首页 / 专利库 / 生物学 / 生物 / 哺乳动物 / 在哺乳动物对象中治疗革兰氏阳性细菌感染的组合物和方法

哺乳动物对象中治疗革兰氏阳性细菌感染的组合物和方法

阅读:3发布:2020-07-03

专利汇可以提供哺乳动物对象中治疗革兰氏阳性细菌感染的组合物和方法专利检索,专利查询,专利分析的服务。并且本 发明 提供了在 哺乳动物 对象中 治疗 革兰氏阳性细菌感染的组合物和方法。本发明进一步提供了在哺乳动物对象中治疗革兰氏阳性细菌 皮肤 感染的组合物和方法。本发明所提供的组合物和方法包括给该对象施用有效量的能激活Scd1基因表达或激活Scd1基因产物的化合物。,下面是哺乳动物对象中治疗革兰氏阳性细菌感染的组合物和方法专利的具体信息内容。

1.一种在哺乳动物对象中治疗革兰氏阳性细菌感染的方法,其包 括给该对象施用有效量的能激活Scd1基因表达的化合物。
2.如权利要求1所述的方法,其中所述化合物为toll样受体2的 激动剂。
3.如权利要求1所述的方法,其中所述的化合物为小化学分子, 抗体,反义核酸,短发夹RNA,或短干扰RNA。
4.如权利要求1所述的方法,其中所述的革兰氏阳性细菌感染是 化脓链球菌感染或金黄色葡萄球菌感染。
5.如权利要求2所述的方法,其中所述的对象具有Scd1基因的 功能缺失或功能下降突变。
6.一种在哺乳动物对象中治疗革兰氏阳性细菌感染的方法,其包 括给该对象施用有效量的能激活Scd1基因产物的化合物。
7.如权利要求6所述的的方法,其中所述的化合物是toll样受体 2的激动剂。
8.如权利要求6所述的方法,其中所述化合物为小化学分子,抗 体,反义核酸,短发夹RNA,或短干扰RNA。
9.如权利要求6所述的方法,其中所述的革兰氏阳性细菌感染是 化脓链球菌感染或金黄色葡萄球菌感染。
10.如权利要求7所述的方法,其中所述的对象具有Scd1基因的 功能缺失或功能下降突变。
11.一种在哺乳动物对象中治疗革兰氏阳性细菌感染的方法,其包 括给该对象施用有效量的一种单不饱和脂肪酸
12.如权利要求11所述的方法,其中所述的单不饱和脂肪酸为棕 榈油酸盐或油酸盐。
13.如权利要求11所述的方法,其中所述的革兰氏阳性细菌感染 是化脓链球菌感染或金黄色葡萄球菌感染。
14.如权利要求11所述的方法,其中有效量的单不饱和脂肪酸的 施用为局部或皮内施用。
15.如权利要求11所述的方法,其中有效量的单不饱和脂肪酸的 施用为肌内,皮下,腹腔或静脉施用。
16.一种在哺乳动物对象中治疗革兰氏阳性细菌感染的方法,其包 括给该对象施用有效量的作为Scd1生物合成途径产物的化 合物。
17.如权利要求16所述的方法,其中所述的化合物为一种单不饱 和脂肪酸。
18.如权利要求17所述的方法,其中所述的单不饱和脂肪酸为棕 榈油酸盐或油酸盐。
19.如权利要求16所述的方法,其中所述的革兰氏阳性细菌感染 是化脓链球菌感染或金黄色葡萄球菌感染。
20.如权利要求16所述的方法,其中有效量的单不饱和脂肪酸的 施用为局部或皮内施用。
21.如权利要求16所述的方法,其中有效量的单不饱和脂肪酸的 施用为肌内,皮下,腹腔或静脉施用。
22.一种对调节细胞内革兰氏阳性杀菌活性的化合物进行鉴定的 方法,其包括:
将测试化合物与包含了细胞表达的toll样受体2的基于细 胞的分析系统进行接触
向分析系统提供经选定可有效激活toll样受体2信号转导 的数量的配体,其中toll样受体2信号转导可以转导对配体 的响应并调节Scd1基因表达,以及
检测测试化合物对toll样受体2信号转导和Scd1基因表 达调控的作用,该测试化合物在该分析中的有效性作为革兰氏 阳性杀菌活性的指示。
23.如权利要求22所述的方法,其中所述配体为内源性配体或外 源性配体。
24.如权利要求23所述的方法,其中所述的外源性配体为脂多糖, 类脂A,双酰脂酰肽,三酰脂酰肽,S-MALP-2,R-MALP-2, 细菌脂酰肽,Pam2CSK4,脂磷壁酸或酵母聚糖A。
25.如权利要求24所述的方法,其中所述的外源配体为S-MALP-2 或R-MALP-2。
26.如权利要求23所述的方法,其中所述的外源配体为来自 Salmonella Minnesota的粗糙型脂多糖,光滑型脂多糖,或类 脂A。
27.如权利要求23所述的方法,其中所述的测试步骤进一步包括 对细胞中Scd1基因表达或Scd1基因产物的激活进行检测,其 中Scd1基因表达或Scd1基因产物响应细胞与外源配体的接触 而被激活。
28.如权利要求27所述的方法,其中所述的外源配体为革兰氏阳 性细菌的成分,而非革兰氏阴性细菌的成分。
29.如权利要求23所述的方法,其中所述的内源性配体为一种脂 质。
30.如权利要求22所述的的方法,其中所述的化合物是toll样受 体2途径信号转导的激动剂。
31.如权利要求22所述的方法,其中所述的测试步骤进一步包括 对由该化合物增强的配体与toll样受体2之间的结合进行检 测。
32.如权利要求22所述的方法,其中所述的测试步骤进一步包括 在细胞分析中对提高的Scd1基因产物进行检测。
33.如权利要求22所述的方法,其中所述的测试步骤进一步包括 在细胞分析中对提高的Scd1基因产物活性进行检测。
34.如权利要求22所述的方法,其中所述的测试步骤进一步包括 在细胞分析中对提高的单不饱和脂肪酸合成进行检测。
35.如权利要求22所述的方法,其中所述的细胞分析进一步包括 巨噬细胞。
36.如权利要求22所述的方法,其中所述的细胞分析进一步包括 来自于皮脂腺的细胞。
37.如权利要求36所述的方法,其中所述的细胞分析进一步包括 皮脂腺细胞。
38.如权利要求22所述的方法,其中所述的检测步骤进一步包括 对标记配体与toll样受体2的结合的检测。
39.如权利要求38所述的方法,其中所述的标记配体为经过放射 性标记或荧光标记。
40.如权利要求22所述的方法,进一步包括向分析系统提供toll 样受体2,并在分析系统内检测测试化合物对toll样受体2的 信号转导的作用,测试化合物在分析中的有效性被作为对调节 的指示。
41.如权利要求22所述的方法,其中所述的检测步骤进一步包括 通过该化合物实现配体与toll样受体2的结合的减弱。
42.如权利要求22所述的方法,其中所述的检测步骤进一步包括 通过该化合物实现配体与toll样受体2的结合的增强。
43.如权利要求22所述的方法,其中所述的测试步骤进一步包括 在细胞分析中检测硬脂酰辅酶A去饱和酶1活性的提高。
44.如权利要求43所述的方法,其中所述的测试步骤进一步包括 在细胞分析中对提高的单不饱和脂肪酸合成进行检测。
45.如权利要求22所述的方法,其中所述的测试步骤进一步包括 在细胞分析中对革兰氏阳性杀菌活性的提高进行检测。
46.一种在哺乳动物对象中诊断革兰氏阳性细菌感染的险因子 的方法,其包括:
从该对象中去除细胞或组织,
将细胞或组织与toll样受体2的内源性配体或外源性配体 接触,
检测与配体接触的细胞或组织的Scd1基因产物的产生, 检测哺乳动物对象中Scd1基因产物的功能下降或功能缺 失。
47.如权利要求46所述的方法,其中所述的细胞或组织来自巨噬 细胞,皮脂腺细胞或皮脂腺。
48.如权利要求46所述的方法,其中所述的Scd1基因产物的功能 下降或缺失增加了革兰氏阳性细菌感染的风险。
49.如权利要求46所述的方法,其中所述的Scd1基因产物的功能 下降或缺失减少了细胞内单不饱和脂肪酸的合成。
50.如权利要求46所述的方法,其中所述的Scd1基因产物的功能 下降或缺失降低了对革兰氏阳性细菌感染的炎症反应。
51.如权利要求50所述的方法,其中所述的Scd1基因产物的功能 下降或缺失降低了患者受伤部位的炎症反应。
52.如权利要求46所述的方法,其中所述的Scd1基因产物的缺失 增加了以发炎作为预期防御机制的情况下的风险。
53.如权利要求46所述的方法,其中所述的配体是一种外源性配 体,脂磷壁酸(LTA),双酰脂酰肽,三酰脂酰肽,S-MALP-2, 细菌脂酰肽,肽聚糖,甘露聚糖,非甲基化CpG DNA,鞭毛 蛋白或单链RNA。
54.如权利要求46所述的方法,其中所述的外源配体为 S-MALP-2。
55.如权利要求46所述的方法,其中所述的配体是一种内源性配 体,脂质,脂肪,固醇,脂蛋白,脂肪酸,化LDL,血小 板反应素或β淀粉样蛋白。
56.一种诊断Scd1基因功能缺失诱导的紊乱或因此在哺乳动物对 象中诱导的遗传倾向的方法,其包括从哺乳动物对象中获取的 细胞样本,蛋白样本或核酸样本中检测突变的Scd1蛋白或编 码突变Scd1蛋白的核酸的存在,其中该蛋白或核酸的存在指 示了Scd1基因功能缺失诱导的紊乱或由此导致的遗传倾向。
57.如权利要求56所述的方法,其中所述的Scd1基因功能缺失诱 导的紊乱为对革兰氏阳性细菌感染的易感性的增强。
58.如权利要求56所述的方法,进一步包括将蛋白样本或细胞样 本与抗Scd1抗体接触,并检测野生或突变Scd1蛋白的存在。
59.如权利要求58所述的方法,其中所述的检测步骤进一步包括 对来自哺乳动物对象的单核巨噬细胞或巨噬细胞进行荧光激 活细胞分类(FACS)分选。
60.如权利要求56所述的方法,进一步包括在杂交条件下,将核 酸样本与编码突变Scd1基因的标记DNA或RNA分子进行接 触,并在杂交后检测标记DNA或RNA分子,其中标记DNA 或RNA的检测指示了样本中编码突变Scd1基因的核酸分子 的存在。
61.如权利要求56所述的方法,进一步包括将核酸样品与识别序 列受突变Scd1基因的突变影响的限制性内切酶接触,并检测 与限制性内切酶接触后核酸片段的存在或缺失或者变异片段 的存在,其中与限制性内切酶接触后核酸片段的缺失或变异片 段的存在指示了样品中编码突变Scd1基因的核酸分子的存 在。
62.一种包含了外源核酸的转基因非人类动物,其中所述的核酸包 括Scd1基因的功能缺失等位基因,且该动物显示了一种与野 生型的表型相对的包含对革兰氏阳性细菌感染的易感性的表 型。
63.如权利要求62所述的转基因非人类动物,其中所述的Scd1突 变动物的表型特征为萎缩型皮脂腺或丧失合成单不饱和脂肪 酸的能
64.如权利要求62所述的转基因非人类动物,其中所述的Scd1基 因的功能缺失等位基因为T227K的基酸替换。
65.如权利要求62所述的转基因非人类动物,其中所述的动物为 一种小鼠或大鼠。
66.一种衍生自根据权利要求62所述的转基因非人类动物的细胞 或细胞系。
67.一种筛选Toll样受体2信号转导活性调节剂的体外方法,该方 法包括:将权利要求66所述的细胞或细胞系与测试化合物接 触,并检测细胞中单不饱和脂肪酸合成量、对革兰氏阳性细菌 感染的易感性或者Toll样受体2诱导的巨噬细胞激活活性的 增加或减少,从而鉴定该测试化合物为Toll样受体2诱导的 巨噬细胞激活活性的调节剂。
68.一种筛选Toll样受体2信号转导活性调节剂的体内方法,该方 法包括:将权利要求62所述的转基因动物与测试化合物接 触,并检测细胞中单不饱和脂肪酸合成量、对革兰氏阳性细菌 感染的易感性或者Toll样受体2诱导的巨噬细胞激活活性的 增加或减少,从而鉴定该测试化合物为Toll样受体2诱导的 巨噬细胞激活活性的调节剂。

说明书全文

政府资助声明

发明在国家卫生研究院的资助下产生,资助号U54-AI54523。 政府对本发明具有一定的权利。

与相关申请的交叉引用

本申请要求2005年7月20日递交的美国临时申请60/701,216 以及2006年7月19日通过特快专递EV 670672061 US递交的名为 《哺乳动物对象中治疗革兰氏阳性细菌感染的组合物和方法》的 美国申请的权益,其整体的公开在此引用作为参考。

技术领域

本发明主要涉及在哺乳动物对象中治疗革兰氏阳性细菌感染 的组合物和方法。本发明进一步涉及在哺乳动物对象中治疗革兰氏 阳性细菌皮肤感染的组合物和方法。该组合物和方法进一步包括对 该哺乳动物对象施用有效量的能激活Scd1基因表达或激活Scd1基 因产物的化合物。

背景技术

表层上皮细胞构成了抵御病原体的第一道防线。该防线同时依 赖于屏障功能和特异杀菌效应分子。例如,哺乳动物皮肤能提供物 理保护的部分原因在于它是由覆有高度交联的蛋白层的紧密结 合的细胞组成,且对细菌通常没有透过性。在人类中,许多不同 平影响皮肤上皮构建体的遗传性疾病如黏液表皮异型增生 (mucoepithelial dysplasia)或大疱性表皮松解(epidemolysis bullosa)都 伴随着对感染的易感性的大幅上升。Vidal等人,Nat Genet 10:229-34, 2995;Witkop等人,Am J Hum Genet 31:414-27,1979。但皮肤即使 在其物理完整性被破坏的情况下仍能表现出杀菌活性。它包含了大 量的生物活性分子,其中抗菌肽(AMPs)如防御素和杀菌肽对于 宿主防御微生物入侵至关重要(综述见Zasloff,Nature 415:389-95, 2002;Zasloff,N Engl J Med 347:1199-200,2002)。
尽管AMPs是得到最多研究的皮肤防御分子,仍存在其它的保 护系统。在这方面涉及了由皮脂腺产生的单不饱和脂肪酸(MUFA), 一些MUFA已知具有杀菌性。Miller等人,Arch Dermatol 124:209-15, 1988;Wille及Kydonieus,Skin Pharmacol Appl Skin Physiol 16: 176-87,2003。然而,它们对于抗菌防御的作用尚未在体内建立,且 它们的生物合成不受到微生物刺激的调节。开发能够在哺乳动物对 象中激发对微生物感染的先天性免疫应答的优化组合物和方法是 存在于本领域的一项需求。开发能够治疗革兰氏阳性细菌感染和哺 乳动物对象中的革兰氏阳性细菌感染的优化组合物和方法是存在 的更进一步的需求.

发明内容

本发明主要涉及在哺乳动物对象中治疗革兰氏阳性细菌感染 的组合物和方法。本发明进一步提供了在哺乳动物对象中治疗革兰 氏阳性细菌皮肤感染的组合物和方法。本发明所提供的组合物和方 法包括对该哺乳动物对象施用有效量的能激活硬脂酰辅酶A去饱 和酶1(Scd1)基因表达或激活Scd1基因产物-硬脂酰辅酶A去饱和酶 的化合物。
人们将小鼠的先天性免疫缺陷表型归于一种突变,该突变影响 了一种单不饱和脂肪酸(MUFA)合成关键酶的结构。ENU诱导的 C57BL/6小鼠胚系突变被用于分离和鉴别Flake(flk)-一种隐性 C57BL/6小鼠胚系突变,flk突变小鼠对化脓链球菌感染和金黄色葡 萄球菌(可通过激活Toll样受体2引发先天性免疫应答的革兰氏阳 性病原体)引起的皮肤感染的清除遭到损害。定位克隆和测序显示 flk是硬脂酰辅酶A去饱和酶1基因(Scdl)的新型等位基因。
本发明提供了一种在哺乳动物对象中治疗革兰氏阳性细菌感 染的方法,其包括对该对象施用有效量的能激活Scd1基因表达的 化合物。一方面,该化合物为一种toll样受体2的激动剂。另一方 面,该化合物为一种小化学分子,抗体,反义核酸,短发夹RNA, 或短干扰RNA。革兰氏阳性细菌感染的示例可以为化脓链球菌感染 或金黄色葡萄球菌感染。在另一方面,该方法包括对具有Scd1基 因的功能缺失或功能下降突变的对象进行治疗。
本发明提供了一种在哺乳动物对象中治疗革兰氏阳性细菌感 染的方法,其包括对该对象施用有效量的能激活Scd1基因产物的 化合物。一方面,该化合物为一种toll样受体2的激动剂。另一方 面,该化合物为一种小化学分子,抗体,反义核酸,短发夹RNA, 或短干扰RNA。革兰氏阳性细菌感染可以是化脓链球菌感染或金黄 色葡萄球菌感染等。在另一方面,该方法包括对具有Scd1基因的 功能缺失或功能下降突变的对象进行治疗。
本发明提供了一种在哺乳动物对象中治疗革兰氏阳性细菌感 染的方法,其包括对该对象施用有效量的一种单不饱和脂肪酸。该 单不饱和脂肪酸可以是棕榈油酸盐或油酸盐等。革兰氏阳性细菌感 染可以是化脓链球菌感染或金黄色葡萄球菌感染等。一方面,有效 量的单不饱和脂肪酸可以通过局部或皮内施用。另一方面,有效量 的单不饱和脂肪酸可以通过肌内,皮下,腹腔或静脉施用。
本发明提供了一种在哺乳动物对象中治疗革兰氏阳性细菌感 染的方法,其包括对该对象施用有效量的作为Scd1生物合成途径 产物的化合物。一方面,该化合物为一种单不饱和脂肪酸。该单不 饱和脂肪酸可以是棕榈油酸盐或油酸盐等。革兰氏阳性细菌感染可 以是化脓链球菌感染或金黄色葡萄球菌感染等。一方面,有效量的 单不饱和脂肪酸可以通过局部或皮内施用。另一方面,有效量的单 不饱和脂肪酸可以通过肌内,皮下,腹腔或静脉施用。
本发明提供了一种对调节细胞内革兰氏阳性杀菌活性的化合 物进行鉴定的方法,其包括:将测试化合物与包含了细胞表达的toll 样受体2的基于细胞的分析系统进行接触,向分析系统提供经选定 可有效激活toll样受体2信号转导的数量的配体,其中toll样受体 2信号转导可以向配体发出响应信号并调节Scd1基因表达,然后检 测测试化合物对toll样受体2信号转导和Scd1基因表达调控的作 用,测试化合物在分析中的有效性作为革兰氏阳性杀菌活性的指 示。一方面,该配体是一种内源性配体或一种外源性配体。一方面, 该外源配体具体可以是脂多糖,类脂A,双酰脂酰肽,三酰脂酰肽, S-MALP-2,R-MALP-2,细菌脂酰肽,Pam2CSK4,脂磷壁酸或酵 母聚糖A。另一更具体的方面,该外源配体为MALP-2。另一更具 体的方面,该外源配体为来自Salmonella Minnesota的粗糙型脂多 糖,光滑型脂多糖或类脂A。一个具体的方面,该外源配体为革兰 氏阳性细菌的成分,而非革兰氏阴性细菌的成分。另一更具体的方 面,该内源配体具体为一种脂质。该化合物可以是toll样受体2途 径信号转导的激动剂等。
在一个实施例中,该方法所包含的检测步骤进一步包括对细胞 中Scd1基因表达或Scd1基因产物的激活进行检测,其中Scd1基因 表达或Scd1基因产物通过响应细胞与外源配体的接触而被激活。
在一个更进一步的实施例中,所提供的方法中的检测步骤进一 步包括对该化合物增强的配体与toll样受体2的结合进行检测。所 提供的方法中的测试步骤进一步包括对细胞分析中提高的Scd1基 因产物进行检测。所提供的方法中的测试步骤进一步包括对细胞分 析中提高的Scd1基因产物活性进行检测。所提供的方法中的测试 步骤进一步包括对细胞分析中提高的单不饱和脂肪酸合成进行检 测。在另一方面,该检测步骤进一步包括对标记配体与toll样受体 2的结合的检测。该标记配体可以是经过放射性标记或荧光标记。
在另一方面,该细胞分析可以包括巨噬细胞或来自于皮脂腺的 细胞。该种来自皮脂腺的细胞可以是皮脂腺细胞。
在一个实施例中,该方法进一步包括向分析系统提供toll样受 体2,并在分析系统内检测测试化合物对toll样受体2的信号转导 的作用,测试化合物在分析中的有效性被作为对调节的指示。
在一个实施例中,该检测步骤进一步包括通过该化合物实现配 体与toll样受体2的结合的减弱。在另一个实施例中,该检测步骤 进一步包括通过该化合物实现配体与toll样受体2的结合的增强。 在一个更进一步的实施例中,该测试步骤进一步包括在细胞分析中 检测硬脂酰辅酶A去饱和酶1活性的提高。在一个更进一步的实施 例中,该测试步骤进一步包括对细胞分析中提高的单不饱和脂肪酸 合成进行检测。在一个更进一步的实施例中,该测试步骤进一步包 括对细胞分析中革兰氏阳性杀菌活性的提高进行检测。
本发明提供了一种在哺乳动物对象中诊断革兰氏阳性细菌感 染的险因子的方法,其包括对从该对象中去除细胞或组织,将细 胞或组织与toll样受体2的内源性配体或外源性配体接触,检测与 配体接触的细胞或组织的Scd1基因产物的产生,检测哺乳动物对 象中Scd1基因产物的功能下降或功能缺失。该细胞或组织可以是 来自巨噬细胞,皮脂腺细胞或皮脂腺。
一方面,通过该方法导致的功能下降或Scd1基因产物的缺失 增加了革兰氏阳性细菌感染的风险。另一方面,其中所述的功能下 降或Scd1基因产物的缺失减少了细胞内单不饱和脂肪酸的合成。 另一方面,该功能下降或Scd1基因产物的缺失降低了对革兰氏阳 性细菌感染的炎症反应。在一个具体的方面,该功能下降或Scd1 基因产物的缺失降低了患者受伤部位的炎症反应。另一方面,该 Scd1基因产物的缺失增加了以发炎作为预期防御机制的情况下的 风险。该配体可以是一种外源性配体,脂磷壁酸(LTA),双酰脂酰 肽,三酰脂酰肽,S-MALP-2,细菌脂酰肽,肽聚糖,甘露聚糖, 非甲基化CpG DNA,鞭毛蛋白或单链RNA。该配体可以是一种内 源性配体,脂质,脂肪,固醇,脂蛋白,脂肪酸,化LDL,血小 板反应素或β淀粉样蛋白。
本发明提供了一种诊断Scd1基因功能缺失引起的紊乱或因此 在哺乳动物对象中引起的遗传倾向的方法,其包括从哺乳动物对象 中获取的细胞样本,蛋白样本或核酸样本中检测突变的Scd1蛋白 或编码突变Scd1蛋白的核酸的存在,其中该蛋白或核酸的存在指 示了Scd1基因功能缺失引起的紊乱或因此引起的遗传倾向。一方 面,该Scd1基因功能缺失引起的紊乱为对革兰氏阳性细菌感染的 易感性的增强。
在一个实施例中,该方法进一步包括将蛋白样本或细胞样本与 抗Scd1抗体接触,并检测野生或突变Scd1蛋白的存在。在本方法 的另一方面,该检测步骤进一步包括对来自哺乳动物的单核巨噬细 胞或巨噬细胞进行荧光激活细胞分类(FACS)分析。另一方面, 该方法进一步包括在杂交条件下将核酸样本与编码突变Scd1基因 的标记DNA或RNA分子进行接触,并在杂交后检测标记DNA或 RNA分子,其中标记DNA或RNA的检测指示了样本中编码突变 Scd1基因的核酸分子的存在。另一方面,该方法包括了将核酸样品 与识别序列受突变Scd1基因的突变影响的限制性内切酶接触,并 检测与限制性内切酶接触后核酸片段的存在或缺失或者变异片段 的存在,其中与限制性内切酶接触后核酸片段的缺失或变异片段的 存在指示了样品中编码突变Scd1基因的核酸分子的存在。
本发明提供了一种包含了外源核酸的转基因非人类动物,其中 所述的核酸包括了Scd1基因的功能缺失等位基因,并且该动物显 示一种与野生型的表型相对的包含对革兰氏阳性细菌感染的易感 性的表型。该转基因非人类动物的表型Scd1突变动物可以用萎缩 型皮脂腺或丧失合成单不饱和脂肪酸的能来表征。该转基因非人 类动物可具有Scd1基因中的功能缺失等位基因,例如在T227K的 基酸替换。该转基因非人类动物可以是小鼠或大鼠。一方面,可 从该转基因非人类动物中衍生得到细胞或细胞系。
本发明提供了一种筛选Toll样受体2信号转导活性调节剂的体 外方法,其包括:将可以从转基因非人类动物中衍生得到的细胞或 细胞系与测试化合物接触,并检测细胞中单不饱和脂肪酸合成量、 对革兰氏阳性细菌感染的易感性或者Toll样受体2诱导的巨噬细胞 激活活性的增加或减少,从而鉴定该测试化合物为Toll样受体2诱 导的巨噬细胞激活活性的调节剂。本发明提供了一种筛选Toll样受 体2信号转导活性调节剂的体内方法,其包括:将可以从转基因非 人类动物中衍生得到的细胞或细胞系与测试化合物接触,并检测细 胞中单不饱和脂肪酸合成量、对革兰氏阳性细菌感染的易感性或者 Toll样受体2诱导的巨噬细胞激活活性的增加或减少,从而鉴定该 测试化合物为Toll样受体2诱导的巨噬细胞激活活性的调节剂。
附图说明
图1A,1B,1C和1D显示了在flake突变小鼠中观察到的可见 表型。
图2A,2B和2C显示了flake突变小鼠在暴露于革兰氏阳性细 菌时形成了持续的皮肤感染。
图3A,3B和3C显示了flake突变的图谱。
图4A和4B显示了flake突变的分子特征。
图5A和5B显示了野生型和flake突变小鼠中的脂含量的薄层 色谱分析。
图6A,6B,6C,6D,6E和6F显示了在体内具有抗菌活性的 棕榈油酸。
图7A,7B,7C和7D显示了小鼠中的感染和TLR2依赖诱导 的Scd1基因表达。
图8A,8B,8C和8D显示了以MALP-2刺激人皮脂腺细胞所 显示的炎症反应和SCD1和FADS2基因的上调。
图9显示了通过SCD1生物合成途径进行的不饱和脂肪酸生物 合成。

具体实施方式

本发明主要涉及在哺乳动物对象中治疗革兰氏阳性细菌感染 的组合物和方法。本发明进一步提供了在哺乳动物对象中治疗革兰 氏阳性细菌皮肤感染的组合物和方法。本发明所提供的组合物和方 法包括给该对象施用有效量的能激活硬脂酰辅酶A去饱和酶 1(Scd1)基因表达或激活Scd1基因产物-硬脂酰辅酶A去饱和酶1的 化合物。本发明提供了一种包括给该对象施用有效量的一种单不饱 和脂肪酸来治疗革兰氏阳性细菌感染的方法。
Flake(flk)为一种ENU诱导的C57BL/6小鼠隐性胚系突变,它 损害了对化脓链球菌感染和金黄色葡萄球菌(可通过激活Toll样受 体2(TLR2)引发先天性免疫应答的革兰氏阳性病原体)引起的皮 肤感染的清除。定位克隆和测序显示flk是硬脂酰辅酶A去饱和酶 1基因(Scd1)的新型等位基因。Flake纯合体无法合成单不饱和脂肪 酸(MUFA)棕榈油酸盐(C16:1)和油酸盐(C18:1),后两者可杀灭 革兰氏阳性(而非革兰氏阴性)细菌。对金黄色葡萄球菌感染的小 鼠进行皮内MUFA施用可以提高细菌的清除率。在普通小鼠中, Scd1(一种在启动子中带有多个NF-κB元件的基因)的转录可由 TLR2信号转导进行强烈而且特异的诱导。类似地,SCD1基因在人 皮脂腺细胞中也通过TLR2信号转导进行诱导。这些发现揭示了在 哺乳动物中存在一种受调控的基于脂质的抗菌效应途径,并提示了 一种治疗或预防革兰氏阳性细菌感染的新方法。
“患者”,“对象”,“脊椎动物”或“哺乳动物”可相互替换, 并指哺乳动物,如人类患者或非人类的灵长类动物,以及兔子,大 鼠,小鼠及其它实验动物。动物包括所有的脊椎动物如哺乳动物和 非哺乳动物,例如羊,狗,,鸡,两栖动物和爬行动物。
“治疗”包括采用本发明的抗体组合物,化合物或试剂进行施 用以预防或延缓一种疾病的症状,并发症或生化指标的发作,减轻 症状或者阻止或抑制疾病,病症或紊乱(如癌症或转移癌症)的进 一步发展。治疗可以是预防性的(预防或延缓疾病的发作,或是预 防相关的临床或亚临床症状的显现)或是对疾病显现后的症状进行 治疗性抑制或减缓。
所用的细胞中Toll样受体的“抑制剂”“激活剂”和“调节剂” 分别指可通过Toll样受体结合或信号转导的体外和体内分析进行鉴 别的抑制,激活或调节分子,如配体,激动剂,拮抗剂以及它们的 同源物和类似物。
“调节剂”包括抑制剂和激活剂。抑制剂指结合,部分或完全 阻止激发,减少,防止,延缓激活,灭活,脱敏或下调Toll样受体 活性的试剂,如拮抗剂。激活剂指结合,刺激,增加,打开,激活, 促进,强化激活,致敏或上调Toll样受体活性的试剂,如激动剂。 调节剂可包括能够改变Toll样受体与下列对象相互作用的试剂:能 够与激活剂或抑制剂结合的蛋白,受体,包括蛋白,肽,脂质,糖, 多糖,或其结合,如脂蛋白,糖蛋白及类似物。调节剂包括天然存 在的Toll样受体配体经基因修饰(如改变了活性)的产物,以及天 然存在和合成的配体,拮抗剂,激动剂,小化学分子及类似物。对 抑制剂和激活剂“基于细胞的分析”包括如:对表达Toll样受体的 细胞采用推定的调节剂化合物然后如本处所述检测对Toll样受体信 号转导的功能性作用。“基于细胞的分析”包括但不限于,来自哺 乳动物对象的体内组织或细胞样本或是包含经潜在的激活剂,抑制 剂或调节剂处理的Toll样受体与未经抑制剂,激活剂或调节剂处理 的对照样本的体外基于细胞的分析以检测抑制的程度。可指定对照 样本(未经抑制剂处理)相对于Toll样受体活性值为100%。当Toll 样受体活性值为对照的约80%,任选50%或25-0%时便实现了Toll 样受体的抑制。当Toll样受体活性值高于对照110%,任选150%, 任选200-500%,或1000-3000%时便实现了Toll样受体的激活。
分子与Toll样受体结合的能力可通过如推定配体与免疫粘附涂 布于分析平板上的Toll样受体的结合能力进行确定。结合的特异性 可通过比较与非Toll样受体的结合进行检测。
“测试化合物”指任何作为Scd1或toll样受体2调节剂进行测 试的化合物。测试化合物可以是任何小有机分子,或生物实体,例 如蛋白质(例如抗体或肽)、糖、核酸(例如反义寡核苷、RNAi), 或核糖酶或脂质。另外,测试化合物可以是Scd1蛋白或toll样受体 2蛋白基因修饰的产物。典型地,测试化合物是小有机分子,肽, 脂质或脂质类似物。
在一个实施例中,结合至Toll样受体的抗体可以通过固定化配 体或受体进行分析。例如,该分析可包括将融合到His标签的Toll 样受体固定化至Ni激活的NTA树脂珠。抗体可溶于适当的缓冲液 中进行添加,随后将珠子在给定温度下培养一段时间。经过洗涤去 除未结合材料后,结合的蛋白可通过SDS,高pH缓冲液及类似物 等释放并进行分析。
“信号转导响应”指通过toll样受体如toll样受体2所进行的 信号转导。信号转导响应可以指依赖于由Toll样受体2(TLR2)和 Scd1形成的可传递信号的跨膜复合物的LPS响应等。TLR2信号直 接或间接地经MALP2诱导并提高Scd1表达。TLR2信号转导可在 巨噬细胞或皮脂腺细胞等细胞中发生。在基于细胞的分析中供检测 的信号生成化合物可通过与酶或荧光基团等结合生成。作为标记的 目标酶主要为水解酶,特别是磷酸酶,酯酶和糖苷酶,或是氧化酶, 特别是过氧化酶。荧光化合物包括荧光素及其衍生物,若丹明及其 衍生物,丹磺酰,伞形等。化学发光化合物包括虫荧光素以及2,3- 二氢酞嗪二酮,例如发光氨。
“检测一种测试化合物对toll样受体2信号转导的作用”可以 指对哺乳动物对象的治疗或预防作用,如该对象中疾病,疾病的症 状,或疾病的副作用的减弱,消除或预防。“检测一种测试化合物 对toll样受体2信号转导的作用”可以指在诊断分析等基于细胞的 分析中具有以MALP2对TLR2信号转导的刺激和Scd1基因表达的 上调所测量的作用的化合物。Scd1基因的功能缺失突变如Flake突 变损害了对化脓链球菌感染和金黄色葡萄球菌(可通过激活Toll样 受体2引发先天性免疫应答的革兰氏阳性病原体)引起的皮肤感染 的清除。Flake纯合体无法合成单不饱和脂肪酸(MUFA)棕榈油酸盐 (C16:1)和油酸盐(C18:1),后两者可杀灭革兰氏阳性(而非革兰 氏阴性)细菌。对金黄色葡萄球菌感染的小鼠进行皮内MUFA施用 可以提高细菌的清除率。
应当理解本发明不限于特定的方法,试剂,化合物,组合物或 生物系统,它们应当是可变的。还应当理解此处所用的术语仅为描 述特定实施例之目的,而非进行限定。除非另行明确指明,本说明 书和权利要求书所用的单数形式“一个”,“一种”和“该”包含了 复数对象。因此,如“一个细胞”包括了两个或多个细胞的组合或 类似物。
此处所用的术语“约”指一个如数量,时间期限等测量值可包含 相对特定数值±20%或±10%的变化量,该变化量优选±5%,更优选 ±1%,更优选±0.1%,因为这样的变化适于实施所披露的方法。
除非另行说明,此处所用的技术和科学术语的含义等同于本发 明所属领域普通技术人员的普遍理解。尽管其它与此处所述类似或 等同的方法和材料也可用于对本发明进行测试,但优选的材料和方 法已在此处描述。下列术语可用于描述和主张本发明。
作为SCD1基因表达或SCD1基因产物或TOLL样受体2的调 节剂的抗体
此处所述的抗体和其抗原结合片段特异地结合和/或激活toll 样受体2(TLR2)或特异地结合和/或激活Scd1基因表达或Scd1基因 产物,并可调节或激活对哺乳动物对象中革兰氏阳性细菌感染的先 天性免疫应答。
能够结合TLR2或Scd1基因产物的抗体可用作在细胞中通过 toll样受体2途径调节信号转导的化合物。例如,可参见Takeda and Akira,Cell Microbiol 5:143-153,2003。
在一些实施例中,抗体或其抗原结合片段可与由杂交瘤细胞系 产生的抗体选择性结合的抗原进行选择性地结合(例如,竞争性结 合或结合至同一表位,如构型或线性表位)。因此,该表位可以与 抗体结合的已知表位空间上相近或功能相关,如在线性序列或构型 空间中重叠或邻近的表位。潜在的表位可采用肽穿引程序进行计算 机鉴定,并使用本领域已知的方法进行验证,例如通过对抗体与toll 样受体2或Scd1基因产物的突变体或片段的结合(如toll样受体2 或Scd1基因产物的一个结构域的突变体或片段)进行分析。
此处所述的检测抗体序列的方法已为本领域所公知;例如,抗 体的序列可通过采用已知技术对来自杂交瘤细胞系的编码该抗体 的cDNA的分离和鉴定进行测定。cDNA的测序方法已为本领域所 公知。
此处所述的抗体通常具有至少一或两个重链可变区(VH),以及 至少一或两个轻链可变区(VL)。该VH和VL结构域可被进一步细分 为高可变结构域,即决定簇互补区(CDR),其中分布了高度保守的框 架区(FR)。这些结构域已被明确描述(参见Kabat等人,Sequences of Proteins of Immunological Interest,Fifth Edition,U.S.Department of Health and Human Services,NIH Publication No.91-3242,1991以及 Chothia等人,J.MoI.Biol.196:901-917,1987)。包含一个或多个框 架区的抗体或抗体片段也在本发明中使用。该种片段能够与toll样 受体2特异结合并在脂多糖诱导的细胞中调节或激活Scd1基因产 物活性,或者能够调节或激活对革兰氏阳性细菌的先天性免疫应 答。
此处所述的抗体可包括一个重和/或轻链恒定区(恒定区通常可 介导抗体和宿主组织或因子之间的结合,后者包括了免疫系统的效 应细胞以及经典补体系统中的第一成分(Clq)),并因此分别形成了 免疫球蛋白轻链和免疫球蛋白重链。例如该抗体可以为一个四聚物 (可用二硫键等进行连接的两个免疫球蛋白重链和两个免疫球蛋 白轻链)。该抗体可以仅包含重链恒定区的一部分(例如名为CH1, CH2和CH3的三个重链区中的一个),或轻链恒定区的一部分(例 如名为CL的结构域的一部分)。
本发明同样包含了抗原结合片段。该种片段可以是:(i)一种Fab 片段(即一种由VL,VH,CL和CHl结构域构成的单价片段);(ii)一 种F(ab′)2片段(即一种包含了在铰链区由二硫键连接的两个Fab片段 的二价片段);(iii)一种由VH和CHl结构域构成的Fd片段;(iv)一种 由抗体的单臂中的VL和VH结构域组成的FV片段,(v)一种由VH 结构域构成的dAb片段(Ward等人,Nature 341:544-546,1989); 和/或(vi)一种分离的决定簇互补区(CDR)。
抗体片段(包括前述抗原结合片段)可通过本领域公知的方法 如自动肽合成仪进行合成,或通过全长基因或基因片段进行表达, 例如可通过胃蛋白酶消化抗体分子得到的Scd1基因产物F(ab′)2片 段,可通过还原F(ab′)2片段的二硫键得到Fab片段。此外,还可以构 建Fab表达库(Huse等人,Science 246:1275-81,1989)对具有所需 特异性的单克隆Fab片段进行相对快速的鉴定。
其它抗体和抗体片段的制备方法已为本领域所公知。例如,尽 管Fv片段的两个结构域VL和VH由两个独立的基因编码,它们可 通过重组方法或合成接头以VL和VH结构域配对形成单价分子的单 蛋白链(被称为单链Fv(scFv);参见Bird等人,Science 242:423-426, 1988;Huston等人,Proc.Natl.Acad.Sci.USA 85:5879-5883,1988; Colcher等人,Ann.NY Acad.Sci.880:263-80,1999;and Reiter,Clin. Cancer Res.2:245-52,1996)。
制备单链抗体的技术已在U.S.Pat.No.4,946,778和4,704,692 得到了描述。该种单链抗体被包含在抗体的“抗原结合片段”这一 术语中。这些抗体片段可通过本领域普通人员所了解的传统技术获 得,且该片段可通过筛选完整抗体的方法进行筛选使用。此外,一 种单链抗体可以形成复合物或多聚体,从而成为对同一靶标蛋白的 不同表位均具有特异性的多价抗体。
此处所述的抗体及其部分可以是单克隆抗体,由单克隆抗体产 生,或可通过本领域所公知的合成方法得到。抗体可进行重组制备 (例如:通过噬菌体展示或组合方法进行制备,可参见U.S.Pat.No. 5,223,409;WO 92/18619;WO 91/17271;WO 92/20791;WO 92/15679; WO 93/01288;WO 92/01047;WO 92/09690;WO 90/02809;Fuchs等 人,Bio/Technology 9:1370-1372,1991;Hay等人,Human Antibody Hybridomas 3:81-85,1992;Huse et al,Science 246:1275-1281,1989; Griffiths等人,EMBO J.12:725-734,1993;Hawkins等人,J.MoI. Biol.226:889-896,1992;Clackson等人,Nature 352:624-628,1991; Gram等人,Proc.Natl.Acad.Sci.USA 89:3576-3580,1992;Garrad等 人,Bio/Technology 9:1373-1377,1991;Hoogenboom等人,Nucl Acids Res.19:4133-4137,1991;以及Barbas等人,Proc.Natl.Acad. Sci.USA 88:7978-7982,1991)。
举例来说,一种toll样受体2的抗体或Scd1基因产物的抗体可 通过采用TLR2多肽或Scd1多肽,或由TLR24或相应的Scd1基因 产物片段衍生(即具有其部分的序列)得到抗原肽片段,或表达 TLR2抗原或Scd1抗原或相应抗原片段的细胞对动物进行免疫处理 后制备。在一些实施例中,此处所述的抗体或其抗原结合片段可结 合至纯化的TLR2或Scd1基因产物。在一些实施例中,抗体或其抗 原结合片段可以结合至组织切片,全细胞(活细胞,溶解细胞或分 馏细胞)或膜组分中的TLR2或Scd1基因产物。抗体可在体外系统 中进行测试,例如可通过MALP-2对巨噬细胞的激活检测Scd1基 因表达或Scd1蛋白活性的调节,激活或抑制。
在使用从TLR2或Scd1基因产物衍生得到的抗原肽时,其通常 包括至少8个(如10,15,20,30,50,100或更多)TLR2或Scd1基 因产物的区域的连续氨基酸残基。在一些实施例中,该抗原肽将包 含TLR2或Scd1基因产物的所有区域。所产生的抗体将以其天然形 态(这样,具有线性或构型表位的抗体被包括在发明中),变性或 其它非天然形态,或同时以两种形态特异地结合至蛋白之一。可能 具有抗原性的肽可通过本领域公知的方法进行鉴别,例如基于计算 机的抗原性预测算法。有些时候构型表位可通过以自然形态,而非 变性形态与蛋白相结合的抗体的鉴别进行鉴定。
宿主动物(如兔子,小鼠,豚鼠或大鼠)可采用抗原进行免疫, 可选地,该抗原可与载体(即可以稳定或以其它方式提高相连分子 免疫原性的物质)相连接,并且可选地可以与佐剂一起施用(例如, 参见Ausubel等人,supra)示例性的载体包括匙孔血蓝蛋白(KLH), 示例性的佐剂(通常根据宿主动物的种类进行选择)包括弗氏佐剂 (完全或不完全),辅助矿物凝胶(如氢氧化),表面活性物质如 溶血卵磷脂,多元醇,聚阴离子,肽,油乳剂,二硝基酚,BCG(卡 介苗)以及短小棒状杆菌。KLH有时也指一种佐剂。宿主中产生的 抗体可通过亲和层析等方法进行纯化,该方法中多肽抗原或其片段 被固定在树脂上。
包含在抗原肽中的表位通常位于蛋白的表面(例如亲水区域), 或在具有高度抗原性的区域(例如由于含有多个带电残基而被首先 选择的区域)。一种对人蛋白序列的Emini表面概率分析可被用于 指示具有极高概率被定位于蛋白表面的结构域。
抗体可以为完全的人抗体(例如,由经过基因工程改造的小鼠 或其它哺乳动物所制备的来源于人免疫球蛋白序列的抗体,该免疫 球蛋白序列可以来自人免疫球蛋白基因(κ,λ,α(IgA1和IgA2),γ (IgG1,IgG2,IgG3,IgG4),δ,ξ以及μ恒定区基因或各种免疫球蛋白可 变区基因)。此外,抗体还可以是非人抗体(例如,啮齿动物(如 小鼠或大鼠),羊,兔子或非人类灵长动物(如猴子)的抗体)。
人单克隆抗体可由携带人而非小鼠的免疫球蛋白基因的转基 因小鼠生成。由这些小鼠(使用目标抗原进行免疫后)获得的脾 细胞可被用于制备能够分泌对人蛋白的表位具有特异亲和性的人 mAbs的杂交瘤(例如,参见WO 91/00906,WO 91/10741;WO 92/03918;WO 92/03917;Lonberg等人,Nature 368:856-859,1994; Green等人,Nature Genet.7:13-21,1994;Morrison等人,Proc.Natl. Acad.Sci.USA 81:6851-6855,1994;Bruggeman等人,Immunol.7: 33-40,1993;Tuaillon等人,Proc.Natl.Acad.Sci.USA 90:3720-3724, 1993;以及Bruggeman等人,Eur.J.Immunol.21:1323-1326,1991)。
抗TLR2抗体或抗Scd1抗体可以是一种其可变区或其部分(如 CDR)由非人类有机体(如大鼠或小鼠)生成的抗体。因此,本发 明包含了嵌合的,CDR嫁接的,人源化抗体以及由非人类有机体生 成并随后经修饰(例如,在可变框架或恒定区)以降低在人体内的 抗原性的抗体。嵌合抗体(即不同的部分衍生自不同的动物种属(如 鼠mAb的可变区和人免疫球蛋白的恒定区)的抗体)可通过本领 域已知的重组技术制备。例如,可采用限制性内切酶消化编码鼠(或 其它种属)单克隆抗体分子Fc恒定区的基因以去除编码鼠Fc的基 因,然后以编码人Fc恒定区的基因的等效部分进行取代(例如,参 见欧洲专利申请,申请号125,023;184,187;171,496以及173,494;还 可参见WO 86/01533;U.S.Pat.No.4,816,567;Better等人,Science 240:1041-1043,1988;Liu等人,Proc.Natl.Acad.Sci.USA 84: 3439-3443,1987;Liu等人,J.Immunol.139:3521-3526,1987;Sun等 人,Proc.Natl.Acad.Sci.USA 84:214-218,1987;Nishimura等人, Cancer Res.47:999-1005,1987;Wood等人,Nature 314:446-449, 1985;Shaw等人,J.Natl.Cancer Inst.80:1553-1559,1988;Morrison 等人,Proc.Natl.Acad.Sci.USA 81:6851,1984;Neuberger等人, Nature 312:604,1984;and Takeda等人,Nature 314:452,1984)。
在人源化或CDR嫁接的抗体中,至少一或两个,通常所有三 个(免疫球蛋白重或轻链的)受体CDRs会被供体CDR所替代(例 如,参见U.S.Pat.No.5,225,539;Jones等人,Nature 321:552-525, 1986;Verhoeyan等人,Science 239:1534,1988;以及Beidler等人,J. Immunol.141:4053-4060,1988)。人们仅需要替换将人源化抗体结 合至toll样受体2,Scd1基因或Scd1基因产物所需的CDRs的数量。 该供体可以是一种啮齿动物的抗体,该受体可以是一种人框架或人 共有框架。通常提供CDRs的免疫球蛋白被称为“供体”(并通常 来自于啮齿动物),而提供框架的免疫球蛋白被成为“受体”。该受 体框架可以是一种天然存在(例如,人)的框架,一种共有框架或 序列,或至少与此具有85%(如90%,95%,99%)一致性的序列。 “共有序列”是由一个相关序列族中最频繁出现的氨基酸(或核苷 酸)构成的序列(例如,参见Winnaker,From Genes to Clones, Verlagsgesellschaft,Weinheim,Germany,1987)。共有序列中的每一 个位点均由该族中相同位点上最常出现的氨基酸残基所占据(当两 个氨基酸残基以相同频率出现时,可包括其中任意一个)。“共有 框架”指共有免疫球蛋白序列中的框架区域。对toll样受体2,Scd1 基因或Scd1基因产物的人源化抗体可在其特定氨基酸残基被替代, 去除或增加(例如在框架区域以增加抗原结合)的情况下进行制备。 例如,一个人源化抗体将具有与供体的框架残基或是受体的氨基酸 而非受体框架残基相同的框架残基。欲生成该种抗体,少量经选择 的人源化免疫球蛋白链的受体框架残基被相应的供体氨基酸所替 代。该替代可以发生在CDR附近或在与CDR相互作用的区域(U.S. Pat.No.5,585,089,特别参见12-16行)。其它对人源化抗体的技术 的描述参见EP 519596A1。
对toll样受体2或Scd1基因产物的抗体可采用如上所述的方法 或本领域所公知的其它方法进行人源化。例如,可将不直接参与抗 原结合的Fv可变区替换为人Fv可变区的等同序列以生成人源化抗 体。生成人源化抗体的常规方法参见Morrison,Science 229:1202- 1207,1985;Oi等人,BioTechniques 4:214,1986,以及Queen等人 (U.S.Pat.Nos.5,585,089;5,693,761以及5,693,762).这些方法所需 的核酸序列可由杂交瘤获得,该杂交瘤可制备具有所需性质(如能 够通过MALP-2激活的巨噬细胞检测Scd1基因表达或Scd1蛋白活 性的调节,激活或抑制)的TLR2或Scd1或其片段的抗体。编码人 源化抗体或其片段的重组DNA可随后被克隆进入合适的表达载 体。
在某些实施例中,抗体具有效应器功能并能固定补体,而在其 它实施例中它既不能募集效应细胞也不能固定补体。该抗体还可微 弱地结合Fc受体或者不结合。例如,它可以是不能结合Fc受体的 同型或亚型,或是一种片段或其它突变体(例如,该抗体可能在Fc 受体结合区域产生突变(如缺失))。Fc区域缺失的抗体通常无法固 定补体,因而引起与之结合的细胞死亡的可能性也更小。
在其它实施例中,抗体可被偶联至外源物质,如治疗剂(如抗 生素),或是一种可检测的标记。可检测的标记可包括酶(如辣根 过氧化酶,性磷酸酶,beta-半乳糖苷酶或是乙酰胆碱酯酶),辅 基(如抗生蛋白链菌素-生物素和亲和素-生物素),或荧光的,发 光的,生物发光的或是放射性的材料(如伞形酮,荧光素,异硫氰 酸萤光素,若丹明,二氯三嗪野芝麻碱荧光素,丹磺酰氯或藻红素 (非荧光性),发光氨(具发光性),荧光素酶,虫荧光素以及水母 发光蛋白(具生物发光性),以及99mTc,188Re,111In,125I,131I,35S或 者3H(具有放射性))。
此处所述的抗体(如单克隆抗体)还可以用于分离toll样受体 2或Scd1蛋白或其片段,如有关通过MALP-2激活巨噬细胞(如通 过亲和层析或免疫沉淀反应)调节,激活或抑制Scd1基因表达或 Scd1蛋白活性的片段,或可以在细胞溶解物或上清液中(通过 Western印迹,酶联免疫吸附法(ELISAs),放射免疫分析及其它方法) 或组织切片中对其进行检测。这些方法支持了对特定蛋白表达的丰 度和模式的测定。这些信息在进行诊断时或在评估临床试验或治疗 的功效时将非常有用。
本发明还包括了编码上述抗体的核酸以及包含了该核酸的载 体和细胞(例如,哺乳动物细胞如CHO细胞或淋巴细胞)(例如, 以编码能特异结合至toll样受体2或Scd1蛋白的抗体的核酸进行转 化的细胞)。同样地,本发明包括了可制备本发明抗体的细胞系(如 杂交瘤)以及制备这些细胞系的方法。
对SCD1多肽或TOLL样受体2多肽及其调节剂的免疫学检测
除了采用核酸杂交技术对Scd1基因或toll样受体2基因及基因 表达进行检测外,人们还可以采用免疫测定来检测Scd1或toll样受 体2蛋白。这种测定对于筛选Scd1或toll样受体2的调节剂,以及 对于治疗和诊断应用都非常有用。免疫测定可用于定性或定量分析 Scd1蛋白或toll样受体2蛋白。对适用技术的综述可参见Harlow& Lane,Antibodies:A Laboratory Manual,1988。
A.抗体的制备
能与Scd1蛋白或toll样受体2蛋白进行特异性反应的多克隆和 单克隆抗体的制备方法已为本领域技术人员所公知(例如,参见 Coligan,Current Protocols in Immunology,1991;Harlow&Lane, supra;Goding,Monoclonal Antibodies:Principles and Practice,2d ed. 1986;以及Kohler等人,Nature 256:495-497,1975.该类技术包括从 噬菌体或类似载体的重组抗体库中选择抗体进行抗体制备,以及通 过免疫兔子或小鼠制备多克隆和单克隆抗体(例如,参见Huse等 人,Science 246:1275-1281,1989;Ward等人,Nature 341:544-546, 1989)。
一系列包含了Scd1蛋白或toll样受体2蛋白的部分的免疫原可 被用于制备与Scd1蛋白或toll样受体2蛋白特异性反应的抗体。例 如,重组Scd1蛋白或toll样受体2蛋白或其抗原片段可参照此处所 述进行分离。重组蛋白可参照如上所述在真核或原核细胞中表达, 并参照上文的常规描述进行纯化。重组蛋白是单克隆或多克隆抗体 制备的优选免疫原。此外,一种衍生自此处披露的序列且与载体蛋 白结合的合成肽可被用作免疫原。不管是纯化还是不纯形态的天然 蛋白也可被采用。随后该产物被注射入能够生产该抗体的动物体 内。单克隆或多克隆抗体均会被生成,以供检测蛋白的免疫测定中 使用。
多克隆抗体的方法的制备方法已为本领域技术人员所公知。用 该蛋白采用标准佐剂(如弗氏佐剂)以及标准免疫方案对近交系小 鼠(如BALB/C小鼠)或兔子进行免疫。动物对免疫原制备物的免 疫应答可以通过采集血样并测定对beta亚基的反应滴度来进行监 测。当得到对免疫原的适当高滴度的抗体时,收集动物血液并制备 抗血清。如需要可对抗血清进行进一步分离以富集对蛋白具有反应 性的抗体(参见Harlow&Lane,supra)。
单克隆抗体可通过本领域技术人员所熟知的不同技术获取。简 单而言,从采用所需抗原进行免疫的动物取得的脾细胞一般通过与 骨髓瘤细胞融合进行永生化(参加Kohler等人,Eur.J.Immunol.6: 511-519,1976)。其它永生化方法包括采用Epstein Barr病毒,致癌 基因或逆转录酶病毒进行转化,或采用其它为本领域熟知的方法。 从单独的永生化的细胞中筛选得到克隆可制备对该抗原具有所需 特异性和亲和性的抗体,且该细胞制备单克隆抗体的产量可通过多 种技术进行提高,包括注射进入脊椎动物宿主的腹腔。此外,人 们还可以参照Huse等人,Science 246:1275-1281,1989中概述的常 规方案对人类B细胞的DNA库进行筛选以分离编码单克隆抗体或 其结合片段的DNA序列。
收集单克隆抗体和多克隆血清并在免疫测定(如用固定在固相 支持物上的免疫原进行的固相免疫测定)中对免疫原蛋白进行滴 定。通常选择滴度为104或更高的多克隆抗血清并采用竞争性结合 免疫测定测试其对非Scd1或toll样受体2蛋白的交叉反应性。特异 性的多克隆抗血清和单克隆抗体将通常与至少约0.1mM的Kd结 合,更常见时至少为约1μM,更优选至少为约0.1μM或更多,最 优选0.01μM或更多。仅对特定Scd1直系同源物或toll样受体2的 直系同源物(例如人Scd1蛋白或人toll样受体2)具有特异性的抗 体也可以通过从一个种属如非人类哺乳动物减去其它交叉反应直 系同源物进行制备。通过这一方法可获取仅结合Scd1或toll样受体 2的抗体。
一旦得到针对Scd1蛋白或toll样受体2蛋白的特异性抗体后, 该蛋白可采用各种免疫测定方法进行检测。此外,该抗体可作为 Scd1基因产物或toll样受体2的调节剂实现治疗用途。有关免疫学 及免疫测定程序可参见Basic and Clinical Immunology(Stites&Terr eds.,7th ed.1991)。此外,本发明的免疫测定可通过多种构型中的任 意一种进行,这些构型已得到详尽的综述,见Enzyme Immunoassay (Maggio,ed.,1980)以及Harlow&Lane,supra。
B.免疫学结合测定
Scd1蛋白或toll样受体2蛋白可通过一系列被广泛接受的免疫 结合测定中的任何一种进行检测和/或定量(例如,参见U.S.Patents 4,366,241;4,376,110;4,517,288以及4,837,168)。有关常规免疫测 定的综述,也可参见Methods in Cell Biology:Antibodies in Cell Biology,volume 37(Asai,ed.1993);Basic and Clinical Immunology (Stites&Terr,eds.,7th ed.1991)。免疫学结合测定(或免疫测定)通 常采用一种能特异地与目标蛋白或抗原(在本发明中为Scd 1蛋白 或toll样受体2蛋白或其抗原性子序列)结合的抗体。该抗体(例 如抗Scd1基因产物或抗toll样受体2)可采用如上所述的本领域技 术人员所熟知的一系列方法中的任意一种进行制备。
免疫测定中经常采用一种标记试剂特异性地结合并标记抗体 和抗原形成的复合物。标记试剂本身可以包含抗体/抗原复合物的部 分之一。因此,标记试剂可以是标记Scd1基因产物或标记toll样受 体2。此外,标记试剂还可以是第三部分,如能够特异地结合抗体 /Scd1基因产物或抗体/toll样受体2复合物的第二抗体(第二抗体通 常特异性地针对可衍生得到第一抗体的种类的抗体)。其它能够特 异性地结合免疫球蛋白恒定区的蛋白,如蛋白A或蛋白G也可以 用作标记试剂。这些蛋白表现出了对来自各个种类的免疫球蛋白恒 定区的强非免疫原反应性(例如,参见Kronval等人,J.Immunol.111: 1401-1406,1973;Akerstrom等人,J.Immunol.135:2589-2542, 1985)。标记试剂可使用一种可检测部分(如生物素)进行修饰, 该成分可被链霉亲和素等分子特异性结合。各种可检测部分已为本 领域技术人员所熟知。
在整个测定过程中,每一次试剂合并后均可能要求采取培养和 /或洗涤步骤。培养步骤可持续5秒钟到几小时不等,可选择约5 分钟至约24小时。然而,培养的时间将取决于测定的形式,抗原, 溶液体积,浓度等因素。尽管测定可在一定温度范围下进行(如10 ℃至40℃),其通常在室温下进行。
非竞争性测定形式:检测样本中Scd1基因产物或toll样受体2 的免疫测定可以是竞争性或非竞争性的。非竞争性免疫测定是一种 直接检测抗原数量的测定。例如,如果人们选择“三明治”测定, 抗Scd1基因产物或抗toll样受体2抗体可直接结合至固相底物上进 行固定化。这些固定化的抗体可以捕获测试样本中的Scd1基因产 物或toll样受体2。Scd1蛋白或toll样受体2蛋白从而被固定化并 被标记试剂(如携带标记物的Scd1基因产物的第二抗体或toll样受 体2的抗体)结合。备选地,第二抗体可缺失标记,但可被标记的 第三抗体结合,该第三抗体特异性地针对可衍生得到第二抗体的种 类的抗体。该第二或第三抗体通常可使用一种可检测部分(如生物 素)进行修饰,该成分可被链霉亲和素等分子特异性结合以提供可 检测部分。
竞争性测定形式:在竞争性测定中,样本中Scd1蛋白或toll 样受体2蛋白的数量可通过检测抗Scd1蛋白或抗toll样受体2抗体 上被样本中未知的Scd1蛋白或toll样受体2蛋白替换(竞争走)的 已知的添加(外源性)Scd1蛋白或toll样受体2蛋白的数量。在一 个竞争性测定中,已知数量的Scd1蛋白或toll样受体2蛋白被加入 样本,随后将该样本与能够特异结合Scd1蛋白或toll样受体2蛋白 的抗体结合。与抗体结合的外源Scd1蛋白或toll样受体2蛋白数量 与样本中的Scd1蛋白或toll样受体2蛋白浓度成反比。在一个特定 优选实施例中,该抗体被固定在固相底物上。与抗体结合的Scd1 蛋白或toll样受体2蛋白数量可通过测量Scd1蛋白/抗体复合物或 toll样受体2蛋白/抗体复合物中的Scd1基因产物或toll样受体2的 数量得到,或是通过检测残留的未复合蛋白的数量得到。可通过提 供标记Scd1蛋白分子或toll样受体2分子对Scd1蛋白或toll样受 体2蛋白的数量进行测定。
半抗原抑制测定是另一种优选的竞争性测定。在该测定中已知 Scd1蛋白或toll样受体2蛋白被固定在一种固相底物上。将已知数 量的抗Scd1抗体或抗toll样受体2抗体添加至样本,然后将样本与 固定化Scd1基因产物或toll样受体2接触。与已知的固定化Scd1 基因产物或toll样受体2结合的抗Scd1抗体或抗toll样受体2抗体 的数量与样本中的Scd1蛋白或toll样受体2蛋白数量成反比。此外, 固定化抗体的数量还可通过检测抗体的固定化部分或是其残留在 溶液中的部分进行检测。该检测可在抗体被标记时直接进行,也可 按上文所述通过后续添加能与抗体特异性结合的标记部分间接进 行。
交叉反应性测定:竞争性结合形式的免疫测定也可用于交叉反 应性测定。例如,可将Scd1蛋白或toll样受体2蛋白固定在一种固 相支持物上。将能够与固定化抗原竞争竞争结合抗血清的蛋白(例 如,Scd1基因产物或toll样受体2及同源物)添加至测定中。添加 的蛋白与固定化蛋白竞争结合抗血清的能力被用来与Scd1蛋白或 toll样受体2蛋白与其自身的竞争能力进行比较。采用标准算法计 算上述蛋白的交叉反应性百分比。选择并汇集对上述列举的每一种 添加蛋白的交叉反应性小于10%的抗血清。使用添加的经考虑的蛋 白(如远缘同源物)进行免疫吸附,选择性地从汇集的抗血清中去 除交叉反应抗体。
将该免疫吸附并汇集的抗血清用于如上所述的竞争性结合免 疫测定中,以对被认为可能是Scd1蛋白或toll样受体2蛋白的等位 基因或多形态变体的第二蛋白与免疫原蛋白进行比较。为了进行该 比较,两种蛋白在测定中均采用了较大的浓度范围,并对各蛋白抑 制抗血清和固定化蛋白50%的结合时所需的浓度进行了测定。如果 抑制50%结合所需的第二蛋白的数量少于抑制50%结合所需的 Scd1蛋白或toll样受体2蛋白的数量的10倍,则第二蛋白被认为 可以与针对Scd1基因产物或toll样受体2免疫原的多克隆抗体进行 特异性结合。
其它测定形式:Western印迹(免疫印迹)分析可用于对样本 中存在的Scd1蛋白或toll样受体2蛋白进行检测和定量。该技术通 常包括通过凝胶电泳根据分子量分离样本蛋白,将分离蛋白转入合 适的固相支持物(如硝化纤维过滤器,尼龙过滤器或衍生尼龙过滤 器),然后将样本与能够特异结合Scd1蛋白或toll样受体2蛋白的 抗体进行培养。将抗Scd1蛋白抗体或抗toll样受体2抗体特异地结 合至固相支持物上的Scd1基因产物或toll样受体2。这些抗体可进 行直接标记,或采用能够特异性结合抗Scd1蛋白抗体或抗toll样受 体2抗体的标记抗体(例如标记羊抗小鼠抗体)进行后续检测。
其它测试形式包括脂质体免疫测定(LIA),该测试采用设计的与 特定分子(如抗体)结合并释放被封装的试剂或标记物的脂质体。 然后参照标准技术测定释放的化学物质(参见Monroe等人,Amer. CHn.Prod.Rev.5:34-41,1986)。
非特异性结合的减少:本领域的技术人员均可理解在免疫测定 中经常需要最小化非特异性结合。特别当测定包含了固定在固相底 物上的抗原或抗体时,需要最小化对底物的非特异性结合的数量。 减少该种非特异性结合的方法已为本领域技术人员所熟知。通常该 技术包括采用蛋白质类组合物对底物进行包被。蛋白组合物如牛血 清白蛋白(BSA),脱脂奶粉以及白明胶得到了特别广泛的应用,其 中特别优选奶粉。
标记:只要不通过与本测定中所用的抗体特异性结合形成明显 的干扰,本测定所用的特定标记或可检测基团不构成本发明的重要 方面。可检测基团可以是任何具有可检测物理或化学属性的材料。 这类可检测标记在免疫测定领域已得到了很好的发展,并且一般来 说大部分可在该方法中使用的标记都可用于本发明。因此,标记是 指任何可通过分光的,光化学的,生物化学的,免疫化学的,电子 的,光学的或是化学的手段进行测定的组合物。可用于本发明的标 记包括磁珠(如DYNABEADSTM),荧光染料(如异硫氰酸萤光素, 德州红,若丹明等),放射性标记(例如3H,125I,35S,14C或32P),酶 (例如辣根过氧化酶,碱性磷酸酶以及其它ELISA中常用的酶), 化学发光标记,以及比色标记如胶体金或有色玻璃或塑料珠(例如 聚苯乙烯,聚丙烯,乳胶等)。
该标记可参照本领域所熟知的方法直接或间接地偶联至测定 中所需的成分。如上文所示,可供采用的标记种类繁多,而标记的 选择取决于所需的灵敏度,与化合物结合的容易程度,所需的稳定 性,现有的仪器以及处理的规定。
无放射性的标记常通过间接的方法进行附着。通常配体分子 (如生物素)与该分子间为共价结合。然后将配体结合至另一分子 (如链霉亲和素分子),该分子既可以是天然可检测的,也可以共 价结合至一个信号系统,例如一种可检测的酶,荧光化合物或化学 发光化合物。该配体及其靶标可用于与能够识别Scd1蛋白或toll 样受体2蛋白的抗体,或是能够识别抗Scd1蛋白抗体或抗toll样受 体2抗体的第二抗体进行适当的组合。
该分子也可与信号生成化合物直接结合,例如与酶或荧光团进 行结合。作为标记的目标酶主要为水解酶,特别是磷酸酶,酯酶和 糖苷酶,或是氧化酶,特别是过氧化酶。荧光化合物包括荧光素及 其衍生物,若丹明及其衍生物,丹磺酰,伞形酮等。化学发光化合 物包括虫荧光素以及2,3-二氢酞嗪二酮,例如发光氨。对各种可供 采用的标记或信号生成系统的综述参见U.S.Patent No.4,391,904。
检测标记的方法已为本领域技术人员所熟知。因此,例如当该 标记为一种放射性标记时,检测的方法包括闪烁计数器或自动射线 摄影的摄影软片。当该标记为一种荧光标记时,它可以通过以合适 波长光激发荧光染料并测定所得的荧光进行检测。该荧光可通过 使用电荷耦合器件(CCDs)等电子检测器或是光电倍增器等类似 仪器进行直观检测。类似地,酶标记的检测可通过提供合适的该酶 的底物后检测所得的反应产物。最后简单的比色标记可以简单地通 过观察与标记关联的色彩进行检测。因此,在各种试纸测定中,共 轭金常显粉红色,而各种共轭珠则显示珠子的颜色
一些测定形式不要求使用标记的成分。例如,凝集测定可用于 检测目标抗体的存在。在该测定中,包被了抗原的颗粒被包含了目 标抗体的样本所凝集。在该形式中,所有的成分均无需标记,目标 抗体的存在可通过简单的视觉观察进行检测。
对SCD1基因产物或TOLL样受体2的调节剂的高通量测定
作为Scd1基因产物或toll样受体2调节剂进行测试的化合物可 以是任意的小有机分子,或生物实体,如蛋白(例如抗体或肽), 糖,核酸(例如反义寡核苷酸,RNAi)或核酶,或脂质。另外,调 节剂可以是Scd1蛋白或toll样受体2蛋白基因修饰的产物。典型地, 测试化合物是小有机分子,肽,脂质或脂质类似物。
尽管多数情况下会使用能够溶解于水溶液或有机(特别是基于 DMSO的)溶液的化合物,本质上任何化合物都可用作本发明的测 定中的潜在调节剂或配体。该测定可通过使测定步骤自动化并将任 何来源方便的化合物进行测定以筛选大型化学库,该测定通常平行 进行(例如,在机器人测定中的微量滴定板上通过微量滴定形式)。 应当意识到化合物的供应商为数众多,其中包括Sigma(St.Louis, MO),Aldrich(St.Louis,MO),Sigma-Aldrich(St.Louis,MO), Fluka Chemika-Biochemica Analytika(Buchs Switzerland)等等。
在一个优选实施例中,高通量筛选法包括提供一种包含了大量 潜在治疗性化合物(潜在调节剂或配体化合物)的组合小有机分子 或肽库。然后参照此处所述在一个或多个测定中筛选该“组合化学 库”或“配体库”以鉴定显示所需特征活性的库成员(特别是化学 物种或亚类)。由此鉴定的化合物可用作传统的“先导化合物”或 其自身可用作潜在或实际的治疗剂。
组合化学库是通过合并一定量的化学“砌”如试剂所获取的 (不管是化学合成还是生物合成得到的)各类化合物的集合。例如, 一个线性组合化学库如多肽库可通过以各种可能的途径在给定的 化合物长度(即在一个多肽化合物中氨基酸的数量)下组合一批化 合物砌块(氨基酸)形成。通过该种化学砌块的组合混合可以合成 得到成千上万的化合物。
组合化学库的制备和筛选已为本领域技术人员所熟知。该组合 化学库包括,但不限于,肽库(例如,参见U.S.Patent 5,010,175,Furka, Int.J.Pept.Prot.Res.37:487-493,1991and Houghton等人,Nature 354:84-88,1991)。其它能够产生化学多样库的化学物质可被采用。 该类化学物质包括,但不限于:类肽(例如PCT公开号WO 91/19735),编码肽类(例如PCT公开号WO 93/20242),随机生物 低聚体(例如PCT公开号WO 92/00091),苯(并)二氮类(例如U.S. Pat.No.5,288,514),乙内酰脲类,苯(并)二氮类以及二肽类 (diversomers)(Hobbs等人,Proc.Nat.Acad.Sci.USA 90:6909-6913, 1993),vinylogous多肽(Hagihara等人,J.Amer.Chem.Soc.114: 6568,1992),带有葡萄糖支架的非肽类肽类似物(Hirschmann等人, J.Amer.Chem.Soc.114:9217-9218,1992),小化合物库的有机合成 类似物(Chen等人,J.Amer.Chem.Soc.116:2661,1994),低聚氨基 甲酸酯(Cho等人,Science 261:1303,1993),和/或肽基磷酸酯 (Campbell等人,J.Org.Chem.59:658,1994),核酸库(参见Ausubel, Berger and Sambrook,all supra),肽核酸库(例如,参见U.S.Patent 5,539,083),抗体库(例如,参见Vaughn等人,Nature Biotechnology, 14:309-314,1996以及PCT/US96/10287),糖库(例如,参见Liang 等人,Science 274:1520-1522,1996以及U.S.Patent 5,593,853),小 有机分子库(例如,参见苯(并)二氮类Baum C&EN,Jan 18,page 33 (1993);异戊烯类,U.S.Patent 5,569,588;噻唑啉酮类及间噻嗪酮类, U.S.Patent 5,549,974;吡咯烷类,U.S.Patents 5,525,735以及 5,519,134;吗啉化合物,U.S.Patent 5,506,337;苯(并)二氮类 5,288,514等等)。
用于制备组合库的仪器已在市场上销售(例如,参见357MPS, 390MPS,Advanced Chem Tech,Louisville KY,Symphony,Rainin, Woburn,MA,433A Applied B iosystems,Foster City,CA,9050Plus, Millipore,Bedford,MA)。此外,许多组合库本身也已经进入市场 (例如,参见ComGenex,Princeton,N.J.,Asinex,Moscow,Ru,Tripos, Inc.,St.Louis,MO,ChemStar,Ltd,Moscow,RU,3D Pharmaceuticals, Exton,PA,Martek Biosciences,Columbia,MD等)
候选化合物可作为鉴定能够治疗紊乱的药物的策略的一部分, 其中所述紊乱涉及由MALP-2通过toll样受体2/Scd1交互作用途径 对巨噬细胞的诱导。与TLR2或Scd1结合的测试化合物被认为是候 选化合物。
本发明中还包括了鉴定能与TLR2或Scd1结合,或能调节TLR2 或Scd1蛋白或多肽或其生物活性部分的活性的候选或测试化合物 的筛选测定。测试化合物的获取可采用本领域已知多种组合库方法 中的任意一种,其包括但不限于:生物库;空间可寻址并行固相或 液相库;要求重叠合法的合成库法;“一珠一化合物”库法;以及 采用亲和层析选择的合成库法。生物库法可用于肽库等,而其它四 种方法适用于肽,非肽低聚物或化合物的小化学分子库(Lam, Anticancer Drug Des.12:145,1997)。本领域中已有小分子库合成方 法的示例,例如:De Witt等人,Proc.Natl.Acad.Sci.U.S.A.90:6909, 1993;Erb等人,Proc.Natl.Acad.Sci.USA 91:11422,1994; Zuckermann等人,J.Med.Chem.37:2678,1994;Cho等人,Science 261:1303,1993;Carrell等人,Angew.Chem.Int.Ed.Engl.33:2059, 1994;Carrell等人,Angew.Chem.Int.Ed.Engl.33:2061,1994;以及 Gallop等人,J.Med.Chem.37:1233,1994。在一些实施例中,测试 化合物为TLR2或Scd1的激活变体。
化合物库可存在于溶液中(例如Houghten,Bio/Techniques 13: 412-421,1992),或是在珠上(Lam,Nature 354:82-84,1991),芯片 上(Fodor,Nature 364:555-556,1993),细菌中(U.S.Pat.No. 5,223,409),孢子中(U.S.Pat.Nos.5,571,698,5,403,484,以及 5,223,409),质粒中(Cull等人,Proc.Natl.Acad.Sci.USA 89: 1865-1869,1992)或在噬菌体上(Scott等人,Science 249:386-390, 1990;Devlin,Science 249:404-406,1990;Cwirla等人,Proc.Natl Acad.Sci.USA.S7:6378-6382,1990;以及Felici,J.Mol Biol.222: 301-310,1991)。
测试化合物调节TLR2或Scd1或其生物活性部分的能力可进行 测定,例如,可通过监测在测试化合物存在时形成TLR2/Scd1复合 物的能力进行测定。对TLR2或Scd1或其生物活性部分活性的调节 可通过测量MALP-2通过包含了toll样受体2/Scd1交互作用的途径 对巨噬细胞的诱导进行测定。测试化合物调节toll样受体2或Scd1 或其生物活性部分活性的能力也可以通过监测toll样受体2结合 Scd1的能力进行检测。该结合测定可以基于细胞或在无细胞状态下 进行。
toll样受体2蛋白与Scd1结合或交互作用的能力可通过此处所 述或本领域公知的测定直接结合的方法之一进行测定。在一个实施 例中,toll样受体2蛋白与Scd1结合或交互作用的能力可通过监测 MALP-2对巨噬细胞的诱导进行检测。MALP-2对巨噬细胞诱导的 检测可包括对同时编码FLAG序列或荧光素酶等可检测标记的重组 Scd1的表达的检测。该测定可附加于直接结合的测定。总体而言, 该测定被用于检测测试化合物影响toll样受体2蛋白结合Scd1或 toll样受体2激活Scd1蛋白或基因表达的能力。
总体而言,测试化合物结合Scd1,通过toll样式受体2干扰信 号转导,或是影响MALP-2诱导巨噬细胞的能力被用来与对照进行 比较,其中对照中的结合或MALP-2对巨噬细胞的诱导均在无测试 化合物的情况下测定。在一些情况下会采用预定参考值。该参考值 可相对对照进行测定,其中一种与参考不同的测试样本将对化合物 结合目标分子(例如toll样受体2)或调节表达(例如,调节,激 活或抑制细胞中MALP-2所诱导的巨噬细胞,或者调节,激活或抑 制响应革兰氏阳性细菌感染的巨噬细胞)进行指示。当用一个标准 (例如,抗体对toll样受体2的亲和性,或对MALP-2诱导的Scd 1 表达的调节)观察时,参考值同样能够反映结合或MALP-2诱导巨 噬细胞的数量。在这一情况下,测试化合物与参考类似(例如,等 于或少于)时将显示该化合物是一种候选化合物(例如,与toll样 受体2结合的程度等于或大于参考抗体)。
本发明进一步涉及通过上述筛选测定鉴别得到的新型试剂及 其在此处所述的治疗中的用途。
在一个实施例中本发明提供了使用天然或重组的Scd1基因产 物或toll样受体2蛋白,或表达Scd1基因产物或toll样受体2蛋白 的细胞或组织所进行的可溶性测定。在另一实施例中,本发明提供 了高通量形式的基于固相的体外测定,其中Scd1基因产物或toll 样受体2蛋白或其配体通过共价或非共价作用连接至固相底物。此 处所述的任一种测定均可用于高通量筛选。
在本发明的高通量测定中,不管是可溶性还是固相测定,均有 可能在一天内筛选数千种不同的调节剂或配体。本方法可被用于体 外Scd1基因产物或toll样受体2蛋白,或用于包含Scd1基因产物 或toll样受体2蛋白的基于细胞或基于膜的测定。特别地,微量滴 定板上的每一个孔均可用于对所选潜在调节剂进行一次独立的测 定,或在对浓度或培养时间作用进行观察时每5-10个孔可测试一个 单独的调节剂。因此,一个单独的标准微量滴定板可以测定约100 (例如96)个调节剂。如果采用一块1536孔板,则一块单独的板 便可容易地测定约100至约1500个不同的化合物。一天内可进行 多块板的测定;采用本发明的集成系统每天可以进行约6,000, 20,000,50,000或超过100,000个不同化合物的测定筛选。
在固相反应中,目标蛋白或其片段(例如胞外区),或包含了 作为融和蛋白一部分的目标蛋白或其片段的细胞或膜可直接或间 接地通过共价或非共价连接(例如,通过标签)结合至固相组分。 该标签可以是任意种类的组分。总体而言,先将一种可与标签结合 的分子(标签结合剂)固定至固相支持物,然后将带标签的目标分 子通过标签与标签结合剂的相互作用附着在固相支持物上。
根据文献中对已知分子间反应的详细描述,有多种标签和标签 结合剂可供使用。例如,当一种标签具有天然的结合剂(如生物素, 蛋白A或蛋白G)时,它可被用于与适当的标签结合剂(抗生物素 蛋白,链霉亲和素,中和亲和素,免疫球蛋白的Fc区等)进行结 合。对带有自然结合剂(如生物素)的分子的抗体也广泛存在并且 是适当的标签结合剂(参见SIGMA Immunochemicals 1998catalogue SIGMA,St.Louis MO)。
类似的,任何半抗原或是抗原的化合物均可用于与适当的抗体 结合形成标签/标签结合剂对。目前市场上已经有成千种特异性抗 体,在文献中还描述了许多其它的抗体。例如,在一个常规构型中, 标签为第一抗体而标签结合剂是识别第一抗体的第二抗体。除了抗 体抗原反应外,受体配体反应也可作为适当的标签和标签结合剂 对。例如,细胞膜受体的激动剂和拮抗剂(例如,细胞受体-配体反 应如toll样受体,传递蛋白,c-kit,病毒受体配体,细胞因子受 体,趋化因子受体,白介素受体,免疫球蛋白受体以及抗体,粘 附素家族,整合素家族,选择素家族等等;例如,参见Pigott&Power, The Adhesion Molecule Facts Book I,1993。类似地,毒素和毒液, 病毒表位,激素(如阿片类药物,类固醇等),胞内受体(例如可 介导各类小配体作用的受体,包括类固醇,甲状腺激素,维甲酸以 及维生素D;肽),药物,外源凝集素,糖,核酸(线性和环状聚 合物构型),低聚糖,蛋白,磷酯以及抗体均可与各种细胞受体相 互作用。)
合成聚合物,如聚氨酯,聚酯,聚酸酯,聚脲,聚酰胺,聚 乙烯亚胺,聚芳硫醚,聚醚,聚酰亚胺以及聚乙酸酯均能够形成 适当的标签和标签结合剂。如本领域技术人员在阅读本披露的基础 上所能理解,许多其它的标签/标签结合剂对也可用于此处所述的测 定系统。
常见的接头如肽,聚醚等也可用作标签,其中还包括多肽序列, 如约5至200氨基酸之间的聚甘氨酸序列。该种柔性接头已为本领 域技术人员所公知。例如,聚乙二醇接头可从Shearwater Polymers, Inc.Huntsville,Alabama获得。这些接头可选择具有酰胺键,巯基键 和杂官能键。
标签结合剂可通过各种现有方法中的任意一种固定至固相底 物。固相底物通常可通过将全部或部分底物暴露至一种化学试剂进 行衍生化或功能化,其中该试剂将能够与标签结合剂中一部分产生 反应的化学基团固定至表面。例如,适于连接更长链部分的基团包 括胺,羟基,硫醇以及羧基基团。氨基烷基硅烷和羟基烷基硅烷可 被用于对多种表面(如玻璃表面)进行功能化。该种固相生物聚合 物阵列的构建已在文献中得到具体描述。例如,参见Merrifield,J. Am.Chem.Soc.85:2149-2154,1963(描述肽等固相合成);Geysen 等人,J.Immun.Meth.102:259-274,1987(描述在针上的固相成分合 成);Frank&Doring,Tetrahedron 44:6031-6040,1988(描述在纤维素 板上各种肽序列的合成);Fodor等人,Science 251:767-777,1991; Sheldon等人,Clinical Chemistry 39:718-719,1993;以及Kozal等人, Nature Medicine 2:753-759,1996(均描述固定至固相底物的生物聚 合物的阵列)。将标签结合剂固定至底物的非化学方法包括其它常 用的方法,如加热,通过UV辐射交联等。
作为SCD1和TOLL样受体2调节剂的双特异性化合物
一方面,本发明提供了一种鉴定候选物或测试双特异性化合物 的方法,通过该方法可降低一种物质在非人类动物体内的血清和/ 或循环中的浓度。采用该快速方法选择或优化的化合物可被用于治 疗能通过给服该种化合物受益的对象,例如人类对象。
可在本发明中该方法的实施例中进行测试的候选化合物为双 特异性化合物。如此处所用,术语“双特异性化合物”包括了具有 两种不同的结合特异性的化合物。示例性的双特异性化合物包括, 双特异性抗体,杂聚物以及基于抗原的杂聚物。
可在本发明的实施例中进行测试的双特异性分子优选包含对 Scd1(优选人Scd1)具有特异性的结合部分,交联至对目标物质(例 如一种独特的抗体或抗原)具有特异性的第二结合部分。对toll样 受体2具有特异性的结合部分的示例包括,但不限于,toll样受体2 配体,如MALP-2或者在更优选的实施例中为针对toll样受体2的 抗体。
在另一实施例中,新型toll样受体2结合分子可根据其结合toll 样受体2的能力进行鉴定。例如,化合物或小化学分子库可通过无 细胞结合测定进行测试。任意数量的测试化合物,如肽类似物,小 化学分子或其它药物可被用于测试,并可通过本领域公知的组合库 方法中众多方法中的任意一种获取,其包括:生物库;空间可寻址 并行固相或液相库;要求重叠合法的合成库法;“一珠一化合物” 库法;以及采用亲和层析选择的合成库法。生物库法局限于肽库, 而其它四种方法适用于肽,非肽低聚物或化合物的小化学分子库 (Lam,Anticancer Drug Des.12:145,1997)。
在许多对调节剂和天然提取物库进行测试的药物筛选程序中 均要求使用高通量测定,从而使给定时间范围内所考察的调节剂数 量达到最大化。在无细胞系统中进行的测定(如通过纯化或半纯化 蛋白)常被选为“初级”筛选,通过该筛选可对由测试调节剂介导 的目标分子的改造进行快速开发和相对简便的检测。此外,测试调 节剂在体外系统中的细胞毒性和/或生物利用度的作用通常可被忽 略,从而使测定可以主要聚焦于药物对分子目标的作用,如上游或 下游元件对结合亲和性的改造所显示。
在另一实施例中,本领域公知的噬菌体展示技术可被用于鉴定 新型TLR2或Scd1结合分子。
在一个实施例中,本发明提供了筛选能够结合TLR2或Scd1 或其生物活性部分的候选物或测试化合物的测定。
可鉴定能够结合TLR2或Scd1的分子的基于细胞的测定可被用 于鉴定用于本发明中双特异性化合物的其它试剂。例如,表达TLR2 或Scd1的细胞可在筛选测定中采用。例如,可以鉴定能够对TLR2 或Scd1的结合产生统计性显著差异的化合物。
在一个实施例中,该测定是一种无细胞测定,其中toll样受体 2结合分子的鉴定基于其在体外结合TLR2或Scd1蛋白的能力。该 TLR2或Scd1蛋白结合分子可被提供,且该蛋白对TLR2或Scd1 蛋白的结合能力可采用本领域认可的测定直接结合的方法进行测 试。该蛋白对目标分子的结合能力的检测可通过实时生物分子相互 作用分析(BIA)等技术实现。Sjolander等人,Anal.Chem.63: 2338-2345,1991,以及Szabo等人,Curr.Opin.Struct.Biol.5: 699-705,1995。此处所述的“BIA”是一种无需标记任何相互作用 物,实时研究生物特异性相互作用的技术(如BIAcore)。表面等离 子共振(SPR)中光学现象的变化可用作生物分子间实时反应的指 示。
本发明中的无细胞测定可适于使用可溶和/或膜结合型蛋白。在 使用膜结合型蛋白进行无细胞测定的情况下,需要采用助溶剂使该 膜结合型蛋白保持在溶液中。该类助溶剂的示例包括非离子型洗涤 剂如正辛基葡萄糖苷,正十二烷基葡萄糖苷,辛酰基-N-甲基葡糖胺, 癸酰基-N-甲基葡糖胺,X-100,X-114,,异 十三烷基聚乙二醇醚,3-[3-(胆酰氨丙基)二甲铵基]丙磺酸内盐 (CHAPS),3-[3-(胆酰氨丙基)二甲铵基]-2羟基-丙磺酸内盐 (CHAPSO)或N-十二烷基=N,N-二甲基-3-铵基-丙磺酸内盐。
可检测蛋白-蛋白相互作用的适当测定已为本领域所公知(如免 疫沉淀反应,双杂交测定等)。在测试化合物存在或缺失的情况下 进行的该测试可用于鉴定能够调节(例如,抑制或增强)本发明的 蛋白与目标分子相互作用的化合物。
该蛋白与目标分子结合或相互作用的能力的检测可通过直接 结合等方法实现。在直接结合测定中,将该蛋白与放射性同位素或 酶标记偶联,从而可通过测定复合物中的标记蛋白检测该蛋白与目 标分子的结合。例如,蛋白可直接或间接地采用1251,35S,14C或3H 进行标记,然后可通过直接辐射计数或闪烁计数检测放射性同位 素。此外,还可以采用酶标记来标记分子,例如,辣根过氧化酶, 碱性磷酸酶,或荧光素酶,然后可通过测定适当底物向产物的转化 来检测酶标记。
通常需要将本发明的蛋白或其结合蛋白固定化以帮助复合物 从一种或全部两种蛋白的未复合形式进行分离,并适应自动化测 定。在候选试剂存在或缺失的情况下与上游或下游结合元件的结合 可在任何适于容纳反应物的容器内完成。其示例包括微量滴定板, 试管以及微量离心管。在一个实施例中提供了一种补充了可使蛋白 与基质结合的区域的融和蛋白。例如,谷胱甘肽s-转移酶 /TLR2(GST/TLR2)融合蛋白可被谷胱甘肽琼脂糖珠(Sigma Chemical, St.Louis,Mo.)或谷胱甘肽微量滴定板所吸附,然后将后者之一与细 胞溶解物(例如35S标记)和测试调节剂合并,将混合物在有利于 复合物形成的条件下进行培养(例如在生理盐度和pH下,也可采 用较为苛刻的条件)。在培养后,洗涤珠子去除未结合标记,固定 化基质并直接检测放射性标记(例如将珠子置于闪烁体中),或当 复合物后续解离后在上清液中检测。此外,可将复合物从基质中解 离,并用SDS-PAGE分离,然后使用标准电泳技术从凝胶中测定珠 子部分TLR2结合蛋白的水平。
其它在基质上固定蛋白的技术也可用于该对象测定。例如,可 采用本领域熟知的技术(例如生物素化试剂盒,Pierce Chemicals, Rockford,H1.)由生物素-NHS(N-羟基-琥珀酰亚胺)制备生物素化 分子,然后固定在链霉亲和素涂布的96孔板的孔上(Pierce Chemical)。
在不对任一相互作用物进行标记的情况下对化合物调节TLR2 和Scd1之间相互作用的能力的测定同样在本发明的范围之内。例 如,可采用微生理计在不标记本发明蛋白或目标分子的情况下检测 两者之间的相互作用。McConnell等人,Science 257:1906-1912,1992. 如此处所述,“微生理计”(例如细胞传感仪)是一种使用光寻址电 位传感器(LAPS)检测细胞酸化其环境时的比率的分析仪器。酸化率 的变化可以作为化合物和受体之间相互作用的指示。
本发明中可被测试的基于抗原的杂聚物优先包括对TLR2或 Scd1(优选人TLR2或Scd1)具有特异性的结合部分,并交联至可 被自体抗体识别的抗原。可被自体抗体识别的抗原的示例包括,但 不限于,以下的任一一种:VIII因子(通过替换重组VIII因子治疗 血友病的有关抗体);肌肉乙酰胆碱受体(与疾病重症肌无力相关 的抗体);双磷脂酰甘油(与疾病狼疮相关);血小板相关蛋白(与 疾病特发性血小板减少性紫癜相关);与干燥综合症相关的复合抗 原;组织移植自身免疫反应涉及的抗原;心肌中发现的抗原(与疾 病自身免疫性心肌炎相关);与免疫复合物介导的肾病相关的抗原; dsDNA和ssDNA抗原(与狼疮性肾炎相关);桥粒糖蛋白和桥粒斑 蛋白(与天疱疮和类天疱疮相关);或任何其它明确表征的与疾病 发病机理相关的抗原。
在本发明中进行测试的示例性杂聚物以及基于抗原的杂聚物 及其制备方法已为本领域公知。例如,示例性杂聚物可参考WO 0300797Ial;U.S.20020103343A1;U.S.Pat.No.5,879,679;U.S.Pat. No.5,487,890;U.S.Pat.No.5,470,570;WO 9522977A1; WO/02075275A3,WO/0246208A2或A3,WO/0180883A1, WO/0145669A1,WO 9205801A1,Lindorfer等人,J.Immunol. Methods.248:125,2001;Hahn等人,J.Immnol.166:1057,2001; Nardin等人,J.Immunol.Methods.211:21,1998;Kuhn等人,J. Immunol.160:5088,1998;Taylor等人,Cancer Immunol Immunother. 45:152,1997;Taylor等人,J.Immunol.159:4035,1997;以及Taylor 等人,J.Immunol.148:2462,1992。此外,还可制备这些杂聚物的变 体。例如,在一个实施例中可采用以不同连接化学物质制备的双特 异性分子形式。可被用于交联双特异性分子成分的示例性试剂包 括:聚乙二醇,SATA,SMCC以及其它本领域已知的,可从Pierce Biotechnology等获取的试剂。可被测试的双特异性分子的示例形式 可见2006年9月16日提交的U.S.Ser.No.60/411,731,其内容在此 作为参考引用。
在另一实施例中可制备双特异性分子的不同多聚体形似(例 如,二聚物,三聚物,四聚物,五聚物,或更高的多聚物形式)。 在另一实施例中可对双特异性分子的纯化形式进行测试,例如可见 2002年5月13日提交的U.S.Ser.No.60/380,211,其内容在此作为 参考引用。
在另一实施例中,当杂聚物的结合部分之一为抗体时,可采用 抗体的各种同型(例如IgA,IgD,IgE,IgGl,IgG2(例如IgG2a),IgG3, IgG4,或IgM)。在另一实施例中,抗体分子中的一部分(例如Fab 片段)可被用作结合部分之一。在一个优选实施例中,至少一个结 合部分是包含Fc结构域的抗体。在一个实施例中,该抗体为小鼠 抗体。
在另一实施例中可对抗体修饰的作用进行测试,例如可对抗体 的去免疫作用(如2003年3月28日提交的U.S.Ser.No.60/458,869) 进行测试。
在本发明所提供的方法中,在非人类动物的血清,循环和/或组 织中的物质(例如病原体)可至少减少约20%,约30%,约40%, 约50%,约60%,约70%,约80%,约90%,或约100%。
在另一实施例中,在对象的血清,循环和/或组织中的物质浓度 可间接检测。例如,可对血清和/或循环中该制剂的存在引起的病理 进行检测,如对动物的组织样本进行检测。另一种对非人类动物的 血清,循环和/或组织中的物质浓度的间接检测为对该制剂在非人类 动物中引起感染的能力的检测。例如,可以检测该双特异性化合物 对临床表现和感染症状的作用。也可对该双特异性化合物抑制感染 扩散(例如,从一个器官系统扩散至另一个器官系统,或从一个个 体扩散至另一个个体)的作用进行测试。
在另一个实施例中检测了双特异性化合物在非人类动物中结 合带有TLR2或Scd1的细胞的能力。例如,在一个实施例中,该双 特异性化合物对TLR2或Scd1目标分子的结合能力的检测可通过实 时生物分子相互作用分析(BIA)等技术实现(Sjolander等人,Anal. Chem.63:2338-2345,1991以及Szabo等人,Curr.Opin.Struct.Biol. 5:699-705,1995)。此处所述的“BIA”是一种无需标记任何相互 作用物,实时研究生物特异性相互作用的技术(如BIAcore)。表 面等离子共振(SPR)中光学现象的变化可用作生物分子间实时反应 的指示。
在另一实施例中检测了非人类动物中细胞对该制剂的破坏(例 如被巨噬细胞灭活)。
对能够减少非人类动物的血清,和/或循环中该制剂浓度(与未 接受双特异性化合物的非人类动物体内所观察到的浓度比较)的化 合物可以进行选择。
在对象测定中所测试的化合物可以选自受试的众多化合物。 在另一实施例中,在快速测定中测试的双特异性化合物可能已经被 鉴别为能够结合TLR2或Scd1(例如在体外测定中)并可通过快速 测定进一步评估或优化。此时,一种双特异性化合物降低血清和/ 或循环中一种物质浓度的能力可与另一种双特异性化合物或同一 化合物的非优化形式进行比较以测定其在血清和/或循环中降低该 制剂浓度的能力。
在一个优选的实施例中,本发明的双特异性化合物可在约1μg 化合物/kg体重至约100μg化合物/kg体重范围内施用。如此处定义, 双特异性化合物治疗有效量(即有效剂量)的范围为约0.01至 5000μg/kg体重,优选约0.1至500μg/kg体重,更优选约2至80μg/kg 体重,更优选约5至70μg/kg体重,10至60μg/kg体重,20至50μg/kg 体重,24至41μg/kg体重,25至40μg/kg体重,26至39μg/kg体重, 27至38μg/kg体重,28至37μg/kg体重,29至36μg/kg体重,30 至35μg/kg体重,31至34μg/kg体重,或32至33μg/kg体重。技术 人员可以理解某些因子可以影响有效治疗一种对象所需的剂量,其 包括但不限于疾病或紊乱的严重性,在先的治疗,对象的总体健康 和/或年龄以及存在的其它疾病。此外,采用治疗有效量的蛋白,多 肽或抗体对对象的治疗可以包括单次治疗,也可包括优选的多次治 疗。
在一个优选的实施例中,在静脉(iv)注射一种物质后以约1至 500μg/kg体重范围内的双特异性化合物对该动物进行处理。应当理 解用于治疗的双特异性化合物的有效剂量可以在特定处理后上升 或下降。如此处所述的诊断测定的结果可能会明显引起剂量的改 变。
测试化合物和/或物质的施用途径可以选择由静脉(iv)注射至动 物的循环中。其它的施用途径包括,但不限于,局部,胃肠外,皮 下或吸入施用。术语“胃肠外”包括通过皮下,静脉或肌肉等途径 注射,还包括局部施用,例如在疾病或受伤处。通过植入物持续释 放化合物的方法也已为本领域公知。相关领域的技术人员可以认识 到合适的剂量会由于待治疗的紊乱的性质,患者的体重,年龄以及 总体情况以及施用的途径等因素而发生变化。初步剂量可参照动物 试验确定,人用剂量的调整可参照被本领域接受的实践来进行。
候选化合物和物质可在一定剂量范围下对动物施用。当该制剂 也向动物施用时,候选化合物的施用可在该制剂施用之前,同时或 之后。
本发明中表达TLR2或Scd1的转基因动物(如小鼠)可用于 筛选或评估能够处理与对象的血清和/循环中有害物质(例如自体抗 体,感染病原或毒素)的出现有关的人类失调或疾病的候选化合物。
能够被本发明的双特异性化合物结合的示例性目标物质包括 血源物质,其包括但不限于以下的任意一种:病毒,病毒颗粒,毒 素,细菌,多聚核苷酸,抗体(如与自体免疫失调有关的自体抗体)。 在一个实施例中,示例性靶病毒物质包括但不限于以下任意一种: 巨细胞病毒,流感,新城疫病毒,水疱性口炎病毒,狂犬病病毒, 单纯疱疹病毒,肝炎,腺病毒-2,牛病毒性腹泻病毒,人免疫缺陷 病毒(HIV),登革热病毒,儿堡病毒,Epstein-Barr病毒。
示例性革兰氏阳性细菌靶标包括化脓链球菌感染,金黄色葡萄 球菌,结核分支杆菌,炎链球菌或是枯草杆菌。上述任意一种方 法和组合物均可用于治疗皮肤感染,社区获得性肺炎,上和下呼吸 道感染,皮肤和软组织感染,医院获得性肺部感染,骨与关节感染, 呼吸道感染,急性细菌性中炎,细菌性肺炎,尿道感染,并发感 染,非并发型感染,肾盂肾炎,腹腔内感染,深度脓肿,细菌性脓 血症,中枢神经系统感染,菌血症,伤口感染,腹膜炎,脑膜炎, 烧伤后感染,泌尿生殖器道感染,胃肠道感染,盆腔炎性疾病,心 内膜炎以及其它血管内感染。这些待处理的感染可能由革兰氏阳性 细菌引起。这些引起感染的细菌包括但不限于,金黄色葡萄球菌, 表皮葡萄球菌,粪肠球菌,屎肠球菌,梭状芽孢杆菌,难辨梭菌, 化脓链球菌,肺炎链球菌,其它链球菌属,以及其它梭菌。更具体 的说,该感染可能是由一种革兰氏阳性球菌,或由一种耐药革兰氏 阳性球菌所引起。示例性的革兰氏阳性球菌包括但不限于,金黄色 葡萄球菌,表皮葡萄球菌,肺炎链球菌,产脓链球菌,卡他莫拉杆 菌,难辨梭菌,幽螺杆菌,衣原体以及肠球菌。
菌血症可能由革兰氏阴性或革兰氏阳性细菌引起。革兰氏阴性 细菌具有由肽聚糖单层和脂多糖,脂蛋白和磷脂外层组成的薄壁细 胞膜。示例性革兰氏阴性细菌包括,但不限于,由埃希氏菌属,志 贺氏菌属,爱德华氏菌属,沙门氏菌属,柠檬酸杆菌属,克雷伯氏 菌属,肠杆菌,哈夫尼菌属,沙雷氏菌属,变形杆菌属,摩根氏菌 属,普罗威登斯菌属,耶尔森氏菌属,欧文氏菌属,Buttlauxella菌 属,西蒂西菌属,爱文氏菌属,克吕沃尔菌属,塔特姆菌属以及拉 恩氏菌属组成的肠杆菌科。其它不属于肠杆菌科家族的示例性革兰 氏阴性细菌包括,但不限于,绿假单胞菌,嗜麦芽寡养单胞菌, 洋葱伯克霍尔德菌,阴道加德纳菌以及不动杆菌属。革兰氏阳性细 菌具有由多层肽聚糖和磷壁(酸)质外层构成的厚细胞膜。示例性革 兰氏阳性细菌包括,但不限于,金黄色葡萄球菌,凝固酶阴性葡萄 球菌,链球菌,肠球菌,棒状杆菌以及芽孢杆菌属。
在一个实施例中,目标物质可耐受传统治疗,例如耐抗生素。
在一个实施例中,在实施本发明的测定的过程中,该制剂可在 双特异性化合物施用前,施用时或施用后对转基因动物进行施用。
可以对本发明的双特异性化合物或其任意部分进行修饰以提 高其半衰期。医药行业中常将肽类似物用作具有与模板肽具有相似 性质的非肽药物。这些非肽化合物被称为“肽类似物”(Fauchere, Adv.Drug Res.15:29,1986;Veber等人,TINS p.392,1985;以及 Evans等人,J.Med.Chem 30:1229,1987,均在此处引用作为参考) 并通常用计算机辅助分子模拟进行协助开发。与有疗效的肽结构类 似的肽类似物能够产生相当的治疗或预防效果。一般而言,肽类似 物的结构类似于示例多肽(即一种具有生物或药理活性的多肽), 例如抗原多肽,但其中一个或多个肽键可选地可被选自:-CH2NH-, -CH2S-,-CH2-CH2-,-CH=CH-(顺式和反式),-COCH2-,- CH(OH)CH2-,和-CH2SO-的键替代,该替代通过本领域已知方法 进行,并在下列参考文献中得到进一步描述:Spatola,A.F.in Chemistry and Biochemistry of Amino Acids,Peptides,and Proteins Weinstein,B.,ed.,Marcel Dekker,New York,p.267,1983;Spatola,A. F.,Vega Data,Vol.1,Issue 3,″Peptide Backbone Modifications,″1983; Morley,Trends.Pharm.Sci.pp.463-468,1980;Hudson等人,Int.J. Pept.Prot.Res.14:177-185,1979(-CH2NH-,CH2CH2-);Spatola等人, Life.Sci.38:1243-1249,1986(-CH2-S);Hann,J.Chem.Soc.Perkin. Trans.1:307-314,1982(--CH-CH-,顺式和反式);Almquist等人,J. Med.Chem.23:1392-1398,1980(-COCH2-);Jennings-White等人, Tetrahedron Lett.23:2533,1982(-COCH2-);Szelke等人,European Patent Application No.EP 45665CA:97:39405,1982(- CH(OH)CH2-);Holladay等人,Tetrahedron.Lett.24:4401-4404,1983 (-C(OH)CH2-);以及Hruby,Life Sci.31:189-199,1982(-CH2-S-);其 中每一篇均在此引作参考。一种特别优选的非肽健为-CH2NH-。该 种肽类似物相对多肽实例具有显著的优点,例如包括:制备更经济, 化学稳定性更高,药理属性(半衰期,吸收,效力,功效等)更强, 特异性的改变(例如一种广谱的生物活性),抗原性降低,以及其 它。对肽类似物的标记通常包括将一个或多个标记直接或通过间隔 物(例如氨基基团)与通过定量结构-活性数据和/或分子模拟所预 测的肽类似物的非干扰位点进行共价结合。该非干扰位点通常是不 直接接触大分子(通过与肽类似物结合产生治疗作用的)的位点。 肽类似物的衍生化(例如标记)不应实质影响该肽类似物的目标生 物或药理活性。
以同类型的D氨基酸对氨基酸序列中的一个或多个氨基酸进 行系统替换(例如D赖氨酸替换L赖氨酸)可用于得到更稳定的肽。 此外,可通过本领域公知的方法生成约束型(constrained)肽(Rizo 等人,Annu.Rev.Biochem.61:387,1992,在此引入作为参考);例如, 通过加入能够形成分子内二硫键的内部半胱氨酸残基将肽环化。
该种修饰的多肽可通过原核或真核宿主细胞生成。此外,该种 肽还可以通过化学方法合成。在重组宿主内表达外源多肽,化学合 成多肽以及体外翻译的方法已为本领域熟知,并在以下文献中得到 进一步描述:Maniatis等人,Molecular Cloning:A Laboratory Manual, 2nd Ed.,Cold Spring Harbor,N.Y.,1989;Berger等人,Methods in Enzymology,Volume 152,Guide to Molecular Cloning Techniques, 1987,Academic Press,Inc.,San Diego,Calif.;Merrifield,J.Am.Chem. Soc.91:501,1969;Chaiken,CRC Crit.Rev.Biochem.11:255,1981; Kaiser等人,Science 243:187,1989;Merrifield,Science 232:342, 1986;Kent,Annu.Rev.Biochem.57:957,1988;以及Offord, Semisynthetic Proteins,Wiley Publishing,1980,前述文献均在此引作 参考)。
多肽通常可通过直接化学合成进行制备,并用作杂聚物的结合 部分。肽可被制备为修饰肽,其中非肽部分通过共价键连接至N末 端和/或C末端。在一些优选实施例中对羧基末端或氨基末端两者 之一或全部进行了化学修饰。对末端氨基和羧基基团最常见的修饰 分别为乙酰化和酰胺化。氨基末端的修饰如酰化(例如乙酰化)或 烷化(例如甲基化)和羧基末端的修饰如酰胺化,以及其它末端修 饰,包括环化,可被用于各种测试化合物的实施例。某些氨基末端 和/或羧基末端修饰和/或核心序列的肽伸展可提供物理,化学,生 物化学以及药理属性上的优势,例如:稳定性提高,效力和/或功效 的增强,对血清蛋白酶的耐药性,所需的药代动力学属性等等。
转基因动物的构建
一方面,本发明提供了一种其基因组包含了可操作地连接至启 动子的编码TLR2或Scd1多聚核苷酸的动物,由此使该非人或人 TLR2基因或Scd1基因在动物的巨噬细胞中功能性地表达,或该非 人或人TLR2基因或Scd1基因成为动物的巨噬细胞中功能突变的累 积。本发明进一步提供了在巨噬细胞中表达非人或人TLR2或Scd1 的转基因非人动物的构建方法。
本发明的方法中所用的转基因动物可以是:哺乳动物,,爬 行动物或两栖动物。此处所述的合适的哺乳动物包括:啮齿动物; 反刍动物;有动物;驯养哺乳动物以及乳品动物。优选动物包括: 啮齿动物,山羊,绵羊,骆驼,母牛,猪,马,公牛,美洲驼,鸡, 鹅和火鸡。在一个优选的实施例中,该非人动物为小鼠。
各种构建转基因动物的方法已为本领域所公知(例如,参见 Watson等人,″The Introduction of Foreign Genes Into Mice,″in Recombinant DNA,2d Ed.,W.H.Freeman&Co.,New York,pp. 255-272,1992;Gordon,Intl.Rev.Cytol.115:171-229,1989;Jaenisch, Science 240:1468-1474,1989;Rossant,Neuron 2:323-334,1990)。 对于构建转基因猪的示例性方案可参见White and Yannoutsos, Current Topics in Complement Research:64th Forum in Immunology, pp.88-94;U.S.Pat.No.5,523,226;U.S.Pat.No.5,573,933;PCT Application WO93/25071;以及PCT申请WO95/04744。对于构建转 基因大鼠的示例性方案可参见Bader等人,Clinical and Experimental Pharmacology and Physiology,Supp.3:S81-S87,1996。对于构建转基 因母牛的示例性方案可参见Transgenic Animal Technology,A Handbook,1994,ed.,Carl A.Pinkert,Academic Press,Inc。对于构建 转基因绵羊的示例性方案可参见Transgenic Animal Technology,A Handbook,1994,ed.,Carl A.Pinkert,Academic Press,Inc。以下提供 了一些更为具体的方法。
A.注射入原核
转基因动物可通过将本发明的核酸构建体导入卵细胞进行构 建。将所得的卵细胞植入雌性动物的子宫进行正常的胎儿发育,然 后将发育后的携带转基因的动物进行回交以建立转基因的杂合体。 不同发育阶段的胚胎靶细胞被用于引入本发明的转基因。根据胚胎 靶细胞发育阶段的不同可采用不同的方法。引入转基因的示例性方 法包括,但不限于,对受精的卵子或受精卵进行显微注射(Brinster 等人,Proc.Natl.Acad.Sci.USA 82:4438-4442,1985),以及病毒整 合(Jaenisch,Proc.Natl.Acad.Sci.USA 73:1260-1264,1976;Jahner 等人,Proc.Natl.Acad.Sci.USA 82:6927-6931,1985;Van der Putten 等人,Proc.Natl.Acad.Sci.USA 82:6148-6152,1985)。胚胎操作核 显微注射的程序可参见Manipulating the Mouse Embryo(Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY.,1986,其内容在此 引作参考)。类似的方法可用于其它转基因动物的构建。
在一个示例性实施例中,转基因小鼠的构建采用了下述步骤。 使来自于指定近交系遗传背景的雄性小鼠和雌性小鼠进行交配。交 配的雌性小鼠事先以孕马血清(PMS)进行处理以诱导卵泡生长,并 以人绒毛膜促性腺激素(hCG)进行处理以诱导排卵。交配后,将雌 性处死并从其子宫管取出受精卵。此时,原核尚未融合,因此可以 使用光镜使其显示。在另一方案中可在不同的发育阶段收集胚胎, 例如可收集胚囊。胚胎可采用杜氏改良磷酸缓冲盐(DPBS)复原,并 采用添加了10%胎牛血清的杜氏改良必需培养基(DMEM)进行维 持。
然后将外源DNA或重组构建体(例如TLR或Scd1表达构建 体)显微注射入(100-1000分子/卵细胞)原核。表达构建体的显微 注射可以通过与显微镜连接的标准显微操作器进行操作。例如,在 显微注射时胚胎被维持在油下的100微升DPBS滴中。DNA溶液 被显微注射进入雄性原核中。注射的成功可通过原核的膨胀进行检 测。此后原核(雌性原核和雄性原核)将很快发生融合,并且在一 些情况下,外源DNA将插入受精的卵子或受精卵的(通常)一个 染色体。按照如下所述制备的重组ES细胞可通过类似的技术注射 进入胚囊。
B.胚胎干细胞
在另一种构建转基因小鼠的方法中,可将本发明的重组DNA 分子引入小鼠胚胎干(ES)细胞。然后将所得的重组ES细胞采用与 前一小节类似的技术显微注射入小鼠胚囊。
从植入前的胚胎获取ES细胞并在体外培养(Evans等人,Nature 292:154-156,1981;Bradley等人,Nature 309:255-258,1984;Gossler 等人,Proc.Natl.Acad.Sci.USA 83:9065-9069,1986;Robertson等人, Nature 322:445-448,1986)。任何能够整合进入发育中胚胎的胚系并 成为其中一部分,从而建立对目标构建体的胚系传递的ES细胞均 适于在此处使用。例如,129J品系是一种可用于生产ES细胞的小 鼠品系。鼠细胞系D3是一种优选的ES细胞系(American Type Culture Collection catalog no.CRL 1934)。培养ES细胞并对DNA插 入进行准备的方法已为本领域公知,并可参见Robertson, Teratocarcinomas and Embryonic Stem Cells:A Practical Approach,E. J.Robertson,ed.IRL Press,Washington,D.C.,1987;Bradley等人, Current Topics in Devel.Biol.20:357-371,1986以及Hogan等人, Manipulating the Mouse Embryo:A Laboratory Manual,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY,1986,其内容在此 引作参考。
表达构建体可通过本领域公知方法引入ES细胞,例如,该类 方法可参见Sambrook等人,Molecular Cloning:A Laboratory Manual, 2nd Ed.,ed.,Cold Spring Harbor laboratory Press:1989,其内容在此 引用作为参考。适当的方法包括,但不限于,电穿孔,显微注射以 及磷酸钙处理法。待引入ES细胞的表达构建体(例如TLR2或Scd1) 优选线性。可以通过合适的限制性内切酶线进行消化以在载体序列 而非基因中(例如TLR2或Scd1基因)进行选择性切除实现线性化。
在引入表达构建体后,对带有该构建体的ES细胞进行筛选。 细胞的筛选可采用多种方法。当该构建体中使用了标记基因时,可 对动物细胞中该标记基因的存在进行测试。例如,当该标记基因是 耐抗生素基因时,可以在原本致死浓度的抗生素存在下培养该细胞 (例如,用G418来选择Neo)。那些存活的细胞可推测为整合了转 基因构建体。如果该标记基因是编码一种活性可测的酶(例如beta- 半乳糖苷酶)的基因,可将该酶的底物在适当的条件下添加至细胞, 并分析酶活性。备选地,或另外地,可以对ES细胞基因组DNA直 接检测。例如,可以采用标准方法从ES细胞提取DNA,然后使用 经设计与该转基因进行特异杂交的探针在Southern印迹上探查该 DNA。基因组DNA还可以采用经特殊设计来扩增转基因中具有特 定大小和序列的DNA片段的探针通过PCR进行扩增,从而仅使那 些包含了目标构建体的细胞才能够生成正确大小的DNA片段。
C.植入
带有本发明的重组核酸分子(例如TLR2或Scd1)的受精卵被 植入事先与切除输精管的雄性交配后得到的假孕雌性小鼠。在常规 方案中,将受体雌性麻醉,做副腰切口以暴露输卵管,然后将胚胎 转化进入输卵管的壶腹区。缝合体壁并以伤口夹闭合皮肤。该胚胎 在经过完整孕育期的发育后,由代孕母体分娩潜在转基因小鼠。最 后,对新生小鼠测试外源或重组DNA的存在。在所有注射的卵子 中,平均10%的卵子可以正常发育并形成小鼠。在所有出生的小鼠 中,平均四分之一(25%)为转基因小鼠,从而总体的有效率为2.5%。 一旦这些小鼠繁殖,他们会将连接至小鼠染色体的外源基因以常规 的(孟德尔的)方式进行传递。
D.对转基因构建体存在的筛选
转基因动物可在出生后以标准方案进行鉴定。可对取自尾部组 织的DNA进行筛选以测定转基因构建体的存在,例如通过southern 印迹和/或PCR。如果认为其携带了转基因,可将表现为嵌合体的 后代进行彼此杂交以产生纯合体型动物。如果尚不清楚该后代是否 具有胚系传递,它们可与母代或其它品系进行杂交并针对其后代筛 选杂合性。杂合体可通过DNA的southern印迹和/或PCR扩增进行 鉴别。该杂合体可彼此杂交以生成纯合体型转基因后代。纯合体的 鉴别可通过对来自本杂交所得到的小鼠,已知为杂合体的小鼠以及 野生型小鼠的等量基因组DNA的Southern印迹进行鉴定。筛选 southern印迹的探针可基于人或非人TLR2或Scd1基因序列,或者 标记基因,或者两者一起进行设计。
其它鉴定和表征转基因后代的方法已为本领域所公知。例如, 通过对带有针对引入基因编码蛋白(例如人或非人TLR2或Scd1 蛋白)的抗体,或是针对标记基因产物的抗体的western印迹的探 测,该western印迹可用于评估这些后代的各种表达该基因的组织 中引入基因的表达水平。
通过采用适当的抗体可进行对来自于后代的各种细胞(如红细 胞)的原位分析(例如用抗体固定细胞和标记),和/或FACS(荧 光激活细胞分类)分析,以检查转基因产物的存在或缺失。例如, 欲验证TLR2或Scd1在巨噬细胞中的表达,可通过使用能与第二抗 体(与荧光团缀合并识别TLR2或Scd1抗体)直接缀合或联合使用 的特异性针对人TLR2或Scd1的抗体开展流式细胞技术。在该分析 中,人红细胞可用作TLR2或Scd1存在的阳性对照,而普通小鼠红 细胞可用作阴性对照。
E.带有多价转基因或额外突变的小鼠
此处所述的表达TLR2或Scd1的转基因小鼠可以与a)带有额外 转基因,或b)在其它基因中包含突变的小鼠进行杂交。各种突变的 杂合体或纯合体的小鼠可采用标准异种交配程序产生和维持。可通 过带有TLR2或Scd1转基因的小鼠进行繁殖的小鼠包括,但不限于, 更易得自身免疫性疾病的小鼠品系,例如作为狼疮模型的小鼠品 系,如小鼠品系NZB/W,MRL+或SJL。
本发明进一步涉及来自转基因动物的细胞。由于突变或环境影 响可导致后代中出现某些修饰,该后代可能实际上并不与父代细胞 完全相同,但它仍然被包含在此处所用的术语的范围内。
重组核酸技术
实施本发明所用的核酸,不管是RNA,iRNA,反义核酸,cDNA, 基因组DNA,载体,病毒或其杂交物,都可从各种来源进行分离, 并进行基因工程改造,扩增,和/或重组表达/生成。由这些核酸生 成的重组多肽可被单独分离或克隆并测试其目标活性。任意重组表 达系统均可采用,包括细菌,哺乳动物,酵母,昆虫或植物细胞表 达系统。
此外,这些核酸可以用已知的化学合成技术进行体外合成,对 其进行描述的文献如Adams,J.Am.Chem.Soc.105:661,1983; Belousov,Nucleic Acids Res.25:3440-3444,1997;Frenkel,Free Radic. Biol.Med.19:373-380,1995;Blommers,Biochemistry 33:7886-7896, 1994;Narang,Meth.Enzymol.68:90,1979;Brown Meth.Enzymol. 68:109,1979;Beaucage,Tetra.Lett.22:1859,1981;U.S.Pat.No. 4,458,066。
本发明提供了包含本发明序列(例如,本发明示例性序列的子 序列)的寡聚核苷酸。寡聚核苷酸可包括,如可以化学合成的单链 聚脱氧核糖核酸或两条互补的聚脱氧核糖核酸链。
核酸操作技术如亚克隆,标记探针(例如,使用Klenow大片 段聚合酶,缺口平移,扩增进行随机引物标记),测序,杂交等在 科技文献和专利文献中已有详细描述,例如参见Sambrook,ed., MOLECULAR CLONING:A LABORATORY MANUAL(2ND ED.), VoIs.1-3,Cold Spring Harbor Laboratory,1989;CURRENT PROTOCOLS IN MOLECULAR BIOLOGY,Ausubel,ed.John Wiley &Sons,Inc.,New York,1997;LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY: HYBRIDIZATION WITH NUCLEIC ACID PROBES,Part I.Theory and Nucleic Acid Preparation,Tijssen,ed.Elsevier,N.Y.,1993。
核酸,载体,衣壳,多肽等可以用本领域技术人员熟知的任意 常规方法进行分析和定量。其包括,例如,分析生化方法(如NMR, 分光光度法,放射照相术,电泳,毛细管电泳,高效液相色谱(HPLC), 薄层色谱(TLC),以及超扩散色谱),各种免疫学方法(例如流体或 凝胶沉淀反应,免疫扩散,免疫电泳,放射免疫分析(RIAs),酶联 免疫吸附分析(ELISAs),免疫荧光分析),Southern分析,Northern 分析,斑点杂交分析,凝胶电泳(例如SDS-PAGE),核酸或靶标 或信号扩增法,放射性标记,闪烁计数以及亲和层析。
用于实施本发明的方法的核酸的获取和操作可通过从基因组 样本中克隆,并在需要的情况下对基因组克隆或cDNA克隆分离或 扩增得到的插入片段进行筛选和再克隆来实现。本发明的方法中所 用的核酸的来源包括如下基因组或cDNA库,例如,哺乳动物人工 染色体(MACs),例如参见U.S.Pat.Nos.5,721,118;6,025,155;人类 人工染色体,例如参见Rosenfeld,Nat.Genet.15:333-335,1997;酵 母人工染色体(YAC);细菌人工染色体(BAC);P1人工染色体,例 如参见Woon,Genomics 50:306-316,1998;源于P1的载体(PACs), 例如参见Kern,Biotechniques 23:120-124,1997;粘粒,重组病毒, 噬菌体或质粒。
本发明提供了融合蛋白及编码它们的核酸。Scd1基因产物或 toll样受体2多肽可融合至一种外源肽或多肽,例如能赋予所需性 质(如稳定性提高或纯化简单)的N末端鉴定肽。本发明的肽和多 肽同样能作为融合蛋白合成和表达,该融合蛋白带有一个或多个与 之相连的附加结构域以生成例如更具免疫性的肽,从而更简单分离 重组合成肽,来鉴定和分离抗体和表达抗体的B细胞等等。有助检 测和纯化的区域包括,例如金属鳌合肽(例如可在固定化金属上纯 化的聚组氨酸束和组氨酸-色氨酸模块,可在固定化免疫球蛋白上 纯化的蛋白A结构域,以及可在FLAGS伸展/亲和纯化系统使用的 结构域(Immunex Corp,Seattle Wash.)。在纯化区和含基序肽或多 肽间包含可切割接头序列如Xa因子或肠激酶(Invitrogen,San Diego Calif.)以帮助纯化。例如,表达载体可包含连接至六组氨酸残基的 编码表位的核酸序列,后接硫氧还蛋白和肠激酶裂解位点(例如, 参见Williams,Biochemistry 34:1787-1797,1995;Dobeli,Protein Expr.Purif 12:404-414,1998)。组氨酸残基可帮助检测和纯化,而 肠激酶裂解位点提供了一种从融合蛋白的残余物纯化表位的方法。 一方面,编码本发明多肽的核酸被以合适的相位组装至直接分泌翻 译多肽或其片段的引导序列。涉及编码融和蛋白的载体以及融和蛋 白的应用在科技和专利文献中已有详细描述,例如参见Kroll,DNA Cell.Biol.12:441-53,1993。
A.转录控制元件
本发明的核酸能够可操作地连接至启动子。启动子可以是能够 引导核酸转录的一种基序或核酸控制序列的阵列。启动子可在转录 的起始位点附近包含必需的核酸序列,例如在聚合酶II型启动子 中的TATA元件。启动子还可选择性地包括距离转录起始位点数千 个碱基对的远端增强子或阻遏子元件。“组成型”启动子指能在多 数环境和发育条件下作用的启动子。“诱导型”启动子指受环境或 发育调节的启动子。“组织特异性”启动子指在生物体的特定组织 类型中作用,但不在该生物体的其它组织类型中作用的启动子。术 语“可操作地连接”指在核酸表达控制序列(例如启动子,或转录 因子结合位点阵列)和第二核酸序列之间的功能性连,其中表达 控制序列引导第二序列相应的核酸转录。
B.表达载体和克隆载体
本发明提供了包含本发明核酸(例如编码本发明蛋白的序列) 的表达载体和克隆载体。本发明的表达载体和克隆载体可包括病毒 颗粒,杆状病毒,噬菌体,质粒,粘粒,福斯质粒,细菌人工染色 体,病毒DNA(例如牛痘,腺病毒,臭痘病毒,伪狂犬病以及SV40 的衍生物),基于P1的人工染色体,酵母质粒,酵母人工染色体, 以及任何其它对特定目标宿主(例如杆菌,曲霉菌和酵母)具有特 异性的载体。本发明的载体可包括染色体的,非染色体的以及合成 的DNA序列。大量合适的载体已为本领域技术人员公知,且已在市 场上销售。
本发明的核酸可在需要的情况下采用常规的分子生物方法克 隆进入任意一种载体;克隆体外扩增的核酸的方法可参见U.S.Pat. No.5,426,039等。为了帮助扩增序列的克隆,可将限制性酶切位点 “构建到”PCT引物对中。
本发明提供了编码本发明多肽和肽的表达载体库。这些核酸可 被导入细胞的基因组或细胞质和细胞核中并通过各种在科技和专 利文献中详细描述的传统技术进行表达。例如,参见Roberts,Nature 328:731,1987;Schneider,Protein Expr.Purif.6435:10,1995; Sambrook,Tijssen or Ausubel.这些载体可从自然来源分离,从ATCC 或基因库等来源获取,或是通过合成或重组方法制备。例如,本发 明的核酸可以在能在细胞中稳定或瞬时表达的表达盒,载体或病毒 (例如,游离表达系统)中进行表达。可以在表达盒和载体中加入 选择标记以赋予转化细胞和序列一种可选择的表型。例如,选择标 记可以编码游离型的维持和复制从而不需要整合进入宿主基因组。
一方面,本发明的核酸被导入体内以获得本发明的肽或多肽的 原位表达。该核酸可作为“裸DNA”(例如,参见U.S.Pat.No. 5,580,859)或以表达载体(如重组病毒)的形式导入。如下所述, 该核酸可通过包括瘤周或瘤内的任何途径导入。体内施用的载体可 来自于病毒基因组,包括重组修饰的带包膜或不带包膜的DNA和 RNA病毒,优选来自于baculoviridiae,parvoviridiae,picornoviridiae, herpesveridiae,poxyiridae,adenoviridiae或picornnaviridiae。也可使 用能利用各母载体属性优点的嵌合载体(例如,参见Feng,Nature Biotechnology 15:866-870,1997)。该病毒基因可通过重组DNA技术 修饰以包含本发明的核酸;并通过进一步的工程改造以成为复制缺 陷型,条件复制型或可复制型。另一方面,该载体可来自于腺病毒 (例如来自于人腺病毒基因组的不可复制载体,例如,可见U.S.Pat. Nos.6,096,718;6,110,458;6,113,913;5,631,236);腺相关病毒以及逆 转录病毒基因组。逆转录病毒载体可基于下述病毒,包括鼠白血病 病毒(MuLV),长臂猿白血病病毒(GaLV),猿免疫缺陷病毒(SIV), 人免疫缺陷型病毒(HIV),及其组合;例如,参见U.S.Pat.Nos. 6,117,681;6,107,478;5,658,775;5,449,614;Buchscher,J.Virol.66: 2731-2739,1992;Johann,J.Virol.66:1635-1640,1992)。基于腺相关 病毒(AAV)的载体可用于带目标核酸的放射免疫细胞,例如体外生 产核酸和肽,以及在体内和离体基因治疗过程中;例如,参见U.S. Pat.Nos.6,110,456;5,474,935;Okada,Gene Ther.3:957-964,1996。
此处所用的“表达盒”指能够在兼容该序列的宿主中影响结构 基因(即编码如本发明多肽的蛋白的序列)表达的核苷酸序列。表 达盒至少包括一个与编码多肽的序列可操作连接的启动子;并选择 性带有其它序列,例如转录终止信号。还可采用其它对影响表达必 需或有帮助的附加因子,例如增强子。
当核酸与另一核酸序列建立功能性关系时即被“可操作地连 接”。例如,当启动子或增强子可影响序列的转录时即被可操作地 连接至该编码序列。对于转录调节序列,可操作地连接指该被连接 的DNA序列相互邻近,并在需要时在阅读框内连接两个邻近的蛋白 编码区域。对于开关序列,可操作地连接指该序列能够影响转换重 组。因此,表达盒还可包括质粒,表达载体,重组病毒,任何形式 的重组“裸DNA”载体等等。
“载体”指能够转运另一与之连接的核酸的核酸分子。载体的 一种类型为“质粒”,其指一种能够连接附加DNA片段的环状双链 DNA环。载体的另一种类型为病毒载体,其中附加DNA片段可连接 至病毒基因组。某些载体能够在其被导入的宿主细胞内自主复制 (例如,带有复制起始区的细菌载体以及游离哺乳动物载体)。其 它的载体(例如,非游离哺乳动物载体)能在导入宿主细胞时被整 合入宿主细胞的基因组,并随着宿主基因组进行复制。此外,部分 载体能够引导与其可操作地连接的基因的表达。该种载体在此称为 “重组表达载体”(或简单称为“表达载体”)。一般而言,在重组 DNA技术中采用的表达载体通常为质粒形式。在本说明书中,“质 粒”和“载体”可进行互换,因为质粒是最为常用的载体形式。然 而,本发明意在包含具有同等功能的其它形式的表达载体,例如病 毒载体(例如复制缺陷型逆转录病毒,腺病毒以及腺相关病毒)。
C.宿主细胞和转化细胞
本发明还提供了一种包含本发明核酸序列(例如编码本发明多 肽的序列)或本发明载体的转化细胞。该宿主细胞可以是本领域技 术人员所熟悉的任何宿主细胞,包括原核细胞,真核细胞,例如细 菌细胞,真菌细胞,酵母细胞,哺乳动物细胞,昆虫细胞或植物细 胞。示例性的细菌细胞包括大肠杆菌,链霉菌,枯草杆菌,鼠伤寒 沙门氏菌以及假单胞菌类,链霉菌类以及葡萄球菌类中的各菌种。 示例性昆虫细胞包括果蝇S2和夜蛾Sf9。示例性动物细胞包括CHO, COS或Bowes黑色素瘤或任何小鼠或人细胞系。对适当宿主的选择 在本领域技术人员的能力范围之内。
该载体可通过各种现有技术中的任何一种导入宿主细胞,该技 术包括转化,转染,转导,病毒感染,基因枪或Ti介导基因转移。 特殊的方法包括磷酸钙转染,DEAE-葡聚糖介导转染,脂质体转染 或电穿孔。
经工程改造的宿主细胞可以在适于激活启动子,选择转化株或 扩增本发明基因的改良传统营养培养基中培养。在转化合适的宿主 菌株并使宿主菌株生长至适当的细胞密度时,可以通过适当的方法 (例如,温度转换或化学诱导)诱导所选的启动子,然后继续培养 细胞一段时间使其生成所需的多肽或其片段。
可通过离心收集细胞,以物理或化学方法破碎,然后保留所得 的粗提物供进一步纯化。用于表达蛋白的微生物细胞可通过任何传 统方法进行破碎,其包括冻融循环,超声,机械破碎或采用细胞溶 解试剂。这些方法为本领域的技术人员所熟知。表达的多肽或片段 可通过多种方法从重组细胞中回收和纯化,这些方法包括硫酸铵或 乙醇沉淀,酸提取,阴离子或阳离子交换层析,磷酸纤维素层析, 疏水作用层析,亲和层析,羟磷灰石层析和外源凝集素层析。在需 要时,可在完成多肽的构型时采用蛋白重折叠步骤。需要时可在最 终的纯化步骤中采用高效液相层析(HPLC)。
也可采用各种哺乳动物培养系统来表达重组蛋白。哺乳动物表 达系统的示例包括猴肾成纤维细胞的COS-7系以及其它能够从相容 载体表达蛋白的细胞系,例如C127,3T3,CHO,HeLa以及BHK细胞 系。
宿主细胞中的该种结构可用于以传统方式生产由重组序列编 码的基因产物。根据重组生产过程中所采用的宿主的不同,由带有 该载体的宿主细胞所生产的多肽可能是糖基化多肽或非糖基化多 肽。本发明的多肽也可能带或不带初始蛋氨酸氨基酸残基。
无细胞翻译系统也可用于生产本发明的多肽。无细胞翻译系统 可采用由包含了可操作地连接编码多肽或其片段的核酸和启动子 的DNA构建体转录得到的mRNAs。在一些情况下,该DNA构建体可 在体外转录反应前进行线性化。然后将转录后的mRNA培养于适当 的无细胞翻译提取物(例如兔网状细胞提取物)以生产所需的多肽 及其片段。
表达载体可包含一个或多个选择性标记基因以提供转化宿主 细胞选择所需的表型性状,例如真核细胞培养中的二氢叶酸还原酶 或新霉素耐药性,或例如大肠杆菌的四环素或氨比西林耐药性。
D.核酸的扩增
在本发明的实施过程中,编码本发明多肽的核酸或经修饰的核 酸可通过扩增等方法进行复制。本发明提供了用于扩增编码本发明 多肽的核酸的扩增引物序列对,例如,能够扩增包含了Scd1蛋白 或toll样受体2序列或其子序列的核酸的引物对。
扩增方法包括,如聚合酶链式反应,PCR(PCR PROTOCOLS, A GUIDE TO METHODS AND APPLICATIONS,ed.Innis,Academic Press,N.Y.,1990and PCR STRATEGIES,1995,ed.Innis,Academic Press,Inc.,N.Y.),连接酶链式反应(LCR)(例如,参见Wu, Genomics 4:560,1989;Landegren,Science 241:1077,1988;Barringer, Gene 89:117,1990);转录扩增(例如,参见Kwoh,Proc.Natl.Acad. Sci.USA 86:1173,1989);以及自动维持序列扩增(例如,参见 Guatelli,Proc.Natl.Acad.Sci.USA 87:1874,1990);Q Beta复制酶扩 增(例如,参见Smith,J.Clin.Microbiol.35:1477-1491,1997),自 动化Q-beta复制酶扩增分析(例如,参见Burg,MoI.Cell.Probes 10: 257-271,1996)以及其它RNA聚合酶介导技术(例如NASBA, Cangene,Mississauga,Ontario);同样可参见Berger,Methods Enzymol.152:307-316,1987;Sambrook;Ausubel;U.S.Pat.Nos. 4,683,195以及4,683,202;Sooknanan,Biotechnology 13:563-564, 1995。
E.核酸杂交
本发明提供了在严格条件下与本发明的示例性序列(例如, Scd1序列或toll样受体2序列,或任一个的互补序列,或编码本 发明多肽的核酸)杂交的分离或重组核酸。另一方面,该严格条件 是一种高度严格的条件,中度严格的条件或低度严格的条件,如本 领域所公知,并如此处所述。这些方法可用于分离本发明的核酸。
另一方面,本发明的核酸(如按照在严格条件下进行杂交的能 力来定义)的长度可介于约5个残基至本发明核酸的全长;例如, 它们的长度可以至少为5,10,15,20,25,30,35,40,50,55,60,65,70, 75,80,90,100,150,200,250,300,350,400,450,500,550,600,650, 700,750,800或更多个残基,或为基因或编码序列的全长,例如 cDNA。比全长短的核酸同样包括在内。这些核酸可具有多种用途, 例如可作为杂交探针,标记探针,PCR寡聚核苷酸探针,iRNA,编 码抗体结合多肽(表位)的反义或序列,基序,活性位点等。
“选择性(或特异性)杂交”指在严格的杂交条件下将分子结 合,或杂交至一个存在于复杂混合物(例如总细胞或文库DNA或RNA) 的特定的核苷酸序列,其中该特定核苷酸序列的检测值应当至少为 背景的10倍。在一个实施例中,一种核酸可以通过其在严格条件 下与一种经其它方式确定为在本发明范围内的核酸(例如此处所述 的示例性序列)进行杂交的能力来确定其在本发明的范围内。
“严格杂交条件”指探针与其(通常在核酸的复杂混合物中的) 目标子序列而不与其它具有明显数量的序列(阳性信号(例如,本 发明核酸的鉴定)为背景杂交的约10倍)进行杂交时的条件。严 格条件与序列相关且随环境的不同而变化。更长序列会在更高的温 度下特异性杂交。对核酸杂交的广泛指导可参见如Sambrook,ed., MOLECULAR CLONING:A LABORATORY MANUAL(2ND ED.), VoIs.1-3,Cold Spring Harbor Laboratory,1989;CURRENT PROTOCOLS IN MOLECULAR BIOLOGY,Ausubel,ed.John Wiley &Sons,Inc.,New York,1997;LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY: HYBRIDIZATION WITH NUCLEIC ACID PROBES,Part I.Theory and Nucleic Acid Preparation,Tijssen,ed.Elsevier,N.Y.,1993。
一般而言,严格条件可选定为较特定离子强度pH下的热熔点I 低大约5-10℃。为(在给定离子强度,pH和核酸浓度下)平衡时 50%的与目标互补的探针与目标序列杂交的温度(由于目标序列为 过量存在,因此,在Tm,在平衡时50%的探针被占用)。严格条件 可以是在pH 7.0至8.3下盐浓度小于约1.0M钠离子,通常约为0.01 至1.0M钠离子浓度(或其它盐),且对于短探针(例如,10至50 个核苷酸)的温度至少为30℃以及对长探针(例如,大于50个核 苷酸)的温度至少为60℃。严格条件还可参照Sambrook(在下文 引用)通过添加甲酰胺等去稳剂来实现。对于高严格度杂交,阳性 信号至少是背景的两倍,优选为背景杂交的10倍。极高严格度或 严格杂交条件包括:50%甲酰胺,5x SSC和1%SDS在42℃下培养, 或是5x SSC和1%SDS在65℃下培养,并在65℃下0.2x SSC和1 %SDS中洗涤。对于选择性或特异性杂交,阳性信号(例如,本发 明核酸的鉴定)为背景杂交的约10倍。用于鉴定本发明范围内的 核酸的严格杂交条件包括:于42℃下在含有50%甲酰胺,5x SSC 和1%SDS的缓冲液中进行杂交,或于65℃下在含有5x SSC和1 %SDS的缓冲液中进行杂交,两者均以0.2x SSC和1%SDS在65 ℃下洗涤。在本发明中,包含本发明核酸的基因组DNA或cDNA可 通过在严格条件下使用此处所披露核酸的标准Southern印迹来鉴 定。对该杂交的另外的严格条件(鉴定本发明范围内的核酸)为包 含了在37℃下,40%的甲酰胺,1M NaCl,1%SDS的缓冲液中进行 杂交的条件。
然而,杂交形式的选择并非至关重要,洗涤条件的严格度才决 定了确定一种核酸是否在本发明范围内的条件。用于鉴定核酸是否 处于本发明范围内的洗涤条件包括,例如,pH 7下约0.02摩尔的盐 浓度以及其温度至少为约50℃或约55℃至约60℃;或者,约15分 钟,在72℃下盐浓度约为0.15M NaCl;或者,约15至20分钟, 温度至少为约50℃或约55℃至约60℃时盐浓度为约0.2X SSC;或 者,该杂交复合物以盐浓度约为2X SSC且包含0.1%SDS的溶液在 室温下洗涤15分钟并重复两次,然后以含0.1%SDS的0.1X SSC 在68℃下洗涤15分钟并重复两次;或为同等条件。参见Sambrook, Tijssen and Ausubel for a description of SSC buffer and equivalent conditions。
F.寡聚核苷酸探针及其使用方法
本发明还提供了用于鉴定编码作为TLR2或Scd1信号转导活性 调节剂的多肽的核酸的核酸探针。一方面,该探针包含了至少10 个本发明核酸的连续碱基。此外,本发明的探针可以至少为5,6,7, 8,9,10,15,20,25,30,35,40,45,50,60,70,80,90,100,110,120, 130,150个,或约10至50个,约20至60个,约30至70个本发 明核酸序列中的连续碱基。该探针通过结合和/或杂交鉴定核酸。 该探针可用于本发明的阵列,参见下文讨论。本发明的探针还可用 于其它核酸或多肽的分离。
G.序列一致性的测定
本发明提供了与Scd1多聚核苷酸或toll样受体2多聚核苷酸 具有至少90%,91%,92%,93%,94%,95%,96%,97%,98%,99%或 更高序列一致性的核酸。本发明提供了与Scd1蛋白或toll样受 体2蛋白具有90%,至少91%,92%,93%,94%,95%,96%,97%,98%, 99%或更高序列一致性的多聚核苷酸。序列一致性可以通过序列比 较算法或视觉检测的分析进行测定。蛋白和/或核酸的序列一致性 (同源性)可采用本领域公知的任何一种序列比较算法和程序进行 评估。
在序列比较中,通常将一种序列作为与测试序列比较的参考序 列。当使用序列比较算法时,将测试和参考序列输入计算机,指定 子序列坐标,并在需要时指定序列算法程序参数。可采用默认程序 参数,或另行指定参数。随后序列比较算法将根据程序参数计算测 试序列相对参考序列的序列相似度百分数。对于核酸和蛋白的序列 比较,可采用BLAST和BLAST2.2.2或FASTA 3.0t78版以及下文讨 论的默认参数。
此处所用的“比较窗口”指包括了对选自下述小组中任一邻近 位点数的片段的范围,该小组由20至600组成,通常为约50至约 200,更常见为约100至约150,在该范围内一种序列能够与相同邻 近位点数量的参考序列在两者最佳比对后进行比较。通过比对序列 进行比较的方法已为本领域所熟知。通过序列的最佳比对进行比较 可通过下述方法实现,例如,通过Smith&Waterman,Adv.Appl. Math.2:482,1981的局部同源性算法,通过Needleman&Wunsch, J.MoI.Biol.48:443,1970的同源性比对算法,,通过Pearson& Lipman,Proc.Natl.Acad.Sci.U.S.A.85:2444,1988的相似性搜索 法,通过这些算法的计算机执行(FASTDB(Intelligenetics),BLAST (国家生物医学信息中心),GAP,BESTFIT,FASTA,以及Wisconsin 遗传学软件包中的TFASTA,Genetics Computer Group,575Science Dr.,Madison,WI),或者通过人工比对和视觉观察(例如,参见 Ausubel等人,(1999Suppl.),Current Protocols in Molecular Biology, Greene Publishing Associates and Wiley Interscience,N.Y.,1987)。
一种适于检测百分比序列一致性和序列相似性的算法的优选 示例为FASTA算法,其描述参见Pearson&Lipman,Proc.Natl.Acad. Sci.U.S.A.85:2444,1988。还可参见Pearson,Methods Enzymol.266: 227-258,1996。用于计算百分比一致性的DNA序列FASTA比对的优 选参数已被优化,BL50Matrix 15:-5,k-tuple=2;joining penalty=40, optimization=28;gap penalty-12,gap length penalty=-2;以及width= 16。
另一种适于检测百分比序列一致性和序列相似性的算法的优 选示例为BLAST和BLAST2.0算法,其描述分别参见Altschul等 人,Nuc.Acids Res.25:3389-3402,1977;以及Altschul等人,J.MoI. Biol.215:403-410,1990。BLAST和BLAST2.0可采用此处所述的 参数检测本发明的核酸和蛋白的百分比序列一致性。可进行BLAST 分析的软件可通过国家生物技术信息中心公开获取(http: //www.ncbi.nlm.nih.gov/)。该算法包括首选通过鉴定待测序列中长 度为W的短词鉴定高得分序列对(HSPs),其中该词与数据库序列中 相同长度的词比对时匹配或满足某些正数值界限分数T。T指邻近 词分数界限(Altschul等人,supra)。这些初始邻近词条(word hits) 可作为种子启动对包含它们的更长HSPs的搜索。该词条在每个序 列的两个方向同时伸展,直至累计比对分数得到增加。对核苷酸序 列的累计分数采用参数M(对一对匹配残基的奖赏分数;总是>0) 和N(对不匹配残基的惩罚分数;总是<0)进行计算。对于氨基酸 序列,可使用得分矩阵来计算累计分数。以下情况下词条向各方向 的伸展被停止:累计比对分数较其最大实现值小数量X;由于一个 或多个负得分残基比对的累积,累计分数降至0或以下;或者达到 了任一序列的末端。BLAST算法的参数W,T和X测定了比对的灵敏 度和速度。BLASTN程序(用于核苷酸序列)默认词长(w)为11, 期望值(E)为5,M=5,N=-4,并同时对两条链进行比较。对于氨基 酸序列,BLASTP程序默认词长(w)为3,期望值(E)为10,以及该 得分BLOSUM62矩阵(参见Henikoff&Henikoff,Proc.Natl.Acad. Sci.U.S.A.89:10915,1989)的比对(B)为50,期望值(E)为10,M=5, N=-4,并同时对两条链进行比较。
BLAST算法还可进行两个序列间的相似度统计学分析(例如, 参见Karlin&Altschul,Proc.Natl.Acad.Sci.U.S.A.90:5873-5787, 1993)。由BLAST算法所提供的一种相似度检测为最小总可能性 (P(N)),它对两个核苷酸或氨基酸序列之间产生偶然匹配的可能性 提供了指示。例如,当测试核酸与参考核酸之间比较得到的最小总 可能性小于约0.2,更优选小于约0.01,更优选小于约0.001时, 该核酸被认为与参考核酸相类似。
另一种有用算法的示例为PILEUP。PILEUP采用渐进的,双序 列的比对建立了来自相关序列组的多重序列比对,从而显示了相关 性和百分比序列一致性。它还绘制了可显示用于建立比对的聚类关 系的树状图。PILEUP采用了简化的Feng&Doolittle,J.MoI.Evol. 35:351-360,1987的渐进比对法。所采用的方法与Higgins&Sharp, CABIOS 5:151-153,1989所描述的方法类似。该程序可对高达300 个序列进行比对,每个序列的最大长度为5,000个核苷酸或氨基酸。 该多重比对程序始于对两个最为相似的序列的双序列比对,从而产 生两个比对序列的聚类。然后将该聚类与下一个最接近的序列或比 对序列的聚类进行比对。两个序列聚类可通过两个单独序列的双序 列比对的简单扩展进行比对。最终比对可通过一系列的渐进,双序 列比对实现。该程序通过指定特定的序列及其氨基酸或核苷酸坐标 为序列比较区域并指定程序参数来运行。使用PILEUP时将采用下 列参数通过比较参考序列和其它测试序列测定序列一致性关系百 分比:默认间隔权数(3.00),默认间隔长度权数(0.10),以及加权的末端 间隔。PILEUP可以从GCG序列分析软件的7.0版等版本中获取 (Devereaux等人,Nuc.Acids Res.12:387-395,1984。
另一适合多重DNA和氨基酸序列比对的优选算法示例为 CLUSTALW程序(Thompson等人,Nucl.Acids.Res.22:4673-4680, 1994)。ClustalW可以在序列组之间进行多重双序列比较并将其装入 基于同源性的多重比对。间隔打开和间隔延长惩罚分别为10和 0.05。对于氨基酸比对,该BLOSUM算法可被用作蛋白权数矩阵 (Henikoff and Henikoff,Proc.Natl.Acad.Sci.U.S.A.89:10915-10919, 1992)。
“序列一致性”指氨基酸或核苷酸序列间的相似度量度,并可 用本领域公知的,例如以下描述的方法进行测量:
上下文中两个或更多核酸或核苷酸序列的“一致性”或百分比 “一致性”指两个或多个序列或子序列彼此相同或具有一定百分比 的相同的氨基酸残基或核苷酸(即针对指定区域或比较窗口,对最 大对应进行比较和比对时,采用下列序列比较算法之一或通过人工 比对和视觉观察检测到60%一致性,优选65%,70%,75%,80%, 85%,90%,91%,92%,93%,94%,95%,96%,97%,98%或99%或更高 的一致性)。
上下文中两个核酸或核苷酸序列的“充分一致性”指当为最大 对应进行比较和比对时两个或更多至少具有60%,通常至少70%, 优选至少80%,最优选至少90%或至少95%的核苷酸或氨基酸残 基一致性的序列或子序列,如通过下列序列比较算法之一或视觉观 察所测得。该充分一致性优选存在于长度至少为50碱基或残基的 序列区域,更优选存在于至少100碱基或残基的区域,最优选时该 序列至少150碱基或残基充分一致。在一个最优选的实施例中,该 序列的整个编码区域长度内均充分一致。
上下文中两个或多个核酸或核苷酸序列的“同源性”和“一致 性”指(为比较窗口或指定区域内的最大对应进行比较和比对时) 两个或多个序列或子序列彼此相同或具有一定百分比的相同的氨 基酸残基或核苷酸,如通过下列序列比较算法之一或人工比对和视 觉观察所测得。对于序列比较,可将一种序列作为与测试序列比较 的参考序列(Scd1基因产物或toll样受体2多聚核苷酸或多肽的 示例性序列)。当使用序列比较算法时,将测试和参考序列输入计 算机,指定子序列坐标,并在需要时指定序列算法程序参数。可采 用默认程序参数,或另行指定参数。随后序列比较算法将根据程序 参数计算测试序列相对参考序列的序列相似度百分数。
此处所用的“比较窗口”指包括了任一邻近残基数量的片段的 范围。例如,在本发明的另一方面,任意位置的从20至本发明示 例性多肽或核酸序列(例如Scd1或toll样受体2多聚核苷酸)全 长范围内的邻近残基被用来与具有相同数量邻近位点的参考序列 在两序列最佳比对后进行比较。如果该参考序列对本发明示例性多 肽或核酸序列具有必需的序列一致性,例如对Scd1或toll样受体 2多聚核苷酸或多肽具有至少90%,91%,92%,93%,94%,95%,96%, 97%,98%,99%或更高的序列一致性,则该序列在本发明的范围之 内。
可通过上述程序检测的基序包括编码亮氨酸拉链序列,螺旋- 转角-螺旋基序,糖基化位点,泛素化位点,alpha螺旋以及beta 折叠,编码能够引导编码蛋白分泌的信号肽的信号序列,牵涉转录 调节的序列如同源异形盒,酸性伸展,酶活位点,底物结合位点以 及酶切位点。
H.计算机系统计算机程序产品
为在硅片中检测和鉴定序列一致性,结构同源性,基序等,本 发明的序列可在任何可被计算机阅读和存取的媒体上存储,记录和 操作。相应地,本发明提供了记录或储存本发明的核酸和多肽序列 的计算机,计算机系统,计算机可读媒体,计算机程序产品等。此 处所用的词语“记录”和“储存”指在计算机媒体上储存信息的过 程。本领域的熟练技术人员可以迅速采用各种已知方法在计算机可 读媒体上记录信息,从而产生包含了一个或多个本发明的核酸和/ 或多肽序列的产品。
本发明的另一方面是记录了至少一个本发明的核酸和/或多肽 序列的计算机可读媒体。计算机可读媒体包括了磁可读媒体,光可 读媒体,电子可读媒体以及磁/光媒体。例如,该计算机可读媒体 可以是硬盘软盘,磁带,CD-ROM,数字多用途光盘(DVD),随机 存取内存(RAM)或只读内存(ROM)以及其它本领域技术人员公知的 其它媒体。
此处所用的术语“计算机”,“计算机程序”和“处理器”在最 广泛的背景内使用并包含所有该类设备。
多肽和转录本的调节或抑制
本发明进一步提供了与本发明的核酸序列互补的核酸(例如反 义序列)。反义序列能够调节或抑制编码蛋白的基因(例如编码TLR2 或Scd1的核酸)的转运,剪切或转录。该调节或抑制可以通过靶 向基因组DNA或信使RNA而实施。靶向核酸的转录或功能可通过杂 交和/或裂解等方法进行抑制。本发明提供的一种特别有用的抑制 剂包括能结合基因或信使,同时防止或抑制蛋白的生成和作用的寡 聚核苷酸。该关联可以通过序列特异性杂交实现。另一类有用的抑 制剂包括能引起蛋白信使的失活或裂解的寡聚核苷酸。该寡聚核苷 酸可具有引起该种裂解的酶活性,如核酶。该寡聚核苷酸可被化学 修饰或连接至能够裂解互补核酸的酶或组合物。人们可以从许多不 同的该类寡聚核苷酸的集合中筛选具有所需活性的寡聚核苷酸。
常规的使用反义,核酶技术和RNAi技术控制基因表达,或以 该方式表达外源基因的基因治疗方法已为本领域熟知。这些方法均 采用了编码本发明的磷酸酶多肽的反义或核酶转录本的系统,如载 体。术语“RNAi”代表RNA干扰。该术语在本领域中可理解为包含 了使用能沉默基因的RNA分子的技术。例如,参见McManus等人 Nature Reviews Genetics 3:737,2002。在本应用中,术语“RNAi” 包含了短干扰RNA(siRNA),微RNAs(mRNA),小时序RNA(stRNA) 等分子。一般而言,RNA干扰由双链RNA和基因的相互作用产生。
A.反义寡聚核苷酸
本发明提供了能够结合TLR2或Scd1信使RNA(可通过靶向mRNA 抑制多肽活性的)的反义寡聚核苷酸。设计反义寡聚核苷酸的策略 已经在科技和专利文献中得到详细描述,熟练技术人员可采用本发 明的试剂来设计该种寡聚核苷酸。例如,用于筛选有效反义寡聚核 苷酸的基因步移/RNA定位方案已为本领域所熟知,例如,参见Ho, Methods Enzymol.314:168-183,2000,其中描述了基于标准分子技 术提供简单可靠的潜在反义序列选择方法的RNA定位分析。还可 参见Smith,Eur.J.Pharm.Sci.11:191-198,2000。
天然存在的核酸可被用作反义寡聚核苷酸。该反义寡聚核苷酸 可为任意长度;例如,在另一方面,该反义寡聚核苷酸介于约5至 100,约10至80,约15至60,约18至40。最佳长度可通过常规 筛选进行测定。该反义寡聚核苷酸可以任何浓度存在。最佳浓度可 通过常规筛选进行测定。已知存在多种能够解决这一潜在问题的合 成的,非天然存在的核苷酸和核酸类似物。例如,可采用包含了 N-(2-氨乙基)甘氨酸单元等非离子骨架的肽核酸(PNAs)。还可采用 具有硫代磷酸酯键的反义寡聚核苷酸,其描述见WO 97/03211;WO 96/39154;Mata,Toxicol Appl Pharmacol.144:189-197,1997; Antisense Therapeutics,ed.Agrawal,Humana Press,Totowa,N.J., 1996。如上所述,带有本发明所提供的合成DNA骨架类似物的反 义寡聚核苷酸还可包括二硫代磷酸酯,甲基磷酸酯,磷酰胺,烷基 磷酸三酯,氨基磺酸盐,3′-硫缩,亚甲基(甲亚胺基),3′-N-氨 基甲酸盐,以及吗啉氨基甲酸酯核酸。
组合化学方法可被用于构建各种能够快速筛选对任何靶标(例 如本发明的正反义多肽序列)具有适当结合亲和性和特异性的特定 寡聚核苷酸的大量寡聚核苷酸(例如,参见Gold,J.of Biol.Chem. 270:13581-13584,1995)。
B.siRNA
“小干扰RNA”(siRNA)指10至30个核苷酸长度,并以其通过 RNA干扰(RNAi)特异性干扰蛋白表达的能力命名的双链RNA分子。 siRNA优选长度为12-28核苷酸,更优选长度15-25核苷酸,更优 选长度19-23核苷酸,最优选长度为21-23核苷酸。因此,优选 siRNA分子长度为12,13,14,15,16,17,18,19,20,21,22,23,24,25, 26,2728或29核苷酸。
RNAi是一种两步机制。Elbashir等人,Genes Dev.,15:188-200, 2001。首先,用Dicer酶在被称作小干扰RNAs(siRNAs)的21-23 核糖核苷酸(nt)片段将长dsRNAs裂解。然后,将siRNA与靶向互 补mRNAs的核糖核酸酶复合物(称为RISC,即RNA诱导沉默复合 物)关联。然后由RISC裂解与互补siRNA相对的目标mRNAs,这 可以使mRNA对其它RNA降解途径敏感。
本发明所设计的siRNA能够与目标核糖核苷酸序列相互作用, 即其与一个目标序列充分互补,以至能与该目标序列结合。本发明 还包括经过化学修饰提高了耐核酸酶降解的稳定性但保留了与可 能存在的目标核酸的结合能力的siRNA分子。
C.抑制核酶
本发明提供了能够结合可通过靶向mRNA抑制多肽活性(例如, 抑制具有TLR2信号转导活性等TLR2活性或Scd1活性的多肽)的 信使的核酶。设计核酶及选择蛋白特异反义序列的策略已经在科技 和专利文献中得到详细描述,熟练技术人员可采用本发明的试剂来 设计该种核酶。
核酶通过其目标RNA结合部位与目标RNA相结合产生作用,其 目标RNA结合部位与裂解目标RNA的RNA的酶部位非常临近。这样, 核酸通过互补碱基配对识别并结合目标RNA,且一旦结合至正确位 点,便以酶作用的方法裂解和失活目标RNA。如果该裂解发生在编 码序列中,通过该方式对目标RNA的裂解将破坏其直接合成编码蛋 白的能力。当核酶结合并裂解其RNA靶标后,它通常会从该RNA释 放,从而能够重复结合和裂解新的靶标。
在某些情况下,核酶的酶属性优于其它技术,如反义技术(其 中核酸分子与核酸靶标简单结合以阻断其转录,翻译或与其它分子 结合),因为治疗性处理中所需的核酶的有效浓度可低于反义寡聚 核苷酸的相应浓度。这一潜在优势反映了核酶的酶作用能力。因此, 单个核酶分子能够裂解多个目标RNA分子。此外,核酶通常为一种 高特异性抑制剂,其抑制的特异性不仅取决于结合的碱基配对机 制,还取决于该分子能够抑制与之结合的RNA的表达的机制。也就 是说,该抑制是由RNA靶标的裂解所引起的,因此特异性可定义为 目标RNA的裂解率与非目标RNA的裂解率的比率。该裂解机制还取 决于有关碱基配对的附加因素。因此,核酶作用的特异性可大于结 合同一RNA位点的反义寡聚核苷酸的特异性。
该具有酶作用的核酶RNA分子可在锤头状基序中形成,也可在 发夹,肝炎delta病毒,I型内含子或类RnaseP RNA(与RNA引导 序列相关)基序中形成。该锤头状基序示例的描述参见Rossi,Aids Research and Human Retroviruses 8:183,1992;发夹基序参见 Hampel,Biochemistry 28:4929,1989,以及Hampel,Nuc.Acids Res. 18:299,1990;肝炎delta病毒基序参见Perrotta,Biochemistry 31:16, 1992;RnaseP基序参见Guerrier-Takada,Cell 35:849,1983;以及I 型内含子基序可参见Cech U.S.Pat.No.4,987,071。对这些特定基序 的引用并非作为限定目的;本领域技术人员将了解本发明的酶作用 RNA分子具有与一个或多个目标基因RNA结构域互补的特定底物结 合位点,并在底物结合位点内或周围具有能赋予该分子RNA裂解活 性的核苷酸序列。
治疗方法
此处还描述了对具有紊乱风险(或易感性)或具有与有害toll 样受体2表达或活性,或Scd1基因表达活性或Scd1基因产物活性 相关的紊乱的对象进行处理的预防性或治疗性方法。
预防方法
本发明涉及一种通过向对象施用通过toll样受体2调节信号 转导,Scd1基因表达活性或Scd1基因产物活性的物质来预防该对 象与有害量的toll样受体2表达或活性,Scd1基因表达或Scd1基 因产物活性相关的疾病或症状的预防方法。具有由toll样受体2 或Scd1介导的信号转导所导致或引起的紊乱或有害症状的风险的 对象可通过任何此处所述或本领域公知的诊断或预检分析的组合 等方法进行鉴别。一般而言,该种紊乱包括对先天免疫系统的有害 激活,例如,通过革兰氏阳性细菌感染所引起。将该制剂作为预防 剂进行施用可以在症状显现之前进行,从而使该症状可以较该制剂 缺失情况下的症状得到预防,延缓或减少。在一些实施例中,该制 剂减少了配体与toll样受体2和Scd1的结合。在一些实施例中, 该制剂减少了与toll样受体2结合的配体和Scd1的结合。该种适 当的物质可通过此处所述的筛选测定进行鉴定。一般而言,该种物 质与toll样受体2和/或Scd1基因产物特异性结合。
治疗方法
本发明的另一方面涉及为治疗目的调节或激活TLR2活性或 Scd1基因表达或Scd1基因产物活性的方法。该方法可以包括将细 胞与调节一个或多个与细胞相关的toll样受体2和/或Scd1活性 的物质进行接触,例如,特异性结合至TLR2或Scd1或激活通过toll 样受体2的信号转导。该制剂可以是在脂多糖诱导的细胞内特异性 结合至toll样受体2,Scd1基因或Scd1基因产物并能选择性激活 TLR2活性,或是能够激活对革兰氏阳性细菌的巨噬细胞应答。该制 剂可以是一种抗体或蛋白,天然存在的toll样受体2蛋白的同源 配体,肽,toll样受体2或Scd1蛋白肽类似物,小非核酸有机分 子或小无机分子。这些调节方法可在体外(例如,通过在该制剂存 在下培养细胞)或备选地,体内(例如,通过将该制剂向对象施用) 进行。
本发明提供了受疾病或紊乱(例如以toll样受体2蛋白活性, Scd1基因表达或Scd1基因产物活性等表达或活性的缺失为特征的 革兰氏阳性细菌感染或革兰氏阳性细菌皮肤感染)影响的个体的处 理方法。在一个实施例中,该方法包括服用治疗剂,如单不饱和脂 肪酸等,例如,棕榈油酸盐(棕榈油酸)或油酸盐(油酸)等。
本发明提供了受以toll样受体2蛋白活性,Scd1基因表达或 Scd1基因产物活性等表达或活性的缺失为特征的疾病或紊乱影响 的个体的治疗方法。在一个实施例中,本方法包括施用一种物质(例 如通过此处所述的筛选测定鉴定得到的物质)或物质组合以增加通 过toll样受体2的信号转导,或提高Scd1基因表达或Scd1基因 产物活性。对对象进行革兰氏阳性细菌感染治疗的情况下,也可使 用该制剂进行治疗。
其它可通过新的方法和组合物进行治疗的紊乱包括真菌感染, 脓血症,细胞巨化病毒感染,肺结核,麻风病,骨吸收(例如在牙 周疾病中),关节炎(例如伴随莱姆关节炎)以及病毒性肝炎。能 够通过toll样受体2激活信号转导(例如通过激活Scd1基因表达 或Scd1基因产物活性)的化合物同样可用于治疗革兰氏阳性细菌 感染。
对革兰氏阳性细菌感染相关的紊乱可通过能够激活与toll样 受体2,Scd1基因表达或Scd1基因产物的结合的技术进行成功处 理。例如,被证明显示阴性调节活性的化合物(例如通过此处所述 的测定所鉴别的物质,如抗体)可用于预防和/或改善有害Scd1基 因产物或toll样受体2活性引起的紊乱的症状。该种分子可以包 括,但不限于肽,磷酸肽,小有机或无机分子或抗体(包括例如多 克隆,单克隆,人源化,抗独特型,嵌合或单链抗体,以及Fab,F(ab′)2 和Fab表达库片段,scFV分子及其表位结合片段)。特别是能在脂 多糖诱导的细胞中特异结合至toll样受体2并能调节或激活Scd1 活性(Scd1基因表达或Scd1基因产物),或是调节或激活对革兰氏 阳性细菌感染的巨噬细胞应答的抗体及其衍生物(例如,其抗原结 合片段)。
试剂盒
本发明提供了包含本发明的组合物(例如,核酸,表达盒,载 体,细胞,多肽(例如Scd1多肽或toll样受体2信号激活多肽)) 和/或抗体的试剂盒。该试剂盒还可包含如此处所述的介绍本发明 方法和用途的介绍性材料。
治疗应用
通过本发明的方法鉴定得到的化合物和调节剂可用于多种治 疗方法。因此,本发明提供了用于治疗感染性疾病,革兰氏阳性细 菌感染,toll样受体2信号转导缺陷,Scd1基因突变或基因表达 缺陷或Scd1基因产物缺陷的组合物和方法。
示例性包括,但不限于,革兰氏阳性细菌皮肤感染,例如化脓 链球菌感染或金黄色葡萄球。革兰氏阳性球菌化脓链球菌感染或金 黄色葡萄球是人脓包,脂肪团和伤口感染的主要细菌。
示例性包括,但不限于,病毒性或细菌性疾病。本发明的多肽 或多聚核苷酸可用于处理或检测感染剂。例如,通过提高免疫应答, 特别通过提高B和/或T细胞的增殖和分化可对感染性疾病进行治 疗。免疫应答的提高既可通过增强现有免疫应答,也可通过启动新 的免疫应答来实现。此外,本发明的多肽或多聚核苷酸还可用于在 不需引发免疫应答的情况下直接抑制感染剂。
类似的,可本发明的多肽或多聚核苷酸进行处理或检测的能够 引发疾病或症状的细菌或真菌包括,但不限于,下列革兰氏阴性和 革兰氏阳性细菌家族以及真菌:放线菌(例如,棒状杆菌,分枝杆 菌,诺卡氏菌),曲霉菌,芽孢杆菌(例如,炭疽,梭菌),类杆菌, 芽生菌,博德特菌,包柔氏螺旋体菌,念珠菌,弯曲杆菌,球孢子 菌,瘾球菌,皮肤真菌,肠杆菌(克雷伯菌,沙门氏菌,沙雷氏菌, 耶尔森氏菌),丹毒丝菌,螺杆菌,军团菌,细螺旋体菌,李斯特 菌,支原体,奈瑟球菌(例如不动杆菌,淋病,脊髓膜炎),巴斯 德感染(例如,放线杆菌,嗜血杆菌,巴斯德菌),假单胞菌,立 克次氏体菌,衣原体,梅毒以及葡萄球菌。这些细菌或真菌家族可 引起下列疾病或症状,其包括,但不限于:菌血症,心内膜炎,眼 部感染(结膜炎,肺结核,眼色素层炎),齿龈炎,机会性感染(例 如,AIDS相关感染),甲沟炎,修复相关的感染,Reiter病,呼吸 道感染,如百日咳或积脓症,脓血症,莱姆关节炎,猫抓病,痢疾, 副伤寒热,食物中毒,伤寒,肺炎,淋病,脑膜炎,衣原体病,梅 毒,白喉,麻疯病,副结核,肺结核,狼疮,波特淋菌中毒,坏疽, 破伤风,脓疱病,风湿热,猩红热,性传播疾病,皮肤疾病(例如, 蜂窝织炎,皮肤真菌炎),血毒症,尿道感染,伤口感染。本发明 的多肽或多聚核苷酸可用于治疗或检测这些症状和疾病的任意一 种。
此外,可通过本发明的多肽或多聚核苷酸进行处理或检测的能 够引发疾病或症状的寄生物包括,但不限于下列家族:变形虫,巴 贝西虫,球虫,隐孢子虫,双核变形虫,马锥虫,体外寄生虫,贾 第鞭毛虫,肠虫,利什曼虫,泰勒尔梨浆虫,弓浆虫,锥虫以及滴 虫。这些寄生虫可引起各种疾病或症状,其,但不限于:疥疮,恙 螨病,眼部感染,肠内疾病(例如,痢疾,贾第鞭毛虫病),肝病, 肺病,机会性感染(例如AIDS相关),疟疾,妊娠并发症以及弓浆 虫病。本发明的多肽或多聚核苷酸可用于治疗或检测这些症状和疾 病的任意一种。
优选地,采用本发明的多肽或多聚核苷酸所进行的处理既可以 通过将有效量的多肽向患者施用,也可以通过从患者体内取出细 胞,向该细胞提供本发明的多聚,并将工程改造的细胞导回患者体 内(离体治疗)。此外,本发明的多肽或多聚核苷酸可用作疫苗中 的抗原,以引发对感染性疾病的免疫应答。
药物组合物制剂和施用
本发明提供了包含本发明的核酸,肽和多肽(包括Abs)的药 物组合物。如上文讨论,本发明的核酸,肽和多肽可用于激活内源 Scd1基因或Scd1多肽的表达。在细胞或非人动物中的该种激活可 形成对能够处理或改善感染性疾病或革兰氏阳性细菌感染的化合 物的筛选特征。对一种对象施用本发明的药物组合物可用于在该对 象中形成耐受原性免疫环境。这可被用于使该对象耐受抗原。
本发明的核酸,肽和多肽可与药学可接受的载体(赋形剂)组 合形成药物组合物。药学可的载体可以包含具有使本发明的药物组 合物更稳定,或提高或降低其吸收或清除率等功能的生理学可接受 的化合物。生理学可接受化合物可以包括,例如,碳水化合物(如 葡萄糖,蔗糖或葡聚糖),抗氧化剂(如维生素C或谷胱甘肽),螯 合剂,低分子量蛋白,减少该肽或多肽的清除或水解的组合物,或 赋形剂或其它稳定剂和/或缓冲液。洗洁剂(包括脂质载体)也可 用于稳定药学组合物或提高或降低其吸收。肽和多肽的药学可接受 的载体和制剂已为熟练技术人员所公知并在科技和专利文献中得 到了详细的描述,例如,参见最新版的Remington′s Pharmaceutical Science,Mack Publishing Company,Easton,Pa.(″Remington′s″)。
其它生理学可接受的化合物包括湿润剂,乳化剂,分散剂或对 防止微生物生长或作用特别有效的防腐剂。各种防腐剂已被广泛了 解,包括如苯酚和维生素C。本领域的技术人员可以理解药学可接 受载体包括生理可接受化合物的选择取决于本发明的肽或多肽的 施用途径及其特殊的生理-化学性质等。
一方面,本发明的核酸,肽或多肽可溶解于药学可接受的载体, 例如当该组合物为水溶性时该载体为含水载体。可用于肠内,肠胃 外或透粘膜药物传递的制剂的水溶液示例包括,水,盐水,磷酸缓 冲盐,Hank溶液,Ringer溶液,右旋糖/盐水,葡萄糖溶液等等。 该制剂可包含接近生理条件所需的药学可接受的辅助物质,例如缓 冲剂,张力调节剂,湿润剂,洗洁剂等等。添加剂还可包括附加活 性成分如杀菌剂,或稳定剂。例如,该溶液可包含醋酸钠,乳酸钠, 氯化钠,氯化氯化钙,山梨醇单月桂酸酯或油酸三乙醇胺。这 些组合物可通过传统的公知灭菌技术进行灭菌,或者可进行无菌过 滤。该所得的水溶液可原样或冻干包装待用,该冻干产品在施用前 与无菌水溶液混合。这些制剂中的肽浓度可大范围变动,该浓度的 选择主要依据与所选的特定施用模式以及患者需求一致的流体体 积,粘度,体重等。
固体制剂可用于肠内(口服)施用。它们可形成丸剂,片剂, 粉末或胶囊等。对于固体组合物,可采用传统的无毒固体载体,其 包括药物级甘露醇,乳糖,淀粉,硬脂酸镁,糖精钠,滑石,纤维 素,葡萄糖,蔗糖,碳酸镁等。对于口服施用,药学可接受的无毒 组合物可由任意常用赋形剂(如前述列举的载体)构成,并一般占 活性成分(例如肽)的10%至95%。非固体制剂同样可以用于肠 内施用。该载体可选自各种油,包括石油,动物,植物或合成来源 的油,例如,花生油,豆油,矿物油,芝麻油等。适当的药物赋形 剂包括,如淀粉,纤维素,滑石,葡萄糖,乳糖,蔗糖,白明胶, 麦芽,米,面粉,白垩,硅胶,硬脂酸镁,硬脂酸钠,甘油单硬脂 酸酯,氯化钠,脱脂奶粉,甘油,丙烯乙二醇,水,乙醇。
当本发明的核酸,肽或通过口服施用时,可对其进行保护以防 止消化。这既可以通过将核酸,肽或多肽与一种组合物进行复合以 使其耐受酸性和酶水解,或可将核酸,肽或多肽包装在抗性载体如 脂质体中。保护化合物防止其被消化的方法已为本领域所熟知,例 如,可见Fix,Pharm Res.13:1760-1764,1996;Samanen,J.Pharm. Pharmacol.48:119-135,1996;U.S.Pat.No.5,391,377,其中描述了用 于治疗剂经口传递的脂质组合物(脂质体传递将在下文中进一步讨 论)。
也可以通过透粘膜或透皮方式进行全身施用。对于透粘膜或透 皮施用,可在制剂中采用针对待渗透屏障的适当渗透剂。该种渗透 剂已在本领域公知,并包括,例如针对透粘膜施用的胆汁盐和夫西 地酸衍生物。此外,还可以采用洗洁剂促进渗透。透粘膜施用可通 过鼻腔喷雾或使用栓剂实现。例如,参见Sayani,Crit.Rev.Ther.Drug Carrier Sy st.13:85-184,1996。对于局部,透皮施用,可将该药物 制成软膏,乳膏,油膏,粉末和凝胶等。透皮传递系统还可以包括, 例如药膏。
本发明的核酸,肽或多肽还可以采用能在体内传递制剂的持续 传递或缓释机制进行施用。例如,本发明的制剂中可包括能持续传 递肽的可生物降解的微滴或胶囊或其它可生物降解的聚合物结构 (例如,参见Putney,Nat.Biotechnol.16:153-157,1998)。
对于吸入方式,可采用包括干粉喷雾剂,液体传递系统,喷气 雾化器,推进剂系统等本领域已知系统传递本发明的核酸,肽或多 肽。例如,参见Patton,Biotechniques 16:141-143,1998;来自于Dura Pharmaceuticals(San Diego,Calif.),Aradigrn(Hayward,Calif.), Aerogen(Santa Clara,Calif.),Inhale Therapeutic Systems(San Carlos, Calif.)等公司的多肽大分子产品和吸入传递系统。例如,该药物制 剂可以气溶胶或喷雾形式施用。对于气溶胶施用,该制剂可以与表 面活性剂和推进剂精细分隔的形式提供。另一方面,用于将制剂传 递进入呼吸组织的设备是一种吸入器,制剂在其中进行气化。另一 种液体传递系统包括,如喷气雾化器。
在制备本发明的药物时,可采用多种制剂改良的方法以改变药 物代谢动力学和生物分布。大量改变药物代谢动力学和生物分布的 方法已为本领域普通技术人员所公知。例如该类方法包括使用由蛋 白,脂质(例如,脂质体,见下文),碳水化合物或合成聚合物(已 在上文讨论)等物质构成的载体对组合物进行保护。关于药物代谢 动力学的一般讨论可参见Remington′s,Chapters 37-39等。
本发明的核酸,肽或多肽可通过任何本领域已知的方法单独传 递或作为药物组合物进行传递,例如,全身,区域,局部(例如, 直接进入或直接到达肿瘤);作为皮下的,气管内的(例如,通过 气溶胶)或透粘膜的(例如,口腔的,膀胱的,阴道的,子宫的, 直肠的,鼻粘膜)制剂通过动脉内,鞘内(IT),静脉内(IV),肠胃外, 胸膜腔内,局部的,经口的,或是局部施用。制备可供施用的组合 物的实际方法为本领域的技术人员所知晓或显而易见,并在科技和 专利文献中得到了详细的描述,例如,参见Remington′s。对于“区 域作用”,例如集中于特定器官,施用的模式包括动脉内或鞘内(IT) 注射,例如集中于特定的器官,如脑部和CNS(例如,参见Gurun, Anesth Analg.85:317-323,1997)。例如,当需要将本发明的核酸, 肽或多肽传递直接传递进入脑部时优选颈动脉注射。如需要高全 身剂量时优选肠胃外施用作为传递途径。制备可供肠胃外施用的组 合物的实际方法为本领域的技术人员所知晓或显而易见,并得到了 详细的描述,例如Remington′s,还可参见Bai,J Neuroimmunol.80: 65-75,1997;Warren,J.Neurol.Sci.152:31-38,1997;Tonegawa,J. Exp.Med.186:507-515,1997。
一方面,该包含了本发明核酸,肽或多肽的药物制剂被结合入 单层或双层的脂质中(例如脂质体),例如,参见U.S.Pat.Nos. 6,110,490;6,096,716;5,283,185;5,279,833。本发明还提供了将本发 明的水溶核酸,肽或多肽连接至单层或双层表面的制剂。例如,肽 可连接至包含酰肼-PEG-(二硬脂酰磷脂酰)乙醇胺的脂质体(例 如,参见Zalipsky,Bioconjug.Chem.6:705-708,1995)。可以采用脂 质体或任何形式的脂膜,例如血红细胞等完整细胞的平面脂膜或细 胞膜。脂质制剂可以通过包括静脉,透皮(例如参见Vutla,J.Phαrm. Sci.85:5-8,1996),透粘膜或口服施用等任意方式进行施用。本 发明还提供了将本发明核酸,肽和/或多肽结合入胶束和/或脂质体 的药物制剂(例如,参见Suntres,J.Pharm.Pharmacol.46:23-28,1994; Woodle,Pharm.Res.9:260-265,1992)。脂质体和脂质制剂可参照 标准方法进行制备,并同样为本领域所熟知,例如,参见Remington′s; Akimaru,Cytokines MoI.Ther.1:197-210,1995;Alving,Immunol. Rev.145:5-31,1995;Szoka,Ann.Rev.Biophys.Bioeng.9:467,1980, U.S.Pat.Nos.4,235,871,4,501,728以及4,837,028。
在一个实施例中,该活性化合物可结合能够保护该化合物不被 身体快速清除的载体进行制备,例如包含了植入和微胶囊化传递系 统的缓释制剂。可采用可生物降解,生物相容的聚合物,例如乙烯 醋酸乙烯,聚酸酐,聚乙醇酸,胶原质,聚原磷酯以及聚乳酸。制 备该种制剂的方法对本领域技术人员是显而易见的。这些材料也可 从Alza Corporation和Nova Pharmaceuticals,Inc.购买。脂质体悬浮 液(包括靶向感染细胞的带有针对病毒抗原的单克隆抗体的脂质 体)也可用作药学可接受的载体。它们可根据本领域技术人员公 知的方法进行制备,例如,如U.S.Pat.No.4,522,811所述。
将口服或肠胃外施用的组合物制备成剂量单位形式将有利于 施用和剂量一致。此处所用的剂量单位形式指配合待处理对象的单 位剂量的物理分散单位;每一个单位包含了结合了所需药物载体的 经计算可以产生所需治疗效果的预定数量的活性化合物。
该类化合物的毒性和疗效可在细胞培养或试验动物中通过标 准的药物程序进行测定,例如测定LD50(引起50%死亡的剂量)和 ED50(引起50%疗效的剂量)。毒性和疗效之间的比例是一种疗效指 数并可以LD50/ED50比例来表达。优选具有高疗效指数的化合物。 尽管也可使用显示毒性副作用的化合物,在设计传递系统的时候应 当注意将该化合物靶向作用组织的位点以最小化对未感染细胞的 损伤,从而减少副作用。
从细胞培养分析和动物试验获得的数据可用于制定在人体使 用的剂量范围。该类化合物的剂量优选处于包含了ED50且毒性很小 或没有毒性的循环浓度的范围内。该剂量可根据采用的剂型和施用 途径在该范围内变化。对于本发明的方法中所使用的任何化合物, 其治疗有效剂量可通过细胞培养分析进行初始估计。可以通过(如 炎症或有害发炎引起的紊乱)动物模型推算剂量,从而获得包含细 胞培养中测得的IC50(即达到最大症状抑制一半时的测试化合物浓 度)的循环血浆浓度范围。该信息可用于更准确制定有用的人体剂 量。血浆中的水平一般可通过对标记物采用高效液相色谱等方法进 行测定。在试验中(例如临床前方案)有用的动物模型在本领域公 知,例如,如(Springer,Sent.Immunopathol.25:35-45,2003)以及 Nikula等人,Inhal.Toxicol.4(12):123,53,2000)中所述,以及本领域 所公知的,例如,针对真菌感染,脓血症,细胞巨化病毒感染,肺 结核,麻风病,病毒性肝炎以及感染(例如,由分枝杆菌引起的感 染)的炎症性紊乱动物模型。
如此处所指定,抗体等蛋白或多肽的治疗有效量(即有效剂量) 的范围约为0.001至30mg/kg体重,例如,约0.01至25mg/kg体 重,约0.1至20mg/kg体重,或约1至10mg/kg,2至9mg/kg,3 至8mg/kg,4至7mg/kg,或5至6mg/kg体重。该蛋白或多肽可 在约1至10周内(例如,在2至8周之间,将在约3至7周之间, 或约4,5,或6周)每天或每星期一次或多次施用。某些实例中需 要用药几个月或更多的时间。熟练技术人员可以理解某些因素可以 影响有效治疗一种对象所需的剂量和时间,其包括但不限于疾病或 紊乱的严重性,在先的治疗,对象的总体健康和/或年龄以及存在 的其它疾病。此外,采用治疗有效量物质如蛋白或多肽(包括抗体) 对对象的治疗可以包括单次治疗,也可包括优选的多次治疗。
对于抗体,该剂量通常为0.1mg/kg体重(例如,10mg/kg体 重至20mg/kg体重)。部分人抗体和全人抗体通常在人体内比其它 抗体具有更长的半衰期。相应地,通常可以采用更低的剂量和更小 的施用频率。脂化等修饰可用于提高抗体的稳定性,增强摄取和组 织穿透(例如,至脑部)。对一种脂化抗体的方法的描述可参见 Cruikshank等人,J.Acquired Immune Deficiency Syndromes and Human Retrovir′ology,14:193,1997)。
本发明包含了能够通过toll样受体2调节信号转导调节Scd1 基因表达或Scd1基因产物的或活性的制剂或化合物。该制剂可以 是一种小化学分子等。该种小化学分子包括,但不限于,肽,肽类 似物(例如,类肽),氨基酸,氨基酸类似物,分子量小于约10,000 克每摩尔的小非核酸有机化合物或无机化合物(即包含了异源有机 或有机金属化合物),分子量小于约5,000克每摩尔的有机或无机 化合物,分子量小于约1,000克每摩尔的有机或无机化合物,分子 量小于约500克每摩尔的有机或无机化合物,以及盐,酯,和其它 该类化合物的药学可接受形式。
示例性的包括每公斤对象或样本重毫克或微克量的小化学分 子(例如,约1微克每公斤至约500毫克每公斤,约100微克每公 斤至约5毫克每公斤,或约1微克每公斤至约50微克每公斤)。应 当进一步理解小化学分子的适当剂量取决于该小化学分子对于需 要调节的表达或活性的效力。当一个或多个该类小化学分子向动物 (例如,人)施用以调节本发明的多肽或核酸的表达或活性时,医 生,兽医或研究人员可以首先采用一个相对低的剂量,随后增加剂 量直至获得适当的响应。此外,可以理解对于任意特定动物对象的 特定剂量水平取决于多种因素,包括所采用的特定化合物的活性, 该对象的年龄,体重,总体健康,性别以及饮食,施用时间,施用 途径,排泄率以及药物组合和表达或活性需要调节的程度。
抗体或其片段可被(例如,共价地和/或通过接头)连接至另 一个治疗性部分(如治疗剂或放射性金属离子)以形成一种结合物。 治疗剂包括,但不限于,抗生素(例如,更生霉素(之前为放射菌 素),博来霉素,光神霉素以及安曲霉素(AMC))。
此处所述的结合物可被用于改变给定的生物响应。例如,与抗 体结合的部分可以是一种具有所需生物活性的蛋白或多肽。该蛋白 可包括,例如相思豆毒素,篦麻毒素A,假单胞菌外毒素或白喉毒 素等毒素;肿瘤坏死因子,alpha-干扰素,beta-干扰素,神经生 长因子,血小板源生长因子,组织血浆酶原激活剂;或,生物反应 调节剂等蛋白。
此外,一种能够与第二抗体结合形成一种如Segal在U.S.Pat. No.4,676,980所述的抗体异源结合物。
该药物组合物可与服药说明一起包含在容器,包装或分配器 内。
此处所述的化合物可用于制备能够在此处所述的任意处理方 法中采用的药剂。
该药物组合物配制成无菌,基本等渗并完全遵守美国食品药品 管理局的所有良好操作规范(GMP)的规定。
处理方案:药物代谢
根据施用方式,本发明的药物组合物可以多种单位剂型进行施 用。典型的核酸,肽和多肽药物组合物的剂量已为本领域技术人 员熟知。该种剂量通常为参考性的并可根据特定的治疗背景,患者 耐受性等进行调整。足够实现这一点的核酸,肽或多肽的数量被定 义为“治疗有效剂量”。对于该用途有效的剂量安排和数量,即“施 用方案”将取决于各种因素,包括疾病或症状的阶段,疾病或症状 的严重性,患者健康的总体状态,患者身体状态,年龄,药物制剂 和活性剂的浓度等。在计算对患者的施用方案时,还应考虑施用模 式。施用方案还应当考虑药物代谢动力学,即药物组合物的吸收率, 生物利用度,代谢,清除等。例如,参见最新版的Remington′s;Egleton, Peptides 18:1431-1439,1997;Langer,Science 249:1527-1533,1990。
在治疗应用中,采用组合物对患有自身免疫性疾病,感染病, 抗原呈递细胞缺陷或CD4细胞缺陷的患者施用的量应足以部分抑 制症状或疾病和/或其并发症。例如,一方面,可溶性肽药物组合 物对于静脉(IV)施用的剂量约为0.01mg/hr至约1.0mg/hr,并持续 施用数小时(通常为1,3或6小时),该施用可以间歇循环的方式 重复数周。也可采用大为提高的剂量(例如,调整至约10mg/ml), 特别是当施用在隔离位点而不进入血流时(例如进入体腔或器官的 内腔,例如,脑脊髓液(CSF))。
以下提供的对于开展本发明的特定实施例的示例仅作阐述之 用,无意以任何方式限制本发明的范围。
实施例
实施例1
Flake:一种带有相关免疫缺陷的可见表型变体
在鉴定普通免疫功能所需基因的努力中采用了ENU诱导的胚系 突变从总数为20,792F1和33,202F3的动物中筛选可见的和免疫的 表型。其中,一种被称为“flake”(flk)的隐性突变被发现能引起渐 进性脱发和慢性剥脱性皮炎。这些特征出现在断奶日龄并在年长的 动物中更为明显(图1)。表皮完整性的可见破坏和需要抗生素治疗 的自发皮肤感染提示我们检查在这些小鼠中的先天免疫功能的完 整性。
图1显示了在flake突变小鼠中观察到的可见表型。A.6周大 的小鼠B.8月大的小鼠C.8月大的小鼠中的眼部感染D.对B中 小鼠的放大以突出严重皮炎。
实施例2
在flk/flk突变小鼠中的持续化脓链球菌和金黄色葡萄球菌皮 肤感染
突变小鼠
革兰氏阳性球菌化脓链球菌和金黄色葡萄球菌是人脓疱病,蜂 窝织炎和伤口感染的主要致病菌。Guay,Expert.Opin.Pharmacother. 4:1259-1275,2003;Hedrick,Paediatr.Drugs 1:35-46,2003。可通过细 针距针直接皮下注射可靠建立鼠模型的实验性全厚度皮肤感染,从 而克服了斑贴接种相关的外伤需求和感染性和重现性差的问题。 Bunce等人,Infect.Immun.60:2636-2640,1992;Kraft等人,Infect. Immun.52:707-713,1986;Nizet等人,Nature 414:454-457,2001。
可采用带发光标记的化脓链球菌和金黄色葡萄球菌以及大肠 杆菌菌株,其中每一种菌株都结构性表达来自于无色杆菌的细菌性 荧光素酶基因操纵子。Kuklin等,Antimicrob Agents Chemother 47:2740-8,2003。感染的过程可以在16天内通过外部发光检测仪在 麻醉小鼠中观察。如图2A所示,普通C57BL/6小鼠需要8天完全 清除由5x105cfu的化脓链球菌接种引发的皮肤感染。flk/flk突 变小鼠在接种后的前6天内显示了类似的微生物清除动力学,但在 此之后,flk/flk突变体中的微生物载量开始区别于对照值,上升 至一个高值并在其后的整个试验过程中维持该值。flk/flk突变体 中的发光在接种4周后缓慢下降至背景水平。
化脓链球菌可产生一种小的溃疡型伤口,对照小鼠中该伤口在 第8天几乎完全治愈。28天后的flk/flk突变小鼠仍能观察到溃疡, 尽管体内没有可测的发光。可通过培养flk/flk突变体的溃疡物回 收发光化脓链球菌。因此,即使在试验接种4周后,flk/flk突变 小鼠仍受化脓链球菌的持续感染。
从金黄色葡萄球菌感染(图2B)所得的结果与上述结果形式上 一致。在观察初期,flk/flk突变体的细菌载量与对照密切相符, 但在接种后的第7天观察到了两条曲线的背离,其中对照动物中逐 渐实现了清除(但未在flk/flk突变体中实现),并使对照在2周 内完全治愈。与之相对,flake小鼠在3周后的发光仍然强烈可测, 并在接种4周后达到背景水平。
另一方面,flk/flk突变体能够清除革兰氏阴性细菌大肠杆菌 的感染(图2C)。在以其它途径(例如,通过静脉接种单增李斯特 菌,或使用金黄色葡萄球菌在肺内攻击)引发革兰氏阳性感染时, 在flk/flk突变体和普通对照间未观察到区别。从这些试验所得的 数据的基础上,可以看到:1.flk/flk突变小鼠杀灭革兰氏阳性皮 肤感染的能力遭到了破坏;2.该表型并不能延伸至所有的生物分 区,并可能局限于皮肤;3.所检测的单独的革兰氏阴性感染未被 该突变体所辨别;4.flk/flk小鼠可以正常治愈大肠杆菌引发的皮 肤损害这一事实提示该突变不影响伤口复原本身,但对病原体清除 具有选择性作用。
图2显示了flake突变小鼠在暴露至革兰氏阳性细菌时形成的 持续皮肤感染。A.以化脓链球菌皮下感染的对照(C57BL/6,n=4) 和突变(flake/flake,n=4)动物细菌生长的时间过程分析。上图显示 了在对每种基因型的4只动物发光(表示为初始接种的百分比)定 量后的图示。下图显示了接种1,6,8和14天后各基因型的两只 代表小鼠的图象覆盖和光检测。B.以金黄色葡萄球菌感染。图像显 示了1,6,9和15天的感染动物。C.以大肠杆菌感染。
实施例3
硬脂酰辅酶A去饱和酶1位点的flk突变定位
由flk所赋予的可见表型被用于定位,可见和免疫表型之间一 致性的可通过检查互交F1小鼠的子代以及其它在该位点的等位基 因变体随后建立,flk最初在对C3H/HeN的回交中采用一组分布于 整个小鼠基因组的59个信息标记定位于39个配子中的19号染色 体上。该表型在混合背景中被完全渗透,且该突变被置于标记 D19Mit96和D19MM7之间(图3A)。然后采用12个内部19号染 色体标记进行精确定位,从而在第283个配子上使该突变被限制在 由D19Mitl1和D19Mit53界定的2.6Mbp临界区域内。在Ensembl 数据库的该区域中所显示的43个基因中(图3C),硬脂酰辅酶A去 饱和酶1(Scdl)基因被认为是一种可能的候选物,因为名为asebia-J 和asebia-2J的两个突变等位基因均被描述为Scd1且在该两种情况 下突变小鼠显示了与flk纯合子的观察结果相类似的被称为“鳞状 皮肤”的皮肤表型。Sundberg等人,Am J Pathol 156:2067-75,2000; Zheng等人,Nat Genet 23:268-70,1999。
图3显示了flake突变的定位。A.转基因对数似然比(Lod值, Z)分析显示了在小鼠19号染色体上连锁的单峰值。该分析中包括 了总计59个信息标记(横轴),且39个配子(19个野生型和17个 突变动物)为对所有标记的基因型。B.19号染色体末端区域的精确 定位。对总数283个配子(显示了其中3个代表)的分析将flake 突变限定在相距2.6Mb的2个邻近标记之间。C.依照ENSEMBL数据 库的flake位点基因结构。该Scd1基因被突出显示。
Scd1的6个外显子可通过从C57BL/6对照小鼠和flk/flk突变体 中分离的基因组DNA进行扩增。对扩增子的直接测序揭示了外显子 5的对应于cDNA序列(索取号BC055453,参见图4A)中的#938 位点的突变点(C至A)。经预测ENU诱导的碱基转换可能引起SCD1 内的错义突变(T227K)。在Scd2和Scd3cDNA中未检测到突变。
该微粒体酶SCD1是一种带6个预测跨膜区的355个氨基酸的 离子结合41kDa蛋白。它可催化长链不饱和脂肪酸的Δ9去饱和, 从而导致作为其主要产物的棕榈油酸盐(C16:1)和油酸盐(C18:1) 的生物合成。如图4B所示,突变蛋白中中性氨基酸(T)对带电残基 (K)的替换发生在预测跨膜区内,并预计可破坏SCD1的结构完整性。
图4显示了flake突变的分子特征。A.来自于纯合体flake突 变小鼠(顶部图)和正常动物(底部图)的扩增基因组DNA跟踪文 件。B.SCD1蛋白和flake突变定位的图示。蓝框对应于SMART分 析预测的跨膜结构域。
为对这一假设进行测试,可对来自于对照和flk/flk小鼠的皮 肤切片的脂质组成进行薄层色谱(TLC)分析。与有关Scd1KO的报导 相类似,后一动物显示了胆固醇酯的下降(图5A),从而提示该flk 表型实际上是由观察到的Scd1等位基因变体所引起的。
图5显示了野生型和flake突变小鼠的脂含量的薄层色谱分 析。A.野生型(B6)或flake(flk)突变小鼠的皮肤切片中提取的脂质的 TLC。B.从金黄色葡萄球菌皮下感染1小时或24小时后的野生型小 鼠(B6+)的皮肤中纯化得到的脂质的TLC。M:标记,Cs:胆固醇,TG: 甘油三酸酯,CE:胆固醇酯。
实施例4
在体外和体内具有内在抗菌活性的棕榈油酸盐和油酸盐
Scd1flk/flk突变小鼠中C18和C16脂肪酸去饱和酶活性的缺失提 示我们考虑油酸盐和/或棕榈油酸盐的缺失是否能解释上述皮肤的 免疫缺陷表型。事实上,尽管没有证据说明MUFA在体内发挥保护 作用,许多报导均指出MUFA显示了对革兰氏阳性细菌的抗菌活性。 Miller等人,Arch Dermatol 124:209-15,1988;Wille及Kydonieus,Skin Pharmacol Appl Skin Physiol 16:176-87,2003。为了对这一工作假设 进行测试,首先进行了一系列的体外试验,其中检测了各种脂质对 化脓链球菌,金黄色葡萄球菌和大肠杆菌生长的作用。
该结果确认了棕榈油酸盐和油酸盐均具有对化脓链球菌和金 黄色葡萄球菌的强烈抑菌和杀菌活性。两种化合物的最小抑制浓度 (MIC,见表1)均在微摩尔范围内,并可与鼠杀菌肽AMP(CRAMP) 观察到的结果相比较。相对重量而言,MUFA的效力约为杀菌肽的 20倍。MUFA还对金黄色葡萄球菌有活性,而CRAMP对此完全无活 性。另一方面,即使在毫摩尔级的MUFA浓度下也未观察到抑菌或 杀菌活性,这与对革兰氏阳性细菌的特异性作用相一致。
表1.以μM表示的杀菌肽(CRAMP),油酸和棕榈油酸对化脓链球菌和 金黄色葡萄球菌的最小抑制浓度(MIC)和最小杀菌浓度(MGBC)

数值代表了3个试验的平均值,nd,未检测
为考察这一抗菌活性的生理关联,以金黄色葡萄球菌对野生型 小鼠接种,并对感染动物以棕榈油酸盐(100μl的100μM,DMSO 的溶液)或单独DMSO在感染位点重复(每两天)皮下注射进行处 理。本实验的结果如图6A和B所示。对于两组小鼠(n=6只动物), 其发光表示为初始接种物的一个百分比,并在感染后24小时测定。 金黄色葡萄球菌接种9天后,以棕榈油酸盐处理的动物显示出与载 体处理小鼠相比90%的发光减少。作为金黄色葡萄菌清除率提高的 结果,脂质处理动物中的溃疡性创面的直径(在第9日测得)是对 照中的四分之一(图6C)。这些清楚显示了MUFA体外和体内抗菌活 性的数据还揭示了这种基于脂质的防御机制在普通小鼠中并非最 大有效。
在类似的棕榈油酸盐施用条件下,flake突变体显示了在第1 天和第4天之间细菌生长的明显减少(同样在野生型小鼠中观察 到),但金黄色葡萄菌在接种2周后仍然可测。如图6D和E所示, 更高剂量的棕榈油酸(100μl的75mM溶液)中度提高了flk/flk突 变体的细菌清除率和随后的溃疡愈合(图6F)。然而,该药物疗法 未实现该表型的完全挽救。
图6显示棕榈油酸具有体内抗菌活性。A.棕榈油酸注射加速了 野生型小鼠中的细菌清除。对以金黄色葡萄球菌(在0天)接种并 以载体(DMSO)或棕榈油酸盐每两天注射一次(箭头)进行处理的对 照(C57BL/6)小鼠的发光(表示为初始接种物的一个百分比)进行了 测定。B.以金黄色葡萄球菌感染后9天以DMSO(顶部)或棕榈油酸 盐(底部)注射进行处理的对照(C57BL/6)小鼠的图片。C.显示感染 后9天以DMSO或棕榈油酸盐处理的对照(B6)小鼠中测得的病斑尺 寸的柱状图。**指P值<0.01。D.对金黄色葡萄球菌感染的flake 小鼠的棕榈油酸盐处理。除了以75mM棕榈油酸盐进行100μl注射以 外,该方案与A类似。E.以DMSO(顶部)或棕榈油酸盐(底部)处 理12天后的感染flake小鼠的图片。F.以DMSO或棕榈油酸盐处 理的感染flk突变体中的病斑尺寸(在12天测得)。*指P值<0.05。
实施例5
革兰氏阳性细菌感染过程中的TLR2依赖型的Scd1转录激活
勿庸置疑的MUFA的体内抗菌功能提示我们考虑其合成是否在 免疫应答中得到提高,类似于其它效应分子如CRAMP的情况,我们 对Scd1启动子的一个5kb片段进行了分析并注意到多个NF-κB结 合位点的存在(Fig.7A)。进行了对来自于普通或感染小鼠的皮肤切 片的半定量RT-PCR试验。图7B显示了金黄色葡萄球菌感染下的对 照(C57BL/6)小鼠皮肤中Scd1mRNA积累受到了强烈的诱导,而大肠 杆菌接种未产生作用。此外,对于带有经定位致变的Tlr2基因 (Tlr-/-)的小鼠Scd1基因不响应革兰氏阳性细菌接种。然而,假 设感染和RNA分离之间有24小时的迟滞,Scd1转录诱导也可能由 间接机制引起。
图7显示了小鼠中Scd1基因表达的感染和TLR2依赖型诱导。 A.Scd1启动子的信号扫描分析。显示了NF-κB和ISRE(干扰素-刺 激调节元件)。B.在未感染的对照(C57BL/6,第1泳道)和Tlr2-/- (第4泳道)动物或以金黄色葡萄球菌(第2和第5泳道)或大肠 杆菌(第3泳道)感染后的Scd1和β-肌动蛋白转录的RT-PCR检 测。显示了30和40循环后的PCR产物。M,大小标准。C.对照(0) 和从2,4和18小时后的野生型小鼠中分离得到的MALP诱导的腹 膜巨噬细胞中Scd1和β-肌动蛋白转录的RT-PCR检测。D.Scdl/β- 肌动蛋白比的定量。
根据最近的报导,代表了研究TLR信号转导的理想系统的巨噬 细胞同样可以表达Scd1基因。Uryu等人,Biochem Biophys Res Commun 303:302-5,2003。为了检测分离的巨噬细胞是否能够上调 Scd1以及检测该响应的动力学,可以用一种已知的TLR2激动剂- 合成巨噬细胞激活脂酰肽(MALP-2,EMC microcollections GmbH, Germany)刺激从野生型小鼠分离得到的腹膜巨噬细胞。Takeuchi 等人,J Immunol 164:554-7,2000。对分离的RNA样本在刺激后2,4, 8和18小时采用RT-PCR进行Scd1表达的考察。如图7C和D所示, Scd1表达在MALP诱导后2小时开始增加,并在18小时内达到4倍。 该Scd1的转录诱导与感染动物的皮肤中脂质合成的增加有关(参 见图5B)。
如前文指出,Scd1主要在皮脂腺中表达,且flake,以及asebia 和Scd1KO小鼠中表现出这些结构的萎缩。为证实人皮肤防御中的 可诱导Scd1表达与革兰氏阳性病原体的潜在关联,在永生化皮脂 腺细胞系SZ95中考察了MALP-2的作用。Zouboulis等人,J.Invest Dermatol.113:1011-1020,1999。首先,MALP-2,而不是LPS处理, 诱导了快速和有效的炎症响应,并通过IL-6和IL-8生成的增加 得到显示(图8A和B)。随后,在该人细胞系中观察到MALP-2刺激 4小时后SCD1转录也受到上调(图8C和D)。这些观察通过对脂肪 酸去饱和酶(FADS2)基因表达的监测得到了扩大。FADS2编码了一 种具有与SCD1类似酶特性的蛋白,且最近显示在一种体现为唇干 裂,臂部和腿部的角化皮疹以及会阴皮炎的严重皮肤疾病中缺失。 Williard等人,J.Lipid Res.42:501-508,2001。在人皮脂腺细胞中,经 MALP-2刺激18小时后FADS2得到了轻微但特异的诱导。
图8显示了以MALP-2刺激人皮脂腺细胞所显示的炎症反应和 SCD1和FADS2基因的上调。A.以MALP-2(50ng/ml)处理后SZ95 细胞中的IL-6产量。LPS(100ng/ml)刺激显示了最小的作用。B.在 A的条件下IL-8的定量。C.LPS和MALP-2刺激后4和18小时SCD1 和FADS2表达的RT-PCR检测。GAPDH表达被用作对照。D.在以 GAPDH信号规范化的两个独立试验(+/-s.e.m)中测得的SCD1和 FADS2信号。
实施例6
Toll样受体2响应的使哺乳动物防御革兰氏阳性细菌皮肤感 染的脂质效应途径
SCD1是一种负责MUFA,主要是棕榈油酸盐(C16:1)和油酸盐 (C18:1)的生物合成的酶。Ntambi,Prog Lipid Res 34:139-50,1995。 它可催化碳链的Δ9顺式去饱和,并使用棕榈酰辅酶A和硬脂酰辅 酶A作为底物。该酶在脂质代谢中的功能已经得到了集中的研究。 Ntambi和Miyazaki,Prog Lipid Res 43:91-104,2004。Scd1-/-小鼠明显 瘦于野生型动物并可抵御饮食诱导的肥胖(一种由脂肪酸氧化相关 基因的表达的提高介导的作用)。此外,肥胖(ob)和Scd1基因的 次形态突变的化合物纯合子显示出肥胖表型的显著减少。Ntambi 等人,Proc Natl Acad Sci 99:11482-6,2002。Scd1在ob突变体中Scd1 过度表达的现象提示至少部分的瘦素代谢作用是由Scd1的抑制引 起的。Cohen等人,Science 297:240-3,2002。两个Scd1的自发性突 变体等位基因已被描述并命名为asebia(ab)-J和-2J。Sundberg等 人,Am J Pathol 156:2067-75,2000;Zheng等人,Nat Genet 23:268-70, 1999。尽管表型差异很小,这些等位基因中每一个的纯合性均与皮 脂腺萎缩,秃头症和鳞状皮肤等这些携带该基因的靶向破坏的小鼠 中观察到的表型相关。Miyazaki等人,J Nutr 131:2260-8,2001.
本研究中提供了一种flake突变--一种带有高选择性先天免疫 缺陷表型的可视的隐性表型变体,该变体不能清除来自皮肤的革兰 氏阳性(而非革兰氏阴性)生物。采用表型驱动疗法,flk突变可 追溯至SCD1蛋白的六个跨膜结构域的第四个区域内的反义错误 (T227K)。在该区域以带电残基替换中性氨基酸可备选地修饰通常 位于微粒体膜内的去饱和酶的构型,或影响酶活性所需的铁原子的 协调。不管为何种机制,均显示从flake突变小鼠的皮肤分离得到 的脂质中的胆固醇酯(其合成需要MUFA)的水平的下降,从而证实 了新等位基因的萎缩功能。
此处描述了SCD1及其针对革兰氏阳性细菌的上皮先天免疫的 催化活性的产物。据显示以MUFA富集的食物饲养Scd1缺陷小鼠并 未减少突变体表型,这提示实现皮肤的正常外观和功能需要MUFA 的从头合成。因此,为了扩大体外观察,对以棕榈油酸盐向金黄色 葡萄球菌感染小鼠皮内施用的作用进行了监测。这些体内试验显示 棕榈油酸盐重复皮下注射降低了细菌扩增并显著提高了感染小鼠 的恢复(通过溃疡性创面的减小得到证明)。然而,即使重复注射 更高剂量的棕榈油酸盐,棕榈油酸盐在flake突变体中的这一有益 效果仍然不太明显。在Scd1突变体中观察到的过度活化的脂质分 解代谢可能导致注射脂质的半衰期变短并解释了这一差异。然而, 据指出以类维生素A(诱导皮脂腺的萎缩)处理痤疮问题的人体可 能遭受副作用-周期性金黄色葡萄球菌感染。Leyden等人,J Invest Dermatol 86:390-3,1986。该类患者中还观察到眼部革兰氏阳性细菌 感染。Egger等人,Ophthalmologe 92:17-20,1995。事实上,如更早 期在Scd1KO小鼠中所示,在flake突变体中也观察到了眼部感染 (见图1C)。Miyazaki等人,J Nutr 131:2260-8,2001。从flk/flk小 鼠获得的数据强调了皮脂腺以及其它产脂器官(可能包括眼睑的专 门睑板腺)在先天免疫应答中的重要作用,
MUFA选择性溶解革兰氏阳性细菌的机制尚待测定。碳链的长度 和/或不饱和的水平可能是功效的重要决定因素。此外,还可测定 脂质和AMP之间的协同。Flake/CRAMP双敲除小鼠将证明为研究该 问题的有用工具。该试验不排除除了抗菌活性外,棕榈油酸盐和油 酸盐可间接促进耐受性的可能性。通过蛋白修饰调节信号转换可能 是机制之一。据报导,最近在肌肉细胞中的胰岛素信号转导显示, 质谱可从其它src同源结构域3激酶Fyn(可能影响免疫细胞激活) 中的翻译后修饰中鉴别棕榈油酸盐。Liang等人,J Biol Chem 279:8133-9,2004;Rahman等人,Proc Natl Acad Sci 100:11110-5, 2003.
在小鼠和人细胞中SCD1转录以TLR-2依赖的方式被强烈上调。 患有罕见皮肤紊乱如带有毛发缺乏症和恐光症的毛囊性鱼鳞病综 合症(IFAP综合症,OMIM 308205)的人类患者具有萎缩的皮脂腺, 偶发Flake表型的秃头症和周期性皮肤感染(综述见Alfadley等人, Pediatr.Dermatol.20:48-51,2003)。根据最近对TLR2和6在人皮脂 腺表达的认识(Zouboulis等人,准备中),该结果指出了皮脂腺在 皮肤先天免疫防御中的显著和无疑的作用。总而言之,该数据显示 了皮肤中可诱导的基于脂质的杀菌效应途径的存在,并建立了脂质 代谢和先天免疫性之间的明确连接。
实施例7
材料和方法
小鼠。使用N-乙基N-亚硝基脲(ENU)进行的胚系突变已在 Hoebe等人,J Endotoxin Res 9:250-5,2003得到描述。动物在Scripps 研究院免疫学部门的动物房中在无病原体条件下饲养。本实验中所 采用的小鼠均为8-12周大。小鼠的处理和试验过程的进行均参照 动物管理和使用制度指南。
细菌。金黄色葡萄球菌Xen8.1(亲本株8325-4),化脓链球菌 Xen20(源自菌株591的血清型M49)以及大肠杆菌Xen14(源自EPEC WS2572)均从Xenogen(Carnbury,NJ)获得。
细胞培养。SZ95皮脂腺细胞在带有/不带50ng/ml MALP-2或 100ng/ml LPS添加了10%热灭活FCS,5ng/ml人表皮生长因子, 1mM CaCl2,10-5M棕榈酸,50μg/ml庆大霉素的HSG-Med(Sebomed, Berlin,Germany)中培养2,4,8,18小时,收集上清液使用ELISA 测定IL6和IL8。使用RNeasy Midi试剂盒(Qiagen,Hilden,Germany) 从4和18小时样本中分离RNA,并用RNase-Free DNaseset(Qiagen) 纯化以进行RT-PCR。
试剂。棕榈油酸和油酸均购自Sigma。S.minesota Re595LPS 购自Alexis(Carlsbad,CA),MALP-2购自EMC microcollections GmbH(Tubingen,Germany)。
皮肤感染。在指数生长期对细菌培养物进行离心并将菌体重悬 浮于含有10mg/ml作为载体的惰性Cytodex珠(Sigma)的10体积 PBS中。以约100μl 5x105c.f.u的发光细菌在麻醉后动物的背部进行 皮下注射。采用化学脱毛在接种前去除毛发。采用CCD相机进行每 日的发光检测(暴露动物5分钟)并以Xenogen的IVIS程序进行 定量。
薄层色谱。用氯仿/甲醇从皮肤切片中提取的总脂质可用硅胶 TLC分离。使用己烷/二乙醚/醋酸(70∶30∶1)作为显影剂,喷涂报春 花灵溶液(5mg,溶于100ml丙酮/水,80/20)后可在UV灯下显示脂 质。
半定量RT-PCR。对野生型和Tlrr2-/-突变小鼠去毛并以金黄色葡 萄球菌或大肠杆菌(5X105pfu)进行皮下注射。24小时后,切开感 染区域的皮肤并以Trizol(Gibco)法提取总RNA。使用1μg RNA合成 以寡脱氧胸苷酸引物的cDNA,该cDNA随后用作PCR反应的模板,该 PCR反应使用对Scd1(在外显子5的 3′-ctctatggatatcgcccctacgacaagaacattc-5′以及在外显子6的 3′-gaagctaggaacaaggagggatgtattcaggagg-5′,可允许基因组和cDNA扩 增的区分)或β-肌动蛋白基因特异的引物。将4μl PCR反应物加载 至琼脂糖凝胶。腹膜巨噬细胞的分离及刺激已另有描述。Hoebe等 人,J Endotoxin Res 9:250-5,2003。SZ95皮脂腺细胞中的hSCDl和 hFADS2表达可采用下列寡聚核苷酸进行半定量RT-PCR检测:
hSCD1f 5′-TTCAGAAACACATGCTGATCCTCATAATTCCC-3′,
hSCD1r 5′-ATTAAGCACCACAGCATATCGCAAGAAAGTGG-3′
hFADS2f5′-ACTTTGGCAATGGCTGGATTCCTACCCTC-3′
hFADS2r5′-ACATCGGGATCCTTGTGGAAGATGTTAGG-3′
使用甘油醛-3-磷酸脱氢酶(GAPDH)表达作为对照。
本说明书中所引用的所有公开和专利申请均以各种目的全文 引用作为参考,如同将每一个单独的公开和专利申请均为特定的单 独的以各种目的引用作为参考。
尽管前述发明已通过阐释目的的图示和示例进行详细描述,本 领域的普通技术人员根据本发明的教导应当能够轻易理解可在不 脱离附加权利要求的精神和范围的情况下对其进行一定的更改和 调整。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈