Document | Document Title |
---|---|
US08823405B1 |
Integrated circuit with power gating
An integrated circuit has a first independent power domain having a first power domain bus electrically connected to first functional blocks and a first power pad electrically connected to the first power domain bus and a second independent power domain having a second power domain bus electrically connected to second functional blocks and a second power pad electrically connected to the second power domain bus. A test element is between the first power domain bus and the second power domain bus. |
US08823403B2 |
Load circuit for testing USB ports
An exemplary load circuit includes a switch unit and a current dividing circuit. The switch unit includes a number of switches. The current dividing circuit includes a number of sub-circuits. A terminal of a resistance module of each of the sub-circuits is connected to both a power terminal and a terminal of a corresponding one of the switches. The other terminal of the resistance module of each of the sub-circuits is connected to a drain of a transistor of each of the sub-circuits. A source of the transistor is connected to ground. A gate of the transistor is connected to ground, and is also connected to another terminal of the corresponding switch. |
US08823398B2 |
Linear capacitance-to-voltage converter using a single amplifier for transducer front ends with cancellation of spurious forces contributed by sensor circuitry
Capacitive transducer systems are disclosed that reduce nonlinearities due to feedthrough capacitances or residual electrostatic forces. The systems can include a core with a first input coupled to a first variable capacitor, a second input coupled to a second variable capacitor, and a core output coupled to a common node; an amplifier with input switchably coupled to common node and an output; a feedback path switchably coupling amplifier output to common node; and a main clock with first and second phases, that controls switches coupling system components. When clock is in first phase, first core input is coupled to reference voltage, second core input is coupled to negative reference voltage, and common node is coupled to amplifier output. When clock is in second phase, core inputs are grounded, and common node is coupled to amplifier input. The system can have single amplifier. Neutralization capacitor can cancel feedthrough and parasitic capacitances. |
US08823389B2 |
Method for identifying EMI sources in an electrical system
A method for identifying EMI sources in a system having a plurality of electrical components connected together by cables wherein each set of two electrical components connected by a cable forms a potential EMI source. A plurality of antennas are positioned around the vehicle and the EMI from each antenna is measured over a plurality of frequencies and the frequencies having an EMI greater than a predetermined threshold and a measurement profile of the received EMI versus the antennas for each of the identified frequencies is created. EMI reception is then simulated for each potential EMI source and a simulation profile of the received EMI versus the antennas is plotted for each potential EMI source. The actual source of the EMI is then identified by comparing the measurement profile with the simulation profile for the potential EMI sources at each frequency to determine a match of the profiles. |
US08823386B2 |
Wire harness continuity inspection method and wire harness continuity inspection program
The time required for a success or failure determination step and the precision of the success or failure determination step are optimized by determining region-based connector or wiring information and by adjusting increase and decrease of the number of such patterns. Region-based connector or wiring information is created for at least every described region in numbers equal to the number of combinations of a first wire harness, a second wire harness, and a third wire harness. The first wire harness is one of first wire harnesses arrangeable in Main 1, the second wire harness is one of second wire harnesses arrangeable in Main 2, and the third wire harness is one of third wire harnesses arrangeable in Sub, and presence or absence of error in connection of electric wires is inspected in the created region-based connector or wiring information. |
US08823384B2 |
Fine particle detection system
There is provided a fine particle detection system with a fine particle sensor, a cable and a sensor drive control device. The fine particle sensor has an ion source unit with first and second electrodes, a particle charging unit and inner and outer sensor casings. The cable has a power supply wiring line connected to the second electrode, an inner shield line electrically continuous with the inner sensor casing and an outer shield line electrically continuous with the outer sensor casing. The sensor drive control device has an ion-source power supply circuit, a signal current detection circuit, an inner circuit casing electrically continuous with a first output terminal of the ion-source power supply circuit and surrounding the ion-source power supply circuit and an outer circuit casing connected to the ground potential and shielding the ion-source power supply circuit, the signal current detection circuit and the inner circuit casing. |
US08823382B2 |
System and method for monitoring a power source of an implantable medical device
Techniques for monitoring a battery of an implantable medical device are disclosed. First and second current sources are provided to draw currents having amplitudes of I1 and I2, respectively, from the battery. First and second voltage measurements, V1 and V2, are obtained when first and second combinations, respectively, of the first and second current sources are selectively activated. Battery impedance is determined using the current amplitudes I1 and I2 and the voltage measurements V1 and V2. The impedance measurement may be used to obtain an open-circuit voltage of the battery without the need to disconnect the battery from circuitry to which it provides power. Battery impedance and/or open-circuit battery voltage may then be used to determine an estimated time until an action is required involving the battery, which may include activation of an ERI or EOL indicator, or initiation of a recharge session. |
US08823375B2 |
System and method for generating a magnetic resonance image using prospective motion correction and parallel imaging
A method for generating a magnetic resonance (MR) image includes acquiring MR data from each of a plurality of RF coils and applying a prospective motion correction method to the MR data for each RF coil including determining a set of motion measurements that include a scan plane orientation associated with each data point in the MR data. The MR data for each RF coil is divided into a plurality of scan plane orientation groups based on motion changes. A set of unaliasing coefficients is generated for each scan plan orientation group and applied to the MR data to synthesize data for each RF coil. The acquired MR data and synthesized data for each RF coil is combined to generate a scan plane orientation data set. Each scan plane orientation data set is combined to generate a complete k-space data set. |
US08823367B2 |
Rotation angle detection apparatus
In a rotation angle detection apparatus, a signal detected by a magnetoresistive element is digitalized before being subjected to subtraction of the optimum correction parameter therefrom in a subtractor, the optimum correction parameter being stored in advance in a memory. Note that during the initial transmission at the time of activation, the data size “n” of a detection target obtained by a CPU from a control device is transferred to the memory, so that the optimum correction parameter for the data size of the detection target is selected. With the above, the detection unit can relatively readily cope with a request for enlargement or the like of a through hole size made by a machine side, and detection accuracy is not deteriorated and an error in absolute position processing is reduced when the curvature of the detection target is changed. |
US08823366B2 |
Non-contacting sensor assembly
A non-contacting sensor assembly including a connector assembly and a magnet assembly. The connector assembly includes a sensor coupled directly to the end of the terminals of the connector assembly. A sleeve is overmolded around and seals the sensor and the terminals. A capacitor is soldered in a recess in the terminals. The terminals include flexible regions, such as regions of reduced thickness, which reduce the effects of thermal expansion/contraction stresses on the solder. In one embodiment, the sensor assembly is a rotary position sensor assembly in which the magnet assembly is molded into a rotatable drive arm assembly located in a housing, the connector assembly is coupled to the housing, and the sensor extends into the housing and into adjacent relationship with the magnet assembly. |
US08823365B2 |
Sensor assembly
A sensor assembly includes a magnetic track having a plurality of magnetic poles separated by a plurality of pole junctions. The sensor assembly also includes a first magnetic sensor disposed proximate a high-resolution portion of the magnetic track and a second magnetic sensor disposed proximate a reference portion of the magnetic track. The second magnetic sensor spans adjacent pole junctions in the magnetic track. Each of the adjacent pole junctions includes a high-resolution segment corresponding with the high-resolution portion of the magnetic track and a reference segment corresponding with the reference portion of the magnetic track. The reference segment of each pole junction is one of offset and aligned with the corresponding high-resolution segment in each pole junction. |
US08823356B2 |
Supply voltage auto-sensing
Processes, machines, and articles of manufacture that may serve to enable the detection or determination of alternating line voltages from an alternating power source, such as the power grid, are provided. This automatic sensing may be useful when connections are made to the power grid, such that when connections are made, the connections may be configured to be compatible with the available power source. This automatic sensing may also be useful if power sources change characteristics over time or if devices may be connected to different power sources over time. |
US08823351B2 |
Overvoltage threshold control system of DC to DC converter
A control system of a DC to DC converter skips switching pulses according to the output of an overvoltage protection circuit. The overvoltage protection circuit includes an overvoltage threshold voltage control section that lowers an overvoltage threshold voltage when the pulse width has a minimum valve. The control system both improves the output voltage accuracy of the DC to DC converter under a light load and promotes a quick return to normal operation after an overvoltage protection operation under a heavy load. |
US08823348B2 |
Buck coverter with overcurrent protection function
A buck converter configured for converting a voltage output from a power supply to a load includes a first switch, a second switch, an inductor, three compensators and a control microchip. The first switch and the second switch are connected in series between two ends of the power supply. A first end of the inductor is connected to a node between the first switch and the second switch; a second end of the inductor serves as an output terminal connected to the load. The compensators are correspondingly connected to the first switch, the second switch and the inductor. The control microchip is electrically connected to the first and second switches and the node. The control microchip controls the first and second switches to turn on or off, and executes a current protective process when output current of the output terminal exceeds a current protective threshold of the load. |
US08823346B2 |
System and method of feed forward for boost converters with improved power factor and reduced energy storage
A controller and controlling method is disclosed for a boost converter. The controller includes a first node for receiving an output sense signal indicative of an output DC voltage, a second node for receiving a boost current sense signal indicative of current through an inductor of the boost converter, a first combiner which provides an error signal based on a difference between the output sense signal and a reference signal, an integrator which integrates the error signal and which provides a compensation signal indicative thereof, and a pulse controller which provides a pulse control signal for controlling the power switch to operate the boost converter in DCM. The pulse controller develops pulse control signal based on comparing the compensation signal with a ramp signal and further adjusts the pulse control signal over a cycle of a rectified AC input voltage based on the boost current sense signal. |
US08823337B2 |
Boost converter with integrated high power discrete FET and low voltage controller
A boost converter for high power and high output voltage applications includes a low voltage controller integrated circuit and a high voltage, vertical, discrete field effect transistor. The low voltage controller integrated circuit and the high voltage, vertical, discrete field effect transistor are packaged together in a single package on a common electrically conductive die pad, wherein the controller IC is attached to the die pad using insulating adhesive and the FET is attached to the die pad using conductive adhesive. |
US08823333B2 |
Controller and systems of permanent magnet alternator and motor
Solenoid coils not interlinked by magnet flux of a rotor, increase inductance of a control coil system for controlling generated voltage using little current flow to a switch so no increase in windings of a power coil is needed. A generator with rotor having magnets and stator outside the rotor, have winding coil of the stator connected in series to solenoid coil. A power terminal is between the power and control sides of the solenoid coil and a switch controls flow of current from the power coil to the solenoid coil. By controlling ON/OFF condition of the switch disposed on the DC terminal of a rectifier connected to the solenoid coil in series, the generated voltage is controlled to a voltage set in advance, in response to a detection signal from a sensor detecting the voltage. |
US08823330B2 |
Charging systems for use with electric vehicles and methods of monitoring same
A system for monitoring operation of an electric vehicle charging station is provided. The system includes a battery charger configured to couple to a device for supplying current to the device, a current sensor coupled to the battery charger for measuring current supplied from the battery charger to the device, the current sensor configured to generate a measured current profile based on the measured current supplied to the device, and a processor coupled to the current sensor. The processor is configured to receive the measured current profile transmitted from the current sensor, and compare the measured current profile to at least one known current profile to monitor operation of the charging station. |
US08823317B2 |
Circuits and methods for heating batteries in series using resonance components in series
Circuit and method for heating first and second batteries. The heating circuit includes first and second switch units, first and second damping components, first and second current storage components, switching control module and charge storage component. The first battery, first damping and current storage components, first switch unit and charge storage component are connected in a first loop to form a first charging/discharging circuit. The second battery, second damping and current storage components, charge storage component and second switch unit are connected in a second loop to form a second charging/discharging circuit. When the charge storage component is charged or discharges, charging/discharging current in the second charging/discharging circuit is reverse to that in the first charging/discharging circuit. The switching control module controls the first and second switch units to switch on in alternate, so as to control electric energy flow among the first battery, charge storage component and second battery. |
US08823316B1 |
Thermal effluent to electric energy harvesting system
A system for harvesting electric energy from thermal energy includes energy conversion assemblies that can be distributed about a conduit through which a heated effluent flows. Each energy conversion assembly includes two heat sinks, a thermoelectric cell sandwiched between the two heat sinks, and a thermal insulating gasket surrounding the thermoelectric cell and separating the two heat sinks. Circuit wiring electrically connects to each thermoelectric cell where the energy conversion assemblies are electrically connected to one another in parallel. An electric power storage device is coupled to the circuit wiring. |
US08823315B2 |
Portable self-contained photovoltaic solar device
A portable self-contained photovoltaic device is provided with a hollow cylindrical support in two substantially coaxial portions assembled to one another. The device further includes a rolled flexible photovoltaic collector and a battery mounted in the first portion of the coaxial portions and designed to store electric energy produced by the photovoltaic collector. An electronic control circuit is mounted in the first portion for managing the charging of the battery. Several LED lamps are stored inside the photovoltaic collector and placed inside the second portion of the coaxial portions. |
US08823314B2 |
Energy saving system and method for devices with rotating or reciprocating masses
A system and method are provided for reducing the energy consumed by a pump jack electric motor by reducing the supply voltage to the motor when the motor would be generating energy in open loop mode. By substantially eliminating the energy generation mode, the braking action of the utility grid in limiting the acceleration of the motor and system that would otherwise occur is substantially removed. The motor and system will speed up, allowing the natural kinetic energy of the cyclic motion to perform part of the pumping action. A closed loop controller in electrical connection with the motor computes the necessary information from the observed phase angle between the voltage and current supplied to the motor. By reducing the supply voltage to the motor, the observed phase angle may be reduced to a target phase angle value. By allowing some current flow, primarily of a reactive nature, an observable feedback parameter may be used in the closed loop control system as an indication of the load condition, to which the closed loop motor controller may react, supplying power when needed, such as in the energy consumption mode. The electric motor may be effectively turned off, but without completely cutting the power to the motor. During both the energy consumption mode and the period that open loop energy generation would be occurring, the closed loop motor controller may reduce the observed phase angle to a target phase angle by reducing the supply voltage. Any further reduction in the observed phase angle below the target phase angle may be interpreted as an increase in motor load, to which the motor controller may respond by increasing the supply voltage to the motor until the target phase angle is once again reached. |
US08823313B2 |
Device for operating synchronous motors and associated method
The synchronous motors are controlled by a three-phase AC power controller. According to an embodiment of the invention, firing points for the AC power controller are determined. A pair of two or three phases is determined from the angular position of the rotor, for which the firing points can be present for the respective A.C power controller. Actual firing points are determined from the mains voltage phase position of the phases so that only positive torque is produced. |
US08823312B2 |
Electric motor assembly, method for operating an electric motor, and motor control device
The invention relates to an electric motor assembly, particularly for driving a fan for an engine cooling system and/or an air conditioner of a motor vehicle, comprising an electric motor and a motor control device for activating the electric motor. According to the invention, the motor control device can be adjusted according to a characteristic curve (1,2,3,4) of the electric motor and/or of the fan, and thereby the power and/or rotational speed of the electric motor can be adjusted. |
US08823310B2 |
Stepping motor controller and image-reading device
A stepping motor controller for controlling a stepping motor, includes: a motor driver; and a driver control unit. The motor driver includes: an excitation phase control unit; and a drive unit. The driver control unit includes: a motor driver power control unit; a drive control unit; a clock signal output unit; and an excitation phase storing unit. The excitation phase storing unit acquires an excitation phase at a time when the motor driver power control unit stops supplying electricity to the motor driver, and stores the acquired excitation phase as a suspension excitation phase. When the motor driver power control unit resumes supplying electricity to the motor driver, the drive control unit instructs the drive unit to continue to halt the supply of the drive current until the excitation phase signal is updated, in response to each pulse of the clock signal, to an excitation phase signal specifying the suspension excitation phase, and instructs the drive unit to supply the drive current after the excitation phase signal is updated to reach the excitation phase signal specifying the suspension excitation phase. |
US08823306B2 |
Motor control device that decreases power consumed by control power source when power fails
A PWM signal generation unit generates a PWM signal to drive a motor, based on a current value of the motor sampled by a current value sampling unit, a position or speed of the motor sampled by a motor sampling unit, and a position or speed of a driven object sampled by a driven object sampling unit. An operation stop unit stops the operation of any one of the motor sampling unit and the driven object sampling unit depending on the power stored in the DC link part and power to which the control power source can supply when the alternating-current power source fails. |
US08823298B2 |
Apparatus and method of braking applied in a laundry treating appliance
A method of operating a laundry treating appliance to control a rotational speed of a drum to move the laundry within the drum according to a predetermined category of movement. |
US08823297B2 |
Method of control implemented in a variable speed drive for controlling the deceleration of an electric motor in the case of power outage
The invention relates to a method of control implemented in a variable speed drive for controlling the deceleration of an electric motor (M) in the case of electrical power outage. The method of control comprises: a step of determining the Joule-effect losses to be applied to the electric motor (M) and to the variable speed drive according to a deceleration ramp to be applied to the electric motor (M) during an electrical power outage, a step of determining the flux reference (φref) as a function of the said Joule-effect losses to be applied to the electric motor (M) and to the variable speed drive. |
US08823293B2 |
Traction motor drive system for a locomotive
A traction motor drive system includes a plurality of armatures arranged in parallel with each other and a plurality of field circuits arranged in series with one another. The plurality of field circuits is arranged in parallel with the armatures. The traction motor drive system also includes a field isolation system including a shunt circuit associated with at least one field circuit. The field isolation system includes a first field switch arranged in series with the plurality of field circuits and configured to switch between a first terminal of the shunt circuit and a first field terminal of at least one field circuit. The field isolation system includes a second field switch, arranged in series with the plurality of field circuits and configured to switch between a second terminal of the shunt circuit and a second field terminal of at least one field circuit. |
US08823283B2 |
Power dissipation monitor for current sink function of power switching transistor
The embodiments disclosed herein describe a method of a power controller for monitoring for unsafe operating conditions of a drive transistor in a switching power converter of a LED lamp system by predicting the power dissipation of the drive transistor based on knowledge of the current through the drive transistor and a continuous observation of the voltage across the drive transistor. When the drive transistor approaches unsafe operating conditions, the power controller turns off the drive transistor. |
US08823282B2 |
Light source apparatus
A light source apparatus according to the present invention includes: a plurality of light emitting substrates arranged in matrix form, each having at least one light source; an intermediate substrate provided between respective rows of the plurality of light emitting substrates; and a driving unit that outputs a drive signal for driving the light sources, wherein a first supply wiring for supplying the drive signal to the light source provided on each of the plurality of light emitting substrates is printed on each of the light emitting substrates, and a first connection wiring for electrically connecting the first supply wirings printed on two light emitting substrates sandwiching the intermediate substrate is printed on the intermediate substrate. |
US08823279B2 |
Smart FET circuit
A lighting module has at least one array of solid-state lighting elements, a variable resistor having an input of an intensity control voltage for the array of solid-state lighting elements, the variable resistor having an output electrically connected to an input of the array of solid-state lighting elements, and a voltage regulator electrically connected to the output of the variable resistor, the voltage regulator having an output connected to an input of the array of solid-state lighting elements. |
US08823275B2 |
Lighting circuit for light emitting element and illumination apparatus including same
A light-emitting-element lighting circuit for dimming a light emitting element having a diode characteristic by a PWM dimming signal is provided. The lighting circuit includes a dimming signal conversion unit configured to generate the PWM dimming signal having a duty ratio corresponding to an emission level specified by an input dimming signal. The lighting circuit further includes a minimum current generating circuit configured to flow a minimum current during an OFF period of the PWM dimming signal generated by the dimming signal conversion unit such that a voltage greater than a threshold voltage designed to allow the light emitting element to emit a light is applied to the light emitting element, and the light emitting element emits a light of a brightness equal to or less than a lowest emission level specified by the dimming signal. |
US08823273B2 |
Intelligent user interface including a touch sensor device
The present invention, according to a preferred embodiment, is directed to portable electronic devices which operate on exhaustible power sources, for example, batteries. The electronic devices of the present invention comprise at least one signal switch and a microchip in communication with the switch wherein the switch is only capable of transmitting a signal to the microchip that the switch has been activated or deactivated. The microchip is in communication with the exhaustible power source of the electronic device and controls (i) the power on/off function of the device, (ii) at least one other function of the device in response to activation and deactivation signals from the switch, and (iii) an automatic shut off function in response to the receipt of an activation signal from the switch. |
US08823267B2 |
Bandgap ready circuit
A bandgap ready circuit for an RFID tag includes a bandgap circuit for providing a bandgap voltage, a first comparator for monitoring first and second voltages in the bandgap circuit and for providing a first logic signal, a second comparator for monitoring third and fourth voltages in the bandgap circuit and for providing a second logic signal, and a logic circuit for combining the first and second logic signals to provide a bandgap ready logic signal. |
US08823262B2 |
Helical slow-wave structure including a helix of rectagular cross-section having grooves therein adapted to receive supporting rods therein
The present invention provides a helical slow-wave structure, including a helix, a metal barrel and several supporting rods. The plurality of supporting rods may be inserted into the lines of the grooves tightly, this increases the contact area between the helix and the plurality of supporting rods. With a proper assembly method, the thermal contact resistance between helix and supporting rod may be decreased. So, the invention may enhance the capability of transferring the heat out of the helical slow-wave structure. The helix may have higher heat capacity, therefore, the helical slow-wave structure may become more firm, and more reliable. |
US08823260B1 |
Plasma-disc PDP
Electrode configurations for an AC or DC gas discharge plasma display panel (PDP) device having one or more substrates and a multiplicity of pixels or sub-pixels that are defined by a hollow plasma-shell filled with an ionizable gas. Plasma-shell includes plasma-disc, plasma-dome, and plasma-sphere. The invention is described with reference to a plasma-disc. The plasma-disc has at least two opposing flat sides such as a flat top and flat bottom. Two or more addressing electrodes are in electrical contact with each plasma-disc. At least one electrode is in electrical contact with a side of the plasma-disc that is not flat. |
US08823258B2 |
Light source, light-emitting device, light source for backlight, display device, and method for producing light source
A fluorescent material-sealed sheet includes a plurality of fluorescent sections, an upper sealing section, and a lower sealing section, the plurality of fluorescent sections being sealed by the upper sealing section and the lower sealing section. |
US08823256B2 |
Organic electroluminescent element and illumination device
An organic electroluminescence device includes: a first substrate; a reflective metal layer; a first electrode; an organic compound layer; and a second electrode, which are disposed in this sequence. The first substrate is provided by at least one of a metal film, a metal plate, a polymer film, a polymer plate, a polymer film with a damp-proof film, and a polymer plate with a damp-proof film. A smoothening layer is formed partially between the reflective metal layer and the first electrode. The reflective metal layer and the first electrode are electrically conductive to each other at a region where the smoothening layer is not formed. |
US08823250B2 |
High efficiency incandescent lighting
Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs. |
US08823248B2 |
Flexural vibration element and electronic component
A flexural vibration element according to a first aspect of the invention includes: a vibration element body composed of a plurality of vibrating arms provided in parallel, a connecting part connecting the vibrating arms, and one central supporting arms extending between the vibrating arms from the connecting pert in parallel with the vibrating arms at equal distance from the arms and a frame body disposed outside the vibration element body. |
US08823242B2 |
Disc motor and electric working machine equipped with disc motor
A disc motor includes an output shaft, a coil disc, an electric current supplying section, and a magnet. The coil disc is disc-shaped. The coil disc includes an at least two-layer structure having a first layer and a second layer. The coil disc includes a coil having a plurality of partial coil sections each extending outward in a radial direction of the output shaft and connecting sections each connecting together two partial coil sections. The electric current supplying section supplies an electric current to the coil. The magnet is disposed in opposition to the plurality of partial coil sections. The plurality of partial coil sections includes first partial coil sections formed on the first layer and second partial coil sections formed on the second layer. The first partial coil sections provide a total number different from that of the second partial coil sections. |
US08823236B2 |
Stator winding for rotating electric machine
An object is to provide a rotating electric machine offering a high output and high efficiency by balancing inductance of each phase even if a stator is used in which stator windings of different phases are disposed in a slot of a stator core in a three-phase winding. A stator 5 includes a stator core 6 having a plurality of slots arrayed circumferentially and opening to an inner peripheral surface and a stator winding 7 wound in each of the slots. The stator winding 7 is divided into at least two for each phase (7U-A, 7U-B, 7V-A, 7V-B, 7W-A, 7W-B). After insertion of the stator core 6, the stator winding of each phase is connected in parallel or in series. The stator winding of each phase is disposed in slots such that combined inductance of different phases is equalized. |
US08823235B2 |
Rotor for axial gap-type permanent magnetic rotating machine
An axial gap-type permanent magnetic rotating machine comprises a rotor comprising a rotating shaft having an axis of rotation, a rotor yoke of disc shape radially extending from the shaft, and a plurality of permanent magnet segments circumferentially arranged on a surface of the rotor yoke such that each permanent magnet segment may have a magnetization direction parallel to the axis of rotation, and a stator having a plurality of circumferentially arranged coils and disposed to define an axial gap with the rotor. In the rotor, each permanent magnet segment is an assembly of two or more divided permanent magnet pieces, and the coercive force near the surface of the magnet piece is higher than that in the interior of the magnet piece. |
US08823233B2 |
Passive magnetic bearing system
An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays. |
US08823228B2 |
Transmission drive unit having a self-locking device
Transmission drive unit (10), in particular for adjusting movable parts in the motor vehicle, having a drive motor (12) and a transmission (14) which is driven thereby, wherein the transmission (14) has an output element (70) and a self-locking device (60) with a locking element (63, 55), and the locking element locks the transmission (12) with respect to torques which are applied to the transmission (12) by the output element (70), wherein the transmission (12) with its transmission toothing (47) and a motor shaft bearing (32, 28) is designed to have optimized efficiency and minimal friction, and the drive motor (12) has, as an exciter magnet, a sleeve-shaped annular magnet (18) which is arranged in a pole pot (16) which forms a magnetic return. |
US08823226B2 |
Sealed electric generator
A sealed electric generator includes a casing (2) housing a stator (3) and a rotor (4) connected to a shaft (5), wherein the shaft (5) is provided with a duct housing and a lead (10) carrying electric power from an exciter (8) to rotor field windings (9). The duct has a sealing unit for preventing gas contained inside of the casing (2) from reaching the exciter (8). The sealing unit has first and second seals (20, 21) defining between them a chamber (22), such that gas that leaks past a seal (20, 21) enters the chamber (22). |
US08823225B2 |
Rotating electrical machine
A motor includes: a almost annular stator, a rotor arranged inside the annular ring of the stator for rotating about a central axis, a sensor for detecting the rotation of the rotor, and a sensor board for implementing the sensor. The sensor and the sensor board are arranged outside the stator in the direction along the central axis. The sensor is a reflection type light projecting/receiving sensor. |
US08823222B2 |
Cooling system of motor assembly for cleaner
A motor assembly, especially for home appliances such as a cleaner, has an electric motor and a cooling system. The motor may be a fractional horsepower universal motor with a stator and a rotor. The cooling system has a cooling pipe thermally coupled to an element of the stator, such as a core of the stator and providing a flow path for a liquid to cool the motor. |
US08823220B2 |
Positioning system for positioning a positioning unit along a longitudinal axis
A positioning system for positioning a positioning unit along a longitudinal axis includes: a linear guide arrangement for enabling a linearly guided motion parallel to the axis; a motor includes a moving motor member operatively connected to the linear guide arrangement and an elongated stationary motor member extending parallel to the axis; and a force transmission arrangement operatively connecting the moving motor member to the positioning unit, wherein the force transmission arrangement is arranged to provide a semi-rigid engagement between the positioning unit and the moving motor member, wherein the positioning unit and the moving motor member, respectively, are operatively connected to the linear guide arrangement by at least two guide engaging carriages, and wherein the positioning unit is attached to the guide engaging carriages by rigid or resilient positioning unit holders. |
US08823218B2 |
System and method for enhanced watch dog in solar panel installations
A system and method for automated shutdown, disconnect, or power reduction of solar panels. A system of solar panels includes one or more master management units (MMUs) and one or more local management units (LMUs). The MMUs are in communication with the LMUs with the MMUs and LMUs “handshaking” when the system is in operation. The MMUs are connected to one or more controllers which in turn are connected to emergency detection sensors. Upon a sensor detection of an emergency, the associated MMU is notified which in turn instructs associated LMUs to take appropriate action. In the event that communication with the MMUs has been cut off, the LMUs take the initiative to shutdown, disconnect, or reduce the output of associated string(s) of solar panels. |
US08823216B2 |
Signal transmission device, filter, and inter-substrate communication device
In a signal transmission device, first open-ended resonators include a first first-open-ended resonator and a second first-open-ended resonator, in which open ends of the first first-open-ended resonator face a central portion of the second first-open-ended resonator, and a central portion of the first first-open-ended resonator faces open ends of the second first-open-ended resonator. When second open-ended resonators are employed, the second open-ended resonators include a first second-open-ended resonator and a second second-open-ended resonator, in which open ends of the first second-open-ended resonator face a central portion of the second second-open-ended resonator, and a central portion of the first second-open-ended resonator faces open ends of the second second-open-ended resonator. The first and the second open-ended resonators in closest proximity to each other in the first resonator are arranged such that the respective open ends thereof face each other and the respective central portions thereof face each other. |
US08823211B2 |
Photovoltaic inverter and method for controlling photovoltaic inverter
A photovoltaic inverter is provided, having a controller, an auxiliary power and a buffering element. The auxiliary power provides power to the controller. The buffering element is coupled between a photovoltaic panel and the auxiliary power such that the buffering element stores energy output from the photovoltaic panel first during a startup period, and then stops storing energy output from the photovoltaic panel and provides the stored energy to the auxiliary power, thereby performing a maximum power point tracking procedure on the photovoltaic panel during a first period following the startup period, and feeds energy output from the photovoltaic panel to the auxiliary power during a second period following the first period thereby continuously performing the maximum power point tracking procedure on the photovoltaic panel by the controller. |
US08823210B1 |
Integrated electronics for perpetual energy harvesting
An apparatus for perpetually harvesting ambient near ultraviolet to far infrared radiation to provide continual power regardless of the environment, incorporating a system for the harvesting electronics governing power management, storage control, and output regulation. The harvesting electronics address issues of efficiently matching the voltage and current characteristics of the different harvested energy levels, low power consumption, and matching the power output demand. The device seeks to harvest the largely overlooked blackbody radiation through use of a thermal harvester, providing a continuous source of power, coupled with a solar harvester to provide increased power output. |
US08823206B2 |
Power-supply control device
A power-supply control device for battery having a plurality of cells connected in series has a voltage conversion unit that steps down a voltage at the battery to supply the stepped-down voltage to a first load, a first opening and closing unit that opens and closes a supply path of first power from the battery to the voltage conversion unit and a second load, a battery control unit that detects abnormality of the battery, controls opening and closing of the first opening and closing unit, and is operated by second power supplied from the battery or third power supplied from the voltage conversion unit, the second power being lower than the first power, and a second opening and closing unit that opens and closes a supply path of the second power from the battery to the battery control unit. |
US08823202B2 |
Electronic appliance
There is provided an electronic appliance including a hinge portion including a first rotating hinge including a first electrode for transmitting a direct current and a first coil for transmitting/receiving a data signal by using electromagnetic induction, and a second rotating hinge including a second electrode for receiving the direct current by contacting the first electrode and a second coil for transmitting/receiving the data signal to/from the first coil. The hinge portion connects the first rotating hinge and the second rotating hinge in a rotatable manner while maintaining a state where the first electrode and the second electrode are in contact with each other and a center axis of the first coil and a center axis of the second coil are substantially same. |
US08823198B2 |
Offshore wind park
Wind farm comprising at least one buoyant structure having two corners provided with a wind turbine and a third corner comprising a mooring section, e.g., with a disconnectable mooring turret. The third corner does not carry one of the wind turbines. Shared facilities for the two wind turbines, such as a helideck and/or electrical equipment, such as a converter and/or transformer, can be located on or near the third corner. |
US08823194B2 |
Modular alternative energy unit
A wind energy apparatus is made up of a plurality of modular wind energy devices or units. Each unit has a housing and at least two turbines mounted on the housing. Each of the turbines has a blade set extending upward from the housing. Each blade set has a vertical axis extending upward in relation to the housing. Each of the turbines has a generator connected thereto, each generator being disposed in the housing, and having a rotor and a stator. Each turbine is rotatably mounted with respect to the housing, and mounted to the rotor so that they rotate together. Each housing has a positive connector and negative connector on each side of the respective unit. The units, when placed together, connect their respective poles, positive and negative, together completing a circuit. Therefore, one may connect multiple units together. |
US08823190B2 |
Wind power converter structure and wind power generation system including the same
A wind power converter structure and a wind power generation system including the converter structure are provided. The converter structure includes a plurality of generator-side converters arranged in a nacelle located on a top part of the tower; a plurality of grid-side converters arranged on a bottom part of the tower or outside the tower, wherein a DC input side of the grid-side converter is coupled to a DC output side of the generator-side converter; at least one DC bus connected between the generator-side converter and the grid-side converter; and an isolation transformer of which a primary side is coupled to the AC output side of the grid-side converter, wherein a secondary side of the isolation transformer is coupled to a power grid. |
US08823188B2 |
Portable mechatronical device for generating electric power
The device includes, in a housing, an actuator electrically connected to a battery for charging a portable item such as a mobile terminal. For a rotating actuator comprising a first member submitted to an oscillatory motion, for example a walker carrying the housing, and a second member making up at least partially a mass part, the mass part is able to oscillate around the axle of the armature with respect to the first member. A servo control system can control the actuator sometimes as a motor supplied by the battery or by allowing the mass part to move freely, sometimes as a generator charging the battery, by slaving the motion speed of the mass part to the acceleration of the oscillatory motion of the first member. This enables to recover as much electric power as possible from the walker. |
US08823187B2 |
Semiconductor package, semiconductor package manufacturing method and semiconductor device
A semiconductor package includes a semiconductor chip, a first insulating layer formed to cover the semiconductor chip, a wiring structure formed on the first insulating layer. The wiring structure has an alternately layered configuration including wiring layers electrically connected to the semiconductor chip and interlayer insulating layers each located between one of the wiring layers and another. The interlayer insulating layers include an outermost interlayer insulating layer located farthest from a surface of the first insulating layer. A groove formed in the outermost interlayer insulating layer passes through the outermost interlayer insulating layer in a thickness direction. |
US08823186B2 |
Fiber-containing resin substrate, sealed substrate having semiconductor device mounted thereon, sealed wafer having semiconductor device formed thereon, a semiconductor apparatus, and method for manufacturing semiconductor apparatus
A fiber-containing resin substrate for collectively sealing a semiconductor devices mounting surface of a substrate having the semiconductor devices mounted thereon or a semiconductor devices forming surface of a wafer having semiconductor devices formed thereon, includes: a resin-impregnated fiber base material obtained by impregnating a fiber base material with a thermosetting resin and semi-curing or curing the thermosetting resin; and an uncured resin layer containing an uncured thermosetting resin and formed on one side of the resin-impregnated fiber base material. There can be a fiber-containing resin substrate that enables suppressing warp of a wafer and delamination of semiconductor devices even though a large-diameter wafer or a large-diameter substrate made of a metal and the like is sealed, enables collectively sealing a semiconductor devices mounting surface of the substrate or a semiconductor devices forming surface of the wafer, and has excellent heat resistance or moisture resistance after sealing. |
US08823179B2 |
Electronic device package and method for fabricating the same
An embodiment of the present invention provides an electronic device package, which includes a chip having a first surface and an opposite second surface and a trench extending into a body of the chip along a direction from the second surface to the first surface, wherein a bottom portion of the trench includes at least two contact holes. |
US08823177B2 |
Semiconductor device and package wiring substrate with matrix pattern external terminals for transmitting a differential signal
A semiconductor device or semiconductor device package for transmitting a plurality of differential signals, the reliability of which hardly deteriorates. The semiconductor device is an area array semiconductor device in which a plurality of lands (external terminals) including a plurality of lands for transmitting a plurality of differential signals are arrayed in a matrix pattern in the back surface of a wiring substrate. Some of the lands are located in the outermost periphery of the matrix pattern. Some others of the lands are located inward of the outermost periphery of the matrix pattern and in rows next to the outermost periphery. The spacing between lands in a second region between the lands located in the rows next to the outermost periphery and the side surface of the wiring substrate is larger than in a first region in the outermost periphery. |
US08823176B2 |
Discontinuous/non-uniform metal cap structure and process for interconnect integration
An interconnect structure including a noble metal-containing cap that is present at least on some portion of an upper surface of at least one conductive material that is embedded within an interconnect dielectric material is provided. In one embodiment, the noble metal-containing cap is discontinuous, e.g., exists as nuclei or islands on the surface of the at least one conductive material. In another embodiment, the noble metal-containing cap has a non-uniform thickness across the surface of the at least one conductive material. |
US08823170B2 |
Apparatus and method for three dimensional integrated circuits
A structure comprises a substrate comprising a plurality of traces on top of the substrate, a plurality of connectors formed on a top surface of a semiconductor die, wherein the semiconductor die is formed on the substrate and coupled to the substrate through the plurality of connectors and a dummy metal structure formed at a corner of a top surface of the substrate, wherein the dummy metal structure has two discontinuous sections. |
US08823168B2 |
Die underfill structure and method
A method of attaching an IC wafer having a plurality of copper pillars (“CuP's) projecting from one face thereof to a substrate having a plurality of contact pads on one face thereof including applying a film having a substantial amount of filler particles therein to the one face of the wafer; applying an a-stage resin having substantially no filler particles therein to the one face of the substrate; and interfacing the film with the a-stage resin. |
US08823163B2 |
Antimony-free glass, antimony-free frit and a glass package that is hermetically sealed with the frit
An antimony-free glass comprising TeO2 and/or Bi2O3 suitable for use in a frit for producing a hermetically sealed glass package is described. The hermetically sealed glass package, such as an OLED display device, is manufactured by providing a first glass substrate plate and a second glass substrate plate and depositing the antimony-free frit onto the first substrate plate. OLEDs may be deposited on the second glass substrate plate. An irradiation source (e.g., laser, infrared light) is then used to heat the frit which melts and forms a hermetic seal that connects the first glass substrate plate to the second glass substrate plate and also protects the OLEDs disposed therein. The antimony-free glass has excellent aqueous durability, good flow, and low glass transition temperature. |
US08823156B2 |
Semiconductor device packages having stacking functionality and including interposer
A semiconductor device package with an interposer, which serves as an intermediate or bridge circuit of various electrical pathways in the package to electrically connect any two or more electrical contacts, such as any two or more electrical contacts of a substrate and a chip. In particular, the interposer provides electrical pathways for simplifying a circuit layout of the substrate, reducing the number of layers of the substrate, thereby reducing package height and manufacturing cost. Furthermore, the tolerance of the circuit layout can be increased or maintained, while controlling signal interference between adjacent traces and accommodating high density circuit designs. Moreover, the package is suitable for a PoP process, where a profile of top solder balls on the substrate and a package body can be varied according to particular applications, so as to expose at least a portion of each of the top solder balls and electrically connect the package to another device through the exposed, top solder balls. |
US08823155B2 |
Semiconductor device and method of manufacturing the same
A semiconductor device includes a first semiconductor chip including a first surface, a second surface and a first terminal arranged on the first surface, a second semiconductor chip including a first surface, a second surface and a second terminal arranged on the first surface of the second semiconductor chip, a support substrate including a first surface bonded to the second surfaces of the first semiconductor chip and the second semiconductor chip, and an isolation groove formed on the first surface of the support substrate. The isolation includes a pair of side surfaces continuously extending from opposing side surfaces of the first semiconductor chip and the second semiconductor chip, respectively, and the isolation groove is formed into the support substrate to extend from the first surface of the support substrate. The isolation groove has a depth less than a thickness of the support substrate. |
US08823154B2 |
Encapsulation architectures for utilizing flexible barrier films
An article and method of using spacer layer regions is provided, containing a gas compound, to reduce gas permeation through barrier films overlying a substrate comprising creating a spacer layer between one or more of the barrier films, wherein the spacer layer comprises at least one inert gaseous compound. In another embodiment, an article and method is provided comprising creating alternating thin films of hybridized sol-gel spin-on glass and PDMS based and olefin based elastomers. |
US08823153B2 |
Semiconductor package
Disclosed herein is a semiconductor package. The semiconductor package includes: semiconductor elements, a first heat dissipation substrate formed under the semiconductor elements, a first lead frame electrically connecting the lower portions of the semiconductor elements to an upper portion of the first heat dissipation substrate, a second heat dissipation substrate formed over the semiconductor elements, and a second lead frame having a protrusion formed to be protruded from a lower surface thereof and electrically connecting the upper portions of the semiconductor elements to a lower portion of the second heat dissipation substrate. |
US08823152B1 |
Semiconductor device with increased I/O leadframe
In one embodiment, a semiconductor package (e.g., a QFP package) includes a leadframe sized and configured to increase the available number of exposed leads in the semiconductor package. More particularly, the semiconductor package includes a generally planar die pad defining multiple peripheral edge segments. In addition, the semiconductor package includes a plurality of leads. Some of these leads include exposed bottom surface portions that are provided in at least one row or ring, which at least partially circumvents the die pad, with other leads including portions that protrude from respective side surfaces of a package body of the semiconductor package. At least one semiconductor die is connected to the top surface of the die pad and is electrically connected to at least some of the leads. At least portions of the die pad, the leads, and the semiconductor die are encapsulated by a package body, with at least portions of the bottom surfaces of the die pad and some of the leads being exposed in a common exterior surface of the package body. |
US08823150B2 |
Optical module with a lens encapsulated within sealant and method for manufacturing the same
A method to manufacture an optical module is disclosed, wherein the optical module has an optically active device on a lead frame and a lens co-molded with the active device and the lead frame by a transparent resin as positioning the lens with respect to the lead frame. The molding die of the present invention has a positioning pin to support the lens during the molding. Because the lead frame is aligned with the molding die, the precise alignment between the active device on the lead frame and the lens is not spoiled during the molding. |
US08823147B2 |
Semiconductor substrate including doped zones forming P-N junctions
A semiconductor substrate (100) has three doped zones (1), (2) and (3), forming a P-N junction (101), the third zone being located between the first zone and the second zone. The P-N junction of the substrate further has a fourth doped zone (4) having a first portion (4A) in contact with the first zone; and a second portion (4B) in contact with the third zone (3), said second portion (4B) extending in the direction of the second zone (2), and not being in contact with the second zone (2); where the fourth zone (4) being doped with the same type of doping as that of the first zone. |
US08823145B2 |
Multilayer board and light-emitting module having the same
Provided are a multilayer board and a light-emitting module having the same. The light-emitting module comprises a light-emitting diode chip and a multilayer board. The multilayer board is electrically connected to the light-emitting diode chip and comprises a nonconductive heat sink via and a thin copper layer. |
US08823140B2 |
GaN vertical bipolar transistor
An embodiment of a semiconductor device includes a III-nitride base structure of a first conductivity type, and a III-nitride emitter structure of a second conductivity type having a first surface and a second surface. The second surface is substantially opposite the first surface. The first surface of the III-nitride emitter structure is coupled to a surface of the III-nitride base structure. The semiconductor also includes a first dielectric layer coupled to the second surface of the III-nitride emitter structure, and a spacer coupled to a sidewall of the III-nitride emitter structure and the surface of the III-nitride base structure. The semiconductor also includes a base contact structure with a III-nitride material coupled to the spacer, the surface of the III-nitride base structure, and the first dielectric layer, such that the first dielectric layer and the spacer are disposed between the base contact structure and the III-nitride emitter structure. |
US08823137B2 |
Semiconductor device
A semiconductor device includes first and second wells formed side by side as impurity diffusion regions of a first conductive type in a semiconductor substrate, below an intermediate dielectric film that covers a major surface of the substrate. A conductive layer formed above the intermediate dielectric film is held at a potential. A first resistive layer is formed on the intermediate dielectric film and is electrically connected to the first well. A second resistive layer is formed on the intermediate dielectric film and is electrically connected to the second well. The first resistive layer and first well form a first resistance element. The second resistive layer and second well form a second resistance element. |
US08823135B2 |
Shielding structure for transmission lines
A shielding structure for transmission lines comprises first and second comb-like structures defined in a first metallization layer on an integrated circuit, the teeth of each comb-like structure extending toward the other comb-like structure; a first plurality of electrically conducting vias extending upward from the first comb-like structure; a second plurality of electrically conducting vias extending upward from the second comb-like structure; first and second planar structures in a second metallization layer above the first metallization layer; a third plurality of electrically conducting vias extending downward from the first planar structure toward the first plurality of electrically conducting vias; and a fourth plurality of electrically conducting vias extending downward from the second planar structure toward the second plurality of electrically conducting vias. The comb-like structures, the planar structures and the first, second, third, and fourth electrically conducting vias are all at substantially the same potential, preferably ground. |
US08823134B2 |
Semiconductor device, electronic apparatus, and method of manufacturing semiconductor device
A semiconductor chip is mounted on a first surface of an interconnect substrate, and has a multilayer interconnect layer. A first inductor is formed over the multilayer interconnect layer, and a wiring axis direction thereof is directed in a horizontal direction to the interconnect substrate. A second inductor is formed on the multilayer interconnect layer, and a wiring axis direction thereof is directed in the horizontal direction to the interconnect substrate. The second inductor is opposite to the first inductor. A sealing resin seals at least the first surface of the interconnect substrate and the semiconductor chip. A groove is formed over the whole area of a portion that is positioned between the at least first inductor and the second inductor of a boundary surface of the multilayer interconnect layer and the sealing resin. |
US08823133B2 |
Interposer having an inductor
An embodiment of a multichip module is disclosed. For this embodiment of a multichip module, a semiconductor die and an interposer are included. The interposer has conductive layers, dielectric layers, and a substrate. Internal interconnect structures couple the semiconductor die to the interposer. External interconnect structures are for coupling the interposer to an external device. A first inductor includes at least a portion of one or more of the conductive layers of the interposer. A first end of the first inductor is coupled to an internal interconnect structure of the internal interconnect structures. A second end of the first inductor is coupled to an external interconnect structure of the external interconnect structures. |
US08823130B2 |
Silicon epitaxial wafer, method for manufacturing the same, bonded SOI wafer and method for manufacturing the same
A silicon epitaxial wafer having a silicon epitaxial layer grown by vapor phase epitaxy on a main surface of a silicon single crystal substrate, wherein the main surface of the silicon single crystal substrate is tilted with respect to a [100] axis at an angle θ in a [011] direction or a [0-1-1] direction from a (100) plane and at an angle φ in a [01-1] direction or a [0-11] direction from the (100) plane, the angle θ and the angle φ are less than ten minutes, and a dopant concentration of the silicon epitaxial layer is equal to or more than 1×1019/cm3. Even when an epitaxial layer having a dopant concentration of 1×1019/cm3 or more is formed on the main surface of the silicon single crystal substrate, stripe-shaped surface irregularities on the epitaxial layer are inhibited. |
US08823128B2 |
Semiconductor structure and circuit with embedded Schottky diode
A semiconductor structure is proposed. A third well is formed between a first well and a second well. A first doped region and a second doped region are formed in a surface of the third well. A third doped region is formed between the first doped region and the second doped region. A fourth doped region is formed in a surface of the first well. A fifth doped region is formed in a surface of the second well. A first base region and a second base region are respectively formed in surfaces of the first well and the second well. A first Schottky barrier is overlaid on a part of the first base region and the first doped region. A second Schottky barrier is overlaid on a part of the second base region and the second doped region. |
US08823126B2 |
Low cost backside illuminated CMOS image sensor package with high integration
This invention discloses a backside illuminated image sensor without the need to involve a mechanical grinding process or a chemical-mechanical planarization process in fabrication, and a fabricating method thereof. In one embodiment, an image sensor comprises a semiconductor substrate, a plurality of light sensing elements in the semiconductor substrate, and a cavity formed in the semiconductor substrate. The light sensing elements are arranged in a substantially planar manner. The cavity has a base surface overlying the light sensing elements. The presence of the cavity allows the image to reach the light sensing elements through the cavity base surface. The cavity can be fabricated by etching the semiconductor substrate. Agitation may also be used when carrying out the etching. |
US08823124B2 |
Semiconductor structure for a radiation detector and a radiation detector
A semiconductor structure for a radiation detector, comprising a substrate composed of a semiconductor material of a first conductivity type, a semiconductor substrate, wherein the semiconductor substrate is provided with a semiconductor layer provided on the substrate and having a higher resistance in comparison to the substrate, of the first conductivity type, and electrically doped with a doping concentration, a plurality of doped regions, wherein the plurality of doped regions are provided in the semiconductor substrate and separated from each other, of a second conductivity type that is opposite from the first conductivity type, and electrically doped with a doping concentration that is higher than the doping concentration in the semiconductor substrate, at least one further doping region, and a cover layer is provided. |
US08823120B2 |
Magnetic element with storage layer materials
According to an embodiment of the invention, a magnetic tunnel junction (MTJ) element includes a reference ferromagnetic layer, a storage ferromagnetic layer, and an insulating layer. The storage ferromagnetic layer includes a CoFeB sub-layer coupled to a CoFe sub-layer and/or a NiFe sub-layer through a non-magnetic sub-layer. The insulating layer is disposed between the reference and storage ferromagnetic layers. |
US08823119B2 |
Magnetic device having a metallic glass alloy
A magnetic body structure including: a magnetic layer pattern; and a conductive pattern including a metallic glass alloy and covering at least a portion of the magnetic body structure. |
US08823115B2 |
Microphone unit and voice input device using same
A microphone unit converts voice into an electric signal based on the vibration of a diaphragm contained in an MEMS chip. The microphone unit includes a substrate on which the diaphragm is mounted (the MEMS chip is mounted); a cover member, having sound holes, that is disposed above the substrate so that the diaphragm is contained within the inner space formed between the cover member and the substrate; and a holding member that holds only the substrate or both of the substrate and the cover member. |
US08823113B2 |
Gate electrode and gate contact plug layouts for integrated circuit field effect transistors
A four transistor layout can include an isolation region that defines an active region, the active region extending along first and second different directions. A common source region of the four transistors extends from a center of the active region along both the first and second directions to define four quadrants of the active region that are outside the common source region. Four drain regions are provided, a respective one of which is in a respective one of the four quadrants and spaced apart from the common source region. Finally, four gate electrodes are provided, a respective one of which is in a respective one of the four quadrants between the common source region and a respective one of the four drain regions. A respective gate electrode includes a vertex and first and second extending portions, the first extending portions extending from the vertex along the first direction and the second extending portions extending from the vertex along the second direction. |
US08823107B2 |
Method for protecting the gate of a transistor and corresponding integrated circuit
A gate of a transistor in an integrated circuit is protected against the production of an interconnection terminal for a source/drain region. The transistor includes a substrate, at least one active zone formed in the substrate, at least one insulating zone formed in the substrate and a gate, the gate being formed above an active zone. A dielectric layer is formed on the transistor, the dielectric layer covering the gate. The dielectric layer is then etched while leaving it remaining at least on the gate so that the gate is electrically insulated from other elements formed above the dielectric layer. This etching is preferably carried out using a mask which was used for fabricating the gate and a mask which was used for fabricating the insulating zone. |
US08823106B2 |
ESD protective element and plasma display including the ESD protective element
The present invention mainly provides an ESD protective element which can be built in high voltage semiconductor integrated circuit devices without increasing the chip area. An ESD protective element according to one embodiment has a construction comprising a semiconductor layer, a first region of a first conduction type formed in the semiconductor layer, a first region of a second conduction type formed in the semiconductor layer away from the first region of the first conduction type, a second region of the second conduction type formed in the first region of the second conduction type and has a higher impurity concentration than it, and a second region of the first conduction type formed in the second region of the second conduction type and has a high impurity concentration. The first and second regions of the second conduction type are in an electrically floating state. |
US08823101B2 |
ESD protection semiconductor device having an insulated-gate field-effect transistor
Fins of semiconductor are formed on the substrate. Each of the fins is located separately from one another. A gate insulating film is formed on side surfaces of the fins. A gate electrode is formed on the gate insulating film. The gate electrode extends to cross over the fins. A gate contact portion is provided to supply an electric signal. In the fins, first drain regions and first source regions are formed respectively so as to sandwich portions of the fins located below the gate electrode. A width of first one of the fins is larger than that of second one of the fins which is more distant from the gate contact portion than the first one of the fins. |
US08823100B2 |
Semiconductor devices and methods of making
In one method of forming a semiconductor device, a first electrode is formed electrically coupled with a semiconductor material. After the first electrode is formed, an insulator is formed over the semiconductor material adjoining the first electrode and extending a selected distance from the first electrode. After the insulator is formed, a second electrode is formed electrically coupled with the semiconductor material adjoining the insulator. |
US08823094B2 |
Methods of fabricating semiconductor devices
A semiconductor device includes a substrate having first and second regions, a device isolation layer on the substrate defining an active region in each of the first and second regions, a gate pattern on the active region of each of the first and second regions, and a first dopant region and a second dopant region in each of the first and second regions of the substrate, the gate pattern in each of the first and second regions being between respective first and second dopant regions. At least one of upper surfaces of the first and second dopant regions in the second region is lower in level than an upper surface of the substrate under the gate pattern in the second region, the first and second dopant regions in the second region having an asymmetric recessed structure with respect to the gate pattern in the second region. |
US08823091B2 |
Semiconductor device having saddle fin transistor and manufacturing method of the same
The present invention discloses a transistor having the saddle fin structure. The saddle fin transistor of the present invention has a structure in which a landing plug contact region, particularly, a landing plug contact region on an isolation layer is elevated such that the landing plug contact SAC (Self Aligned Contact) fail can be prevented. |
US08823090B2 |
Field-effect transistor and method of creating same
A field-effect transistor has a gate, a source, and a drain. The gate has a via extending through a semiconductor chip substrate from one surface to an opposite surface of the semiconductor chip substrate. The source has a first toroid of ion dopants implanted in the semiconductor chip substrate surrounding one end of the via on the one surface of the semiconductor chip substrate. The drain has a second toroid of ion dopants implanted in the semiconductor chip substrate surrounding an opposite end of the via on the opposite surface of the semiconductor chip substrate. |
US08823088B2 |
Semiconductor device with buried gate and method for fabricating the same
A semiconductor device includes a first region and a second region, a buried gate arranged in the first region, and an oxidation prevention barrier surrounding the first region. |
US08823086B2 |
Semiconductor device and method of manufacturing the same
A semiconductor device having a buried gate is provided. The semiconductor device is formed in a structure in which a plurality of contacts having small step differences are stacked without forming a metal contact applying an operation voltage to the buried gate in a single contact and a contact pad is formed between the contacts so that failure due to misalignment can be prevented without a separate additional process for forming the contacts. |
US08823082B2 |
Semiconductor device
The present invention is a semiconductor device including a first electrode over a substrate; a pair of oxide semiconductor films in contact with the first electrode; a second electrode in contact with the pair of oxide semiconductor films; a gate insulating film covering at least the first electrode and the pair of oxide semiconductor films; and a third electrode that is in contact with the gate insulating film and is formed at least between the pair of oxide semiconductor films. When the donor density of the oxide semiconductor films is 1.0×1013/cm3 or less, the thickness of the oxide semiconductor films is made larger than the in-plane length of each side of the oxide semiconductor films which is in contact with the first electrode. |
US08823081B2 |
Transistor device with field electrode
A transistor device includes a semiconductor body having a source region, a drift region, and a body region between the source region and the drift region. A source electrode is electrically coupled to the source region. A gate electrode adjacent the body region is dielectrically insulated from the body region by a gate dielectric. A field electrode adjacent the drift region is dielectrically insulated from the drift region by a field electrode dielectric and electrically coupled to one of the gate electrode and the source electrode. A rectifier element electrically couples the field electrode to the one of the gate electrode and the source electrode. |
US08823078B2 |
Non-volatile memory device having stacked structure, and memory card and electronic system including the same
Provided are a non-volatile memory devices having a stacked structure, and a memory card and a system including the same. A non-volatile memory device may include a substrate. A stacked NAND cell array may have at least one NAND set and each NAND set may include a plurality of NAND strings vertically stacked on the substrate. At least one signal line may be arranged on the substrate so as to be commonly coupled with the at least one NAND set. |
US08823077B2 |
Semiconductor device and method of manufacturing the same
A semiconductor device according to example embodiments may include a channel including a nanowire and a charge storage layer including nanoparticles. A twin gate structure including a first gate and a second gate may be formed on the charge storage layer. The semiconductor device may be a memory device or a diode. |
US08823075B2 |
Select gate formation for nanodot flat cell
Methods of fabricating a memory device include forming a tunnel oxide layer over a memory cell area of a semiconductor substrate, forming a floating gate layer over the tunnel oxide layer in the memory cell area, the floating gate layer comprising a plurality of nanodots embedded in a dielectric material, forming a blocking dielectric layer over the floating gate layer in the memory cell area, removing portions of the blocking dielectric layer, the floating gate layer, the tunnel oxide layer, and the semiconductor substrate in the memory cell area to form a first plurality of isolation trenches, and forming isolation material within the first plurality of isolation trenches. |
US08823074B2 |
Semiconductor element, semiconductor device, and method for manufacturing the same
The semiconductor element includes an oxide semiconductor layer on an insulating surface; a source electrode layer and a drain electrode layer over the oxide semiconductor layer; a gate insulating layer over the oxide semiconductor layer, the source electrode layer, and the drain electrode layer; and a gate electrode layer over the gate insulating layer. The source electrode layer and the drain electrode layer have sidewalls which are in contact with a top surface of the oxide semiconductor layer. |
US08823073B2 |
Semiconductor memory device and semiconductor memory element
A semiconductor memory element has MOS transistor for writing by a drain-avalanche hot electron. The MOS transistor has a semiconductor substrate, a first semiconductor layer formed on the semiconductor substrate, a floating gate provided on the first semiconductor layer through intermediation of a first insulating film, a channel region formed in a surface of the first semiconductor layer under the floating gate, and source region and a drain region provided on the first semiconductor layer so as to be in contact with the channel region. The channel region has a distribution of at least two kinds of carrier densities provided in at least two portions thereof disposed in parallel along a direction connecting the source region and the drain region. |
US08823072B2 |
Floating gate type nonvolatile memory device and related methods of manufacture and operation
A floating gate type nonvolatile memory device comprises a semiconductor layer, wordlines crossing over the semiconductor layer, and a memory element disposed between the wordlines and facing the semiconductor layer. |
US08823067B2 |
Solid-state imaging apparatus and electronic apparatus
A solid-state imaging apparatus including: a sensor substrate that has a plurality of pixels configured to receive incident light, the plurality of pixels being arranged on an upper surface of a semiconductor substrate; a transparent substrate that has a lower surface facing an upper surface of the sensor substrate and is configured to transmit the incident light therethrough; and a diffraction grating that is provided at any position between an upper surface of the transparent substrate and the upper surface of the sensor substrate and is configured to transmit the incident light therethrough, in which the diffraction grating is formed so as to diffract reflected diffraction light caused by that the incident light is incident on a pixel area in which the plurality of pixels are arranged on the upper surface of the semiconductor substrate and is diffracted. |
US08823062B2 |
Integrated circuit with offset line end spacings in linear gate electrode level
A first linear-shaped conductive structure (LSCS) forms gate electrodes of a first p-transistor and a first n-transistor. A second LSCS forms a gate electrode of a second p-transistor. A third LSCS forms a gate electrode of a second n-transistor, and is separated from the second LSCS by a first end-to-end spacing (EES). A fourth LSCS forms a gate electrode of a third p-transistor. A fifth LSCS forms a gate electrode of a third n-transistor, and is separated from the fourth LSCS by a second EES. A sixth LSCS forms gate electrodes of a fourth p-transistor and a fourth n-transistor. An end of the second LSCS adjacent to the first EES is offset from an end of the fourth LSCS adjacent to the second EES, and/or an end of the third LSCS adjacent to the first EES is offset from an end of the fifth LSCS adjacent to the second EES. |
US08823060B1 |
Method for inducing strain in FinFET channels
FinFETs in which a swelled material within the fin, typically an oxide of the fin semiconductor, causes strain that significantly increases charge carrier mobility within the FinFET channel. The concept can be applied to either p-type or n-type FinFETs. For p-type FinFETs the swelled material is positioned underneath the source and drain regions. For n-type FinFETs the swelled material is positioned underneath the channel region. The swelled material can be used with or without strain-inducing epitaxy on the source and drain areas and can provide greater strain than is achievable by strain-inducing epitaxy alone. |
US08823052B2 |
Power semiconductor device
A power semiconductor device includes a four-layer structure having layers arranged in order: (i) a cathode layer of a first conductivity type with a central area being surrounded by a lateral edge, the cathode layer being in direct electrical contact with a cathode electrode, (ii) a base layer of a second conductivity type, (iii) a drift layer of the first conductivity typehaving a lower doping concentration than the cathode layer, and (iv) an anode layer of the second conductivity type which is in electrical contact with an anode electrode. The base layer includes a first layer as a continuous layer contacting the central area of the cathode layer. A resistance reduction layer, in which the resistance at the junction between the lateral edge of the cathode and base layers is reduced, is arranged between the first layer and the cathode layer and covers the lateral edge of the cathode layer. |
US08823051B2 |
High-voltage diodes formed in advanced power integrated circuit devices
A diode-connected lateral transistor on a substrate of a first conductivity type includes a vertical parasitic transistor through which a parasitic substrate leakage current flows. Means for shunting at least a portion of the flow of parasitic substrate leakage current away from the vertical parasitic transistor is provided. |
US08823047B2 |
Semiconductor light emitting device including first conductive type clad layer
Provided is a semiconductor light emitting device. The semiconductor light emitting device comprises a first conductive type clad layer having a composition ratio of aluminum increased at a predetermined rate, an active layer on the first conductive type clad layer, and a second conductive type semiconductor layer on the active layer. |
US08823044B2 |
Light emitting diode with graphene layer
A light emitting diode includes a substrate, graphene layer, a first semiconductor layer, an active layer, a second semiconductor layer, a first electrode and a second electrode. The first semiconductor layer is on the epitaxial growth layer of the substrate. The active layer is between the first semiconductor layer and the second semiconductor layer. The first electrode is electrically connected with the second semiconductor layer and the second electrode electrically is connected with the second part of the carbon nanotube layer. The graphene layer is located on at least one of the first semiconductor layer and the second semiconductor layer. |
US08823043B2 |
Flip-chip light emitting diode
A flip-chip light emitting diode comprises a transparent base-plate, at least a first electrical semi-conductive layer, a light emitting layer, a second electrical semi-conductive layer, at least a first ohmic contact, a second ohmic contact and a third ohmic contact are installed above the transparent base-plate. The at least first ohmic contact is electrically connected to the third ohmic contact through a connection passage. A first electrode area is formed above the second electrical semi-conductive layer. The second ohmic contact is disposed above the transparent base-plate and adjacent to a side of the first ohmic contact. A second electrode area is formed on the second ohmic contact. |
US08823041B2 |
Light emitting diode package and light emitting module comprising the same
Exemplary embodiments of the present invention provide a light emitting diode package including a light emitting diode chip, a lead frame having a chip area on which the light emitting diode chip is arranged, and a package body supporting the lead frame. The lead frame includes a first terminal group arranged at a first side of the chip area and a second terminal group arranged at a second side of the chip area. The first terminal group and the second terminal group each include a first terminal connected to the chip area and a second terminal separated from the chip area, and the width of the first terminal is different than the width of the second terminal outside the package body. |
US08823040B2 |
Light-emitting device and method of manufacturing the same
A light-emitting device includes an element mounting substrate, a light-emitting element on the element mounting substrate, a case formed around the light-emitting element and having an opening on a light extraction side of the light-emitting device, and a sealing material filled in the opening of the case to seal the light-emitting element. The element mounting substrate includes an uneven portion configured to firmly attach the element mounting substrate to the case or the sealing material. |
US08823038B2 |
Semiconductor light-emitting structure
A semiconductor light-emitting structure is provided, which includes a first doped type semiconductor layer, a light-emitting layer, a second doped type semiconductor layer, a first electrical transmission layer and at least one first conductor. The light-emitting layer is disposed on the first doped type semiconductor layer and the second doped type semiconductor layer is disposed on the light-emitting layer. The first electrical transmission layer is disposed on the first doped type semiconductor layer, in which a first interface is formed between the first electrical transmission layer and the first doped type semiconductor layer. The first conductor is disposed on the first doped type semiconductor layer. The first electrical transmission layer connects the first conductor. A second interface is formed between each of the first conductor and the first doped type semiconductor layer, and the resistance of the second interface is less than the resistance of the first interface. |
US08823036B2 |
Light emitting diode package and light emitting diode system having at least two heat sinks
There is provided a light emitting diode package having at least two heat sinks. The light emitting diode package includes a main body, at least two lead terminals fixed to the main body, and at least two heat sinks of electrically and thermally conductive materials, the heat sinks being fixed to the main body. The at least two heat sinks are separated from each other. Thus, high luminous power can be obtained mounting a plurality of light emitting diode dies in one LED package. Further, it is possible to embody polychromatic lights mounting LED dies emitting different wavelengths of light each other in the LED package. |
US08823035B2 |
Solid state light sources based on thermally conductive luminescent elements containing interconnects
Solid state light sources based on LEDs mounted on or within thermally conductive luminescent elements provide both convective and radiative cooling. Low cost self-cooling solid state light sources can integrate the electrical interconnect of the LEDs and other semiconductor devices. The thermally conductive luminescent element can completely or partially eliminate the need for any additional heatsinking means by efficiently transferring and spreading out the heat generated in LED and luminescent element itself over an area sufficiently large enough such that convective and radiative means can be used to cool the device. |
US08823034B2 |
Optoelectric semiconductor chip
An optoelectronic semiconductor chip includes a semiconductor layer stack consisting of a nitride compound semiconductor material on a carrier substrate, wherein the carrier substrate includes a surface containing silicon. The semiconductor layer stack includes a recess extending from a back of the semiconductor layer stack through an active layer to a layer of a first conductivity type. The layer of the first conductivity type connects electrically to a first electrical connection layer which covers at least a portion of the back through the recess. The layer of a second conductivity type connects electrically to a second electrical connection layer arranged at the back. |
US08823033B2 |
Nitride semiconductor ultraviolet light-emitting device
A nitride semiconductor ultraviolet light-emitting device includes at least one first conductivity-type nitride semiconductor layer, a nitride semiconductor emission layer, at least one second conductivity-type nitride semiconductor layer and a transparent conductive film of crystallized Mgx1Zn1-x1O (0 |
US08823032B2 |
Light-emitting diode element, method for manufacturing light guide structure thereof and equipment for forming the same
A light-emitting diode (LED) element is provided. The LED element includes a substrate, a diode structure layer and several light-guide structures. The light-guide structures are formed on at least one of the substrate and the diode structure layer. Each light-guide structure has an inner sidewall, and several spiral slits formed on the inner side wall. |
US08823027B2 |
Light emitting device
A light emitting device having a relatively simple configuration is provided that emits stable light having a plurality of wavelengths. The light emitting device 1 comprises, in sequence, a composite substrate 3 and a gallium nitride-based semiconductor layer 5 including a light emitting layer 9. The composite substrate 3 includes a base 19 and a gallium nitride layer, the gallium nitride-based semiconductor layer 5 being disposed on a principal surface of the gallium nitride layer, the angle θ defined by the c-axis of the gallium nitride layer and a normal line N1 to the principal surface S1 of the gallium nitride layer ranging from 50 to 130 degrees, the light emitting layer 9 emitting light with an absolute value of the degree of polarization of 0.2 or more, the base 19 containing a fluorescent material that emits a fluorescent light component induced by irradiation of a light component emitted from the light emitting layer 9. Accordingly, the light emitting device 1 can emit white light produced by superposition of blue light directly emitted from the light emitting layer 9 and yellow light induced by blue light incident on the base 19 from the light emitting layer 9. |
US08823026B2 |
Nitride semiconductor light-emitting element and manufacturing method therefor
A nitride-based semiconductor light-emitting device of an embodiment includes a semiconductor multilayer structure having a growing plane which is an m-plane and being made of a GaN-based semiconductor. The semiconductor multilayer structure includes a n-type semiconductor layer, a p-type semiconductor layer, a p-side electrode provided on the p-type semiconductor layer, and an active layer interposed between the n-type semiconductor layer and the p-type semiconductor layer. The ratio of the thickness of the active layer to the thickness of the n-type semiconductor layer, D, is in the range of 1.8×10−4≦D≦14.1×10−4. The area of the p-side electrode, S, is in the range of 1×102 μm2≦S≦9×104 μm2. A maximum current density which leads to 88% of a maximum of the external quantum efficiency is not less than 2 A/mm2. |
US08823020B2 |
Light emitting diode
An LED includes a substrate, a first n-type GaN layer, a connecting layer, a second n-type GaN layer, a light emitting layer, and a p-type GaN layer formed on the substrate in sequence. The connecting layer is etchable by alkaline solution. A bottom surface of the second n-type GaN layer faces towards the connecting layer and has a roughened exposed portion. The GaN on the bottom surface of the second n-type GaN layer has an N-face polarity. A blind hole extends through the p-type GaN layer, the light emitting layer and the second n-type GaN layer to expose the connecting layer. An annular rough portion is formed on the bottom surface of the second n-type GaN layer and surrounds each blind hole. |
US08823014B2 |
Off-axis silicon carbide substrates
A method of epitaxial growth of a material on a crystalline substrate includes selecting a substrate having a crystal plane that includes a plurality of terraces with step risers that join adjacent terraces. Each terrace of the plurality or terraces presents a lattice constant that substantially matches a lattice constant of the material, and each step riser presents a step height and offset that is consistent with portions of the material nucleating on adjacent terraces being in substantial crystalline match at the step riser. The method also includes preparing a substrate by exposing the crystal plane; and epitaxially growing the material on the substrate such that the portions of the material nucleating on adjacent terraces merge into a single crystal lattice without defects at the step risers. |
US08823010B2 |
Thin-film transistor array substrate and display device including the same
A thin-film transistor (TFT) array substrate includes a first conductive layer of a TFT, a second conductive layer that partially overlaps the first conductive layer, a through hole in a layer between the first and second conductive layers, a node contact hole integrally formed to include a first contact hole in the first conductive layer and a second contact hole in the second conductive layer such that the first contact hole is continuous with the second contact hole and is not separated from the second contact hole by an insulation layer, and a connection node that is in another layer different from the first conductive layer and the second conductive layer. The connection node is connected to the first and second conductive layers through the through hole and the node contact hole. |
US08823008B2 |
Organic light emitting display device and method for manufacturing the same
In an organic light emitting diode (OLED) display and a manufacturing method, an organic light emitting diode (OLED) display includes: a substrate; a semiconductor layer pattern formed on the substrate and including a first capacitor electrode; a gate insulating layer covering the semiconductor layer pattern; a first conductive layer pattern formed on the gate insulating layer and including a second capacitor electrode having at least a portion overlapping the first capacitor electrode; an interlayer insulating layer having a capacitor opening exposing a portion of the second capacitor electrode and covering the second capacitor electrode; and a second conductive layer pattern formed on the interlayer insulating layer, wherein the capacitor opening includes a first transverse side wall parallel to and overlapping the second capacitor electrode, a second transverse side wall parallel to and not overlapping the second capacitor electrode, and a longitudinal side wall connecting the first transverse side wall and the second transverse side wall to each other and overlapping the first capacitor electrode. |
US08823004B2 |
Semiconductor device and manufacturing method thereof
A means of forming unevenness for preventing specular reflection of a pixel electrode, without increasing the number of process steps, is provided. In a method of manufacturing a reflecting type liquid crystal display device, the formation of unevenness (having a radius of curvature r in a convex portion) in the surface of a pixel electrode is performed by the same photomask as that used for forming a channel etch type TFT, in which the convex portion is formed in order to provide unevenness to the surface of the pixel electrode and give light scattering characteristics. |
US08823003B2 |
Gate insulator loss free etch-stop oxide thin film transistor
A method is provided for fabricating a thin-film transistor (TFT). The method includes forming a semiconductor layer over a gate insulator that covers a gate electrode, and depositing an insulator layer over the semiconductor layer, as well as etching the insulator layer to form a patterned etch-stop without losing the gate insulator. The method also includes forming a source electrode and a drain electrode over the semiconductor layer and the patterned etch-stop. The method further includes removing a portion of the semiconductor layer beyond the source electrode and the drain electrode such that a remaining portion of the semiconductor layer covers the gate insulator in a first overlapping area of the source electrode and the gate electrode and a second overlapping area of the drain electrode and gate electrode. |
US08823001B2 |
Thin film transistor array substrate and method for manufacturing the same
The present disclosure discloses a method for manufacturing a TFT array substrate, comprising: depositing a gate metal layer, a gate insulating layer, a semiconductor layer and a source-drain electrode layer in this order on a base substrate, performing a first photolithograph process to form a common electrode line, a gate line, a gate electrode, a source electrode, a drain electrode and a channel defined between the source electrode and the drain electrode; depositing a passivation layer, performing a second photolithograph process to form a first via hole and a second via hole in the passivation layer; and depositing a pixel electrode layer and a data line layer in this order, perform a third photolithograph process to form a data line connected to the source electrode through the first via hole and a pixel electrode connected to the drain electrode through the second via hole. |
US08822997B2 |
Electrophoretic display device and method for manufacturing thereof
It is an object to provide an electrophoretic display device having a thin film transistor which has highly reliable electric characteristics, lightweight, and flexibility. A gate insulating film is formed over a gate electrode, a microcrystalline semiconductor film which functions as a channel formation region is formed over the gate insulating film, a buffer layer is formed over the microcrystalline semiconductor film, a pair of source and drain regions are formed over the buffer layer, a pair of the source and drain electrodes in contact with the source and drain regions are formed. Then, the inverted-staggered thin film transistor is interposed between the flexible substrates, and the thin film transistor is provided with electrophoretic display element which is electrically connected by the pixel electrode. Then, the electrophoretic display electrode is surrounded by the partition layer so as to cover the end portion of the pixel electrode and provided over the pixel electrode. |
US08822990B2 |
Semiconductor device
An object is to provide a semiconductor device having a structure with which parasitic capacitance between wirings can be sufficiently reduced. An oxide insulating layer serving as a channel protective layer is formed over part of an oxide semiconductor layer overlapping with a gate electrode layer. In the same step as formation of the oxide insulating layer, an oxide insulating layer covering a peripheral portion of the oxide semiconductor layer is formed. The oxide insulating layer which covers the peripheral portion of the oxide semiconductor layer is provided to increase the distance between the gate electrode layer and a wiring layer formed above or in the periphery of the gate electrode layer, whereby parasitic capacitance is reduced. |
US08822985B2 |
Diode and process for making an organic light-emitting diode with a substrate planarisation layer
An organic light-emitting diode (OLED) on a transparent substrate includes a microcavity formed between a reflecting cathode and semi-reflecting anode. The microcavity includes multiple organic layers with at least one light-emitting layer. The OLED is characterized by a transparent planarization layer between the substrate and an upper metallic layer forming the OLED semitransparent anode. A process for making such an OLED is also described. |
US08822982B2 |
Light emitting device and electronic apparatus
A light emitting device which is capable of suppressing deterioration by diffusion of impurities such as moisture, oxygen, alkaline metal and alkaline earth metal, and concretely, a flexible light emitting device which has light emitting element formed on a plastic substrate. On the plastic substrate, disposed are two layers and more of barrier films comprising a layer represented by AlNxOy which is capable of blocking intrusion of moisture and oxygen in a light emitting layer and blocking intrusion of impurities such as an alkaline metal and an alkaline earth metal in an active layer of TFT, and further, a stress relaxation film containing resin is disposed between two layers of barrier films. |
US08822968B2 |
Nonvolatile memory device and method for manufacturing same
According to one embodiment, a nonvolatile memory device includes a first wiring layer. The device includes a second wiring layer intersecting with the first wiring layer. And the device includes a first memory layer provided at a position where the first wiring layer and the second wiring layer intersect. And the first memory layer contacts with the first wiring layer, and the first wiring layer is a layer which is capable of supplying a metal ion to the first memory layer. |
US08822961B2 |
LED curing lamp and method
A curing lamp apparatus mounts to a work surface with a suction cup. A base is mounted to the suction cup. A flexible neck extends from the base to the lamp head. The lamp head includes a lamp element with first and second UV light sources which emit UV light at different wavelengths. A control circuit is located in the base. A heat sink is provided on the lamp head including a conductive plate and projecting pins. A protective housing encloses the plate and pins. A timing circuit controls the light source for automatic shut off. External or internal power is provided for the control circuit. |
US08822958B2 |
Radiation treatment planning system
Optimal irradiation conditions determined by iterative calculation are based upon an operator-defined irradiating direction, prescription dose, and other conditions. Dose matrixes A and B relating doses to calculation points from a beam delivered to irradiating positions are divided into a dose matrix AM or BM for the calculation points in a target region that are present at distances equal to or less than a distance L from the beam axis of the beam delivered to each spot, and a dose matrix AS or BS for the calculation points that are present at distances greater than L. When the iterative calculation is conducted following completion of the division, dose values and {right arrow over (d)}S(1) and {right arrow over (d)}S(2) that include the dose matrixes AS and BS are regarded as constants, and if updating conditions are satisfied, an objective function is recalculated using the values of the dose matrixes A, B and the spot irradiation dose {right arrow over (x)}. |
US08822956B2 |
High-resolution fluorescence microscopy
A microscopy method for producing a high-resolution image of a 2-dimensional sample. The method includes exciting statistically blinking fluorophores in a sample by irradiating the sample with illumination radiation, repeatedly imaging the sample onto a spatially resolving detector in an image field that covers only a part of the sample to thereby obtain a frame sequence, generating an image from the frame sequence, the image having a spatial resolution increased beyond the optical resolution limit using a cumulant function, moving the position of the image field on the sample at least once and repeating the imaging and generating steps to obtain one image for each position of the image field, and combining the resultantly obtained images to form a complete image of the sample. |
US08822955B2 |
Polymer-conjugated quantum dots and methods of making the same
The present application relates to polymer-conjugated quantum dots. The quantum dots can include, for example, an inorganic core conjugated to a polymer. The quantum dots may, in some embodiments, be water-soluble and exhibit superior photoluminescence. Also disclosed are methods of making and using the quantum dots. |
US08822953B2 |
Electron beam irradiation apparatus
An electron beam irradiation apparatus is provided that includes a vacuum room, an electron beam generator, a window frame, and an irradiation foil. The vacuum room includes a wall having an opening through which an electron beam is irradiated. An internal atmosphere of the vacuum room is evacuated. The electron beam generator is provided inside the vacuum room. The window frame is attached to and surrounds the opening in the wall of the vacuum room. The irradiation foil, through which an electron beam generated in the vacuum room is transmitted, is fixed to the window frame. The surface of the window frame, at least an area exposed to the vacuum room, is substantially covered with material including an element or elements with an atomic number less than or equal to 10. |
US08822952B2 |
Charged particle beam apparatus having noise absorbing arrangements
Charged particle beam apparatus arrangements in which either a first noise absorber which provides noise absorbing performance specialized for a first frequency range including the natural frequency of the charged particle beam apparatus as reference, or a second noise absorber which provides noise absorbing performance specialized for a second frequency range including the frequency of acoustic standing waves generated within the cover as reference, or both of the first and second noise absorbers is/are disposed within a cover of the charged particle beam apparatus. |
US08822951B2 |
Manipulator carrier for electron microscopes
The present invention relates to a carrier device for transporting one or more manipulators into a vacuum specimen chamber of an electron microscope, characterized in that the carrier device comprises: (i) a platform having securing means for detachably securing the one or more manipulators to the platform, and (ii) electrical connectors secured to the platform for the electrical connection of the one or more manipulators. The present invention also relates to a method for transporting the carrier device into the vacuum specimen chamber of the electron microscope without altering the vacuum of the vacuum specimen chamber comprising transporting the carrier device of the invention through the specimen exchange chamber of the electron microscope and into the vacuum specimen chamber. |
US08822949B2 |
Apparatus and method for thermal assisted desorption ionization systems
The present invention is directed to a method and device to desorb an analyte using heat to allow desorption of the analyte molecules, where the desorbed analyte molecules are ionized with ambient temperature ionizing species. In various embodiments of the invention a current is passed through a mesh upon which the analyte molecules are present. The current heats the mesh and results in desorption of the analyte molecules which then interact with gas phase metastable neutral molecules or atoms to form analyte ions characteristic of the analyte molecules. |
US08822943B2 |
Neutron detector and neutron image detector with scintillator
A neutron detector without 3He gas, provided with a translucent type plate neutron scintillator having the structure capable to emit fluorescence from double-sides; the neutron scintillator is composed of ZnS fluorescent substance and a neutron converter which contains 6Li or 10B, and arranged at an angle of 45 degrees from the neutrons which are incident in parallel all together, inside of a cylindrical detector housing with the circular or square section where the specular reflector with the reflectance of 90% or more is arranged internally, andthe fluorescence emitted when the neutron enters the scintillator is detected by two photo multipliers arranged on both sides, and signals output from these two photo multipliers are processed to be taken out as a neutron signal. |
US08822941B2 |
Radiation detecting panel and radiographic detector
A radiation detecting panel and a radiographic detector are shown. According to one implementation, a radiation detecting panel includes a device substrate and a scintillator. The device substrate includes a two-dimensional array of photoelectric transducers on a first surface of the device substrate. The scintillator substrate includes a scintillator on a first surface of the scintillator substrate. The scintillator converts radiation to light and irradiates the light onto the photoelectric transducers. The device substrate and the scintillator substrate are bonded together such that the photoelectric transducers face the scintillator. A resin layer disposed between the photoelectric transducers and the scintillator has a glass-transition temperature of 60° C. or higher. |
US08822939B2 |
Matrix substrate, detection device, detection system, and method for driving detection device
A matrix substrate which realizes high operation speed and high reliability and which is capable of obtaining a high-quality image while the number of connection terminals is limited is provided. The matrix substrate includes pixels arranged in a matrix, N driving lines arranged in a row direction, P connection terminals where P is less than N, a demultiplexer which is disposed between the connection terminals and the driving lines and which includes first polycrystalline semiconductor TFTs and first connection terminals. The demultiplexer further includes second polycrystalline semiconductor TFTs and the second control lines used to maintain the driving lines to have non-selection voltages which bring the pixels to non-selection states between one of the connection terminals and two or more of the driving lines. |
US08822936B2 |
Detector for detecting particle radiation of an energy in the range of 150 eV to 300 keV, and a materials mapping apparatus with such a detector
Detector for detection of particle radiation, particularly particle radiation having an energy in the range of 150 eV to 300 keV, comprising at least one detector element, said detector element comprising a semiconductor detector material, at least a set of line-shaped electrodes conductively connected to at least one surface of said semiconductor detector material, each set comprising a plurality of line-shaped electrodes extending in parallel, and signal processor communicating with said line-shaped electrodes, wherein, in each set, said line-shaped electrodes are distributed with a strip pitch of less than 3 μm, and that the thickness of said semiconductor detector material is of less than two times the strip pitch of said line-shaped electrodes. |
US08822931B2 |
PET detector modules utilizing overlapped light guides
When constructing a nuclear detector module in a gantry, a plurality of overlapping light guide modules (10) are mounted to the gantry in a spaced-apart fashion, and a plurality of underlapping light guide modules (12) are mounted in between each pair of overlapping light guide modules (10). Each of the underlapping modules and the overlapping modules includes a scintillation crystal array (16) on an interior surface thereof, and a plurality of PMTs on an exterior surface thereof. Overlapping modules (10) have overlapping structures (22) that interface with underlapping structures (18) on the underlapping modules (12) and thereby eliminate a seam directly beneath PMTs that overlap the crystal arrays of both an overlapping module and an underlapping module. Optical grease is used to form a resilient grease coupling and reduce light scatter between the underlapping and overlapping modules. |
US08822927B2 |
Droplet counting and measuring device
A device to measure the characteristics of droplets within a stream of liquid droplets used in spraying includes a light source supplying light across the stream of droplets; a detector to detect change in the light level caused by a passing droplet, the detector generating a signal according to the change in light; and a processor to analyze the characteristics of the droplets in the stream based on the signal produced by the detection means. The light passes through a slit in a panel disposed between the droplet stream and the detector, so that the change in level of light detected by the detector is proportional to the diameter of the droplet. |
US08822926B2 |
Inspection apparatus for sheet
An inspection apparatus for a sheet of paper subjected to a process to impart a translucent property including a “watermark” or a “security window” includes: an inspection cylinder in which a surface facing the sheet of paper is provided with a blackened portion; IR-LED illuminators which irradiate the sheet of paper with light containing infrared rays; an IR monochrome camera which images the sheet; an IR filter which eliminates visible light in the light emitted from the IR-LED illuminators and reflected off the sheet as well as the inspection cylinder and makes only the infrared rays incident on the IR monochrome camera; and a control device which determines appropriateness of a processed portion on the sheet having the translucent property on the basis of the infrared rays emitted from the IR-LED illuminators, reflected off the sheet as well as the inspection cylinder, and made incident on the IR monochrome camera. |
US08822923B2 |
Sensor head for an X-ray detector, X-ray detector with sensor head and sensor arrangement
A sensor head for an X-ray detector is specified. The sensor head includes a first conductor carrier having a frontal face, and a sensor element sensitive to X-ray radiation. The sensor element is arranged on the frontal face of the first conductor carrier, is electrically conductively connected to conductors of the first conductor carrier and has a detection area. Furthermore, the sensor head includes contact elements electrically conductively connected to the sensor element via the first conductor carrier and bonding wires that electrically conductively connect the first conductor carrier to the contact elements. The sensor element is electrically conductively connected to the contact elements. In a plan view of the detection area, the detection area at least partly covers the bonding wires. |
US08822918B2 |
Ion guide and mass spectrometry device
An electrode changeover switch which switches the connection state of electrodes is provided in the wiring path between eight electrodes through, arranged rotation-symmetrically about ion optical axis, and voltage generation switch which generates square wave high voltage ±V. When switch is switched as shown in the drawing, two circumferentially adjacent rod electrodes are connected to form one set, a square wave voltage of opposite phase is applied to circumferentially adjacent sets, and an effectively quadrupole electric field is formed. When switch is switched, a square wave voltage of opposite phase is applied to circumferentially adjacent rod electrodes and an octupole electric field is formed. In this way, by switching the switch according to the mass range, etc., it becomes possible to rapidly switch the number of poles of a multipole electric field and to suitably transport ions. |
US08822909B2 |
Optical sensor holder for tracking location of sunlight
A holder having a light sensor for tracking location of sunlight is disclosed. The light sensor holder includes a holder 100 in which a first light sensor 401 is set, a first light guide section 141 including a light inputting hole 151 adjacent to a wall 300 at one side 111 of a body 110 in the holder 100 and formed in vertical direction, wherein a light is inputted through the light inputting hole 151, a second home 122 connected to the first light guide section 141 via a refraction section 172 and a second light guide section 142, wherein the light inputted through the light inputting hole 151 is refracted, and the refracted light is delivered to a sensing section 420 of a first light sensor 401 through a light outputting section 161, and a first home 121 adjacent to the second home 122, the first light sensor 401 being set in the first home 121. |
US08822907B2 |
Optical position-measuring device having two crossed scales
An optical position-measuring device includes a scanning bar extending in a first or second direction, and a scale extending in the other direction. The scale is offset by a scanning distance from the scanning bar in a third direction perpendicular to the first and second directions. The device has a light source whose light penetrates the scanning bar at an intersection point of the scanning bar and scale to fall on the scale and arrive back at the scanning bar. At a detector, the light is split by diffraction into different partial beams at optically effective structures of the scanning bar and scale and combined again. A periodic signal is obtained in the detector in response to: a shift between the scanning bar and scale in the first direction due to interference of combined partial beams, and a change in the scanning distance between the scanning bar and scale. |
US08822904B2 |
Plant sensor having a controller controlling light emission of first and second light emitters at timings different from each other
A plant sensor includes a first light emitter to emit first measuring light with a first wavelength to irradiate a growing condition measurement target therewith; a second light emitter to emit second measuring light with a second wavelength to irradiate the growing condition measurement target therewith; a light receiver to receive reflected light of each of the first and second measuring light from the growing condition measurement target and output a received light signal; a controller to control light emission; a light path merging unit to merge a first outgoing light path of the first measuring light from the first light emitter and a second outgoing light path of the second measuring light from the second light emitter; and a common outgoing light path connecting the light path merging unit to a light exit portion emitting the first measuring light and the second measuring light. |
US08822894B2 |
Light-field pixel for detecting a wavefront based on a first intensity normalized by a second intensity
A light-field pixel for detecting a wavefront, the light-field pixel comprises an aperture layer, a light detector layer, and a processor. The aperture layer has a non-conventional aperture and a non-conventional aperture. The non-conventional aperture has a higher gradient of transmission at normal incidence than the conventional aperture. The light detector is configured to measure a first intensity of light through the non-conventional aperture and a second intensity of light through the conventional aperture. The processor is configured to detect the wavefront based on the first intensity normalized by the second intensity. |
US08822893B2 |
Common field magnetic susceptors
Thermoplastic pellitized materials are melted in gravity flow through coaxially oriented perforated cylindrical metal susceptors. The susceptors are equally energized by the interception of a common magnetic field formed by a high frequency powered inductor coil. |
US08822888B2 |
Fuel cartridge for fuel cells
A method for controlling the pressure inside a fuel cartridge with a deformable inner fuel container connectable to a fuel cell is disclosed. |
US08822885B2 |
Modern Korsi and methods
This invention is related to the conservation of energy. The energy sources are limited and energy usage can cause environmental problems. This invention introduces a method of heating which is small and effective. In this method instead of heating the whole house which expensive and at times uncomfortable a limited heated space under a table means covered with a cover means is introduced that allows a person to warm up his/her body. Also, heating a smaller space can be done quickly and uses a limited energy, which is thus more cost-effective. This unit is designed to fold to a smaller unit for easy storage. In this method, an adjustable table means holds an electrical heating means under a cover and allows the person to use that limited space as heating source. The heating means has its control means and thermostat in order to keep the temp in a desired level. The table is very versatile and allows its dimensions to be changed easily so that the user has the option of choosing a size that fits its need. The unit also provides means for sitting and holding the feet comfortably. The unit also introduces a cover and a heating means for the user's back. This unit allows the persons to have a source of heat that can be set up easily, warm up quickly and to use minimal energy. It can also be stored in a very small space. The use of these units can be life saving in man made or natural tragedies in cold weather. |
US08822880B2 |
Method and device for controlling the power transmitted by a laser to a reference point, soldering device and method
In accordance with said control method, the transmission of the laser beam is periodically interrupted with the aid of means for masking the laser beam placed between the reference point and a source of the laser beam. Moreover, the transmission power of the source of the laser beam is varied between the minimum and maximum values, such that the emission times of the source of the laser beam at the minimum power substantially coincide with the masking times of the laser beam via the masking means. Preferably, the minimum value is at least equal to 10% and the maximum value at most equal to 90% of a maximum emission power of the source of the laser beam. |
US08822876B2 |
Multi-zoned plasma processing electrostatic chuck with improved temperature uniformity
An electrostatic chuck assembly including a dielectric layer with a top surface to support a workpiece. A cooling channel base disposed below the dielectric layer includes a plurality of inner fluid conduits disposed beneath an inner portion of the top surface, and a plurality of outer fluid conduits disposed beneath an outer portion of the top surface. A chuck assembly includes a thermal break disposed within the cooling channel base between the inner and outer fluid conduits. A chuck assembly includes a fluid distribution plate disposed below the cooling channel base and the base plate to distribute a heat transfer fluid delivered from a common input to each inner or outer fluid conduit. The branches of the inner input manifold may have substantially equal fluid conductance. |
US08822875B2 |
Methods and systems for coherent imaging and feedback control for modification of materials
Methods and systems are provided for using optical interferometry in the context of material modification processes such as surgical laser or welding applications. An imaging optical source that produces imaging light. A feedback controller controls at least one processing parameter of the material modification process based on an interferometry output generated using the imaging light. A method of processing interferograms is provided based on homodyne filtering. A method of generating a record of a material modification process using an interferometry output is provided. |
US08822874B2 |
Method and apparatus for microplasma spray coating a portion of a compressor blade in a gas turbine engine
A method and apparatus for microplasma spray coating a portion of a substrate, such as a gas turbine compressor blade, without masking any portions thereof. The apparatus includes a microplasma gun with an anode, cathode, and an arc generator for generating an electric arc between the anode and cathode. An arc gas emitter injects inert gas through the electric arc. The electric arc is operable for ionizing the gas to create a plasma gas stream. A powder injector injects powdered material into a plasma stream. A localized area of the compressor blade is coated with the powdered material without having to mask the compressor blade. |
US08822873B2 |
Method for manufacturing honeycomb structure forming die
A method for manufacturing a honeycomb structure forming die including a liquid groove forming step for forming linear processing liquid grooves whose width is smaller than that of the slit, in positions for forming the slits that form the partition walls of the honeycomb structure by subjecting the kneaded clay to extrusion in one side end face as a kneaded clay forming face of a plate-shaped die substrate. An introduction hole forming step for forming introduction holes for introducing the kneaded clay is performed before or after the liquid groove forming step. Slits communicating with the introduction holes are formed by performing comb-like electro-discharge machining by a comb-like electrode where plate-shaped protrusion electrodes, each corresponding to the width of the slit, are disposed in positions including the processing liquid grooves. |
US08822872B2 |
Electrode wire for electro-discharge machining and method for manufacturing the same
Disclosed are an electrode wire for electro-discharge machining and a method for manufacturing the same. The electrode wire includes a core wire including a first metal including copper, a first alloy layer formed at a boundary region between the core wire and a second metal plated on an outer surface of the core wire due to mutual diffusion between the core wire and the second metal, and a second alloy layer formed due to diffusion of the first metal to the second metal. A core wire material is erupted onto a surface of the electrode wire for electro-discharge machining, which includes the core wire, the first alloy layer, and the second alloy layer, along cracks appearing on the second alloy layer, so that a plurality of grains are formed on the surface of the electrode wire. |
US08822871B2 |
Wire electric discharge machine having positioning accuracy compensation function
Two contact detection jigs are spaced apart and attached on a table on which a workpiece to be machined by a wire electric discharge machine is placed, and first, under a state serving as a reference, a distance between these two contact detection jigs (a reference distance) is measured by bringing the wire electrode into contact with these contact detection jigs. Subsequently, in a state of actual use, the wire electrode is brought into contact with these contact detection jigs in the same manner, so that a distance between these two contact detection jigs (an actual distance) is measured. Then, based on the difference between the reference distance and the actual distance, the amount of compensation is obtained to compensate an instruction for moving the wire electrode with respect to the table. |
US08822867B2 |
Gas insulated switchgear
A gas insulated switchgear includes: an upper conductor; a lower conductor; a movable contact provided in the upper conductor; a fixed contact fixedly provided in the lower conductor; a moving side tulip contact provided in the movable contact; a moving side shield fixed to the upper conductor; a fixed side tulip contact provided in the fixed contact; a fixed side shield fixed to the lower conductor; and an insulating screen unit installed to selectively block the opening end of the moving side shield and covering an end of the movable contact when the movable contact is separated from the fixed contact. |
US08822865B2 |
Touch screen and method for manufacturing the same
Provided are a single-sided one-sheet type capacitive touch screen and a method for manufacturing the same. The touch screen includes: a substrate; a first conductive pattern disposed on the substrate in a vertical direction and including at least two pattern columns having two or more conductive pattern regions electrically connected with each other; a second conductive pattern disposed on the same surface of the substrate as the surface where the first conductive pattern is disposed, not being electrically connected with the first conductive pattern, and including two or more conductive pattern regions not electrically connected with each other; a transparent conductive bridge electrically connecting the conductive pattern regions of the second conductive pattern in a horizontal direction; and a transparent insulating part disposed between the transparent conductive bridge and the first conductive pattern to electrically insulate the transparent conductive bridge and the first conductive pattern. |
US08822864B2 |
Switching apparatus
A switching apparatus for closing and/or opening an electric circuit. It has an actuating unit and a bistable mechanism. The actuating unit is linearly movable between a first end position in which the switching apparatus is in a closed state and a second end position in which the switching apparatus is in an open state. The linear movement defines an axis. The bistable mechanism is arranged to ensure that the actuating unit is held in either of the end positions. The bistable mechanism includes a cam means mechanically connected to the actuating unit and at least one cam follower. The invention also relates to a use of the invented apparatus. |
US08822858B2 |
Keyboard design
Embodiments of a backlit keyboard assembly are described. A keycap assembly is mounted into a case web having intersecting ribs. A flange, which can be angled, is on the bottom perimeter of the keycap and a correspondingly shaped flange is on each rib of the case web. An overlap of the keycap flange and the case web flanges prevents direct sighting of the backlight light source and also provides a more evenly distributed halo around the keycap, thereby improving both aesthetics and functionality by providing better light control and contrast. |
US08822857B2 |
Handle for doors or panels, especially for vehicles
The invention relates to a handle for doors or panels, especially on vehicles. An actuation element (10) is provided, such as a button or switch, which is integrated in the handle (50) and comprises an at least regionally elastic sealing element (30) and at least one dimensionally stable housing element (20). According to the invention, a button plate (21) having at least one sealing projection (22) is provided, wherein the sealing projection (22) can be operatively connected to the elastic sealing element (13) such that the sealing projection (22) penetrates into the material of the sealing element (30) at least regionally. Thus, the inside (13) of the actuation element (10) is sealed with respect to the outside (14). |
US08822852B2 |
Multi-level rotary switch
A rotary switch with multi-level is disclosed. The rotary switch includes a rotary base that drives the first conductive sheet to rotate with the second conductive sheet when the rotary shaft is rotated, and the second conductive sheet leaves one of the conductive contact elements; the position end of the second conductive sheet is pressed by one positioning surface during the rotation, and the second spring stores energy; the second spring then releases the energy to the fourth end of the second conductive sheet, and the position end of the second conductive sheet slides on one positioning surface until the position end of the second conductive sheets is positioned solidly between two positioning surfaces; so that, the material cost in production can be lower down, and life time of the rotary switch can be increased. |
US08822849B2 |
Passenger's weight measurement device for vehicle seat
An upper rail is movable in a rear and front direction with respect to a lower rail fixed to a vehicle floor. A load sensor is fixed to an upper surface of the upper rail, and a rectangular frame is attached onto the load sensor. A rod of the load sensor penetrates a web of the rectangular frame, a washer and a spring holder, and a coil spring is wound around the rod. A bush is fitted to an edge of a hole of the washer, and a step is formed between an upper surface of the washer and the bush. A nut is screwed to the rod and tightens a bottom of a cup portion of the spring holder. The coil spring is sandwiched between the spring holder and the web and is compressed, and an end portion of the coil spring engages with the step. |
US08822847B2 |
Digital scale able to measure human weight and determine suitable dosage of a medicament
Some embodiments of the present invention include a digital scale to measure a weight of a user who stands on the digital scale; and to calculate and convey to the user a dosage of a medicament which is appropriate for the user based on the measured user weight. The digital scale may determine the medicament dosage by performing a local query to a locally-stored medicament database which may be stored locally within the digital scale, and/or by performing a remote query to a remotely-stored medicament database which may be stored externally to the digital scale. |
US08822843B2 |
Apparatus and associated methods
A printed wiring board including a conductive layer, the conductive layer including a network of nanotubes with respective longitudinal axes, the nanotubes arranged such that their longitudinal axes are aligned substantially parallel to one another in a configuration such that electrical current passing through the conductive layer along a first axis substantially parallel to the longitudinal axes of the nanotubes experiences one degree of dissipation, and electrical current passing through the conductive layer along a second axis experiences a higher degree of dissipation. |
US08822837B2 |
Wiring board, electronic component embedded substrate, method of manufacturing wiring board, and method of manufacturing electronic component embedded substrate
A wiring board or an electronic component embedded substrate includes a substrate that includes a resin containing a plurality of fillers; and a via that is electrically connected to at least one interconnect provided to the substrate, wherein the via includes a mix area in which metal is provided between the fillers on an inner radial side with respect to the substrate. A method of manufacturing a wiring board or an electronic component embedded substrate includes preparing a substrate that includes a resin containing a plurality of fillers; forming a via formation hole in the substrate; performing an ashing process on at least an inner wall of the via formation hole; and performing electroless plating an the inner wall of the via formation hole. |
US08822823B2 |
Double water-tight structure protecting device for electric charging part of pole
Disclosed therein is a double water-tight structure protecting device for an electric charging part of an electric facility. The double water-tight structure protecting device includes: an insulator (300) attached on the outer peripheral surface of the electric charging part of the electric facility; a first tube-shaped protective cover (100) located at an upper portion of the insulator (300) in such a way as to surround an outer face of the insulator (300); a first waterproof member (110) interposed between the insulator (300) and the first protective cover (100); and a second waterproof member (120) interposed between the insulator (300) and the first protective cover (100) and located between a lower end portion of the first waterproof member (110) and a lower end portion of the first protective cover (100). |
US08822822B2 |
Insulation system for prevention of corona discharge
Methods and systems for preventing corona discharge include an insulation system for a coil conductor in which a grounded conductive or semi-conductive layer is molded over a primary insulation layer, molded on the coil conductor, which limits the occurrence of voltage drop to the primary insulating layer. |
US08822816B2 |
Niobium thin film stress relieving layer for thin-film solar cells
A method of forming a photovoltaic device includes forming a thermal stress relieving layer on top of a substrate and forming a sacrificial back electrode metal layer on the thermal stress relieving layer. A semiconductor photon absorber layer is formed on the sacrificial back electrode metal layer, and the absorber layer is reacted with substantially an entire thickness of the sacrificial back electrode metal layer, thereby forming a back ohmic contact comprising a metallic compound of the sacrificial back electrode metal layer and the absorber layer, in combination with the thermal stress relieving layer. |
US08822813B2 |
Submicron gap thermophotovoltaic structure and method
An improved submicron gap thermophotovoltaic structure and method comprising an emitter substrate with a first surface for receiving heat energy and a second surface for emitting infrared radiation across an evacuated submicron gap to a juxtaposed first surface of an infrared radiation-transparent window substrate having a high refractive index. A second surface of the infrared radiation-transparent substrate opposite the first surface is affixed to a photovoltaic cell substrate by an infrared-transparent compliant adhesive layer. Relying on the high refractive index of the infrared radiation-transparent window substrate, the low refractive index of the submicron gap and Snell's law, the infrared radiation received by the first surface of the infrared radiation-transparent window substrate is focused onto a more perpendicular path to the surface of the photovoltaic cell substrate. This results in increased electrical power output and improved efficiency by the thermophotovoltaic structure. |
US08822810B2 |
Collector grid and interconnect structures for photovoltaic arrays and modules
A interconnected arrangement of photovoltaic cells is readily and efficiently achieved by using a unique interconnecting strap. The strap comprises electrically conductive fingers which contact the top light incident surface of a first cell and extend to an interconnect region of the strap. The interconnect region may include through holes which allow electrical communication between top and bottom surfaces of the interconnect region. In one embodiment, the electrically conductive surface of the fingers is in electrical communication with an electrically conductive surface formed on the opposite side of the strap through the through holes of the interconnect region. The interconnection strap may comprise a laminating film to facilitate manufacture and assembly of the interconnected arrangement. |
US08822807B2 |
Method for producing a thermoelectric component and thermoelectric component
A method is provided for producing a thermoelectric component having at least one pair of thermoelectric legs, including an n-leg and a p-leg, wherein both legs are welded to an electrically conductive contact material, and wherein the n-leg and the p-leg of the pair of legs are welded in separate welding steps to the contact material. A thermoelectric component produced by the method is also provided. |
US08822804B1 |
Digital aerophones and dynamic impulse response systems
Method and apparatus for playing existing aerophone musical instruments e.g. bagpipe or constructing new instruments or more general human interaction devices by continuous estimation of the impulse response of the acoustic system of the instrument with the use of probing signal. In the proposed apparatus this is done by means of transducers introducing probing signal and capturing and analyzing the signal resulting from the interaction between the probing signal, the instrument and the player. In contrast to the normal way aerophone instruments are used where a player blows air and stimulates vibration of air this method does not require the player to blow, the generated probing signal can be outside of the audiable sound range and the output of the instrument can be outputted as digital data. |
US08822803B2 |
Dynamic diatonic instrument
A musical instrument comprising buttons for playing notes is disclosed, wherein the buttons are arranged in an isomorphic layout consisting of rows and columns, characterized by means for choosing between a diatonic and a chromatic layout of the buttons and by means for choosing between different keys and scales. The buttons can be velocity and/or pressure sensitive, they can be backlit in different colors and they can have a dynamic note information thereon. When the layout is diatonic, the scales are arranged horizontally in rows, the rows being vertically spaced in relative fourths: when the layout is chromatic, the buttons corresponding to the scale notes of the selected key are lit in way different from the other keys. |
US08822802B1 |
System and method for generating musical distortion in an audio amplifier
A guitar amplifier system is disclosed. Specific implementations for the guitar amplifier system may comprise an audio input for an audio signal, a preamplifier coupled to the audio input, a tone control element coupled to the preamplifier, a power amplifier coupled to the tone control element, and an audio output coupled to the power amplifier. In an implementation, the tone control may be configured to control at least one of sound equalization, compression distortion, chorus or reverb. In an implementation, at least one of the preamplifier and the power amplifier may comprise at least one distortion multiplier circuit. The distortion multiplier circuit may comprise an audio signal multiplier configured to amplify an audio signal and output an amplified audio signal. The distortion multiplier circuit may also comprise a first voltage clamping circuit between a Vhigh preset level and a reference node coupled to the field effect transistor drain, and a second voltage clamping circuit between the Vlow preset level and the reference node. The Vhigh preset level and Vlow preset level may be set at different distances from a center voltage to asymmetrically distort the audio signal through asymmetrically limiting gain of the audio signal above the preset level and when compared with below the preset level. The distortion multiplier circuit may also comprise a blocking element configured to block DC biases of the field effect transistor. |
US08822801B2 |
Musical instructional player
A segmented, interactive audio-visual content progress bar and method of use whose divisions provide an information and instructional index of performance content. The progress bar provides a time linear segmentation of a user component of a performance content and a sound signal corresponding to the performance content. The progress bar provides a time progress marker advancing with time as a corresponding indicator of the user component of the performance content. |
US08822800B1 |
Finger operable percussive device
A finger operable percussive device for initiating acoustic signals, which can include a percussive member configured to initiate the acoustic signals upon impact with objects. The percussive member can have a curved top surface configured to allow the percussive member to initiate the acoustic signals upon impact with the objects at any angle. The percussive member can be connected with a top of a base. The base can be configured to contour to the user's finger and allow articulation of the user's finger. A securing member can be connected with the base for securing the base onto a user's finger. The securing member can be made of a flexible material configured to allow articulation of the user's finger. |
US08822797B2 |
Continuous pitch wind musical instrument
A musical instrument includes a resonating pipe having a first slot defined along a length of a longitudinal axis of the resonating pipe and a sliding rod that slides along a length of the first slot and closes the first slot such that the sliding rod selectively covers and provides an air seal to the first slot, such that a pitch of sound produced varies according to a length of closure of the first slot. A mouthpiece is coupled to the resonating pipe to enable the player to create a resonating column of air in the resonating pipe and control the pitch of the instrument by controlling the coverage of the sliding rod over the first slot. |
US08822792B2 |
Plants and seeds of hybrid corn variety CH393432
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH393432. The invention thus relates to the plants, seeds and tissue cultures of the variety CH393432, and to methods for producing a corn plant produced by crossing a corn plant of variety CH393432 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH393432. |
US08822791B2 |
Plants and seeds of hybrid corn variety CH491983
According to the invention, there is provided seed and plants of the hybrid corn variety designated CH491983. The invention thus relates to the plants, seeds and tissue cultures of the variety CH491983, and to methods for producing a corn plant produced by crossing a corn plant of variety CH491983 with itself or with another corn plant, such as a plant of another variety. The invention further relates to genetic complements of plants of variety CH491983. |
US08822788B1 |
Maize variety hybrid X13B640
A novel maize variety designated X13B640 and seed, plants and plant parts thereof, produced by crossing Pioneer Hi-Bred International, Inc. proprietary inbred maize varieties. Methods for producing a maize plant that comprises crossing hybrid maize variety X13B640 with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X13B640 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. This invention relates to the maize variety X13B640, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X13B640. This invention further relates to methods for producing maize varieties derived from maize variety X13B640. |
US08822786B1 |
Maize inbred PH1DAM
A novel maize variety designated PH1DAM and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH1DAM with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH1DAM through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH1DAM or a locus conversion of PH1DAM with another maize variety. |
US08822782B1 |
Maize hybrid X13C764
A novel maize variety designated X13C764 and seed, plants and plant parts thereof, produced by crossing Pioneer Hi-Bred International, Inc. proprietary inbred maize varieties. Methods for producing a maize plant that comprises crossing hybrid maize variety X13C764 with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X13C764 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. This invention relates to the maize variety X13C764, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X13C764. This invention further relates to methods for producing maize varieties derived from maize variety X13C764. |
US08822776B1 |
Soybean cultivar S120107
A soybean cultivar designated S120107 is disclosed. The invention relates to the seeds of soybean cultivar S120107, to the plants of soybean cultivar S120107, to the plant parts of soybean cultivar S120107, and to methods for producing progeny of soybean cultivar S120107. The invention also relates to methods for producing a soybean plant containing in its genetic material one or more transgenes and to the transgenic soybean plants and plant parts produced by those methods. The invention also relates to soybean cultivars or breeding cultivars, and plant parts derived from soybean cultivar S120107. The invention also relates to methods for producing other soybean cultivars, lines, or plant parts derived from soybean cultivar S120107, and to the soybean plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid soybean seeds, plants, and plant parts produced by crossing cultivar S120107 with another soybean cultivar. |
US08822775B1 |
Soybean variety 95Y21
A novel soybean variety, designated 95Y21 is provided. Also provided are the seeds of soybean variety 95Y21, cells from soybean variety 95Y21, plants of soybean 95Y21, and plant parts of soybean variety 95Y21. Methods provided include producing a soybean plant by crossing soybean variety 95Y21 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety 95Y21, methods for producing other soybean varieties or plant parts derived from soybean variety 95Y21, and methods of characterizing soybean variety 95Y21. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety 95Y21 are further provided. |
US08822766B2 |
Soybean variety A1026366
The invention relates to the soybean variety designated A1026366. Provided by the invention are the seeds, plants and derivatives of the soybean variety A1026366. Also provided by the invention are tissue cultures of the soybean variety A1026366 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety A1026366 with itself or another soybean variety and plants produced by such methods. |
US08822764B2 |
Soybean variety A1026201
The invention relates to the soybean variety designated A1026201. Provided by the invention are the seeds, plants and derivatives of the soybean variety A1026201. Also provided by the invention are tissue cultures of the soybean variety A1026201 and the plants regenerated therefrom. Still further provided by the invention are methods for producing soybean plants by crossing the soybean variety A1026201 with itself or another soybean variety and plants produced by such methods. |
US08822763B2 |
Pommegranate crunch lettuce variety
A new lettuce variety designated ‘Pommegranate Crunch’ is described. ‘Pommegranate Crunch’ is a romaine lettuce variety exhibiting stability and uniformity. |
US08822760B2 |
Alfalfa variety 09N12CY
A novel alfalfa variety designated 09N12CY and seed, plants and plant parts thereof. Methods for producing an alfalfa plant that comprise crossing alfalfa variety 09N12CY with another alfalfa plant. Methods for producing an alfalfa plant containing in its genetic material one or more traits introgressed into 09N12CY through backcross conversion and/or transformation, and to the alfalfa seed, plant and plant part produced thereby. Alfalfa seed, plant or plant part produced by crossing alfalfa variety 09N12CY or a trait conversion of 09N12CY with another alfalfa plant or population. Alfalfa populations derived from alfalfa variety 09N12CY, methods for producing other alfalfa populations derived from alfalfa variety 09N12CY and the alfalfa populations and their parts derived by the use of those methods. |
US08822758B2 |
Gene capable of increasing the production of plant biomass and method for using the same
According to the present invention, a technique with which the production of plant biomass can be drastically increased and salt stress resistance can be imparted to a plant is provided.A gene encoding a protein comprising a common sequence consisting of the amino acid sequence shown in SEQ ID NO: 3 and a common sequence consisting of the amino acid sequence shown in SEQ ID NO: 2 in such order from the N-terminal side and having a coiled-coil structure, a nucleic acid binding site, and a leucine rich repeat structure has been introduced or an expression control region of the gene that is endogenously presented has been altered. |
US08822756B2 |
Methods for enhancing the production and consumer traits of plants
The invention provides methods for producing plants, plant materials and seeds that receive multiple desirable attributes for consumers of these products, as well as for commercial plant growers, and to improved plants, plant materials and seeds that are produced by these methods. These inventive methods provide hybrid plants, plant materials and seeds having the mutant shrunken-2i (sh2-i) allele incorporated into their genomes sequentially along with one or more other mutant alleles, such as the sugary-1 (su1), sugary enhancer-1 (se1) and/or shrunken-2 (sh2) alleles, and that have multiple beneficial traits, including an extended sugar retention ability at the post prime eating stage and a significantly enhanced vigor and fitness to the plant, plant material and/or seed during seed germination, seedling emergence from soil, and plant development. |
US08822754B2 |
Ecdysone receptor-based inducible gene expression system
This invention relates to the field of biotechnology or genetic engineering. Specifically, this invention relates to the field of gene expression. More specifically, this invention relates to a novel inducible gene expression system and methods of modulating gene expression in a host cell for applications such as gene therapy, large scale production of proteins and antibodies, cell-based high throughput screening assays, functional genomics and regulation of traits in transgenic plants and animals. |
US08822741B2 |
Process for the fluorination of haloolefins
A process for the fluorination of haloolefins with elemental fluorine in the presence of anhydrous HF proceeds with high yield and selectivity in the product deriving from the addition of fluorine to the carbon-carbon double bond. |
US08822734B2 |
Single solvent gas expanded hydroformylation process
Allyl alcohol, particularly from biobased sources such as glycerol, is hydroformylated to products including 4-hydroxybutyraldehyde and 4-hydroxy-2-methylpropionaldehyde by forming a homogeneous reaction mixture including allyl alcohol, a rhodium-based hydroformylation catalyst and a near critical liquefiable petroleum gas or mixture of such gases, reacting the near critical liquefiable petroleum gas (or gas mixture)-expanded allyl alcohol substrate with carbon monoxide and with hydrogen in the presence of the catalyst, and recovering substantially all of the petroleum gas or gases overhead by reducing the pressure and degassing the product mixture. Dense propane is especially useful as a single inert solvent/diluent, and substantially no other solvent/diluent is needed. |
US08822732B2 |
1,5-diphenyl-penta-1,4-dien-3-one compounds
This invention relates to compounds of Formula (I), (II), or (III) as shown in the specification, which contain a 1,5-diphenylpenta-1,4-dien-3-one backbone. These compounds can be used to treat cancer, inflammatory disease, or autoimmune disease. |
US08822728B2 |
Biological buffers with wide buffering ranges
Amines and amine derivatives that improve the buffering range, and/or reduce the chelation and other negative interactions of the buffer and the system to be buffered. The reaction of amines or polyamines with various molecules to form polyamines with differing pKa's will extend the buffering range, derivatives that result in polyamines that have the same pKa yields a greater buffering capacity. Derivatives that result in zwitterionic buffers improve yield by allowing a greater range of stability. |
US08822725B2 |
Process for the preparation of an aqueous colloidal precious metal suspension
The invention is directed to a process for the preparation of an aqueous colloidal precious metal suspension, which process comprises reducing a precious metal salt in aqueous solution using a functionalized, water soluble quaternary ammonium salt in the absence of organic solvents, to form elementary nanoparticles. |
US08822724B2 |
Method for producing carboxylic acid amide
A carboxamide can be produced in a high yield by a method for producing a carboxamide, for example, represented by formula (4): (wherein R1 and R3 are as defined below), the method comprising a step of allowing a carboxylic acid ester represented by formula (1): (wherein R1 represents an optionally substituented C1-C20 hydrocarbon group or an optionally substituented C3-C20 heterocyclic group, and R2 represents an optionally substituented C1-C20 hydrocarbon group), an amine represented by formula (2): R3—NH2 (2) (wherein R3 represents a hydrogen atom or an optionally substituented C1-C20 hydrocarbon group), and a formamide compound represented by formula (3): (wherein R3 is as defined above) to react in the presence of a metal alkoxide. |
US08822721B2 |
Method for separation of racemic compound-forming chiral substances by a cyclic crystallization process and a crystallization device
The invention concerns a method for separating a racemic compound-forming chiral substance by a cyclic crystallization process which is conducted in at least one first crystallization unit (10) and in at least one second crystallization unit (18), wherein in a first process cycle an enantiomer is crystallized in the first crystallization unit (10) and a racemic compound is crystallized in the second crystallization unit (18), wherein in a second process cycle the enantiomer is crystallized in the second crystallization unit (18) and the racemic compound is crystallized in the first crystallization unit (10), wherein during each process cycle in at least one process sub-step (B→C, F→G) a mother liquor (12) being contained in the first crystallization unit (10) is mutually exchanged with a mother liquor (20) being contained in the second crystallization unit (18). An auto-seeding process sub-step is applied at the beginning of a process cycle. |
US08822720B2 |
Method for the organocatalytic activation of carboxylic acids for chemical, reactions using orthosubstituted arylboronic acids
The present disclosure describes operationally simple methods for the low temperature, catalytic activation of carboxylic acids for organic reactions, in particular for direct amidation reactions with amines. The methods involve the use of orthosubstituted arylboromc acids of the formula (I), wherein the groups R1 to R5 are as defined herein. In preferred embodiments R1 is halogen. The arylboromc acids catalyze nucleophilic 1,2-addition reactions, conjugate 1,4-addition reactions, and cycloaddition reactions, including Diels-Alder reactions involving α,β-unsaturated carboxylic acids. |
US08822716B2 |
Intermediate of cilastatin and preparation method thereof
Disclosed is a method for preparing 7-halo-2-oxoheptylate, an intermediate of cilastatin. The main steps are as follows: A. Addition reaction, in which 6-halo-hexanal is reacted with a cyanide to obtain 7-halo-α-hydroxyl-heptonitrile; B. Hydrolysis reaction, in which 7-halo-α-hydroxyl-heptonitrile is converted to 7-halo-α-hydroxyl-heptylic acid; C. Esterification reaction, in which 7-halo-α-hydroxyl-heptylic acid is converted to 7-halo-α-hydroxyl-heptylate; and D. Oxidation reaction, in which 7-halo-α-hydroxyl-heptylate is converted to 7-halo-2-oxoheptylate. 7-halo-α-hydroxyl-heptylic acid or ester thereof, which is a new intermediate for synthesizing 7-halo-2-oxoheptylate or cilastatin, and a method for synthesizing cilastatin are also disclosed. The methods of the invention are suitable for commercial production because of their simple process and mild reaction condition. |
US08822715B2 |
Method for producing aromatic diphosphates
A method for producing an aromatic diphosphate comprising: Step 1 which is a step where a specific aromatic monohydroxy compound having a steric hindrance group at ortho-positions is made to react with phosphorus oxyhalide in the presence of a Lewis acid catalyst and then the unreacted phosphorus oxyhalide is removed under a reduced pressure to give a specific; and Step 2 which is a step where the reaction product obtained in the above step is made to react with a specific aromatic dihydroxy compound in an amount of 0.5 mol to 1 mol of halogen contained in the reaction product in the presence of a Lewis acid catalyst to give a specific aromatic diphosphate. |
US08822713B2 |
Polymerizable coordination complexes and polymeric materials obtained from said monomers
Coordination complexes of at least one metal element with at least one aromatic monomer are provided. The at least one aromatic monomer may comprise at least one aromatic ring, which ring comprising at least one ethylenic group, at least one hydroxide group —OH, at least one oxime group and salts thereof. The metal element may be in the form of a metal alkoxide. |
US08822712B1 |
Process to prepare a phosphorous containing vegetable oil based lubricant additive
Chemically-modified triglycerides are prepared by reacting epoxidized triglyceride oils with phosphorus-based acid hydroxide or esters. The phosphorus-containing triglyceride derivatives are of the formula: wherein R1″, R2″ and R3″ are independently selected from C3 to C29 aliphatic fatty acid residues, at least one of which comprising one or both of the derivatized methylene groups of the formula: wherein m is 0, 1 or 2, n is 0 or 1, q is 1, 2 or 3, and R and R′ are independently selected from the group consisting of H, straight, branched or cyclic hydrocarbons and substituted hydrocarbons, and aryl groups. The phosphorus-containing triglyceride derivatives so produced have utility as antiwear/antifriction additives for industrial oils and automotive applications. |
US08822711B2 |
Method for preparing fatty acyl amido carboxylic acid based surfactants
A process is provided for preparing C8-C22 acyl glycinate acid or salt thereof via reacting and heating reacting a mixture of glycine or salt thereof with a fatty acid ester in a medium selected from the group consisting of glycerol, propylene glycol and combinations thereof, and wherein the mixture has a pKa ranging from 9.5 to 13. |
US08822707B2 |
Nucleophile assisting leaving groups
Sulfonate leaving groups include a cation chelating moiety, e.g. a polyether or crown ether. The chelating moiety stabilizes the sulfonate leaving group by forming a complex with a cation of a cation-nucleophile combination. The stabilized leaving group is more easily displaced under many conditions than are standard arylsulfonate leaving groups such as the toxyl group. The chelating moiety also favors certain cations depending on the identity of the moiety thereby enhancing the reaction rate with nucleophilic salts containing the preferred cation. Use of the inventive leaving groups results in improved yields, decreased reaction times and improved product purity. |
US08822706B2 |
Method for preparing 2-hydroxybutyrolactone
The invention relates to a method for preparing 2-hydroxybutyrolactone (2HBL) from a compound or its salt or its oligomers, said compound fitting formula (I) CH3—S—CH2CH2CR1R2R3 Wherein R1 represents H R2 represents a group selected from OH; OR4 and OCOR4 wherein R4 represents a group selected from linear, cyclic, alicyclic or branches alkyl groups having from 1 to 10 carbon atoms, and aryl groups having from 6 to 10 carbon atoms, optionally substituted with substituent(s) selected from linear or branched alkyl groups having from 1 to 10 carbon atoms, halogens and hydroxyl, amino, nitro and alkoxy groups having from 1 to 10 carbon atoms; and OSiRR′R″ wherein R, R′ and R″ are selected independently of each other from linear, cyclic, alicyclic or branched alkyl groups having from 1 to 10 carbon atoms, aryl groups having from 6 to 10 carbon atoms, optionally substituted with substituent(s) selected from linear or branched alkyl groups having from 1 to 10 carbon atoms, or R1 and R2 represent together ═O, R3 represents COOH or a COOR5 group wherein R5 represents a group selected from linear, cyclic, alicyclic or branched alkyl groups having from 1 to 10 carbon atoms, benzyl groups and benzyl groups substituted with one or two substituents selected from linear or branched alkyl groups having from 1 to 10 carbon atoms, halogens and hydroxyl, amino, nitro and alkoxy groups having from 1 to 10 carbon atoms, or R3 represents a cyano group, method according to which a sulfonium of said compound is obtained, said sulfonium fitting the formula (II) [CH3][CH2CH2CR1R2CR3][CR6R7R8]S+X− wherein R1, R2 and R3 have the above definition, and R6 and R7 are selected independently of each other from H, linear, cyclic, alicyclic or branched alkyl groups having from 1 to 10 carbon atoms, and aryl groups having from 6 to 10 carbon atoms, optionally substituted with substituent(s) selected from linear or branched alkyl groups having from 1 to 10 carbon atoms, halides and hydroxyl, amino, nitro and alkoxy groups having from 1 to 10 carbon atoms; R8 is selected from H, linear, cyclic, alicyclic or branched alkyl groups having from 1 to 10 carbon atoms, aryl groups having from 6 to 10 carbon atoms, optionally substituted with substituent(s) selected from linear or branched alkyl groups having from 1 to 10 carbon atoms, and attractor groups notably those comprising a function selected from acid, ester, cyano functions and X represents a counter-ion, and the thereby obtained sulfonium is hydrolyzed and 2,4-dihydroxybutyric acid or its salt is cyclized into 2-hydroxybutyrolactone. |
US08822699B2 |
Heterocyclic compound and use thereof
The present invention provides a heterocycle derivative having a superior amyloid β production inhibitory activity and/or a superior γ-secretase modulation activity, and use thereof. A compound represented by the formula (I): wherein each symbol is as defined in the present specification, or a salt thereof. |
US08822696B2 |
Ligand for asymmetric synthesis catalyst, and process for production of alpha-alkenyl cyclic compound using the same
Disclosed are: a ligand for an asymmetric synthesis catalyst; and a process for producing an α-alkenyl cyclic compound using the ligand. Specifically disclosed are: a ligand for an asymmetric synthesis catalyst, which is represented by any one of formulae (1) to (4) [wherein R1 represents —Cl or —Br; R2 represents —CH3 or —CF3; and R3 represents —CH2—CH═CH2 or —H]; and a process for producing an α-alkenyl cyclic compound using the ligand. |
US08822694B2 |
Process for producing pyrrole compound
The present invention provides a production method of a sulfonylpyrrole compound useful as a pharmaceutical product, a production method of an intermediate used for the method, and a novel intermediate. The present invention relates to a method of producing sulfonylpyrrole compound (VIII), which includes reducing compound (III) and hydrolyzing the reduced product to give compound (IV), subjecting compound (IV) to a sulfonylation reaction to give compound (VI), and subjecting compound (VI) to an amination reaction. |
US08822693B2 |
Heteroarylpiperidine and-piperazine derivatives as fungicides
Heteroarylpiperidine and -piperazine derivatives of the formula (I) in which the symbols are each as defined in the description, and agrochemically active salts thereof, and use thereof for controlling phytopathogenic harmful fungi, and also processes for preparing compounds of the formula (I). |
US08822690B2 |
High transmissional yellow dye for LCD and synthetic method thereof
The present invention relates to high transmission yellow dye for LCD, dye dispersion comprising the dye, coloring composite comprising the dye dispersion, color filter comprising the coloring composite, and synthetic method thereof. |
US08822689B2 |
Aryloazol-2-yl cyanoethylamino compounds, method of making and method of using thereof
The present invention relates to novel aryloazol-2-yl-cyanoethylamino derivatives of formula (I): wherein R3, R4, R5, R6, R7, P, Q, V, W, X, Y, Z and a are as defined in the description, compositions thereof, processes for their preparation and their uses as pesticides. |
US08822683B2 |
CDK inhibitors
Compounds of formulae I, II or III, and pharmaceutically acceptable salts thereof, are useful as CDK inhibitors. |
US08822682B2 |
Organometallic complex, and light-emitting element, light-emitting device, electronic device and electronic device using the organometallic complex
An object is to provide a novel organometallic complex capable of emitting phosphorescence, an organometallic complex which exhibits deep red emission, and a light-emitting element which provides deep red emission. Provided is an organometallic complex having a structure represented by the following General Formula (G1). In the formula, R1 R2, R3, R4, R5, R6, R7, R8, and R9 represent substituents, and M is a central metal and represents either a Group 9 element or a Group 10 element. |
US08822675B2 |
Low-substituted hydroxypropylcellulose and solid preparation comprising the same
Provided is nonionic and excellently stable low-substituted hydroxypropylcellulose having improved compressibility and flowability, and further having improved disintegration and texture in oral cavity. More specifically provided is low-substituted hydroxypropylcellulose having a crystallinity of 60% or less, a degree of hydroxypropoxyl substitution of 5 to 9% by weight, and an aspect ratio of less than 2.5, wherein the crystallinity is calculated based on a diffraction intensity by wide-angle X-ray diffraction measurement according to the following formula (1): Crystallinity(%)={(Ic−Ia)/Ic}×100 (1) wherein Ic means a diffraction intensity at a diffraction angle 2θ of 22.5° and Ia means a diffraction intensity at a diffraction angle 2θ of 18.5°. |
US08822674B2 |
Crystal form of 4-isopropylphenyl glucitol compound and process for production thereof
A highly stable crystal of (1S)-1,5-anhydro-1-[5-(4-{(1E)-4-[(1-{[2-(dimethylamino)ethyl]amino}-2-methyl-1-oxopropan-2-yl)amino]-3,3-dimethyl-4-oxobut-1-en-1-yl}benzyl)-2-methoxy-4-(propan-2-yl)phenyl]-D-glucitol, and a process for producing the crystal are provided. Specifically, an ethanolate having the following physical properties, and a plurality of other crystal forms transformed from the ethanolate are provided: (a) Having peaks at 2θ=5.9 degrees, 17.1 degrees, 17.6 degrees and 21.5 degrees in X-ray powder diffraction (Cu—Kα); (b) Showing characteristic absorption bands at 3538 cm−1, 3357 cm−1, 2964 cm−1, 1673 cm−1, 1634 cm−1 and 1505 cm−1 in an infrared absorption spectrum; and (c) Having a melting point in a vicinity of 111° C. |
US08822672B2 |
Method and device for producing and/or purifying polynucleotides and products obtainable thereof
An apparatus and a method for obtaining a (poly)nucleotide sequence of interest include steps of cultivating hosts cells to produce a nucleotide sequence of interest and harvesting these cells, introducing these cells in a passageway and disintegrating them in a continuous process. In the continuous process, performing in the passageway a precipitation of contaminants by a mixing of the disintegrated cells with a solution containing one or more salt(s) and obtaining a mixture and allowing a precipitate to separate from the solution of this mixture, preferably to float and/or to sediment from the solution of this mixture for 1-48 hours and pumping out a soluble material from this solution, while excluding recovering the precipitate. |
US08822670B2 |
Method of synthesizing cDNA and method of synthesizing RNA chains, and nucleotide-immobilized carrier
A method of synthesizing a cDNA chain using an insoluble carrier having on the surface thereof a polymer substance containing a first unit having a group derived from a phosphoric ester composing the hydrophilic portion of phospholipid, and a second unit having a group derived from carboxylic acid having an electron-attractive substituent bound to a carbonyl group, which includes immobilizing a polynucleotide for DNA elongation; bringing a solution containing an RNA fragment, nucleotide monomers, and a reverse transcriptase or an enzyme having polymerase activity into contact with the surface of the insoluble carrier; and allowing the polynucleotide for DNA elongation immobilized on the surface of the carrier to elongate using the RNA fragment contained in the solution as a template, to thereby form a single-strand cDNA. |
US08822669B2 |
miRNA expression vector
A miRNA expression vector including SEQ ID NO. 11. The vector is capable of improving the fertility of animals by inhibiting the expression of inhibin. |
US08822668B2 |
Lipid formulations for nucleic acid delivery
The present invention provides novel, stable lipid particles comprising one or more active agents or therapeutic agents, methods of making the lipid particles, and methods of delivering and/or administering the lipid particles. More particularly, the present invention provides stable nucleic acid-lipid particles (SNALP) comprising a nucleic acid (such as one or more interfering RNA), methods of making the SNALP, and methods of delivering and/or administering the SNALP. |
US08822666B2 |
Hybrid caulimovirus promoters and constructs thereof
The present invention relates to novel hybrid promoters comprising a caulimovirus promoter operably linked to one or more of an EF1α, Act8, Act2 or Act11 promoter. The present invention also relates to novel DNA constructs comprising at least one expression cassette which comprises the hybrid promoter thereof. The present invention further relates to transgenic plants/seeds comprising such DNA constructs. |
US08822665B2 |
Neuron generation, regeneration and protection
The invention demonstrates that, contrary to apoptotic rabies virus G proteins, certain non-apoptotic rabies virus G proteins, such as the G protein of the CVS-NIV strain, have a neurite outgrowth promoting effect. The invention further demonstrates that this neurite outgrowth promoting effect is due to the cytoplasmic tail of said non-apoptotic rabies virus G proteins, more particularly to their PDZ-BS, which shows a single-point mutation compared to the one of apoptotic rabies virus G proteins. The invention provides means for inducing and/or stimulating neurite outgrowth, which are useful in inducing neuron differentiation, for example for the treatment of a neoplasm of the nervous system, as well as in regenerating impaired neurons, for example for the treatment of a neurodegenerative disease, disorder or condition or in the treatment of a microbial infection, or in protecting neurons from neurotoxic agents or oxidative stress. |
US08822664B2 |
Antibodies
The present invention provides antibodies which bind to an epitope in the extracellular domain of human CC chemokine receptor 4 (CCR4) and which are capable of inhibiting the binding of macrophage-derived chemokine (MDC) and/or thymus and activation regulated chemokine (TARC) to CCR4. Also provided are inter alia immunoconjugates and compositions comprising such antibodies and methods and uses involving such antibodies, particularly in the medical and diagnostic fields. |
US08822663B2 |
Engineered nucleic acids and methods of use thereof
Provided are compositions and methods for delivering biological moieties such as modified nucleic acids into cells to modulate protein expression. Such compositions and methods include the use of modified messenger RNAs, and are useful to treat or prevent diseases, disorders or conditions, or to improve a subject's heath or wellbeing. |
US08822661B2 |
Xylose reductase mutants and uses thereof
Engineered mutant xylose reductases demonstrate higher preference to xylose than arabinose. Amino acid mutations were engineered in to native xylose reductase from Neurospora crassa. Mutant xylose reductases are useful in the production of xylitol and ethanol. |
US08822657B2 |
Recovery of lignin and water soluble sugars from plant materials
In one aspect, a process for treating woody plant material is provided, the process involving contacting the plant material with a continuous flow of an aqueous ethanol solution at elevated temperature and pressure under conditions that promote extraction of ethanol-soluble lignin from the plant material and retention of hemicellulose sugars, xylose and cellulose in the treated plant material solids. In another aspect, a process for extracting hemicellulose sugars from lignin-depleted plant material solids is provided, the process involving contacting lignin-depleted plant material with water at elevated temperature and pressure under conditions that promote extraction of hemicellulose sugars from the plant material; and recovering hemicellulose sugars from the liquid mixture. |
US08822654B2 |
Mutated antithrombins, a process for preparing the same and their use as drugs
The present invention relates to the use of a composition including of at least a mutated antithrombin having an anticoagulant activity substantially reduced with respect to the anticoagulant activity of the non mutated antithrombin, or having no anticoagulant activity, for the preparation of a drug intended for the prevention or the treatment of pathologies associated with cellular injury, such as infection, inflammation or hypoxic injury. |
US08822653B2 |
Plasma kallikrein binding proteins
Plasma kallikrein binding proteins and methods of using such proteins are described. |
US08822651B2 |
Human rhinovirus (HRV) antibodies
The invention provides isolated fully human monoclonal anti-HRV antibodies, as well as method of making and using these antibodies. Anti-HRV antibodies of the invention prevent or treat subjects having HRV-infections, and related diseases, including, but not limited to, the common cold, nasopharyngitis, croup, pneumonia, bronchiolitis, asthma, chronic obstructive pulmonary disease (COPD), sinusitis, bacterial superinfection, and cystic fibrosis. |
US08822645B2 |
Prostaglandin E2 dual variable domain immunoglobulins and uses thereof
The present invention relates to engineered multivalent and multispecific binding proteins, methods of making, and specifically to their uses in the prevention, diagnosis, and/or treatment of disease. |
US08822643B2 |
Process for the preparation of a virus-inactivated FV concentrate starting from human plasma, scalable to industrial level
The present invention provides a process for purifying FV starting from human plasma or a fractionation intermediate thereof, that is simple, scalable to the industrial level and relatively inexpensive compared to the methods described in the literature to date. The invention consists of the use of two anion exchange chromatography steps, the first of which has the purpose of separating the FV from the PTC component factors, while the second has the purpose of isolating the protein of interest from the majority of plasma proteins by means of selective interaction with the weak anion exchange support used. The process developed has also had a viral inactivation step and a viral removal step included, contributing to the safety of the final product obtained, without however significantly altering the process total recovery of FV, and without necessitating the introduction of additional steps for eliminating the inactivating agents used, thanks to the order in which the various steps are conducted. The process described in the present invention also enables an FV concentrate to be obtained that is stable once frozen at −20° C. |
US08822637B2 |
Somatostatin analogues
The invention provides cyclo[{4-(NH2—C2H4—NH—CO—O-)Pro}-Phg-DTrp-Lys-Tyr(4-Benzyl)-Phe], optionally in protected form, or a pharmaceutically acceptable salt or complex thereof, which has interesting pharmaceutical properties. |
US08822636B2 |
Peptides for activation and inhibition of δPKC
Peptides able to inhibit or activate the translocation or function of δPKC are identified. Administration of the peptides for protection or enhancement of cell damage due to ischemia is described. Therapeutic methods to reduce damage to cells or to enhance damage to cells due to ischemia are also described, as well as methods for screening test compounds for δPKC-selective agonists and antagonists. |
US08822634B2 |
Copolymer comprising anthracene and benzoselenadiazole, preparing method and uses thereof
A copolymer comprising anthracene and benzoselenadiazole, preparing method and uses thereof are disclosed. The copolymer is represented by formula (I), wherein n is a natural number from 10 to 1000, a is 1 or 2, b is 0, 1 or 2, X, Y are O, S, Se, SO2, N—R4 or R5—Si—R6; R4, R5, R6 are selected from C1-C20 straight-chain, branched-chain or cyclo alkyl or alkoxy; R1, R2 are unsubstituted, monosubstituted or polysubstituted functional group Ar1, and said Ar1 is selected from hydrogen, halogen, cyano, substituted or unsubstituted C1-C40 straight-chain or branched-chain or cyclo alkyl, substituted or unsubstituted aryl or heteroaryl; R3, R7 are unsubstituted, monosubstituted or polysubstituted functional group Ar2, and said Ar2 is selected from hydrogen, cyano, substituted or unsubstituted C1-C40 straight-chain or branched-chain or cyclo alkyl, substituted or unsubstituted C1-C40 alkoxy, substituted or unsubstituted C6-C40 aryl, substituted or unsubstituted C6-C40 aralkyl, substituted or unsubstituted C6-C40 aryl alkoxy. |
US08822631B2 |
Process for the production of PA-410 and PA-410 obtainable by that process
A process for the production of a polymer containing monomer units of butane-1,4-diamine and 1,10-decanedioic acid (PA-410) having a viscosity number (VN) of at least 105 ml/gram includes making a solution of a salt of butane-1,4-diamine and 1,10-decanedioic acid in water, concentrating the solution of the salt at a temperature of between 100 and 180° C. and a pressure of between 1.0 and 3.0 bar to a water content of between 4 and 8 wt %, producing a prepolymer from the salt containing monomer units of butane-1,4-diamine and 1,10-decanedioic acid at a temperature of between 185 and 205° C., and thereafter subjecting the prepolymer to post condensation. |
US08822622B2 |
Two-component polyurethane coating compositions
The invention is directed to coating compositions comprising A) at least one hydroxyl-functional and optionally acid-functional binder, preferably with an acid number of 0 to 150 mg KOH/g binder solids, B) at least one polyisocyanate curing agent with free isocyanate groups, C) at least one thermally latent tetrahydrocarbyl tin catalyst of general formula (I) RnR′4-nSn (I) wherein R is an alkyl group, R′ is an aryl, arylalkyl or alkenyl group and n is 1, 2 or 3, and D) optionally at least one acid-functional compound, that is different from component A), with the proviso that the acid number of a composition, consisting of the at least one binder A) and optionally of the at least one acid-functional compound D), has an acid number of at least 5 mg KOH/g solids, preferably of least 10 mg KOH/g solids, and to a process for coating substrates comprising the steps: I) applying the coating composition to an optionally pre-coated substrate, and II) curing the applied coating composition by means of thermal energy. |
US08822618B2 |
Microcapsule and methods of making and using microcapsules
An embodiment of a microcapsule includes a shell surrounding a space, a liquid within the shell, and a light absorbing material within the liquid. An embodiment of a method of making microcapsules includes forming a mixture of a light absorbing material and an organic solution. An emulsion of the mixture and an aqueous solution is then formed. A polymerization agent is added to the emulsion, which causes microcapsules to be formed. Each microcapsule includes a shell surrounding a space, a liquid within the shell, and light absorbing material within the liquid. An embodiment of a method of using microcapsules includes providing phototriggerable microcapsules within a bulk material. Each of the phototriggerable microcapsules includes a shell surrounding a space, a chemically reactive material within the shell, and a light absorbing material within the shell. At least some of the phototriggerable microcapsules are exposed to light, which causes the chemically reactive material to release from the shell and to come into contact with bulk material. |
US08822615B1 |
Block copolymer composition and methods relating thereto
A copolymer composition is provided including a block copolymer having a poly(acrylate) block and a poly(silyl acrylate) block; wherein the block copolymer exhibits a number average molecular weight, MN, of 1 to 1,000 kg/mol; and, wherein the block copolymer exhibits a polydispersity, PD, of 1 to 2. Also provided are substrates treated with the copolymer composition. |
US08822614B2 |
Acrylic thermoplastic resin and molded object thereof
The present invention provides an acrylic thermoplastic resin containing 50 to 95% by mass of a repeating unit (X) derived from a methacrylate monomer represented by the following formula (1), 0.1 to 20% by mass of a repeating unit (Y1) derived from an N-substituted maleimide monomer (a) represented by the following formula (2), and 0.1 to 49.9% by mass of a repeating unit (Y2) derived from an N-substituted maleimide monomer (b) represented by the following formula (3), regarding the total amount of the repeating unit (X), the repeating unit (Y1), and the repeating unit (Y2) as 100% by mass: The absolute value of a photoelastic coefficient (C) of the acrylic thermoplastic resin is not greater than 3.0×10−12 Pa−1. The halogen atom content is less than 0.47% by mass with reference to the mass of the acrylic thermoplastic resin. |
US08822604B2 |
Rubber composition for golf ball
The invention provides a rubber composition for golf balls which includes: (A) a base rubber containing a polybutadiene having a cis-1,4 bond content of at least 60 wt %; (B) an unsaturated carboxylic acid and/or a metal salt thereof; (C) an anthranilic acid derivative of the general formula wherein R1 and R2 are each independently a hydrogen atom or a hydrocarbon group of 1 to 20 carbons, m is an integer from 1 to 4, and n is an integer from 1 to 3, with the proviso that if m and/or n is 2 or more, each occurrence of R1 and R2 may be the same or different; and (D) sulfur. The rubber composition for golf balls of the invention enables a high-quality molded and crosslinked product having a suitable hardness and a high resilience to be obtained. |
US08822601B2 |
Ethylene-based polymers and processes to make the same
The invention provides an ethylene-based polymer comprising the following properties: A) a MWDconv from 7 to 10; and B) a “normalized LSF” greater than, or equal to, 9.5. |
US08822598B2 |
Crystalline block composites as compatibilizers
Embodiments of the invention provide crystalline block composites and their use as compatibilizers. |
US08822597B2 |
Increasing rubber phase volume in rubber-modified polystyrene
A process for producing rubber modified polymers having an increased rubber phase volume, including feeding a vinyl aromatic monomer and an elastomer to a polymerization reactor to form a reaction mixture, polymerizing the reaction mixture, combining a copolymer to the polymerized reaction mixture to form a combined mixture, subjecting the combined mixture to further polymerization, and obtaining a rubber modified polymer product from the further polymerization. |
US08822595B2 |
Mixture obtained by reacting polyol and anhydride and its use in polyisocyanates for making polyisocyanurates
Isocyanurate-reactive mixture obtained by reacting an anhydride and a polyol; process for making it; polyisocyanate composition comprising this mixture; binder composition comprising such a polyisocyanate composition; the use of such a polyisocyanate composition and/or binder composition for making a polyisocyanurate and such polyisocyanurates. |
US08822591B2 |
Pigment dispersions
Disclosed is a pigment dispersion containing at least a pigment, a liquid medium and a high-molecular dispersant. The high-molecular dispersant is a block polymer represented by A-B or A-B-C, in which A, B and C each represent a polymer block and the A and C blocks may be the same or different. The block polymer and its production process are also disclosed. The high-molecular dispersant is free of problems of a smell, coloration, a heavy metal and cost, and its use can provide a pigment dispersion excellent in the dispersion stability of a pigment. |
US08822589B2 |
Method for the production of aqueous formulations, aqueous formulations, and the use thereof
Process for the preparation of aqueous formulations, wherein (A) at least one ethylenically unsaturated carboxylic acid, (B) at least one heterocyclic comonomer having at least one permanent cationic charge per molecule and (C-P1) at least one ethylenically unsaturated dicarboxylic acid or its anhydride are subjected to free radical copolymerization with one another in an aqueous medium and, shortly before the end or after the end of the copolymerization, further ethylenically unsaturated dicarboxylic acid (C-P2) or its anhydride is added. |
US08822588B2 |
Fluorine-containing polymer and anti-static agent wherein same is used
A fluorine-containing polymer has a repeating unit of the general formula (2) and is produced by homopolymerization or copolymerization with another polymerizable double bond-containing monomer. In general formula (2), W represents a linking group; R1 each independently represents a perfluoroalkyl group; Q represents a unit structure formed by cleavage of a double bond of a polymerizable double bond-containing group; and M+ represents a hydrogen cation, a metal ion or a quaternary ammonium ion. |
US08822586B2 |
Cationic polymer dispersions, method for producing said dispersions and use thereof
The invention relates to water-in-water polymer dispersions containing a polymer A with a cationic monomer fraction of up to 60 wt. % and at least one polymer dispersant B, based on cationised dialkylaminoalkyl (meth)acrylamides with an average molecular weight of between 75,000 and 350,000 g/mol. The invention also relates to a method for producing said dispersions and to the use of the latter. |
US08822583B2 |
Transparent heat radiating coating composition
The present invention provides a transparent heat radiating coating composition capable of forming a coating layer having excellent transparency and heat radiating properties. The transparent heat radiating coating composition of the present invention is a transparent heat radiating coating composition including a binder resin, a hydrotalcite-series compound and a resin dispersant with an amine value of 0 to 90 mgKOH/g, wherein the transparent heat radiating coating composition includes 50 to 290 parts by weight of the hydrotalcite-series compound based on 100 parts by weight of the binder resin. |
US08822582B2 |
High permeability superabsorbent polymer compositions
The invention relates to absorptive, crosslinked polymeric composition that are based on partly neutralized, monoethylenically unsaturated monomer carrying acid groups wherein the absorptive crosslinked polymer may be coated with a polymeric coating, and have improved properties, in particular in respect of their capacity for transportation of liquids in the swollen state, and which have a high capacity and a high gel bed permeability. |
US08822580B2 |
Architectural paint and stain tinting system with tip drying resistance
Custom-tinted paints and stains are made using an array of low VOC concentrated liquid colorants including at least at least white colorant; black colorant; and green-hued, blue-hued and red-hued primary colorants at least one of which primary colorants comprises polyalkylene glycol humectant, ethoxylated surfactant and extender pigment. For colorants in the array containing polyalkylene glycol humectant, the humectant and ethoxylated surfactant amounts are sufficiently high and extender pigment amount is sufficiently low so that the colorants will not problematically plug colorant dispenser orifices if left in the dispenser without an orifice cap for a full day. The polyalkylene glycol humectant is also present in an amount sufficiently low so that dried paint films made by mixing the colorants with a clear waterborne base paint will resist blocking. |
US08822579B1 |
Frost-resistant rubber based on propyleneoxide rubber and natural bentonites
A rubber compound based on propylene-oxide rubber SKPO, including sulfur, stearic acid, zinc oxide, thiuram disulphide, carbon black P-803. The compound is characterized by replacement of 2-mercaptobenzothiazole (kaptax), as well as fluoroplastic F-4, with dibenzothiazyl disulfide (altax), phenyl-β-naphthylamine (neozone D), dibutoxyethyl adipate, and natural bentonites. Use of a rubber compound with the proposed composition increases the service life of rubber seals during their operation in sealing devices, due to higher frost resistance and a lower residual compressive strain value. Also, the compound can be manufactured by a simpler method compared to modern production technology, eliminating the stage of joint mechanical activation of zeolite and dibutyl phthalate. |
US08822578B2 |
Purified acetylated derivatives of castor oil and compositions including same
The present disclosure is directed to a single phase acetylated castor component (SP-ACC). An acetylated castor component is purified to produce the SP-ACC which contains a reduced amount of, or no, insoluble component(s) therein. The SP-ACC enhances the performance and properties of plasticizers of which it is a component. |
US08822574B2 |
Wood material product and method for the production thereof
The invention relates to a wood material product and a method for producing wood material products from particles containing lignocellulose and adhesives containing formaldehydes, which are intermixed and fed to a forming process after mixing. A zeolite is added to the mixture of adhesives and particles containing lignocellulose. |
US08822571B2 |
High refractive index crystalline colloidal arrays materials and a process for making the same
Disclosed are a new composite material and a process for synthesizing highly charged, highly monodisperse, core-shell particles with high refractive index cores, as well as stable, long lasting crystalline colloidal arrays (CCAs) formed thereof. A preferred embodiment of the core particle can be highly monodisperse zinc sulfide (ZnS) particles and a preferred embodiment of the shell can be highly charged polyelectrolytes. The CCAs formed thereof are charge stabilized photonic crystals that shows distinctive first and second order Bragg diffraction peaks whose locations vary over a wide spectral region from UV through visible to IR, with unusually strong intensity and broad band width due to the high index of refraction. These high refractive index particles are useful in applications such as optical filters, optical coatings, cosmetics and photonic crystals sensors and devices. |
US08822569B2 |
Composite particles
A coating containing pigment particles and a polymer matrix is provided. The coating contains pigment particles that have a scattering coefficient with a linear or quasi-linear relationship to the pigment volume concentration of those pigment particles. The coating has improved hiding and is useful as a protective coating or an aesthetic coating on an underlying substrate. Also provided are compositions useful for preparing the coating, including covalently bonded composite particles and aqueous dispersions containing composite particles. The composite particles each contain a pigment particle with a plurality of polymer particles attached by adsorption on the outer surface of the pigment particle or by covalent bonding to the pigment particle through a coupling agent. Methods to prepare the composite particles and coating compositions containing the composite particles are also provided. |
US08822561B2 |
Curable composition and process for producing cured film
A curable composition that is sufficiently cured even without a heating step at high temperature and from which a low dielectric constant cured film excellent in solvent resistance is obtained. A curable composition containing a fluorinated polyarylene prepolymer (A) having a crosslinkable functional group, a compound (B) having a number average molecular weight of from 140 to 5,000, having at least two crosslinkable functional groups and having no fluorine atoms, a copolymer (C) having the following units (c1) and (c2) and a radical polymerization initiator (D): unit (c1): a unit having a fluoroalkyl group having at most 20 carbon atoms, which may have an etheric oxygen atom between carbon atoms, and having no crosslinkable functional group; unit (c2): a unit having a crosslinkable functional group. |
US08822552B2 |
Spray can product and method of manufacturing spray can product
A spray can product capable of preventing leakage where used or stored in a tilted or an inverted position, and keeping good safety and liquid retention even where a flammable liquefied gas is used. The spray can product is formed by filling a spray can having an ejection opening with a liquefied gas and an absorbing body for retaining liquid, and the absorbing body is composed of an assembly of cellulose fibers containing at least 45 mass % of fine cellulose fibers having a fiber length of 0.35 mm or less. The absorbing body compressed into a block-shaped configuration corresponding to that of the spray can is accommodated within the spray can while defining a space on the side of an ejection opening, and a lid-like member is provided between the space and the absorbing body to protect a surface of the absorbing body in a gas permeable manner. |
US08822551B2 |
Implantation material comprising biocompatible polymer
Disclosed herein is a hyaluronic acid epoxide derivative film comprises a polymer containing a hydroxyl (—OH) terminal group. The film is prepared by allowing an epoxy crosslinker to react with a mixture of hyaluronic acid and a polymer containing a hydroxyl (—OH) terminal group and has improved physical strength, in vivo stability, flexibility, adhesiveness to biological tissue, and biocompatibility. |
US08822550B2 |
Temperature-, pH- or salt concentration-sensitive separation material and use thereof
The present invention provides a UCST-type thermoresponsive polymer compound which responds to a temperature under physiological conditions and has biofunctionality, and various uses thereof as a thermoresponsive material. Specifically, the invention provides a thermoresponsive material containing, as an active ingredient, a polymer compound represented by Formula (I) below or an addition salt thereof, the thermoresponsive material having an upper critical solution temperature in the range of 5 to 50° C. in an aqueous solution with a salt concentration of at least 1 mM and a pH in the range of 3 to 10.5: wherein m represents an integer of 10 or more; n represents a number satisfying 0.4≦n≦1; R1 represents hydrogen or succinyl; and R2 represents carbamoyl. |
US08822548B2 |
Compounds with activity at estrogen receptors
Disclosed herein are methods of treatment and prevention of diseases and disorders related to estrogen receptors comprising administering novel di-aromatic compounds to patients in need thereof. |
US08822546B2 |
Flowable pharmaceutical depot
Flowable pharmaceutical depots are described. The flowable pharmaceutical depot includes a polyester, such as a polylactic acid or a poly(trimethylene carbonate) endcapped with a primary alcohol and a pain relieving therapeutic agent, such as a post operative pain relieving therapeutic agent. Method of making and using the same are also described. |
US08822537B2 |
Topical ketoprofen composition
A topical composition, specifically an oil-in-water emulsion, comprised of ketoprofen and oxybenzone in a physiologically acceptable topical carrier. The composition is applied topically to alleviate pain, especially pain associated with migraine headache. The composition has good photostability as well as freeze/thaw stability. |
US08822534B2 |
Substituted aminopropionic derivatives as neprilysin inhibitors
The present invention provides a compound of formula I′; or a pharmaceutically acceptable salt thereof, wherein R1, R2, R3, R5, B1, X and n are defined herein. The invention also relates a method for manufacturing the compounds of the invention, and its therapeutic uses. The present invention further provides a combination of pharmacologically active agents and a pharmaceutical composition. |
US08822529B2 |
Long-chain carboxychromanols and analogs for use as anti-inflammatory agents
Provided are long-chain carboxychromanol compounds useful for treating conditions associated with the need to inhibit cyclooxygenase-1, cyclooxygenase-2, and/or 5-lipoxygenase, and pharmaceutical formulations containing the compounds. |
US08822528B2 |
Monensin derivatives for the treatment and prevention of protozoal infections
This invention relates to novel polyether ionophores, formulations comprising same, and to methods of making and using these compounds and formulations for the treatment and/or prevention of parasitic infection in animals and humans. These compounds exhibit improved safety profiles and/or efficacies as compared to parent compounds. |
US08822525B2 |
Dimeric IAP inhibitors
Molecular mimics of Smac are capable of modulating apoptosis through their interaction with cellular IAPs (inhibitor of apoptosis proteins). The mimetics are based on a monomer or dimer of the N-terminal tetrapeptide of IAP-binding proteins, such as Smac/DIABLO, Hid, Grim and Reaper, which interact with a specific surface groove of IAP. Also disclosed are methods of using these peptidomimetics for therapeutic purposes. In various embodiments of the invention the Smac mimetics of the invention are combined with chemotherapeutic agents, including, but not limited to topoisomerase inhibitors, kinase inhibitors, NSAIDs, taxanes and platinum containing compounds use broader language. |
US08822524B2 |
Substrate-mimetic Akt inhibitor
Disclosed herein is a species of peptide and non-peptide inhibitors of Akt, an oncogenic protein. Beginning with a residue of Akt target substrate GSK-3, the functional domains of the GSK-3 residue were characterized. Functionally homologous non-peptide groups were substituted for the amino acids of the GSK-3 creating a hybrid peptide-non-peptide and non-peptide compounds capable of binding to Akt. The non-peptide compounds show increased stability and rigidity compared to peptide counterparts and are less susceptible to degradation. The bound non-peptide compounds exhibit an inhibitory effect on Akt, similar to peptide-based Akt inhibitors. |
US08822523B2 |
Carboxamide microbiocides
Compounds of formula (I) wherein R1 is C1-C4alkyl, C1-C4haloalkyl or C1-C4alkoxy; R2 is C1-C4alkyl; R3 is hydrogen or halogen; R4 is hydrogen, C1-C4alkyl or C1-C4halogenalkyl; X is methine or nitrogen; A is R5 is hydrogen, halogen, -≡-C1-C6alkyl, -≡-C3-C7cycloalkyl or -≡-aryl; R6 is hydrogen, halogen, -≡-C1-C6alkyl, -≡-C3-C7cycloalkyl or -≡-aryl; and agrochemically acceptable salts/isomers/structural isomers/stereoisomers/diastereoisomers/enantiorners/tautorriers and N-oxides of those compounds are suitable for use as microbiocides. |
US08822520B2 |
Substituted bicyclic HCV inhibitors
Provided herein are compounds, pharmaceutical compositions and combination therapies for treatment of hepatitis C. |
US08822516B2 |
Process for the preparation of iodides
This invention is directed to a process for the preparation of high yield alkyl or aryl iodide from its corresponding carboxylic acid using N-iodo amides. |
US08822513B2 |
Compounds for treatment of cancer
The present invention relates to novel compounds having anti-cancer activity, methods of making these compounds, and their use for treating cancer and drug-resistant tumors, e.g. melanoma, metastatic melanoma, drug resistant melanoma, prostate cancer and drug resistant prostate cancer. |
US08822508B2 |
2-oxo-1-pyrrolidinyl imidazothiadiazole derivatives
The present invention relates to 2-oxo-1-pyrrolidine imidazothiadiazole derivatives, processes for preparing them, pharmaceutical compositions containing them and their use as pharmaceuticals. |
US08822502B2 |
Insecticidal compounds
A compound of formula (I): wherein A1, A2, A3, A4, A1′, A2′, A3′, A4′, A5′, A6′, G1, R1, R2, R3, R4, R5a and R5b are as defined in claim 1; or a salt or N-oxide thereof. Furthermore, the present invention relates to processes and intermediates for preparing compounds of formula (I) or compounds of formula (I′), to insecticidal, acaricidal, nematicidal and molluscicidal compositions comprising compounds of formula (I) or compounds of formula (I′), and to methods of using compounds of formula (I) or compounds of formula (I′) to combat and control insect, acarine, nematode and mollusc pests. |
US08822497B2 |
PIM kinase inhibitors and methods of their use
New compounds, compositions and methods of inhibition of kinase activity associated with tumorigenesis in a human or animal subject are provided. In certain embodiments, the compounds and compositions are effective to inhibit the activity of at least one serine/threonine kinase or receptor tyrosine kinase. The new compounds and compositions may be used either alone or in combination with at least one additional agent for the treatment of a serine/threonine kinase- or receptor tyrosine kinase-mediated disorder, such as cancer. |
US08822495B2 |
Azacyclyl-substituted aryldihydroisoquinolinones, process for their preparation and their use as medicaments
The invention relates to azacyclyl-substituted aryldihydroisoquinolinones and their derivatives, and their physiologically tolerated salts and physiologically functional derivatives, their preparation, medicaments comprising at least one azacyclyl-substituted aryldihydroisoquinolinone of the invention or its derivative, and the use of the azacyclyl-substituted aryldihydroisoquinolinones of the invention and their derivatives as MCH antagonists. |
US08822494B2 |
Heteroaromatic compounds and their use as dopamine D1 ligands
The present invention provides, in part, compounds of Formula I: and pharmaceutically acceptable salts thereof and N-oxides of the foregoing; processes for the preparation of; intermediates used in the preparation of; and compositions containing such compounds, salts or N-oxides, and their uses for treating D1-mediated (or D1-associated) disorders including, e.g., schizophrenia (e.g., its cognitive and negative symptoms), cognitive impairment (e.g., cognitive impairment associated with schizophrenia, AD, PD, or pharmacotherapy therapy), ADHD, impulsivity, compulsive gambling, overeating, autism spectrum disorder, MCI, age-related cognitive decline, dementia, RLS, Parkinson's disease, Huntington's chorea, anxiety, depression, MDD, TRD, and bipolar disorder. |
US08822493B2 |
SNS-595 and methods of using the same
The present invention relates to SNS-595 and methods of treating cancer using the same. |
US08822492B2 |
Use of huperzine for disorders
Methods and compositions containing huperzine are used to prevent and alleviate seizures. The invention is also directed to methods and compositions for using huperzine for the prevention and/or treatment of orthostatic hypotension. |
US08822490B2 |
Peripheral opioid receptor antagonists and uses thereof
The present invention provides a compound of formula I: wherein X−, R1, and R2 are as defined herein, and compositions thereof. |
US08822489B2 |
Abuse deterrent compositions and methods of making same
This invention relates to an abuse deterrent dosage form of opioid analgesics, wherein an analgesically effective amount of opioid analgesic is combined with a polymer to form a matrix. |
US08822488B2 |
Compositions of buprenorphine and μ antagonists
The invention relates to a composition comprising buprenorphine and a μ opioid receptor antagonist, wherein the composition is characterized by an Agonist Antagonist Activity Index (AAnAI) of between about 0.7 and about 2.2; wherein; AAnAI = [ C max ( BUB ) BC 30 ] [ C max ( ANTAGONIST ) IC 30 ] . |
US08822486B2 |
Spiropiperidine compounds
A compound of the formula: or a pharmaceutically acceptable salt thereof as well as a pharmaceutical composition, and a method for treating diabetes. |
US08822484B2 |
Fused thiazolo and oxazolo pyrimidinones
The present invention relates to novel compounds, their pharmaceutically acceptable salts, and their isomers, steroisomers, conformers, tautomers, polymorphs, hydrates and solvates. The present invention also encompasses pharmaceutically acceptable compositions of said compounds and process for preparing novel compounds. The invention further relates to the use of the above-mentioned compounds for the preparation of medicament for use as pharmaceuticals. |
US08822482B2 |
Icotinib hydrochloride, synthesis, crystalline forms, pharmaceutical compositions, and uses thereof
The invention relates to 4-[(3-ethynylphenyl)amino]-6,7-benzo-12-crown-quinazoline hydrochloride, its new crystalline forms, its therapeutic usage for treatment of diseases mediated by EGFR kinase and its combinatory therapeutic usage together with other therapeutic agents. The invention also provides synthetic methods for preparation of 4-[(3-ethynylphenyl)amino]-6,7-benzo-12-crown-quinazoline hydrochloride, its new crystalline forms, and the relevant synthetic intermediates for synthesis of 4-[(3-ethynylphenyl)amino]-6,7-benzo-12-crown-quinazoline hydrochloride. |
US08822477B2 |
Use of osmolytes obtained from extremophilic bacteria for producing medicine for the external treatment of neurodermatitis
The invention relates to the use of osmolytes, in particular ectoine and hydroxyectoine, as well as their pharmacologically compatible salts and/or derivatives having equivalent effects, for producing dermatological preparations such as tinctures, lotions, O/W emulsions, W/O emulsions, creams, ointments, hydrogels or sprays for the topical prophylaxis, care and/or treatment of neurodermatitis. |
US08822474B2 |
6,7-dihydrothieno[3,2-d]pyrimidine for the treatment of inflammatory diseases
The invention relates to new dihydrothienopyrimidine of formula 1, as well as pharmacologically acceptable salts, diastereomers, enantiomers, racemates, hydrates or solvates thereof, wherein X is SO or SO2, but preferably SO, and wherein R1, R2 and R3 have the meanings given in the description, and which are suitable for the treatment of respiratory or gastrointestinal complaints or diseases, inflammatory diseases of the joints, skin or eyes, diseases of the peripheral or central nervous system or cancers, as well as pharmaceutical compositions which contain these compounds. |
US08822470B2 |
Substituted pyrido[2,3-b]pyrazines
Disclosed are compounds of the following formula: in which R1, R2, R3, R4, R5, R6, R7, and X, are defined in the specification. Also disclosed are pharmaceutical compositions, kits, and articles of manufacture, which contain the compounds, methods and intermediates useful for making the compounds, and methods of using the compounds to treat diseases, disorders, and conditions related to PARP activity. |
US08822467B2 |
Biaryl oxyacetic acid compounds
The present invention provides biaryl oxyacetic acid compounds which may be useful for treating inflammatory disorders, including disorders affecting the respiratory system and skin. The compounds provided include those of the general formula I: |
US08822459B2 |
Compound containing basic group and use thereof
The present invention relates to a compound represented by formula (I-0): wherein symbols in formula have the same meanings as described in the present specification, a salt thereof, an N-oxide thereof or a solvate thereof or a prodrug thereof, and medical use thereof. The compound of the present invention has an antagonistic activity against CXCR4 and is therefore useful as a preventive and/or therapeutic agent for CXCR4-mediated diseases, for example, inflammatory and immune diseases (for example, rheumatoid arthritis, arthritis, retinopathy, pulmonary fibrosis, transplanted organ rejection, etc.), allergic diseases, infections (for example, human immunodeficiency virus infection, acquired immunodeficiency syndrome, etc.), psychoneurotic diseases, cerebral diseases, cardiovascular disease, metabolic diseases, and cancerous diseases (for example, cancer, cancer metastasis, etc.), or an agent for regeneration therapy. |
US08822458B2 |
Substituted oxazolidinones and their use in the field of blood coagulation
The invention relates to the field of blood coagulation. Novel oxazolidinone derivatives of the general formula (I) processes for their preparation and their use as medicinally active compounds for the prophylaxis and/or treatment of disorders are described. |
US08822456B2 |
Hexahydropyrano[3,4-d][1,3]thiazin-2-amine compounds
The present invention provides compounds of Formula I, and the tautomers thereof, and the pharmaceutically acceptable salts of the compounds and tautomers, wherein the compounds have the structure wherein the variables R1, R2, R3, R4 and x are as defined in the specification. Corresponding pharmaceutical compositions, methods of treatment, methods of synthesis, and intermediates are also disclosed. |
US08822452B2 |
Inhibitor compounds of 11-beta-hydroxysteroid dehydrogenase type 1
The compounds of formula (I) are derived from perhydroquinoline and perhydroisoquinoline and are useful as active pharmaceutical ingredients for the prophylaxis or treatment of diseases caused by 11-beta-hydroxysteroid dehydrogenase type 1 (11-beta-HSD1) enzyme-associated disorders, such as glaucoma, elevated ocular pressure, metabolic disorders, obesity, metabolic syndrome, dyslipidemia, hypertension, diabetes, atherosclerosis, Cushing's syndrome, psoriasis, rheumatoid arthritis, cognitive disorders, Alzheimer's disease or neurodegeneration. |
US08822451B2 |
Modulators of ATP-binding cassette transporters
4-amido-pyrimidine compounds, derivatives and compositions thereof, and synthetic methods described herein are useful for modulating ATP-Binding Cassette (“ABC”) transporters or fragments thereof, including Cystic Fibrosis Transmembrane Conductance Regulator (“CFTR”). The present invention also relates to methods of treating ABC transporter mediated diseases using such modulators. |
US08822450B2 |
1,6-diazabicyclo [3,2,1] octan-7-one derivatives and their use in the treatment of bacterial infections
Compounds of Formula (I), their preparation and use in preventing or treating bacterial infection is disclosed. |
US08822444B2 |
Hepatitis C virus inhibitors
This disclosure concerns novel compounds of Formula (I) as defined in the specification and compositions comprising such novel compounds. These compounds are useful antiviral agents, especially in inhibiting the function of the NS5A protein encoded by Hepatitis C virus (HCV). Thus, the disclosure also concerns a method of treating HCV related diseases or conditions by use of these novel compounds or a composition comprising such novel compounds. |
US08822442B2 |
Somatostatin-dopamine chimeric analogs
The invention features somatostatin-dopamine chimeric analogs and methods relating to their therapeutic use for the treatment of neoplasia, acromegaly, and other conditions. |
US08822441B2 |
Ecdysterone synthesis derivative, preparation method and use thereof
This invention discloses a novel compound with the structure of formula I, or pharmaceutically acceptable salts or solvates thereof. In addition, the invention further discloses a method for preparing the compound, a pharmaceutical composition containing the compound, and use thereof in the preparation of a hypoglycemic medicament. |
US08822437B2 |
Cerebral nerve cell neogenesis agent
An objective of the present invention is to provide a new substance having a cerebral nerve cell neogenesis effect. Another objective is to provide a cerebral nerve cell neogenesis agent that is effective in treating and/or preventing neurological disorders utilizing the substance. With the present invention, a cerebral nerve cell neogenesis agent containing a plasmalogen as an active ingredient is provided. In particular, a preferable cerebral nerve cell neogenesis agent contains, as an active ingredient, a biological tissue (preferably, an avian tissue) extracted plasmalogen mainly including an ethanolamine plasmalogen and a choline plasmalogen. |
US08822427B2 |
Methods and compositions to protect aquatic invertebrates from disease
Compositions and methods of protecting aquatic invertebrates from disease is shown. In one embodiment, dsRNA or antisense RNA to a nucleic acid molecule of the disease-causing microorganism is prepared and delivered to the animal. In another embodiment, a nucleic acid molecule of the disease-causing microorganism is delivered to the animal. In another embodiment, the RNA or nucleic acid molecule is delivered to the animal by replicon particle. In a further embodiment, the protective molecule is delivered to the digestive tract of the animal. Protection from disease is obtained. |
US08822423B2 |
Affinity peptides toward infliximab
We have disclosed affinity peptides toward infliximab. More specifically we have disclosed an affinity biomatrix where the affinity peptide is covalently attached to a biocompatible, biodegradable polymer. The affinity biomatrix is useful in preparing controlled release devices for infliximab. |
US08822421B2 |
E2F as a target of hormone refractory prostate cancer
The instant invention provides amino acid sequences competing with E2F for DNA binding. Methods of using said amino acid sequences for treatment of hormone-refractory prostate cancer are also provided. |
US08822420B2 |
Peptides and aptamers thereof as specific modulators of mutant p53 function
In the present application isolated peptides and aptamers thereof able to interact with structural and conformational p53 mutants within the region of the wild-type p53 DNA binding core domain comprised from amino acids 74 to amino acids 298 using the yeast two-hybrid method are disclosed. These PAs are able to efficiently recognize several different p53 point mutants but not wild-type p53. Therefore the peptides and aptamers identified can be useful as inhibitors of mutant p53-associated pro-oncogenic functions for anticancer therapy or as diagnostic tools for mut-p53 or wild-type p53 or as template for designing new peptido-mimetic drugs able to specifically target tumor cells. |
US08822414B2 |
Heterocyclic compounds suitable for the treatment of dyslipidemia
The present invention relates to compounds of the general formula (I), their tautomeric forms, their stereoisomers, their pharmaceutically acceptable salts, pharmaceutical compositions containing them, methods for their preparation, use of these compounds in medicine and the intermediates involved in their preparation. The present invention is directed towards compounds which can be used to treat diseases such as Hyperlipidemia and also have a beneficial effect on cholesterol. |
US08822411B2 |
Truncated activin type II receptor and methods of use
The present invention provides a substantially purified growth differentiation factor (GDF) receptor, including a GDF-8 (myostatin) receptor, as well as functional peptide portions thereof. In addition, the invention provides a virtual representation of a GDF receptor or a functional peptide portion thereof. The present invention also provides a method of modulating an effect of myostatin on a cell by contacting the cell with an agent that affects myostatin signal transduction in the cell. In addition, the invention provides a method of ameliorating the severity of a pathologic condition, which is characterized, at least in part, by an abnormal amount, development or metabolic activity of muscle or adipose tissue in a subject, by modulating myostatin signal transduction in a muscle cell or an adipose tissue cell in the subject. The invention also provides a method of modulating the growth of muscle tissue or adipose tissue in a eukaryotic organism by administering an agent that affects myostatin signal transduction to the organism. |
US08822409B2 |
Compositions and uses thereof for the treatment of acute respiratory distress syndrome (ARDS) and clinical disorders associated with therewith
Polypeptides are identified through an assay based on inhibiting AP-I signalling activity and others to treat acute respiratory distress syndrome (ARDS) and clinical disorders associated with the development of ARDS. |
US08822402B2 |
Encapsulates
The present application relates to encapsulated, solid, water soluble benefit agents and products comprising such encapsulates, as well as processes for making and using such encapsulates and products comprising such encapsulates. In one aspect, the present application relates to a melamine formaldehyde and/or urea formaldehyde encapsulation process that offers as solution to the dissolution of solid, water soluble benefit agents during the process's emulsification step. |
US08822401B2 |
Water-soluble surfactant composition, ink formulation and paper coating formulation
A water-soluble surfactant composition is provided comprising (A) a glycidyl ether-capped acetylenic diol ethoxylate and (B) a polyoxyalkylene alkyl ether having an HLB of 8-18. When compounded in inks and paper coatings, the surfactant composition exerts improved foam controlling, dispersing, wetting and penetrating capabilities, is water soluble, and complies with high-speed printing and application conditions. |
US08822394B2 |
Lubricating grease compositions
Use of a lubricating grease composition in a mass flywheel application wherein the lubricating grease composition comprises: (i) a base oil having a density in the range of from 800 to 1000 Kg/m3; and (ii) a urea compound having a density in the range of from 850 to 1050 Kg/m3; wherein the difference in the densities of the base oil (i) and the urea compound (ii) is less than 50 Kg/m3. The lubricating grease compositions according to the present invention are particularly useful for reducing oil bleeding and for improving shear stability properties in a dual mass flywheel application. |
US08822392B1 |
Friction modifiers for lubricating oils
A lubricating oil comprising a major amount of a base oil and a minor amount of an additive package, and the additive package comprises at least one friction modifier selected from compounds of the formulae II, III and IV, and carboxylate salts thereof: wherein R is a linear or branched, saturated, unsaturated, or partially saturated hydrocarbyl having about 8 to about 28 carbon atoms, n is 0 or 1; and the carboxylate salts have a cation that is an alkali metal, alkaline earth metal, group IIB metal, or ammonium cation. Methods of using the engine oil to improve thin film and/or boundary layer friction in an engine are also provided. |
US08822386B2 |
Nanofluids and methods of use for drilling and completion fluids
Nanomaterial compositions are useful for applications in drilling and completion fluids as enhancers of electrical and thermal conductivity, emulsion stabilizers, wellbore strength improvers, drag reduction agents, wettability changers, corrosion coating compositions and the like. These nanomaterials may be dispersed in the liquid phase in low volumetric fraction, particularly as compared to corresponding agents of larger size. Nanofluids (fluids containing nano-sized particles) may be used to drill at least part of the wellbore. Nanofluids for drilling and completion applications may be designed including nanoparticles such as carbon nanotubes. These fluids containing nanomaterials, such as carbon nanotubes, meet the required rheological and filtration properties for application in challenging HPHT drilling and completions operations. |
US08822385B2 |
Nanoemulsions
Nanoemulsions have been discovered to be useful to the oil field. More particularly water-in-oil (W/O), oil-in-water (O/W) and other classes of nanoemulsions have found beneficial application in drilling, completion, well remediation and other oil and gas industry related operations. Additionally, nanoemulsions may reduce friction pressure losses, as well as reduce subsidence of solid weight material during oil and gas operations. New preparation methods for nanoemulsions have also been discovered. |
US08822381B2 |
Uses of thaxtomin and thaxtomin compositions as herbicides
There is a need for a selective, low-risk herbicide that can be used to control weeds in cereal cultures and turf. The present invention discloses that a bacterial secondary metabolite, thaxtomin and optionally another herbicide is an effective herbicide on broadleaved, sedge and grass weeds. Thaxtomin A and structurally similar compounds can be used as natural herbicides to control the germination and growth of weeds in cereal, turf grass, Timothy grass and pasture grass cultures with no phytotoxicity to these crops. As a natural, non-toxic compound, thaxtomin can be used as a safe alternative for weed control in both conventional and organic farming and gardening systems. |
US08822376B2 |
Thermal transfer sheet
There is provided a thermal transfer sheet including a base sheet, and a dye receiving layer formed on the base sheet and containing a mixture of copolymer A including styrene and acrylonitrile as monomers and a copolymer B including 2-phenoxyethyl methacrylate and 2-hydroxyethyl methacrylate as monomers. |
US08822373B2 |
Particulate water absorbing agent and production method thereof
A particulate water absorbing agent includes a polyacrylic acid and/or a salt thereof water absorbent resin as a main component, wherein the water absorbent resin includes α-hydroxycarboxylic acid and/or a salt thereof, and the absorbing agent satisfies a specific particle size distribution and a specific water absorbing performance, thereby solving the conventional problems. Further, a production method of the water absorbing agent is characterized in that α-hydroxycarboxylic acid and/or a salt thereof is added to (a) a monomer aqueous solution whose main component is acrylic acid and/or a salt thereof and which is being cross-linked and polymerized or (b) a hydrogel polymer after the polymerization. As a result, in the particulate water absorbing agent containing the water absorbent resin as a main component, it is possible to realize both excellent water absorbing performance and excellent coloring prevention effect. Further, it is possible to provide an absorbing article particulate water absorbing agent which is suitable for practical use. |
US08822371B2 |
Process for producing geometric shaped catalyst bodies
A process for producing geometric shaped catalyst bodies K whose active material is a multielement oxide of stoichiometry [Bi1WbOx]a[Mo12Z1cZ2dFeeZ3fZ4gZ5nOy]1, in which a finely divided oxide Bi1WbOx with the particle size d50A1 and, formed from element sources, a finely divided intimate mixture of stoichiometry Mo12Z1cZ2dFeeZ3fZ4gZ5h with the particle size d50A2 are mixed in a ratio of a:1, this mixture is used to form shaped bodies and these are treated thermally, where (d50A1)0.7·(d90A1)1.5·(a)−1≧820. |
US08822369B2 |
Method for producing hydrocarbon-producing catalyst, hydrocarbon-producing catalyst, and method for producing hydrocarbon
The present invention relates to a method for producing a hydrocarbon-producing catalyst for producing a hydrocarbon from a mixed gas of carbon monoxide and hydrogen and provides a method for producing, with stability and at high productivity, a hydrocarbon-producing catalyst with which the rate of conversion of carbon monoxide to hydrocarbon is high, the methane selectivity is low, the high activity can be maintained over a long period, the desorption of the active metal is unlikely to occur, and the durability is excellent. The method includes a precursor film forming step of putting a sol solution of an active metal compound and a metal oxide precursor in contact with a heated catalyst carrier 2 to form a precursor film on a surface of the catalyst carrier 2, and a hydrolysis step of gelling the precursor film by hydrolysis to form a metal oxide gel film 4, with the active metal 6 dispersed uniformly, on the surface of the catalyst carrier 2. |
US08822362B2 |
Refractory product having high zirconia content
The present invention relates to a molten, fluid refractory product comprising, in weight percentages on the basis of the oxides and for a total of 100% of the oxides: ZrO2+Hf2O: remainder to 100% 4.0% |
US08822356B2 |
Fire resistant composite material and fabrics made therefrom
The present invention relates to fire resistant composite materials and to fire resistant fabric materials and mattresses made therefrom. The composite materials include (a) a substrate selected from the group consisting of cotton, rayon, lyocell and blends thereof; and (b) a coating consisting essentially of water, ammonium polyphosphate, binder material, cross-linking material, aluminum trihydrate, prefarbricated microcells, thickener material, a surfactant, surfactant-generated microcells and a catalyst. The binder material bonds the ammonium polyphosphate, cross-linking material, aluminum trihydrate, prefarbricated microcells, thickener material, surfactant, surfactant-generated microcells and catalyst together and to the substrate such that the substrate is coated with the coating. |
US08822354B2 |
Coated fabrics
A coated fabric having a base fabric and an auxiliary layer laminated thereto, wherein the exposed face of the auxiliary layer is coated with a coating composition. |
US08822353B2 |
Systems and methods for forming a time-averaged line image
Systems and methods for forming a time-averaged line image having a relatively high amount of intensity uniformity along its length is disclosed. The method includes forming at an image plane a line image having a first amount of intensity non-uniformity in a long-axis direction and forming a secondary image that at least partially overlaps the primary image. The method also includes scanning the secondary image over at least a portion of the primary image and in the long-axis direction according to a scan profile to form a time-average modified line image having a second amount of intensity non-uniformity in the long-axis direction that is less than the first amount. For laser annealing a semiconductor wafer, the amount of line-image overlap for adjacent scans of a wafer scan path is substantially reduced, thereby increasing wafer throughput. |
US08822349B1 |
Oxide formation in a plasma process
A method of making a semiconductor structure is provided. The method includes forming a dielectric layer using a high density plasma oxidation process. The dielectric layer is on a storage layer and the thickness of the storage layer is reduced during the high density plasma oxidation process. |
US08822344B1 |
Method of etching an etch layer
A method for etching an etch layer is provided. A glue layer having metallizable terminations is formed over the etch layer. The glue layer is exposed to a patterned light, wherein the metallizable terminations of the glue layer illuminated by the patterned light become unmetallizable. A metal deposition layer is formed on the glue layer, wherein the metal deposition layer only deposits on areas of the glue layer with metallizable terminations of the glue layer. The etch layer is etched through portions of the glue layer without the metal deposition layer. |
US08822341B2 |
Methods of manufacturing semiconductor devices
A first gas for plasma etch and a second gas for plasma deposition are introduced onto a semiconductor substrate, the semiconductor substrate including a mask pattern. A flow rate of the first and second gases is periodically changed within a range of flow rates during a process cycle, such that a plasma etch process and a plasma deposition process are performed together to form an opening in the semiconductor substrate. |
US08822340B2 |
Abrasive compositions for chemical mechanical polishing and methods for using same
A colloidal dispersion for chemical mechanical polishing comprising: (a) an abrasive component; and (b) from about 0.05% to about 10% by weight of the abrasive component, a water-soluble amphoteric polymer comprising at least one macromolecular chain B and a part A bonded to a single end of the at least one macromolecular chain B, wherein the macromolecular chain B is derived from one or more ethylenically unsaturated monomers having quaternary ammonium groups or inium groups, and wherein the part A is a polymeric or nonpolymeric group comprising at least one anionic group; wherein the dispersion has a pH of between about 1.5 and about 6. The colloidal dispersion is capable of polishing a substrate comprising silicon nitride and silicon oxide with a reverse selectivity ratio of at least about 27, typically at least 50 the reverse selectivity ratio being the ratio of the rate of removal of the silicon nitride to the rate of removal of the silicon oxide. |
US08822337B2 |
Two-sided semiconductor structure
Deep via trenches and deep marker trenches are formed in a bulk substrate and filled with a conductive material to form deep conductive vias and deep marker vias. At least one first semiconductor device is formed on the first surface of the bulk substrate. A disposable dielectric capping layer and a disposable material layer are formed over the first surface of the bulk substrate. The second surface, located on the opposite side of the first surface, of the bulk substrate is polished to expose and planarize the deep conductive vias and deep marker vias, which become through-substrate vias and through-substrate alignment markers, respectively. At least one second semiconductor device and second metal interconnect structures are formed on the second surface of the bulk substrate. The disposable material layer and the disposable dielectric capping layer are removed and first metal interconnect structures are formed on the first surface. |
US08822332B2 |
Method for forming gate, source, and drain contacts on a MOS transistor
A method for forming gate, source, and drain contacts on a MOS transistor having an insulated gate including polysilicon covered with a metal gate silicide, this gate being surrounded with at least one spacer made of a first insulating material, the method including the steps of a) covering the structure with a second insulating material and leveling the second insulating material to reach the gate silicide; b) oxidizing the gate so that the gate silicide buries and covers the a silicon oxide; c) selectively removing the second insulating material; and d) covering the structure with a first conductive material and leveling the first conductive material all the way to a lower level at the top of the spacer. |
US08822329B2 |
Method for making conductive interconnects
One or more embodiments relate to a method for making a semiconductor structure, the method including: forming a first conductive interconnect at least partially through the substrate; and forming a second conductive interconnect over the substrate, wherein the first conductive interconnect and the second conductive interconnect are formed at least partially simultaneously. |
US08822328B1 |
Method for patterning semiconductor structure
A method for patterning a semiconductor structure is provided. The method comprises following steps. A first mask defining a first pattern in a first region and a second pattern in a second region adjacent to the first region is provided. The first pattern defined by the first mask is transferred to a first film structure in the first region, and the second pattern defined by the first mask is transferred to the first film structure in the second region. A second film structure is formed on the first film structure. A second mask defining a third pattern in the first region is provided. At least 50% of a part of the first region occupied by the first pattern defined by the first mask is identical with a part of the first region occupied by the third pattern defined by the second mask. |
US08822327B2 |
Contact pads with sidewall spacers and method of making contact pads with sidewall spacers
A chip contact pad and a method of making a chip contact pad are disclosed. An embodiment of the present invention includes forming a plurality of contact pads over a workpiece, each contact pad having lower sidewalls and upper sidewalls and reducing a lower width of each contact pad so that an upper width of each contact pad is larger than the lower width. The method further includes forming a photoresist over the plurality of contact pads and removing portions of the photoresist thereby forming sidewall spacers along the lower sidewalls. |
US08822326B2 |
Method for manufacturing Sn alloy bump
Provided is a method for manufacturing an Sn alloy bump, wherein composition of the Sn alloy bump can be readily controlled. The method for manufacturing an Sn alloy bump formed of an alloy composed of Sn and other one or more types of metals has a step of forming an Sn layer on an electrode pad in a resist opening formed on a substrate by electrolytic plating; a step of laminating Sn and an alloy layer on the Sn layer by electrolytic plating; and a step of forming an Sn alloy bump by melting the Sn layer and the laminated alloy layer after removal of a resist. |
US08822325B2 |
Chip package and fabrication method thereof
A chip package and a fabrication method thereof are provided according to an embodiment of the invention. The chip package includes a semiconductor substrate containing a chip and having a device area and a peripheral bonding pad area. A plurality of conductive pads is disposed at the peripheral bonding pad area and a passivation layer is formed over the semiconductor substrate to expose the conductive pads. An insulating protective layer is formed on the passivation layer at the device area. A packaging layer is disposed over the insulating protective layer to expose the conductive pads and the passivation layer at the peripheral bonding pad area. The method includes forming an insulating protective layer to cover a plurality of conductive pads during a cutting process and removing the insulating protective layer on the conductive pads through an opening of a packaging layer. |
US08822323B2 |
Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board
A method of manufacturing a semiconductor device having a transition layer, including (a) forming a wiring and a die pad on a wafer, (b) forming a thin film layer on an entire surface of the wafer obtained in the step (a), (c) forming a resist layer on the thin film layer, and forming a thickening layer on a resist layer unformed section, (d) peeling the resist layer, (e) removing the thin film layer by etching, and (f) dividing the wafer to thereby form semiconductor devices. |
US08822321B2 |
Pattern forming method
According to one embodiment, an opening pattern is formed in the core film above a processing target, and a mask film is conformally formed above the processing target. Next, etch-back of the mask film is performed so that the mask film remains on a side surface of the core film. After that, line-and-space shaped core patterns, made of the core film, is formed in an area other than an area forming the opening pattern. Next, sidewall patterns are formed around the core patterns, and the core patterns are removed. Next, the processing target is patterned by using the mask film and the sidewall patterns. |
US08822311B2 |
Method of fabricating a GaN P-i-N diode using implantation
A III-nitride semiconductor device includes an active region for supporting current flow during forward-biased operation of the III-nitride semiconductor device. The active region includes a first III-nitride epitaxial material having a first conductivity type, and a second III-nitride epitaxial material having a second conductivity type. The III-nitride semiconductor device further includes an edge-termination region physically adjacent to the active region and including an implanted region comprising a portion of the first III-nitride epitaxial material. The implanted region of the first III-nitride epitaxial material has a reduced electrical conductivity in relation to portions of the first III-nitride epitaxial material adjacent to the implanted region. |
US08822309B2 |
Heterogeneous integration process incorporating layer transfer in epitaxy level packaging
Methods and structures for heterogeneous integration of diverse material systems and device technologies onto a single substrate incorporate layer transfer techniques into an epitaxy level packaging process. A planar substrate surface of multiple epitaxial areas of different materials can be heterogeneously integrated with a substrate material. Complex assembly and lattice engineering is significantly reduced. Microsystems of different circuits made from different materials can be built from a single wafer Fab line employing the claimed processes. |
US08822304B2 |
Isolation structure profile for gap filing
An trench isolation structure and method for manufacturing the trench isolation structure are disclosed. An exemplary trench isolation structure includes a first portion and a second portion. The first portion extends from a surface of a semiconductor substrate to a first depth in the semiconductor substrate, and has a width that tapers from a first width at the surface of the semiconductor substrate to a second width at the first depth, the first width being greater than the second width. The second portion extends from the first depth to a second depth in the semiconductor substrate, and has substantially the second width from the first depth to the second depth. |
US08822300B2 |
Low capacitance transient voltage suppressor (TVS) with reduced clamping voltage
A low capacitance transient voltage suppressor with reduced clamping voltage includes an n+ type substrate, a first epitaxial layer on the substrate, a buried layer formed within the first epitaxial layer, a second epitaxial layer on the first epitaxial layer, and an implant layer formed within the first epitaxial layer below the buried layer. The implant layer extends beyond the buried layer. A first trench is at an edge of the buried layer and an edge of the implant layer. A second trench is at another edge of the buried layer and extends into the implant layer. A third trench is at another edge of the implant layer. Each trench is lined with a dielectric layer. A set of source regions is formed within a top surface of the second epitaxial layer. The trenches and source regions alternate. A pair of implant regions is formed in the second epitaxial layer. |
US08822299B2 |
Method of fabricating semiconductor device
A method of fabricating a semiconductor device includes forming a gate dielectric layer comprising an oxide, and at least one conductive layer on a substrate, forming a mask on the conductive layer and patterning the at least one conductive layer by etching the at least one conductive layer using the mask as an etch mask to thereby form a gate electrode, wherein the oxide of the gate dielectric layer and the material of the at least one conductive layer are selected such that a byproduct of the etching of the at least one conductive layer, formed on the mask during the etching of the at least one conductive layer, comprises an oxide having a higher etch rate with respect to an etchant than the oxide of the gate dielectric layer. |
US08822298B2 |
Performance enhancement in transistors by reducing the recessing of active regions and removing spacers
Sophisticated transistors for semiconductor devices may be formed on the basis of a superior process sequence in which an increased space between closely spaced gate electrode structures may be obtained in combination with a reduced material loss in the active regions. To this end, an offset spacer conventionally used for laterally profiling the drain and source extension regions is omitted and the spacer for the deep drain and source areas may be completely removed. |
US08822296B2 |
Use of plate oxide layers to increase bulk oxide thickness in semiconductor devices
Semiconductor devices and methods for making such devices are described. The semiconductor devices are made by providing a semiconductor substrate with an active region, providing a bulk oxide layer in a non-active portion of the substrate, the bulk oxide layer having a first thickness in a protected area of the device, providing a plate oxide layer over the bulk oxide layer and over the substrate in the active region, forming a gate structure on the active region of the substrate, and forming a self-aligned silicide layer on a portion of the substrate and the gate structure, wherein the final thickness of the bulk oxide layer in the protected area after these processes remains substantially the same as the first thickness. The thickness of the bulk oxide layer can be increased without any additional processing steps or any additional processing cost. Other embodiments are described. |
US08822281B2 |
Semiconductor device and method of forming TMV and TSV in WLCSP using same carrier
A semiconductor device has a semiconductor die mounted over a carrier. An encapsulant is deposited over the semiconductor die and carrier. An insulating layer is formed over the semiconductor die and encapsulant. A plurality of first vias is formed through the insulating layer and semiconductor die while mounted to the carrier. A plurality of second vias is formed through the insulating layer and encapsulant in the same direction as the first vias while the semiconductor die is mounted to the carrier. An electrically conductive material is deposited in the first vias to form conductive TSV and in the second vias to form conductive TMV. A first interconnect structure is formed over the insulating layer and electrically connected to the TSV and TMV. The carrier is removed. A second interconnect structure is formed over the semiconductor die and encapsulant and electrically connected to the TSV and TMV. |
US08822280B2 |
Semiconductor device and method of manufacturing semiconductor device
A first transistor includes a first impurity layer of a first conduction type formed in a first region of a semiconductor substrate, a first epitaxial semiconductor layer formed above the first impurity layer, a first gate insulating film formed above the first epitaxial semiconductor layer, a first gate electrode formed above the first gate insulating film, and first source/drain regions of a second conduction type formed in the first epitaxial semiconductor layer and in the semiconductor substrate in the first region. A second transistor includes a second impurity layer of the first conduction type formed in a second region of the semiconductor substrate, a second epitaxial semiconductor layer formed above the second impurity layer and being thinner than the first epitaxial semiconductor layer, a second gate insulating film formed above the second epitaxial semiconductor layer, a second gate electrode formed above the second gate insulating film, and second source/drain regions of the second conduction type formed in the second epitaxial semiconductor layer and in the semiconductor substrate in the second region. |
US08822279B2 |
Thin film transistor display panel and manufacturing method thereof
A thin film transistor display panel includes a substrate, a gate wire on the substrate and including a gate line and a gate electrode; a gate insulating layer on the gate wire; a semiconductor layer on the gate insulating layer; a data wire including a source electrode on the semiconductor layer, a drain electrode opposing the source electrode with respect to the gate electrode, and a data line; a passivation layer on the data wire having a contact hole exposing the drain electrode; and a pixel electrode on the passivation layer and connected to the drain electrode through the contact hole. The gate wire has a first region and second region where the gate line and the gate electrode are positioned, respectively. The thickness of the gate wire in the first region is greater than the thickness of the gate wire in the second region. |
US08822275B2 |
Composite wafer including a molded wafer and a second wafer
A composite wafer includes a molded wafer and a second wafer. The molded wafer includes a plurality of first components, and the second wafer includes a plurality of second components. The second wafer is combined with the molded wafer to form the composite wafer. At least one of the first components is aligned with at least one of the second components to form a multi-component element. The multi-component element is singulatable from the composite wafer. |
US08822271B2 |
Method and apparatus for manufacturing chip package
There are proposed a method and apparatus for manufacturing a chip package in which bonding wires are coupled with contact pads in which an overhang holder holds and fixes portions of a surface adjacent to portions where the contact pads are located. |
US08822266B2 |
Integrated circuit micro-module
Various apparatuses and methods for forming integrated circuit packages are described. One aspect of the invention pertains to an integrated circuit package in which one or more integrated circuits are embedded in a substrate and covered with a layer of photo-imageable epoxy. The substrate can be made of various materials, including silicon, quartz and glass. An integrated circuit is positioned within a cavity in the top surface of the substrate. The epoxy layer is formed over the top surface of the substrate and the active face of the integrated circuit. An interconnect layer is formed over the epoxy layer and is electrically coupled with the integrated circuit. |
US08822265B2 |
Method for reducing forming voltage in resistive random access memory
Methods for producing RRAM resistive switching elements having reduced forming voltage include preventing formation of interfacial layers, and creating electronic defects in a dielectric film. Suppressing interfacial layers in an electrode reduces forming voltage. Electronic defects in a dielectric film foster formation of conductive pathways. |
US08822264B2 |
Semiconductor device and method for manufacturing the semiconductor device
An object is to provide favorable interface characteristics of a thin film transistor including an oxide semiconductor layer without mixing of an impurity such as moisture. Another object is to provide a semiconductor device including a thin film transistor having excellent electric characteristics and high reliability, and a method by which a semiconductor device can be manufactured with high productivity. A main point is to perform oxygen radical treatment on a surface of a gate insulating layer. Accordingly, there is a peak of the oxygen concentration at an interface between the gate insulating layer and a semiconductor layer, and the oxygen concentration of the gate insulating layer has a concentration gradient. The oxygen concentration is increased toward the interface between the gate insulating layer and the semiconductor layer. |
US08822262B2 |
Fabricating solar cells with silicon nanoparticles
A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters. |
US08822253B2 |
Semiconductor housing and method for the production of a semiconductor housing
A semiconductor housing is provided that includes a metal support and a semiconductor body, a bottom side thereof being connected to the metal support. The semiconductor body has metal surfaces that are connected to pins by bond wires and a plastic compound, which completely surrounds the bond wires and partially surrounds the semiconductor body. The plastic compound has an opening on the top side of the semiconductor body, and a barrier is formed on the top side of the semiconductor body. The barrier has a top area and a base area spaced from the edges of the semiconductor body and an internal clearance of the barrier determines a size of the opening. Whereby, a portion of the plastic compound has a height greater than the barrier, and a fixing layer is formed between the base area of the barrier and the top side of the semiconductor body. |
US08822249B2 |
Light-emitting device and method of manufacturing the same
A light-emitting device and a method of manufacturing the same are provided. The light-emitting device includes a compound semiconductor structure having a first N-type compound semiconductor layer, an active layer, and a P-type compound semiconductor layer, a P-type electrode layer that is disposed on the P-type compound semiconductor layer and electrically connects with the P-type compound semiconductor layer, a plurality of insulation walls disposed at two sides of the compound semiconductor structure and the P-type electrode layer, a plurality of N-type electrode layers penetrating the plurality of insulation walls, and a conductive substrate on which a plurality of N-type electrode connecting layers respectively corresponding to a plurality of N-type electrode layers are separated from a P-type electrode connecting layer corresponding to the P-type electrode layer. |
US08822247B2 |
Optical semiconductor element and manufacturing method of the same
An optical semiconductor element and a manufacturing method thereof that can improve the light extraction efficiency with maintaining the yield. The manufacturing method includes forming a plurality of recesses arranged at equal intervals along a crystal axis of a semiconductor film in a surface of the semiconductor film; and performing an etching process on the surface of the semiconductor film, thereby forming a plurality of protrusions arranged according to the arrangement form of the plurality of recesses and deriving from the crystal structure of the semiconductor film in the surface of the semiconductor film. |
US08822245B2 |
Packaged semiconductor light emitting devices having multiple optical elements and methods of forming the same
Methods of packaging a semiconductor light emitting device include providing a substrate having the semiconductor light emitting device on a front face thereof. A first optical element is formed from a first material on the front face proximate the semiconductor light emitting device but not covering the semiconductor light emitting device and a second optical element is formed from a second material, different from the first material, over the semiconductor light emitting device and the first optical element. Packaged semiconductor light emitting devices are also provided. |
US08822242B2 |
Methods for monitoring the amount of metal contamination in a process
Methods are disclosed for monitoring the amount of metal contamination imparted during wafer processing operations such as polishing and cleaning. The methods include subjecting a silicon-on-insulator structure to the semiconductor process, precipitating metal contamination in the structure and delineating the metal contaminants. |
US08822241B2 |
Method of manufacturing a semiconductor device
Provided is a method of manufacturing a semiconductor device, which includes the steps of: (a) preparing a processing target including a wafer (21) and a protective member (24) formed on the wafer (21); (b) measuring a thickness of the protective member (24) at a plurality of points; and (c) setting a desired value of a total thickness of the wafer (21) and the protective member (24) based on measurement results at the plurality of points to grind the wafer (21) in accordance with the desired value. |
US08822238B2 |
Apparatus and method for predetermined component placement to a target platform
A method for placing a component on a target platform includes providing component alignment marks, target platform reference marks, a first multiple-sensor probe including first sensors, and a second multiple-sensor probe including third sensors. The method further includes determining second sensors included in the first sensors, and sensing a first signal from a first one of the alignment marks by at least one of the second sensors. The method further includes determining fourth sensors included in the third sensors. The method further includes sensing a second signal from a second one of the alignment marks by at least one of the fourth sensors, and detecting a deviation of the component from the target platform associated with a first position of one of the second sensors that sense the first signal and a second position of one of the fourth sensors that sense the second signal. |
US08822233B2 |
Ultra-sensitive chemiluminescent substrates for enzymes and their conjugates
New chemiluminescent compounds, stable in aqueous buffers, for use in biological assaying include acridane-based compounds and 1,2-dioxetanes. Among the new acridane-based compounds are water-soluble acridanes, enhancer coupled acridanes, bis and tris-acridanes as well as acridane-1,2-dioxetanes. Among the new 1,2-dioxetanes are electron deficient group-containing dioxetanes and tethered bis-1,2-dioxetanes. The 1,2-dioxetanes are useful as substrates for various enzymes. The acridanes can be admixed with an oxidizing agent. an aqueous buffer and, optionally, a stabilizer to form a substrate or reagent formulation useful for assaying, inter alia, HRP. |
US08822229B2 |
Method for assaying keratan sulfate, assay kit therefor and method for detecting joint disease by using the same
The inventions provides a method for immunologically determining a keratan sulfate level which method includes bringing an anti-keratan sulfate monoclonal antibody into contact with a biological sample, the anti-keratan sulfate monoclonal antibody exhibiting a relative reaction specificity between keratan sulfate-I and keratan sulfate-II represented by IC50KS-I/KS-II of 0.4 to 5, to thereby provide a signal; and detecting keratan sulfate contained in the biological sample from the signal. On the basis of the method, the invention also provides a joint disease detection method and a method for assessing the effect of a remedy for a joint disease and a candidate substance therefor. Through these methods, a very small amount of keratan sulfate contained in a sample, can be determined. Particularly, these methods can determine, at high-sensitivity and high-specificity, the total keratan sulfate including keratan sulfate-I, which have been difficult to determine through a conventional technique. The methods also enables detect a joint disease and assess the effect of a remedy for a joint disease or a candidate substance therefor. |
US08822226B2 |
Method for quick and simultaneous determination of 16 inorganic anions and organic acids in tobacco
The present invention discloses a method for quick and simultaneous determination of 16 inorganic anions and organic acids in tobacco by ion chromatography The retention behavior of inorganic anions and organic acids on the anion exchange column was investigated using potassium hydroxide produced by EGC-II KOH eluent autogenerator as eluent. The optimized gradient elution condition was obtained. The samples were prepared through extraction, filtration and dilution before analysis. The separation was performed on an anion exchange column. The time of the gradient elution program was 50 mins. Under the optimized conditions, the calibration of peak area for all the analytes were linear in the ranges of 105. The method in the present invention has the advantages of simplicity, rapidity and accuracy, and is able to simultaneously determine 16 inorganic anions and organic acids in tobacco by one single time of injection. |
US08822222B2 |
Apparatus for generating electrical pulses and methods of using same
A method and apparatus are provided for delivering an agent into a cell through the application of nanosecond pulse electric fields (“nsPEF's”). The method includes circuitry for delivery of an agent into a cell via known methods followed by the application of nanosecond pulse electric fields to said cell in order to facilitate entry of the agent into the nucleus of the cell. In a preferred embodiment, the present invention is directed to a method of enhancing gene expression in a cell comprising the application of nanosecond pulse electric fields to said cell. An apparatus for generating long and short pulses according to the present invention is also provided. The apparatus includes a pulse generator capable of producing a first pulse having a long duration and low voltage amplitude and a second pulse having a short duration and high voltage amplitude. |
US08822220B2 |
Media, kits, systems and methods for the micropropagation of bamboo
Disclosed herein are media, kits, systems and methods for achieving micropropagation of bamboo on a commercially-relevant scale. |
US08822219B2 |
Method for preparing biological tissues for use in biological prostheses
A method of treating a biological tissue for biological prostheses includes steps of fixation of the biological tissue via a fixing solution including glutaraldehyde and detoxification of the fixed biological tissue via treatment with a detoxifying solution. The detoxification step includes one or both of eliminating phospholipids via treatment with an elimination solution and a treatment with a detoxifying solution. The elimination solution includes 1,2-octanediol and ethanol. The detoxifying solution includes taurine or homocysteic acid. |
US08822218B2 |
Method of generating natural killer cells and dendritic cells from human embryonic stem cell-derived hemangioblasts
This invention provides methods of generating natural killer (NK) cells and dendritic cells (DCs). The methods utilize human hemangioblasts as intermediate cells to generate the NK cells and DCs. In various embodiments, the methods do not require the use of stromal feeder layers. |
US08822215B2 |
Differentiation of mesenchymal stem cells into fibroblasts, compositions comprising mesenchymal stem cell-derived fibroblasts, and methods of using the same
Methods and compositions are provided for the differentiation and characterization of mammalian fibroblast from mesenchymal stem cells. The methods of the invention provide a means to obtain mesenchymal stem cell-derived fibroblast populations, e.g., seeded on a scaffold, which may be used in wound healing. |
US08822212B2 |
Methods for forming tooth root and periodontal tissue unit, and regenerated tooth
A method for forming at least a tooth root in a tooth containing a tooth crown, including: forming a culture core containing the tooth and a cell-containing base material, the tooth being wrapped with the cell-containing base material, and culturing the culture core in a medium to form at least the tooth root in the tooth contained therein, wherein the cell-containing base material contains at least one kind of cells selected from periodontal ligament-derived cells, bone marrow-derived cells, dental follicle-derived cells, dental pulp-derived cells and dental papilla-derived cells, and the medium contains a component contained in a conditioned medium of a serum-free-cultured cell line of a human uterocervical squamous carcinoma cell line; an additive containing at least one selected from IL-1β, IL-6, IL-8, IL-9, EGF, IGF-I, GH, PDGF-AB, VEGF, LIF, HGF, FGF-2, FGF-1, BMP-2, BMP-4, M-CSF, dexamethasone, insulin, thyroxine, thyrocalcitonin, ascorbic acid and β-glycerophosphate; or both of them. |
US08822211B2 |
Device and method for concentrating and detecting pathogenic microbes from blood products and/or their derivatives
The invention concerns a device and a method for concentrating pathogenic germs potentially present in blood products or derivatives and for detecting said germs comprising the following steps: (a) subjecting a sample of said blood product to a blood cell aggregating treatment, (b) eliminating the aggregates formed at step (a) by passing the treated sample over a first filter allowing through the contaminating germs but not the cell aggregates, (c) selectively lyzing the residual cells of the filtrate obtained at step (b), (d) recuperating the contaminating germs by passing the lysate of step (c) over a second filter to detect the contaminating germs possibly trapped. |
US08822201B2 |
Method for recovering oil from plant seeds
The invention relates to a method for recovering of oil from plant seeds characterized in that a) an aqueous solution containing one or more cellulolytic and/or lipolytic and/or pectinolytic and/or proteolytic enzyme(s) and/or phytase is sprayed onto the seed, b) the thus obtained seed is directly supplied to a one-stage or multistage pressing in a way known per se, optionally coupled to an extraction, and c) the oil is recovered in a way known per se and optionally further processed, and the use of the method, particularly in the production of edible oil or biodiesel. |
US08822199B2 |
Reaction jacket for a photosynthetic reactor and related photosynthetic reactor
Reaction jacket for a photosynthetic reactor, configured to float on an expanse of water and to define a gas/liquid culture medium diphasic flow path between first and second openings of the reaction jacket, the jacket including two sheaths, outer and inner, respectively, at least partially made from a material transparent to light radiation, the inner sheath extending inside the outer sheath such that these sheaths define an inter-sheath space between them in fluid connection with the first opening of the jacket, where the outer sheath has an open proximal end and a closed distal end, and the inner sheath has an open proximal end in fluid connection with the second opening of the jacket and a distal end provided with at least one communication orifice between the inside of the inner sheath and the inter-sheath space. |
US08822196B2 |
Anti-vascular endothelial growth factor receptor-2 chimeric antigen receptors and use of same for the treatment of cancer
The invention provides chimeric antigen receptors (CARs) comprising an antigen binding domain of a KDR-1121 or DC101 antibody, an extracellular hinge domain, a T cell receptor transmembrane domain, and an intracellular domain T cell receptor signaling domain. Nucleic acids, recombinant expression vectors, host cells, populations of cells, antibodies, or antigen binding portions thereof, and pharmaceutical compositions relating to the CARs are disclosed. Methods of detecting the presence of cancer in a host and methods of treating or preventing cancer in a host are also disclosed. |
US08822195B2 |
Polypeptide having D-lactate dehydrogenase activity, polynucleotide encoding the polypeptide, and process for production of D-lactic acid
Highly productive D-lactic acid fermentation uses a transformant obtained by introducing into a host cell a polynucleotide encoding a polypeptide according to any one of the following (A) to (C) in such a manner that the polypeptide is expressed, which polypeptide has a D-lactate dehydrogenase activity higher than those of conventional polypeptides: (A) a polypeptide having the amino acid sequence shown in SEQ ID NO:1 or 2; (B) a polypeptide having the same amino acid sequence as shown in SEQ ID NO:1 or 2 except that one or several amino acids are substituted, deleted, inserted and/or added, which polypeptide has a D-lactate dehydrogenase activity; and (C) a polypeptide having an amino acid sequence which has a sequence identity of not less than 80% to the amino acid sequence shown in SEQ ID NO:1 or 2, which polypeptide has a D-lactate dehydrogenase activity. |
US08822193B2 |
Isolated bacterial strain of the genus Burkholderia and pesticidal metabolites therefrom
A species of Burkholderia sp with no known pathogenicity to vertebrates but with pesticidal activity (e.g., plants, insects, fungi, weeds and nematodes) is provided. Also provided are natural products derived from a culture of said species and methods of controlling pests using said natural products. |
US08822192B2 |
Human rotavirus vaccine strains and diagnostics
A vaccine composition and method of vaccination are provided useful for immunizing a subject against a rotavirus. The vaccines include rotavirus strains CDC-9 and CDC-66, fragments thereof, homologues thereof, or combinations thereof. Inventive vaccines may include a fragment of CDC-9, CDC-66, homologues thereof, or combinations thereof. Methods of inducing an immunological response are provided by administering an inventive vaccine. |
US08822187B1 |
Polypeptides, nucleic acid molecules, and methods for synthesis of triterpenes
This application relates to the polypeptides, nucleic acid molecules, vectors, transfected cells, and methods for synthesis of triterpenes, including botryococcene. |
US08822186B2 |
Method for producing microbial fermentation product
Disclosed is a method for producing 1-(2-hydroxyethyl)-2,5,5,8a-tetramethyldecahydronaphthalene-2-ol represented by formula (2), wherein microbial conversion is carried out using a compound(s) represented by formula (1a) and/or (1b) as a substrate, the resulting culture product, in which microorganisms obtained by the microbial conversion are contained, and a solvent having an SP value within the range of 7.5 to 9.0 [(cal/cm3)1/2] are mixed together, and subsequently the aqueous phase is removed therefrom. |
US08822184B2 |
Collective chirality of binary plasmonic nanoparticles Janus assemblies
Multiple properties of plasmonic assemblies are determined by their geometrical organization. This patent focuses on the formation of Janus structure of the asymmetric assembly structure of the gold nanorods and gold nanoparticles. Chiral structure of gold nanorods and gold nanoparticles can be obtained through the characterization of optical spectra of the Janus structure. And it opens the door for the explanation of the mechanism of the chirality, plays a strong guiding role in the negative refractive material above and has good application prospects. |
US08822181B2 |
Production of proteins
A method for forming a fusion protein that is expressed as a recombinant protein body-like assembly in host eukaryotic cells and organisms other than higher plants as host systems is disclosed. More particularly, peptides and proteins are fused to protein sequences that mediate the induction of recombinant protein body-like assembly (RPBLA) formation, are stably expressed and accumulated in these host cells after transformation with an appropriate vector. Methods for preparing the fusion protein are also disclosed. |
US08822178B2 |
Sweetener preparations and methods of use
The present disclosure relates to codon-optimized brazzein coding sequences and the expression of brazzein and variants thereof using yeast expression systems. The disclosure also relates to methods of expression of proteins to enhance the sweetness taste profile of foods and/or beverages. |
US08822177B2 |
Modified lipids produced from oil-bearing microbial biomass and oils
Provided are methods for preparing chemically modified lipids. The lipids are obtained from heterotrophically cultured microalgae and are subjected to an epoxidation reaction. The microalgae include those from the genus Parachlorella, Prototheca, Chlorella, or strains having at least 85% nucleotide sequence identity in 23S rRNA sequences to a Parachlorella, Prototheca, or Chlorella strain that are cultured in a bioreactor substantially in the absence of light. |
US08822176B2 |
Modified lipids produced from oil-bearing microbial biomass and oils
Provided are methods for preparing chemically modified lipids. The lipids are obtained from heterotrophically cultured microalgae and are subjected to a transesterification or interesterification reaction. The microalgae include those from the genus Parachlorella, Prototheca, Chlorella, or strains having at least 85% nucleotide sequence identity in 23S rRNA sequences to a Parachlorella, Prototheca, or Chlorella strain that are cultured in a bioreactor substantially in the absence of light. |
US08822175B2 |
Water monitoring systems
The invention relates to a continuous water monitoring system, including components thereof, and a method relating thereto for continuously monitoring, in real-time, a water supply in order to detect contaminants therein. The system employs the use of a live culture of bioluminescent bacteria and suitable light detecting means. |
US08822173B2 |
Wound dressing or swab for detecting infection
The present invention relates to a wound dressing or a wound swab, which allows the detection of at least three enzymes selected from the group consisting of lysosyme, elastase, cathepsin G and myeloperoxidase using colored substrate agents for these enzymes. These enzyme substrates can be bound to medically acceptable polymers or fibers. |
US08822167B2 |
Modular point-of-care devices, systems, and uses thereof
The present invention provides devices and systems for use at the point of care. The methods devices of the invention are directed toward automatic detection of analytes in a bodily fluid. The components of the device are modular to allow for flexibility and robustness of use with the disclosed methods for a variety of medical applications. |
US08822166B2 |
Stimulus-elicited genomic profile markers of alzheimer's disease
The present invention relates to a method for diagnosing Alzheimer's Disease (AD) using PKC-elicited gene expression profiles. PKC-activation elicits different genomic profiles in AD cells, as compared with control cells, which can be used to diagnose AD and individuals at risk for developing AD. |
US08822158B2 |
Miniaturized, high-throughput nucleic acid analysis
The present invention is directed to method for analyzing multiple nucleic acid molecules of interest comprising in the steps of (i) providing a plurality of beads, characterized in that each bead comprises at least two sequence specific amplification primers, further characterized in that at least one of the primers is bound to the bead via a cleavable linker, (ii) capturing the nucleic acid molecules of interest from a sample, (iii) clonally isolating the plurality of beads, (iv) cleaving the at least one primer, (v) clonally amplifying the nucleic acid thereby creating multiple amplification products, and (vi) analyzing the amplification products. |
US08822154B2 |
Method for synthesizing DNA strand
The present invention provides a primer extension reaction method, such as a PCR method, for structure-independent amplification of DNA containing CG-rich repeat sequences wherein in the extension step the temperature fluctuates between a first extension temperature and a second extension temperature. The present invention also provides methods for diagnosing disorders. The present invention also provides a thermal cycler programmed to perform the method of the invention. |
US08822153B2 |
Molecular diagnosis and typing of lung cancer variants
Compositions and methods useful in determining the major morphological types of lung cancer are provided. The methods include detecting expression of at least one gene or biomarker in a sample. The expression of the gene or biomarker is indicative of the lung tumor subtype. The compositions include subsets of genes that are monitored for gene expression. The gene expression is capable of distinguishing between normal lung parenchyma and the major morphological types of lung cancer. The gene expression and somatic mutation data are useful in developing a complete classification of lung cancer that is prognostic and predictive for therapeutic response. The methods are suited for analysis of paraffin-embedded tissues. Methods of the invention include means for monitoring gene or biomarker expression including PCR and antibody-based detection. The biomarkers of the invention are genes and/or proteins that are selectively expressed at a high or low level in certain tumor subtypes. Biomarker expression can be assessed at the protein or nucleic acid level. |
US08822151B2 |
Lateral flow nucleic acid detector
Point-of-care binding assays include at least one target nucleic acid binding in a multiplex structure with at least one sequence in a partner nucleic acid associated with a label, due to complementary base pairings between at least one sequence in the target nucleic acid and at least one sequence in the partner nucleic acid. The assays overcome the inherent deficiencies of antibody-protein antigen assays. In a preferred embodiment, color tagged nucleic acid sequences are used to bind a complementary target nucleic acid. The tagged nucleic acid sequences are preferably made from deoxyribonucleotides, ribonucleotides, or peptide nucleotides. |
US08822149B2 |
Prognosis prediction for melanoma cancer
The invention relates to prognostic markers and prognostic signatures, and compositions and methods for determining the prognosis of cancer in a patient, particularly for melanoma. Specifically, the invention relates to the use of genetic and protein markers for the prediction of the risk of progression of a cancer, such as melanoma, based on markers and signatures of markers. In various aspects, the invention provides methods, compositions, kits, and devices based on prognostic cancer markers, specifically melanoma prognostic markers, to aid in the prognosis and treatment of cancer. |
US08822148B2 |
Method of performing PCR reaction in continuously flowing microfluidic plugs
The present invention provides microfabricated substrates and methods of conducting reactions within these substrates. The reactions occur in plugs transported in the flow of a carrier-fluid. |
US08822147B2 |
Sequential analysis of biological samples
Methods for detecting multiple targets in a biological sample are provided. The methods includes contacting the sample with a first probe; physically binding the first probe to a first target; observing a first signal from the first probe; applying a chemical agent to modify the first signal; contacting the sample with a second probe; physically binding the second probe to a second target; and observing a second signal from the second probe. The methods disclosed herein also provide for multiple iterations of binding, observing, signal modification for deriving information about multiple targets in a single sample. An associated kit and device are also provided. |
US08822138B2 |
Composition for forming resist underlayer film for lithography including resin containing alicyclic ring and aromatic ring
There is provided a resist underlayer film having both heat resistance and etching selectivity. A composition for forming a resist underlayer film for lithography, comprising a reaction product (C) of an alicyclic epoxy polymer (A) with a condensed-ring aromatic carboxylic acid and monocyclic aromatic carboxylic acid (B). The alicyclic epoxy polymer (A) may include a repeating structural unit of Formula (1): (T is a repeating unit structure containing an alicyclic ring in the polymer main chain; and E is an epoxy group or an organic group containing an epoxy group). The condensed-ring aromatic carboxylic acid and monocyclic aromatic carboxylic acid (B) may include a condensed-ring aromatic carboxylic acid (B1) and a monocyclic aromatic carboxylic acid (B2) in a molar ratio of B1:B2=3:7 to 7:3. The condensed-ring aromatic carboxylic acid (B1) may be 9-anthracenecarboxylic acid and the monocyclic aromatic carboxylic acid (B2) may be benzoic acid. |
US08822135B2 |
Method for preparing a composite printing form
The invention pertains to a method for preparing a composite printing form from a single precursor that is capable of forming a relief and a carrier. The single precursor can be a single photosensitive element or a single laser-engravable print element having a reinforced elastomeric layer. The single precursor has a size that is at least 70% of a size of the carrier. The single precursor is located on the carrier by approximately positioning the precursor on the carrier that has no registration markings. Precise registration of the single precursor is achieved by using digital information generated from a computer to create the registered image on the composite form. The method is particularly suited for preparing composite printing forms for relief printing, and in particular for preparing composite printing forms for flexographic printing of corrugated substrates. |
US08822134B2 |
Resist developer, method for forming a resist pattern and method for manufacturing a mold
The disclosed resist developer is used when developing by irradiating an energy beam onto a resist layer containing a polymer of α-chloromethacrylate and α-methylstyrene for rendering or exposure, and contains a fluorocarbon-containing solvent (A) and an alcohol solvent (B), the latter of which has higher solubility relative to the resist layer than the former. |
US08822133B2 |
Underlayer composition and method of imaging underlayer
A method of forming a pattern comprises diffusing an acid, generated by irradiating a portion of a photosensitive layer, into an underlayer comprising an acid sensitive copolymer comprising an acid decomposable group and an attachment group, to form an interpolymer crosslink and/or covalently bonded to the surface of the substrate. Diffusing comprises heating the underlayer and photosensitive layer. The acid sensitive group reacts with the diffused acid to form a polar region at the surface, in the shape of the pattern. The photosensitive layer is removed to forming a self-assembling layer comprising a block copolymer having a block with an affinity for the polar region, and a block having less affinity than the first. The first block forms a domain aligned to the polar region, and the second block forms a domain aligned to the first. Removing either the first or second domain exposes a portion of the underlayer. |
US08822130B2 |
Self-assembled structures, method of manufacture thereof and articles comprising the same
Disclosed herein is a composition comprising a graft block copolymer comprising a first block polymer; the first block polymer comprising a backbone polymer and a first graft polymer; where the first graft polymer comprises a surface energy reducing moiety; and a second block polymer; the second block polymer being covalently bonded to the first block; wherein the second block comprises the backbone polymer and a second graft polymer; where the second graft polymer comprises a functional group that is operative to crosslink the graft block copolymer; a photoacid generator; and a crosslinking agent. |
US08822126B2 |
Resin composition for laser engraving, relief printing plate precursor for laser engraving, relief printing plate, and method of manufacturing relief printing plate
The invention provides a resin composition for laser engraving, having a binder polymer containing at least one of a structure unit represented by the following Formula (I) or a structure unit represented by the following Formula (II). In the Formulae, Q represents a partial structure which provides an acid group having an acid dissociation constant pKa of 0 to 20 when it is in the form of -Q-H; R1 to R3 each independently represent a hydrogen atom or a monovalent organic group; and A and B each independently represent a bivalent organic connecting group. The invention further provides a relief printing plate precursor having a relief forming layer containing the resin composition, a method for manufacturing a relief printing plate having crosslinking components of the relief forming layer and laser engraving the relief forming layer, and a relief printing plate formed thereby. |
US08822125B2 |
Composition for forming pattern and in-plane printing method using the same
A composition for forming a pattern includes: about 1% to about 10% by weight of a liquid prepolymer, about 40% to about 60% by weight of an acrylate having a hydrophilic group, about 10% to about 20% by weight of a viscosity modifier, about 1% to about 5% by weight of a photoinitiator, and an additive. |
US08822122B2 |
Image forming apparatus and image forming method
The present application discloses an image forming apparatus which uses at least two types of liquid developer to form a plurality of images that are superimposed on a sheet to form an image. The image forming apparatus includes a transfer mechanism configured to transfer the image to the sheet, an image forming mechanism configured to make the transfer mechanism carry the image, and a rubbing mechanism configured to rub the image on the sheet. The at least two types of liquid developer have different fixing properties from each other. The transfer mechanism includes a carrying surface configured to carry the image from the image forming mechanism. One of the plurality of images between the carrying surface and another of the plurality of images has higher fixing properties than the liquid developer used for forming the other image among the plurality of images. |
US08822119B2 |
Bicomponent developing agent
A two-component developer including at least a toner and a carrier. The toner includes a coloring particle prepared by agglutinating and fusing a resin particle having colorants and a resin particle having wax, and 0.2-2.0 wt. % hydrophobic silica and 0.01-1.0 wt. % a hydrotalcite-like compound as external additives. A shape coefficient of the toner is 0.93-0.99. The carrier includes at least a magnetic particle coated with a silicone resin layer, with a volume average particle diameter of 20-100 μm. |
US08822118B2 |
Toner, development agent, and image forming apparatus
Toner containing a binder resin that contains at least one kind of resin having a crystalline polyester unit as its main component and a releasing agent containing a straight-chain mono ester having 48 or more carbon atoms accounting for 40% by weight or more of the releasing agent. |
US08822116B2 |
Erasable electrophotographic toner containing organic white pigment and method of producing the same
An erasable electrophotographic toner includes a binder resin, a near-infrared absorbing material, a decolorizing agent and an organic white pigment. |
US08822112B2 |
Siloxane-based compound, photosensitive composition comprising the same and photosensitive material
The present application relates to a siloxane-based compound, a photosensitive composition including the same, and a photosensitive material. |
US08822111B2 |
Colored photosensitive composition, color filter and process for producing same, and liquid-crystal display device
A colored photosensitive composition includes: (A) a dye represented by the following Formula (1); (B) a multifunctional thiol compound; (C) a photopolymerization initiator represented by the following Formula (2); and (D) a polymerizable compound. In Formula (1), each of A and B independently represents an organic group containing an aromatic ring or an organic group containing a heterocyclic ring. In Formula (2), each of C, D, and E independently represents a hydrogen atom or an organic group. |
US08822106B2 |
Grid refinement method
The present disclosure provides an embodiment of a method, for a lithography process for reducing a critical dimension (CD) by a factor n wherein n<1. The method includes providing a pattern generator having a first pixel size S1 to generate an alternating data grid having a second pixel size S2 that is |
US08822105B2 |
Photomask and method for manufacturing the same
The present invention provides a photo-mask and a method for manufacturing the same. The method for manufacturing the photo-mask comprising: forming a shading pattern layer on a substrate; forming a protecting layer covering the shading pattern layer and the substrate; and; forming a reduced reflection layer on the protecting layer, wherein a refractive index of the protecting layer is greater than a refractive index of the reduced reflection layer. The present invention can mitigate a light reflection problem of a substrate of the conventional photo-mask. |
US08822102B2 |
Manifold device for tube type solid oxide fuel cell
A manifold device for a tube type solid oxide fuel cell including a manifold body including at least one of a first opening for fluid inflow and a second opening for fluid outflow; at least one of a first manifold unit in the manifold body, the first manifold unit distributing fluid flowing in the first opening portion into channels, and a second manifold unit in the manifold body, the second manifold unit integrating fluid flowing in channels out to the second opening; and a plurality of tube type ports, each tube type port having a tube type body contacting and protruding from an outer surface of the manifold body, being connected to and in fluid communication with the channels, and including a heat interception unit in a portion of the tube type body. |
US08822085B2 |
Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
A non-aqueous electrolyte solution for a lithium secondary battery includes a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent. The lithium salt includes LiN(CF3SO2)2. The non-aqueous electrolyte solution further includes a sulfate-based compound and vinylene carbonate. A lithium secondary battery having the above non-aqueous electrolyte solution may keep overall high temperature performance in a high level and also improve low temperature power characteristics. |
US08822081B2 |
Electrode structure and electrochemical cell using the same
An electrode structure and an electrochemical cell including the electrode structure are provided. The electrode structure includes a porous three-dimensional (3D) outer net including an interconnected plurality of outer metal lines that define a plurality of outer holes between adjacent ones of the outer metal lines. The outer metal lines include a porous 3D inner net, a first layer coating the inner net, and a second layer coating the first layer. The inner net includes an interconnected plurality of inner metal lines that define a plurality of inner holes between adjacent ones of the inner metal lines. The inner metal lines include a first metal. The first layer includes a second metal. The second layer includes a third metal. |
US08822079B2 |
Composite anode active material for lithium rechargeable battery, method of preparing the same and lithium rechargeable battery using the material
A composite anode active material includes a first intermetallic compound, a second intermetallic compound, a metal that is incapable of alloy formation with lithium, and carbon. In the composite anode active material, an amorphous carbon is present between the first intermetallic compound and the second intermetallic compound, and the metal that is incapable of alloy formation with lithium is uniformly distributed throughout in the composite anode active material. The composite anode active material may be used as an anode of a lithium rechargeable battery. |
US08822071B2 |
Active material for rechargeable battery
A magnesium battery includes a first electrode including an active material and a second electrode. An electrolyte is disposed between the first electrode and the second electrode. The electrolyte includes a magnesium compound. The active material includes an inter-metallic compound of magnesium and bismuth. |
US08822064B2 |
Modular battery with polymeric compression sealing
A modular battery includes: a first battery cell having a first electrode surface; a second battery cell having a second electrode surface; a compressible interconnector connecting the first battery cell and the second battery cell; and a polymeric material holding the first battery cell against the second battery cell with the interconnector in a compressed state. A method is also provided. |
US08822062B2 |
Power-supply device with terminal clipping pieces
The power-supply device includes: a battery assembly composed of a plurality of batteries each having a positive electrode end and a negative electrode end, said batteries overlapped with each other in a manner that electrodes having the different polarities are adjacent to each other; a plurality of bus bars connecting the batteries in series by connecting the adjacent electrodes having the different polarities in the battery assembly; and a terminal having an electric contact part attached to each bus bar, and a wire connecting part continued to the electric contact part, and attached to an electric wire connected to a voltage measuring device for measuring a voltage of the battery. The electric contact part includes a pair of clipping pieces disposed with a gap from each other, and connected to the bus bar by press-inserting the bus bar into between the clipping pieces. |
US08822054B2 |
Battery system for secondary battery comprising blended cathode material, and apparatus and method for managing the same
Disclosed is a battery system for a secondary battery including a blended cathode material, and an apparatus and method for managing a secondary battery having a blended cathode material. The blended cathode material includes at least a first cathode material and a second cathode material. The first and second cathode materials have different operating voltage ranges. When the secondary battery comes to an idle state or a no-load state, the battery system detects a voltage relaxation occurring by the transfer of operating ions between the first and second cathode materials. |
US08822053B2 |
Electrical energy storage device
Provided is an electrical energy storage device including an electrode winding body, which includes a positive electrode generating electrons by oxidation and reduction, a negative electrode for absorbing the generated electrons, and separation layers for physically separating the negative electrode from the positive electrode, which are sequentially wound around a winding core, and an electrolyte provided between the positive electrode and the negative electrode, the electrical energy storage device including: a terminal plate for connecting the electrode winding body to an external electrode interconnecting member such as an external resistor; a cylindrical can for accommodating the electrode winding body connected to the terminal plate; and a ring-shaped sealing member for closing an opening formed in the can; wherein the sealing member includes a vent part having a vent hole and integrally formed in the center of at least one side of the sealing member. According to the present invention, in which a porous membrane for closing the vent hole or the additional vent hole is expanded and burst in an accommodation hole of the can by an internal pressure of the can in the event that the internal pressure of the can is excessively increased by a long term use or an external factor, it is possible to prevent the can from being deformed or exploded. |
US08822049B2 |
Battery unit and electrical device
A battery unit provided with a flat battery and a substrate having a circuit formed thereon is provided in a compact form as a whole. The battery unit (1) includes a flat battery (2) in a flat shape having an upper surface and a bottom surface and a substrate (61) fixed to one surface of the flat battery (2). A circuit component (62) is mounted on a surface of the substrate (61) on a side of the flat battery (2), and a positive electrode terminal (68) (charging terminal) electrically connected to a positive electrode side of the flat battery (2) and a negative electrode terminal (66) (GND terminal) electrically connected to a negative electrode side of the flat battery (2) are formed on a surface of the substrate (61) on the opposite side to the flat battery (2). |
US08822048B2 |
Paste composition and printed circuit board
A conductor layer is formed on one surface of a base insulating layer. The conductor layer includes a collector portion, and a drawn-out conductor portion extending in an elongated shape from the collector portion. A cover layer is formed on the base insulating layer to cover a predetermined portion of the conductor layer. A material for the cover layer includes a paste composition containing a compound expressed by the formula (1). |
US08822044B2 |
Ceramic material, method for the manufacture of a ceramic material and electroceramic component comprising the ceramic material
Ceramic material of the general formula: [SE1-xMIIx][Cr1-y-zRyLz]O3, wherein SE stands for one or more rare earth metals, MII stands for one or more metals of the oxidation state +II, L stands for Al and/or Ga, R stands for one or more metals selected from Fe, Zn, Ge, Sn, and it holds that: 0 |
US08822038B2 |
Coated article and method for manufacturing coated article
An coated article includes a substrate; and a coating deposited on the substrate, wherein the coating is a titanium layer mixed with a first element and a second element, M is at least one element selected from a group consisting of iron, cobalt, nickel, copper, niobium, hafnium and tantalum; R is at least one element selected from a group consisting of scandium, yttrium and lanthanide. |
US08822036B1 |
Sintered silver joints via controlled topography of electronic packaging subcomponents
Disclosed are sintered silver bonded electronic package subcomponents and methods for making the same. Embodiments of the sintered silver bonded EPSs include topography modification of one or more metal surfaces of semiconductor devices bonded together by the sintered silver joint. The sintered silver bonded EPSs include a first semiconductor device having a first metal surface, the first metal surface having a modified topography that has been chemically etched, grit blasted, uniaxial ground and/or grid sliced connected to a second semiconductor device which may also include a first metal surface with a modified topography, a silver plating layer on the first metal surface of the first semiconductor device and a silver plating layer on the first metal surface of the second semiconductor device and a sintered silver joint between the silver plating layers of the first and second semiconductor devices which bonds the first semiconductor device to the second semiconductor device. |
US08822035B1 |
Erucamide-coated paper for transfer of a slip agent
An erucamide-coated paper and a methods of making the erucamide-coated paper are disclosed. |
US08822034B2 |
Film-forming composition, diffusing agent composition, method for manufacturing film-forming composition, and method for manufacturing diffusing agent composition
A film-forming composition according to one embodiment includes a siloxane polymer (A) containing a condensation product (A1) and a condensation product (A2). In the (A), a contained amount of the (A1) is 75 percent or less by mass in terms of SiO2 with respect to the total of the (A1) and the (A2). The (A) has a weight-average molecular weight (MW) of 80 percent or greater of a molecular weight value M determined by expression (1) if RA1>RA2, expression (2) if RA1 |
US08822030B2 |
Nanoplatelet metal hydroxides and methods of preparing same
Nanoplatelet forms of metal hydroxide and metal oxide are provided, as well as methods for preparing same. The nanoplatelets are suitable for use as fire retardants and as agents for chemical or biological decontamination. |
US08822029B2 |
Polyacrylonitrile polymer, method of producing the same, method of producing precursor fiber used for producing carbon fiber, carbon fiber and method of producing the same
A polyacrylonitrile-based polymer which satisfies at least one of [a] to [d]:[a] Z-average molecular weight (Mz) determined by gel-permeation chromatograph is 800,000 to 6,000,000 and degree of polydispersity (Mz/Mw) (Mw denotes weight average molecular weight) is 3.0 to 10.0;[b] Z+1-average molecular weight (Mz+1) determined by GPC method is 3,000,000 to 10,000,000 and degree of polydispersity (Mz+1/Mw) is 6.0 to 25.0;[c] Mzm determined by gel-permeation chromatograph multi-angle laserlight scattering photometry is 400,000 to 1,000,000 and degree of polydispersity (Mzm/Mwm) is 3.0 to 10.0; and[d] Z-average radius of gyration (Rz) determined by gel-permeation chromatograph multi-angle laserlight scattering photometry is 25 to 45 nm and its ratio to weight average radius of gyration (Rz/Rw) is 1.3 to 2.5. |
US08822028B2 |
Acrylic pressure sensitive adhesive and method of preparing the same
Provided is a removable acrylic pressure sensitive adhesive comprising (A) 70-96.5 weight % of (meth)acrylic acid ester monomer having C1-C14 alkyl group; (B) 0.5-27 weight % of one or more functional group containing monomers selected from the group consisting of carboxyl group containing monomer, hydroxyl group containing monomer, epoxy group containing monomer, vinyl ester group containing monomer and cyano group containing monomer; and (C) 0.6-3 weight % of a cross linking agent having 5-13 alkylene oxide groups and acrylate group or vinyl group in 100 weight % of the monomers and the cross linking agent, and the adhesive of the present invention is a water based adhesive and pro-environmental, and demonstrates excellent adhesiveness at room temperature and under aging atmosphere and excellent dimensional stability as well, so that it can be widely used for various pressure sensitive adhesive sheets for outdoor/indoor advertisement, automobile, printing, decorating, etc. |
US08822027B2 |
Mold for plastic forming and a method for producing the same, and method for forging aluminum material
A mold for plastic forming having excellent seizure resistance controlled by adjusting its surface properties. In addition, a process producing the mold, that includes: roughening a surface of a base material by a shot blast method to adjust its arithmetic averaged roughness Ra: higher than 1 μm but 2 μm or lower; polishing the surface of the base material to adjust its skewness Rsk to 0 or lower while retaining Ra: 0.3 μm or higher; and forming a hard film on the surface of the base material where the surface of the hard film has an arithmetic averaged roughness Ra: 0.3 μm or higher but 2 μm or lower and skewness Rsk: 0 or lower. Adjusting the surface of the mold to have a non-concave-biased configuration, limits the capacity for concaves to accumulate lubricant, such that the lubricant is sufficiently deposited on the surfaces of the convexes. |
US08822024B2 |
Method of producing a self-healing membrane
The invention relates to a membrane that heals on its own after being damaged mechanically as well as a method for producing said membrane which is used for pneumatic structures featuring an internal operating pressure of 10 mbar to 500 mbar. The inventive membrane is provided with a plastic layer on the pressure side, said plastic layer being interspersed with blisters that have a diameter ranging from 10μ to 200μ. |
US08822023B2 |
Refractory metal ceramics and methods of making thereof
A composition having nanoparticles of a refractory-metal carbide or refractory-metal nitride and a carbonaceous matrix. The composition is not in the form of a powder. A composition comprising a metal component and an organic component. The metal component is nanoparticles or particles of a refractory metal or a refractory-metal compound capable of decomposing into refractory metal nanoparticles. The organic component is an organic compound having a char yield of at least 60% by weight or a thermoset made from the organic compound. A method of combining particles of a refractory metal or a refractory-metal compound capable of reacting or decomposing into refractory-metal nanoparticles with an organic compound having a char yield of at least 60% by weight to form a precursor mixture. |
US08822020B2 |
Molding composition composed of vinyl chloride polymer or polyvinylchloride film produced from the molding composition and process for production of a film or of a film web
The invention relates to a molding mass made from vinyl chloride polymer or polyvinylchloride at 5 to 94 wt. % and a K value of 50 to 90 additives at 2 to 25 wt. % and a polymer, whereby the weight percentages relate to the total weight of the molding mass. The polymer is a semi-crystalline or amorphous polyester. The film is produced from the molding mass by plastifying and fusing the same and calendering or extruding the same to give a film with a thickness of 100 microns to 1 mm. By means of subsequent in-line or off-line method steps, the film, for example, by means of drawing with a drawing degree of 1.3 to 7, can be further processed to give a thin high-shrinkage film. |
US08822008B2 |
Replaceable wear liner
A replaceable wear liner pad assembly can be used to provide an array of tiles for lining a trough structure, the trough structure being made of a magnetically attractive material. The replaceable wear liner assembly includes magnetic members encapsulated within a resilient polymeric material, the polymeric material being transparent to magnetic fields. The polymeric material may have the general consistency of truck tire rubber. One side of the tile has a sheet or portion of a set gauge thickness such that in use the magnetic members are maintained at a set standoff distance from the underlying trough structure. The resilient material is far more flexible than the magnetic elements, such that the assembly can flex somewhat. The pad assembly is free of mechanical fasteners. Individual elements of the tile array may be replaced when worn, rather than the entire array. The underside of the pad assembly may provide a seal against the underlying trough structure to discourage leakage at the apertures formerly used for conventional wear liner stud assemblies. |
US08822002B2 |
Fluorine-containing elastomer composition and molded article comprising the same
An object of the present invention is to provide a fluorine-containing elastomer composition being flexible and having excellent fuel barrier property, heat resistance, chemical resistance and oil resistance. Another object of the present invention is to provide a sealing material, a molded article and a fuel hose obtained by crosslinking the fluorine-containing elastomer composition. The composition is a fluorine-containing elastomer composition comprising a polyol-crosslinkable fluorine-containing elastomer, a polyol crosslinking agent and a hydrotalcite, wherein an acid acceptor comprising only an oxide or hydroxide of a divalent metal is contained in an amount of not more than 2 parts by weight based on 100 parts by weight of the fluorine-containing elastomer. |
US08822001B2 |
Delamination resistant multilayer containers
The present invention provides a multilayer plastic bottle comprising layers of PET and a polyamide such as, for example, MXD6, that is free from occurrence of delamination upon dropping or upon exposure to impact. The present inventors have found that when forming a barrier layer containing an adhesion promoting agent according to the present invention, an impact energy applied to the barrier layer is well reduced and the resultant multilayer bottle is improved in interlaminar bonding strength and prevented from suffering from delamination upon dropping, etc. |
US08822000B2 |
Nanostructure and method for manufacturing the same
The present invention provides a nanostructure on an upper surface of which a small-diameter carbon nanotube (CNT) is formed and which improves an adhesive strength between a substrate and the CNT while controlling an orientation of the CNT, and a method for manufacturing the nanostructure. The nanostructure includes a substrate 101, a porous layer 102 formed on the substrate 101 to have a fine pore, a fine pore diameter control layer 103 formed on the porous layer 102, and a carbon nanotube 701 formed to extend from the fine pore defined by the fine pore diameter control layer 103, and one end of the carbon nanotube is fixed by the fine pore diameter control layer 103. It is preferable that the substrate 101 and the fine pore diameter control layer 103 be electrically conductive. It is preferable that the porous layer 102 be an anode oxide film. It is preferable that a melting point of the fine pore diameter control layer 103 be 600° C. or higher. |
US08821999B2 |
Vacuum-insulated glass windows with glass-bump spacers
Vacuum-insulated glass (VIG) windows (10) that employ glass-bump spacers (50) and two or more glass panes (20) are disclosed. The glass-bump spacers are formed in the surface (24) of one of the glass panes (20) and consist of the glass material from the body portion (23) of the glass pane. Thus, the glass-bump spacers are integrally formed in the glass pane, as opposed to being discrete spacer elements that need to be added and fixed to the glass pane. Methods of forming VIG windows are also disclosed. The methods include forming the glass-bump spacers by irradiating a glass pane with a focused beam (112F) from a laser (110). Heating effects in the glass cause the glass to locally expand, thereby forming a glass-bump spacer. The process is repeated at different locations in the glass pane to form an array of glass-bump spacers. A second glass pane is brought into contact with the glass-bump spacers, and the edges (28F, 28B) sealed. The resulting sealed interior region (40) is then evacuated to a vacuum pressure of less than one atmosphere. |
US08821998B2 |
Recording medium for inkjet printing
An inkjet recording medium and a coating composition for forming an inkjet recording medium. In accordance with one aspect of the present invention, an inkjet recording medium is disclosed comprising an inkjet-receptive coating on a paper substrate. The inkjet-receptive coating contains a synergistic combination of pigments, binder and a multivalent metal salt such that the inkjet recording medium exhibits improved inkjet print properties, particularly when printed with a high speed inkjet printer using pigmented inks |
US08821993B2 |
Liquid crystal composition and liquid crystal display device
A liquid crystal composition has a negative dielectric anisotropy, and contains a specific bicyclic compound having a large optical anisotropy and a small viscosity as a first component and a specific compound having a large maximum temperature and a large dielectric anisotropy as a second component, and may contain a specific compound having a small viscosity as a third component, a specific compound having a large dielectric anisotropy as a fourth component and a specific compound having a large dielectric anisotropy as a fifth component, and a liquid crystal display device includes the composition. |
US08821991B2 |
Process for preparing titanium carbide
A process for preparing titanium carbide using a pigment formulation having at least one titanium compound and a carbon compound and/or elemental carbon, the pigment formulation reacting under laser irradiation to form TiC. |
US08821990B2 |
DLC film-forming method and DLC film
The present invention provides a DLC film that has good adhesiveness even in a low-temperature environment, and a DLC film-forming method capable of forming this DLC film. The present invention also provides a DLC film that has excellent initial compatibility, and a DLC film-forming method capable of forming this DLC film. In the present invention, a first opposing surface (31) that faces an inner clutch plate, of a substrate (30) of an outer clutch plate (15) is covered by a DLC film (26). Also, a treatment layer (33) is formed on a surface layer portion of the substrate (30). The treatment layer (33) is formed by applying direct-current pulse voltage to the substrate (30), and generating plasma in an atmosphere that contains argon gas and hydrogen gas. |
US08821989B2 |
Method for manufacturing optical laminated body
Provided is a method for manufacturing an optical laminated body having a substrate and a polarizing film that contains a lyotropic liquid crystal compound and is formed on the substrate. The method includes a step (A) of applying a coating liquid containing the lyotropic liquid crystal compound and a solvent onto the substrate and forming a coat film with the lyotropic liquid crystal compound orientated in one direction, and a step (B) of applying a magnetic field to the coat film in a direction substantially parallel to an orientation direction of the lyotropic liquid crystal compound. |
US08821988B2 |
Method for modification of the surface and subsurface regions of metallic substrates
A method for surface engineering a metal substrate involves mixing precursor powders with a polymer binder to create a coating mix and coating the substrate with the coating mix. The substrate is then heated via induction heating, with the frequency and duration of the heating being controlled so as to cause a reaction of the precursor powders to create one or more types of ceramics or intermetallics, evaporate the polymer binder, melt a portion of the substrate, and cause the synthesized compounds to mix with the substrate and form a compositionally graded surface modification. The compound(s) created by the reactions are mixed with molten portion of the substrate and upon re-solidification of the substrate, are distributed at decreasing percentages along a depth of the substrate so that their content varies from 100% at a surface of the substrate to 0% at a defined depth of the substrate. |
US08821985B2 |
Method and apparatus for high-K gate performance improvement and combinatorial processing
Methods and apparatuses for combinatorial processing are disclosed. Methods include introducing a substrate into a processing chamber. Methods further include forming a first film on a surface of a first site-isolated region on the substrate and forming a second film on a surface of a second site-isolated region on the substrate. The methods further include exposing the first film to a plasma having a first source gas to form a first treated film on the substrate and exposing the second film to a plasma having a second source gas to form a second treated film on the substrate without etching the first treated film in the processing chamber. In addition, methods include evaluating results of the treated films post processing. |
US08821983B2 |
Ultra-high solid content polyurethane dispersion and a continuous process for producing ultra-high solid content polyurethane dispersions
The instant invention is an ultra-high solid content polyurethane dispersion, and a continuous process for producing ultra-high solid content polyurethane dispersions. The ultra-high solid content polyurethane dispersion includes the reaction product of: (1) a first component, wherein the first component is a first polyurethane prepolymer or a first polyurethane prepolymer emulsion; (2) a second component, wherein the second component is a second polyurethane prepolymer, a second polyurethane prepolymer emulsion, a low solid content polyurethane dispersion, a seed latex, or combinations thereof; (3) and a chain extender. The ultra-high solid content polyurethane dispersion has a solid content of at least 60 percent by weight of the solid, based on the total weight of the ultra-high solid content polyurethane dispersion, and a viscosity in the range of less than 5000 cps at 20 rpm at 21° C. using spindle #4 with Brookfield viscometer. The method for producing a high-solid content polyurethane dispersion includes the following steps: (1) providing a first stream, wherein said first stream comprising a first polyurethane prepolymer or a first polyurethane prepolymer emulsion; (2) providing a second stream, wherein said second stream being a media phase selected from the group consisting of a second polyurethane prepolymer, a second polyurethane prepolymer emulsion, a polyurethane prepolymer dispersion, a seed latex emulsion, or combinations thereof; (3) continuously merging said first stream with said second stream in the presence of a chain extender; and (4) thereby forming a polyurethane dispersion having a solid content of at least 60 percent by weight of the solid, based on the total weight of the ultra-high solid content polyurethane dispersion, and a viscosity in the range of less than 5000 cps at 20 rpm at 21° C. using spindle #4 with Brookfield viscometer. |
US08821981B2 |
Polyurethane gaskets and process for forming same
A method of forming a seal includes preparing a froth from a one component polyurethane precursor, applying the froth to a surface of an article, and simultaneously applying water with the froth, the froth curing to form a gasket having a density not greater than 350 kg/m3 bonded to the article. |
US08821978B2 |
Methods of directed self-assembly and layered structures formed therefrom
A method of forming a layered structure comprising a domain pattern of a self-assembled material utilizes a negative-tone patterned photoresist layer comprising non-crosslinked developed photoresist. The developed photoresist is not soluble in an organic casting solvent for a material capable of self-assembly. The developed photoresist is soluble in an aqueous alkaline developer and/or a second organic solvent. A solution comprising the material capable of self-assembly and the organic casting solvent is casted on the patterned photoresist layer. Upon removal of the organic casting solvent, the material self-assembles, thereby forming the layered structure. |
US08821975B2 |
Method for making branched carbon nanotubes
A method for making a branched carbon nanotube structure includes steps, as follows: providing a substrate and forming a buffer layer on a surface of the substrate; depositing a catalyst layer on the surface of the buffer layer; putting the substrate into a reactive device; and forming the branched carbon nanotubes on the surface of the buffer layer and along the surface of the buffer layer by a chemical vapor deposition method. The material of the catalyst layer is non-wetting with the material of the buffer layer at a temperature that the branched carbon nanotube are formed. A yield of the branched carbon nanotubes in the structure can reach about 50%. |
US08821972B2 |
Method and apparatus for applying cushion gum to a tire casing
Methods, computer programs, and apparatus for applying a layer of cushion gum to a tire casing in preparation for the retreading of the tire casing, the steps of the methods including selecting one of a plurality recipes for applying cushion gum based on one of a size, model and shape of the tire casing; pressurizing the tire casing to a predetermined pressure based on the recipe; crushing the tire casing by an extruder head a predetermined percentage of the tire casing radius or a predetermined distance, the predetermined percentage based on the recipe; and extruding the cushion gum from the extruder head. The extruder head may be translatable by way of a screw drive. |
US08821967B2 |
Method for manufacturing an oxide thin film
A method for manufacturing an oxide thin film comprises: providing a coating material composed of a first precursor material, a fuel material and a solvent; coating the coating material on a substrate; and annealing the coated coating material on the substrate to convert the coated coating material into an oxide thin film. |
US08821964B1 |
Method for manufacture of semiconductor bearing thin film material
A method for forming a semiconductor bearing thin film material. The method includes providing a metal precursor and a chalcogene precursor. The method forms a mixture of material comprising the metal precursor, the chalcogene precursor and a solvent material. The mixture of material is deposited overlying a surface region of a substrate member. In a specific embodiment, the method maintains the substrate member including the mixture of material in an inert environment and subjects the mixture of material to a first thermal process to cause a reaction between the metal precursor and the chalcogene material to form a semiconductor metal chalcogenide bearing material overlying the substrate member. The method then performs a second thermal process to remove any residual solvent and forms a substantially pure semiconductor metal chalcogenide thin film material overlying the substrate member. |
US08821959B2 |
Method for applying liquid material, device therefor, and program therefor
A method for applying a liquid material in a specific application amount includes an initial parameter setting step of specifying, as a total pulse number, the number of times both ejection pulse signals and pause pulse signals are sent, specifying the number of ejection pulse signals in the total pulse number, which is needed to achieve the specific application amount, and specifying the remainder of the total pulse number as the pause pulse signals; a correction amount calculation step of measuring, per preset correction period, an ejection amount from the nozzle at the timing of the correction period, and calculating a correction amount for the ejection amount; and an ejection amount correction step of adjusting the number of ejection pulse signals and the number of pause pulse signals on the basis of the correction amount calculated in the correction amount calculation step. |
US08821958B2 |
Method for electrostatic coating of a stent
A method for electrostatic coating of medical devices such as stents and balloons is described. The method includes applying a composition to a polymeric component of a medical device which has little or no conductivity. The polymeric component could be a material from which the body or a strut of the stent is made or could be a polymeric coating pre-applied on the stent. The polymeric component could be the balloon wall. A charge can then be applied to the polymeric component or the polymeric component can be grounded. Charged particles of drugs, polymers, biobeneficial agents, or any combination of these can then be electrostatically deposited on the medical device or the coating on the medical device. One example of the composition is iodine, iodine, iodide, iodate, a complex or salt thereof which can also impart imaging capabilities to the medical device. |
US08821956B2 |
Non-astringent protein products
The invention relates to a protein that can be added to a food product or beverage without thereby providing the food product or beverage with a strong astringent taste, an undesirable colouring and/or an off-taste. More in particular, the invention relates to a potato protein glycated with a reducing sugar, wherein the reducing sugar is preferably chosen from the group consisting of reducing monosaccharides, reducing disaccharides, dextran and combinations thereof. |
US08821954B2 |
Process for the production of refined whole wheat flour with low coloration
A whitish whole-wheat flour and a process for producing the flour are described wherein the wheat bran is separated into a fine bran and a coarse bran fraction and the course bran is pulverized to a smaller size and mixed into the flour. |
US08821948B2 |
Therapeutic, bio-affecting and body treating composition
A medicinal composition comprising an apportioned combination of at least eight essential oils selected from the group consisting of calophyllum inophyllum, citrus aurantium, eucalyptus globulublus, eugenia caryophyllata, foeniculum vulgare, helichrysum angustifolia, juniperus virginiana, lavendula officinalis, muristica fragrans, ocimum basilicim, pinus sylvestrius, piper nigrum, rosemarinus officinalis, salvia officinalis lamiacae, salvia sclarea and zingiber officinale. When configured for topical dermal application, this composition has been shown to be therapeutically effective at relieving pain. |
US08821946B2 |
Calcium carbonate granulation
Highly compactable granulations and methods for preparing highly compactable granulations are disclosed. More particularly, highly compactable calcium carbonate granulations are disclosed. The granulations comprise powdered materials such as calcium carbonate that have small median particle sizes. The disclosed granulations are useful in pharmaceutical and nutraceutical tableting and provide smaller tablet sizes upon compression than previously available. |
US08821942B1 |
Highly compressible, low density ground calcium carbonate granulation and a related method of preparation
A calcium carbonate granulation and a method for preparing a calcium carbonate granulation are provided. The method includes applying an atomized binder to powdered calcium carbonate in a fluid bed granulator at a relatively high atomization pressure to achieve a reduced binder droplet size, and drying the resulting composition at elevated temperatures in a fluidized bed dryer. The resulting granulation include porous granules having a lower density and reduced mean particle size with improved compressibility. In addition, the resulting granulation can be compacted into tablets having a hardness 50% greater than the hardness of tablets formed from commercially available granulations. |
US08821941B2 |
Hair removal with nanoparticles
Provided are nanoparticles and formulations which are useful for cosmetic, diagnostic and therapeutic applications to mammals such as humans. |
US08821940B2 |
Thermal treatment of the skin surface with nanoparticles
Provided are nanoparticles and formulations which are useful for cosmetic, diagnostic and therapeutic applications to mammals such as humans. |
US08821939B2 |
Bioactive agent delivery particles
The invention provides compositions and methods for delivery of a bioactive agent to an individual. Delivery vehicles are provided that include a bioactive agent in disc shaped particles that include one or more lipid binding polypeptides circumscribing the perimeter of a lipid bilayer in which the bioactive agent is localized. Chimeric lipid binding polypeptides are also provided and may be used to add additional functional properties to the delivery particles. |
US08821937B2 |
Methods of treating cardiovascular disorders associated with atherosclerosis
Layered phyllosilicates are useful for adsorbing and/or binding to cholesterol and, thereby, reducing blood cholesterol in a patient. Accordingly, provided herein is a method of reducing hypercholesteremia in a mammal comprising administering to the mammal a protonated and at least partially exfoliated layered phyllosilicate material alone and in combination with other cholesterol-reducing agents in an amount effective to reduce hypercholesteremia in the mammal. Also provided are methods of treating a cardiovascular disorder associated with atherosclerosis in a mammalian subject comprising administering to the subject a layered phyllosilicate material in an amount effective to reduce atherosclerotic lesion formation in the subject. |
US08821934B2 |
Pullulan-containing powder, process for producing the same and use thereof
The object of the present invention is to overcome conventional demerits of pullulan powders prepared by conventional techniques, i.e., they could not be homogeneously mixed with non-reducing saccharides composed of glucose units when mixed together, and the resulting mixtures do not easily dissolve in water; and to provide a pullulan-containing powder with an improved rate of water dissolution, as well as to provide preparations and uses thereof. The present invention solves the above object by providing a pullulan-containing powder which uniformly comprises pullulan as a main ingredient and a non-reducing saccharide, and their process and uses; wherein the pullulan-containing powder is prepared by the steps of preparing a solution dissolving pullulan and a non-reducing saccharide homogeneously, pulverizing the solution, and collecting the resulting pullulan-containing powder. The powder has an improved rate of water dissolution, while retaining satisfactory resistance to humidity without fear of causing separation between the pullulan and the non-reducing saccharide. |
US08821932B2 |
Pharmaceutical compositions
A process for the production of a composition comprising a water-insoluble statin which comprises the steps of: a) providing a mixture comprising: i) a water-insoluble statin ii) a water soluble carrier, iii) a solvent for each of the statin and the carrier, and b) spray-drying the mixture to remove the or each solvent and obtain a substantially solvent-free nano-dispersion of the statin in the carrier. |
US08821929B2 |
Tamper resistant dosage forms
The present invention relates to pharmaceutical dosage forms, for example to a tamper resistant dosage form including an opioid analgesic, and processes of manufacture, uses, and methods of treatment thereof. |
US08821927B2 |
Pharmaceutical composition
Oral pharmaceutical formulations containing ditosylate salts of 4-quinazolineamines are described as well as methods of using the same in the treatment of disorders characterized by aberrant erbB family PTK activity. |
US08821926B2 |
Tablet containing hardly soluble active ingredient
A tablet showing regulated variation in dissolution from lot to lot which contains from about 3 to about 50% by weight (w/w), based on the whole tablet, of (S)—N-[2-(1,6,7,8-tetrahydro-2H-indeno[5,4-b]furan-8-yl)ethyl]propionamide, magnesium stearate and hydroxypropylcellulose having a viscosity of about 1 to about 4 mPa·s. |
US08821925B2 |
Ubiquinol and alpha lipoic acid compositions
The present invention is directed to compositions and methods of delivery of CoQ that is reduced in the presence of lipoic acid and, optionally a fatty acid and/or optionally in a monoterpene. The compositions that include the reduced CoQ can be formulated in soft gel capsules. |
US08821924B2 |
Rhein or diacerein compositions
The invention relates to pharmaceutical compositions comprising rhein or diacerein or salts or esters or prodrugs thereof, optionally with one or more pharmaceutically acceptable excipients. The invention also relates to the methods for preparing such compositions. |
US08821922B2 |
Compositions and methods for polymer-caged liposomes
The present invention provides liposomal compositions and methods of using such compositions in vitro and in vivo. In particular, the present invention provides stable, polymer-caged liposomes comprising a pH responsive delivery mechanism for delivery of nucleic acids, peptides, small molecules, drugs, etc. in vitro and in vivo. |
US08821917B2 |
Biopolymeric membranes
This invention relates to a sheet membrane for repairing a damaged tissue. The membrane includes an isotropic layer of cross-linked biopolymeric fibers in which the fibers are 10 to 1,000 cm in length. This invention also relates to a method of making an isotropic layer of cross-linked biopolymeric fibers. The method includes: (1) coacervating biopolymeric fibers (e.g., collagen-based fibers) having lengths of less than 1 cm dispersed in an aqueous solution to obtain coacervated biopolymeric fibers having lengths of 10 to 1,000 cm; (2) flattening the coacervated biopolymeric fibers into a layer; (3) drying the layer; and (4) cross-linking the biopolymeric. |
US08821916B2 |
Medical dressing comprising an antimicrobial silver compound
A medical dressing comprising a complex of silver and being capable of releasing antimicrobial silver ion activity, said complex comprising silver and a transition element of Group IV of the periodic system of elements enables a controlled release of silver ion activity to a wound bed. |
US08821915B2 |
Therapeutic process for the treatment of the metabolic syndrome and associated metabolic disorders
The present invention is directed to a method of treating a patient suffering from the metabolic syndrome and/or related disorders including obesity, Type 2 diabetes, pre-diabetes, hypertension, dyslipidemia, insulin resistance, endothelial dysfunction, pro-inflammatory state, and pro-coagulative state, and comprising the steps of (a) providing to the patient a dietary regimen that decreases overactive CNS noradrenergic tone; followed by (b) providing to the patient a dietary regimen that increases dopaminergic tone while maintaining the above decreased overactive CNS noradrenergic tone. The present invention is also directed to food products useful in implementing the dietary regimens. |
US08821914B2 |
Non-abusable pharmaceutical composition comprising opioids
There is provided pharmaceutical compositions for the treatment of pain comprising a pharmacologically-effective amount of an opioid analgesic, or a pharmaceutically-acceptable salt thereof, presented in particulate form upon the surfaces of carrier particles comprising a pharmacologically-effective amount of an opioid antagonist, or a pharmaceutically-acceptable salt thereof, which carrier particles are larger in size than the particles of the opioid analgesic. The compositions are also useful in prevention of opioid abuse by addicts. |
US08821913B2 |
Controlled releases system containing temozolomide
The present invention relates to a controlled release system, in particular to a controlled release system containing temozolomide. |
US08821912B2 |
Method of manufacturing antimicrobial implants of polyetheretherketone
Methods of fabricating implantable medical devices, preferably with PEEK, having antimicrobial properties, are disclosed. The antimicrobial effect is produced by incorporating ceramic particles containing antimicrobial metal cations into molten PEEK resin, which is subsequently allowed to cool and set in its final shape achieved by injection molding, cutting and machining or other techniques. |
US08821903B2 |
Method for producing a vesicle composition
The present invention is a method for producing a vesicle composition having an aqueous phase as a continuous phase, the method including a step of dissolving an oil phase containing component (A) a branched fatty acid having a predetermined structure; component (B) a tertiary amine having a predetermined structure; and component (C) an organic acid having 1 to 10 carbon atoms at a temperature that is equal to or higher than a melting point of the oil phase, and a step of carrying out mixing while adding the aqueous phase to the oil phase which is dissolved. |
US08821902B2 |
Powdery emulsifying composition of alkyl polyglycosides, use thereof for preparing cosmetic emulsions, and method for preparing same
A powdery composition C1 contains for 100% of the mass: 5 to 70 mass % and more particularly 10 to 50 mass % of at least one compound of formula (I): R—O-(G)x-H, wherein R is a linear saturated aliphatic radical including 12 to 22 carbon atoms, G is the remainder of a reducing sugar selected from the group including glucose, xylose and arabinose, and x is a decimal number greater than or equal to 1 and lower than or equal to 10; 95 to 30 mass % and more particularly 90 to 50 mass % of one or more alcohols of formula (II): R′—OH, wherein R′ is a linear saturated aliphatic radical including 12 to 22 carbon atoms identical to or different from R as defined in formula (I), wherein at least 90 vol % of the particles have a diameter lower than or equal to 250 micrometers, more particularly a diameter lower than or equal to 150 micrometers. |
US08821900B2 |
Anti-adhesion material
An object of the present invention is to provide an anti-adhesion material having sufficient in vivo degradability and excellent anti-adhesion characteristics, and also superior to conventional ones in terms of handling properties under wet conditions. The anti-adhesion material (1) of the present invention has a sheet-like base layer (10) containing a water soluble polymer (e.g., pullulan), a first cover layer (20) placed on a surface on one side of the base layer (10) and containing an aliphatic ester, and a second cover layer (30) placed on a surface on the other side of the base layer (10) and containing an aliphatic ester. The optical thickness of each of the first cover layer (20) and the second cover layer (30) is set to be 27 nm or greater and smaller than 160 nm. |
US08821897B2 |
Viral adjuvants
The present invention provides viral adjuvants for enhancing an immune response to an immunogen. In particular embodiments, the viral adjuvant is an alphavirus adjuvant or a Venezuelan Equine Encephalitis viral adjuvant. Also provided are compositions comprising the viral adjuvant and an immunogen, and pharmaceutical formulations comprising the viral adjuvant or compositions of the invention in a pharmaceutically acceptable carrier. Further provided are methods of producing an immune response against an immunogen in a subject comprising administering the immunogen and a viral adjuvant of the invention to the subject. |
US08821896B2 |
Purified Plasmodium and vaccine composition
Disclosed are substantially purified Plasmodium sporozoites and preparations of Plasmodium sporozoites substantially separated from attendant non-sporozoite material, where the preparations of Plasmodium sporozoites have increasing levels of purity. Vaccines and pharmaceutical compositions comprising purified Plasmodium sporozoites are likewise provided. Methods of purifying preparations of Plasmodium sporozoites are also provided. |
US08821892B2 |
Yeast-based therapeutic for chronic hepatitis C infection
Disclosed are compositions, including vaccines, and methods for vaccinating an animal against hepatitis C virus (HCV) and for treating or preventing hepatitis C viral infection in an animal. The invention includes a variety of novel HCV fusion proteins that can be used directly as a vaccine or in conjunction with a yeast-based vaccine vehicle to elicit an immune response against HCV in an animal. The invention also includes the use of the HCV fusion gene and protein described herein in any diagnostic or therapeutic protocol for the detection and/or treatment or prevention of HCV infection. |
US08821888B2 |
Xylogone ganodermophthora strain with antifungal activity, and composition including same for preventing plant diseases
A novel ascomycetous Xylogone ganodermophthora strain has antifungal activity. A composition includes the strain as an active ingredient for preventing plant diseases. The strain suppresses the growth of pathogenic fungi, including Phytophthora capsici, in plants. Therefore, the composition containing the strain, or a culture or extract thereof, as an active ingredient for preventing plant diseases has excellent antifungal activity and can thus be used as an environmentally friendly and pollution-free pesticide. |
US08821885B2 |
Immunogenic compositions and methods
The invention is directed to immunogenic compositions, and methods for their use in the formulation and administration of therapeutic and prophylactic pharmaceutical agents. In particular, the invention provides immunogenic compositions and methods for preventing, treating, and/or ameliorating microbial infection, including, for example, influenza, or one or more symptoms thereof. |
US08821882B2 |
Vaccine preparation for neospora caninum infection
A vaccine preparation characterized in that Neospora caninum-derived dense granule protein 7 or apical membrane antigen 1 or an immunologically active variant or derivative thereof is included in liposomes each having an oligosaccharide capable of binding to a carbohydrate recognition molecule on the surface of antigen-presenting cells on the surface of the liposome. |
US08821881B2 |
Quil A fraction with low toxicity and use thereof
Fraction A of Quil A can be used together with at least one other adjuvant for the preparation of an adjuvant composition, where the included adjuvant components act synergistically to enhance level of immune response and have synergistic immunomodulating activity on the co-administered antigens or immunogens.Other adjuvants can comprise saponins, naturally occurring, synthetic or semisynthetic saponin molecules; e.g. saponins and saponin fractions from Quil A, cell wall skeleton, blockpolymers, TDM, lipopeptides, LPS and LPS-derivatives, Lipid A from different bacterial species and derivatives thereof, e.g., monophosphoryl lipid A. CpG variants, CT and LT or fractions thereof. |
US08821879B2 |
Anti-botulism antibody coformulations
This invention relates to stable formulations of multiple antibodies comprising a plurality of anti-botulism antibodies and an effective amount of a succinate buffer, an effective amount of arginine, wherein the antibodies are present in substantially equal concentrations and the pH of the formulation is between about 5 and about 6.5. |
US08821876B2 |
Methods of identifying infectious disease and assays for identifying infectious disease
Methods of identifying infectious disease infection prior to presentation of symptoms, assays for identifying genomic markers of infectious disease, and methods for diagnosing the underlying etiology of infectious disease. |
US08821875B2 |
Pharmaceutical composition comprising antibodies against catalase and superoxide dismutase for tumor therapy
The present invention is based on the unexpected finding that, in addition to catalase, SOD is also involved in protecting tumor cells, wherein the inhibition effects of the two protective enzymes support one another in a complementary manner. The invention thus relates to pharmaceutical compositions containing at least two antibodies or the biologically active fragments thereof, wherein the one antibody is directed against the catalase and the other antibody is directed against the superoxide dismutase, as well as their use for treating a tumor disease. |
US08821870B2 |
Method for treating atrophic age related macular degeneration
Compositions and methods for treating dry age related macular degeneration (dry AMD) by administration to an intraocular location of an anti-neovascular agent (such as bevacizumab) in either a liquid or solid polymeric vehicle (or both), such as a biodegradable hyaluronic acid or PLGA (or PLA). |
US08821869B2 |
Treatment methods using c-Met antibodies
The present invention relates to antibodies including human antibodies and antigen-binding portions thereof that specifically bind to c-Met, preferably human c-Met, and that function to inhibit c-Met. The invention also relates to human anti-c-Met antibodies and antigen-binding portions thereof. The invention also relates to antibodies that are chimeric, bispecific, derivatized, single chain antibodies or portions of fusion proteins. The invention also relates to isolated heavy and light chain immunoglobulins derived from human anti-c-Met antibodies and nucleic acid molecules encoding such immunoglobulins. The present invention also relates to methods of making human anti-c-Met antibodies, compositions comprising these antibodies and methods of using the antibodies and compositions for diagnosis and treatment. The invention also provides gene therapy methods using nucleic acid molecules encoding the heavy and/or light immunoglobulin molecules that comprise the human anti-c-Met antibodies. The invention also relates to transgenic animals or plants comprising nucleic acid molecules of the present invention. |