus and a method for the processing of plastic material, with a receptacle or cutter-compactor (1) into which the material to be treated can be introduced, in the lower region of which a discharge opening (10) is provided, through which the processed material can be ejected from the receptacle (1), for example into an extruder (11). According to the invention, the receptacle (1) is divided into at least two chambers (6a, 6b, 6c, . . . ) separated from each other by an intermediate base (2′, 2″, . . . ), wherein at least one mixing or comminution tool (7a, 7b, 7c, . . . ) is arranged which acts upon the material in each chamber (6a, 6b, 6c, . . . ), with which the material can be converted into a softened but permanently lumpy or particle-shaped and not melted state and wherein means (5′, 5″, . . . ) are provided which effect or permit an exchange or a transfer of the softened, lumpy, not melted material between each directly adjacent chamber (6a, 6b, 6c, . . . ). |
US08835593B2 |
Anaerobically curable compositions
Dry-to-the-touch compositions containing a curable polymeric matrix and a curable anaerobic composition present within the polymeric matrix are disclosed. In a particularly desirable form, the compositions are moisture curable. The compositions are non-flowable at high temperatures and have an improved solvent resistance once cured. |
US08835592B2 |
Polyurethanes, articles and coatings prepared therefrom and methods of making the same
The present invention provides polyurethanes including a reaction product of components including: (a) an isocyanate functional urethane prepolymer comprising a reaction product of components including: (i) about 1 equivalent of at least one polyisocyanate; and (ii) about 0.1 to about 0.5 equivalents of at least one diol having 2 to 18 carbon atoms; and (b) about 0.05 to about 0.9 equivalents of at least one branched polyol having 4 to 18 carbon atoms and at least 3 hydroxyl groups; and (c) up to about 0.9 equivalents of at least one polyol different from branched polyol (b) and having 2 to 18 carbon atoms, wherein the reaction product components are essentially free of polyester polyol and polyether polyol; compositions, coatings and articles made therefrom and methods of making the same. |
US08835588B2 |
Use of hydrogen scavenging catalysts to control polymer molecular weight and hydrogen levels in a polymerization reactor
The present invention provides dual catalyst systems containing a metallocene catalyst and a hydrogen scavenging catalyst, and polymerization processes employing these dual catalyst systems. Due to a reduction in hydrogen levels in the polymerization processes, olefin polymers produced from these polymerization processes may have a higher molecular weight, a lower melt index, and higher levels of unsaturation. |
US08835586B2 |
Polycarbonate resin, poly (2-octadecyl-butanedioic acid) and the salts and esters thereof
A Chelating agent comprising a polymer backbone. The polymer backbone has a plurality of carbon atoms. There are two carboxylate groups or carboxylic acid groups per repeating unit being coupled to separate carbon atoms of the backbone. |
US08835582B2 |
Catalyst systems and methods for using same to produce polyolefin products
Catalyst systems and methods for making and using the same. The catalyst system can include a single site catalyst compound, a support comprising fluorinated alumina, and an aluminoxane. The aluminoxane can be present in an amount of about 10 mmol or less per gram of the support. |
US08835581B2 |
Neutral layer polymer composition for directed self assembly and processes thereof
The present invention relates to a novel polymeric composition comprising a novel polymer having two or more repeat units and a terminus having the structure (1): wherein R1 represents a C1-C20 substituted or unsubstituted alkyl group, w is a number from 1-8, X is oxygen (O) or nitrogen (N), and Rd is a reactive group. The invention also relates to a process for forming a pattern using the novel polymeric composition. The invention further relates to a process of making the novel polymer. |
US08835578B2 |
Catalyst components for the polymerization of olefins
Catalyst component for the polymerization of olefins CH2═CHR in which R is hydrogen or a hydrocarbyl radical with 1-12 carbon atoms, comprising Mg, Ti, halogen and two electron donor compounds one of which selected from alkoxybenzenes and the other being selected from those of formula (II) where RI and RII are the same or different and are hydrogen or linear or branched C1-C18 hydrocarbon groups which can also form one or more cyclic structures; RIII groups, equal or different from each other, are hydrogen or C1-C18 hydrocarbon groups; RIV groups equal or different from each other, have the same meaning of RIII except that they cannot be hydrogen; each of RI to RIV groups can contain heteroatoms selected from halogens, N, O, S and Si. |
US08835577B2 |
Catalyst systems having a tailored hydrogen response
A polymerization catalyst system and polymerization processes using the catalyst systems are disclosed. The polymerization catalyst systems may include a) a first catalyst compound, and b) a second catalyst compound, wherein the first catalyst compound comprises a biphenyl phenol compound having essentially no hydrogen response. |
US08835575B2 |
Method for the production of water-absorbing polymer particles
A process for continuously producing water-absorbing polymer particles, wherein the monomer stems from at least two different sources and the monomer from one source differs from the monomer from at least one other source in the content of at least one secondary component. |
US08835574B2 |
Adhesive compositions for use in die attach applications
Novel adhesive compositions that can be used in the die attach process. The adhesives include a curable resin component, a curing agent, and a block copolymer additive. The block copolymer additive has a glass transition temperature of at least about 40° C. The block copolymer additive improves the affinity of the adhesive composition to a hydrophilic substrate, such as a silicon wafer, during the die pickup process. Also disclosed is an assembly which includes a hydrophilic substrate and a layer of adhesive and methods of producing the assembly. |
US08835559B2 |
Rubber-modified polystyrene resin composition for making an electroplatable article
A rubber-modified polystyrene resin composition is for making an electroplatable article which has a sectioned layer defining a unit area. The rubber-modified polystyrene resin composition includes a resin matrix, occlusion rubber particles dispersed in the resin matrix, and non-occlusion rubber particles dispersed in the resin matrix. A total sectional area ratio of the occlusion rubber particles to the non-occlusion rubber particles in the unit area ranges from 1.1 to 14. |
US08835556B2 |
Hydrolytically stable maleimide-terminated polymers
The present invention is directed to conjugates of hydrolytically stabilized maleimide-functionalized water soluble polymers and to methods for making and utilizing such polymers and their precursors. |
US08835552B2 |
Latex for dip molding, composition for dip molding, preparation method of dip molded product, and dip molded product prepared thereby
Provided are a latex for dip molding, a composition for dip molding, a preparation method of a dip molded product, and a dip molded product prepared thereby. The latex for dip molding includes a conjugated diene monomer, an ethylenically unsaturated nitrile monomer, and an ethylenically unsaturated acid monomer, wherein the latex further includes sodium methallyl sulfonate as a copolymerizable ionic monomer. A dip molded product having excellent tensile strength, elongation, and touch may be obtained from a composition using the latex according to the present invention, and the generation of limitations, such as non-uniformity of physical properties and difficulties in product management, may be prevented. |
US08835544B2 |
Impact resistant acrylic alloy
The invention relates to an acrylic polymer, modified with one or more hard core core/shell impact modifier, which is blended with one or more low melt viscosity polymer. The alloy formed by the blend has good impact properties, good melt processability, high modulus, high surface hardness, and excellent resistance to chemical attack. |
US08835543B2 |
Composite materials having improved thermal performance
A composite material includes a non-polar polymer and alumina hydrate particulate. The composite material has a Heat Distortion Performance of at least about 10% relative to the non-polar polymer absent the alumina hydrate particulate. The composite material may include a coupling agent including a phosphinic acid group, a phosphonic acid group or an ester derivative thereof. |
US08835539B2 |
Manufacturing method for resin composition containing fine paper powder
A resin composition containing fine paper powder used in molding is obtained by using a non-intermeshing type counter-rotating twin-screw kneading extruder (10) having rotor units (11b, 12b) disposed in at least a part of screws (11, 12), respectively, to knead a raw material containing a fine paper powder of an average particle diameter of 10 to 100 μm from 20 to 70 parts by weight, and a thermoplastic resin from 30 to 80 parts by weight, with a sum of the fine paper powder and the thermoplastic resin being 100 parts by weight, at a temperature of no more than 210° C. |
US08835538B2 |
Heat-protection material
A heat protection material for a surface, made of a mixture comprising a resin, cork granules and refractory fibers, wherein the proportion of cork granules in the mixture is 50 to 80% by mass. |
US08835536B2 |
Highly silica loaded styrene butadiene rubber masterbatch
A highly loaded silica wet masterbatch utilizing a functionalized silica dry precipitated silica with a specific surface area in the range of 100 to 300 m2/gm treated with a plurality of silanes coupling agents to form a wet polymer silica masterbatch, then blending the masterbatch with a latex rubber component that includes a styrene-butadiene copolymer rubber or a blend of the styrene-butadiene copolymer rubber and another conjugated diene base rubber using a plurality of coupling agents simultaneously. |
US08835534B2 |
Aromatic polycarbonate resin composition, method for producing the resin composition, and molded article of the same
An aromatic polycarbonate resin composition superior in thermal stability, flame retardancy, and light reflectivity, and a light reflective member consisting of a molded article of the resin.An aromatic polycarbonate resin composition comprising, 3 to 30 parts by weight of a titanium oxide-based additive (B) which has been surface-treated with alumina and organosiloxane, 0.01 to 1 parts by weight of a metal salt of aromatic sulfonic acid (C), and 0.05 to 0.9 parts by weight of polytetrafluoroethylene (D) based on 100 parts by weight of an aromatic polycarbonate resin (A), characterized in that an aluminum content a (wt %), a carbon content c (wt %) in the titanium oxide-based additive (B), and an average particle size d (μm) of titanium oxide satisfy the following (1) and (2): 6.5≦(a/d2)≦15 (1) 5≦(c/d2)≦25 (2). |
US08835532B2 |
Ink
An ink is provided that does not easily cause an offset or blocking upon winding a print, even when the ink contains a lactic acid ester or a lactone solvent. In order to solve such a problem, the ink of the present invention includes: a colorant; and a ketone compound of the following general formula (1), R1—CO—R2 (1), wherein R1 and R2 each independently represent an alkyl group of 1 to 10 carbon atoms, where the total number of carbon atoms in R1 and R2 is 5 to 11, and R1 and R2 may form a ring when the sum of the carbon atoms in R1 and R2 is 6 or more. |
US08835531B2 |
Water-based ink composition for inkjet recording
The invention provides a water-based ink for inkjet recording containing at least: a vinyl polymer particle containing an azo compound represented by Formula (1), a tautomer of the azo compound, a salt or a hydrate of the azo compound or the tautomer, or any combination thereof; a 1,2-alkylene glycol having from 4 to 10 carbon atoms; and a polyvalent alcohol that is not the 1,2-alkylene glycol and that has at most 10 carbon atoms. In Formula (1), Z represents a divalent group having a 5- to 8-membered nitrogen-containing heterocycle; Y1, Y2, R11 and R12 each independently represent a hydrogen atom or a substituent; G1 and G2 each independently represent a hydrogen atom, an alkyl, cycloalkyl, aralkyl, alkenyl, alkynyl, aryl or heterocyclic group; and W1 and W2 each independently represent an alkoxy group, an amino group, an alkyl group, or an aryl group. |
US08835526B2 |
Polymers for intraocular lenses
The present invention provides optic portions, intraocular lenses, and polymers for use in manufacturing optic portions and intraocular lenses. The optic portions include a polymer that comprises (a) one or more alkoxyalkyl methacrylate monomers and/or one or more alkoxyalkyl acrylate monomers that are incorporated in the polymer; (b) one or more hydroxyalkyl methacrylate monomers and/or one or more hydroxyalkyl acrylate monomers that are incorporated in the polymer; and (c) optionally, one or more crosslinking agents that are incorporated in the polymer. |
US08835525B2 |
Chain-extended polysiloxane crosslinkers with dangling hydrophilic polymer chains
The invention provide a class of linear chain-extended polysiloxane crosslinkers which comprises two terminal ethylenically unsaturated groups, at least two polysiloxane segments, and dangling hydrophilic polymer chains each covalently attached to a divalent organic radical separating each pair of adjacent polysiloxane segments. The present invention is also related to a polymer comprising crosslinking units derived from chain-extended polysiloxane crosslinker of the invention and to ophthalmic lenses comprising such a polymer. |
US08835524B2 |
Resin precursor composition and resin obtained by photocuring the same
Disclosed is a resin precursor composition including a bifunctional (meth)acrylate containing a fluorine atom, a bifunctional (meth)acrylate having a fluorene structure, and a photopolymerization initiator, the resin precursor composition in which the formation of precipitates during its storage is suppressed; and a resin obtained from the same.Specifically disclosed is a resin precursor composition that contains a bifunctional fluorine-containing (meth)acrylate (component A); a (meth)acrylate having a fluorene structure (component B); and a photopolymerization initiator (component C), wherein the component B includes a bifunctional (meth)acrylate having a fluorene structure (b-1) and a monofunctional (meth)acrylate having a fluorene structure (b-2) at a molar ratio (b-1):(b-2) of 90:10 to 70:30. |
US08835521B2 |
Photosensitive composition and compound for use in the photosensitive composition
Disclosed are a photosensitive composition and a compound used in the same. If the composition provided through the present application is used, it is possible to form a thin film having improved adhesion strength of a pattern. |
US08835520B2 |
Rubber-based resin closed-cell foam sheet and process for producing the same
The present invention provides a rubber-based resin closed-cell foam sheet with its sealing capability being unlikely to be lowered even for a prolonged period of use, and with its excellent waterproofing capability. The inventive rubber-based resin closed-cell foam sheet is characterized in that the foam sheet includes a rubber-based resin containing a nitrile group, and exhibits an excellent adhesion. When used as a waterproof sealing material, the foam sheet can adhere, in a tightly close contact, to the interface of a portion to be sealed. Therefore, the inventive rubber-based resin closed-cell foam sheet can be advantageously used as a waterproof sealing material having high sealing capability and excellent waterproofing capability. |
US08835518B2 |
Process for the treatment of an ion exchange resin
A process for the reactivation of an acidic ion exchange resin is described. The invention relates to the treatment of an at least partially deactivated resin which has been deactivated by contact with an impure ethylenically unsaturated acid or ester containing target impurities. The reactivation includes the step of contacting the at least partially deactivated resin with an alcohol to thereby increase the activity thereof. The invention extends to reactivating a resin deactivated by contact with an impure ethylenically unsaturated acid, ester or nitrile containing target impurities by contacting the at least partially deactivated resin with an alcohol and a carboxylic acid to thereby increase the activity thereof. A reactivated resin and a process for preparing and purifying an ethylenically unsaturated acid or ester of the following formula: —R1—C(═(CH2)m)—COOR2 are also described. |
US08835517B2 |
Method for producing dimethyl ether using a separator
A method for the production of dimethyl ether is disclosed which utilizes: a dimethyl ether synthesis catalyst that converts synthesis gas to a dimethyl ether containing stream, wherein the dimethyl ether containing stream is directed to an absorption column containing water as a scrubbing agent and operating in a temperature range from 1° C.-20° C. and pressure range from 20 psig to 500 psig, and wherein the scrubbing liquid resulting from the exposure of the dimethyl ether containing stream to the absorption column is directed to a flash evaporation unit operating at 25° C.-100° C. and pressure range −15 psig to 15 psig to produce a product stream rich in dimethyl ether. |
US08835508B2 |
Stable aqueous solution containing sodium pyruvate, and the preparation and use thereof
A stable aqueous solution of sodium pyruvate for medical use, which contains 10-1,200 mM sodium pyruvate and a stabilizer of sodium pyruvate, wherein the said stabilizer is H+ which leads to pH 3.0-6.0 or NaCl which provides at least 20 mM Na+. |
US08835507B2 |
Adamantane derivatives possessing anti-viral and anti-microbial activity
The present invention relates to adamantane derivatives that are active as antiviral and anti-microbial agents; antiviral or antibacterial compositions comprising adamantane derivatives or pharmaceutically acceptable salts thereof; and methods of preventing or treating viral or bacterial infections in mammalian hosts through the administration of adamantine derivatives or their salts or pharmaceutical compositions comprising the same. In particular, viral infections prevented or treated by the methods of the present invention may include, but are not limited to, those caused by arenavirus or one or more pox viruses, such as vaccinia and/or variola. |
US08835497B2 |
Compositions for improved oxidative status in companion animals
A food composition that is useful for increasing antioxidant levels in the body is provided having increased levels of sulfur-containing amino acids, such as methionine, cysteine, or mixtures thereof. Methods of using these compositions for increasing antioxidant levels in the body in mammals, especially in companion animals, are also provided. |
US08835488B2 |
Opioid receptor ligands and methods of using and making same
This application describes compounds that can act as opioid receptor ligands, which compounds can be used in the treatment of, for example, pain and pain related disorders. |
US08835482B2 |
Substituted indazole and aza-indazole derivatives as gamma secretase modulators
The present invention is concerned with novel substituted indazole and aza-indazole derivatives of Formula (I) wherein R1, R2, R3, R4, Y, A1, A2, A3, A4, X1, X2, X3 and Het1 have the meaning defined in the claims. The compounds according to the present invention are useful as gamma secretase modulators. The invention further relates to processes for preparing such novel compounds, pharmaceutical compositions comprising said compounds as an active ingredient as well as the use of said compounds as a medicament. |
US08835480B2 |
Inhibitors for steroid response elements and related methods
The present invention relates to polyamides capable of inhibiting ARE-, GRE- and ERE-mediated gene regulation in cells. The invention also relates to methods to treat diseases related to ARE-, GRE- and ERE-mediated gene regulation. |
US08835473B2 |
Methods and compositions for treating cancer
The present invention provides methods of treating cancer using 2-amino-6-trifluoromethoxybenzothiazole (riluzole). In one aspect, the present invention provides methods of reducing cancer cell growth. In another aspect, the present invention provides a method of inducing apoptosis in a cancer cell. In another aspect, the present invention provides a method of reducing the growth of a glutamate-releasing tumor. |
US08835468B2 |
N-(2-(hetaryl)aryl)arylsulfonamides and n-(2-(hetaryl)hetaryl) arylsulfonamides
Compounds are provided that act as potent antagonists of the CCR9 receptor. Animal testing demonstrates that these compounds are useful for treating inflammation, a hallmark disease for CCR9. The compounds are generally aryl sulfonamide derivatives and are useful in pharmaceutical compositions, methods for the treatment of CCR9-mediated diseases, and as controls in assays for the identification of CCR9 antagonists. |
US08835462B2 |
Macrocyclic picolinamides as fungicides
The disclosure relates to macrocyclic picolinamides of Formula I and their use as fungicides. |
US08835458B2 |
Quinoline or quinazoline derivatives with apoptosis inducing activity on cells
Provided is a pharmaceutical composition comprising, as an active ingredient, a quinoline or quinazoline derivative of formula (I), a pharmaceutically acceptable salt, an isomer, a hydrate, and a solvate thereof, which is effective in the prevention and treatment of a cancer, inflammation, autoimmune diseases or neurodegenerative disorders which are induced by the overexpression of inhibitor of apoptosis proteins (IAPs). |
US08835457B2 |
Bridged bicyclic RHO kinase inhibitor compounds, compositions and use
The present invention is directed to synthetic bridged bicyclic compounds that are inhibitors of rho-associated protein kinase. The present invention is also directed to pharmaceutical compositions comprising such compounds and a pharmaceutically acceptable carrier. The invention is additionally directed to a method of preventing or treating diseases or conditions associated with cytoskeletal reorganization. The method comprises administering to a subject a therapeutically effective amount of a Rho kinase inhibitory compound of Formula I, wherein said amount is effective to influence the actomyosin interactions, for example, by leading to cellular relaxation and alterations in cell-substratum adhesions. In one embodiment, the method treats increased intraocular pressure, such as primary open-angle glaucoma. In another embodiment, the method treats diseases or conditions of the lung associated with excessive cell proliferation, remodeling, inflammation, vasoconstriction, bronchoconstriction, airway hyperreactivity and edema. |
US08835449B2 |
2-thiopyrimidinones
Myeloperoxidase inhibitors, pharmaceutical compositions containing such inhibitors and the use of such inhibitors to treat, for example, cardiovascular conditions. |
US08835447B2 |
Method for treating androgen receptor positive cancers
Provided is a method of inhibiting growth of androgen receptor positive cancer cells. The method entails administering to an individual diagnosed with or suspected of having an androgen receptor positive cancer and administering to the individual a composition containing a compound that can inhibit the growth of the androgen receptor positive cancer. |
US08835446B2 |
Quinazoline derivatives and pharmaceutical compositions thereof
The present invention relates to novel quinazoline derivatives with less skin irritation and an excellent action of strongly suppressing scratching behavior, and pharmaceutical compositions containing a quinazoline derivative as an active ingredient. The present invention is directed to the quinazoline derivatives represented by the general formula [1] or pharmaceutically acceptable salts thereof. In the general formula [1], R1 represents hydrogen or the like; R2 represents hydrogen or the like; R3 and R4 are the same or different and represent hydrogen, alkyl, alkoxy or halogen; R5 is combined with R6 to represent alkylene or represents hydrogen, hydroxy, alkyl, phenyl or alkoxy; R6 represents alkyl, cycloalkyl, phenyl, a 5- to 10-membered aromatic heterocyclic group containing one to three heteroatoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom, or —N(R6-1)(R6-2). |
US08835445B2 |
Dihydrofolate reductase inhibitors
The present disclosure provides compounds of Formula I: or a pharmaceutically acceptable salt thereof, wherein R5, R6 and Z are as described herein. The disclosure also provides pharmaceutical compositions thereof; and methods for inhibiting DHFR activity; and methods for treating cell proliferative diseases, autoimmune disease, inflammatory disease or bacterial, fungal or parasitic infection by administering a compound of Formula I. |
US08835441B2 |
Heterobicyclic metalloprotease inhibitors
The present invention relates generally to amide containing heterobicyclic compounds having the following formulas: wherein R1, R2, D, and Q are as defined in the specification. More particularly, the present invention provides a new class of amide containing heterobicyclic compounds, that exhibit an increased potency in relation to currently known MMP-13 and MMP-3 inhibitors. |
US08835434B2 |
Hydroxylated pyrimidyl cyclopentanes as akt protein kinase inhibitors
The present invention provides compounds, including pharmaceutically acceptable salts thereof, comprising the Formula (I): Also provided are methods of using the compounds of this invention as AKT protein kinase inhibitors and for the treatment of hyperproliferative diseases, such as cancer. |
US08835427B2 |
Fungicidal heterocyclic compounds
Disclosed are compounds of Formula 1 and Formula 1A including all stereoisomers, N-oxides, and salts thereof, wherein E, Y1, Y2, Y3, G, J, X1 and X2 are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 or Formula 1A and methods for controlling plant disease caused by a fungal pathogen comprising applying an effective amount of a compound or a composition of the invention. |
US08835426B2 |
Cyclic urea and carbamate inhibitors of 11β-hydroxysteroid dehydrogenase 1
This invention relates to novel compounds of the Formula (I), pharmaceutically acceptable salts thereof, and pharmaceutical compositions thereof, which are useful for the therapeutic treatment of diseases associated with the modulation or inhibition of 11β-HSD1 in mammals. The invention further relates to pharmaceutical compositions of the novel compounds of the Formula (I) and methods for their use in the reduction or control of the production of cortisol in a cell or the inhibition of the conversion of cortisone to cortisol in a cell. |
US08835424B2 |
Selective agents for pain suppression
In preferred embodiments, the present invention provides methods of treatment and pharmaceutical compositions for the suppression, alleviation and prevention of the often chronic, severe and debilitating pain that can accompany inflammatory diseases and neuropathic insults, pain that is often unresponsive to conventional analgesic treatment. The preferred embodiments of the present invention further relate to methods of treatment and pharmaceutical compositions using benzodiazepine derivatives that provide suppression, alleviation and prevention of neuropathic pain, migraine-related pain and inflammatory pain with reduced sedative and ataxic side effects. |
US08835421B2 |
Benzimidazole linked pyrrolo[2,1-c[1,4] benzodiazepine hybrids as potential antitumour agents and process for the preparation thereof
The present invention provides a compounds of general formula (8), (11) and (14), useful as potential antitumour agents against human cancer cell lines. The present invention further provides a process for the preparation of pyrrolo[2,1-c][1,4]benzodiazepine hybrids of general formula (8), (11) and (14). |
US08835420B2 |
Azaindole derivatives
Disclosed are compounds of Formula 1, and pharmaceutically acceptable salts thereof, wherein R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 are defined in the specification. This disclosure also relates to materials and methods for preparing compounds of Formula 1, to pharmaceutical compositions which contain them, and to their use for treating immunological disorders, cardiovascular disease, cancer, and other diseases, disorders or conditions associated with PI3Kδ. |
US08835414B2 |
Treatment of vaginal atrophy in women with cardiovascular pathology risk
The present invention relates to the use of estriol in the preparation of a pharmaceutical formulation for vaginal administration with the capacity to self-limit the absorption of estriol, for the prevention and/or the treatment of urogenital atrophy in women said women having a high probability of suffering from a cardiovascular pathology or suffering or having suffered from a cardiovascular pathology. |
US08835412B2 |
Isoxazolidine derivatives
Anti-inflammatory and antiallergic compounds of the glucocorticosteroid series according to formula (I) defined herein are useful for treating diseases of the respiratory tract characterized by airway obstruction. |
US08835410B2 |
Treatment of eyelid dermatitis
A method for the treatment of eyelid dermatitis and/or dermatitis of the periorbital area is provided. |
US08835408B2 |
Hemostatic compositions and uses therefor
The present invention relates generally to the field of hemostasis, including methods, compositions, and devices that can be employed to achieve hemostasis at an increased rate. More specifically the present invention relates to hemostatic compositions that achieve a hemostatic effect at a distance from the site of application of the composition, and a method for administering such a composition to effectively reduce localized vascular complications associated with treating a breach or puncture in a vein or artery and reduce the time to achieve hemostasis. |
US08835405B2 |
Inhibiting arthritis via injection of synergistic combination of hyaluronic acid and vitamin C and/or vitamin E
A pharmaceutical composition for inhibiting inflammation is provided. The pharmaceutical composition comprises (a) hyaluronic acid, (b) a vitamin and (c) a pharmaceutically acceptable carrier. |
US08835400B2 |
RNA molecules that upregulate insulin production
The present invention provides a short RNA capable of upregulating MafA expression in a human cell, wherein the short RNA includes a first strand which is 19 to 25 nucleotides in length and comprises the sequence AUCUGUACUGGAUGAGCGG (SEQ ID NO:1) or UUUCCCGCAGGAGAUUGAC (SEQ ID NO:2). Also provided are uses of the short RNA, particular medical uses, and induced cells and uses of the induced cells. |
US08835399B2 |
Near-infrared light-activated proteins
Methods and constructs are provided for controlling processes in live animals, plants or microbes via genetically engineered near-infrared light-activated or light-inactivated proteins including chimeras including the photosensory modules of bacteriophytochromes and output modules that possess enzymatic activity and/or ability to bind to DMA, RNA, protein, or small molecules. DNA encoding these proteins are introduced as genes into live animals, plants or microbes, where their activities can be turned on by near-infrared light, controlled by the intensity of light, and turned off by near-infrared light of a different wavelength than the activating light. These proteins can regulate diverse cellular processes with high spatial and temporal precision, in a nontoxic manner, often using external light sources. For example, near-infrared light-activated proteins possessing nucleotidyl cyclase, protein kinase, protease, DNA-binding and RNA-binding activities are useful to control signal transduction, cell apoptosis, proliferation, adhesion, differentiation and other cell processes. |
US08835396B2 |
Method and compositions for improving pulmonary hypertension
This invention discloses a method and compositions for treatment or prevention of pulmonary hypertension in a mammal. Representative mammals include humans and horses. The invention further relates to supplements especially beneficial in preventing or stopping the progression of pulmonary hypertension. The supplements include ribose and folate. Additional nutrients include omega-3 fatty acids and gamma-linolenic acid. |
US08835394B2 |
Treatment for basal cell carcinoma
The present invention provides a method of treating basal cell carcinoma in a subject. Generally, the method includes administering to the subject an amount of IRM compound effective for treating basal cell carcinoma in a treatment cycle that includes at least two consecutive days in which the IRM compound is administered and at least one day in which the IRM compound is not administered. |
US08835393B2 |
Inhibitors of IAP
The invention provides novel compounds that are inhibitors of IAPs having the general formula: wherein X1, X2, X3, Y, A, R1, R2, R3, R4, R4′, R5, R5′, R6 and R6′ are as described herein. The compouds of the invention may be used to induce apoptosis in cells (or sensitise cells to apoptosis) in which IAPs are overexpressed or otherwise implicated in resistance to normal apoptotic processes. Accordingly, the compounds may be provided in pharmaceutically acceptable compositions and used for the treatment cancers. |
US08835391B2 |
Alpha B-crystallin as a therapy for multiple sclerosis
The invention provides methods for treating inflammatory diseases by administering to the subject an effective amount of an agent that provides alpha B-crystallin activity, where the dose is effective to suppress or prevent initiation, progression, or relapses of disease, including the progression of established disease. In some embodiments, the methods of the invention comprise administering to a subject having a pre-existing inflammatory disease condition, an effective amount of alpha B-crystallin protein, to suppress or prevent relapses of the disease. |
US08835385B2 |
FGF21 polypeptides comprising two or more mutations and uses thereof
The invention provides nucleic acid molecules encoding FGF21 mutant polypeptides, FGF21 mutant polypeptides, pharmaceutical compositions comprising FGF21 mutant polypeptides, wherein the FGF 21 mutant polypeptides comprise two or more mutations, and methods for treating metabolic disorders using such nucleic acids, polypeptides, or pharmaceutical compositions. |
US08835379B2 |
Derivatives of CGRP
Acylated CGRP compounds with a linker have prolonged action and are valuable as medicaments. |
US08835377B2 |
Oral delivery of peptide pharmaceutical compositions
Bioavailability of peptide active agents to be administered orally is enhanced by a pharmaceutical composition providing targeted release of the peptide to the intestine by combining the composition with an absorption enhancer. Bioavailability is further significantly increased by administering the composition in an acid-resistant protective vehicle which transports components of the invention through the stomach. The composition may optionally further include a sufficient amount of a pH-lowering agent to lower local intestinal pH. All components are released together into the intestine with the peptide. |
US08835373B2 |
Fluid fabric enhancer compositions
Fluid fabric enhancer compositions comprising external structurants and processes for making and using same are provided. Such fluid fabric enhancer compositions can have a rich impression, stabilize/suspend performance ingredients such as perfume microcapsules, be easily poured/dosed and minimizes residue build up in laundry machine dispensers. In addition, such compositions have tunable rheologies. |
US08835371B2 |
Adhesive agent for application on a sanitary object
An agent for the sanitary sector, which agent can be applied directly on a sanitary object, adheres there and can be flushed away only after a relatively large number of flushing operations. The agent includes fillers from the group of surfactants and also an adhesion promoter. The adhesion promoter is selected from hydrogenated polystyrene derivatives and olefin homopolymers and copolymers of two or more olefins, where the olefin homopolymers and copolymers may also be partially hydrogenated. The viscosity of the agent is at least 30 Pas, measured using a Haake viscometer, plate/plate system, plate diameter 10 mm, at a shear gradient of 2.62 s−1 and 20° C. The agent is so sticky that it can serve to attach bar-shaped agents in the toilet bowl. The concentration of the surfactants in the case of an adhesion promoter from the group of polyalkyleneimines is between 7 and 60% by weight. |
US08835370B2 |
Organic cleaning composition
Organic cleaner/detergent compositions, formulations and solutions, and methods of cleaning using such compositions, formulations and solutions and manufacturing such compositions, formulations and solutions are disclosed. More particularly, compositions; formulations and solutions used for the cleaning and/or cleansing of a variety of industrial, domestic and/or communal hard surfaces, fiber/soft surfaces, including all natural, organic, synthetic and blended fibers, and organic surfaces, including, but not limited to, human skin and hair and animal skin and hair are disclosed. Such compositions, formulations and solutions are useful as laundry detergents, automatic dishwasher detergents, hard surface cleaners, hand soaps, human shampoos, and animal shampoos. |
US08835369B2 |
Odorless acetone-free nail polish removing composition
One aspect of the present invention comprises a nail polish removing composition that is essentially free of acetone and ethyl acetate, and is essentially free of odor. The composition includes at least one triester of glycerol and C2-C5 carboxylic acid, at least one C3-C5 glycol, at least one C4-C6 cyclic carbonate, and, optionally, at least one colorant. Another aspect of the present invention is a method of removing nail polish, comprising providing the nail polish removing composition; immersing an absorbent material in the composition, wherein the absorbent material absorbs the composition; contacting the absorbent material to nail polish for a time sufficient to plasticize the nail polish film; and removing the plasticized nail polish film by mechanically rubbing with the absorbent material, wherein the composition comprises one or more phases. |
US08835366B2 |
Lubricant compositions based on block copolymers and processes for making
Provided are lubricant compositions with improved oxidative stability and frictional and wear resistance properties for use in engine oil applications. The lubricant compositions include: i) a first base stock selected from a Group I base stock, a Group II base stock or a combination thereof at 50 to 80 wt %; ii) a block copolymer at 1 to 10 wt %; iii) a viscosity modifier at 3 to 15 wt % selected from polymers and copolymers of methacrylate, butadiene, olefins and alkylated styrenes; and iv) an additive package including a combination of antioxidants, dispersants, detergents, friction modifiers and antiwear agents at 2 to 30 wt %. |
US08835362B2 |
Modifying single proteins (GPCR), ligands, and nanopore surfaces to create binding-induced molecular changes of protein-ligand complexes detected in nanochannel translocation
A mechanism is provided for utilizing a nanodevice to distinguish molecules with different structure. The molecules translocate through or across a nanochannel filled with a electrolyte solution. An electrical signal through the nanochannel is measured for every translocation event. Inner surfaces of the nanochannel include a functional layer, which is a coating to functionalize the nanochannel, in which the functional layer is configured to interact with predetermined ones of the molecules during translocation events. It is determined that a combination of at least two different molecules is formed based on predetermined ones of the molecules interacting with the functional layer to change the electrical signal and/or change a translocation time for the translocation event. |
US08835356B2 |
High load glyphosate formulations
A liquid formulation containing at least about 500 ae g/L, and up to 625 ae g/L or more, of glyphosate, a surfactant that is efficacy-enhancing for glyphosate and is compatible with potassium glyphosate and which constitutes less than about 100 g/L of the formulation, non-amphiphilic cations, the majority of which are potassium cations, a low molecular weight acid or conjugate base thereof that is chemically distinct from glyphosate, and water. |
US08835354B2 |
Composition for controlling plant diseases and method for controlling plant diseases
PROBLEMThere are provided a composition for controlling plant diseases and a method for controlling plant diseases having excellent control effect for plant diseases.SOLUTIONA composition for controlling plant diseases comprising, as active ingredients, a compound represented by formula (1) wherein X1 represents a methyl group, a difluoromethyl group or an ethyl group; X2 represents a methoxy group or a methylamino group; and X3 represents a phenyl group, a 2-methylphenyl group or a 2,5-dimethylphenyl group, and at least one compound selected from the group consisting of tolclofos-methyl, metalaxyl and mefenoxam, and a method for controlling plant diseases using the composition. |
US08835352B2 |
Indicator, application thereof and related products
There is disclosed an indicator composition, the application thereof to substrates, and related products. The indicator composition comprises an organic solvent soluble polymer and a redox sensitive material which displays different visible properties in the oxidized and reduced forms. The organic solvent soluble polymer can be at least partially sulfonated polystyrene. The indicator composition can be dissolved in organic solvents such as acetone, ethanol and ethyl acetate to form inks which can be used in a variety of printing processes. The indicator composition can be used to detect oxidizing agents, oxygen, water, reducing agents, UV light, temperature and the passage of time. |
US08835350B2 |
Fluid filtration medium
The present application relates to improved filtration of fluids. Particularly, a surfactant-treated zeolite material may be utilized for removing turbid particles from a volume of fluid, such as water. |
US08835349B2 |
Exhaust purifying catalyst
An exhaust purifying catalyst includes: a substrate; a first-stage catalyst that includes an oxygen storage capacity (OSC) material and that is provided on the substrate on an upstream side thereof in an exhaust gas flow direction; and a second-stage catalyst that includes an OSC material and that is provided on the substrate on a downstream side thereof in an exhaust gas flow direction. The OSC material included in the first-stage catalyst and the second-stage catalyst includes OSC material on which a noble metal is not supported. The proportion of the amount of the OSC material, on which a noble metal is not supported, and that is included in the second-stage catalyst with respect to the combined amount of the OSC material, on which a noble metal is not supported, and that is included in the first-stage catalyst and the second-stage catalyst is in a range of from 0 to 50 wt %. |
US08835342B2 |
Mesostructured zeolitic materials and methods of making and using the same
One aspect of the present invention relates to mesostructured zeolites. The invention also relates to a method of preparing mesostructured zeolites, as well as using them as cracking catalysts for organic compounds and degradation catalysts for polymers. |
US08835341B2 |
Processed support and methods of making and using same
A method for removing tightly bound sodium from a zeolitic support comprising contacting the support with a sodium specific removal agent to produce a treated support. A method comprising providing an aromatization catalyst comprising a treated support, and contacting the aromatization catalyst with a hydrocarbon feed in a reaction zone under conditions suitable for the production of an aromatic product. A catalyst support comprising an L-zeolite having less than 0.35 wt. % sodium. |
US08835339B2 |
Enhanced high Q material compositions and methods of preparing same
A framework for developing high quality factor (Q) material for electronic applications in the radio frequency range is provided. In one implementation, ceramic materials having a tungsten bronze crystal structure is modified by substituting one or more elements at one or more lattice sites on the crystal structure. The substitute elements are selected based on the ionic radius and other factors. In other implementations, the modified ceramic material is prepared in combination with compositions such as rutile or a perovskite to form a orthorhombic hybrid of perovskite and tetragonal tungsten bronze. |
US08835336B2 |
Optical glass and optical element
Provided with the following glass components: 8 to 19.5% B2O3, 4.5 to 9% SiO2, 0 to 10% GeO2, 7 to 12.5% BaO, 0 to 14% MgO, 0 to 0.4% Li2O, 15 to 34% La2O3, 3.5 to 10% Y2O3, 8 to 13.5% TiO2, 0 to 7% ZrO2, 0 to 11% Nb2O5, and 1 to 9% WO3 by weight, wherein B2O3/SiO2 is at least 1.0, La2O3+Y2O3+ZrO2+Nb2O5+WO3 is no more than 54%, and B2O3+SiO2+GeO2+BaO+MgO+Li2O+La2O3+Y2O3+TiO2+ZrO2+Nb2O5+WO3 is at least 98%. |
US08835333B2 |
Heat treatment method of semiconductor wafers, manufacturing method of solar battery, and heat treatment device
A heat treatment method of the present invention includes mounting a plurality of semiconductor wafers upright on a treatment boat in parallel to each other, inserting the treatment boat in a space above an injector located in a tube to be oriented to plane surfaces of the semiconductor wafers in parallel to an extending direction of the tube, and heating the tube while continuously supplying source gas into the tube through openings of the injector. |
US08835331B2 |
Vapor-phase growing apparatus and vapor-phase growing method
According to one embodiment, a vapor-phase growing apparatus, includes: a reactor containing a plurality of gas introduction portions and a gas reaction portion located below the gas introduction portions; a susceptor, of which a surface is exposed in an interior space of the gas reaction portion of the reactor, for disposing and fixing a substrate on the surface thereof; a gas distributor provided between the gas introduction portions and the gas reaction portion of the reactor; a plurality of gas inlet conduits which are connected with the gas introduction portions, respectively; and a switching device, which is provided in an outside of the reactor, for switching gases to be supplied to the gas inlet conduits, respectively. |
US08835330B2 |
Integrated circuit including DRAM and SRAM/logic
A method includes providing a substrate having an N+ type layer; forming a P type region in the N+ type layer disposed within the N+ type layer; forming a first deep trench isolation structure extending through a silicon layer and into the N+ type layer to a depth that is greater than a depth of the P type layer; forming a dynamic RAM FET in the silicon layer, forming a first logic/static RAM FET in the silicon layer above the P type region, the P type region being functional as a P-type back gate of the first logic/static RAM FET; and forming a first contact through the silicon layer and an insulating layer to electrically connect to the N+ type layer and a second contact through the silicon layer and the insulating layer to electrically connect to the P type region. |
US08835329B2 |
Reactor cell isolation using differential pressure in a combinatorial reactor
Methods for combinatorially processing semiconductor substrates are provided. The methods may involve receiving a substrate into a combinatorial processing chamber and sealing a plurality of flow cells against a surface of the substrate. The plurality of flow cells is enclosed within the combinatorial processing chamber to define an enclosed external environment for the plurality of flow cells. A pressure differential is created between a reaction area of the plurality of flow cells of the combinatorial processing chamber and the external environment, wherein each flow cells of the plurality of flow cells defines a site isolating region of the substrate. The regions the substrate are then combinatorially processed. |
US08835327B2 |
Method of manufacturing semiconductor device
A method of manufacturing a semiconductor device disclosed herein includes: mounting a substrate on an electrostatic chuck placed inside a chamber, the electrostatic chuck having a first temperature and the substrate being retained in advance in an atmosphere having a second temperature lower than the first temperature; fixing the substrate onto the electrostatic chuck by applying a voltage to the electrostatic chuck; heating the electrostatic chuck to a third temperature higher than the first temperature and the second temperature after mounting the substrate; and processing the substrate after the heating. |
US08835326B2 |
Titanium-nitride removal
A chemical solution that removes undesired metal hard mask yet remains selective to the device wiring metallurgy and dielectric materials. The present invention decreases aspect ratio by selective removal of the metal hard mask before the metallization of the receiving structures without adverse damage to any existing metal or dielectric materials required to define the semiconductor device, e.g. copper metallurgy or device dielectric. Thus, an improved aspect ratio for metal fill without introducing any excessive trapezoidal cross-sectional character to the defined metal receiving structures of the device will result. |
US08835324B2 |
Method for forming contact holes
In an exemplary method for forming contact holes, a substrate overlaid with an etching stop layer and an interlayer dielectric layer in that order is firstly provided. A first etching process then is performed to form at least a first contact opening in the interlayer dielectric layer. A first carbon-containing dielectric layer subsequently is formed overlying the interlayer dielectric layer and filling into the first contact opening. After that, a first anti-reflective layer and a first patterned photo resist layer are sequentially formed in that order overlying the carbon-containing dielectric layer. Next, a second etching process is performed by using the first patterned photo resist layer as an etching mask to form at least a second contact opening in the interlayer dielectric layer. |
US08835319B2 |
Protection layers for conductive pads and methods of formation thereof
In one embodiment, a method of forming a semiconductor device includes forming a metal line over a substrate and depositing an alloying material layer over a top surface of the metal line. The method further includes forming a protective layer by combining the alloying material layer with the metal line. |
US08835318B2 |
HNO3 single wafer clean process to strip nickel and for MOL post etch
Ni and Pt residuals are eliminated by replacing an SPM cleaning process with application of HNO3 in an SWC tool. Embodiments include depositing a layer of Ni/Pt on a semiconductor substrate, annealing the deposited Ni/Pt layer, removing unreacted Ni from the annealed Ni/Pt layer by applying HNO3 to the annealed Ni/Pt layer in an SWC tool, annealing the Ni removed Ni/Pt layer, and removing unreacted Pt from the annealed Ni removed Ni/Pt layer. Embodiments include forming first and second gate electrodes on a substrate, spacers on opposite sides of each gate electrode, and Pt-containing NiSi on the substrate adjacent each spacer, etching back the spacers, forming a tensile strain layer over the first gate electrode, applying a first HNO3 in an SWC tool, forming a compressive strain layer over the second gate electrode, and applying a second HNO3 in an SWC tool. |
US08835313B2 |
Interconnect barrier structure and method
A system and method for forming through substrate vias is provided. An embodiment comprises forming an opening in a substrate and lining the opening with a first barrier layer. The opening is filled with a conductive material and a second barrier layer is formed in contact with the conductive material. The first barrier layer is formed with different materials and different methods of formation than the second barrier layer so that the materials and methods may be tuned to maximize their effectiveness within the device. |
US08835310B2 |
Two step deposition of molybdenum dioxide electrode for high quality dielectric stacks
Electrodes, which contain molybdenum dioxide (MoO2) can be used in electronic components, such as memory or logic devices. The molybdenum-dioxide containing electrodes can also have little or no molybdenum element, together with a portion of molybdenum oxide, e.g., MoOx with x between 2 and 3. The molybdenum oxide can be present as molybdenum trioxide MoO3, or in Magneli phases, such as Mo4O11, MO8O23, or Mo9O26. The molybdenum-dioxide containing electrodes can be formed by annealing a multilayer including a layer of molybdenum and a layer of molybdenum oxide. The oxygen content of the multilayer can be configured to completely, or substantially completely, react with molybdenum to form molybdenum dioxide, together with leaving a small excess amount of molybdenum oxide MoOx with x>2. |
US08835306B2 |
Methods for fabricating integrated circuits having embedded electrical interconnects
A method for fabricating integrated circuits includes providing a substrate including a protecting layer over an oxide layer and etching a recess through the protecting layer and into the oxide layer. A barrier material is deposited over the substrate to form a barrier layer including a first region in the recess and a second region outside the recess. A conductive material is deposited over the barrier layer and forms an embedded electrical interconnect in the recess and an overburden region outside the recess. The overburden region of the conductive material is removed and a portion of the embedded electrical interconnect is recessed. Thereafter, the barrier layer is etched to remove the second region of the barrier layer and to recess a portion of the first region of the barrier layer. After etching the barrier layer, the protecting layer is removed from the oxide layer. |
US08835297B2 |
Fabricating method of non-volatile memory structure
A fabricating method for fabricating a non-volatile memory structure including the following steps is provided. A first conductive type doped layer is formed in a substrate. A plurality of stacked structures is formed on the substrate, and each of the stacked structures includes a charge storage structure. A first dielectric layer is formed on the substrate between the adjacent stacked structures. A second conductive type doped region is formed in the substrate between the adjacent charge storage structures. The second conductive type doped region has an overlap region with each of the charge storage structures. In addition, the second conductive type doped region divides the first conductive type doped layer into a plurality of first conductive type doped regions that are separated from each other. A conductive layer is formed on the first dielectric layer. |
US08835295B2 |
Split gate memory device with gap spacer
A method for forming a split gate device includes forming a first sidewall of a first conductive gate layer, wherein the semiconductor layer includes a tunnel region laterally adjacent the first sidewall, forming a dielectric layer along the first sidewall to provide for increased thickness of a gap spacer, forming a charge storage layer over a portion of a top surface of the first conductive layer and over the tunnel region, and forming a second conductive gate layer over the charge storage layer. |
US08835289B2 |
Wafer backside defectivity clean-up utilizing selective removal of substrate material
A wafer and a fabrication method include a base structure including a substrate for fabricating semiconductor devices. The base structure includes a front side where the semiconductor devices are formed and a back side opposite the front side. An integrated layer is formed in the back side of the base structure including impurities configured to alter etch selectivity relative to the base structure such that the integrated layer is selectively removable from the base structure to remove defects incurred during fabrication of the semiconductor devices. |
US08835286B2 |
Manufacturing method of graphene substrate and graphene substrate
The invention provides a manufacturing method of a graphene-on-insulator substrate which is mass productive, of high quality, and yet is directly usable for manufacture of semiconductor devices at a low manufacturing cost. According to the manufacturing method of a graphene substrate of the invention, a metal layer and a carbide layer are heated with the metal layer in contact with the carbide layer so that carbon in the carbide layer is dissolved into the metal layer, and then the metal layer and the carbide layer are cooled so that the carbon in the metal layer is segregated as graphene on the surface of the carbide layer. |
US08835279B2 |
Method of manufacturing semiconductor device
According to one embodiment, a method of manufacturing a semiconductor device is provided. In the method, a tunnel insulating film and a first conductive film are formed on a semiconductor layer. A trench is formed. A first sacrifice film is buried in the trench. A second sacrifice film having density higher than that of the first sacrifice film is formed on the first sacrifice film in the trench. An insulating film is formed on the first conductive film and the second sacrifice film. A second conductive film is formed on the insulating film. The second sacrifice film is exposed. The first sacrifice film and the second sacrifice film are removed. |
US08835276B2 |
Method for manufacturing semiconductor substrate
A semiconductor substrate is provided in which an alignment mark is formed that can be used for an alignment even after the formation of an impurity diffused layer by the planarization of an epitaxial film. A trench is formed in an alignment region of an N+-type substrate. This trench is used to leave voids after the formation of an N−-type layer. Then, the voids formed in the N+-type substrate can be used as an alignment mark. Thus, such a semiconductor substrate can be used to provide an alignment in the subsequent step of manufacturing the semiconductor apparatus. Thus, the respective components constituting the semiconductor apparatus can be formed at desired positions accurately. |
US08835274B2 |
Interconnects and semiconductor devices including at least two portions of a metal nitride material and methods of fabrication
Metal-insulator-metal capacitors with a bottom electrode including at least two portions of a metal nitride material. At least one of the portions of the metal nitride material includes a different material than another portion. Interconnects including at least two portions of a metal nitride material are also disclosed, at least one of the portions of the metal nitride material are formed from a different material than another portion of the metal nitride material. Methods for fabricating such MIM capacitors and interconnects are also disclosed, as are semiconductor devices including such MIM capacitors and interconnects. |
US08835272B1 |
Passive electrically switchable circuit element having improved tunability and method for its manufacture
A resistive switching device and methods for making the same are disclosed. In the above said device, a resistive switching layer is interposed between opposing electrodes. The resistive switching layer comprises at least two sub-layers of switchable insulative material characterized by different ionic mobilities. |
US08835268B2 |
Method for manufacturing semiconductor device
A method for manufacturing a semiconductor device includes forming a mask film on a partial region of a semiconductor substrate; forming a mask member above the semiconductor substrate in both the region where the mask film is formed and a region where the mask film is not formed; patterning the mask film and an upper portion of the semiconductor substrate by performing etching using the mask member as a mask. The method further includes removing part of the patterned upper portion of the semiconductor substrate by performing etching using the patterned mask film as a mask. |
US08835267B2 |
Semiconductor device and fabrication method thereof
A method for fabricating a semiconductor device is disclosed. A strained material is formed in a cavity of a substrate and adjacent to an isolation structure in the substrate. The strained material has a corner above the surface of the substrate. The disclosed method provides an improved method for forming the strained material adjacent to the isolation structure with an increased portion in the cavity of a substrate to enhance carrier mobility and upgrade the device performance. In an embodiment, the improved formation method is achieved using an etching process to redistribute the strained material by removing at least a portion of the corner to be located in the cavity. |
US08835266B2 |
Method and structure for compound semiconductor contact
The present disclosure provides a buried channel semiconductor structure in which a crystallographic wet etch is used to tailor the profile of etched regions formed into a multilayered substrate which includes a compound semiconductor layer located atop a buried semiconductor channel material layer. The use of crystallographic wet etching on a compound semiconductor allows one to tailor the shape of a source recess region and a drain recess region formed into a multilayered substrate. This allows for the control of gate overlap/underlap. Also, the use of crystallographic wet etching on a compound semiconductor allows independent control of the length of an underlying buried semiconductor channel region. |
US08835262B2 |
Methods of forming bulk FinFET devices by performing a recessing process on liner materials to define different fin heights and FinFET devices with such recessed liner materials
One method includes performing an etching process through a patterned mask layer to form trenches in a substrate that defines first and second fins, forming liner material adjacent the first fin to a first thickness, forming liner material adjacent the second fin to a second thickness different from the first thickness, forming insulating material in the trenches adjacent the liner materials and above the mask layer, performing a process operation to remove portions of the layer of insulating material and to expose portions of the liner materials, performing another etching process to remove portions of the liner materials and the mask layer to expose the first fin to a first height and the second fin to a second height different from the first height, performing another etching process to define a reduced-thickness layer of insulating material, and forming a gate structure around a portion of the first and second fin. |
US08835259B2 |
Transistor of semiconductor device and method for manufacturing the same
Provided are a transistor of a semiconductor device and a method for manufacturing the same. A gate induced drain leakage (GIDL) current is reduced by decreasing a work function at an upper portion of a gate electrode, and a threshold voltage of the transistor is maintained by maintaining a work function at a lower portion of the gate electrode at a high level, thereby reducing a leakage current of the transistor and reducing a read time and a write time of the semiconductor device. The transistor of the semiconductor device includes: a recess with a predetermined depth in a semiconductor substrate; a first gate electrode disposed within the recess; and a second gate electrode disposed on the first gate electrode into which ions of one or more of nitrogen (N), oxygen (O), arsenic (As), aluminum (Al), and hydrogen (H) are doped. |
US08835258B2 |
High voltage device and manufacturing method thereof
The present invention discloses a high voltage device and a manufacturing method thereof. The high voltage device is formed in a first conductive type substrate, wherein the substrate has an upper surface. The high voltage device includes: a second conductive type buried layer, which is formed in the substrate; a first conductive type well, which is formed between the upper surface and the buried layer; and a second conductive type well, which is connected to the first conductive type well and located at different horizontal positions. The second conductive type well includes a well lower surface, which has a first part and a second part, wherein the first part is directly above the buried layer and electrically coupled to the buried layer; and the second part is not located above the buried layer and forms a PN junction with the substrate. |
US08835256B1 |
Memory array with self-aligned epitaxially grown memory elements and annular FET
A system and method for fabricating a memory array device. An example memory array device includes a plurality of memory cells, each including a FET over a substrate and a memory element over the FET. Each memory element includes a plurality of epitaxially grown memory element layers. The memory array device includes a plurality of gate conductors configured a first axis, in parallel. Each gate conductor laterally surrounds a plurality of FETs of the memory cells along the first axis. The memory array device includes a plurality of bit lines configured along a second axis, in parallel, and electrically coupled to a plurality of memory elements along the second axis. Embodiments of the memory array preserve alignment of crystal lattices beginning from the bottom layers in the FET up to the top active layers in memory element, thus preserving crystal lattice alignment between transistor and memory element. |
US08835253B2 |
Photoelectric conversion device fabrication method and photoelectric conversion device
Provided is a photoelectric conversion device fabrication method in which current leakage from an intermediate contact layer via an intermediate-contact-layer separating groove is prevented as much as possible. Included are a step of film-forming a top layer having amorphous silicon as a main component; a step of film-forming, on the top layer, an intermediate contact layer electrically and optically connected thereto; a step of separating the intermediate contact layer by removing the intermediate contact layer by irradiating it with a pulsed laser, forming an intermediate-contact-layer separating groove that reaches the top layer; and a step of film-forming, on the intermediate contact layer and inside the intermediate-contact-layer separating groove, a bottom layer electrically and optically connected thereto and having microcrystalline silicon as a main component. A pulsed laser having a pulse width of 10 ps to 750 ps, inclusive, is used as the pulsed laser for separating the intermediate contact layer. |
US08835250B2 |
FinFET trench circuit
A finFET trench circuit is disclosed. FinFETs are integrated with trench capacitors by employing a trench top oxide over a portion of the trench conductor. A passing gate is then disposed over the trench top oxide to form a larger circuit, such as a DRAM array. The trench top oxide is formed by utilizing different growth rates between polysilicon and single crystal silicon. |
US08835249B2 |
Retrograde substrate for deep trench capacitors
A method for forming a semiconductor device includes forming a deep trench in a substrate having a first doped portion to a first depth and a second doped portion below the first depth, the deep trench extending below the first depth. A region around the deep trench is doped to form a buried plate where the buried plate includes a dopant type forming an electrically conductive connection with the second doped portion of the substrate and being electrically insulated from the first doped portion. A deep trench capacitor is formed in the deep trench using the buried plate as one electrode of the capacitor. An access transistor is formed to charge or discharge the deep trench capacitor. A well is formed in the first doped portion. |
US08835248B2 |
Method for forming metal wire
Techniques for fabricating metal lines in semiconductor systems are disclosed. The metal may be tungsten. A hybrid Chemical Vapor Deposition (CVD)/Physical Vapor Deposition (PVD) process may be used. A layer of tungsten may be formed using CVD. This CVD layer may be formed over a barrier layer, such as, but not limited to, TiN or WN. This CVD layer may completely fill some feature such as a trench or via. Then, a layer of tungsten may be formed over the CVD layer using PVD. The layers of tungsten may then be etched to form a wire or line. Techniques for forming metal wires using a hybrid CVD/PVD process may provide for low resistivity with a barrier metal, low surface roughness, and good gap filling. |
US08835247B2 |
Sensor array and a method of manufacturing the same
A sensor array for detecting particles, the sensor array comprising a substrate having a plurality of holes, a plurality of electronic sensor chips each having a sensor active region being sensitive to the presence of particles to be detected, and an electric contacting structure adapted for electrically contacting the plurality of electronic sensor chips, wherein the plurality of electronic sensor chips and/or the electric contacting structure are connected to the substrate in such a manner that the plurality of holes in combination with the plurality of electronic sensor chips and/or the electric contacting structure form a plurality of wells with integrated particle sensors. |
US08835245B2 |
Semiconductor device comprising self-aligned contact elements
When forming sophisticated semiconductor devices, a replacement gate approach may be applied in combination with a self-aligned contact regime by forming the self-aligned contacts prior to replacing the placeholder material of the gate electrode structures. |
US08835240B2 |
Method for fabricating semiconductor device
A method for fabricating a semiconductor device is provided, wherein the method comprises steps as follows: A first conductive-type metal-oxide-semiconductor transistor and a second conductive-type metal-oxide-semiconductor transistor are firstly formed on a substrate. Subsequently, a first stress-inducing dielectric layer and a first capping layer are formed in sequence on the first conductive-type metal-oxide-semiconductor transistor; and then a second stress-inducing dielectric layer and a second capping layer are formed in sequence on the second conductive-type metal-oxide-semiconductor transistor. Next, the fist capping layer is removed. |
US08835239B1 |
Mixed mode multiple switch integration of multiple compound semiconductor FET devices
Various aspects of the technology include a quad semiconductor power and/or switching FET comprising a pair of control/sync FET devices. Current may be distributed in parallel along source and drain fingers. Gate fingers and pads may be arranged in a serpentine configuration for applying gate signals to both ends of gate fingers. A single continuous ohmic metal finger includes both source and drain regions and functions as a source-drain node. A set of electrodes for distributing the current may be arrayed along the width of the source and/or drain fingers and oriented to cross the fingers along the length of the source and drain fingers. Current may be conducted from the electrodes to the source and drain fingers through vias disposed along the surface of the fingers. Heat developed in the source, drain, and gate fingers may be conducted through the vias to the electrodes and out of the device. |
US08835233B2 |
FinFET structure with multiple workfunctions and method for fabricating the same
A method for fabricating a multiple-workfunction FinFET structure includes depositing a first workfunction material in a layer in a plurality of trenches of the FinFET structure and etching the first workfunction material layer so as to completely remove the first workfunction material layer from all but a first trench of the plurality of trenches. Further, the method includes depositing a second workfunction material in a layer in the plurality of trenches and etching the second workfunction material layer so as to completely remove the second workfunction material layer from all but a second trench of the plurality of trenches. Still further, the method includes depositing a third workfunction material in a layer in the plurality of trenches. |
US08835230B2 |
Fully molded fan-out
A method for manufacturing a device package may include constructing a spacer element coupled with a surface of a semiconductor die unit, where the spacer element is configured to create a gap between the semiconductor die unit and a surface of a carrier, and encapsulating the semiconductor die unit within a mold compound, where the encapsulating includes introducing the mold compound into the gap. |
US08835225B2 |
Method for fabricating quad flat non-leaded semiconductor package
A Quad Flat No-Lead (QFN) semiconductor package includes a die pad; I/O connections disposed at the periphery of the die pad; a chip mounted on the die pad; bonding wires; an encapsulant for encapsulating the die pad, the I/O connections, the chip and the bonding wires while exposing the bottom surfaces of the die pad and the I/O connections; a surface layer formed on the bottoms surfaces of the die pad and the I/O connections; a dielectric layer formed on the bottom surfaces of the encapsulant and the surface layer and having openings for exposing the surface layer. The surface layer has good bonding with the dielectric layer that helps to prevent solder material in a reflow process from permeating into the die pad and prevent solder extrusion on the interface of the I/O connections and the dielectric layer, thereby increasing product yield. |
US08835220B2 |
Backside mold process for ultra thin substrate and package on package assembly
In some embodiments, selective electroless plating for electronic substrates is presented. In this regard, a method is introduced including receiving a coreless substrate strip, forming a stiffening mold on a backside of the coreless substrate strip adjacent to sites where solder balls are to be attached, and attaching solder balls to the backside of the coreless substrate strip amongst the stiffening mold. Other embodiments are also disclosed and claimed. |
US08835219B2 |
Device contact, electric device package and method of manufacturing an electric device package
An electric device and a method of making an electric device are disclosed. In one embodiment the electric device comprises a component comprising a component contact area and a carrier comprising a carrier contact area. The electric device further comprises a first conductive connection layer connecting the component contact area with the carrier contact area, wherein the first conductive connection layer overlies a first region of the component contact area and a second connection layer connecting the component contact area with the carrier contact area, wherein the second connection layer overlies a second region of the component contact area, and wherein the second connection layer comprises a polymer layer. |
US08835217B2 |
Device packaging with substrates having embedded lines and metal defined pads
Package substrates enabling reduced bump pitches and package assemblies thereof. Surface-level metal features are embedded in a surface-level dielectric layer with surface finish protruding from a top surface of the surface-level dielectric for assembly, without solder resist, to an IC chip having soldered connection points. Package substrates are fabricated to enable multiple levels of trace routing with each trace routing level capable of reduced minimum trace width and spacing. |
US08835213B2 |
Semiconductor device and manufacturing method thereof
A semiconductor device includes a substrate having an active region, a gate structure on the active region, and spacers formed on opposite sides of the gate structure. The gate structure includes a gate dielectric layer on the active region, a metal gate on the gate dielectric layer, and sidewalls on both side surfaces of the gate structure. Each of the sidewalls is interposed between the metal gate and one of the spacers. The sidewalls include a self-assembly material. The gate dielectric layer includes a high-K material. The spacers include silicon nitride. The gate structure also includes a buffer layer interposed between the metal gate and the gate dielectric layer. |
US08835211B1 |
Image sensor pixel cell with global shutter having narrow spacing between gates
A pixel cell includes a photodiode, a storage transistor, a transfer transistor and an output transistor disposed in a semiconductor substrate. The transfer transistor selectively transfers image charge accumulated in the photodiode from the photodiode to the storage transistor. The output transistor selectively transfers the image charge from the storage transistor to a readout node. A first isolation fence is disposed over the semiconductor substrate separating a transfer gate of the transfer transistor from a storage gate of the storage transistor. A second isolation fence is disposed over the semiconductor substrate separating the storage gate from an output gate of the output transistor. Thicknesses of the first and second isolation fences are substantially equal to spacing distances between the transfer gate and the storage gate, and between the storage gate and the output gate, respectively. |
US08835209B2 |
Complementary transistors comprising high-k metal gate electrode structures and epitaxially formed semiconductor materials in the drain and source areas
When forming sophisticated semiconductor devices including complementary transistors having a reduced gate length, the individual transistor characteristics may be adjusted on the basis of individually provided semiconductor alloys, such as a silicon/germanium alloy for P-channel transistors and a silicon/phosphorous semiconductor alloy for N-channel transistors. To this end, a superior hard mask patterning regime may be applied in order to provide compatibility with sophisticated replacement gate approaches, while avoiding undue process non-uniformities, in particular with respect to the removal of a dielectric cap layer. |
US08835206B2 |
Pixel structure, array substrate and method of fabricating the same
The present invention provides a pixel structure including a substrate, a first metal pattern layer, an insulating layer, a second metal pattern layer, a passivation layer, and a conductive protection layer. The substrate has at least one pixel region. The first patterned metal layer is disposed on the substrate, and has a top surface. The insulating layer is disposed on the first patterned metal layer and the substrate, and is in contact with the top surface of the first patterned metal layer. The second patterned metal layer is disposed on the insulating layer in the pixel region, and includes a source and a drain. The passivation layer is disposed on the second patterned metal layer and the insulating layer. A top surface of the source is in contact with the passivation layer, and the conductive protection layer is disposed on the drain. |
US08835205B2 |
Organic light-emitting display device and method of manufacturing the same
An organic light-emitting display device including a pixel-defining layer and a spacer, and a method of manufacturing the same. The method includes: forming an organic insulating material layer on a pixel electrode; placing a half-tone mask including a light-blocking portion, a partial-transmitting portion, and a light-transmitting portion on the organic insulating material layer and performing an exposure process so that the pixel electrode corresponds to the light-transmitting portion, a pixel-defining layer at least partially surrounding the pixel electrode corresponds to the partial-transmitting portion, and a spacer adjacent to the pixel-defining layer corresponds to the light-blocking portion; and etching a portion of the organic insulating material layer that is exposed so that a pixel area on the pixel electrode is at least partially surrounded by the pixel-defining layer and the spacer. A taper angle of the pixel-defining layer is between about 15 degrees to about 30 degrees. |
US08835203B2 |
Organic light emitting diode display and method for manufacturing the same
An organic light emitting diode (OLED) display and a method for manufacturing the same are provided. The OLED display includes a substrate, an active layer and a capacitor lower electrode positioned on the substrate, a gate insulating layer positioned on the active layer and the capacitor lower electrode, a gate electrode positioned on the gate insulating layer at a location corresponding to the active layer, a capacitor upper electrode positioned on the gate insulating layer at a location corresponding to the capacitor lower electrode, a first electrode positioned to be separated from the gate electrode and the capacitor upper electrode, an interlayer insulating layer positioned on the gate electrode, the capacitor upper electrode, and the first electrode, a source electrode and a drain electrode positioned on the interlayer insulating layer, and a bank layer positioned on the source and drain electrodes. |
US08835201B2 |
Method of manufacturing organic light emitting diode display
A method of manufacturing an organic light emitting diode (OLED) display, the method including forming a frit adhesive layer on an outer edge portion of a display substrate; forming a mold-releasing layer on a support substrate; attaching the frit adhesive layer of the display substrate on the mold-releasing layer of the support substrate; forming an organic light emitting member on the display substrate; and separating a display portion of the display substrate from the mold-releasing layer by cutting an outer edge portion of the display substrate. |
US08835196B2 |
Method for producing transparent conductive film and method for manufacturing solar cell
The purpose of the present invention is to favorably modify a transparent conductive film and provide a transparent conductive film with few grain boundaries. In the manufacturing method for the transparent conductive film of the present invention, a transparent conductive film 3 is formed on a substrate 2 inside a vacuum chamber 10, after which radiant heat is imparted from a surface modifying device 4 arranged near the substrate 2 to modify the transparent conductive film 3, and the substrate 2 having the modified transparent conductive film 3 is removed from the vacuum chamber 10. |
US08835195B2 |
Corrugated membrane MEMS actuator fabrication method
A MEMS device fabrication method includes providing a substrate and a chamber wall material layer on a first surface of the substrate, the chamber wall material layer including a chamber cavity having a sacrificial material located therein. A mask material is deposited on the chamber wall material layer and the sacrificial material and patterned to form a mask pattern including a plurality of discrete portions. The mask material and some of the sacrificial material are removed to transfer the mask pattern including the plurality of discrete portions to the sacrificial material. A membrane material layer is deposited on the chamber wall material layer and the sacrificial material that includes the transferred mask pattern including the plurality of discrete portions. Some of the substrate and the sacrificial material are removed to release the membrane material layer using at least one process initiated from a second surface of the substrate. |
US08835193B2 |
Non-uniform alignment of wafer bumps with substrate solders
An integrated circuit structure includes a work piece selected from the group consisting of a semiconductor chip and a package substrate. The work piece includes a plurality of under bump metallurgies (UBMs) distributed on a major surface of the work piece; and a plurality of metal bumps, with each of the plurality of metal bumps directly over, and electrically connected to, one of the plurality of UBMs. The plurality of UBMs and the plurality of metal bumps are allocated with an overlay offset, with at least some of the plurality of UBMs being misaligned with the respective overlying ones of the plurality of metal bumps. |
US08835192B2 |
Method of manufacturing light-emitting device
A method of manufacturing a light-emitting device includes forming wave length conversion portion on a light-emitting element. The light emitting device includes a light-emitting element which emits light of a predetermined wavelength and a wavelength conversion portion which includes a fluorescent substance which is excited by the light emitted from the light-emitting element so as to emit fluorescence of a wavelength different from the predetermined wavelength, which wavelength conversion portion is formed by including the fluorescent substance, a layered silicate mineral, and an organometallic compound. The forming the wavelength conversion portion includes forming a fluorescent substance layer on the light-emitting element using a fluorescent substance dispersion liquid including a fluorescent substance and a layered silicate mineral, applying a precursor solution including an organometallic compound on the light-emitting element, and heating the precursor solution applied on the fluorescent substance layer. |
US08835187B2 |
Screening assays and methods
Screening assays and methods of performing such assays are provided. In certain examples, the assays and methods may be designed to determine whether or not two or more species can associate with each other. In some examples, the assays and methods may be used to determine if a known antigen binds to an unknown monoclonal antibody. |
US08835183B2 |
Determination of sFlt-1:angiogenic factor complex
Methods for determining the presence or amount of a complex comprising a first and second molecular entity are provided, preferably an sFlt-1:PlGF complex. A determination of the presence or amount of the complex can be used in methods for predicting, detecting, monitoring a disease, or guiding therapy in respect to a disease such as vascular, vascular-related disease, cardiac, cardiac-related disease, cancer, cancer-related disease, preeclampsia, and preeclampsia-related disease. Determining sFlt-1:angiogenic factor complex is particularly useful for predicting and detecting preeclampsia in early stages of gestation and in stages of the disease where clinical evaluation may be uninformative. |
US08835182B2 |
Immunochromatographic device
The present invention provides an immunochromatographic device, which contains the following (a) and (b): (a) a first device part holding a first insoluble carrier used for developing a complex formed with an analyte and a labeling substance comprising a metal labeled with a first binding substance that can bind to the analyte and capturing the analyte and the labeling substance at a reaction portion containing a second binding substance that can bind to the analyte, and (b) a second device part holding a second insoluble carrier used for developing a liquid and a third insoluble carrier used for absorbing a liquid, in such a way that the first insoluble carrier does not come into contact with the second insoluble carrier and the third insoluble carrier. |
US08835180B2 |
Organic chemical sensor comprising microporous polymer, and method of use
Applicant discloses a sensing element for sensing an organic chemical analyte, comprising a first electrode and a second electrode, and a microporous, hydrophobic, analyte-responsive dielectric material disposed at least in proximity to the first and second electrodes. The analyte-responsive dielectric material may be a polymer of intrinsic microporosity. An electrical property of the sensing element, such as capacitance, can be monitored in order to sense an organic chemical analyte. |
US08835179B2 |
Real-time monitor solid phase peptide synthesis by mass spectrometry
Provided are systems, apparatus, materials and methods for directly monitoring products and intermediates of solid phase chemical synthesis such as solid phase peptide synthesis. |
US08835178B2 |
Bio-threat microparticle simulants
A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant. |
US08835177B2 |
Method for transfer of gene into fat cell or progenitor fat cell
A method for transferring a gene into a fat cell or progenitor fat cell comprising the step of infecting the fat cell or progenitor cell with a retrovirus vector having a foreign gene in the presence of a substance having both of a retrovirus-binding site and a target cell-binding site in the molecule or a mixture of a substance having a retrovirus-binding site and a substance having a target cell-binding site, the target cell-binding site having a region that can bind to VLA-5 and/or a region that can bind to VLA-4. |
US08835173B2 |
Substrate for cell culture
An object of the present invention is to provide a means capable of transferring a cell sheet, a cell pattern or the like to a desired material at a high speed. The present invention provides a substrate for cell culture comprising a base and a cell adhesive region formed on a surface of the base, wherein the cell adhesive region is formed of a film that is rendered cell adhesive by applying an oxidation treatment and/or a decomposition treatment to a cell-adhesion inhibitory hydrophilic film containing an organic compound having a carbon-oxygen bond. |
US08835171B2 |
Materials and methods related to sodium/potassium adenosine triphosphase and cholesterol
This invention is based in part on the elucidation of new structural conformations and functions of the sodium/potassium adenosine triphosphate synthase (Na/K ATPase), and especially elucidation of new binding sites and interactions. The present invention provides practical applications of several surprising structural and functional relationships between Na/K ATPase and compounds which interact with Na/K ATPase. Disclosure of these structures and relationships provides insight and practical solutions to chemically affecting not only the Na/K ATPase interactions, but also regulators known to be upstream and downstream. |
US08835170B2 |
Methods and compositions useful for diabetic wound healing
The invention provides compositions and methods useful for treating wounds and enhancing wound healing, particularly for diabetic wound healing. One embodiment provides a method of treating a wound comprising administering to a subject in need thereof a therapeutically effective amount of adipose tissue derived stem cells to treat said wound, wherein the cells are cultured in the absence of serum prior to the administration to said subject. Another embodiment provides a method of treating a wound comprising administering to a subject in need thereof a therapeutically effective amount of adipose tissue derived stem cells to treat said wound, wherein the cells are cultured to induce the formation of at least one self-organizing mesenchymal blastema (SOMB) prior to the administration to said subject, wherein said SOMB is formed by culturing adipose tissue derived stem cells in hanging droplets. |
US08835169B2 |
Compositions, methods and systems for preparation of a stem cell-enriched cell population
In accordance with some preferred embodiments, without limitation, the present invention comprises compositions, methods and systems for preparation of stem-cell enriched cell populations from sources of biological materials by sorting cell types in relation to size. |
US08835167B2 |
Humanized anti-tag 72 CC49 for diagnosis and therapy of human tumors
The present disclosure provides humanized CC49 monoclonal antibodies that bind TAG-72 with high binding affinity and that are minimally immunogenic. In one embodiment, a humanized CC49 antibody includes a non-conservative amino acid substitution in a light chain complementarity determining region 3 of the CC49 antibody. In a further embodiment, the humanized CC49 antibody includes a non-conservative substitution of a first residue in a light chain complementarity determining region 3 and a substitution of a second residue in a complementarity determining region of the humanized CC49 antibody. In several of the embodiments, methods are disclosed for the use of a humanized CC49 antibody. |
US08835165B2 |
Spontaneously immortalized multiponent mesenchymal cell-line derived from mouse subcutaneous adipose tissue: tool for regenerative medicine and bioactive molecules and/or drugs screening
Disclosed is a spontaneously immortalized multipotent mesenchymal cell-line, wherein the cell-line has been isolated from mouse subcutaneous adipose tissue, and wherein the cell-line presents fibroblastoid morphology and expresses Sca-1, c-Kit/CD117, nestin, nucleostemin, CD44 and CD106 markers. |
US08835163B2 |
Embryonic-like stem cells derived from adult human peripheral blood and methods of use
The present invention is related generally to embryonic-like stem cells isolated from adult human peripheral blood, designated herein as peripheral blood-stem cells (PB-SC), which display the characteristics of embryonic stem cells and hematopoietic cells. These cells have the capability of proliferation and are able to differentiate to other types of cells. These cells are, therefore, suitable for use in stem cell-based therapies, particularly autologous stem cell therapies, for the treatment of various diseases such as neurodegenerative diseases, autoimmune diseases, diabetes, spinal cord damage, multiple sclerosis, cardiovascular disease, stroke and birth defects. |
US08835162B2 |
Methods of incorporating amino acid analogs into proteins
The invention provides a method of incorporating nonstandard amino acids into a protein by utilizing a modified aminoacyl-tRNA synthetase to charge the nonstandard amino acid to a modified tRNA, which forms strict Watson-Crick base-pairing with a codon that normally forms wobble base-pairing with natural tRNAs. |
US08835160B2 |
Synthetic biology vectors
The present invention provides compositions, methods and kits for generating synthetic genetic circuits in biological systems. In particular, the present invention provides vectors, reagents and methods of their use in constructing synthetic genetic circuits in bacteria. |
US08835157B2 |
Supported reagents, methods, and devices
Methods of providing at least one reagent for use in a device for processing sample material, delivering at least one reagent to a device for processing sample material, and adding at least one reagent to at least one of the steps in a process for detecting or assaying a nucleic acid; a support film coated with a dry reagent layer; and a device for processing sample material having a support film coated with a dry reagent layer contained within at least one chamber of the device are disclosed. |
US08835156B2 |
Pretreatment of non-wood lignocelluiosic material
The present disclosure provides a method for pre-treating non-wood lignocellulosic material containing less than 5 % (w/w) starch or sugar in a process for production of ethanol from lignocellulose, comprising the steps of: adding organic acid or organic acid-producing bacteria to the lignocellulosic material; storing the lignocellulosic material in the presence of the organic acid for a period of at least two weeks in an atmosphere of less than 5% oxygen to obtain organic acid-impregnated material; and heating the organic acid-impregnated material at a temperature of at least 160° C. to obtain pre-treated lignocellulosic material, wherein no, or substantially no, inorganic acid or base, including SO2, is added in the method. |
US08835155B2 |
Biosolids digester and process for biosolids production
The invention relates to methods and apparatuses for producing Class A biosolids. In yet another embodiment, the invention relates to a method comprising digesting waste material by anaerobic digestion, and yielding Class A biosolids. In still yet another embodiment, the invention relates to a system for anaerobic digestion of waste material to produce Class A biosolids. In still yet another embodiment, the invention relates to a system for anaerobic digestion of waste material comprising a mixing chamber, a digester, a heating pit, and an effluent pit. |
US08835154B2 |
Microorganism having enhanced L-amino acids productivity and process for producing L-amino acids using the same
A microorganism of the genus Escherichia having enhanced L-amino acid productivity, wherein the microorganism is transformed to have an enhanced NAD kinase activity and an inactivated activity of an enzyme having an amino acid sequence of SEQ ID NO: 2 encoded by tehB gene and a method for producing L-amino acids using the microorganism of the genus Escherichia. |
US08835150B1 |
High-activity mutants of butyrylcholinesterase for cocaine hydrolysis and method of generating the same
A novel computational method and generation of mutant butyrylcholinesterase for cocaine hydrolysis is provided. The method includes molecular modeling a possible BChE mutant and conducting molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical calculations thereby providing a screening method of possible BChE mutants by predicting which mutant will lead to a more stable transition state for a rate determining step. Site-directed mutagenesis, protein expression, and protein activity is conducted for mutants determined computationally as being good candidates for possible BChE mutants, i.e., ones predicted to have higher catalytic efficiency as compared with wild-type BChE. In addition, mutants A199S/A328W/Y332G, A199S/F227A/A328W/Y332G, A199S/S287G/A328W/Y332G, A199S/F227A/S287G/A328W/Y332G, and A199S/F227A/S287G/A328W/E441D all have enhanced catalytic efficiency for (−)-cocaine compared with wild-type BChE. |
US08835145B2 |
Thrombolytic enzyme and a process for its preparation
The invention relates to a thrombolytic enzyme referred to as Thrombinase having a molecular weight of 31,000 to 32,000. Such a thrombolytic enzyme can be used for dissolving blood clots. The process comprises culturing a filtrate of Bacillus sphaericus sero type H5a 5b, removing the cell, subjecting the cell supernatant to filtration, salting out the retentate, subjecting the precipitate to dialysis, reprecipitating the precipitate and then reconstituting in buffer and finally decolorizing, purifying and dialyzing. |
US08835144B2 |
Dual-functional nonfouling surfaces comprising target binding partner covalently coupled to polymer attached to substrate
Dual-functional nonfouling surfaces and materials, methods for making dual-functional nonfouling surfaces and materials, and devices that include dual-functional nonfouling surfaces and materials. The dual-functional surfaces are nonfouling surfaces that resist non-specific protein adsorption and cell adhesion. The dual-functional surfaces and materials include covalently coupled biomolecules (e.g., target binding partners) that impart specific biological activity thereto. The surfaces and materials are useful in medical diagnostics, biomaterials and bioprocessing, tissue engineering, and drug delivery. |
US08835141B2 |
Methods for integrated conversion of lignocellulosic material to sugars or biofuels and nano-cellulose
The present invention relates to systems, compositions and methods for the conversion of lignocellulosic material to recalcitrant cellulose and hydrolyzed sugars and products produced therefrom (e.g., biofuel, nano-fibrillated cellulose). In particular, the invention provides novel fractionation processes configured to integrate production of hydrolyzed sugars (e.g., for biofuel production) and recalcitrant cellulose (e.g., for nano-fibrillated cellulose production) from lignocellulosic material and methods of using the same (e.g., in the production of biofuel and nano-fibrillated cellulose). The invention is also directed to nanocellulose with morphologies of having a less entangled and slightly branched fibril network, and having the same thermal stability as of that of the initial lignocellulose feedstock. |
US08835139B2 |
Methods of producing ethanol using hydrolytic enzyme mixtures for saccharification of lignocellulosic polysaccharides
The present invention relates to cell wall degradative systems, in particular to systems containing enzymes that bind to and/or depolymerize cellulose. These systems have a number of applications. Some embodiments relate to a method of producing ethanol using the cell wall degradative systems of the present invention. |
US08835131B2 |
Sesquiterpene synthase gene and protein
The invention relates to sesquiterpene synthases and methods for their production and use. Particularly, the invention provides nucleic acids comprising the nucleotide sequence of citrus valencene synthase (CVS) which codes for at least one CVS. The invention further provides nucleic acids comprising the nucleotide sequence coding for amino acid residues forming the tier 1 and tier 2 domains of CVS. The invention also provides for methods of making and using the nucleic acids and amino acids of the current invention. |
US08835129B2 |
Dynamic light scattering for in vitro testing of bodily fluids
A method of diagnosing a pathological condition by detecting microparticles in a sample of bodily fluid using dynamic light scattering (DLS) is disclosed. The detection of microparticles in the bodily fluid by DLS may be used as an indicator of existing disease, to evaluate a risk of disease, as well, as to monitor the efficacy of a treatment for disease. |
US08835126B2 |
Tritiated planar carbon forms
Tritiated planar carbon forms and their production are provided. Methods are provided for the stoichiometrically controlled labeling of planar carbon forms capitalizing on normal flaws of carboxylic acids ubiquitously present in commercial preparations of these planar carbon forms. Alternative methods include generation of a metallated intermediate whereby a metal is substituted for hydrogen on the carbon backbone of a planar carbon form. The metalized intermediate is then reacted with a tritium donor to covalently label the planar carbon form. The tritiated planar carbon forms produced are useful, for example, for determination of a biological property or environmental fate of planar carbon forms. |
US08835125B2 |
Methods and compositions for selective labeling of different biotinylated targets within multicolor or multilabel assays
Disclosed are compositions and methods for the labeling of two or more targets with different labels. Specifically, disclosed are compositions for biotin and the protection of biotin within multilabel assays which employ the biotin-biotin binding protein binding relationship for each distinct label in relation to targets such as nucleic acids, polypeptides, antibodies or cells. These multilabel assays are enabled through the use of biotin with desthiobiotin, orthogonal protecting schemes for biotin, or a combination of the approaches. |
US08835124B2 |
Method for treating cancer with agents that bind phosphorylated CDC27
The presence of phosphorylated Cdc27 in cancer cells is utilized to identify patients likely to benefit from treatment with a chemotherapeutic agent that binds to, or binds to and crosslinks, phosphorylated Cdc27, e.g., curcumin, or to determine whether patients undergoing such treatment will continue to respond effectively. Candidate compounds are screened for anticancer effect by testing the ability to bind to or crosslink phosphorylated Cdc27. |
US08835120B2 |
Assay for cardiac troponin-T (cTnT)
The present disclosure describes immunoassays for detecting cardiac troponin-T (cTnT) in a test sample, and in particular immunoassays and kits for detecting cTnT in a test sample suspected of containing substances that may interfere with the determination of cTnT, such as heterophilic endogenous antibodies and autoantibodies to cTnT. The methods use more than one capture phase antibody and more than one detection antibody to improve specificity, and provide for the use of humanized immunoreagents to overcome heterophilic antibody interferences. |
US08835118B2 |
Systems and methods for fluorescence detection with a movable detection module
A fluorescence detection apparatus for analyzing samples located in a plurality of wells in a thermal cycler and methods of use are provided. In one embodiment, the apparatus includes a support structure attachable to the thermal cycler and a detection module movably mountable on the support structure. The detection module includes one or more channels, each having an excitation light generator and an emission light detector both disposed within the detection module. When the support structure is attached to the thermal cycler and the detection module is mounted on the support structure, the detection module is movable so as to be positioned in optical communication with different ones of the plurality of wells. The detection module is removable from the support structure to allow easy replacement. |
US08835115B2 |
ABCB1 genotyping to predict microtubule-stabilizing-agent-induced toxicity
The present disclosure provides methods of identifying subjects having an increased likelihood of developing one or more adverse side effects resulting from administration of a microtubule-stabilizing agent. In particular examples, the method includes determining whether the subject has an ABCB1 predictive polymorphism for microtubule-stabilizing agent-induced toxicity, wherein the presence of such a polymorphism indicates that the subject has an increased risk of developing microtubule-stabilizing agent induced adverse effects. Examples of ABCB1 predictive polymorphisms include 2677G>T/A and 3435C>T. Also provided are methods of modifying microtubule-stabilizing agent therapy in a subject identified as having one or more ABCB1 predictive polymorphisms. Kits and isolated nucleic acid molecules that can be used in the disclosed methods are also provided. |
US08835112B2 |
Cell transdifferentiation into brown adipocytes
A method for converting animal cells into brown adipose tissue cells is provided that includes transforming the animal cells using an expression vector. The expression vector includes a nucleotide sequence encoding HB-EGF operatively linked to a promoter and a nucleotide sequence encoding ADAM 12 operatively linked to a promoter. Converting animal cells to brown adipose tissue cells can be used to treat obesity or to treat cancer by converting target cells to brown adipose tissue cells. |
US08835109B2 |
Method for detection and/or analysis of yeast and mold in filterable liquids
This invention is a process for preparing a food or beverage sample containing yeast or mold cells for analytical testing. The food sample is prepared into the form of a filterable liquid, and then filtered using a glass microfiber filter. The filter containing the fungal cell retentate is then placed into a disruption vessel and bead beaten until the glass microfiber filter is completely disrupted into glass fibers in suspension. An aliquot can then be tested directly using melting curve analysis of PCR amplification product derived from the nucleic acids of the sample to detect the presence of the fungal cells from the sample. |
US08835106B2 |
Method for typing and detecting HBV
The present invention relates to a method for detection and/or genetic analysis of HBV in a biological sample, comprising hybridizing the polynucleic acids of the sample with a combination of at least two nucleotide probes, with said combination hybridizing specifically to a mutant target sequence chosen from the HBV RT pol gene region and/or to a mutant target sequence chosen from the HBV preCore region and/or to a mutant target sequence chosen from the HBsAg region of HBV and/or to a HBV genotype-specific target sequence, with said target sequences being chosen from FIG. 1, and with said probes being applied to known locations on a solid support and with said probes being capable of hybridizing to the polynucleic acids of the sample under the same hybridization and wash conditions, or with said probes hybridizing specifically with a sequence complementary to any of said target sequences, or a sequence where T of said target sequence is replaced by U; and detecting the hybrids formed; and inferring the HBV genotype and/or mutants present in said sample from the differential hybridization signal(s) obtained. The invention further relates to sets of nucleotide probes and possibly primers useful in said methods as well as to their use in a method for typing and/or detecting HBV and to assay kits using the same. |
US08835104B2 |
Medium and methods for the storage of platelets
Synthetic storage media are disclosed for use in the processing and the storing of platelets. The storage media includes a platelet storage solution and less than 20 percent plasma to preserve platelet function after at least 7 days of storage. |
US08835103B2 |
Lithography process and structures
A photo resist layer includes a first region and a second region. A treatment layer is applied to the photo resist layer. |
US08835102B2 |
Patterning process and composition for forming silicon-containing film usable therefor
The invention provides a patterning process for forming a negative pattern by lithography, comprising at least the steps of: using a composition for forming silicon-containing film, containing specific silicon-containing compound (A) and an organic solvent (B), to form a silicon-containing film; using a silicon-free resist composition to form a photoresist film on the silicon-containing film; heat-treating the photoresist film, and subsequently exposing the photoresist film to a high energy beam; and using a developer comprising an organic solvent to dissolve an unexposed area of the photoresist film, thereby obtaining a negative pattern. There can be a patterning process, which is optimum as a patterning process of a negative resist to be formed by adopting organic solvent-based development, and a composition for forming silicon-containing film to be used in the process. |
US08835100B2 |
Double patterning by PTD and NTD process
A method of manufacturing using a double patterning method is provided. The double patterning method uses a first developer and a second developer that are different. For example, the first developer may be a positive tone developer for a positive photoresist while the second developer may be a negative tone developer for the positive photoresist. Photoresists having a photoactive compound are also provided that may be useful in double patterning methods. |
US08835099B2 |
Lithographic printing plate precursor
The present invention provides a lithographic printing plate precursor which exhibits satisfactory ink cleanup and restart toning characteristics during printing.Disclosed is a lithographic printing plate precursor comprising a substrate having thereon in order an interlayer containing a copolymer comprising K units and L units, and an image-forming layer, wherein said K unit is derived from a monomer of the formula I: wherein R1 represents a hydrogen atom, a C1-22 linear, branched or cyclic alkyl group, a C1-22 linear, branched or cyclic, substituted alkyl group, a C6-24 aryl group or substituted aryl group, wherein the substituent is selected from a C1-4alkyl group, an aryl group, a halogen atom, a keto group, an ester group, an alkoxy group, or a cyano group; Y represent a single bond, or a C1-22 linear, branched or cyclic alkylene; or CH2═CHPO(OH)2; and said L unit is derived from a monomer of the formula II: CH2═CRCONH2 (II) wherein R is H or CH3, and said K units are present from more than 3% and less than 40% and said L units are present from more than 60% and less than 97% in the copolymer. |
US08835095B2 |
Resist composition and method for producing resist pattern
A resist composition contains (A1) a resin having a structural unit represented by the formula (I), (A2) a resin being insoluble or poorly soluble in alkali aqueous solution, but becoming soluble in an alkali aqueous solution by the action of an acid, (B) an acid generator, and (D) at least one compound selected from the group consisting of a compound represented by the formula (II1) and a compound represented by the formula (II2), wherein R1, A1, R2, R6, X1, X2, R3, R4 and R5 are defined in the specification. |
US08835091B2 |
Method for manufacturing micro-structure and optically patternable sacrificial film-forming composition
A micro-structure is manufactured by patterning a sacrificial film, forming an inorganic material film on the pattern, and etching away the sacrificial film pattern through an aperture to define a space having the contour of the pattern. The patterning stage includes the steps of (A) coating a substrate with a composition comprising a cresol novolac resin, a crosslinker, and a photoacid generator, (B) heating to form a sacrificial film, (C) patternwise exposure, (D) development to form a sacrificial film pattern, and (E) forming crosslinks within the cresol novolac resin. |
US08835087B2 |
Polyester for toner
A polyester for a toner obtained by polycondensing an aliphatic hydroxycarboxylic acid compound having a total number of hydroxy group or groups and carboxyl group or groups of 4 or more; an alcohol component containing an aliphatic diol having a hydroxyl group bound to a secondary carbon atom in an amount of 50% by mol or more; and a carboxylic acid component, provided that the aliphatic hydroxycarboxylic compound is not included, wherein the aliphatic hydroxycarboxylic acid compound and the aliphatic diol having a hydroxyl group bound to a secondary carbon atom are in a molar ratio, i.e. the aliphatic hydroxycarboxylic acid compound/the aliphatic diol having a hydroxyl group bound to a secondary carbon atom, of from 0.05 to 0.8; a resin binder for a toner, containing the polyester; and a toner for electrophotography, containing the resin binder. The polyester for a toner of the present invention is suitably used for a resin binder of a toner usable in development or the like of latent images formed in, for example, electrophotography, electrostatic recording method, electrostatic printing method or the like. |
US08835078B2 |
Proton selective membrane for solid polymer fuel cells
A proton selective membrane for solid polymer electrolyte fuel cells that is produced by providing one or more template molecules, providing one or more functional monomers to interact with the template molecules, providing a cross-linking agent(s) to covalently bond polymer chains created with the template molecules and functional monomers by polymerization, providing an initiating agent to start a chemical reaction which results in an imprinted polymer, and removing the template molecules from the imprinted polymer to create a proton selective membrane. |
US08835077B2 |
Electrode material and solid oxide fuel cell containing the electrode material
The electrode material contains a complex oxide and at least one of ZrO2 and a compound comprising ZrO2. The complex oxide has a perovskite structure represented by a general formula ABO3. ZrO2 is contained in an amount of 0.3×10−2 wt % to 1 wt % relative to the entire electrode material. |
US08835075B2 |
Fuel cells with hydrophobic diffusion medium
Diffusion media for use in PEM fuel cells are provided with silicone coatings. The media are made of a porous electroconductive substrate, a first hydrophobic fluorocarbon polymer coating adhered to the substrate, and a second coating comprising a hydrophobic silicone polymer adhered to the substrate. The substrate is preferably a carbon fiber paper, the hydrophobic fluorocarbon polymer is PTFE or similar polymer, and the silicone is moisture curable. |
US08835072B2 |
Solid oxide fuel cell stacks and fuel cell module having the same
A solid oxide fuel cell stack is disclosed. The solid oxide fuel cell stack may include a cell array, a pair of planar current collecting members, first and second terminal portions, and a pair of electric insulating members. A plurality of interconnector-type unit cells may be electrically connected in parallel to form a bundle, and a plurality of bundles may be electrically connected in series. The pair of the planar current collecting members may be electrically connected electrically to the plurality of bundles and configured to collect current. The first and second terminal portions contact the current collecting members. The pair of insulating members has first through-holes through which the first and second terminal portions pass, and to the insulating members are formed outside the pair of the current collecting members. |
US08835069B2 |
Fuel cell system having controllable water feed flow rate
A fuel cell system includes a fuel cell module having a solid-oxide fuel cell and a reformer adapted to perform steam reforming of a fuel gas supplied to the solid-oxide fuel cell, a water supplying unit and a control unit. The controller unit is adapted to control, at least during start up of the fuel cell system switching of a pulse pump from a stop state to a pumping state to start pumping of water, and to change the pulse pump to a normal control state after performing a start-operation-control which sets a feed flow rate of the pulse pump higher for a predetermined time than a feed flow rate of the water during the normal control state. |
US08835064B2 |
Fuel battery
An electrode structure 15 is accommodated in a joint portion of frames 13 and 14. A first gas diffusion layer 19 and a first gas passage forming member 21 are laid on a first surface of the electrode structure 15, and a second gas diffusion layer 20 and a second gas passage forming member 22 are laid on a second surface of the electrode structure 15. A separator 23 is joined to surfaces of the frame 13 and the gas passage forming member 21, and a separator 24 is joined to surfaces of the frame 14 and the gas passage forming member 22. A porous layer 26 having continuous pores is located between the gas passage forming member 22 and the separator 24. A drainage promoting member 30 formed of a porous material having continuous pores is provided to communicate with a downstream end of a second gas passage T2 of the second gas passage forming member 22 and to communicate with a downstream end of the continuous pores of the porous layer 26. Generated water that has been drawn into the porous layer 26 from the second gas passage T2 by capillary action flows downstream by surface tension of water, and is then drawn into the drainage promoting member 30. The water drawn in by the drainage promoting member 30 is discharged into a discharging passage by fluid pressure of oxidation off-gas that flows from the second gas passage T2 into the continuous pores of the drainage promoting member 30. Accordingly, a fuel battery is provided in which generated water is prevented from remaining in the second gas passage T2 of the cathode side second gas passage forming member 22, and it is possible to prevent the power generation performance from being lowered by insufficient supply of oxidation gas to the electrode structure 15. |
US08835053B2 |
Negative active material containing an intermetallic compound of silicon and a first metal and a metal matrix containing copper and aluminum for rechargeable lithium battery and rechargeable lithium battery containing the negative active material
Negative active materials and rechargeable lithium batteries including the negative active materials are provided. The negative active material includes an intermetallic compound of Si and a metal, and a metal matrix including Cu and Al. The negative active material may provide a rechargeable lithium battery having high capacity and excellent cycle-life and cell efficiency. |
US08835052B2 |
Si alloy negative electrode active material for electric device
A negative electrode active material for an electric device. The negative electrode active material including an alloy having a composition formula SixTiyZnz, where (1) x+y+z=100, (2) 38≦x<100, (3) 0 |
US08835046B2 |
Self assembled multi-layer nanocomposite of graphene and metal oxide materials
Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device. |
US08835043B2 |
Battery pack
A battery pack having a cover frame configured to be tightly coupled to the four side surfaces of a bare cell. The cover frame includes a rectangular cell receiving part framed by four frame parts, wherein each of the four frame parts include a support section for supporting the lower case of the bare cell, and three of the frame parts include ribs supporting the upper case of the bare cell, wherein a fourth one of the frame parts includes tab receiving grooves supporting the electrode tabs extending from the bare cell. The cover frame further includes a protection circuit module receiving part adjacent to, and separated from the cell receiving part by the fourth one of the frame parts. |
US08835040B2 |
Separator for cylindrical cells
Separator for cylindrical cell of the outwardly guided type, wherein a sheet material is wound around a mandrel, and starting from the winding step until the insertion of a separator into the cell, an outward support is used that renders the binding of neighboring turns of the separator winding unnecessary, and the separator sheet has an extended portion, with the extension being at least equal to the radius of the separator cylinder, and with this extended portion being wetted with distilled or de-ionized water until the material softens and the winding and the mandrel are rotated and the bottom part is folded back and heat fused to close the separator cylinder. |
US08835038B2 |
Battery cell cooler
A battery cell cooler containing a pair of complementary plates. The pair of complementary plates together forms a tubular flow passage and one or more tubular sections. The flow passage has an inlet end, an outlet end and dimples or ribs along the length of the flow passage. The one or more tubular sections have an inlet duct and an outlet duct, the inlet duct being coupled to an expanded receptacle at the inlet end and in fluid communication with the inlet end of the flow passage and the outlet duct being coupled to an expanded receptacle, at the outlet end and in fluid communication with the outlet end of the flow passage. Also, disclosed is a device containing a battery cell sandwiched between a pair of battery cell coolers, as described herein. Further disclosed is a method for forming the battery cell cooler, as described herein. |
US08835037B2 |
Battery cell carrier
The present disclosure is directed at a cell carrier, a stack that includes multiple cell carriers, and a method for assembling the stack. The cell carrier has a rigid backing and bus bar supports that are rigidly mounted to the rigid backing The bus bar supports have sockets positioned to receive fasteners for securing bus bars to the bus bar supports. A battery cell that has electrodes in the form of pliable tabs can be secured to the cell carrier by, for example, adhering the cell body to the rigid backing The cell tabs are secured between the bus bars and the bus bar supports when bus bars are fastened to the bus bar supports, and the rigidly mounted supports help prevent relative motion between the cell body and tabs. This helps prevent the cell tabs from ripping or tearing when the battery cell is subjected to vibrations during use. |
US08835029B2 |
Fuse for three dimensional solid-state battery
A solid-state battery structure having a plurality of battery cells formed in a substrate, method of manufacturing the same and design structure thereof are provided. The battery structure includes a patterned cathode electrode layer formed upon the substrate and structured to form a plurality of sub-arrays of the battery cells. The battery structure further includes a plurality of fuse wires structured to interconnect at least two adjacent sub-arrays. At least one of the plurality of fuse wires is structured to be blown to disconnect an interconnection having a defective sub-array. Advantageously, the plurality of fuse wires is an integral part of the battery structure. |
US08835026B2 |
Recovery and synthesis method for metaloxidic cathodic active material for lithium ion secondary battery
Disclosed are a recovery for a metaloxidic cathodic active material for a lithium ion secondary battery and a synthesis thereof by the recovery method, wherein the recovery method includes (a) dissolving a cathodic active material from a waste lithium ion secondary battery using sulfuric acid solution containing sulfurous acid gas to generate a solution containing metal ions, (b) injecting sodium hydroxide solution and ammonia solution in the solution containing the metal ions to fabricate an electrode active material precursor, and (c) filtrating the active material precursor, followed by drying and grinding, thus to fabricate a solid-state cathodic active material precursor, and the synthesis method is achieved by mixing the electrode active material precursor fabricated according to the recovery method with lithium carbonate or lithium hydroxide, followed by heat treatment, to generate a metaloxidic cathodic active material. |