首页 / 专利库 / 动物学 / 哺乳动物 / 有蹄类动物 / 马科动物 / / 空气截止阀模块及其控制方法

空气截止及其控制方法

阅读:959发布:2023-03-22

专利汇可以提供空气截止及其控制方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及车辆 燃料 电池 系统的空气 截止 阀 模 块 及其控制方法,阀板及其多个驱动机构由一个模块构成,并且模块直接安装于 燃料电池 堆,从而使空气 截止阀 的相关部分的结构变得很紧凑。并且,形成有旁通流路来稀释燃料电池堆的排出气体,从而可减少氢浓度。,下面是空气截止及其控制方法专利的具体信息内容。

1.一种车辆燃料电池系统的空气截止,上述车辆燃料电池系统具有燃料电池堆,上述车辆燃料电池系统的空气截止阀模块的特征在于,
包括:
外壳,形成有相互分离的空气的入口和出口,以使上述入口和出口与上述燃料电池堆的空气的入口和出口相一致的方式安装于上述燃料电池堆;
主外壳,与上述子外壳相结合,在内部形成有与上述子外壳的入口相连通的入口管侧空间和与上述子外壳的出口相连通的出口管侧空间,形成有与上述入口管侧空间相连通的入口管和与上述出口管侧空间相连通的出口管;
盖罩,安装于上述主外壳,形成有用于使上述入口管侧空间与出口管侧空间相连接的旁通流路;
多个阀板,分别设置于上述主外壳的入口管侧空间和出口管侧空间,用于开闭上述子外壳的入口及出口和上述旁通流路的入口及出口,以及
轴,其以贯通上述主外壳的入口管侧空间和出口管侧空间的方式设置,在上述轴安装有上述多个阀板,
当上述燃料电池堆停止工作时,上述子外壳的入口及出口被上述阀板所阻断,当启动上述燃料电池堆时,上述阀板以中间状态开放,从而使上述子外壳的入口和出口及上述旁通流路的入口和出口均开放,
在上述主外壳的一侧形成有达插入部,在上述马达插入部以插入的方式设置有借助上述轴来驱动上述多个阀板的马达,
上述马达的输出轴与用于使转数减少及扭矩增大的齿轮组相连接,在上述齿轮组的输出轴设置有小齿轮,在上述轴的一端设置有与上述小齿轮相啮合的扇形齿轮,上述齿轮组与上述马达一起内置在上述马达插入部中且为行星齿轮组,并且上述空气截止阀模块还包括控制器,上述控制器设置于上述主外壳的一侧,通过与上述车辆燃料电池系统的燃料电池控制单元进行通信来控制上述马达的工作。
2.根据权利要求1所述的车辆燃料电池系统的空气截止阀模块,其特征在于,上述入口管侧空间和上述出口管侧空间朝向上述主外壳的背面开口,在各个上述开口的边缘突出形成有上述子外壳的安装部,上述子外壳的入口和出口分别插入于各个上述子外壳的安装部并朝向上述入口管侧空间和上述出口管侧空间露出。
3.根据权利要求1所述的车辆燃料电池系统的空气截止阀模块,其特征在于,在上述阀板附着有密封部件。
4.根据权利要求1所述的车辆燃料电池系统的空气截止阀模块,其特征在于,在上述燃料电池堆结束启动后,通过驱动上述马达来使上述阀板阻断旁通流路的入口和出口,从而使从外部流入的空气均通过上述子外壳的入口向上述燃料电池堆供给。

说明书全文

空气截止及其控制方法

技术领域

[0001] 本发明涉及空气截止阀模块及其控制方法,更详细地,涉及在燃料电池车辆用于开闭燃料电池堆的空气供给管道和空气排出管道的空气截止阀模块及其控制方法。

背景技术

[0002] 燃料电池车辆为通过利用在燃料电池堆中产生的电驱动达来行驶的车辆。
[0003] 上述燃料电池堆通过使氢和空气中的进行反应来生产电,在此过程中产生(水蒸气)和热量。
[0004] 如图1所示,燃料电池堆1与空气供给管道2和空气排出管道3相连接。在空气供给管道2中可设置压缩机4(机)来顺畅地向燃料电池堆1供给外部空气。供给的空气经过加湿器5进行加湿来使燃料电池堆1内部的电解质膜可维持充分浸湿的状态,从而使氢离子积极地从燃料极向空气极移动,由此促进燃料电池堆的电化学反应。
[0005] 在燃料电池堆1中不参与反应的空气通过空气排出管道3向大气中排出。空气排出管道3也经由加湿器5。
[0006] 另一方面,在上述空气供给管道2和空气排出管道3分别设置有空气截止阀6、7。
[0007] 当燃料电池堆1停止运行时,空气截止阀6、7防止因外部空气通过空气供给管道2和空气排出管道3向燃料电池堆1的内部(空气极)扩散而产生不必要的反应,由此造成燃料电池堆的耐久性下降的现象。
[0008] 如上所述,在以往,空气截止阀6、7分别设置于空气供给管道2和空气排出管道3,每个空气截止阀6、7还分别具有驱动装置,因此,空气截止阀6、7相关部分的尺寸变大且结构复杂。
[0009] 并且,空气截止阀6、7远离燃料电池堆1,因而当燃料电池堆停止运行时,即使关闭空气截止阀6、7,燃料电池堆1和空气截止阀6、7之间的空气也向燃料电池堆1流入,因此,存在引起不必要的反应的问题。
[0010] 并且,在以往,当启动燃料电池堆1时,若打开空气截止阀6、7,则存在于燃料电池堆1内部的包含氢的空气通过空气排出管道3按原状排出,因而存在排出气体的氢浓度超过限制标准的问题。(为了预防火灾,通常,排出气体的氢浓度限制在4%以下。)[0011] 现有技术文献
[0012] 专利文献
[0013] 专利文献1:韩国授权专利公报第10-1134646号(2012年04月02日)发明内容
[0014] 因此,本发明为了解决如上所述的问题而提出,本发明的目的在于提供如下的空气截止阀模块:燃料电池堆的空气截止阀的相关部分以紧凑的方式构成,当燃料电池堆停止运行时,不产生燃料电池堆的耐久性因空气截止阀与燃料电池堆之间的空气而下降的问题,当启动燃料电池堆时,可减少通过空气排出管道排出的氢气的浓度。
[0015] 并且,本发明的另一目的在于,提供如下的空气截止阀模块控制方法:当启动燃料电池堆时,可利用上述空气截止阀模块来减少向空气排出管道排出的氢气的浓度。
[0016] 用于实现上述目的的本发明的车辆燃料电池系统的空气截止阀模块中,上述车辆燃料电池系统具有燃料电池堆,上述车辆燃料电池系统的空气截止阀模块的特征在于,包括:子外壳,形成有相互分离的空气的入口和出口,以使上述入口和出口与上述燃料电池堆的空气的入口和出口相一致的方式安装于上述燃料电池堆;主外壳,与上述子外壳相结合,在内部形成有与上述子外壳的入口相连通的入口管侧空间和与上述子外壳的出口相连通的出口管侧空间,形成有与上述入口管侧空间相连通的入口管和与上述出口管侧空间相连通的出口管;盖罩,安装于上述主外壳,形成有用于使上述入口管侧空间与出口管侧空间相连接的旁通流路;以及多个阀板,分别设置于上述主外壳的入口管侧空间和出口管侧空间,用于开闭子外壳的入口及出口和旁通流路的入口及出口,当上述燃料电池堆停止工作时,上述子外壳的入口及出口被上述阀板所阻断,当启动上述燃料电池堆时,上述阀板以中间状态开放,从而使上述子外壳的入口和出口及上述旁通流路的入口和出口均开放。
[0017] 并且,本发明的车辆燃料电池系统的空气截止阀模块控制方法中,上述车辆燃料电池系统具有燃料电池堆,上述车辆燃料电池系统的空气截止阀模块控制方法包括:空气的入口及出口阻断步骤,当上述燃料电池堆停止工作时,通过驱动马达来使阀板阻断子外壳的入口和出口;以及阀中间开放步骤,当启动上述燃料电池堆时,通过驱动上述马达来使上述阀板以中间状态开放,从而使上述子外壳的入口和出口及上述旁通流路均开放,由此使从外部流入的空气的一部分旁通来与从上述子外壳的出口排出的空气相混合,从而减少排出气体的氢浓度。
[0018] 根据如上所述的本发明,包括空气流入管道的阻断阀和空气排出管道的阻断阀以及用于驱动它们的马达的多个驱动机构及控制器由一个模块构成。
[0019] 因此,具有燃料电池堆的空气截止阀的相关部分的结构变得紧凑的效果。
[0020] 并且,上述模块的子外壳直接安装于燃料电池堆,因此,空气截止阀与燃料电池堆之间的距离非常短,从而,当燃料电池堆停止运行时,可减少燃料电池堆的耐久性因空气截止阀与燃料电池堆之间的空气而下降。
[0021] 并且,在上述模块设置有在与空气截止阀相邻的位置使空气流入路径和空气排出路径相连接的旁通流路,从而当启动燃料电池堆时,对流入空气进行旁通来稀释通过空气排出管道排出的氢气,由此具有可减少其浓度的效果。附图说明
[0022] 图1为示出现有技术的燃料电池堆的空气供给和排出路径的结构的简图。
[0023] 图2为本发明的空气截止阀模块的立体图。
[0024] 图3为图2的纵向剖视图,且为示出本发明的空气截止阀模块的内部结构图。
[0025] 图4至图6为图2的I-I线剖视图,图4为空气截止阀阻断子外壳的入口和出口的状态的图,图5为空气截止阀阻断盖罩的旁通流路的状态的图,图6为空气截止阀开放所有子外壳的入口和出口及盖罩的旁通流路的状态的图。
[0026] 图7为示出本发明的空气截止阀模块控制方法的构成的框图
[0027] 附图标记的说明
[0028] 10:子外壳               11:入口
[0029] 12:出口                 20:主外壳
[0030] 21:入口管               22:出口管
[0031] 21a:入口管侧空间        22a:出口管侧空间
[0032] 23:轴孔                 24:马达插入部
[0033] 30:控制器               31:控制电路
[0034] 40:盖罩                 41:旁通流路
[0035] 50:轴                   51:扇形齿轮
[0036] 60:马达                 61:齿轮组
[0037] 62:小齿轮               71、72:阀板
[0038] 73:密封部件

具体实施方式

[0039] 本发明可实施多种变更,可具有多种实施例,将在附图中例示特定实施例并进行详细说明。但是,这并非表示所要将本发明限定于特定实施方式,而应当理解为包括本发明的思想及技术范围内的所有变更、等同技术方案及代替技术方案。为了说明的明确性和便于说明,在附图中所示的线的厚度或结构要素的尺寸等可能以夸张的方式示出。
[0040] 并且,后述的术语为考虑到本发明中的功能而定义的术语,这可根据使用人员、操作人员的意图或判例发生改变。因此,应基于本说明书的整体内容来对这种术语下定义。
[0041] 以下,参照附图对本发明的优选实施例进行详细说明。
[0042] 如图2至图4所示,本发明的空气截止阀模块包括子外壳10、主外壳20、控制器30、盖罩40、轴50、马达60及阀板71、72。
[0043] 子外壳10作为用于将模块直接安装于燃料电池堆的部分,与主外壳20一同形成相互分离的空气流入路径和空气排出路径。
[0044] 在子外壳10的外侧周围形成有用于安装于燃料电池堆的多个凸缘10a。在凸缘10a形成有用于安装螺栓的螺栓孔。
[0045] 在子外壳10的内部形成有通过隔板相互分离的入口11和出口12。当子外壳10安装于燃料电池堆时,上述入口11和出口12分别与燃料电池堆空气极的入口及出口相连接。
[0046] 在主外壳20形成有与空气流入管道相连接的入口管21和与空气排出管道相连接的出口管22。与入口管21和出口管22相连接的主外壳20的内部空间21a、22a通过隔板相互分离。即,与入口管21相连接的入口管侧空间21a和与出口管22相连接的出口管侧空间22a相互分离。
[0047] 上述两侧空间21a、22a朝向主外壳20的背面(安装有子外壳10的面)开口,在其开口部的周围突出形成有子外壳安装部25(参照图4)。
[0048] 上述子外壳安装部25呈可分别插入子外壳10的入口11和出口12的形状。即,与子外壳10的入口11相结合的安装部25和与出口12相结合的安装部25分离而成。
[0049] 子外壳10的入口11和出口12向上述安装部25插入,且它们的端部朝向主外壳20的空间21a、22a露出。
[0050] 通过如上所述的结构,在模块的内部形成有由入口管21、空间21a及入口11相连接的空气流入路径以及由出口12、空间22a及出口管22相连接的空气排出路径。上述空气流入路径和空气排出路径以如上所述的方式相分离。
[0051] 在主外壳20设置有横穿上述空间21a、22a的一侧部(与入口管21和出口管22相邻的端部的相反侧部分)的轴50。在用于划分两侧空间21a、22a的隔板形成有使上述轴50贯通的轴孔23。
[0052] 轴50的两侧端部被设置于主外壳20的轴承支撑
[0053] 在上述轴50借助螺杆来安装有用于阻断空气流入路径的阀板71和用于阻断空气排出路径的阀板72。阀板71、72通过轴50的转动在上述空间21a、22a内以相同的度进行转动。
[0054] 为了提高上述阀板71、72的密封性,在阀板71、72的表面可附着有由塑料材质形成的密封部件73。(参照图4)
[0055] 在主外壳20的一侧部(形成有入口管21和出口管22的位置的相反侧部分)形成有马达插入部24,在上述马达插入部24以插入的方式设置有马达60。根据情况,可一同内置有用于使马达60的输出转数减少并使扭矩增大的齿轮组61。上述齿轮组61可以为行星齿轮组
[0056] 在马达60(或者齿轮组61)的输出轴设置有小齿轮62,在轴50的一侧端部设置有扇形齿轮51,小齿轮62和扇形齿轮51相互啮合。因此,马达60的旋转力向轴50传递,从而使轴50根据马达60的动作方向朝向两侧方向进行转动。
[0057] 并且,在主外壳20的另一侧设置有上述控制器30。控制器30对上述马达60的工作进行控制,通过与燃料电池控制单元(FCU:Fuel cell control unit)进行通信来根据燃料电池堆的开启或关闭(on/off)状态对马达60进行控制,从而使阀板71、72进行工作,由此开闭空气流入路径和空气排出路径。可以进行上述电子控制的控制电路板31设置于控制器30的内部。
[0058] 主外壳20的前表面部(安装有子外壳10的面的相反侧面)为了在轴50组装阀板71、72而开口,为了堵住其开口部而安装有上述盖罩40。
[0059] 在上述盖罩40的内部形成有U字形状的旁通流路41。旁通流路41使主外壳20内侧的上述入口管21侧空间21a与出口管22侧空间22a相连接。
[0060] 以下,对本发明的空气截止阀模块的工作进行说明。
[0061] 阀板71、72通过使上述控制器30使马达60沿着正方向或逆方向进行旋转来与轴50一同进行转动,从而开闭空气流入路径、空气排出路径及旁通流路41。
[0062] 如图4所示,当马达60进行工作时,阀板71、72与轴50一同进行旋转。(图4为图2的I-I线剖视图,仅示出了空气流入路径侧的阀板71,但相反侧的空气排出路径侧阀板72也以相同的状态进行工作。)
[0063] 若阀板71、72朝向子外壳10侧进行旋转,则阀板71、72紧贴于子外壳10的入口11和出口12的端部的同时通过阻断上述入口11和出口12来阻断空气流入路径和空气排出路径。
[0064] 并且,如图5所示,若阀板71、72朝向盖罩40侧进行旋转,则阀板71、72堵住旁通流路41的入口41a和出口(虽未在图5中示出,但在相反侧存在与主外壳20的出口管22侧空间22a相连接的出口是显而易见的。)来相对于空气流入路径和空气排出路径阻断旁通流路
41。
[0065] 并且,如图6所示,可通过由控制器30对马达60的工作量进行控制来从子外壳10的入口11及出口12的阻断位置至旁通流路41的入口41a和出口的阻断位置的范围内自由调节上述阀板71、72的开口度。根据对上述阀板71、72的开口度的调节,可根据需求调节燃料电池堆的空气流入量、排出量及旁通流量。
[0066] 如上所述,在本发明的空气截止阀模块中,空气流入路径和空气排出路径以靠近的方式形成,分别对上述空气流入路径和空气排出路径进行开闭的阀板71、72借助一个马达60和轴50进行工作。即,空气流入路径和空气排出路径的阀板71、72通过相同的驱动机构进行工作。并且,上述轴50和马达60均收容于构成模块的主外壳20,在其侧部还安装有用于控制马达60的工作的控制器30。
[0067] 因此,可由非常紧凑的一个模块构成用于阻断燃料电池堆的空气流入管道和空气排出管道的空气截止阀的相关结构。因此,可更简洁地构成燃料电池车辆的燃料电池堆周边部的布局,因而可将所产生的多余空间利用于其他装置的配置。
[0068] 并且,在上述空气截止阀模块中,子外壳10直接与燃料电池堆的空气的入口和出口相连接,当燃料电池堆停止运行时,在空气流入路径和空气排出路径以图4的状态被阻断的情况下,从借助阀板71、72来阻断的阻断位置至到达燃料电池堆的路径以非常短的方式形成。
[0069] 因此,几乎不存在预先存在于上述路径的内部后朝向燃料电池堆的空气极扩散并流入的空气量,因此,在停止运行的状态下,可防止燃料电池堆的耐久性因不必要的反应而被下降的现象。
[0070] 另一方面,在上述空气截止阀模块中,当燃料电池堆停止工作时,使阀板71、72维持堵住子外壳10的入口11和出口12的状态,当燃料电池堆启动运行时,可将阀板71、72调节为以与图6相同的规定角度开口的状态,并通过旁通流路41使流入空气旁通。
[0071] 在此情况下,当上述阀板72开放子外壳10的出口12的同时残留于燃料电池堆内部的氢通过出口12朝向出口管22侧空间22a排出时,通过旁通流路41从入口管21侧空间21a朝向上述空间22a旁通的空气(未经过燃料电池堆的空气)与上述氢气进行混合,从而可减少通过空气排出管道排出的最终排出气体的氢浓度。
[0072] 对用于减少如上所述的排出气体的氢浓度的空气截止阀模块控制方法进行更加详细的说明。
[0073] 如图7所示,本发明的空气截止阀模块控制方法包括空气的入口及出口阻断步骤(步骤S10)、阀中间开放步骤(步骤S20)以及旁通流路阻断步骤(步骤S30)。
[0074] 上述空气的入口及出口阻断步骤S10在燃料电池堆停止运行的状态下实施,如图4所示,从燃料电池控制单元接收燃料电池堆的运行停止信息的控制器30使马达60进行工作来使阀板71、72朝向子外壳10侧进行转动,从而阻断子外壳10的入口11和出口12。此状态为实现空气截止阀本身目的的状态,在燃料电池堆的停止状态下,阻断空气从外部朝向燃料电池堆流入的现象,从而防止在燃料电池堆中产生不必要的反应。
[0075] 之后,若启动燃料电池堆,则实施使阀板71、72以规定角度开放的上述阀中间开放步骤(步骤S20)。在此状态下,设置于空气流入管道上的压缩机已经进行工作,因此,外部空气通过入口管21流入,上述空气通过开放的子外壳10的入口11向燃料电池堆供给,包含燃料电池堆内部的氢的空气通过子外壳10的出口12朝向主外壳20的出口管22侧空间22a排出。此时,旁通流路41因阀板71、72的中间开放状态而被开放,因此,主外壳20的入口管21侧空间21a的空气通过旁通流路41旁通来直接朝向出口管22侧空间22a排出。
[0076] 因此,包含通过子外壳10的出口12排出的氢的空气与上述被旁通的空气相混合来减少氢的浓度。
[0077] 如上所述,当启动燃料电池堆时,通过将控制阀板71、72控制为中间开放状态来确保旁通流量,从而可通过稀释从燃料电池堆排出的空气来减少氢浓度。因此,通过适当地调节上述阀板71、72的开口度来调节旁通流量,从而当启动燃料电池堆时,可使排出气体中的氢浓度减少为限制标准(通常为4%)以下。
[0078] 另一方面,在上述阀中间开放步骤(步骤S20)中,空气通过开放的子外壳10的入口11朝向燃料电池堆内部供给,通过上述空气也可稀释燃料电池堆内部的空气,从而减少氢浓度。
[0079] 若如上所述的燃料电池堆的启动过程结束,则实施上述旁通流路阻断步骤(步骤S30)。在旁通流路阻断步骤(步骤S30)中,控制器30通过对马达50进行控制来使阀板71、72朝向盖罩40侧完全旋转,从而阻断旁通流路41的入口41a和出口。
[0080] 在燃料电池堆正常运行的状态下,除了使通过空气排出路径排出的氢量减少之外,在燃料电池堆内部的反应中需要大量的空气(氧)。因此,通过实施上述旁通流路阻断步骤(步骤S30)来阻断旁通流路41,并完全开放子外壳10的入口11和出口12,从而向燃料电池堆供给从外部流入的所有空气,并且可以顺畅地排出从燃料电池堆中排出的空气。
[0081] 另一方面,在上述阀中间开放步骤(步骤S20)之前,可通过使设置于燃料电池系统的氢吹洗装置进行工作来优先实施对燃料电池堆的氢进行吹洗。若实施对氢的吹洗,则燃料电池堆内部的氢被去除,因此,还可进一步减少通过空气极侧出口排出的空气的氢含量,从而可有助于减少排出气体的氢浓度。
[0082] 如上所述,参照在附图中所示的实施例来对本发明进行了说明,但是,这仅仅为例示性的,只要是本技术领域的普通技术人员就可以理解可由此实施多种变形及等同的其他实施例。因此,本发明真正的技术保护范围应通过以下发明要求保护范围来定。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈