首页 / 专利库 / 合金类 / 合金 / / 取向硅钢 / 超薄取向硅钢薄带的制造工艺

超薄取向薄带的制造工艺

阅读:1019发布:2020-05-18

专利汇可以提供超薄取向薄带的制造工艺专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种超薄取向 硅 钢 薄带的制造工艺,包括以下步骤:(1)第一次 冷轧 :在室温下,将 钢带 原料进行第一次冷轧;(2)中间 退火 :在还原气氛下,进行中间退火,退火的 温度 为750℃~1150℃;(3)第二次冷轧:在室温下,进行第二次冷轧,终轧厚度为0.02mm;(4)再结晶退火:在还原气氛下,进行再结晶退火,退火的温度为750℃~1150℃;(5)涂覆:连续涂覆绝缘涂层,得到超薄 取向硅钢 薄带。本发明公开的超薄取向硅钢薄带的制造工艺,不仅生产难度小,设备负荷低,且生产效率高,易于实现批量化生产,同时,所生产的超薄取向硅钢薄带的成品具有良好的 磁性 能,利于实际应用。,下面是超薄取向薄带的制造工艺专利的具体信息内容。

1.超薄取向薄带的制造工艺,其特征在于,至少包括如下步骤:
(1)第一次冷轧:采用厚度为0.2~0.3mm普通取向硅钢作为钢带原料,在室温下,在
50%~88%的变形率范围下,进行第一次冷轧,所述第一次冷轧的轧到的厚度为0.065~
0.095mm;
(2)中间退火:在还原气氛下,进行中间退火,退火的温度为750℃~1150℃,形成再结晶组织;
(3)第二次冷轧:在室温下,在40%~80%的变形率范围下,进行第二次冷轧,终轧厚度为0.02mm;
(4)再结晶退火:在还原气氛下,进行再结晶退火,退火的温度为750℃~1150℃,形成再结晶组织;
(5)涂覆:连续涂覆绝缘涂层,得到超薄取向硅钢薄带。
2.根据权利要求1所述的超薄取向硅钢薄带的制造工艺,其特征在于,步骤(3)中所述第二次冷轧的所述变形率范围为65%~80%。
3.根据权利要求1所述的超薄取向硅钢薄带的制造工艺,其特征在于,步骤(2)中所述中间退火为连续退火,退火速度为2~20米/分钟。
4.根据权利要求1所述的超薄取向硅钢薄带的制造工艺,其特征在于,步骤(4)中所述再结晶退火为连续退火,退火速度为2~20米/分钟。
5.根据权利要求1或3或4所述的超薄取向硅钢薄带的制造工艺,其特征在于,所述还原气氛是指氢气或氢气-氮气混合气体。

说明书全文

超薄取向薄带的制造工艺

技术领域

[0001] 本发明涉及硅钢薄带的制备,特别涉及一种超薄取向硅钢薄带的制造工艺。

背景技术

[0002] 取向硅钢具有晶粒趋于一致排列在易磁化方向的高斯取向织构,以及粗大二次再结晶晶粒的软磁材料。取向硅钢具有高磁感、低损的特性,其制造工艺复杂,属于钢铁工业的高端产品,主要用于制作各种变压器铁芯和大发电机定子铁芯,是电电子和军事工业发展最为重要的功能材料之一。
[0003] 普通取向硅钢的厚度一般大于0.2mm,主要用于制作50Hz工频下工作的变压器铁芯。取向硅钢薄带的厚度较薄(0.03~0.1mm厚),其高频损耗低,且晶粒组织沿薄带长度方向磁性择优取向,因而磁性能优良,非常适用于制作中高频下使用的变压器和电感铁芯,而对于更高频率下,由于铁损严重则不适用。
[0004] 铁损包括磁滞损耗和涡流损耗,其中,涡流损耗占主要部分。在适当的前提下,涡流在金属薄片上产生的单位质量损耗为:
[0005] P=(π2B2d2f2)/(6κρD)
[0006] (其中,P为涡流单位质量的损耗;d为金属薄片的厚度;f为磁场改变的频率。)[0007] 由此可知,涡流损耗随磁场频率升高呈平方关系增加,涡流损耗随金属薄片的厚度减少呈平方关系减少。
[0008] 随着高功率脉冲技术的发展,脉冲频率不断提高。当脉冲频率越高或脉冲宽度超窄时,为了减少涡流损耗以保证得到高的脉冲频率和窄的脉冲宽度,需要使用越薄的取向硅钢薄带。目前,国际上用于高频大功率脉冲技术的硅钢薄带的厚度为0.03~0.10mm,主要有0.03mm、0.05mm、0.08mm以及0.10mm四种厚度规格,其中,最薄的硅钢薄带仅为0.03mm厚。为了适应更高的频率以及获得更高脉冲频率,则需要更薄的硅钢薄带。
[0009] 至今,未见关于0.02mm厚的超薄取向硅钢薄带的制造工艺的研究报道。硅钢薄带越薄其工艺难度越大。冷轧法制备0.02mm厚硅钢薄带存在两个问题:1)由于冷轧变形量太大,这对于硬度高脆性大的硅钢无法经如此大的变形量获得0.02mm厚的硅钢,在轧制过程中,硅钢很容易产生边裂或断带,此外轧机需要高负荷运动,对轧机的性能要求较高。2)由于冷轧变形量太大,即使硅钢能够顺利冷轧到0.02mm厚,轧制后硅钢薄带的晶粒有利织构取向度差,使得所制造的硅钢薄带的磁性能较差,不利于实际应用。

发明内容

[0010] 本发明提供了一种超薄取向硅钢薄带的制造工艺,采用普通取向硅钢作为钢带原料,通过二次冷轧工艺制备0.02mm厚的超薄取向硅钢薄带,解决上述由于冷轧变形量太大所带来的难以轧制使得成材率低的问题,以及轧制后有利织构取向度差导致磁性较差的问题。
[0011] 根据本发明的一个方面,提供一种超薄取向硅钢薄带的制造工艺,至少包括如下步骤:
[0012] (1)第一次冷轧:采用普通取向硅钢作为钢带原料,在室温下,保证一定的变形率范围下,进行第一次冷轧;
[0013] (2)中间退火:在还原气氛下,进行中间退火,退火的温度为750℃~1150℃,形成再结晶组织;
[0014] (3)第二次冷轧:在室温下,保证一定的变形率范围下,进行第二次冷轧,终轧厚度为0.02mm;
[0015] (4)再结晶退火:在还原气氛下,进行再结晶退火,退火的温度为750℃~1150℃,形成再结晶组织;
[0016] (5)涂覆:连续涂覆绝缘涂层,得到超薄取向硅钢薄带。
[0017] 其有益效果是,由于普通取向硅钢的生产工艺较为成熟,以普通取向硅钢作为钢带原料,省去了硅钢冶炼铸造的前段工艺,缩短工艺流程,提高生产效率;其次,由于钢带原料的厚度不厚,冷轧过程的总压下量不大,可减少轧机总负荷,提高成材率及生产效率。
[0018] 采用二次冷轧工艺,避免了一次冷轧工艺的轧制变形量太大而较难将钢带轧至0.02mm厚度,由于在冷轧一定道次后,钢带会产生加工硬化,随后钢带会因过分硬脆而产生边裂或断带,降低成材率。
[0019] 在两次冷轧过程中增加了中间退火,使钢带能恢复初始的加工塑性,便于冷轧至0.02mm厚,提高成材率;其次,中间退火也使钢带组织再结晶,产生更多有利取向的高斯织构,提高成品的磁性能。
[0020] 第二次冷轧后的再结晶退火也是为了使第二次冷轧后的钢带再结晶,形成有利的高斯织构。
[0021] 在一些实施方式中,步骤(1)中的第一次冷轧的变形率范围为50%~88%,步骤(3)中的第二次冷轧的变形率范围为40%~80%。其有益效果是,两次冷轧的变形率均有利于高斯织构,使成品的有利高斯织构组分多,提高成品的磁性能。
[0022] 在一些实施方式中,步骤(3)中的第二次冷轧的变形率范围为65%~80%。其有益效果是,冷轧变形率在此范围内所制造的成品的磁性能更佳。
[0023] 在一些实施方式中,步骤(1)中的普通取向硅钢的厚度为0.2~0.3mm。有益效果是,采用此厚度范围的硅钢作为轧制原料,可减少轧制总变形量,提高成材率。
[0024] 在一些实施方式中,步骤(1)中的第一次冷轧的轧到的厚度为0.065~0.095mm。其有益效果是,第一次冷轧轧至此厚度范围,得到的成品的磁性能更佳。
[0025] 在一些实施方式中,步骤(2)中的中间退火为连续退火,退火速度为2~20米/分钟。其有益效果是,连续退火可缩短退火周期,提高生产效率。
[0026] 在一些实施方式中,步骤(4)中的再结晶退火为连续退火,退火速度为2~20米/分钟。其有益效果是,连续退火可缩短退火周期,提高生产效率。
[0027] 在一些实施方式中,还原气氛是指氢气或氢气-氮气混合气体。
[0028] 本发明采用二次冷轧法制备超薄取向硅钢,第一次冷轧前的钢带为普通取向硅钢,其硬度不高且脆性较小,便于冷轧变形;增加的中间退火以软化钢带,有利于第二次冷轧将钢带变形加工至0.02mm厚度,可大幅降低整个制造工艺加工难度,降低设备负荷,易于实现批量化生产,同时提高了生产效率,降低了生产成本,使所制造的产品具有市场竞争力。此外,两次冷轧的变形率不大,冷轧变形率均低于85%,经此变形率变形加工后,硅钢钢带经退火后,易形成有利的高斯织构,成品的磁性高。附图说明
[0029] 图1为本发明的一种超薄取向硅钢薄带的制造工艺的制造流程示意图;
[0030] 图2为本发明的制造工艺所生产的超薄硅钢薄带的成品照片。

具体实施方式

[0031] 下面对本发明作进一步详细的说明。
[0032] 实施例1
[0033] 本实施例中所述的一种超薄取向硅钢薄带的制造工艺,包括如下步骤:
[0034] (1)第一次冷轧:采用0.3mm厚普通取向硅钢作为钢带原料,分剪宽度为200mm,在室温下,进行第一次冷轧,轧制变形率为88%,冷轧道次为3~7道次,冷轧过程采用本领域所知的冷却液
[0035] (2)中间退火:在氢气保护气氛下,进行连续中间退火,退火的温度为750℃,退火速度为2米/分钟,形成再结晶组织;
[0036] (3)第二次冷轧:在室温下,在40%变形率下,进行第二次冷轧,冷轧道次为3~7道次,终轧厚度为0.02mm;
[0037] (4)再结晶退火:在氢气-氮气保护气氛下,进行连续再结晶退火,退火的温度为750℃,退火速度为2米/分钟,形成再结晶组织;
[0038] (5)涂覆:连续涂覆绝缘涂层,得到超薄取向硅钢薄带。
[0039] 所制备的超薄取向硅钢薄带的实际测量厚度为0.023mm,符合国际公差范围(±0.005mm),试验测得的磁感强度B1000为1.56T,铁损P0.3/3000小于28w/kg。
[0040] 实施例2
[0041] 本实施例中所述的一种超薄取向硅钢薄带的制造工艺,包括如下步骤:
[0042] (1)第一次冷轧:采用0.2mm厚普通取向硅钢作为钢带原料,分剪宽度为200mm,在室温下,进行第一次冷轧,轧制变形率为50%,冷轧道次为3~7道次,冷轧过程采用本领域所知的冷却液;
[0043] (2)中间退火:在氢气保护气氛下,进行连续中间退火,退火的温度为1150℃,退火速度为20米/分钟,形成再结晶组织;
[0044] (3)第二次冷轧:在室温下,在80%变形率下,进行第二次冷轧,冷轧道次为3~7道次,终轧厚度为0.02mm;
[0045] (4)再结晶退火:在氢气-氮气保护气氛下,进行连续再结晶退火,退火的温度为1150℃,退火速度为20米/分钟,形成再结晶组织;
[0046] (5)涂覆:连续涂覆绝缘涂层,得到超薄取向硅钢薄带。
[0047] 所制备的超薄取向硅钢薄带的实际测量厚度为0.021mm,符合国际公差范围(±0.005mm),试验测得的磁感强度B1000为1.63T,铁损P0.3/3000小于28w/kg。
[0048] 实施例3
[0049] 本实施例中所述的一种超薄取向硅钢薄带的制造工艺,包括如下步骤:
[0050] (1)第一次冷轧:采用0.25mm厚普通取向硅钢作为钢带原料,分剪宽度为200mm,在室温下,进行第一次冷轧,轧制变形率为80%,冷轧道次为3~7道次,冷轧过程采用本领域所知的冷却液;
[0051] (2)中间退火:在氢气-氮气保护气氛下,进行连续中间退火,退火的温度为950℃,退火速度为11米/分钟,形成再结晶组织;
[0052] (3)第二次冷轧:在室温下,在60%变形率下,进行第二次冷轧,冷轧道次为3~7道次,终轧厚度为0.02mm;
[0053] (4)再结晶退火:在氢气-氮气保护气氛下,进行连续再结晶退火,退火的温度为950℃,退火速度为11米/分钟,形成再结晶组织;
[0054] (5)涂覆:连续涂覆绝缘涂层,得到超薄取向硅钢薄带。
[0055] 所制备的超薄取向硅钢薄带的实际测量厚度为0.024mm,符合国际公差范围(±0.005mm),试验测得的磁感强度B1000为1.63T,铁损P0.3/3000小于28w/kg。
[0056] 实施例4
[0057] 本实施例中所述的一种超薄取向硅钢薄带的制造工艺,包括如下步骤:
[0058] (1)第一次冷轧:采用0.23mm厚普通取向硅钢作为钢带原料,分剪宽度为200mm,在室温下,进行第一次冷轧,轧制变形率为75%,冷轧道次为3~7道次,冷轧过程采用本领域所知的冷却液;
[0059] (2)中间退火:在氢气-氮气保护气氛下,进行连续中间退火,退火的温度为820℃,退火速度为6.5米/分钟,形成次再结晶组织;
[0060] (3)第二次冷轧:在室温下,在65%变形率下,进行第二次冷轧,冷轧道次为3~7道次,终轧厚度为0.02mm;
[0061] (4)再结晶退火:在氢气-氮气保护气氛下,进行连续再结晶退火,退火的温度为970℃,退火速度为7.5米/分钟,形成再结晶组织;
[0062] (5)涂覆:连续涂覆绝缘涂层,得到超薄取向硅钢薄带。
[0063] 所制备的超薄取向硅钢薄带的实际测量厚度为0.023mm,符合国际公差范围(±0.005mm),试验测得的磁感强度B1000为1.64T,铁损P0.3/3000小于28w/kg。
[0064] 实施例5
[0065] 本实施例中所述的一种超薄取向硅钢薄带的制造工艺,包括如下步骤:
[0066] (1)第一次冷轧:采用0.25mm厚普通取向硅钢作为钢带原料,分剪宽度为200mm,在室温下,进行第一次冷轧,轧制变形率为71%,冷轧道次为3~7道次,冷轧过程采用本领域所知的冷却液;
[0067] (2)中间退火:在氢气-氮气保护气氛下,进行连续中间退火,退火的温度为1050℃,退火速度为15米/分钟,形成再结晶组织;
[0068] (3)第二次冷轧:在室温下,在72%变形率下,进行第二次冷轧,冷轧道次为3~7道次,终轧厚度为0.02mm;
[0069] (4)再结晶退火:在氢气-氮气保护气氛下,进行连续再结晶退火,退火的温度为800℃,退火速度为18米/分钟,形成再结晶组织;
[0070] (5)涂覆:连续涂覆绝缘涂层,得到超薄取向硅钢薄带。
[0071] 所制备的超薄取向硅钢薄带的实际测量厚度为0.022mm,符合国际公差范围(±0.005mm),试验测得的磁感强度B1000为1.65T,铁损P0.3/3000小于28w/kg。
[0072] 实施例6
[0073] 本实施例中所述的一种超薄取向硅钢薄带的制造工艺,包括如下步骤:
[0074] (1)第一次冷轧:采用0.27mm厚普通取向硅钢作为钢带原料,分剪宽度为200mm,在室温下,进行第一次冷轧,轧制变形率为85%,冷轧道次为3~7道次,冷轧过程采用本领域所知的冷却液;
[0075] (2)中间退火:在氢气-氮气保护气氛下,进行连续中间退火,退火的温度为850℃,退火速度为12米/分钟,形成再结晶组织;
[0076] (3)第二次冷轧:在室温下,在50%变形率下,进行第二次冷轧,冷轧道次为3~7道次,终轧厚度为0.02mm;
[0077] (4)再结晶退火:在氢气-氮气保护气氛下,进行连续再结晶退火,退火的温度为1100℃,退火速度为9米/分钟,形成再结晶组织;
[0078] (5)涂覆:连续涂覆绝缘涂层,得到超薄取向硅钢薄带。
[0079] 所制备的超薄取向硅钢薄带的实际测量厚度为0.024mm,符合国际公差范围(±0.005mm),试验测得的磁感强度B1000为1.62T,铁损P0.3/3000小于28w/kg。
[0080] 实施例7
[0081] 本实施例中所述的一种超薄取向硅钢薄带的制造工艺,包括如下步骤:
[0082] (1)第一次冷轧:采用0.25mm厚普通取向硅钢作为钢带原料,分剪宽度为200mm,在室温下,进行第一次冷轧,轧制厚度为0.065mm,轧制变形率为74%,冷轧道次为3~7道次,冷轧过程采用本领域所知的冷却液,如冷却液或高压喷雾冷却液;
[0083] (2)中间退火:在氢气保护气氛下,进行连续中间退火,退火的温度为830℃,退火速度为6米/分钟,形成再结晶组织;
[0084] (3)第二次冷轧:在室温下,在69%变形率下,进行第二次冷轧,冷轧道次为3~7道次,终轧厚度为0.02mm;
[0085] (4)再结晶退火:在氢气保护气氛下,进行连续再结晶退火,退火的温度为860℃,退火速度为14米/分钟,形成再结晶组织;
[0086] (5)涂覆:连续涂覆绝缘涂层,得到超薄取向硅钢薄带。
[0087] 所制备的超薄取向硅钢薄带的实际测量厚度为0.021mm,符合国际公差范围(±0.005mm),试验测得的磁感强度B1000为1.65T,铁损P0.3/3000小于28w/kg。
[0088] 实施例8
[0089] 本实施例中所述的一种超薄取向硅钢薄带的制造工艺,包括如下步骤:
[0090] (1)第一次冷轧:采用0.27mm厚普通取向硅钢作为钢带原料,分剪宽度为200mm,在室温下,进行第一次冷轧,轧制厚度为0.095mm,轧制变形率为65%,冷轧道次为3~7道次,冷轧过程采用本领域所知的冷却液;
[0091] (2)中间退火:在氢气保护气氛下,进行连续中间退火,退火的温度为780℃,退火速度为5米/分钟,形成再结晶组织;
[0092] (3)第二次冷轧:在室温下,在79%变形率下,进行第二次冷轧,冷轧道次为3~7道次,终轧厚度为0.02mm;
[0093] (4)再结晶退火:在氢气-氮气保护气氛下,进行连续再结晶退火,退火的温度为950℃,退火速度为3米/分钟,形成再结晶组织;
[0094] (5)涂覆:连续涂覆绝缘涂层,得到超薄取向硅钢薄带。
[0095] 所制备的超薄取向硅钢薄带的实际测量厚度为0.023mm,符合国际公差范围(±0.005mm),试验测得的磁感强度B1000为1.64T,铁损P0.3/3000小于28w/kg。
[0096] 实施例9
[0097] 本实施例中所述的一种超薄取向硅钢薄带的制造工艺,包括如下步骤:
[0098] (1)第一次冷轧:采用0.30mm厚普通取向硅钢作为钢带原料,分剪宽度为200mm,在室温下,进行第一次冷轧,轧制厚度为0.08mm,轧制变形率为73%,冷轧道次为3~7道次,冷轧过程采用本领域所知的冷却液,如水冷却液或高压喷雾冷却液;
[0099] (2)中间退火:在氢气-氮气保护气氛下,进行连续中间退火,退火的温度为870℃,退火速度为14米/分钟,形成再结晶组织;
[0100] (3)第二次冷轧:在室温下,在75%变形率下,进行第二次冷轧,冷轧道次为3~7道次,终轧厚度为0.02mm;
[0101] (4)再结晶退火:在氢气保护气氛下,进行连续再结晶退火,退火的温度为760℃,退火速度为12米/分钟,形成再结晶组织;
[0102] (5)涂覆:连续涂覆绝缘涂层,得到超薄取向硅钢薄带。
[0103] 所制备的超薄取向硅钢薄带的实际测量厚度为0.022mm,符合国际公差范围(±0.005mm),试验测得的磁感强度B1000为1.61T,铁损P0.3/3000小于28w/kg。
[0104] 以上各实施例所制备的超薄取向硅钢薄带,可以卷绕加工为各种形状的铁芯,方便实际应用。
[0105] 以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈