首页 / 专利库 / 变速箱和齿轮 / 液力变矩器 / 混合动力变速器的同步换档执行

混合动变速器的同步换档执行

阅读:4发布:2021-06-28

专利汇可以提供混合动变速器的同步换档执行专利检索,专利查询,专利分析的服务。并且提供了一种装置和方法,以在动 力 系系统中执行同步换档,该动力系系统具有多个 扭矩 生成装置,每个扭矩生成装置用于独立地向 变速器 装置提供原动扭矩。示例性变速器装置包括双模式、复合-分流、混合动力电动-机械变速器。操作包括在最初固定 齿轮 比下操作、在模式工作下操作变速器,和在最终固定齿轮比下操作变速器。控制系统降低激活最初齿轮的 离合器 的反作用扭矩,和当反作用扭矩小于预定值时释放第一扭矩传递装置。确定从 输入轴 到变速器的速度与第二扭矩传递装置的转速大致同步,和致动第二扭矩传递装置。,下面是混合动变速器的同步换档执行专利的具体信息内容。

1.一种在动系系统的变速器中执行从最初齿轮比到最终齿轮比的换档的方法,所述动力系系统包括若干扭矩生成装置,每个扭矩生成装置用于向变速器装置提供原动扭矩,所述变速器装置包括若干齿轮和若干扭矩传递装置,其中通过致动若干扭矩传递装置中的至少一个,扭矩在变速器装置和输出轴之间传输,所述方法包括:
降低激活最初齿轮比的第一扭矩传递装置的反作用扭矩;
当反作用扭矩小于预定值时释放第一扭矩传递装置;
确定从输入轴到变速器的转速与第二扭矩传递装置的转速大致同步;和,
致动第二扭矩传递装置。
2.如权利要求1所述的方法,还包括当致动最初固定齿轮比的扭矩传递装置之一的反作用扭矩小于预定反作用扭矩值时,从最初固定齿轮比转换到模式工作。
3.如权利要求2所述的方法,其特征在于,从最初固定齿轮比转换到模式工作包括释放反作用扭矩小于预定反作用扭矩值的扭矩传递装置。
4.如权利要求3所述的方法,其特征在于,预定反作用扭矩值包括大致等于零扭矩值的扭矩值。
5.如权利要求1所述的方法,其特征在于,致动第二扭矩传递装置还包括:
增加第二扭矩传递装置扭矩能力;和,
增加第二扭矩传递装置反作用扭矩。
6.如权利要求5所述的方法,其特征在于,增加第二扭矩传递装置扭矩能力包括:在输入轴转速与第二扭矩传递装置转速大致同步以前命令流体流过液压系统以致动第二扭矩传递装置。
7.如权利要求6所述的方法,其特征在于,在输入轴转速与第二扭矩传递装置转速大致同步以前命令液压致动流体流到第二扭矩传递装置包括:
监视第二扭矩传递装置转速;和,
根据第二扭矩传递装置的转速变化和液压系统的响应时间确定输入轴转速与第二扭矩传递装置转速大致同步的时刻。
8.如权利要求5所述的方法,其特征在于,增加第二扭矩传递装置扭矩能力包括致动用于致动第二扭矩传递装置的离合器控制螺线管。
9.如权利要求1所述的方法,其特征在于,用于向变速器装置提供原动扭矩的若干扭矩生成装置包括第一和第二电动机
10.如权利要求9所述的方法,其特征在于,降低激活最初齿轮比的第一扭矩传递装置的反作用扭矩包括:
将等于反作用扭矩的原动扭矩大小从第一和第二电动机传输到变速器;和,
将第一扭矩传递装置的扭矩能力降低到小于预定反作用扭矩值的扭矩值。
11.如权利要求9所述的方法还包括:降低从第一和第二电动机到变速器随后用于致动第二扭矩传递装置的原动扭矩大小。
12.如权利要求9所述的方法,其特征在于,预定反作用扭矩值包括大致等于零扭矩值的扭矩值。
13.如权利要求1所述的方法,其特征在于,变速器中从最初齿轮比到最终齿轮比的换档基于驾驶员对输出扭矩需求的变化而确定。
14.如权利要求1所述的方法,其特征在于,变速器中从最初齿轮比到最终齿轮比的换档基于外部条件变化而确定。
15.如权利要求1所述的方法,其特征在于,变速器中从最初齿轮比到最终齿轮比的换档基于动力系扭矩需求变化而确定,所述动力系扭矩需求变化由控制器命令导致,以便当扭矩生成装置之一包括电动机/发电机时,在电能生成模式和扭矩生成模式之间改变扭矩生成装置之一的工作模式。
16.如权利要求1所述的方法,其特征在于,用于向变速器装置提供原动扭矩的若干扭矩生成装置包括第一和第二电动机/发电机。
17.如权利要求13所述的方法,其特征在于,用于向变速器装置提供原动扭矩的若干扭矩生成装置还包括可操作地连接输入轴的内燃机
18.如权利要求17所述的方法,其特征在于,每个扭矩生成装置用于独立地向变速器装置提供原动扭矩。

说明书全文

技术领域

发明大体涉及混合动系控制系统,更具体地涉及执行变速器换档。

背景技术

用于管理混合动力车辆中不同原动机的输入和输出扭矩的各种混合动力系结构已经已知,最常见的为内燃机电动机。一个这种混合动力系结构包括双模式、复合-分流、电动-机械变速器,该变速器使用用于接收来自原动机动力源的功率的输入构件和用于输送来自变速器的功率的输出构件。第一和第二电动机/发电机可操作地连接能量存储装置,该能量存储装置用于在存储装置和第一和第二电动机/发电机之间交换电功率。设置了控制单元,用于调节存储装置和第一和第二电动机/发电机之间的电功率交换。控制单元还调节第一和第二电动机/发电机之间的电功率交换。
完成包括变速器系统的动力系系统的工程师还面临研发齿轮换档方案。任何换档方案正在进行的挑战是具有驾驶员可辨别的齿轮换档事件,但是使人不愉快。此外,工程师必须认识到在离合器滑动过程中产生的热能,和这种热能对变速器性能和耐用性的影响。
因而,需要存在一种在混合动力变速器的齿轮中执行同步换档的方法和装置。

发明内容

为了阐述上文提出的问题,提供了一种方法和制造物品,以便在动力系系统的变速器中执行从最初齿轮到最终齿轮的同步换档。示例性动力系系统包括若干扭矩生成装置,每个扭矩生成装置用于向变速器装置和车辆传动系提供原动扭矩,示例性变速器装置包括双模式、复合-分流、混合动力电动-机械变速器,其具有4个固定齿轮比。存在若干齿轮,其用于利用若干扭矩传递装置在变速器装置和输出轴之间传输扭矩。扭矩生成装置优选包括一对电动机/发电机和内燃机。扭矩传输可采用将来自扭矩生成装置之一的原动扭矩通过变速器传输到车辆传动系的形式。扭矩传输可采用将车辆动量导致的车辆扭矩通过变速器传输到扭矩生成装置之一的形式,以便传输扭矩来利用电动机/发电机之一实现发电,或者将扭矩传输到内燃机来实现发动机制动。制造物品包括控制系统,控制系统部分包括其中编码有计算机程序的存储介质,所述计算机程序用于实现执行从最初齿轮到最终齿轮的换档的方法。控制系统使用嵌入式控制器,执行计算机程序,以生成用于控制执行器的命令,从而实现希望或设计的结果。
控制系统中执行的整个方法包括在在最初固定齿轮比下操作变速器,在模式工作下操作变速器,和在最终固定齿轮比下操作变速器。
本发明的一个方面包括控制系统,该控制系统用于降低激活最初齿轮的第一扭矩传递装置的反作用扭矩,和当反作用扭矩小于预定值时释放第一扭矩传递装置。确定从输入轴到变速器的速度与第二扭矩传递装置的转速大致同步,和致动第二扭矩传递装置。
本发明还包括通过增加第二扭矩传递装置的扭矩能力;和增加第二扭矩传递装置的反作用扭矩来致动第二扭矩传递装置。
本发明的另一个方面包括通过在输入轴转速与第二扭矩传递装置转速大致同步以前命令流体流过液压系统以致动第二扭矩传递装置来增加第二扭矩传递装置的扭矩能力。
本发明的另一个方面包括根据第二扭矩传递装置的转速变化和液压系统的响应时间确定输入轴速度与第二扭矩传递装置转速大致同步的时刻。
本发明的另一个方面包括通过致动用于致动第二扭矩传递装置的离合器控制螺线管来增加第二扭矩传递装置的扭矩能力。
本发明的另一个方面包括将来自第一和第二电动机的大致等于反作用扭矩的原动扭矩提供到变速器;和将第一扭矩传递装置的扭矩能力降低到小于预定反作用扭矩值的扭矩值。
本发明的另一个方面包括变速器中从最初齿轮到最终齿轮的换档基于驾驶员对输出扭矩需求的变化而确定。
本发明的另一个方面包括变速器中从最初齿轮到最终齿轮的换档基于外部条件变化而确定。
本发明的另一个方面包括变速器中从最初齿轮到最终齿轮的换档基于动力系扭矩需求变化而确定,所述动力系扭矩需求变化由控制器命令导致,以便当扭矩生成装置包括电动机/发电机时,在电能生成模式和扭矩生成模式之间改变扭矩生成装置之一的工作模式。
本发明的一个方面包括当致动最初固定齿轮比的扭矩传递装置之一的反作用扭矩小于预定反作用扭矩值时,从最初固定齿轮比转换到模式工作,其中释放反作用扭矩小于预定反作用扭矩值的扭矩传递装置。预定反作用扭矩值包括实施例中公开的大致等于零扭矩值的扭矩值。
本发明的另一个方面包括当在最终固定齿轮比下工作所需的扭矩传递装置转速与从输入轴到变速器的速度大致同步时,从模式工作转换到最终固定齿轮比。
本发明的另一个方面包括确定从输入轴到变速器的速度与第二扭矩传递装置的转速大致同步;和随后致动第二扭矩传递装置。
本发明的另一个方面包括致动第二扭矩传递装置,致动第二扭矩传递装置包括在确定输入轴速度与第二扭矩传递装置转速大致同步之前的瞬间命令液压致动流体流到第二扭矩传递装置。从此随着第二扭矩传递装置反作用扭矩的增加,第二扭矩传递装置的扭矩能力也增加。
本发明的另一个方面包括在确定输入轴速度与第二扭矩传递装置转速大致同步之前的瞬间命令液压致动流体流到第二扭矩传递装置。这包括监视第二扭矩传递装置的转速。控制系统用于根据第二扭矩传递装置的转速变化和液压系统填充时间来确定输入轴速度与第二扭矩传递装置转速大致同步。
本发明的另一个方面包括降低从第一和第二电动机供给到变速器、随后用于致动第二扭矩传递装置的原动扭矩大小。
在阅读和理解下面对实施例的详细说明之后,本发明的这些和其它方面对熟悉本技术领域的人员来说是显而易见的。
附图说明
本发明对某些部件和部件的布置采取了有形的形式,在形成本发明一部分的附图中详细描述和阐述本发明的优选实施例,其中:
图1是根据本发明的示例性动力系的示意图;
图2是根据本发明的控制器和动力系示例结构的示意图;和
图3是根据本发明的示例数据图。

具体实施方式

现在参考附图,其中所示仅是为了阐述本发明的目的,而不是为了限制本发明,图1和2显示了系统,该系统包括发动机14、变速器10、控制系统和传动系,其根据本发明实施例构造。
示例性变速器10的机械方面已详细公开在同一专利权人的美国专利申请公开号US 2005/0137042 A1中,其公开日为2005年6月23日,名称为“具有4个固定比值的双模式、复合-分流、混合动力电动-机械变速器”,其全文并入此处作为参考。图1描述了体现本发明概念的示例性双模式、复合-分流、电动-机械混合动力变速器,通常由数字10表示。混合动力变速器10具有输入构件12,该输入构件本质上是轴,被发动机14直接驱动。瞬时扭矩阻尼器20并入发动机14的输出轴18和混合动力变速器10的输入构件12之间。瞬时扭矩阻尼器20优选包括扭矩传递装置77,该扭矩传递装置77具有分别以78和79显示的阻尼机构和弹簧的特征。瞬时扭矩阻尼器20允许发动机14和混合动力变速器10的有选择接合,但是应理解扭矩传递装置77不用于改变或控制混合动力变速器10的工作模式。扭矩传递装置77优选包括被称为离合器C5的液压操纵摩擦离合器。
发动机14可以是众多形式内燃机中的任一种,例如火花塞点火发动机或压缩点火发动机,该发动机容易适合于向变速器10提供从大约600转每分(RPM)的怠速到超过6000 RPM的运转速度范围的功率输出。不管发动机14采用何种方式连接到变速器10的输入构件12,输入构件12都连接变速器10中的行星齿轮组24。
现在具体参考图1,混合动力变速器10使用3个行星齿轮组24、26和28。第一行星齿轮组24具有通常指定为环形齿轮的外齿轮构件30,该外齿轮构件30限制通常指定为太阳齿轮的内齿轮构件32。若干行星齿轮构件34可旋转地安装在架36上,以致每个行星齿轮构件34啮合接合外齿轮构件30和内齿轮构件32。
第二行星齿轮组26同样具有通常指定为环形齿轮的外齿轮构件38,该外齿轮构件38限制通常指定为太阳齿轮的内齿轮构件40。若干行星齿轮构件42可旋转地安装在架44上,以致每个行星齿轮42啮合接合外齿轮构件38和内齿轮构件40。
第三行星齿轮组28同样具有通常指定为环形齿轮的外齿轮构件46,该外齿轮构件46限制通常指定为太阳齿轮的内齿轮构件48。若干行星齿轮构件50可旋转地安装在架52上,以致每个行星齿轮50啮合接合外齿轮构件46和内齿轮构件48。
环形齿轮/太阳齿轮的齿数比通常基于熟练从业者已知的设计考虑,该齿数比在本发明的范围之外。通过示例,在一个实施例中,行星齿轮组24的环形齿轮/太阳齿轮齿数比为65/33;行星齿轮组26的环形齿轮/太阳齿轮齿数比为65/33;行星齿轮组28的环形齿轮/太阳齿轮齿数比为94/34。
3个行星齿轮组24、26和28每个都包括简单的行星齿轮组。此外,因为第一行星齿轮组24的内齿轮构件32连接第二行星齿轮组26的外齿轮构件38,例如通过毂衬齿轮54,所以第一和第二行星齿轮组24和26组合。连接在一起的第一行星齿轮组24的内齿轮构件32和第二行星齿轮组26的外齿轮构件38持续连接第一电动机/发电机56,也被称作“电动机A”。
行星齿轮24和26进一步组合,因为第一行星齿轮组24的架36连接第二行星齿轮组26的架44,例如通过轴60。因此,第一和第二行星齿轮组24、26分别对应的架36和44互相连接。轴60还有选择地连接第三行星齿轮组28的架52,例如通过扭矩传输机构62,正如下文将更加详细解释的,利用扭矩传输机构62帮助选择混合动力变速器10的工作模式。第三行星齿轮组28的架52直接连接变速器输出构件64。
在所述实施例中,其中混合动力变速器10用于陆地车辆,输出构件64连接传动系,该传动系包括向一个或多个车轴92或半轴(未显示)提供扭矩输出的齿轮箱             90或其它扭矩传递装置。轴92接着终止于驱动构件96。驱动构件96可以是它们所用于车辆的前轮或后轮,或者它们可以是履带车辆的驱动齿轮。驱动构件96可以具有与其连接的轮制动器94的某些形式。每个驱动构件都具有速度参数NWHL,该参数包括每个车轮96的转速,转速通常由轮速传感器测量。
第二行星齿轮组26的内齿轮构件40连接第三行星齿轮组28的内齿轮构件48,例如通过限制轴60的套筒轴66。第三行星齿轮组28的外齿轮构件46通过扭矩传输装置70有选择地连接由变速器壳体68表示的地面。下文还将解释的扭矩传输装置70同样用于帮助选择混合动力变速器10的工作模式。套筒轴66还持续连接第二电动机/发电机72,也被称作“电动机B”。
所有行星齿轮组24、26和28以及两个电动机/发电机56和72都同轴定向,例如围绕轴向布置的轴60。电动机/发电机56和72都是环形结构,这种结构允许它们限制3个行星齿轮组24、26和28,以致行星齿轮组24、26和28布置在电动机/发电机56和72的径向内侧。这种结构保证整体封装,即:变速器10的周向尺寸最小化。
扭矩传递装置73有选择地将太阳齿轮40连接到地面(即变速器壳体68)。扭矩传递装置75用作止离合器,通过有选择地连接太阳齿轮40和架44,锁定行星齿轮组24、26、电动机56、72和输入,以便成组旋转。扭矩传递装置62、70、71、73、75都是摩擦离合器,下文分别称为:离合器C1 70,离合器C2 62,离合器C3 73和离合器C4 75。每个离合器优选液压致动,接收来自的加压液压流体。使用已知的液压流体回路实现液压致动,此处不再详细描述。
由于来自燃料或者存储在电能存储装置(ESD)74中的电势的能量转换,混合动力变速器10接收来自若干扭矩生成装置的输入原动扭矩,扭矩生成装置包括发动机14和电动机/发电机56和72。ESD 74通常包括一个或多个电池。在不改变本发明概念的情况下,也可使用具有存储电功率和分配电功率能力的其它电能存储装置和电化学能存储装置来代替电池。优选根据包括再生需求、涉及典型的道路坡度和温度的应用问题、和例如排放、动力辅助和电动范围的驱动需求这些因素设计ESD 74的尺寸。ESD 74是通过DC线路或传递导体27连接变速器功率变换模(TPIM)19的高压DC。TPIM 19是下文参考图2所述控制系统的元件。TPIM 19通过传递导体29与第一电动机/发电机56通信,类似地TPIM 19通过传递导体31与第二电动机/发电机72通信。根据ESD 74是在充电还是放电,电流传递到ESD 74或者从ESD 74流出。TPIM 19包括一对功率变换器和对应的电动机控制器,该电动机控制器构造为接收电动机控制命令和根据该控制命令控制变换器状态,以提供电动机驱动或者再生功能。
在电动机控制中,对应的变换器接收来自DC线路的电流,通过传递导体29和31向对应的电动机提供AC电流。在再生控制中,对应的变换器通过传递导体29和31接收来自电动机的AC电流,向DC线路27提供电流。提供给变换器或者来自变换器的净DC电流确定电能存储装置74的充电或放电工作模式。优选地,电动机A 56和电动机B 72是三相AC电机,变换器包括辅助三相功率电子设备。
再次参考图1,在输入构件12后出现传动齿轮80。如图所示,传动齿轮80固定连接输入构件12和第一行星齿轮组24的外齿轮构件30,因而,传动齿轮80接收来自发动机14和/或电动机/发电机56和/或72的功率,该功率通过行星齿轮组24和/或26。传动齿轮80啮合接合空转齿轮82,空转齿轮82接着啮合接合传递齿轮84,传递齿轮84固定在轴86的一端。轴86的另一端固定到单独或整体用88表示的液压/变速器流体泵和/或动力输出(PTO)单元,包括附件负载。
现在参考图2,显示了包括分布式控制器结构的控制系统的示意方框图。下文所述元件包括车辆总控制结构的子集,用于提供对此文所述动力系系统的协调系统控制。控制系统用于综合有关信息和输入,执行算法以控制不同的执行器实现控制目标,控制目标包括这些参数例如燃料经济性、排放、性能、驾驶性能和硬件保护,硬件包括ESD 74的电池和电动机56、72。分布式控制器结构包括发动机控制模块(ECM)23、变速器控制模块(TCM)17、电池组控制模块(BPCM)21、和变速器功率变换模块(TPIM)19。混合控制模块(HCP)5提供拱形(overarching)控制和对上述控制器的协调。存在用户接口(UI)13,其用于连接若干装置,车辆驾驶员通常通过这些装置控制或者指导包括变速器10的动力系的操作。到接口UI 13的示例性车辆驾驶员输入包括加速踏板、制动踏板、变速器档位选择器和车速巡航控制。每个上述控制器通过局域网(LAN)总线6与其它控制器、传感器和执行器通信。LAN总线6允许不同控制器之间控制参数和命令的结构化通信。根据具体的应用使用具体的通信协议。通过示例,一个通信协议是汽车工程师协会标准J1939。LAN总线和适当的协议在上述控制器和提供例如防抱死制动、牵引力控制和车辆稳定的功能的其它控制器之间提供稳健的通讯和多控制器接口。
HCP 5提供对混合动力系系统的拱形控制,用于协调ECM23、TCM 17、TPIM 19和BPCM 21的工作。基于来自UI 13和动力系的不同输入信号,HCP 5生成不同的命令,这些命令包括:发动机扭矩命令TE_CMD;用于混合动力变速器10不同离合器C1、C2、C3、C4的离合器扭矩命令TCL_N_CMD;分别用于电动机A和B的电动机扭矩命令TA_CMD和TB_CMD。
ECM 23可操作地连接发动机14,用于沿着用集合线35共同表示的若干离散线获取来自各种传感器的数据和分别控制发动机14的各种执行器。ECM 23接收来自HCP 5的发动机扭矩命令TE_CMD,生成希望的轴扭矩TAXLE_DES和传送到HCP 5的实际发动机扭矩指示TE_ACT。为了简化,通常显示ECM 23具有通过集合线35与发动机14的双向接口。由ECM 23检测的各种其它参数包括发动机冷却剂温度、通向变速器的轴接收的发动机输入速度(NE)、歧管压力、环境空气温度和环境压力。由ECM 23控制的各种执行器包括燃料喷射器、点火模块和节气控制模块。
TCM 17可操作地连接变速器10,用于获取来自各种传感器的数据和向变速器提供命令信号。从TCM 17到HCP5的输入包括每个离合器C1、C2、C3、C4的估计离合器扭矩TCL_N_EST和输出轴64的转速NO。其它执行器和传感器用于提供从TCM到HCP的额外信息,以达到控制目的。
BPCM 21信号连接一个或多个传感器,这些传感器用于监视ESD 74的电流或电压参数,以向HCP 5提供有关电池状态的信息。这些信息包括电池充电状态Bat_SOC和包括电压VBAT和可用功率PBAT_MIN和PBAT_MAX的电池其它状态。
变速器功率变换模块(TPIM)19包括一对功率变换器和电动机控制器,该电动机控制器构造为接收电动机控制命令和根据该控制命令控制变换器状态,以提供电动机驱动或者再生功能。TPIM 19用于基于来自HCP 5的输入生成用于电动机A和B的扭矩命令TA_CMD和TB_CMD,HCP 5由驾驶员通过UI 13的输入和系统工作参数驱动。根据电动机阻尼扭矩TA_DAMP和TB_DAMP调节用于电动机A和B的预定扭矩命令TA_CMD和TB_CMD,以确定电动机扭矩TA和TB,这些由包括TPIM 19的控制系统实现,以控制电动机A和B。分别用于电动机A和电动机B的单独电动机速度信号NA和NB由TPIM 19根据电动机相位信息或者传统旋转传感器得到。TPIM 19确定电动机速度NA和NB,并将该电动机速度传送到HCP 5。电能存储装置74是通过DC线路27连接TPIM 19的高压DC。根据ESD 74充电还是放电,电流传递到TPIM 19或者从TPIM 19流出。
每个上述控制器优选是通用数字计算机,其通常包括微处理器或者中央处理单元、只读存储器(ROM)、随机存储器(RAM)、电可编程只读存储器(EPROM)、高速时钟、模数(A/D)和数模(D/A)电路、输入/输出电路和装置(I/O)、以及适当的信号调节和缓冲电路。每个控制器具有一组控制算法,该控制算法包括存储在ROM中可执行的固有程序指令和标定指令,以提供每个计算机相应的功能。不同计算机之间的信号传递优选使用上述LAN 6实现。
通常在预设的循环周期内执行用于控制每个控制器和估计每个控制器状态的算法,以致每个循环周期至少执行一次每个算法。存储在非易失存储装置内的算法由一个中央处理单元执行,用于监视来自传感装置的输入和执行控制和诊断程序,以利用预设的标定指令控制各个装置的工作。循环周期通常以固定的间隔执行,例如在正在运行的发动机和车辆操作中每隔3、6.25、15、25和100毫秒执行。可选地,响应于事件的发生执行算法。
响应于UI 13捕捉到的驾驶员动作,监控HCP控制器5和一个或多个其它控制器确定所需变速器输出扭矩TO。响应于驾驶员需求适当控制和操纵混合动力变速器10选择性工作的部件。例如,在图1和2所示示例性实施例中,当驾驶员已经选择前进档驱动范围且操纵了加速踏板或者制动踏板时,HCP 5确定变速器的输出扭矩,该输出扭矩影响车辆如何以及何时加速或减速。其它因素影响最终的车辆加速度,这些因素包括例如道路负载、道路坡度和车辆质量。HCP 5监视扭矩生成装置的参数状态,确定到达希望扭矩输出所需的变速器输出。在HCP 5的指导下,变速器10在从慢到快的输出速度范围内工作,以满足驾驶员需求。
双模式、复合-分流、电动-机械混合动力变速器包括通过变速器10内两个不同的齿轮系接收输出功率的输出构件64,在现在参考图1和表1所示的若干变速器工作模式下工作,表1如下。
表1

表中所述的不同变速器工作模式指示在每个工作模式下具体离合器C1、C2、C3、C4中的哪一个接合或致动。另外,在不同变速器工作模式中,无论电动机A 56是否作为以GA表示的发电机工作,电动机A 56或电动机B 72每个都作为电动机工作,分别表示为MA、MB。当致动扭矩传递装置70以使第三行星齿轮组28的外齿轮构件46“接地”时,选择第一模式或齿轮系。当释放扭矩传递装置70且同时致动扭矩传输装置62以将轴60连接到第三行星齿轮组28的架52时,选择第二模式或齿轮系。在本发明范围之外的其它因素影响电机56、72何时作为电动机和发电机工作,在此文中不作讨论。
主要如图2所示的控制系统用于提供用于在每个工作模式内提供从相对慢到相对快的变速器轴64输出速度No范围。在每种模式中都具有慢到快的输出速度范围,两种模式的这种组合允许变速器10将车辆从静止状态驱动到公路速度,同时满足如前所述的各种其它需求。另外,控制系统协调变速器10的操作,以便允许在两种模式之间同步切换。
第一和第二工作模式指的是这种情况:变速器功能由一个离合器即离合器C1 62或C2 70控制,还由电动机/发电机56和72的受控速度和扭矩控制。下面将描述某些工作范围,其中通过应用额外离合器实现固定比值。该额外离合器为离合器C3 73或C4 75,如上表所示。
当应用额外离合器时,实现变速器输入输出速度的固定比值,即NI/No。电动机/发电机56、72的旋转取决于由离合限定的机构的内旋转,且与输入速度NI成比例,该输入速度在轴12处确定或测量。电动机/发电机起到电动机或发电机的作用。它们完全独立于发动机而输出功率流,从而它们能两个都为电动机,两个都为发电机,或者为电动机或发电机的任何组合。例如,这允许在固定比值1下的加速过程中,轴64处来自变速器的原动功率输出由来自发动机的功率与来自电动机A和B的功率通过行星齿轮组28提供,该电动机接收来自能量存储装置74的功率。
通过在模式I或模式II操作中致动或释放一个额外离合器,变速器工作模式在固定比值工作和模式工作之间切换。由控制系统执行的算法确定在固定比值下工作或者在模式控制下工作,这在本发明的范围之外。
模式工作可重叠比值工作,选择还是取决于驾驶员输入和车辆对该输入的响应。当离合器C1 70和C4 75接合时,范围1主要落入模式I工作内,当离合器C2 62和C1 70接合时,范围2落入模式I和模式II内。在模式II过程中当离合器C2 62和C4 75接合时,主要获得第三固定比值范围,在模式II过程中当离合器C2 62和C3 73接合时,获得第四固定比值范围。应注意模式I和模式II的工作范围通常相当多地重叠。
因机械和系统限制上述示例性动力系系统的输出受到约束。因在轴18处测量的发动机输出速度NE和在轴12处测量的变速器输入速度NI的限制,以及分别以+/-NA、+/-NB表示的电动机A和B的速度限制,在轴64处测量的变速器输出速度No受到限制。类似地,因发动机输入扭矩TE和瞬时扭矩阻尼器20后侧的轴12处测量的输入扭矩TI的限制,以及电动机A 56和B 72的扭矩限制(TA_MAX,TA_MIN,TB_MAX,TB_MIN),变速器64的输出扭矩To受到限制。
工作中,因驾驶员输出扭矩需求的变化,在示例性变速器中发生换档,该需求通常通过输入传送到UI 13,包括加速踏板、制动踏板、变速器档位选择器、和车速巡航控制系统。另外,输出扭矩需求变化基于外部条件变化而确定,外部条件变化包括例如道路坡度、道路表面情况、或力负载的变化。此外,输出扭矩需求变化基于动力系扭矩需求变化而确定,该动力系扭矩需求变化由控制器命令导致,以在电能生成模式和扭矩生成模式之间改变电动机/发电机中的一个。分布式控制结构在确定变速器工作齿轮变化需要方面起作用,执行上述过程以实现齿轮变化。
在整个操作中,在示例性动力系系统的示例性变速器中执行从最初固定齿轮到最终固定齿轮的同步换档包括在最初固定齿轮比下操作变速器,以及,如前所述,当命令换档时,将变速器转换到在模式工作下工作。同步换档的特征在于反作用离合器片摩擦片之间的相对速度大致等于零,允许传感器处的信号噪声。通过释放当前两个已致动离合器中的一个来实现在这种情况下换档到模式工作。变速器在模式工作下工作,即模式A或模式B,直到输入轴12的转速与另一个扭矩传递装置或离合器的转速同步。当速度同步时致动扭矩传递装置,变速器在最终固定齿轮比下工作。
现在参考图3,现在描述由上述动力系和传动系系统以及控制器结构执行的示例性同步齿轮换档时间的曲线图。应理解应用特定的质量、惯性、摩擦因数、和传动系的其它特性和参数影响不同的动力系和传动系工作状态,因而响应时间和数值大小认为是示例性的,同时还描述了动力系系统的总操作。X轴包括时间测量值,Y轴包括不同的控制命令和测量参数,每个控制命令和测量参数都描绘成X轴上时间的函数。302表示的线包括当动力系在固定齿轮即齿轮1下工作时的输入速度NI,其中致动离合器C1和C4。当致动离合器C1和C4时,输入速度NI等于输出速度No乘以第一齿轮比GR1,即,No*GR1。304表示的线包括当动力系在固定齿轮即齿轮2下工作时的输入速度,其中致动离合器C1和C2。当致动离合器C1和C2时,输入速度NI等于输出速度NO乘以第二齿轮比GR2,即,No*GR2。306表示的线显示描绘成时间函数的输入速度NI,同时变速器从第一固定齿轮比转换到模式工作,再转换到第二固定比。现在描述该转换。
分布式控制结构用于在如图1所示体现本发明概念的示例性双模式、复合-分流、电动-机械混合动力变速器中执行从最初齿轮即在这种情况下的齿轮1到最终齿轮即在这种情况下的齿轮2的同步速度换档。如前所述,动力系系统包括扭矩生成装置14、56、72,它们用于向变速器装置10提供原动扭矩。如前所述,变速器装置10包括若干齿轮和扭矩传递装置,它们用于在扭矩生成装置14、56、72和输出轴64以及传动系的驱动车轮96之间传输扭矩。扭矩变速器包括将来自一个或多个扭矩生成装置14、56、72的原动扭矩传递到传动系。因为通常被称为发动机制动的过程,扭矩变速器包括将来自驱动车轮96的扭矩通过传动系和变速器传递到一个或多个扭矩生成装置14、56、72。在这种结构下,发动机制动包括传输至少一部分传动系扭矩,该传动系扭矩由从输出轴64通过扭矩传递装置即离合器C1、C2、C3、C4到扭矩生成装置14、56、72的车辆动量导致。传输的扭矩由动力系以通过电动机/发电机56、72的电能生成形式和通过内燃机14的发动机制动形式吸收。
反作用扭矩定义为通过扭矩传递装置即离合器传输的扭矩大小。扭矩能力定义为通过离合器可传输的最大扭矩量,通常基于离合器压力和离合器摩擦的大小。当离合器扭矩的大小超过扭矩能力时,出现离合器滑动。反作用扭矩总是小于或等于扭矩能力。通过控制变速器液压回路施加在离合器上的液压压力的大小来建立离合器压力。
在工作中,一个或多个控制器用于执行算法,以完成上述任务,从而实现同步齿轮换档。在该示例性描述中,第一离合器是离合器C4,它激活最初齿轮,例如齿轮1或G1。
响应于来自控制器结构的换档命令300,通过降低到达第一离合器的液压压力来降低线310所示的第一离合器的扭矩能力。当扭矩能力降低时,它变得等于第一离合器反作用扭矩(线308)的大小。
为了在不负面影响动力系输出扭矩To的情况下降低第一离合器C4的反作用扭矩,命令TPIM控制器向电动机A 56和B 72传递足够数量的电能,以致它们的输出或原动扭矩TA和TB等于通过第一离合器C4的反作用扭矩,因而能在变速器的轴64处维持输出扭矩To。
在离合器扭矩能力310和反作用扭矩308持续降低的情况下,电动机A 56和B 72的扭矩输出同时增加。当输出扭矩TA和TB足够能维持输出扭矩To时,则通过离合器C4的反作用扭矩基本等于零。当通过离合器C4的反作用扭矩大致等于零时,切断致动第一离合器C4的液压压力,同时通过第一离合器C4离合器片的扭矩不会瞬间变化。这种作用改善离合器耐用性,降低离合器突然致动和释放带来的传动系振动。通过降低扭矩压力来降低扭矩能力,这通过控制液压泵88和离合器C4的离合器压力控制螺线管(未显示)实现。
当反作用扭矩小于预定值时,随后释放或断开第一离合器C4。在该应用中,释放第一离合器时的反作用扭矩的优选预定值是大致为零的范用作扭矩。当释放第一离合器C4时,动力系系统开始模式工作。模式工作包括在致动单个离合器例如C1的情况下操作电动机A 56和B 72,以向变速器提供原动扭矩。
优选通过监视轴12的速度或者其它参数来确定输入轴12的速度即NI,从而确定它何时与第二离合器例如C2的转速大致同步。控制系统以可控方式降低发动机速度NE。当确定输入轴12和第二离合器的转速大致同步时,在点314处,致动第二离合器C2(点312)。为了定义大致同步,因此转速差值落入大约每秒1弧度范围内,或者可选地落入每秒10转之内,从而容纳传感器信号噪声。
如下完成同步致动第二离合器C2。当在模式工作时,已知线326和328所示的离合器C2和C4的转速。还已知离合器C2的转速变化,如NC2_dot所述和324所示。控制系统优选使用简单代数组合某时间点处离合器C2的已知转速和离合器C2转速变化NC2_dot,以确定离合器C2的反作用片和摩擦片转速大致相等所需的流逝时间段。这显示为点314。当到达这种情况时,输入轴的转速与离合器C2的转速大致同步。这包括在不产生传动系扭矩扰动的情况下完成致动离合器C2的点。
因为各种系统因数,从命令致动流量控制螺线管以增加离合器C2的扭矩能力直到离合器C2开始施加反作用扭矩,存在时间滞后。该时间滞后称为“填充时间”,如320所示,通常在300毫秒范围内。
控制系统能从点314处减去填充时间320,在点314处离合器C2的反作用片和摩擦片的相对转速的速度大致同步,如316所示。在时间点316处或之前,控制系统命令加压液压流体流动到第二离合器,以增加离合器C2的扭矩能力。通过致动包含在变速器10内的流量控制螺线管来实现加压液压流体的流动。流量控制螺线管是液压流体回路的元件,该液压流体回路用于根据变速器控制器17的命令将加压液压流体输送到各种螺线管和其它装置。
在时间点314处或之后,通过增加到离合器C2的系统液压压力来增加第二离合器C2的扭矩能力,如312所示,通过施加反作用扭矩来致动离合器C2,如322所示。随着离合器C2反作用扭矩大小的增加,电动机A和B的扭矩贡献降低,如前讨论的,系统从模式工作转换到固定齿轮工作。
该实施例描述了在齿轮1和齿轮2之间换档。应理解可类似执行其它增大齿轮比和减小齿轮比的齿轮变化,这些齿轮变化落入本发明的范围。还理解在本发明的范围内允许对变速器硬件的修改。特别参考优选实施例及其修改描述了本发明。在阅读和理解说明书之后其他人也能作出另外的修改和改变。应认为只要在本发明范围内就包括所有这些修改和改变。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈