专利类型 | 发明公开 | 法律事件 | 公开; 实质审查; 授权; |
专利有效性 | 有效专利 | 当前状态 | 授权 |
申请号 | CN201710326607.2 | 申请日 | 2017-05-10 |
公开(公告)号 | CN108863394A | 公开(公告)日 | 2018-11-23 |
申请人 | 中国科学院上海硅酸盐研究所; | 申请人类型 | 科研院所 |
发明人 | 曾宇平; 姚冬旭; 左开慧; 夏咏锋; 尹金伟; 梁汉琴; 王锋; | 第一发明人 | 曾宇平 |
权利人 | 中国科学院上海硅酸盐研究所 | 权利人类型 | 科研院所 |
当前权利人 | 中国科学院上海硅酸盐研究所 | 当前权利人类型 | 科研院所 |
省份 | 当前专利权人所在省份:上海市 | 城市 | 当前专利权人所在城市:上海市长宁区 |
具体地址 | 当前专利权人所在详细地址:上海市长宁区定西路1295号 | 邮编 | 当前专利权人邮编:200050 |
主IPC国际分类 | C04B35/584 | 所有IPC国际分类 | C04B35/584 ; C04B35/622 ; C04B35/624 ; C04B38/06 ; C04B35/10 ; C04B35/48 ; C04B35/563 ; C04B35/565 ; C04B35/583 ; B28B1/00 |
专利引用数量 | 8 | 专利被引用数量 | 5 |
专利权利要求数量 | 10 | 专利文献类型 | A |
专利代理机构 | 上海瀚桥专利代理事务所 | 专利代理人 | 曹芳玲; 郑优丽; |
摘要 | 本 发明 涉及一种凝胶浇注结合 冷冻干燥 制备多孔陶瓷的方法,包括:向 水 中加入 水溶性 异丁烯类 聚合物 、 烧结 助剂和陶瓷粉体,球磨混合后得到水基浆料;将所得水基浆料经 真空 脱气后注入模具中并密封,置于15~30℃下凝胶处理3~120小时;将凝胶处理后的密封的模具在‑273~0℃下冷冻0.01~10小时,使陶瓷坯体 固化 成型;将所得陶瓷坯体脱模后,再经真空冷冻干燥、预烧和烧结得到所述多孔陶瓷。本发明结合了凝胶浇注和冷冻干燥两种工艺,通过少量凝胶剂在坯体凝胶过程中形成的三维聚合物网络,有效抑制了冷冻干燥过程中 冰 晶的长大,从而实现了对多孔陶瓷微观结构和 力 学性能有效的调控。 | ||
权利要求 | 1.一种凝胶浇注结合冷冻干燥制备多孔陶瓷的方法,其特征在于,包括: |
||
说明书全文 | 一种凝胶浇注结合冷冻干燥制备多孔陶瓷的方法技术领域[0001] 本发明涉及一种凝胶浇注结合冷冻干燥制备多孔陶瓷的方法,属于陶瓷的制备领域。 背景技术[0002] 多孔陶瓷是一种经高温烧成,内部具有大量的闭合孔道或者彼此相通并与材料表面也相贯通的孔道结构的陶瓷材料。多孔陶瓷由于存在着大量的微孔和孔洞、体积密度小、气孔率较高,而且比表面积大,同时兼具陶瓷材料特有的耐磨损、耐高温、良好的化学稳定性,使多孔陶瓷可以在净化分离、气体液体过滤、吸声减震、生物植入材料、保温材料、化工催化载体、传感器材料和特种墙体材料等方面得到广泛的应用。 [0003] 不同的应用领域对于多孔陶瓷的结构与性能的要求各异,在多孔陶瓷的制备及发展中,人们根据需要设计了许多制备多孔陶瓷的工艺,不同工艺所制得多孔陶瓷的结构性能也各有不同,多样的制备工艺也为我们在制备多孔陶瓷的过程中提供了许多选择性。 [0004] 冷冻干燥法通过升华作用将冰粒转化为孔隙,能有效减缓干燥过程中坯体的收缩和龟裂,使坯体保持稳定的多孔结构,并实现冷冻后样品的近净尺寸成型。水基浆料的使用决定了该方法的环境友好性,因为冰的升华产生多孔结构的过程中,释放出来的水对环境无任何污染。然而,冷冻过程中冰晶的生长往往难以控制,而且过度长大的冰晶会在冰晶排除后留下大尺寸的孔结构,破坏了微观结构的均匀性,且不利于多孔陶瓷产品的力学性能。虽然通过添加有机聚合物可以有效抑制冰晶的生长,但是添加量往往在2wt%-10wt%甚至更高。而过多的添加剂往往增大了陶瓷浆料的粘度,会导致浆配制难度加大,且对于高粘度的浆料,其均匀性也难以保证。 发明内容[0005] 针对上述问题,本发明的目的在于工艺简单,成本低廉且有机物添加量极低的制备多孔陶瓷方法。 [0006] 为此,本发明提供了一种凝胶浇注结合冷冻干燥制备多孔陶瓷的方法,包括:向水中加入水溶性异丁烯类聚合物、烧结助剂和陶瓷粉体,球磨混合后得到水基浆料; 将所得水基浆料经真空脱气后注入模具中并密封,置于15~30℃下凝胶处理3-120小时; 将凝胶处理后的密封的模具在-273~0℃下冷冻0.01~10小时,使陶瓷坯体固化成型; 将所得陶瓷坯体脱模后,再经真空冷冻干燥、预烧和烧结得到所述多孔陶瓷。 [0007] 本发明结合了凝胶浇注和冷冻干燥两种工艺制备多孔陶瓷。具体来说,本发明采用水溶性异丁烯类聚合物与水混合形成溶液。加入烧结助剂、和陶瓷粉体,球磨后得到均匀的水基浆料。将浆料进行真空脱气,注入模具中进行固化成型,成型过程中通过密封模具阻止凝胶过程中水的挥发,然后置于室温℃下凝胶处理120小时以下。如图4所示,在此凝胶处理(密封处理)过程中,水溶性异丁烯类聚合物开始凝胶。与常规凝胶过程不同,本发明由于模具处于密封状态,当所述水溶性异丁烯类聚合物开始形成三维聚合物网络时,所述浆料中的水份被转移到胶体表面时,难以以蒸气的形式挥发到空气中,直至模具内部水蒸气的浓度形成饱和状态。此时水基浆料中的水便开始聚集得到胶体表面,甚至凝胶过程完成后,仍有较多的水留在胶体之中,为后续的冷冻干燥处理提供条件。然后将凝胶处理后的密封的模具在-273~0℃下冷冻0.01~10小时。在冷冻过程中处于胶体中的水分开始凝结成冰晶,由于部分水聚集到胶体表面且水溶性异丁烯类聚合物形成了三维聚合物网络,二者结合很大程度上抑制了冰晶的长大,首先由于部分水转移到坯体表面,这样湿坯中的水分子含量减少,导致冷冻过程中冰晶的含量下降,干燥后坯体中气孔减少,另一方面,聚合物形成的三维网络结构在冰晶生长的过程中,起到了阻碍限制冰晶长大的作用,这样,冰晶被除去后留下的孔尺寸减小,两者均有利于陶瓷强度的提高。再经真空冷冻干燥处理,使得冰晶升华,得到干燥的坯体。再经烧结后最终得到高强度的多孔陶瓷。 [0008] 较佳地,所述水溶性异丁烯类聚合物、烧结助剂和陶瓷粉体的质量比为(0.05~0.2):(0.01~0.1):1。 [0009] 较佳地,所述水基浆料的固含量为10~90wt%,优选40~60wt%。 [0012] 较佳地,所述烧结助剂选自Y2O3、Al2O3、Yb2O3、氮化硼、碳粉、Lu2O3、Sm2O3、SiO2、Nd2O3和Eu2O3中的至少一种。 [0013] 较佳地,所述真空冷冻干燥的参数包括:真空度1~20Pa,、冷凝腔温度-68~-40℃、加热板温度-30~60℃、干燥时间4~120小时。 [0014] 较佳地,所述预烧为在真空或大气条件下,以1~20℃/分钟升温至400~700℃,预烧60~600分钟。 [0015] 较佳地,所述烧结的温度为1700~2100℃,时间为2小时,气氛为惰性气氛;所述惰性气氛选自氮气、氩气、氦气和氖气中的至少一种。 [0016] 较佳地,从预烧温度400~700℃以1~20℃/分钟继续升温至1700~2100℃。 [0017] 本发明结合了凝胶浇注和冷冻干燥两种工艺,通过少量凝胶剂在坯体凝胶过程中形成的三维聚合物网络,有效抑制了冷冻干燥过程中冰晶的长大,从而实现了对多孔陶瓷微观结构和力学性能有效的调控。本发明所述方法可以用来实现样品的近净尺寸成型,抑制冷冻干燥过程中冰晶的长大,得到高强度的多孔陶瓷。本发明采用密封处理,阻止浆料凝胶过程中水分的挥发,为后续的冷冻干燥处理提供条件。该方案中的凝胶剂可以同时起到分散剂、粘结剂以及孔形貌控制剂的作用。同时本发明采用的水溶性异丁烯类聚合物,可以在常温下凝胶,不需要加入额外的引发剂、催化剂等有毒性的物质。是一种适合于广泛推广且能够制得微观形貌和力学性能良好的多孔陶瓷的方法。附图说明 [0018] 图1为实施例1制备的所得多孔氮化硅陶瓷断面形貌图,其中(a)为低倍率下断面形貌图,(b)为高倍率断面形貌图;图2为图1为实施例5制备的所得多孔氮化硅陶瓷断面形貌图,其中(c)为低倍率下断面形貌图,(d)为高倍率断面形貌图; 图3为实施例6制备的所得多孔氮化硅陶瓷断面形貌图,其中左图为低倍率下断面形貌图,右图为高倍率断面形貌图; 图4为常规凝胶过程和本发明中的凝胶过程的示意图。 具体实施方式[0019] 以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。 [0020] 本发明通过加入极少量的凝胶剂实现了对冷冻干燥过程中多孔陶瓷孔形貌的调控,并且极大地提高了冷冻干燥后得到的多孔陶瓷的力学性能。该方案中的凝胶剂可以同时起到分散剂、粘结剂以及孔形貌控制剂的作用,充分发挥了该添加剂的作用。 [0021] 以下示例性地说明本发明提供的凝胶浇注结合冷冻干燥制备多孔陶瓷的方法。 [0022] 采用水溶性异丁烯类聚合物作为凝胶剂与水混合形成溶液,再加入烧结助剂、和陶瓷粉体,球磨后得到混合均匀的水基浆料。其中,所述水溶性异丁烯类聚合物、烧结助剂和陶瓷粉体的质量比可为(0.05~0.2):(0.01~0.1):1。并控制所述水基浆料的固含量为10~90wt%,优选40~60wt%。本发明中陶瓷粉体可以为一种或多种氧化物、非氧化物陶瓷粉体,及其组合,例如选择氮化硅、碳化硅、氧化锆、氮化硼、氧化铝和碳化硼中的至少一种。 烧结助剂可以为一种或多种氧化物、非氧化物粉体,及其组合,例如选自Y2O3、Al2O3、Yb2O3、氮化硼、碳粉、Lu2O3、Sm2O3、SiO2、Nd2O3和Eu2O3中的至少一种。所述水溶性异丁烯类聚合物可选自异丁烯和马来酸酐共聚物。 [0023] 将水基浆料进行真空脱气,注入模具中进行固化成型,成型过程中通过密封模具阻止凝胶过程中水的挥发,并密封一段时间(密封时间推荐为3~120小时,优选30~70小时)。在密封凝胶过程中,当多余的水分子转移到坯体表面后,坯体内部的水分呈现均匀的分布,而且水分的含量被维持在适量的水平,不会出现坯体开裂的情况。所述模具的材料可为塑料模具、石膏模具、橡胶模具、玻璃模具、陶瓷模具或金属模具等。具体来说,将所得水基浆料经真空脱气后注入模具中并密封,置于15~30℃下凝胶处理3~120小时,优选30~70小时。其中真空脱气的参数可为0.02~0.05MPa。 [0024] 将密封一段时间后的模具连同坯体转移到低温条件下进行冷冻,使陶瓷坯体固化成型。具体来说,将凝胶处理后的密封的模具在-273~0℃,优选-196~-60℃下冷冻0.01~10小时,使陶瓷坯体固化成型。 [0025] 将所得陶瓷坯体脱模后,再经真空冷冻干燥得到干燥的陶瓷坯体。具体来说,将成型后的陶瓷坯体转移到冷冻干燥机中,在真空条件下使冰升华,得到干燥的陶瓷坯体。所述真空冷冻干燥的参数包括:真空度1~20Pa、冷凝腔温度-68~-40℃(优选-68~-50℃)、加热板温度-30~60℃(优选10~30℃)、干燥时间4~120小时(优选48~72小时)。 [0026] 将干燥后的陶瓷坯体进行烧结,烧结完毕后随炉冷却。具体来说,可先将陶瓷坯体在真空条件下进行预烧,除去有机物。再将预烧后的陶瓷坯体在一定温度下进行烧结,得到多孔陶瓷。所述预烧可为在真空或大气条件下,以1~20℃/分钟升温至400~700℃,预烧60~600分钟。所述烧结的温度可为1700~2100℃,时间为2小时,气氛为惰性气氛。所述惰性气氛可选自氮气、氩气、氦气和氖气中的至少一种。其中从预烧温度400~700℃以1~20℃/分钟继续升温至1700~2100℃。 [0027] 作为一个凝胶浇注结合冷冻干燥制备多孔陶瓷的方法示例,包括如下步骤:(1)将水与水溶性异丁烯类聚合物搅拌形成水溶液;(2)向水中加入烧结助剂和陶瓷粉体,球磨后得到混合均匀的水基浆料;(3)将浆料进行真空脱气,然后注入模具中,然后将模具密封,阻止凝胶过程中坯体中水分的挥发;(4)将密封一段时间后的模具转移到低温下冷冻,使陶瓷坯体固化成型;(5)将成型后的陶瓷坯体转移到冷冻干燥机中,在真空条件下使冰升华,得到干燥的坯体;(6)将陶瓷坯体在真空条件下进行预烧,除去有机物;(7)将预烧后的陶瓷坯体在一定温度下进行烧结,得到多孔陶瓷。步骤(1)中采用的水溶性聚合物为异丁烯和马来酸酐共聚物,推荐用量分别为陶瓷粉体的0.05~20wt%。步骤(2)中陶瓷粉体可以为一种或多种氧化物、非氧化物陶瓷粉体,及其组合。步骤(3)中烧结助剂可以为一种或多种氧化物、非氧化物粉体,及其组合。步骤(4)中所述的密封时间推荐为120小时以下。步骤(4)中所述的冷冻条件推荐为冷冻条件是-273~0℃冷冻0.01~10小时。步骤(5)中所述的冷冻干燥条件是真空度1~20Pa,冷凝腔-68~-40℃,加热板-30~60℃,干燥4~120小时。步骤(6)中所述的预烧是在真空或大气条件下,以1~20℃/min升至400~700℃,保温60~600min。 [0028] 本发明凝胶时的密封处理,凝胶剂用量少,且孔结构是由冷冻干燥过程中冰晶产生的,即来自于浆料中的水分,不需要额外添加造孔剂或者采用发泡工艺得到孔结构。同时该种工艺在这里还有其他两种额外的作用来提高多孔陶瓷的强度,首先凝胶剂形成的三维网络结构在冷冻过程中对冰晶的生长起到了阻碍作用,即作为孔形貌控制剂,抑制了冰晶的长大,这样多孔陶瓷中由于冰晶生长得到的孔尺寸减小,有利于力学性能的提高;另一方面,由于密封处理,湿坯中部分水分子被转移到坯体表面,这样存在于湿坯中的水分变少,冷冻过程中冰晶的数量减少,有利于减少多孔陶瓷中孔的数量,同样有利于多孔陶瓷力学性能的提高。本发明采用多孔陶瓷弯曲强度测试方法GB/T1965-1996测得所得多孔陶瓷的抗弯强度;采用阿基米德排水法测得所得多孔陶瓷孔隙率。 [0029] 下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。若无特殊说明,下述水溶性异丁烯类聚合物皆为异丁烯和马来酸酐共聚物(Isobam 104#(Kuraray Co.,Ltd.,Osaka,Japan)。 [0030] 实施例1:(1)将32.33g的水与0.1g的水溶性异丁烯类聚合物搅拌混合形成水溶液; (2)将上述水溶液转移到球磨罐中,然后向球磨罐加入100g的氮化硅球、1.5g氧化钇粉、1.5g氧化铝粉和47g氮化硅粉体,球磨机转速为300r/min,球磨2.5小时后得到混合均匀的水基浆料; (3)将浆料进行真空脱气,然后注入金属模具中,然后将模具密封,在30℃下密封12小时后,将模具转移到液氮(温度为-196℃)中,冷冻的5min,得到固化的坯体; (4)将成型后的陶瓷坯体转移到冷冻干燥机中,冷冻干燥条件是真空度1Pa,冷凝腔-68℃,加热板60℃,干燥48小时; (5)将陶瓷坯体在空气条件下以5℃/min升至600℃,保温2h,预烧完毕后随炉冷却; (6)将预烧后的陶瓷坯体在氮气气氛中以10℃/min升至1200℃,接着以5℃/min升至 1700℃并保温2小时,烧结完毕后随炉冷却,得到多孔氮化硅陶瓷。本实施例制得的多孔氮化硅陶瓷的抗弯强度22.95MPa,孔隙率48.07%,所得多孔氮化硅陶瓷断面形貌如图1所示,从图中可知该条件下得到多孔氮化硅陶瓷具有较均匀的多孔结构,同时可以观察到由冰晶定向生长所产生的孔道,说明密封12h的条件下湿坯中的凝胶过程并未完全完成,冷冻过程中对冰晶的生长控制效果并不明显。 [0031] 实施例2:(1)将32.33g的水与0.1g的水溶性异丁烯类聚合物搅拌混合形成水溶液; (2)将上述水溶液转移到球磨罐中,然后向球磨罐加入100g的氮化硅球、1.5g氧化钇粉、1.5g氧化铝粉和47g氮化硅粉体,球磨机转速为300r/min,球磨2.5小时后得到混合均匀的水基浆料; (3)将浆料进行真空脱气,然后注入金属模具中,然后将模具密封,25℃下密封24小时后,将模具转移到液氮中,冷冻的5min,得到固化的坯体; (4)将成型后的陶瓷坯体转移到冷冻干燥机中,冷冻干燥条件是真空度1Pa,冷凝腔-68℃,加热板60℃,干燥48小时; (5)将陶瓷坯体在空气条件下以5℃/min升至600℃,保温2h,预烧完毕后随炉冷却; (6)将预烧后的陶瓷坯体在氮气气氛中以10℃/min升至1200℃,接着以5℃/min升至 1700℃并保温2小时,烧结完毕后随炉冷却,得到多孔氮化硅陶瓷。本实施例制得的多孔氮化硅陶瓷的抗弯强度13.93MPa,孔隙率50%。 [0032] 实施例3:(1)将32.33g的水与0.1g的水溶性异丁烯类聚合物搅拌混合形成水溶液; (2)将上述水溶液转移到球磨罐中,然后向球磨罐加入100g的氮化硅球、1.5g氧化钇粉、1.5g氧化铝粉和47g氮化硅粉体,球磨机转速为300r/min,球磨2.5小时后得到混合均匀的水基浆料; (3)将浆料进行真空脱气,然后注入金属模具中,然后将模具密封,25℃下密封36小时后,将模具转移到液氮中,冷冻的5min,得到固化的坯体; (4)将成型后的陶瓷坯体转移到冷冻干燥机中,冷冻干燥条件是真空度1Pa,冷凝腔-68℃,加热板60℃,干燥48小时; (5)将陶瓷坯体在空气条件下以5℃/min升至600℃,保温2h,预烧完毕后随炉冷却; (6)将预烧后的陶瓷坯体在氮气气氛中以10℃/min升至1200℃,接着以5℃/min升至 1700℃并保温2小时,烧结完毕后随炉冷却,得到多孔氮化硅陶瓷。本实施例制得的多孔氮化硅陶瓷的抗弯强度15.9MPa,孔隙率48.63%。 [0033] 实施例4:(1)将32.33g的水与0.1g的水溶性异丁烯类聚合物搅拌混合形成水溶液; (2)将上述水溶液转移到球磨罐中,然后向球磨罐加入100g的氮化硅球、1.5g氧化钇粉、1.5g氧化铝粉和47g氮化硅粉体,球磨机转速为300r/min,球磨2.5小时后得到混合均匀的水基浆料; (3)将浆料进行真空脱气,然后注入金属模具中,然后将模具密封,20℃下密封48小时后,将模具转移到液氮中,冷冻的5min,得到固化的坯体; (4)将成型后的陶瓷坯体转移到冷冻干燥机中,冷冻干燥条件是真空度1Pa,冷凝腔-68℃,加热板60℃,干燥48小时; (5)将陶瓷坯体在空气条件下以5℃/min升至600℃,保温2h,预烧完毕后随炉冷却; (6)将预烧后的陶瓷坯体在氮气气氛中以10℃/min升至1200℃,接着以5℃/min升至 1700℃并保温2小时,烧结完毕后随炉冷却,得到多孔氮化硅陶瓷。本实施例制得的多孔氮化硅陶瓷的抗弯强度23.26MPa,孔隙率43.16%。 [0034] 实施例5:(1)将32.33g的水与0.1g的水溶性异丁烯类聚合物搅拌混合形成水溶液; (2)将上述水溶液转移到球磨罐中,然后向球磨罐加入100g的氮化硅球、1.5g氧化钇粉、1.5g氧化铝粉和47g氮化硅粉体,球磨机转速为300r/min,球磨2.5小时后得到混合均匀的水基浆料; (3)将浆料进行真空脱气,然后注入金属模具中,然后将模具密封,20℃下密封60小时后,将模具转移到液氮中,冷冻的5min,得到固化的坯体; (4)将成型后的陶瓷坯体转移到冷冻干燥机中,冷冻干燥条件是真空度1Pa,冷凝腔-68℃,加热板60℃,干燥48小时; (5)将陶瓷坯体在空气条件下以5℃/min升至600℃,保温2h,预烧完毕后随炉冷却; (6)将预烧后的陶瓷坯体在氮气气氛中以10℃/min升至1200℃,接着以5℃/min升至 1700℃并保温2小时,烧结完毕后随炉冷却,得到多孔氮化硅陶瓷。本实施例制得的多孔氮化硅陶瓷的抗弯强度37.83MPa,孔隙率41.19%,所得多孔氮化硅陶瓷断面形貌如图2所示,从图中可知该条件下得到的多孔氮化硅陶瓷不仅具有均匀的多孔结构,同时并没有冰晶定向生长产生的孔通道形成,说明冰晶的生长受到抑制,这也是该条件下得到的多孔氮化硅陶瓷具有较高的力学性能的原因。 [0035] 实施例6:(1)将32.8g的水与0.1g的水溶性异丁烯类聚合物搅拌混合形成水溶液; (2)将上述水溶液转移到球磨罐中,然后向球磨罐加入100g的碳化硅球、1.25g碳粉、 0.25g碳化硼粉和50g碳化硅粉体,球磨机转速为350r/min,球磨3小时后得到混合均匀的水基浆料; (3)将浆料进行真空脱气,然后注入金属模具中,然后将模具密封,15℃下密封120小时后,将模具转移到液氮中,冷冻的5min,得到固化的坯体; (4)将成型后的陶瓷坯体转移到冷冻干燥机中,冷冻干燥条件是真空度1Pa,冷凝腔-68℃,加热板60℃,干燥48小时; (5)将陶瓷坯体在真空条件下以5℃/min升至600℃,保温2h,预烧完毕后随炉冷却; (6)将预烧后的陶瓷坯体以10℃/min升至1600℃,保温1小时,接着以5℃/min升至2100℃并保温2小时,烧结完毕后随炉冷却,得到碳化硅陶瓷。本实施例制得的多孔氮化硅陶瓷的抗弯强度35.6MPa,孔隙率40.1%,本实施例制得的碳化硅陶瓷材料断面形貌如图3所示,从图中可知该多孔碳化硅陶瓷形成了一种特殊的层状的多孔结构,说明不同的原材料经由此种工艺得到的微观结构具有特异性。 [0036] 表1为本发明实施例1-6和对比例1所得多孔陶瓷的性能参数。在密封凝胶的过程中,开始时,随着凝胶的进行,聚合物会释放出水进入湿坯中,这样导致湿坯中的水分子增多,同时,由于水分子有湿坯内部向表面的转移并不充分,因此,湿坯中的水分会增加,这样冷冻过程中冰晶含量增多,多孔陶瓷孔隙率出现先上升的趋势,孔隙率的上升会引起强度的下降。随着时间的延长,水分子逐渐由湿坯内部向表面转移,湿坯中的水分子减少,这样冷冻过程中冰晶含量减少,多孔陶瓷孔隙率出现下降的趋势,同时由于三维聚合物网络结构对冰晶生长的抑制作用,多孔陶瓷的强度出现上升的趋势。 [0037] 对比例1(1)将32.33g的水与0.1g的水溶性异丁烯类聚合物搅拌混合形成水溶液; (2)将上述水溶液转移到球磨罐中,然后向球磨罐加入100g的氮化硅球、1.5g氧化钇粉、1.5g氧化铝粉和47g氮化硅粉体,球磨机转速为300r/min,球磨2.5小时后得到混合均匀的水基浆料; (3)将浆料进行真空脱气,然后注入金属模具中,不经过密封,25℃凝胶处理36小时后,将模具转移到液氮中,冷冻的5min,得到固化的坯体; (4)将成型后的陶瓷坯体转移到冷冻干燥机中,冷冻干燥条件是真空度1Pa,冷凝腔-68℃,加热板60℃,干燥48小时; (5)将陶瓷坯体在空气条件下以5℃/min升至600℃,保温2h,预烧完毕后随炉冷却; (6)将预烧后的陶瓷坯体在氮气气氛中以10℃/min升至1200℃,接着以5℃/min升至 1700℃并保温2小时,烧结完毕后随炉冷却,得到多孔氮化硅陶瓷。本实施例制得的多孔氮化硅陶瓷的抗弯强度9.78MPa,孔隙率45.6%。该情况下得到多孔氮化硅陶瓷强度小于密封情况下。 [0038] 对比例2(1)将32.33g的水与0.1g的水溶性异丁烯类聚合物搅拌混合形成水溶液; (2)将上述水溶液转移到球磨罐中,然后向球磨罐加入100g的氮化硅球、1.5g氧化钇粉、1.5g氧化铝粉和47g氮化硅粉体,球磨机转速为300r/min,球磨2.5小时后得到混合均匀的水基浆料; (3)将浆料进行真空脱气,然后注入金属模具中,不经过密封,在20℃凝胶处理48小时后,将模具转移到液氮中,冷冻的5min,得到固化的坯体; 4)将成型后的陶瓷坯体转移到冷冻干燥机中,冷冻干燥条件是真空度1Pa,冷凝腔-68℃,加热板60℃,干燥48小时; 该条件下得到的干燥后的坯体出现很多明显的裂纹,坯体表面和内部甚至出现开裂现象,说明不经过密封处理的坯体不适用于该种工艺。这是因为,对于未经过密封处理的凝胶过程的坯体,其表面的水分可以直接挥发到空气中,这样就导致了坯体干燥过快且凝胶时间受温度和其他环境因素的影响大,凝胶时间难以控制。同时由于直接暴露在空气中,坯体上层和下层的水分含量差别较大,冷冻过程中由于坯体结构的不均匀性,产生较大的内应力,导致了冷冻或干燥过程中坯体的开裂。 |