专利类型 | 发明授权 | 法律事件 | 公开; 实质审查; 授权; 未缴年费; |
专利有效性 | 失效专利 | 当前状态 | 权利终止 |
申请号 | CN201310173341.4 | 申请日 | 2013-05-11 |
公开(公告)号 | CN103274682B | 公开(公告)日 | 2014-10-15 |
申请人 | 中国科学院电工研究所; | 申请人类型 | 科研院所 |
发明人 | 丁发柱; 古宏伟; 张腾; 王洪艳; 屈飞; 彭星煜; | 第一发明人 | 丁发柱 |
权利人 | 中国科学院电工研究所 | 权利人类型 | 科研院所 |
当前权利人 | 中国科学院电工研究所 | 当前权利人类型 | 科研院所 |
省份 | 当前专利权人所在省份:北京市 | 城市 | 当前专利权人所在城市:北京市海淀区 |
具体地址 | 当前专利权人所在详细地址:北京市海淀区中关村北二条6号 | 邮编 | 当前专利权人邮编: |
主IPC国际分类 | H01B12/02 | 所有IPC国际分类 | H01B12/02 ; C04B35/45 ; C04B35/624 |
专利引用数量 | 3 | 专利被引用数量 | 0 |
专利权利要求数量 | 4 | 专利文献类型 | B |
专利代理机构 | 北京科迪生专利代理有限责任公司 | 专利代理人 | 关玲; |
摘要 | 一种GdBa2Cu3O7-x(GBCO)高温超导 薄膜 的制备方法。首先配制前驱液,把乙酸钆Gd(CH3COO)3、乙酸钡Ba(CH3COO)2和乙酸 铜 Cu(CH3COO)2按照Gd:Ba:Cu=1:2:3的摩尔比混合,溶于10-30mol%三氟乙酸的 水 溶液中,搅拌均匀后 真空 蒸干 溶剂 得到凝胶;再加入甲醇搅拌均匀后蒸干溶剂得到凝胶;随后加入适量甲醇,制成Gd、Ba和Cu三种 金属离子 总浓度为1.5-3.0mol/L的前驱液;然后,将前驱液涂覆在基片上;涂覆有前驱液的基片先经300℃~500℃的低温 热处理 ,分解三氟乙酸盐;最后经850℃~950℃高温热处理和450℃~550℃的 退火 ,形成具有 超导性 能的GBCO薄膜。 | ||
权利要求 | 1.一种高温超导薄膜的制备方法,其特征在于,所述的方法包括如下步骤: |
||
说明书全文 | 一种高温超导薄膜的制备方法技术领域背景技术[0002] 第二代高温超导带材是指以稀土类钡铜氧化物超导带材,由于其制作方法主要是薄膜涂敷技术,所以第二代高温带材又被称作涂层导体。与第一代Bi系高温超导带材相比,第二代高温超导带材在高磁场下有负载高电流的能力,可以在较高的温度和磁场下应用。并且第二代高温带材载体材料一般为铁基或镍基合金,不需使用贵金属材料,其制备成本可以大幅降低。而Bi系材料的制备大量使用金属银(75%),其制备成本难以进一步降低。因此,第二代高温超导带材是目前在高温高场应用条件下首选的超导材料。 [0003] 第二代高温超导带材由金属合金基带、种子层、阻挡层、帽子层、稀土钡铜氧超导层、保护层以及稳定层等构成,是一种多层结构。第二代高温超导带材能够在强电领域应用主要是由于它具有能够负载电流且不损耗的特性。其中氧化物超导层起着承载电流的作用,是研究的核心。目前国际上研究的第二代高温超导带材超导层多数集中在钇钡铜氧超(YBCO)导膜,至少有5家单位都制备出了长度超过500m,Ic超过300A的带材。尤其是美国的Superpower公司,它已经制备出长达1311m,Ic达300A的千米级长带,向批量生产迈出了一大步。国内选择的第二代高温超导带材超导层的材料也是YBCO超导膜。制备YBCO薄膜的方法主要有:脉冲激光沉积(PLD)、金属有机气相沉积(MOCVD)、化学溶液沉积(MOD)、蒸发(Evaporation)等方法。这些方法都能制备出性能优良的YBCO带材,但各自具有不同特点,比如这几种方法中,蒸发、MOCVD方法沉积速率比较快;蒸发、MOCVD、MOD方法容易规模化;相对而言,PLD和MOD方法的原材料利用率较高。这些方法目前都被广泛使用,综合而言,MOD在降低带材成本上更具潜力。目前国内关于高温超导材料的专利绝大多数是YBCO薄膜的制备方法。 发明内容[0004] 本发明的目的是克服现有技术制备的YBCO超导薄膜载流能力较弱的缺点,提供一种具有高载流能力的高温钆钡铜氧超导膜的制备方法。 [0005] 本发明通过采用三氟乙酸盐-金属有机沉积(TFA-MOD)法制备GBCO高温超导薄膜,具体步骤顺序如下: [0006] (1)按照Gd:Ba:Cu=1:2:3的摩尔比把乙酸钆Gd(CH3COO)3、乙酸钡Ba(CH3COO)2和乙酸铜Cu(CH3COO)2混合,于室温下溶于含10-30mol%三氟乙酸的去离子水中配成溶液,其中溶质与溶剂的摩尔比为1:100; [0007] (2)将上述步骤(1)配制的溶液经磁力搅拌器搅拌1-3小时,然后采用旋转蒸发仪蒸除溶剂得到凝胶; [0008] (3)将上述步骤(2)制得的凝胶加入甲醇中,此步骤中的凝胶与甲醇的摩尔比为1:50,经磁力搅拌器搅拌0.5-1.5小时后再采用旋转蒸发仪蒸除溶剂,以进一步去除水分等杂质,得到不含水分的凝胶; [0009] (4)将上述步骤(3)制得的凝胶加入到甲醇中,制成Gd、Ba和Cu三种金属总离子浓度为1.5-3.0mol/L的溶液,经磁力搅拌器搅拌0.5-1.5小时制备成前驱液; [0010] (5)将步骤(4)制得的所述前驱液涂覆在基片上。涂覆方法可以是旋涂(spin-coating)或提拉(dipping)方法,所述的基片可以是铝酸镧、钛酸锶或氧化镁单晶基片等单晶氧化物或其它适于制备高温超导薄膜的基片; [0011] (6)将基片置于高温管式石英炉中,在300℃~500℃温度下进行10小时的热处理,分解三氟乙酸盐;本步骤的升温速率为40℃/h;本步骤是在氧气和水蒸气的混合气氛中,水蒸气的压力为160hPa-200hPa的条件下进行; [0012] (7)将经过步骤(6)处理的基片置于850℃~950℃的高温下热处理2~4小时,此步骤的升温速度可以为500℃/h;本步骤是在湿润的氧气和氩气的气氛中,在水蒸气的压力为240hPa-300hPa的条件下进行; [0013] (8)将经过步骤(7)处理的基片置于450℃~550℃及纯氧条件下对薄膜进行退火热处理0.5~1.5小时,制备成GBCO高温超导薄膜。 [0014] 与现有技术相比,本发明具有以下有益效果: [0015] 本发明采用乙酸钆、乙酸钡和乙酸铜溶液三氟乙酸和去离子水中,经过一些列搅拌和蒸发处理,通过控制金属离子的浓度,在经过低温热分解和高温烧结后,制备了具有超2 导性能的GBCO薄膜。制备的GBCO薄膜平整、致密,临界电流密度JC达到6MA/cm,高于纯YBCO超导薄膜的临界电流密度,能够满足高温超导带材在高温高场下的应用。 附图说明 [0017] 图2是实施例1制备的GBCO膜的能谱分析图片; [0018] 图3是实施例1制备的GBCO膜的X射线衍射图片; [0019] 图4是实施例1制备的GBCO膜的临界电流密度测试图片; [0020] 图5是实施例2制备的GBCO膜的场发射扫描电子显微镜图片; [0021] 图6是实施例2制备的GBCO膜的临界电流密度测试图片; [0022] 图7是实施例3制备的GBCO膜的场发射扫描电子显微镜图片; [0023] 图8是实施例3制备的GBCO膜的临界电流密度测试图片; [0024] 图9是实施例4制备的GBCO膜的场发射扫描电子显微镜图片; [0025] 图10是实施例5制备的GBCO膜的场发射扫描电子显微镜图片。 具体实施方式[0026] 实施例1 [0027] (1)称取乙酸钆、乙酸钡和乙酸铜分别为0.005mol、0.01mol和0.015mol,将乙酸钇、乙酸钡和乙酸铜混合后溶于含10mol%的三氟乙酸的100ml去离子水中配成溶液; [0028] (2)将步骤(1)制得的溶液经磁力搅拌器搅拌1小时后,采用旋转蒸发仪蒸除溶剂得到凝胶; [0029] (3)将所述凝胶加入50ml甲醇,再经磁力搅拌器搅拌0.5小时后再采用旋转蒸发仪蒸除溶剂,以进一步去除水分等杂质而得到非常纯净的凝胶; [0030] (4)将步骤(4)制得的凝胶加入到20ml甲醇中,制成Gd、Ba和Cu三种金属总离子浓度为1.5mol/L的溶液,并将所得的含有Gd、Ba和Cu的甲醇溶液经磁力搅拌器搅拌0.5小时制备成前驱液; [0031] (5)将步骤(4)制得的前驱液以2000转/分的速度旋涂在铝酸镧单晶基片上,旋涂时间为90秒; [0032] (6)涂敷好的步骤(5)涂覆好的基片放在石英舟里送入高温管式石英炉里进行低温热处理和高温热处理,最后得到GBCO高温超导薄膜。 [0033] 低温热处理是湿润的氧气条件下进行,是将500sccm的氧气经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为160hPa,从室温平均以40℃/h的升温速率升温至300℃,然后再炉冷至室温。低温热处理的目的是分解三氟乙酸盐,形成无定型的前驱膜并排出有害的残余物质。整个分解时间约为10h。 [0034] 高温热处理是在湿润的氧气和氩气混合气氛下进行,把500sccm含有300ppm氧气的氩气混合气体经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为240hPa,先是以400℃/h的升温速率升至最高温850℃,在850℃保温2小时后直接通入含有500ppm氧气的氩气混合气体,然后以100℃/h降温至450℃,在450℃的纯氧气氛围中保温0.5小时获得具有超导性能的GBCO薄膜,随后样品在氧气氛围下炉冷至室温。用场发射扫描电子显微镜对样品进行了表面形貌观察,YBCO厚膜表面平整、致密,如图1所示。采用能谱分析仪(EDS)对该样品进行了成分分析,样品中含有Gd、Ba、Cu和O等元素,如图2所示。进一步对样品进行X射线衍射仪分析,所制备的薄膜为GBCO薄膜,如图3所示。用Lepi-system对所制备的GBCO薄膜进行了临界电流密度的测试,临界电流密度最大2 为6.3MA/cm,如图4所示。 [0035] 实施例2 [0036] (1)称取乙酸钆、乙酸钡和乙酸铜分别为0.01mol、0.02mol和0.03mol,将乙酸钆、乙酸钡和乙酸铜混合后溶于含20mol%的三氟乙酸的200ml去离子水中配成溶液; [0037] (2)将步骤(1)制得的所述溶液经磁力搅拌器搅拌2小时后,用旋转蒸发仪蒸除溶剂得到凝胶; [0038] (3)将步骤(2)制得的凝胶加入50ml甲醇,再经磁力搅拌器搅拌1小时后再采用旋转蒸发仪蒸除溶剂以进一步去除水分等杂质而得到非常纯净的凝胶; [0039] (4)将步骤(3)制得的凝胶加入到30ml甲醇中,制成Gd、Ba和Cu三种金属总离子浓度为2.0mol/L的溶液。并将所得的含有Gd、Ba和Cu的甲醇溶液经磁力搅拌器搅拌1小时制备成前驱液; [0040] (5)将步骤(4)制得的前驱液以2000转/分的速度旋涂在铝酸镧单晶基片上,旋涂时间为90秒; [0041] (6)涂敷好的步骤(5)涂覆好的基片放在石英舟里送入高温管式石英炉里进行低温热处理和高温热处理,最后得到GBCO高温超导薄膜。 [0042] 低温热处理是湿润的氧气条件下进行,是将500sccm的氧气经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为175hPa,从室温平均以40℃/h的升温速率升温至400℃,然后再炉冷至室温。低温热处理的目的是分解三氟乙酸盐,形成无定型的前驱膜并排出有害的残余物质。整个分解时间约为10小时。 [0043] 高温热处理是在湿润的氧气和氩气混合气氛下进行,把500sccm含有300ppm氧气的氩气混合气体经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为275hPa,先是以400℃/h的升温速率升至最高温900℃,在900℃保温3小时后直接通入含有500ppm氧气的氩气混合气体,然后以100℃/h降温至500℃,在500℃的纯氧气氛围中保温1小时获得具有超导性能的GBCO薄膜,随后样品在氧气氛围下炉冷至室温。用场发射扫描电子显微镜对样品进行了表面形貌观察,GBCO薄膜表面平整、致密,如图5所示。用Lepi-system对所制备的GBCO薄膜进行了临界电流密度的测试,临界电流密度最大为 2 6.0MA/cm,如图6所示。 [0044] 实施例3 [0045] (1)称取乙酸钆、乙酸钡和乙酸铜分别为0.015mol、0.03mol和0.045mol,将乙酸钆、乙酸钡和乙酸铜混合后溶于含30mol%的三氟乙酸的300ml去离子水中配成溶液; [0046] (2)将步骤(1)制得的溶液经磁力搅拌器搅拌3小时后,再采用旋转蒸发仪蒸除溶剂得到凝胶; [0047] (3)将步骤(2)制得的凝胶加入50ml甲醇,再经磁力搅拌器搅拌1.5小时后再采用旋转蒸发仪蒸除溶剂以进一步去除水分等杂质而得到非常纯净的凝胶; [0048] (4)将步骤(3)制得的凝胶加入到30ml甲醇中,制成Gd、Ba和Cu三种金属总离子浓度为3.0mol/L的溶液。并将所得的含有Gd、Ba和Cu的甲醇溶液经磁力搅拌器搅拌1.5小时制备成前驱液; [0049] (5)将上述前驱液以1500转/分的速度旋涂在铝酸镧单晶基体上,旋涂时间为90秒; [0050] (6)涂敷好的步骤(5)涂覆好的基片放在石英舟里送入高温管式石英炉里进行低温热处理和高温热处理,最后得到GBCO高温超导薄膜。 [0051] 低温热处理是湿润的氧气条件下进行,是将500sccm的氧气经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为200hPa,从室温平均以40℃/h的升温速率升温至500℃,然后再炉冷至室温。低温热处理的目的是分解三氟乙酸盐,形成无定型的前驱膜并排出有害的残余物质。整个分解时间约为10小时。 [0052] 高温热处理是在湿润的氧气和氩气混合气氛下进行,把500sccm含有300ppm氧气的氩气混合气体经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为300hPa,先是以400℃/h的升温速率升至最高温950℃,在950℃保温4小时后直接通入含有500ppm氧气的氩气混合气体,然后以100℃/h降温至550℃,在550℃的纯氧气氛围中保温1.5小时获得具有超导性能的GBCO薄膜,随后样品在氧气氛围下炉冷至室温。 [0053] 用场发射扫描电子显微镜对样品进行了表面形貌观察,YBCO厚膜表面平整、致密,如图7所示。用Lepi-system对所制备的GBCO薄膜进行了临界电流密度的测试,临界电流2 密度最大为6.9MA/cm,如图8所示。 [0054] 实施例4 [0055] (1)称取乙酸钆、乙酸钡和乙酸铜分别为0.01mol、0.02mol和0.03mol,将乙酸钆、乙酸钡和乙酸铜混合后溶于含20mol%的三氟乙酸的200ml去离子水中配成溶液; [0056] (2)将步骤(1)制得的所述溶液经磁力搅拌器搅拌2小时后,用旋转蒸发仪蒸除溶剂得到凝胶; [0057] (3)将步骤(2)制得的凝胶加入50ml甲醇,再经磁力搅拌器搅拌1小时后再采用旋转蒸发仪蒸除溶剂以进一步去除水分等杂质而得到非常纯净的凝胶; [0058] (4)将步骤(3)制得的凝胶加入到30ml甲醇中,制成Gd、Ba和Cu三种金属总离子浓度为2.0mol/L的溶液。并将所得的含有Gd、Ba和Cu的甲醇溶液经磁力搅拌器搅拌1小时制备成前驱液; [0059] (5)将步骤(4)制得的前驱液以6毫米/分的提拉速度涂覆在氧化镁单晶基片上。 [0060] (6)涂敷好的步骤(5)涂覆好的基片放在石英舟里送入高温管式石英炉里进行低温热处理和高温热处理,最后得到GBCO高温超导薄膜。 [0061] 低温热处理是湿润的氧气条件下进行,是将500sccm的氧气经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为175hPa,从室温平均以40℃/h的升温速率升温至400℃,然后再炉冷至室温。低温热处理的目的是分解三氟乙酸盐,形成无定型的前驱膜并排出有害的残余物质。整个分解时间约为10小时。 [0062] 高温热处理是在湿润的氧气和氩气混合气氛下进行,把500sccm含有300ppm氧气的氩气混合气体经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为275hPa,先是以400℃/h的升温速率升至最高温900℃,在900℃保温3小时后直接通入含有500ppm氧气的氩气混合气体,然后以100℃/h降温至500℃,在500℃的纯氧气氛围中保温1小时获得具有超导性能的GBCO薄膜,随后样品在氧气氛围下炉冷至室温。用场发射扫描电子显微镜对样品进行了表面形貌观察,GBCO薄膜表面平整、致密,如图9所示。 [0063] 实施例5 [0064] (1)称取乙酸钆、乙酸钡和乙酸铜分别为0.01mol、0.02mol和0.03mol,将乙酸钆、乙酸钡和乙酸铜混合后溶于含20mol%的三氟乙酸的200ml去离子水中配成溶液; [0065] (2)将步骤(1)制得的所述溶液经磁力搅拌器搅拌2小时后,用旋转蒸发仪蒸除溶剂得到凝胶; [0066] (3)将步骤(2)制得的凝胶加入50ml甲醇,再经磁力搅拌器搅拌1小时后再采用旋转蒸发仪蒸除溶剂以进一步去除水分等杂质而得到非常纯净的凝胶; [0067] (4)将步骤(3)制得的凝胶加入到30ml甲醇中,制成Gd、Ba和Cu三种金属总离子浓度为2.0mol/L的溶液。并将所得的含有Gd、Ba和Cu的甲醇溶液经磁力搅拌器搅拌1小时制备成前驱液; [0068] (5)将步骤(4)制得的前驱液以2000转/分的速度旋涂在钛酸锶单晶基片上,旋涂时间为90秒; [0069] (6)涂敷好的步骤(5)涂覆好的基片放在石英舟里送入高温管式石英炉里进行低温热处理和高温热处理,最后得到GBCO高温超导薄膜。 [0070] 低温热处理是湿润的氧气条件下进行,是将500sccm的氧气经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为175hPa,从室温平均以40℃/h的升温速率升温至400℃,然后再炉冷至室温。低温热处理的目的是分解三氟乙酸盐,形成无定型的前驱膜并排出有害的残余物质。整个分解时间约为10小时。 [0071] 高温热处理是在湿润的氧气和氩气混合气氛下进行,把500sccm含有300ppm氧气的氩气混合气体经过装有蒸馏水的玻璃瓶把水蒸气带入反应室,使反应室中水蒸气压力为275hPa,先是以400℃/h的升温速率升至最高温900℃,在900℃保温3小时后直接通入含有500ppm氧气的氩气混合气体,然后以100℃/h降温至500℃,在500℃的纯氧气氛围中保温1小时获得具有超导性能的GBCO薄膜,随后样品在氧气氛围下炉冷至室温。用场发射扫描电子显微镜对样品进行了表面形貌观察,GBCO薄膜表面平整、致密,如图10所示。 |