首页 / 专利库 / 兽医学 / 腐蹄病 / 衝撃波アプリケータを用いた大動脈尖弁の修復

衝撃波アプリケータを用いた大動脈尖弁の修復

阅读:196发布:2020-05-13

专利汇可以提供衝撃波アプリケータを用いた大動脈尖弁の修復专利检索,专利查询,专利分析的服务。并且石灰化心臓弁の治療のための衝撃波デバイスおよび方法が、本明細書に説明される。衝撃波デバイスの一変形例は、シースによって担持される伸長可撓性管を備え得る。管は、シースの近位端の近傍に 位置 し得る、 流体 入 力 端を有し得る。管は、ループ部分を含み得る。ループ部分は、心臓弁尖内に少なくとも部分的に収容されるように構成され得る。管は、伝導性流体で充填可能であり得る。いくつかの変形例では、衝撃波デバイスは、管のループ部分内に位置付けられる複数のワイヤと関連付けられる、電極対のアレイを含み得る。電極対は、電圧源に電気的に接続可能であり、電圧パルスに応答して、伝導性流体中で衝撃波を発生させるように構成され得る。,下面是衝撃波アプリケータを用いた大動脈尖弁の修復专利的具体信息内容。

衝撃波を送達して心臓弁内の石灰化病変を治療するためのデバイスであって、 シースによって担持される伸長可撓性管であって、前記管は、流体端を有し、前記管の流体入力端は、前記シースの近位端の近傍に位置し、前記管は、ループ部分を含み、前記ループ部分は、心臓弁尖内に少なくとも部分的に収容されるように構成され、前記管の流体入力端を介して伝導性流体で充填可能である、管と、 前記ループ部分内に位置付けられる複数のワイヤと関連付けられる電極対のアレイであって、前記電極対は、電圧源に電気的に接続可能であり、電圧パルスに応答して、前記伝導性流体中で衝撃波を発生させるように構成される、電極対と を備える、デバイス。前記管は、少なくとも1つの柔軟ポリマーから形成される、請求項1に記載のデバイス。前記電極対は、前記電圧パルスを搬送するように直列に電気的に結合される交互配置ワイヤ部分によって担持される、請求項1に記載のデバイス。前記電極対のアレイは、電圧パルスに応答して衝撃波を発生させるように構成される直列に結合される少なくとも2つの交互配置ワイヤ部分によって担持される、請求項1に記載のデバイス。前記電極対は、第1の電極対と、第2の電極対とを備え、 前記第1の電極対は、第1のワイヤの第1のアーク発生領域と、第2のワイヤの少なくとも1つの第2のアーク発生領域とを含み、前記第1のワイヤの一部は、前記第2のワイヤの第1の部分と交互配置され、前記第1のワイヤは、前記第2のワイヤのものよりも正である電位を有し、 前記第2の電極対は、前記第2のワイヤの第3のアーク発生領域と、第3のワイヤの少なくとも1つの第4のアーク発生領域とを含み、前記第2のワイヤの第2の部分は、前記第3のワイヤの第1の部分と交互配置され、前記第2のワイヤは、前記第3のワイヤのものよりも正である電位を有する、 請求項1に記載のデバイス。前記第1のワイヤは、前記電圧源の正端子に電気的に結合され、前記第3のワイヤは、前記電圧源の負端子に電気的に結合される、請求項5に記載のデバイス。前記第1のワイヤの一部は、前記第2のワイヤの第1の部分と交互配置し、前記第1のワイヤの一部および前記第2のワイヤの第1の部分に共通する中心軸を伴う第1のコイルを形成し、前記第2のワイヤの第2の部分は、前記第3のワイヤの第1の部分と交互配置し、前記第2のワイヤの第2の部分および前記第3のワイヤの第1の部分に共通する中心軸を伴う第2のコイルを形成する、請求項5に記載のデバイス。前記電極対はさらに、第3の電極対を備え、前記第3の電極対は、前記第3のワイヤの第5のアーク発生領域と、第4のワイヤの少なくとも1つのアーク発生領域とを含み、前記第3のワイヤの第2の部分は、前記第4のワイヤの一部と交互配置され、前記第3のワイヤは、前記第4のワイヤのものよりも正である電位を有する、請求項5に記載のデバイス。前記第1のワイヤは、前記電圧源の正端子に電気的に結合され、前記第4のワイヤは、前記電圧源の負端子に電気的に結合される、請求項8に記載のデバイス。前記第3のワイヤの前記第2の部分は、前記第4のワイヤの一部と交互配置され、前記第3のワイヤの第2の部分および前記第4のワイヤの一部に共通する中心軸を伴う第3のコイルを形成する、請求項9に記載のデバイス。前記電極対はそれぞれ、第1のワイヤ部分の1つ以上のアーク発生領域と、第2のワイヤ部分の1つ以上のアーク発生領域とを備え、前記アーク発生領域は、絶縁を欠いており、2つの隣接するワイヤ部分の間にプラズマアークを発生させ、前記衝撃波を搬送するように構成される、請求項1に記載のデバイス。前記第1のワイヤ部分は、前記第2のワイヤ部分のものよりも少数のアーク発生領域を備え、前記第1のワイヤ部分は、前記第2のワイヤ部分を備える前記ワイヤのものよりも正である電位を有するワイヤの一部である、請求項11に記載のデバイス。前記第1のワイヤ部分は、1つのアーク発生領域を含み、前記第2のワイヤ部分は、少なくとも2つのアーク発生領域を含み、前記第1のワイヤ部分のアーク発生領域は、前記第1のワイヤ部分の絶縁のアーク誘発腐食を補償するように位置付けられる、請求項12に記載のデバイス。前記管の内径は、約0.04インチ〜約0.08インチの範囲内である、請求項1に記載のデバイス。前記管の内壁から前記電極対のアレイを離間させるように構成される複数のスペーサをさらに備える、請求項1に記載のデバイス。前記スペーサは、リング状のスペーサを含む、請求項15に記載のデバイス。前記管内に配置される伸長可撓性支持ワイヤをさらに備え、前記支持ワイヤは、前記電極対のアレイと接触して前記電極対を支持する、請求項1に記載のデバイス。前記支持ワイヤは、電気絶縁体を含む、請求項17に記載のデバイス。前記支持ワイヤは、ポリイミドまたはニチノールから形成される、請求項17に記載のデバイス。前記管のループ部分の中に配置されるマーカをさらに備え、前記マーカは、前記支持ワイヤに同軸に結合される、請求項17に記載のデバイス。流体源と、流体ポンプとをさらに備え、前記流体ポンプは、前記流体源から前記管の流体入力端に流体を送達するように構成される、請求項1に記載のデバイス。前記シースによって担持される少なくとも1つの付加的伸長可撓性管と、 前記管のループ部分の間に、かつそれを越えて延在し、前記心臓弁尖を通って心室の中へ通過し、前記シースの位置を安定させるように構成される、中心アンカと をさらに備える、請求項1に記載のデバイス。前記中心アンカは、自己拡張式アンカである、請求項22に記載のデバイス。前記中心アンカは、形状記憶材料を備える、請求項22に記載のデバイス。前記ループ部分は、馬形ループまたはJ字形ループを備える、請求項1に記載のデバイス。衝撃波を送達して心臓弁内の石灰化病変を治療するためのデバイスであって、 シースによって担持される伸長可撓性管であって、前記管は、流体入力端を有し、前記管の流体入力端は、前記シースの近位端の近傍に位置し、前記管は、ループ部分を含み、前記ループ部分は、心臓弁尖内に少なくとも部分的に収容されるように構成され、前記管は、前記管の流体入力端を介して伝導性流体で充填可能である、管と、 前記管内で中心に配置される伸長可撓性支持ワイヤと、 前記伸長可撓性支持ワイヤによって支持される少なくとも2つの絶縁ワイヤであって、前記少なくとも2つの絶縁ワイヤは、前記伸長可撓性支持ワイヤの周囲でコイル状である、少なくとも2つの絶縁ワイヤと、 前記ループ部分内に位置付けられる前記少なくとも2つの絶縁ワイヤの中に含まれる少なくとも2つの電極対であって、前記電極対はそれぞれ、前記少なくとも2つの絶縁ワイヤのうちの2つの絶縁ワイヤの交互配置部分内に形成される複数のアーク発生領域を備え、前記アーク発生領域は、絶縁を欠いており、前記少なくとも2つの電極対は、電圧源に電気的に接続可能であり、電圧パルスに応答して、前記伝導性流体中で衝撃波を発生させるように構成される、少なくとも2つの電極対と を備える、デバイス。衝撃波を送達して心臓弁内の石灰化病変を治療するための方法であって、 衝撃波デバイスを患者の血管系の中に導入するステップであって、前記衝撃波デバイスは、シースによって担持される伸長可撓性管であって、前記管は、流体入力端を有し、前記管の流体入力端は、前記シースの近位端の近傍に位置し、前記管は、ループ部分を含み、前記ループ部分は、心臓弁尖内に少なくとも部分的に収容されるように構成され、前記管は、前記管の流体入力端を介して伝導性流体で充填可能である、管と、前記ループ部分内に位置付けられる複数のワイヤと関連付けられる、電極対のアレイであって、前記電極対は、電圧源に電気的に接続可能であり、電圧パルスに応答して、前記伝導性流体中で衝撃波を発生させるように構成される、電極対とを備える、ステップと、 前記管のループ部分が心臓弁尖で少なくとも部分的に収容されるように、前記血管系内で前記衝撃波デバイスを前進させるステップと、 前記衝撃波デバイスの管に伝導性流体を提供するステップと、 前記電圧源をアクティブ化し、衝撃波を印加して前記石灰化病変を治療するステップと を含む、方法。衝撃波を送達して心臓弁内の石灰化病変を治療するためのデバイスであって、 シースによって担持される伸長可撓性管であって、前記管は、流体入力端を有し、前記管の流体入力端は、前記シースの近位端の近傍に位置し、前記管は、前記管の流体入力端を介して伝導性流体で充填可能である、管と、 前記管内に位置付けられる複数のワイヤと関連付けられる電極対のアレイであって、前記電極対は、電圧源に電気的に接続可能であり、前記電極対は、電圧パルスに応答して、前記伝導性流体中で衝撃波を発生させるように構成され、前記電極対は、第1の電極対と、第2の電極対とを備える、電極対と を備え、 前記第1の電極対は、第1のワイヤの第1のアーク発生領域と、第2のワイヤの少なくとも1つの第2のアーク発生領域とを含み、前記第1のワイヤの一部は、前記第2のワイヤの第1の部分と交互配置され、前記第1のワイヤは、前記第2のワイヤのものよりも正である電位を有し、 前記第2の電極対は、前記第2のワイヤの第3のアーク発生領域と、第3のワイヤの少なくとも1つの第4のアーク発生領域とを含み、前記第2のワイヤの第2の部分は、前記第3のワイヤの第1の部分と交互配置され、前記第2のワイヤは、前記第3のワイヤのものよりも正である電位を有する、 デバイス。前記中心アンカは、複数のアームを含み、 第1の構成時の1つ以上のマーカは、前記複数のアームのうちの第1のアーム上に配置され、 第2の構成時の1つ以上のマーカは、前記複数のアームのうちの第2のアーム上に配置される、 請求項22に記載のデバイス。前記第1の構成および前記第2の構成は、マーカ数、マーカ形状、マーカ長、前記アーム上のマーカ配列、またはそれらの組み合わせが異なる、請求項23に記載のデバイス。衝撃波を送達して心臓弁内の石灰化病変を治療するためのデバイスであって、 シースによって担持される伸長可撓性管であって、 前記管は、開放近位端と、密閉遠位端とを有し、 前記管の遠位端は、心臓弁尖内に少なくとも部分的に収容されるように構成され、 前記管は、前記管の開放近位端を介して加圧伝導性流体で充填可能である、 伸長可撓性管と、 前記管内に位置付けられる複数のワイヤと関連付けられる電極対のアレイであって、前記電極対は、電圧源に電気的に接続可能であり、電圧パルスに応答して、前記伝導性流体中で衝撃波を発生させるように構成される、電極対と を備える、デバイス。前記管は、J字形であり、前記密閉遠位端は、曲線部分を含み、前記曲線部分は、前記心臓弁尖内に収容されるように構成される、請求項31に記載のデバイス。前記アレイの各電極対は、コイル状構成で交互配置される第1のワイヤおよび第2のワイヤと関連付けられ、前記第1のワイヤは、前記第2のワイヤのものよりも正である電位を有し、 前記管の遠位端に最も近い前記電極対と関連付けられる前記第2のワイヤは、少なくとも前記管の密閉遠位端から前記管の開放近位端まで延在するように構成される、 請求項31に記載のデバイス。前記管の密閉遠位端を越えて延在し、前記心臓弁尖を通って心室の中へ通過し、前記シースの位置を安定させるように構成される、中心アンカをさらに備える、請求項31に記載のデバイス。前記中心アンカは、複数のアームを含み、 第1の構成時の1つ以上のマーカは、前記複数のアームのうちの第1のアーム上に配置され、 第2の構成時の1つ以上のマーカは、前記複数のアームのうちの第2のアーム上に配置される、 請求項34に記載のデバイス。前記第1の構成および前記第2の構成は、マーカ数、マーカ形状、マーカ長、前記アーム上のマーカ配列、またはそれらの組み合わせが異なる、請求項35に記載のデバイス。衝撃波を送達して心臓弁内の石灰化病変を治療するための方法であって、 衝撃波デバイスを患者の血管系の中に導入するステップであって、前記衝撃波デバイスは、 シースによって担持される伸長可撓性管であって、前記管は、開放近位端と、密閉遠位端とを含み、前記管の遠位端は、前記シースから外へ延在されたときにループ部分にカールするように構成され、前記ループ部分は、前記管が前記管の開放近位端を介して加圧伝導性流体で充填されるときに部分的に広がるように構成される、伸長可撓性管と、 前記ループ部分内に位置付けられる複数のワイヤと関連付けられる電極対のアレイであって、前記電極対は、電圧源に電気的に接続可能であり、電圧パルスに応答して、前記伝導性流体中で衝撃波を発生させるように構成される、電極対と を備える、ステップと、 心臓弁尖に接近するが、そこから離間された前記シースの遠位端を位置付けるステップと、 前記管の遠位端がループ部分にカールするように、かつ前記管のループ部分が前記心臓弁尖内に少なくとも部分的に収容されるように、前記シースから外へ前記管の一部を延在させるステップと、 前記開放近位端を介して加圧伝導性流体で前記管を加圧し、前記管のループ部分を曲線部分に部分的に広げるステップと、 前記電圧源をアクティブ化し、衝撃波を印加して前記石灰化病変を治療するステップと を含む、方法。衝撃波を送達して心臓弁内の石灰化病変を治療するための方法であって、 衝撃波デバイスを患者の血管系の中に導入するステップであって、前記衝撃波デバイスは、 シースによって担持される伸長可撓性管であって、前記管は、近位端と、遠位端とを有し、前記管の遠位端は、心臓弁尖内に少なくとも部分的に収容されるように構成され、前記管は、伝導性流体で充填可能である、伸長可撓性管と、 前記管内に位置付けられる複数のワイヤと関連付けられる電極対のアレイであって、前記電極対は、電圧源に電気的に接続可能であり、電圧パルスに応答して、前記伝導性流体中で衝撃波を発生させるように構成される、電極対と、 前記管の遠位端を越えて延在し、前記心臓弁尖を通って心室の中へ通過し、前記シースの位置を安定させるように構成される、中心アンカであって、前記アンカは、第1のアームと、第2のアームとを含み、1つ以上のマーカは、第1の構成で前記第1のアーム上に配置され、1つ以上のマーカは、第2の構成で前記第2のアーム上に配置される、中心アンカと を備える、ステップと、 前記中心アンカが前記心室の中へ設置されるように、前記血管系内で前記衝撃波デバイスを前進させるステップと、 前記中心アンカを拡張するステップと、 前記マーカ構成に基づいて、前記アームの場所を決定するステップと、 前記アームの決定された場所に基づいて、前記管の遠位端が第1の心臓弁尖で少なくとも部分的に収容されるように、前記管を位置付けるステップと、 前記電圧源をアクティブ化し、衝撃波を印加して前記石灰化病変を治療するステップと を含む、方法。前記管の遠位端が第2の心臓弁尖で少なくとも部分的に収容されるように、前記決定された場所に基づいて前記管を再配置するステップと、 前記電圧源をアクティブ化し、衝撃波を印加して前記石灰化病変を治療するステップと をさらに含む、請求項38に記載のデバイス。前記第1の構成および前記第2の構成は、マーカ数、マーカ形状、マーカ長、前記アーム上のマーカ配列、またはそれらの組み合わせが異なる、請求項38に記載のデバイス。衝撃波を送達して心臓弁内の石灰化病変を治療するためのデバイスであって、 シースによって担持される伸長可撓性管であって、前記管は、流体入力端を有し、前記管の流体入力端は、前記シースの近位端の近傍に位置し、前記管は、ループ部分を含み、前記ループ部分は、心臓弁尖内に少なくとも部分的に収容されるように構成され、前記管は、前記管の流体入力端を介して伝導性流体で充填可能である、管と、 前記ループ部分内に位置付けられる1つ以上の衝撃波発生器であって、前記1つ以上の衝撃波発生器は、電源に接続可能であり、パルスエネルギーに応答して、前記伝導性流体中で衝撃波を発生させるように構成される、1つ以上の衝撃波発生器と を備える、デバイス。前記1つ以上の衝撃波発生器は、前記ループ部分内に位置付けられる複数のワイヤと関連付けられる電極対のアレイを含み、 前記電源は、電圧源を含み、前記パルスエネルギーは、電圧パルスを含む、 請求項41に記載のデバイス。前記1つ以上の衝撃波発生器は、第1の長さを有する第1の光ファイバと、前記第1の長さと異なる第2の長さを有する第2の光ファイバとを含む、請求項41に記載のデバイス。前記電源は、レーザ発生器を含み、前記パルスエネルギーは、衝撃波と、レーザパルスによって発生される圧力パルスとを含む、請求項41に記載のデバイス。前記1つ以上の衝撃波発生器は、光ファイバを含み、前記光ファイバは、前記伸長可撓性管に沿って摺動可能であり、異なる場所で衝撃波を発生させるように構成される、請求項41に記載のデバイス。

说明书全文

(関連出願の相互参照) 本願は、2016年10月6日に出願された米国仮特許出願第62/405,002号に対する優先権を主張するものであり、該米国仮特許出願の全体は、参照により本明細書中に援用される。

大動脈弁狭窄は、大動脈弁の狭小化をもたらす。大動脈弁狭窄は、大動脈弁が、3つの尖弁の代わりに、1つの尖弁(一尖)または2つの尖弁(二尖)を有する、先天的欠陥によって悪化され得る。多くの場合、大動脈弁の狭小化は、石灰化プラークが尖弁および/または大動脈弁輪上に蓄積する、大動脈弁石灰化の結果である。例えば、尖弁上に堆積されるカルシウムプラークは、尖弁を硬化させ、それによって、弁開放を狭小化し、大動脈弁を横断する効率的な血流に干渉し得る。

研究が置換大動脈弁の開発において進行中であるが、天然弁を人工弁と置換する代わりに、その上のカルシウム堆積物を修正(例えば、低減)または砕破することによって、尖弁を軟化させることが好まれる場合もある。故に、石灰化大動脈弁を軟化させる改良された方法が、望ましくあり得る。

石灰化心臓弁の治療のための衝撃波デバイスおよび方法が、本明細書に説明される。弁の石灰化領域への衝撃波の印加は、カルシウム堆積物を破砕および/または破壊することに役立ち、それによって、弁の機械的性質を硬化させるカルシウム堆積物を軟化および/または弛緩ならびに/もしくは除去し得る。カルシウム堆積物を軟化および/または弛緩ならびに/もしくは除去するステップは、弁がその正常な機能の少なくとも一部を再獲得することを可能にし得る。衝撃波デバイスの一実施形態は、シースによって担持される伸長可撓性管を備えてもよい。管は、シースの近位端の近傍に位置し得る、流体端ならびに流体出力端を有してもよい。管は、シースの遠位端の近傍に位置するループ部分を含んでもよい。ループ部分は、心臓弁尖内に少なくとも部分的に収容されるように構成されてもよい。管は、管の流体入力端を介して伝導性流体で充填可能であり得る。いくつかの変形例では、衝撃波デバイスは、管のループ部分内に位置付けられる複数のワイヤと関連付けられる、電極対のアレイを含んでもよい。電極対は、電圧源に電気的に接続可能であり、電圧パルスに応答して、伝導性流体中で衝撃波を発生させるように構成されてもよい。少なくとも2つの伸長可撓性管と、1つ以上の電極対とを備える、衝撃波デバイスが、一尖弁、二尖弁、および/もしくは三尖弁を治療するために使用されてもよい。

衝撃波を送達して心臓弁内の石灰化病変を治療するための方法は、衝撃波デバイスを患者の血管系の中に導入するステップを含んでもよい。衝撃波デバイスは、シースによって担持される伸長可撓性管を備えてもよい。管は、流体入力端を有してもよい。管の流体入力端は、シースの近位端の近傍に位置してもよい。管は、シースの遠位端の近傍に位置するループ部分を含んでもよい。管のループ部分は、心臓弁尖内に少なくとも部分的に収容されるように構成されてもよい。管は、管の流体入力端を介して伝導性流体で充填可能であり得る。衝撃波デバイスは、ループ部分内に位置付けられる複数のワイヤと関連付けられる、電極対のアレイを備えてもよい。電極対は、電圧源に電気的に接続可能であり、電圧パルスに応答して、伝導性流体中で衝撃波を発生させるように構成されてもよい。衝撃波を送達して心臓弁内の石灰化病変を治療するための方法はさらに、管のループ部分が心臓弁尖で少なくとも部分的に収容されるように、血管系内で衝撃波デバイスを前進させるステップと、衝撃波デバイスの管に伝導性流体を提供するステップと、電圧源をアクティブ化し、衝撃波を印加して石灰化病変を治療するステップとを含んでもよい。

(例えば、弁形成術の一部として)大動脈弁内の石灰化堆積物を破砕および/または破壊するために使用され得る、他のデバイスならびに方法は、参照することによってそれらの全体として本明細書に組み込まれる、2013年8月8日に出願された同時係属米国特許公開第2014/0046353号(米国特許出願第13/962,315号)、2011年8月10日に出願された米国特許公開第2011/0295227号(米国特許出願第13/207,381号、現在は米国特許第9,044,619号)、2011年11月8日に出願された米国特許公開第2013/0116714号(米国特許出願第13/291,875号、現在は米国特許第8,574,247号)、2013年8月1日に出願された米国特許公開第2014/0163592号(米国特許出願第13/957,276号、現在は2015年12月29日に発行された米国特許第9,220,521号)に説明される。

衝撃波を送達して心臓弁(例えば、凹状部分をそれぞれ有する、複数の弁尖を有する心臓弁)内の石灰化病変を治療するための一変形例は、シースによって担持される伸長可撓性管を備えてもよい。管は、シースの近位端の近傍に位置する流体入力端を有してもよい。管は、シースの遠位端の近傍に位置するループ部分を含んでもよい。ループ部分は、心臓弁尖内に少なくとも部分的に収容されるように構成されてもよい。管は、管の流体入力端を介して伝導性流体で充填可能であり、続いて、シース上に位置する流体出力管を通して、使用済み伝導性流体をパージしてもよい。デバイスはさらに、管内に配置される、伸長可撓性支持ワイヤと、伸長可撓性支持ワイヤによって支持される、少なくとも2つの絶縁ワイヤとを備えてもよい。少なくとも2つの絶縁ワイヤは、可撓性支持ワイヤの周囲でコイル状であり得る。デバイスはさらに、ループ部分内に位置付けられる少なくとも2つの絶縁ワイヤの中に含まれる、少なくとも2つの電極対を備えてもよい。電極対はそれぞれ、少なくとも2つの絶縁ワイヤのうちの2つの絶縁ワイヤの交互配置部分内に形成される、複数のスパーク発生領域(またはアーク発生領域)を備えてもよい。アーク発生領域は、絶縁を欠いている。少なくとも2つの電極対は、電圧源に電気的に接続可能であり、電圧パルスに応答して、伝導性流体中で衝撃波を発生させるように構成されてもよい。

本明細書に説明されるデバイスのうちのいずれかはさらに、管の内壁から電極対のアレイを離間させるように構成される、複数のスペーサと、管のループ部分の中に配置されるマーカと、流体源と、流体ポンプとを備えてもよい。流体ポンプは、流体源から管の流体入力端に流体を送達するとともに、管から流体を除去するように構成されてもよい。最大衝撃波出力を最大限にするために、管から残渣および気泡を除去し、新鮮な伝導性流体で管を補充することが望ましくあり得る。圧力解放弁は、ポンプが一定の圧力において伝導性流体を送達することができるように、流体出力端に取り付けられてもよい。いくつかの実施形態では、圧力レギュレータが、流体入力端において取り付けられてもよい。随意に、デバイスはさらに、シースによって担持される、少なくとも1つの付加的伸長可撓性管と、管のループ部分の間に、かつそれを越えて延在し、心臓弁尖を通って心室の中へ通過し、シースの位置を安定させるように構成される、中心アンカとを備えてもよい。

図1Aは、心臓弁内の石灰化病変の治療のための衝撃波デバイスの一変形例を概略的に描写する。

図1Bは、シースによって担持される例示的伸長可撓性管を概略的に描写する。

図1Cは、衝撃波デバイスの例示的伸長可撓性管の部分拡大図を描写する。

図2は、心臓弁の中に展開された伸長可撓性管の概略上面図を描写する。

図3Aは、例示的伸長可撓性管および可撓性管内に配置される複数のワイヤと関連付けられる電極対のアレイの概略図を描写する。

図3Bは、例示的可撓性管の種々の図および電極対を担持する例示的交互配置ワイヤ部分の拡大図を描写する。

図3Cは、可撓性支持ワイヤによって支持される例示的交互配置ワイヤ部分の拡大図を描写する。

図3Dは、コイル状構成時の2つの隣接する交互配置ワイヤ部分の概略図およびそれらの拡大図を描写する。

図3Eは、コイルが直線化された2つの隣接する交互配置ワイヤ部分の概略図およびそれらの拡大図を描写する。

図4は、衝撃波デバイスと併用され得る、自己拡張式アンカの一変形例の斜視図を描写する。

図5は、衝撃波を送達して心臓弁内の石灰化病変を治療するための方法のフローチャート表現である。

図6は、別の例示的伸長可撓性管および可撓性管内に配置される複数のワイヤと関連付けられる電極対のアレイの概略図を描写する。

図7は、別の例示的伸長可撓性管および可撓性管内に配置される複数のワイヤと関連付けられる電極対のアレイの概略図を描写する。

図8は、別の例示的伸長可撓性管および可撓性管内に配置される複数のワイヤと関連付けられる電極対のアレイの概略図を描写する。

図9Aは、衝撃波デバイスを使用して石灰化心臓弁を治療するための例示的方法のステップを描写する。

図9Bは、衝撃波デバイスを使用して石灰化心臓弁を治療するための例示的方法の別のステップを描写する。

図9Cは、衝撃波デバイスを使用して石灰化心臓弁を治療するための例示的方法の別のステップを描写する。

図9Dは、衝撃波デバイスを使用して石灰化心臓弁を治療するための例示的方法の別のステップを描写する。

図9Eは、衝撃波デバイスを使用して石灰化心臓弁を治療するための例示的方法の別のステップを描写する。

図10は、衝撃波デバイスと併用され得る、自己拡張式アンカの一変形例の斜視図を描写する。

図11Aは、心臓弁内の石灰化病変の治療のための衝撃波デバイスの別の例示的変形例を概略的に描写する。

図11Bは、心臓弁内の石灰化病変の治療のための衝撃波デバイスの別の例示的変形例を概略的に描写する。

図1Aは、心臓弁内の石灰化病変の治療のための衝撃波デバイス100の一変形例を概略的に描写する。図1Bは、シース108によって担持される例示的伸長可撓性管110A−Cを概略的に描写する。衝撃波デバイス100は、第1の伸長可撓性管110Aと、第2の伸長可撓性管110Bと、第3の伸長可撓性管110Cとを備えてもよい。図1A−1Bに図示されるように、伸長可撓性管110A−Cは、シース108によって担持されてもよい。伸長可撓性管110A−Cの少なくとも一部は、シース108内に移動可能に収容されてもよい。図1A−1Bに図示されるように、伸長可撓性管110A−Cのうちの1つ以上のものは、心臓弁内の石灰化病変を治療するためにシース108の遠位端を越えて延在されてもよい。いくつかの変形例では、シース108は、近位ハンドル104に結合されてもよい。シース108は、血管系の中に導入され、逆方向に(例えば、大腿動脈を介して)心臓弁まで前進されてもよい。シース108および近位ハンドル104は、参照することによってその全体として本明細書に組み込まれる、2013年8月8日に出願された同時係属米国特許出願第13/962,315号(米国特許公開第2014/0046353号)でさらに詳細に説明されるものに類似する。3つの伸長可撓性管110A−Cが、図1A−1Bに図示されているが、衝撃波デバイス100は、任意の他の数の伸長可撓性管(例えば、1つまたは2つの管)を備え得ることが理解される。

図1Cは、例示的可撓性管の部分拡大図を描写する。図1Cに示されるように、いくつかの変形例では、伸長可撓性管110(例えば、110A−C)は、流体入力端152と、流体出力端154とを備えてもよい。流体入力端152および流体出力端154は、シース108の近位端の近傍に位置してもよい。流体は、流体入力端152を介して導入され、流体出力端154を介して排出されてもよい、または逆も同様である。例えば、流体は、流体ポンプおよび流体源106によって伸長可撓性管110に導入されてもよい。流体ポンプおよび流体源106は、生理食塩または生理食塩水/造影剤混合物等の流体で伸長可撓性管110(例えば、110A−C)を充填してもよい。流体は、衝撃波の発生を支援するように導電性であり得る。いくつかの変形例では、伸長可撓性管110は、1つの流体端を有してもよく、それを通して、流体が管に導入され、管から排出されてもよい。例えば、流体入力端152および流体出力端154は、伸長可撓性管110の1つの開口部を形成してもよい。

伸長可撓性管110(例えば、管110A−C)は、内壁と、外壁とを備えてもよい。いくつかの変形例では、伸長可撓性管110の内壁は、内壁の表面が熱処理されていない表面よりも平滑であるように、熱処理されてもよい。より平滑な内壁は、電極対によって発生される衝撃波の吸収を低減させ、したがって、衝撃波を送達して心臓弁内のカルシウム堆積物を治療する効率を増進させ得る。また、より平滑な表面はまた、伸長可撓性管110の内側で流体を循環させることの抵抗を低減させ得る。より平滑な表面はまた、衝撃波音波出力を減退させ得る、気泡形成および閉じ込めを低減させ得る。親水性コーティングは、本問題を排除する、または低減させ得る。

いくつかの変形例では、伸長可撓性管110は、リング状の断面を有してもよい。例えば、伸長可撓性管110の内壁は、内側円筒を形成し、ワイヤ、支持ワイヤ、電極対を担持する交互配置ワイヤ部分、および流体を収容してもよい。実施例として、伸長可撓性管110の内径は、約0.04インチ〜0.08インチに及んでもよく、伸長可撓性管110の外径は、約0.044インチ〜約0.088インチに及んでもよく、伸長可撓性管110の壁の厚さは、約0.002インチ〜約0.02インチの範囲内であってもよい。壁厚を増加させることは、強度を改良することができるが、伸長可撓性管110の壁の厚さを増加させることはまた、電極対によって発生されるエネルギーの吸収を増加させ、それによって、心臓弁尖の表面に沿った石灰化堆積物に印加される音圧および剪断応力(音圧パルスによって誘発される)を低減させ得る。伸長可撓性管110は、衝撃波を送達して心臓弁内のカルシウム堆積物を治療するための衝撃波デバイスの構成要素(例えば、ワイヤ、支持ワイヤ、電極対を担持する交互配置ワイヤ部分、および流体)を収容するための任意の所望の断面形状および任意の所望の寸法を有し得ることが理解される。いくつかの変形例では、伸長可撓性管110の材料は、ナイロン、ゴム、プラスチック、芳香族ポリウレタン、および/または類似特性を有する他の材料を含んでもよい。

図1A−1Bに図示されるように、いくつかの変形例では、伸長可撓性管110(例えば、110A−C)は、ループ部分を備えてもよい。ループ部分は、シース108の遠位端の近傍に位置してもよい。いくつかの変形例では、ループ部分は、ループ部分の2つの端部が相互に隣接するように、馬形ループを備えてもよい。いくつかの変形例では、ループ部分は、J字形ループ(例えば、図6に示されるような)を備えてもよい。ループ部分は、心臓弁尖内に少なくとも部分的に収容され、カルシウム堆積物を軟化および/または弛緩ならびに/もしくは除去するために衝撃波が送達されることを可能にするように構成されてもよい。管設計の1つの利点は、電極が中心シースに接近し、バルーン壁から離れるように搭載される、電極対がいくつかの従来技術のバルーン設計よりも心臓弁尖に近接近して位置付けられ得ることである。結果として、ループ部分を備える可撓性管は、カルシウム堆積物への衝撃波の送達を増進し得る。心臓弁内のカルシウム堆積物の治療は、図2に関連して下記でさらに詳細に説明される。

図1A−1Cに示されるように、伸長可撓性管110のループ部分は、複数のワイヤと、電極対を担持する交互配置ワイヤ部分のアレイとを備えてもよい。例えば、伸長可撓性管110Aは、第1のワイヤ114と、第1の交互配置ワイヤ部分116と、第2のワイヤ118と、第2の交互配置ワイヤ部分120と、第3のワイヤ122と、第3の交互配置ワイヤ部分124と、第4のワイヤ126とを備える。交互配置ワイヤ部分は、交互配置様式で構成されるワイヤの複数(例えば、2つの)部分を備えてもよい。例えば、交互配置ワイヤ部分は、別のワイヤの一部とコイル状にされるワイヤの一部を含んでもよい。いくつかの変形例では、ワイヤおよび交互配置ワイヤ部分は、直列に構成される。例えば、第1のワイヤ114は、高電圧パルス発生器102等の電圧源の正端子に電気的に結合されてもよい。第1の交互配置ワイヤ部分116は、第2のワイヤ118の第1の部分と交互配置される第1のワイヤ114の一部を備えてもよい。第1のワイヤ114は、第2のワイヤ118よりも正である電圧または電位を有してもよい。同様に、第2の交互配置ワイヤ部分120は、第3のワイヤ122の第1の部分と交互配置される第2のワイヤ118の第2の部分を備えてもよい。第2のワイヤ118は、第3のワイヤ122のものよりも正である電圧または電位を有してもよい。そして、第3の交互配置ワイヤ部分124は、第3のワイヤ122の第2の部分と、第4のワイヤ126の一部とを備えてもよい。第3のワイヤ122は、第4のワイヤ126のものよりも正である電圧または電位を有してもよい。第4のワイヤ126は、高電圧パルス発生器102等の電圧源の負端子に電気的に結合されてもよい。図1A−1Bは、3つの交互配置ワイヤ部分116、120、および124を図示するが、伸長可撓性管110は、任意の所望の構成で任意の数の交互配置ワイヤ部分(例えば、2、3、4、5、6)を備え、衝撃波を送達し得ることが理解される。例えば、伸長可撓性管110Aは、直列に結合される2つの交互配置ワイヤ部分(例えば、第1の交互配置ワイヤ部分116および第2の交互配置ワイヤ部分120)を備えてもよいが、第3の交互配置ワイヤ部分124と、第4のワイヤ126とを備えなくてもよい。本構成では、第3のワイヤ122は、高電圧パルス発生器102等の電圧源の負端子に電気的に結合されてもよい。いくつかの変形例では、1つ以上の交互配置ワイヤ部分はまた、並列に電気的に結合されてもよい。

図3A−Eを参照して下記で議論されるであろうように、図示される実施形態では、各交互配置ワイヤ部分は、少なくとも一対の電極を含む。各電極は、ワイヤから絶縁の小さい領域を除去することによって画定される。高い電圧が伝導性流体によって囲繞されるワイヤに送達されるとき、電気水力学的排出は、アーク発生領域において衝撃波を発生させるプラズマを発生させる。伝導性流体充填管は、2気圧〜6気圧において加圧されてもよい。

いくつかの変形例では、高電圧パルス発生器102は、約1kV〜6kVピーク間値の範囲内の高電圧パルスを発生させることができる。一変形例では、高電圧パルス発生器102は、約5.0kVの電圧を発生させ、電極対のアレイを担持する複数の交互配置ワイヤ部分(例えば、第1の交互配置ワイヤ部分116、第2の交互配置ワイヤ部分120、および第3の交互配置ワイヤ部分124)に電圧を送達する。電極対のアレイは、下記でさらに詳細に説明されるように、電圧パルス発生器102によって発生される電圧パルスに応答して、伝導性流体中で衝撃波を発生させるように構成されることができる。

図1A−1Cに示されるように、いくつかの変形例では、ワイヤおよび交互配置ワイヤ部分は、伸長可撓性管110内に配置される支持ワイヤ160によって支持されてもよい。支持ワイヤ160は、伸長および可撓性であり得る。いくつかの変形例では、支持ワイヤ160は、非伝導性または高誘電絶縁体を伴う金属である。支持ワイヤ160の材料は、ポリイミドでコーティングされたニチノールワイヤまたは類似性質材料であることができる。支持ワイヤ160は、ワイヤ(例えば、第1のワイヤ114、第2のワイヤ118、第3のワイヤ122、および第4のワイヤ126)ならびに複数の交互配置ワイヤ部分(例えば、第1、第2、および第3の交互配置ワイヤ部分116、120、および124)と接触してもよい。一変形例では、ワイヤ(例えば、114、118、122、および126)ならびに交互配置ワイヤ部分(例えば、116、120、および124)は、支持ワイヤ160に巻着してもよい。いくつかの変形例では、支持ワイヤ160は、実質的に伸長可撓性管110を通して延在する。支持ワイヤ160の一変形例は、材料の1つ以上の層を備えてもよい。例えば、図1Cに示されるように、支持ワイヤ160の外層171は、ゴム、プラスチック、セラミック、および/または類似特性を有する他の材料等の電気絶縁体材料を備えてもよい。支持ワイヤ160の内層172は、金属、合金、ニチノール、ステンレス鋼、鉄、銅、アルミニウム、鉛、および/または類似特性を有する他の材料等の導電体を備えてもよい。いくつかの変形例では、内層172は、記憶合金等の記憶材料を備え、支持ワイヤ160の形状を記憶し、同一の患者の心臓弁の中に挿入される度に伸長可撓性管110の形状を調節する施術者の負担を低減させ得る。

図2は、心臓弁200の中に展開された衝撃波デバイスの概略上面図を描写する。説明されるように、いくつかの変形例では、衝撃波デバイスは、複数の伸長可撓性管を備えてもよい。例えば、図2に示されるように、衝撃波デバイスは、第1の伸長可撓性管210Aと、第2の伸長可撓性管210Bと、第3の伸長可撓性管210Cとを備える。伸長可撓性管210A−Cはそれぞれ、電極対を担持する2つ以上の交互配置ワイヤ部分を備えてもよい。例えば、図2に示されるように、伸長可撓性管210Aは、交互配置ワイヤ部分212、214、および216を備え、伸長可撓性管210Bは、交互配置ワイヤ部分222、224、および226を備え、伸長可撓性管210Cは、交互配置ワイヤ部分232、234、および236を備える。交互配置ワイヤ部分はそれぞれ、複数の電極対を担持し、衝撃波を発生させてもよい。

いくつかの変形例では、伸長可撓性管210A−Cはさらに、それぞれ、マーカ252、254、および256を備えてもよい。マーカは、伸長可撓性管210のループ部分の中に配置されてもよい。例えば、図2に示されるように、マーカ252は、交互配置ワイヤ部分212、214、および216を支持する、支持ワイヤ253に同軸に結合される。マーカ254および256は、同様に配置されてもよい。いくつかの変形例では、マーカ252、254、および256は、放射線不透過性であり、患者の血管系を通して挿入されるにつれて、施術者が衝撃波デバイスの場所、位置、および/または配向を識別することを可能にし得る。例えば、マーカ252、254、および256は、それぞれ、伸長可撓性管210A−Cのループ部分の中央部分の近位に配置されてもよい。いくつかの変形例では、1つ以上の252、254、および256は、伸長可撓性管210A−Cの交互配置ワイヤ部分のうちの1つの近位に配置されてもよい、または伸長可撓性管210A−Cの長さに沿った任意の他の場所に配置されてもよい。マーカ252、254、および256は、施術者が伸長可撓性管210A−Cを適切な場所に展開することを可能にし得る。例えば、マーカ252、254、および256を使用して、伸長可撓性管210A−Cは、心臓弁200の個別の弁尖の凹状部分および/または洞242、244、ならびに246内の場所まで展開されてもよい。いくつかの変形例では、伸長可撓性管210A−Cの場所は、マーカ252、254、および256を使用して、蛍光透視法および/または超音波に基づいて決定されてもよい。結果として、空間が、冠動脈への開口部の閉塞を防止するように、管と心臓弁200の壁との間で維持されてもよい。

図2に図示されるように、交互配置ワイヤ部分(例えば、交互配置ワイヤ部分212、214、および216)は、高電圧パルス発生器102等の電圧源に直列に電気的に結合されてもよい。施術者が、伸長可撓性管210A−Cがそれらの所定または所望の位置に位置することを確認した後、交互配置ワイヤ部分によって担持される電極対のうちの1つ以上のものは、衝撃波を生成するようにアクティブ化されてもよい。伸長可撓性管210A−Cおよびそれらの電極対の場所は、電極対が心臓弁200の壁の石灰化領域と近接近および/または接触していることを確認するために、必要に応じて治療手技の全体を通して監視されてもよい。

下記でさらに詳細に説明されるように、電極対は、伸長可撓性管210A−Cの中に充填される伝導性流体を通して伝搬するエネルギーの音響パルスを印加する、衝撃波を発生させてもよい。電極対(例えば、交互配置ワイヤ部分214、216、222、226、232、および236によって担持される電極対)から発生されるエネルギーの音響パルスは、伝導性流体を通して伝搬し、弁尖の表面に沿った石灰化堆積物に音圧および剪断応力を印加してもよい。説明されるように、いくつかの変形例では、伸長可撓性管(例えば、210A−C)の壁の厚さは、電極対によって発生されるエネルギーの吸収に影響を及ぼし得る。例えば、伸長可撓性管110の壁の厚さを増加させることは、電極対によって発生されるエネルギーの吸収を増加させ、それによって、心臓弁尖の表面に沿った石灰化堆積物に印加されるために利用可能である音圧(およびそれと関連付けられる誘発された応力)を低減させ得る。伸長可撓性管110の壁の厚さは、例えば、約0.002インチ〜約0.02インチに及んでもよい。いくつかの変形例では、伸長可撓性管210A−Cの表面は、熱処理されていない表面よりも平滑であり得るように、熱処理されてもよい。伸長可撓性管210A−Cのより平滑な表面は、空洞または粗度を低減もしくは排除し、エネルギーのパルスが全ての方向に伝搬することを可能にする。また、平滑な表面の結果として、エネルギーの一部は、石灰化堆積物に反射および再指向され、それによって、治療の有効性を増進させ得る。いくつかの変形例では、伸長可撓性管(例えば、210A−C)の壁の厚さは、壁の表面が熱処理されるときに低減され得る。より薄い壁が、電極対によって発生されるエネルギーの吸収を低減させ得る。より薄い壁はまた、電極対によって発生されるエネルギーの反射も低減させ得る。したがって、伸長可撓性管(例えば、210A−C)のより薄い壁は、心臓弁尖の表面に沿った石灰化堆積物に印加されるために利用可能である圧力または応力を増加させ、それによって、治療の有効性を増進させ得る。熱処理された表面はまた、エネルギーのパルスの吸収を低減させ、したがって、伸長可撓性管210A−Cに印加される応力を低減させ、それによって、管の寿命を延長させ得る。

図2に示されるように、複数の衝撃波が、心臓弁200の弁尖および/または他の弁構造に印加されてもよい。いくつかの変形例では、伸長可撓性管210A−Cの場所および/または配向は、衝撃波からのエネルギーが弁尖の異なる面積上に位置付けられ得るように、変動されてもよい。例えば、石灰化弁尖の衝撃波治療は、第1の場所において伸長可撓性管210Aの交互配置ワイヤ部分214および216によって担持される電極対から衝撃波を開始するステップ(これは、例えば、弁尖の第1の縁に沿った石灰化堆積物に機械力を印加し得る)と、次いで、伸長可撓性管210Aおよび/または交互配置ワイヤ部分214ならびに216を第2の場所まで移動させるステップと、次いで、第2の場所において交互配置ワイヤ部分214および216によって担持される電極対から衝撃波を開始するステップ(これは、例えば、弁尖の第2の縁に沿った石灰化堆積物に機械力を印加し得る)とを含んでもよい。いくつかの変形例では、伸長可撓性管210A−Cは、直列または並列構成で弁尖の複数の縁に沿った石灰化堆積物を治療するように位置付けられることができる、電極対を担持する複数の交互配置ワイヤ部分(例えば、3つ)を収容し、したがって、伸長可撓性管210A−Cおよび/またはそれらの個別の電極対を移動させるという要件を低減もしくは排除し得る。例えば、図2に示されるように、衝撃波は、機械力を弁尖の複数の(例えば、3つの)石灰化堆積物に印加するように直列に電気的に結合される、交互配置ワイヤ部分212、214、および216によって担持される、電極対から発生されることができる。いくつかの変形例では、伸長可撓性管210A−Cの内側の電極対の場所および/または配向は、放射された衝撃波の音響エネルギーが、特定の場所においてコヒーレントに干渉し、最初の放射されたパルスよりも高いエネルギーを引き起こし得るように、変動されてもよい。これは、波が石灰化弁の近傍の、または石灰化弁における特定の場所で、焦点領域を作成し得るように、電極対を幾何学的に整合させ、それらを同時に発射することによって、達成されることができる。治療の有効性が、続いて、撮像技法(例えば、蛍光透視法および/または超音波)ならびに/もしくは生理学的パラメータに基づいて評価されてもよい。治療の有効性を評価するために使用され得る技法の実施例は、限定されないが、伸長可撓性管210A−Cが心臓弁200から引き出されるときの尖弁活動(例えば、尖弁開放および閉鎖)の超音波による視覚観察、駆出率、Duke活動状態インデックス(DASI)、ピーク速度、ピーク勾配、大動脈弁面積(AVA)、ドップラ速度等の測定を含んでもよい。随意に、所望の量のカルシウム堆積物が破砕および/または弛緩された、ならびに/もしくは心臓弁尖が軟化された後、経カテーテル大動脈弁埋込(TAVI)手技が、実施されてもよい。心臓弁上のカルシウム堆積物を破砕および/または破壊することは、後続のTAVI手技の転帰を改善させることに役立ち得る。いくつかの変形例では、心臓弁200の単一の弁尖が、一度に治療されてもよい一方で、他の変形例では、2つ以上の弁尖が、並行して治療されてもよい。例えば、図2に図示されるように、心臓弁200の3つの弁尖が、3つの伸長可撓性管210A−Cを用いて並行して治療されてもよい。代替として、心臓弁200の3つの弁尖は、衝撃波デバイスの単一の伸長可撓性管を使用して、次々に治療されてもよい。二尖大動脈弁がある人々に関して、2つの伸長可撓性管を有する衝撃波デバイスが、2つの心臓弁尖を治療するために使用されてもよい。

図3Aは、例示的伸長可撓性管300および可撓性管300内に配置される複数のワイヤと関連付けられる電極対のアレイの概略図を描写する。図3Aに示されるように、伸長可撓性管310は、流体入力端312と、流体出力端314と、支持ワイヤ320と、第1のワイヤ340と、第1の交互配置ワイヤ部分338と、第2のワイヤ336と、第2の交互配置ワイヤ部分334と、第3のワイヤ332と、第3の交互配置ワイヤ部分330と、第4のワイヤ328とを備えてもよい。ワイヤ340、336、および332の一変形例は、第2の層によって囲繞される第1の層を備えてもよい。第1の層は、金属(例えば、銅)、合金、および/または導電性である他の材料等の伝導性材料を備えてもよい。第2の層は、ゴム、プラスチック、および/または導電性ではない他の材料等の絶縁体材料を備えてもよい。上記で説明されるものと同様に、第1の交互配置ワイヤ部分338は、第2のワイヤ336の第1の部分と交互配置される第1のワイヤ340の一部を備えてもよい。第1のワイヤ340は、電圧源の正端子に電気的に結合されてもよく、第2のワイヤ336よりも正である電圧または電位を有してもよい。同様に、第2の交互配置ワイヤ部分334は、第3のワイヤ332の第1の部分と交互配置される第2のワイヤ336の第2の部分を備えてもよい。第2のワイヤ336は、第3のワイヤ332よりも正である電圧または電位を有してもよい。そして、第3の交互配置ワイヤ部分330は、第3のワイヤ332の第2の部分と、第4のワイヤ328の一部とを備えてもよい。第3のワイヤ332は、第4のワイヤ328よりも正である電圧または電位を有してもよい。第4のワイヤ328は、高電圧パルス発生器102等の電圧源の負端子に電気的に結合されてもよい。上記の変形例では、電圧または電位は、第1のワイヤ340、第2のワイヤ336、第3のワイヤ332、および第4のワイヤ328の順序で減少するが、これらのワイヤの電圧または電位は、他の変形例では増加し得る(例えば、第4のワイヤ328は、第2のワイヤ336よりも高い電圧または電位を有する、第3のワイヤ332よりも高い電圧または電位を有する等)ことが理解される。

図3Aに示されるように、いくつかの変形例では、第1のワイヤ340の一部は、第2のワイヤ336の第1の部分と交互配置し、第1のコイルを形成する。第1のコイルは、第1のワイヤ340の一部および第2のワイヤ336の第1の部分に共通する中心軸を有してもよい。同様に、第2のワイヤ336の第2の部分は、第3のワイヤ332の第1の部分と交互配置し、第2のコイルを形成する。第2のコイルは、第2のワイヤ336の第2の部分および第3のワイヤ332の第1の部分に共通する中心軸を有してもよい。そして、第3のワイヤ332の第2の部分は、第4のワイヤ328の一部と交互配置され、第3のコイルを形成する。第3のコイルは、第3のワイヤ332の第2の部分および第4のワイヤ328の一部に共通する中心軸を有してもよい。

図3Aに示されるように、いくつかの変形例では、コイルは、コイルの中の2つの隣接するワイヤ部分が相互と略平行である様式で、相互に交互配置される2つの異なるワイヤの2つの部分を備えてもよい。2つの隣接するワイヤ部分は、異なる電圧または電位を有してもよい。下記でさらに詳細に説明されるように、コイルでは、2つの隣接するワイヤ部分は、衝撃波を発生させるための1つ以上のアーク発生領域を備える、電極対を担持してもよい。衝撃波と関連付けられるエネルギーは、2つの隣接するワイヤ部分のアーク発生領域の間の距離に応じて変動し得る。例えば、発生される衝撃波は、2つの隣接するワイヤ部分のアーク発生領域の間の縮小する距離を伴って、増加したエネルギーを搬送してもよい。いくつかの変形例では、距離は、下記でさらに詳細に議論されるように、ある閾値まで縮小されてもよい。いくつかの変形例では、アーク発生領域の場所および/または配向は、放射された衝撃波の音響エネルギーが、特定の場所においてコヒーレントに干渉し、最初の放射されたパルスよりも高いエネルギーを引き起こし得るように、変動されてもよい。これは、波が石灰化弁の近傍の、または石灰化弁における特定の場所で、焦点領域を作成し得るように、アーク発生領域を幾何学的に整合させ、それらを同時に発射することによって、達成されることができる。

図3Aに図示されるように、いくつかの変形例では、衝撃波デバイスは、複数のスペーサ342A−Cを備えてもよい。スペーサ342A−Cは、伸長可撓性管310の内壁から電極対330、334、および338のアレイを離間させるように構成されてもよい。説明されるように、交互配置ワイヤ部分330、334、および338によって担持される電極対は、衝撃波を発生させてもよい。衝撃波は、伸長可撓性管310の内壁に機械力を印加してもよい。エネルギーの一部は、内壁によって吸収されてもよく、これは、機械力または応力を内壁に印加させる。機械力または応力は、交互配置ワイヤ部分330、334、および338によって担持される電極対と伸長可撓性管310の内壁との間の距離が縮小するにつれて、増加し得る。スペーサ342A−Cは、交互配置ワイヤ部分330、334、および338が伸長可撓性管310の内壁と接触しないようにし、内壁に印加される力または応力を低減させる、もしくは最小限にすることができる。結果として、スペーサ342A−Cは、伸長可撓性管310の寿命を増進させ得る。いくつかの変形例では、スペーサ342A−Cは、リング状のスペーサおよび/または任意の他の形状のスペーサ(例えば、卵形)を含んでもよい。

図3Bは、例示的可撓性管の複数の図および電極対を担持する例示的交互配置ワイヤ部分の拡大図を描写する。例えば、図3Bは、伸長可撓性管310の正面図310A、側面図310B−C、および上面図310Dを図示する。図3Bはさらに、例示的交互配置ワイヤ部分330、334、および338の拡大図を描写する。図3Cは、可撓性支持ワイヤ320によって支持される交互配置ワイヤ部分330の拡大図を描写する。説明されるように、いくつかの変形例では、交互配置ワイヤ部分(例えば、交互配置ワイヤ部分330、334、および338)は、コイルを形成するようにともに交互配置される2つのワイヤ部分を備えてもよい。コイルは、2つの隣接するワイヤ部分が相互と略平行である様式で、相互に交互配置される異なるワイヤの2つの部分を備えてもよい。コイルでは、2つの隣接するワイヤ部分は、異なる電圧または電位を有してもよい。いくつかの変形例では、衝撃波を発生させるために、2つの隣接するワイヤ部分はそれぞれ、1つ以上のアーク発生領域を備え、電極対を形成してもよい。例えば、図3Bおよび3Cに示されるように、交互配置ワイヤ部分330の中のワイヤ328および332の2つの隣接する部分は、それぞれ、1つ以上のアーク発生領域352A−Cおよび350を備える。同様に、交互配置ワイヤ部分334および334のワイヤ部分もまた、1つ以上のアーク発生領域を備えてもよい。隣接するアーク発生領域は、電極対を形成してもよい。例えば、アーク発生領域350および352A−Cは、電極対を形成する。

いくつかの変形例では、アーク発生領域は、絶縁を欠き得、2つの隣接するワイヤ部分の間でスパーク(またはプラズマアーク)を発生させ、衝撃波を搬送するように構成されてもよい。説明されるように、ワイヤ(例えば、ワイヤ328、332、336、および340)は、導電性である第1の層と、電気絶縁体である第2の層とを備えてもよい。ワイヤの第1の層は、第2の層によって囲繞されてもよい。図3Bおよび3Cに示されるように、電極対のアーク発生領域(例えば、領域350および352A−C)では、ワイヤの絶縁は、下層の導電性層を露出するように除去される。説明されるように、いくつかの変形例では、コイルの中の2つの隣接するワイヤ部分は、相互と略平行であるように構成されてもよい。いくつかの変形例では、2つの隣接するワイヤ部分のアーク発生領域は、相互と整合するように位置付けられてもよい。例えば、図3Cに示されるように、ワイヤ332の一部のアーク発生領域350は、ワイヤ328の一部のアーク発生領域352Aと整合するように位置付けられてもよい。2つの隣接するワイヤ部分の間のアーク発生領域の整合は、スパーク発生(またはプラズマアーク発生)の効率を改良し得る。例えば、プラズマアークは、2つの密接に位置付けられたアーク発生領域の間で、より容易に発生されてもよい。説明されるように、いくつかの変形例では、2つのアーク発生領域の間の距離は、最適音響エネルギー出力と関連付けられる、ある閾値まで縮小されてもよい。例えば、2つのアーク発生領域を含む、単一電極対システムの一変形例では、2つのアーク発生領域の間の距離は、約0.2mm(または約0.008インチ)まで縮小されてもよい。さらに、距離を縮小することは、音響エネルギー出力を低減させ得る。直列の複数の電極対が衝撃波デバイスの中に含まれる、いくつかの変形例では、距離は、いくつかの電極間隙の中で連続的に分割されてもよい。

図3Bおよび3Cに示されるように、いくつかの変形例では、隣接するワイヤ部分よりも正の電圧または電位を有するワイヤ部分は、より少数のアーク発生領域を備えてもよい。例えば、交互配置ワイヤ部分330では、ワイヤ328の一部は、少なくとも2つのアーク発生領域352A−Cを備え、ワイヤ332の一部は、1つのアーク発生領域を備える。図3Aに関連して上記で説明されるように、一変形例では、交互配置ワイヤ部分330では、ワイヤ332の一部は、ワイヤ328の一部よりも正である電圧または電位を有してもよく、したがって、ワイヤ332の一部は、ワイヤ328の一部よりも少数のアーク発生領域を有してもよい。下記でさらに詳細に説明されるように、アーク発生領域の数および/またはアーク発生領域の位置は、隣接するワイヤ部分の一方もしくは両方の絶縁のスパーク誘発(またはアーク誘発)腐食を補償するように構成されてもよい。

同様に、図3Bに示されるように、交互配置ワイヤ部分334では、ワイヤ332の一部は、少なくとも2つのアーク発生領域を備え、ワイヤ336の一部は、1つのアーク発生領域を備える。交互配置ワイヤ部分334では、ワイヤ336の一部は、ワイヤ332の一部よりも正である電圧または電位を有してもよく、したがって、ワイヤ336は、ワイヤ332の一部よりも少数のアーク発生領域を有してもよい。交互配置ワイヤ部分338では、ワイヤ336の一部は、少なくとも2つのアーク発生領域を備え、ワイヤ340の一部は、1つのアーク発生領域を備える。交互配置ワイヤ部分338では、ワイヤ340の一部は、ワイヤ336の一部よりも正である電圧または電位を有してもよく、したがって、ワイヤ340の一部は、ワイヤ336の一部よりも少数のアーク発生領域を有してもよい。

図3Dは、コイル状構成時の2つの隣接する交互配置ワイヤ部分の概略図およびそれらの拡大図を描写する。図3Eは、コイルが直線化された2つの隣接する交互配置ワイヤ部分の概略図およびそれらの拡大図を描写する。図3Dおよび3Eは、ともに説明される。図3Dおよび3Eは、交互配置ワイヤ部分330および334を図示する。説明されるように、交互配置ワイヤ部分330は、ワイヤ332の一部と交互配置される(例えば、コイル状にされる)ワイヤ328の一部を備えてもよい。一変形例では、ワイヤ328は、ワイヤ332よりも負である電圧または電位を有してもよい。例えば、ワイヤ328は、電圧源の負端子に電気的に結合されてもよい。交互配置ワイヤ部分330では、ワイヤ328の一部およびワイヤ332の一部は、電極対を形成するように構成される、1つ以上のアーク発生領域を備えてもよい。例えば、交互配置ワイヤ部分330では、ワイヤ328の一部は、複数のアーク発生領域352A−Cを含んでもよく、ワイヤ332の一部は、1つのアーク発生領域350を含んでもよい。アーク発生領域350および352A−Cは、電極対を形成する。説明されるように、アーク発生領域は、異なる電圧または電位を有する、2つのアーク発生領域の間で電気スパーク(もしくはプラズマアーク)を誘発するための絶縁を欠き得る。例えば、最初に、プラズマアークは、ワイヤ328がワイヤ332よりも負である電圧または電位を有するため、2つの隣接するアーク発生領域350および352Aの間で発生されてもよい。

いくつかの変形例では、プラズマアークは、ワイヤの絶縁の腐食を引き起こし得る。腐食は、増加する電圧または電位の方向に対応する方向に起こり得る。例えば、図3Dおよび3Eに示されるように、交互配置ワイヤ部分330のワイヤ332の一部では、電圧または電位は、矢印351によって示される方向に増加し得る。したがって、ワイヤ332の一部の絶縁腐食は、アーク発生領域350から開始し、矢印351によって示される方向に伝搬し得る。いくつかの変形例では、2つの隣接するワイヤ部分の中のアーク発生領域は、ワイヤ部分の1つ以上のものの絶縁のアーク誘発腐食を補償するように位置付けられてもよい。例えば、図3Dおよび3Eに示されるように、交互配置ワイヤ部分330では、アーク発生領域350およびアーク発生領域352Aは、相互と整合し、スパーク発生(またはプラズマアーク発生)を開始するように位置付けられてもよい。交互配置ワイヤ部分330では、ワイヤ328の一部の中の1つ以上の付加的アーク発生領域352B−Cは、ワイヤ332の一部の絶縁腐食が矢印351によって示される方向に伝搬すると、プラズマアークが1つ以上の追加アーク発生領域352B−Cとワイヤ332の腐食部分との間で発生され得るように、ワイヤ332の一部における腐食方向に対応して位置付けられてもよい。1つ以上の付加的アーク発生領域は、ワイヤ332の一部における腐食方向に対応して位置付けられ得ることが理解される。そのような様式でアーク発生領域を位置付けることは、スパーク/プラズマアーク発生の効率を増加させ、衝撃波の一貫性および連続性を改良し、衝撃波デバイスの寿命を増進させ得る。

いくつかの変形例では、プラズマアークは、ワイヤの絶縁の腐食を引き起こし得る。腐食は、増加する電圧または電位の方向に対応する方向に起こり得る。腐食の偏りを低減させるために、いくつかの変形例では、極性切替を伴う衝撃波デバイスが、上記の指向性腐食を均等にするために、(参照することによってその全体として本明細書に組み込まれる、2016年4月25日に出願された同時係属米国特許出願第15/138,147号に説明されるものに類似する)規則的電極構成と併用されてもよい。したがって、図3Dおよび3Eに示されるようなワイヤ332の一部の絶縁腐食は、アーク発生領域350から開始し、矢印351によって示される方向に伝搬してもよく、次のパルスまたは後続の数のパルスでは、矢印351の方向と反対方向に伝搬してもよく、腐食が両側に均等に作用することを可能にし、電極間隙が均等な様式で摩耗し続けないように防止する(2016年4月25日に出願された米国特許出願第15/138,147号でさらに詳細に説明されるように)。

図3Dおよび3Eに図示されるように、同様に、交互配置ワイヤ部分334のワイヤ336の一部では、電圧または電位は、矢印361によって示される方向に増加する。したがって、ワイヤ336の一部の絶縁腐食は、アーク発生領域360から開始し、矢印361によって示される方向に伝搬し得る。説明されるように、2つの隣接するワイヤ部分の中のアーク発生領域は、ワイヤ部分のうちの1つ以上のものの絶縁のアーク誘発腐食を補償するように位置付けられてもよい。例えば、図3Dおよび3Eに図示されるように、交互配置ワイヤ部分334では、アーク発生領域360およびアーク発生領域362Aは、相互と整合し、スパーク発生を開始するように位置付けられてもよい。交互配置ワイヤ部分334では、ワイヤ332の一部の中の1つ以上の付加的アーク発生領域362B−Cは、プラズマアークが1つ以上の追加アーク発生領域362B−Cとワイヤ336の腐食部分との間で発生され得るように、ワイヤ336の一部における腐食方向に対応して位置付けられてもよい。上記で議論されるように、単一の伸長可撓性管内で交互配置ワイヤ部分によって担持される、任意の数(例えば、2、3、4、5、6)の電極対があってもよい。

いくつかの変形例では、衝撃波デバイスは、アンカが展開された後に自動的に拡張され得る、自己拡張式アンカを備えてもよい。図4は、衝撃波デバイスと併用され得る、自己拡張式アンカの一変形例の斜視図を描写する。図4に示されるように、衝撃波デバイス400は、シース408と、複数の伸長可撓性管410A−Cと、シャフト406と、アンカ407とを備えてもよい。シース408および複数の伸長可撓性管410A−Cは、上記で説明されるものに類似する。アンカ407は、自己拡張式足場414を備えてもよい。随意に、デバイス400は、シャフト406の遠位端に位置する非外傷性先端420を備えてもよい。足場414は、ローブ(またはアーム)416等の1つ以上の閉鎖形態構造を備えてもよい。アーム416は、シャフト406の周囲に半径方向対称構成で配列されてもよい、または他の変形例では、非対称構成で配列されてもよい。アンカ407は、ニッケルチタン合金等の形状記憶材料を備えてもよい。いくつかの変形例では、アンカ407は、伸長可撓性管410A−Cの端部の間に、かつそれを越えて延在し、心臓弁尖を通って心室の中へ通過し、シース408の位置を安定させるように構成される、中心アンカであってもよい。例えば、アンカ407は、弁口を通して押動され、拡張され、次いで、衝撃波電極対を尖弁(leafletsおよび/またはcusps)とさらに係合もしくは接触させることに役立つように心臓弁尖に対して引き上げられてもよい。アンカ407は、参照することによってその全体として本明細書に組み込まれる、2015年11月12日に出願された同時係属米国特許出願第14/940,029号(米国特許出願公開第2016/0135828号)でさらに詳細に説明されるアンカに類似する。

図5は、衝撃波を送達して心臓弁内の石灰化病変を治療するための方法のフローチャート表現である。図5で描写されるようないくつかの方法では、衝撃波デバイスは、患者の血管系の中に導入されてもよい(502)。衝撃波デバイスは、1つ以上の伸長可撓性管(例えば、3つ)を備えてもよい。いくつかの変形例では、伸長可撓性管は、シースによって担持されてもよく、流体入力端を有してもよい。管の流体入力端は、シースの近位端の近傍に位置してもよい。管は、シースの遠位端の近傍に位置するループ部分を含んでもよい。ループ部分は、心臓弁尖内に少なくとも部分的に収容されるように構成されてもよい。管は、管の流体入力端を介して伝導性流体で充填可能であり得る。衝撃波デバイスはさらに、ループ部分内に位置付けられる複数のワイヤと関連付けられる、電極対のアレイを備えてもよい。電極対は、電圧源に電気的に接続可能であり、電圧パルスに応答して、伝導性流体中で衝撃波を発生させるように構成されてもよい。

いくつかの変形例では、衝撃波デバイスは、管のループ部分が心臓弁尖で少なくとも部分的に収容されるように、血管系内で前進されてもよい(504)。衝撃波デバイスの管は、伝導性流体を提供されてもよい(506)。説明されるように、伝導性流体は、流体ポンプを使用して、流体源から提供されてもよい。電圧源は、衝撃波を印加して心臓弁の石灰化病変を治療するようにアクティブ化されてもよい(508)。説明されるように、1つ以上の伸長可撓性管を使用して、心臓弁の1つ以上の弁尖は、連続して、もしくは並行して治療されてもよい。

図6は、別の例示的伸長可撓性管600および可撓性管600内に配置される複数のワイヤと関連付けられる電極対のアレイの概略図を描写する。図6に示されるように、可撓性管600は、伸長可撓性管310の馬蹄形ループ部分の代わりにJ字形曲線部分620を含む、伸長可撓性管610を備えてもよい。J字形曲線部分620は、心臓弁尖内に少なくとも部分的に収容されるように構成されてもよい。

いくつかの変形例では、伸長可撓性管600は、流体入力端312と、支持ワイヤ320と、第1のワイヤ340と、第1の交互配置ワイヤ部分338と、第2のワイヤ336と、第2の交互配置ワイヤ部分334と、第3のワイヤ332と、第3の交互配置ワイヤ部分330と、第4のワイヤ328とを備えてもよい。図6で描写されるように、3つの電極対のアレイが、管610内に配置される。第1の電極対は、第1のワイヤが第2のワイヤのものよりも正である電位を有する、コイル状構成で交互配置される、第1のワイヤ340の一部および第2のワイヤ336の一部と関連付けられる。第2の電極対は、第2のワイヤが第3のワイヤのものよりも正である電位を有する、コイル状構成で交互配置される、第2のワイヤ336の一部および第3のワイヤ332の一部と関連付けられる。第3の電極対は、第3のワイヤが第4のワイヤのものよりも正である電位を有する、コイル状構成で交互配置される、第3のワイヤ332の一部および第4のワイヤ328の一部と関連付けられる。これらの構成要素は、図3Aに関連して上記で説明されるものに類似し、したがって、繰り返して説明されない。

いくつかの変形例では、伸長可撓性管600の遠位端(例えば、端部614)は、伝導性流体が伸長可撓性管610の開放近位端(例えば、流体入力端312)を通して流入および流出するように密閉されてもよい。また、管の遠位端に最も近い電極対と関連付けられるワイヤは、少なくとも管の密閉遠位端から管の開放近位端まで延在するように構成される。図6に図示されるように、端部614が密閉されるため、第4のワイヤ328の一部は、流体入力端312に戻り、高電圧パルス発生器102等の電圧源の負端子に電気的に結合するように構成されてもよい。換言すると、管の遠位端に最も近い電極対と関連付けられる第4のワイヤは、少なくとも管の密閉遠位端から管の開放近位端まで延在するように構成される。いくつかの変形例では、流体入力端312に戻る第4のワイヤ328の一部は、電極対によって発生される衝撃波に干渉しないように、交互配置ワイヤ部分(例えば、ワイヤ部分330、334、および338)の電極対から離れて位置付けられるように構成されてもよい。例えば、流体入力端312に戻る第4のワイヤ328の一部は、交互配置ワイヤ部分338、334、および330のアーク発生領域の側面から反対側に位置付けられるように構成されてもよい。いくつかの変形例では、J字形曲線部分を備える伸長可撓性管600は、馬蹄形ループ部分を備える伸長可撓性管310よりも小さい寸法(例えば、長さ)を有してもよい。より小さい寸法は、衝撃波デバイスが血管系内でより容易に前進されることを可能にし得る。

上記で議論されるように、最大衝撃波出力を最大限にするために、管から残渣および気泡を除去し、新鮮な伝導性流体で管を補充することが望ましいであろう。馬蹄形ループ部分を有する管に関して、圧力解放弁は、ポンプが一定の圧力において伝導性流体を送達することができるように、流体出力端に取り付けられてもよい。加えて、または代替として、圧力レギュレータが、流体入力端において取り付けられてもよい。J字形ループ部分を有する管(例えば、伸長可撓性管610)または直線構成を有する管(例えば、伸長可撓性管710)等の密閉遠位端を有する管に関して、伸長可撓性管は、流体が分離された管腔を通してUターンするように、管の近位端に出力ポートを含んでもよい。いくつかの実施例では、支持ワイヤがニチノール管である場合、ニチノール管は、ニチノール管の遠位端を介して伸長可撓性管に進入する新鮮な流体で伸長可撓性管を洗浄するために使用されることができる。吸引が、流体の外向き流を増加させるように、伸長可撓性管の近位端における出力ポートにおいて印加されてもよい。

伸長可撓性管610がシースを介して展開されている、いくつかの変形例では、J字形曲線部分は、外へ直線化される(すなわち、伸長可撓性管の遠位端が広げられ、シースの壁に対して略直線状である)。展開中に、伸長可撓性管610がシースから外へ延在されるとき、伸長可撓性管の遠位端は、ループ様形状にカールし、管の密閉遠位端が冠動脈口に詰まらないように防止するように構成される。図8は、例示的展開構成時の例示的可撓性管610(すなわち、管がシースから外へ延在された後、かつ管が流体で充填される前)の概略図を描写する。本展開構成では、可撓性管610は、シースの遠位端の近傍に位置するループ部分を含む。いくつかの変形例では、ループ部分の形状は、支持ワイヤによって設定されてもよい。伸長可撓性管610のループ部分は、管が管の開放近位端を介して加圧伝導性流体で充填されるときに、部分的に広がるように構成される。したがって、ループ部分が安全に弁尖の中へ展開された後、管610は、加圧伝導性流体で膨張され、ループ部分を部分的に広げさせ、U字形を帯びさせる。換言すると、展開中に、管の遠位端の曲線(図8で描写される)は、動作構成時の遠位端の曲線(図6で描写される)よりも閉鎖されている。

図9A−9Dは、図8で描写されるもの等の衝撃波デバイスを使用して石灰化心臓弁(例えば、大動脈弁)を治療するための例示的方法を描写する。そこで描写される方法は、2つの伸長可撓性管を備える衝撃波デバイスを使用するが、本方法は、1つまたは3つの伸長可撓性管を備える衝撃波デバイスを使用して実施され得ることを理解されたい。図9Aは、左尖902および右尖904を伴う大動脈弁の断面概略図を描写する(後尖は、簡単にするために示されていない)。左尖902の凹状部分903は、左冠動脈906の開口部907を含む。右尖904の凹状部分905は、右冠動脈908の開口部909を含む。シース910は、血管系の中に導入され、逆方向に(例えば、大腿動脈を介して)大動脈弁まで前進されてもよい。シース910(ならびに衝撃波デバイスの構成要素のうちのいずれか)は、シースの場所が蛍光透視法を使用して決定され得るように、放射線不透過性バンドまたはマーカを備えてもよい。代替として、または加えて、シースおよび/または任意の衝撃波デバイスの場所は、超音波を使用して決定されてもよい。シース910の遠位端は、弁尖に接近するが、そこから離間されて位置付けられてもよい。衝撃波デバイス912は、次いで、シース910を通して大動脈弁まで前進されてもよい。衝撃波デバイス912は、第1の伸長可撓性管914と、第2の伸長可撓性管924とを備えてもよい。

図9Aで描写されるように、伸長可撓性管914および924は両方とも、シース内から外へ直線化される。具体的には、第1の伸長可撓性管914の遠位端および第2の伸長可撓性管924の遠位端は、両方とも広げられ、シースの壁に対して略直線状を維持する。直線形状は、伸長可撓性管が、より小さい直径を有するシース内で担持されることを可能にする。管の遠位端は、シースから外へ延在されたときにループ状にカールするように、付勢(または事前屈曲)される。

図9Bで描写されるように、伸長可撓性管914および924がシース910から外へ延在されるときに、管の両方の遠位端は、それらの事前屈曲/展開形状(すなわち、ループ状)にカールし始める。図9Cで描写されるように、伸長可撓性管914の遠位端は、ループ部分916にカールし、第2の伸長可撓性管924の遠位端は、ループ部分926にカールする。図8に関して上記で議論されるように、ループ部分は、対応する管が加圧伝導性流体で充填されるときに部分的に広がるように構成される。

いくつかの変形例では、伸長管のループ部分の上方のシャフト部分は、ある度で屈曲するように付勢されてもよい。図9Aで描写されるように、衝撃波デバイス912は、第1および第2の伸長可撓性管のシャフト部分が、概して、シース910の縦軸と整合される、圧縮構成で、シース910を通して前進されてもよい。対照的に、図9Cで描写されるように、シースの遠位端を越えて遠位に衝撃波デバイス912を延在させることは、シャフト部分918および928が、それらの屈曲構成を成すことを可能にし、それによって、第1および第2のループ部分916、926(送達中に収縮される)が大動脈弁壁に接触するように、衝撃波デバイスを拡張し得る。

図9Dで描写されるように、衝撃波デバイスの拡張は、ループ部分を左および右弁尖の凹状部分903、905と少なくとも部分的に整合させてもよい。したがって、管のループ部分916および926は、心臓弁尖内に少なくとも部分的に収容される。

次に、図9Eで描写されるように、ループ部分の一方または両方は、管の開放近位端を介して加圧伝導性流体で充填されてもよい。流体は、ループ部分916および926のそれぞれを、それぞれ、曲線部分930および932に部分的に広げさせる。曲線部分930および932は、弁尖の凹状部分内で自己整合する。いくつかの変形例では、1つだけの管が、一度に膨張されてもよい、または2つの管が、同時に膨張されてもよい。弁尖の数よりも少ない管を膨張させることは、血液が弁の少なくとも一部を通して流動することを可能にし得、これは、手技中の虚血性事故の危険性を低減させることに役立ち得る。

施術者が、管の曲線部分が所望の位置に位置することを確認した後、管内の電極対のうちの1つ以上のものが、衝撃波を生成するようにアクティブ化されてもよい。衝撃波からの機械力は、伝導性流体を通して伝搬し、弁尖の表面に沿った任意の石灰化堆積物に機械力を印加してもよい。いくつかの方法では、単一の弁尖が、一度に治療されてもよい一方で、他の方法では、2つ以上の弁尖が、同時に治療されてもよい。

図10は、衝撃波デバイスと併用され得る、自己拡張式アンカの一変形例の斜視図を描写する。図10に示されるように、衝撃波デバイス1000は、単一の伸長可撓性管1010と、シース1008と、シャフト1006と、アンカ1007とを備えてもよい。単一の可撓性管1010は、図6の伸長可撓性管610および/または図9Aの管914ならびに924のうちのいずれかに類似する。デバイス1000の構成要素は、図4の衝撃波デバイス400に関して上記で説明されるような類似様式で動作するように配列される。図10で描写されるように、中心アンカ1007は、管1010の密閉遠位端を越えて延在してもよく、心臓弁尖を通って心室の中へ通過し、シースの位置を安定させるように構成されることができる。

中心アンカ1007は、複数のアーム1012、1014、1016、1018、1022、および1024を含む。1つ以上のマーカは、各アームの場所が手技中に識別されることができるように、複数のアームのそれぞれの上に一意の構成で配置されてもよい。マーカは、アームに巻着されるマーカバンド、アーム上に接着される、もしくはアーム上に圧着されるマーカ、またはそれらの組み合わせを含んでもよい。2つの所与のアームの上のマーカの構成は、マーカ数、マーカ形状、マーカ長、アーム上のマーカ配列、またはそれらの組み合わせが異なり得る。描写される実施例では、アーム1012に対応する第1の構成が、線形様式で配列される、一連の4つのマーカを含む一方で、アーム1014に対応する第2の構成は、第1のアーム1012上の4つのマーカのうちのいずれかよりも長い、単一のマーカを含む。

いくつかの変形例では、中心アンカ1007のアーム上の異なるマーカ構成は、施術者がアームの場所/位置/配向を識別し、手技中に1つの弁尖から別の弁尖まで衝撃波デバイスの伸長管(例えば、単一の伸長可撓性管1010)をナビゲートすることに役立つ。例示的手技では、衝撃波デバイス1000は、中心アンカ1007が心室の中へ設置されるように、患者の血管系の中に導入され、血管系内で前進される。具体的には、アンカ1007は、弁口を通して押動され、拡張され、次いで、衝撃波電極対を尖弁(leafletsおよび/またはcusps)とさらに係合もしくは接触させることに役立つように心臓弁尖に対して引き上げられてもよい。マーカ構成に基づいて、アームの場所が決定される。いくつかの変形例では、アームの場所は、マーカ構成を使用して、蛍光透視法および/または超音波に基づいて決定されてもよい。例えば、蛍光透視法に基づいて、ある長さの一連の4つのマーカを含む構成を識別することに応じて、施術者は、アーム1012の場所を決定することができる。

マーカ構成に基づいて決定されるアームの場所に基づいて、管1010は、管の遠位端(例えば、ループ部分)が第1の心臓弁尖で少なくとも部分的に収容されるように、展開され、位置付けられる。第1の心臓弁尖は、中心アンカの特定のアームに近接し得る。したがって、管1010は、特定のアームの決定された場所に基づいて、特定のアームに近接して位置付けられる。いくつかの変形例では、管1010は、図9A−Dに関して上記で議論されるように、ループ部分があまり曲線状ではない部分に部分的に広がるように、加圧伝導性流体で充填される。施術者が、管の曲線部分が所望の位置に位置することを確認した後、管内の電極対のうちの1つ以上のものが、衝撃波を生成して石灰化病変を治療するようにアクティブ化されてもよい。第1の弁尖のための治療の有効性が、続いて、撮像技法(例えば、蛍光透視法および/または超音波)ならびに/もしくは生理学的パラメータに基づいて評価されてもよい。

第1の弁尖を治療した後に、管は、管の遠位端が第2の心臓弁尖で少なくとも部分的に収容されるように、中心アンカのアームの決定された場所に基づいて再配置されてもよい。上記に説明されるステップは、管の曲線部分が所望の位置に位置するように繰り返され、電圧源は、衝撃波を印加して石灰化病変を治療するようにアクティブ化される。上記の方法は、本明細書に説明される任意のタイプの伸長可撓性管を使用して適用され得ることを理解されたい。

図7は、別の例示的伸長可撓性管700および可撓性管700内に配置される複数のワイヤと関連付けられる電極対のアレイの概略図を描写する。図7に示されるように、可撓性管700は、馬蹄形ループ部分またはJ字形ループ部分の代わりに直線部分を含む、伸長可撓性管710を備えてもよい。直線部分は、シースの遠位端の近傍に位置してもよい。いくつかの変形例では、伸長可撓性管710は、流体入力端312と、支持ワイヤ320と、第1のワイヤ340と、第1の交互配置ワイヤ部分338と、第2のワイヤ336と、第2の交互配置ワイヤ部分334と、第3のワイヤ332とを備えてもよい。これらの構成要素は、図3Aに関連して上記で説明されるものに類似し、したがって、繰り返して説明されない。

いくつかの変形例では、伸長可撓性管710の遠位端(例えば、端部714)は、伝導性流体が流体入力端312を通して流入および流出するように密閉されてもよい。また、管の遠位端に最も近い電極対と関連付けられるワイヤは、少なくとも管の密閉遠位端から管の開放近位端まで延在するように構成される。図7に図示されるように、端部714が密閉されるため、第3のワイヤ332の一部は、流体入力端312に戻り、高電圧パルス発生器102等の電圧源の負端子に電気的に結合するように構成されてもよい。いくつかの変形例では、流体入力端312に戻る第3のワイヤ332の一部は、電極対によって発生される衝撃波に干渉しないように、交互配置ワイヤ部分(例えば、ワイヤ部分334および338)の電極対から離れて位置付けられるように構成されてもよい。例えば、流体入力端312に戻る第3のワイヤ332の一部は、交互配置ワイヤ部分338および334のアーク発生領域の側面から反対側に位置付けられるように構成されてもよい。いくつかの変形例では、直線部分を備える伸長可撓性管710は、類似形状を有する患者の身体の一部(例えば、患者の膝)の中に収容されるように構成されてもよい。治療される患者の身体の一部に類似するように管を構成することは、衝撃波を送達すること、したがって、治療の有効性を増加させる。いくつかの変形例では、直線部分を備える伸長可撓性管710は、馬蹄形ループ部分を備える伸長可撓性管310またはJ字形曲線部分を備える伸長可撓性管610よりも小さい寸法(例えば、長さ)を有してもよい。より小さい寸法は、衝撃波デバイスが血管系内でより容易に前進されることを可能にし得る。いくつかの変形例では、単一の伸長管(例えば、管300、管610、管710)は、より小さいシースが使用され得るように、シース内で担持される。管は、本明細書に説明される実施例に限定されず、任意の所望の形状を有し得ることが理解される。

図11Aは、心臓弁内の石灰化病変の治療のための衝撃波デバイス1100の別の例示的変形例を概略的に描写する。衝撃波デバイス1100は、伸長可撓性管1110を備えてもよい。伸長可撓性管1110は、シース1108によって担持されてもよい。伸長可撓性管1110の少なくとも一部は、シース1108内で移動可能に収容されてもよい。図11Aに図示されるように、伸長可撓性管1110は、心臓弁内の石灰化病変を治療するためにシース1108の遠位端を越えて延在されてもよい。いくつかの変形例では、シース1108は、近位ハンドル1104に結合されてもよい。シース1108は、血管系の中に導入され、逆方向に(例えば、大腿動脈を介して)心臓弁まで前進されてもよい。

いくつかの変形例では、伸長可撓性管1110は、シース1108の近位端の近傍に位置する流体入力端を備えてもよい。流体は、流体入力端を介して導入されてもよい。例えば、流体は、流体ポンプおよび流体源1106によって伸長可撓性管1110に導入されてもよい。流体ポンプおよび流体源1106は、生理食塩水または生理食塩水/造影剤混合物等の流体で伸長可撓性管1100を充填してもよい。いくつかの変形例では、伸長可撓性管1110は、1つの流体端を有してもよく、それを通して、流体が管に導入され、管から排出されてもよい。

いくつかの変形例では、伸長可撓性管1100は、心臓弁尖内に少なくとも部分的に収納されるように構成される、ループ部分1130を有する。描写される実施例では、ループ部分の形状は、支持ワイヤ1160Aによって設定されてもよく、伸長可撓性管1110は、図9A−Eを参照して説明される方法と一致する様式で動作するように構成されてもよい。

1つ以上の衝撃波発生器は、ループ部分1130内に位置付けられる。図11Aで描写されるように、3つの衝撃波発生器1126A−Cは、異なる長さの3つの光ファイバを含む。光ファイバはそれぞれ、レーザ発生器1102に接続される。いくつかの実施例では、各光ファイバは、熱弾性膨張と呼ばれるプロセスにおいてレーザ発生器1102によって発生されるレーザパルスに応答して、流体中で光ファイバの遠位端において衝撃波を発生させるように構成される。いくつかの実施例では、吸収体物質は、レーザが吸収され、衝撃波が光ファイバの遠位端において発生されるように、血管系の一部(例えば、動脈)に流入される流体(例えば、生理食塩水)に混入される。続いて、衝撃波は、光ファイバの遠位端から血管を通して、治療される組織まで伝搬する。代替として、衝撃波は、色素吸収に起因して、標的組織の界面において発生される。例えば、エキシマレーザに関して、レーザが組織に作用するための1つの機構は、吸収および後続のマイクロアブレーションを介する。本タイプのレーザが、ある流体(例えば、生理食塩水)をよく吸収しないため、血管系の一部(例えば、動脈)は、血液を一掃するように、流体(例えば、いかなる吸収体物質とも混合されない生理食塩水)で洗浄される。続いて、(パルス波の形態の)レーザは、レーザがレーザからエネルギーを吸収することができる色素性組織に遭遇するまで、流体を通して伝搬される。概して、石灰化される、または病的である生物学的組織(例えば、血管内皮もしくは石灰化組織)は、レーザの波長において有意量のエネルギーを吸収することができる。故に、衝撃波は、いくつかの実施形態によると、光ファイバの遠位端ではなく色素性組織において発生される。

流体中のレーザ吸収は、吸収領域から放射される一次圧力波(衝撃波)につながる。低フルエンス閾値後に、蒸気泡も形成される。蒸気空洞の成長および後続の圧潰は、二次圧力波(衝撃波)につながる。当業者は、本プロセスが、いくつかの側面で図1A−Cの衝撃波の発生と明確に異なることを認識するであろう。具体的には、図1A−Cの衝撃波発生は、電流放電およびイオン化の異なる初期プロセスを有する、電気水力学的蒸気膨張の結果である。それでもなお、両方のプロセスでは、衝撃波発生は、非常に類似する音圧結果およびキャビテーション気泡活動で終わる。

いくつかの実施形態では、図11Bで描写されるように、伸長可撓性管は、伸長可撓性管に沿って摺動可能であるように構成される、光ファイバ1126Dを含む。光ファイバを摺動することによって、その遠位端は、管内の種々の場所に位置付けられることができ、衝撃波が所望の場所で発生されることを可能にする。1つの好ましいアプローチでは、ファイバは、最初に、ファイバの遠位端が管の遠位端に接近するように位置付けられてもよい。手技中に、ファイバは、(矢印Aの方向に)引き出されることができ、衝撃波が管内のますます近位の場所で発生されることを可能にする。本摺動可能構成は、より小さい伸長可撓性管および/またはシースが使用されることを可能にし得る。

本発明は、その実施形態を参照して、具体的に示され、説明されているが、形態および詳細の種々の変更が、本発明の範囲から逸脱することなくそれに行われ得ることが、当業者によって理解されるであろう。上記で説明される実施形態の全てに関して、方法のステップは、連続的に実施される必要はない。

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈