首页 / 专利库 / 医疗服务 / 医疗程序 / 基于医疗程序模拟的辐射估算和防护

基于医疗程序模拟的辐射估算和防护

阅读:556发布:2020-05-14

专利汇可以提供基于医疗程序模拟的辐射估算和防护专利检索,专利查询,专利分析的服务。并且公开了用于确定x射线引导的医 疗程 序期间的 辐射 暴露的系统和方法。所述系统包括:x射线设备模型,模拟所述x射线引导的 医疗程序 期间来自x射线设备的辐射发射;人体暴露模型,在所述x射线引导的医疗程序期间模拟一个或多个人体解剖;辐射度量处理器,计算至少一个辐射暴露度量;以及反馈系统,基于所述至少一个辐射度量输出信息。所述辐射度量处理器基于与操作设置对应的输入参数以及一个或多个人体解剖的 位置 和结构计算辐射暴露度量。,下面是基于医疗程序模拟的辐射估算和防护专利的具体信息内容。

1.一种用于在不需要使人暴露于电离辐射的情况下确定模拟的x射线引导的医疗程序期间一个或多个人体的辐射暴露量的系统,所述系统包括:
x射线设备模型,在不需要发射电离辐射的情况下模拟所述x射线引导的医疗程序期间来自x射线设备的辐射发射,所述x射线设备模型包括与在所述x射线引导的医疗程序期间受控的操作设置对应的第一组输入参数,
其中所述输入参数被配置为在所述模拟的x射线引导的医疗程序期间改变;
人体暴露模型,在所述x射线引导的医疗程序期间模拟一个或多个人体解剖,所述人体暴露模型包括第二组输入参数,所述第二组输入参数对应于在所述x射线引导的医疗程序期间一个或多个人体解剖的位置和结构;
辐射度量处理器,计算位于所述模拟的x射线引导的医疗程序的房间内的一个或多个人体的至少一个辐射暴露度量,
其中所述辐射暴露度量的计算发生在所述x射线引导的医疗程序期间,并且基于所述第一组输入参数和所述第二组输入参数以及关联所述第一组输入参数和所述第二组参数的变化与所述辐射暴露度量的变化的模型;以及
反馈系统,在所述x射线引导的医疗程序期间基于所述至少一个辐射暴露模型输出信息。
2.根据权利要求1所述的系统,其中所述人体暴露模型包括所述人体解剖的至少一个三维表达。
3.根据权利要求1所述的系统,其中所述反馈系统还包括x射线成像模拟器,所述x射线成像模拟器基于所述x射线设备模型和所述人体暴露模型显示人体的x射线影像,所述x射线成像模拟器显示一系列x射线影像并且响应于所述输入参数的变化。
4.根据权利要求3所述的系统,其中所述辐射度量处理器基于所述输入参数的变化计算x射线影像噪声图案,所述x射线成像模拟器将所述x射线噪声加到显示的x射线影像,其中所述x射线噪声基于所述辐射度量生成。
5.根据权利要求1所述的系统,其中所述人体暴露模型基于来自CT扫描或MRI扫描之一的与患者有关的预存在的患者数据。
6.根据权利要求1所述的系统,其中所述x射线设备模型模拟透视x射线机器。
7.根据权利要求1所述的系统,其中所述输入参数基于从程序获得的辐射报告的数据和DICOM数据被设置。
8.根据权利要求1所述的系统,其中所述人体暴露模型包括所述患者尺寸、患者体型、患者体重、患者性别、怀孕状态和年龄中一个或多个。
9.根据权利要求3所述的系统,还包括血管内模拟器,所述血管内模拟器追踪医疗仪器的运动,并将检测到的运动翻译成虚拟仪器在所述人体暴露模型内的移动。
10.根据权利要求9所述的系统,其中所述x射线成像模拟器基于所述血管内模拟器显示仿真的在所述人体暴露模型内移动的医疗仪器的透视影像。
11.一种用于模拟人体上的x射线引导的医疗程序和确定所述x射线引导的医疗程序期间一个或多个人体的辐射暴露量的系统,所述系统包括:
x射线设备模型,模拟所述x射线引导的医疗程序期间来自x射线设备的辐射发射,所述x射线设备模型包括与在所述x射线引导的医疗程序期间受控的操作设置对应的第一组输入参数,
其中所述输入参数被配置为在所述模拟的x射线引导的医疗程序期间改变;
人体暴露模型,在所述x射线引导的医疗程序期间模拟一个或多个人体解剖的结构;
辐射度量处理器,基于所述x射线设备模型和所述人体暴露模型计算位于所述模拟的x射线引导的医疗程序的房间内的一个或多个人体的至少一个辐射暴露度量,其中在所述x射线引导的医疗程序期间,所述辐射度量处理器响应于所述输入参数的变化修改所述辐射暴露,所述辐射暴露度量的修改是基于所述输入参数的模型;以及数据采集存储,存储修改的辐射度量。
12.根据权利要求11所述的系统,其中所述数据采集存储将一个或多个修改的辐射度量存储到时间轴。
13.一种用于确定x射线引导的医疗程序期间一个或多个人体的辐射暴露量的方法,包括如下步骤:
基于人体暴露模型计算所述x射线引导的医疗程序期间一个或多个人体解剖的尺寸和形状;
基于x射线设备模型和与x射线引导的医疗程序期间受控的操作设置对应的输入参数计算从x射线源发射的x射线束的几何结构,其中所述输入参数被配置为在所述x射线引导的医疗程序期间改变;
基于所述一个或多个人体解剖的尺寸和形状以及所述x射线束发射的几何结构计算所述一个或多个人体的辐射暴露度量,其中计算辐射暴露度量发生在所述x射线引导的医疗程序期间并且包括:
提供第一辐射度量值;
基于所述输入参数值的变化计算比例因子;
基于所述输入参数值的变化计算比例因子,以及
用所述比例因子调整所述第一辐射度量值以提供第二辐射度量值;以及
输出所述第二辐射度量值。
14.根据权利要求13所述的方法,其中所述辐射度量包括KAP和空气比释动能率之一。
15.根据权利要求13所述的方法,还包括基于从真实世界操作x射线系统得到的辐射度量校正所述辐射度量。
16.根据权利要求13所述的方法,其中所述辐射度量包括计算散射辐射。
17.根据权利要求13所述的方法,其中计算辐射暴露度量的步骤还包括生成一系列x射线影像、响应于所述输入参数的变化生成噪声图案;以及用所述噪声图案修改所述一系列x射线影像。
18.根据权利要求13所述的方法,其中输出步骤包括基于在所述x射线引导的医疗程序期间计算的当前辐射度量和累计辐射度量显示指示人体的辐射暴露平的热图。
19.根据权利要求13所述的方法,其中输出步骤包括基于在所述x射线引导的医疗程序期间计算的所述累积辐射度量显示指示随机险和确定风险的水平。
20.根据权利要求13所述的方法,还包括评估所述用户的性能以及提供用于减少辐射暴露的建议。
21.根据权利要求13所述的方法,其中所述第一辐射度量值基于从程序获得的辐射报告的数据以及DICOM数据。

说明书全文

基于医疗程序模拟的辐射估算和防护

[0001] 相关申请的交叉引用
[0002] 本申请要求于2013年10月7日提交的第61/887,835号美国临时申请的优先权,该美国临时申请的全部内容通过引用并入本文。

技术领域

[0003] 本发明涉及用于模拟影像导航医疗程序期间暴露给患者或医疗团队的辐射,更具体地涉及基于x射线影像导航程序(例如,透视)的辐射暴露。

背景技术

[0004] 现今,使用电离辐射的医疗设备已经在保健行业得到了广泛应用。允许医疗团队有效地诊断和治疗患者、电离辐射已经用于不同的医疗分支,包括放射学、心脏病学、神经学、肿瘤学、创伤治疗、整形外科、血管内介入。使用x射线成像作为诊断工具和治疗选项的益处持续增长。包括心血管疾病、癌症、糖尿病和慢性呼吸道疾病的非传染性疾病(NCD)已经通过使用x射线成像显著获益。根据世界卫生组织,现在NCD的全球流行性是世界上死亡的主要原因。
[0005] 在这些领域中典型使用且负责电离辐射的发射的设备类型包括CT扫描仪荧光镜和放射性x射线照相机。电离辐射还普遍存在于核医学分子成像过程中,其中放射性物质被引入患者体内。
[0006] 然而,暴露于辐射典型地导致严重的副反应,包括对活组织的微观损伤。组织损伤有时可能导致皮肤烧伤或辐射病(也被统称为“组织反应”或“确定性反应”),在一些情况下可能导致癌症(“随机反应”)。因二次“散射”辐射,这种类型的组织损伤对患者和在这些环境下工作医疗团队都存在险。医疗团队暴露于此环境中的患者或其它对象散射出的二次散射辐射是有害辐射。
[0007] 引入了ALARA(合理可行尽量低)作为管理潜在益处与潜在损害之间的折衷的一种方式。ALARA是以假设任意量级的每个辐射剂量可产生一定平的副作用的辐射安全原理,因此ALARA旨在通过采用所有合理的方法使辐射剂量最小。在世界的大多数地方,ALARA也是一种管制要求。
[0008] 医疗辐射暴露的比率已经在过去几十年有了迅速增长。近期研究发现公众的整体辐射暴露的一多半来自医疗辐射。研究还发现美国人口暴露于来自诊断医疗程序的电离辐射已经比早期的1980年代增长了若干倍。对此增长有贡献的程序主要包括基于CT的程序、基于核医学的程序和介入透视。
[0009] 最近的若干项趋势表明透视程序将很快超过基于CT的程序称为与辐射暴露最相关的一类程序。举个例子,透视引导的程序因通常用于治疗NCD而日益受欢迎。而且,为了有利于开放性手术且随着新的血管内技术的快速发展,医疗团队正在向x射线引导的微创手术过渡。与基于CT的程序相比,部分由于已经降低了基于CT的程序中的暴露的最新进展,预期透视程序造成更高的辐射暴露风险。例如,CT扫描技术的改进已经使其能够利用先前所需辐射的仅一小部分来运行CT扫描。相反,对于其它x射线引导的程序(例如,介入透视程序),辐射暴露度量仍然很高。此外,已经通过了限制使用CT扫描的立法和指导方针。
[0010] 与基于CT的程序相比,医疗团队能够在透视程序的过程中改变x射线设备的操作设置。这些操作设置在透视程序期间被动态改变,并且影响被传送至患者和医疗团队的辐射量、以及由设备产生的影像质量。由于团队要在介入透视的情况下做手术,所以无法在成像期间通过与x射线源保持大距离来减少他们自身的暴露,例如诊断性CT扫描的实施。有与可能影响被传送至患者或医疗团队的辐射暴露水平的操作设置对应的许多不同的输入参数,并且这些参数可能相关联或功能相依。例如,辐射剂量比率可能受中心波束穿过身体的路径长度、患者厚度、桌子、c形臂运动和度、被成像的身体部分、x射线机器的透视脉冲率、透视剂量水平(低/正常/高)、电影获取(开/关)、电影获取速率、C形臂检测器高度、准直器(方或圆)、使用中的楔形滤波器数量、视角(FOV)放大率、数字减影造影(DSA)的使用、患者在桌上的位置变化(体质)、用于特定程序的剂量协议、x射线管电压电流、射束成型滤波器的使用、自动剂量速率控制(ADRC)的使用、辐射源的位置(位于患者桌子之上或之下)、或取代平面板的影像增强器的使用的影响。单个参数或参数组合的变化可能改变针对患者或医疗团队的辐射剂量。然而,由于辐射对人类而言不可见或不明显,所以,对医疗专业人员而言,很好地了解这些变化的不良影响是非常困难的。此外,单个参数或参数组合的变化可改变由x射线机器产生的x射线影像的质量,从而可能影响治疗交付中做出的正确决定。因为这些参数相关联或功能相依,所以精确地确定参数的变化如何影响辐射剂量率或影像质量在计算上是极复杂的。然而,了解设备设置、影像质量和所导致的暴露之间的复杂关系允许医疗团队在优化影像和治疗质量的同时最小化患者和他们自身的健康风险。
[0011] 当前,医疗团队无法接受表明透视程序期间操作设置的变化如何导致暴露给患者或医疗团队的辐射的变化的训练。尽管详细了解辐射减少技术,但是现今大多数医疗团队只接受了辐射暴露的基本概念的评述,而没有接受任何亲身实践训练。训练模型典型地不包括任何亲身实践部件,这是因为当前在不使用真实辐射的情况下没有任何有效的方式来提供真实的亲身实践训练。尽管一些训练程序使用空的手术室并且使用“幻影”替代患者,但是弊端仍然存在。特别地,这些训练程序仍然使医疗团队暴露于二次辐射,并且它们阻碍手术室用于真实的程序。而且,它们未说明操作期间的操作设置的变化如何导致辐射暴露和影像质量的变化、或者操作设置可如何在x射线引导的医疗程序的不同点需要被改变以平衡辐射暴露与影像质量之间的折衷。
[0012] 尽管已经开发了用于测量、估算和可视化辐射暴露的技术和系统,但是当前公知的技术没有描述用于在非常真实且完全无辐射的模拟环境中针对操作设置调整的作用以及它们对辐射暴露和影像质量的影响培训医疗专业人员或医疗团队的全面解决方案。模拟越接近真实世界,就越可能将训练效果投放到真实的手术室。
[0013] 此外,用于测量、估算和可视化辐射暴露的系统未说明在程度过程中模拟参数的变化如何动态地影响辐射。考虑了多个不同模拟参数的模拟常常具有复杂的计算,并且一般以时间和资源敏感的蒙特卡罗方式执行。此外,为了改变一组参数,模拟一般被重复执行,因此不能有效地说明在实际程序期间参数的变化如何影响辐射。
[0014] 而且,用于测量、估算和可视化辐射暴露的系统未提供关于与不同水平的辐射暴露相关联的风险水平的任何有意义信息。与辐射暴露相比,它们一般没有针对风险程度的任何直接指示。所以需要集成一个有效的手段以说明如何评估健康风险和估算伤害。
[0015] 由此,需要一个训练系统以允许医学生、医师、医院员工在亲身实践、无辐射且高度真实的环境中练习最小化x射线引导的程序期间的暴露所需的技能。此外,需要一个训练系统以使他们易于透彻了解如何通过使用不同的程序技术影响所导致的剂量。

发明内容

[0016] 公开了用于模拟人体上的x射线引导的医疗程序和计算按所述x射线引导的医疗程序期间一个或多个人体的辐射暴露的系统和方法。所公开的方法和系统包括使用户基于x射线设备模型或人体暴露模型的输入参数的相应变化确定辐射度量的变化。通过确定辐射度量的变化,所述方法和系统可在x射线引导的程序期间输出当前和累积的辐射度量实况。更新的度量还使所述方法和系统向用户提供反馈和性能评估。通过向患者或医疗团队提供与暴露给患者的辐射量有关的信息,用户可调节输入参数以实现程序期间辐射暴露、x射线影像质量和与暴露相关联的风险之间的优化平衡。例如,在血管内程序期间,用户可响应于暴露的危险程度调节输入参数。
[0017] 所述系统还包括用于提供系统输入、辐射度量处理器和反馈系统的x射线设备模型和人体暴露模型。x射线设备模型模拟x射线引导的程序期间来自x射线机器的辐射发射。x射线设备模型还使用户设置和调节输入参数。输入参数对应于x射线引导的程序期间受控的操作设置。输入参数被配置为随x射线引导的程序过程改变。人体暴露模型模拟x射线引导的程序期间一个或多个人体解剖的结构。
[0018] 辐射度量处理器计算位于模拟的x射线引导的医疗程序中的一个或多个人体的辐射暴露度量。辐射暴露度量的计算发生在x射线引导的医疗程序期间,并且基于x射线设备模型和人体暴露模型的输入参数。辐射度量通过将输入参数的变化与辐射暴露度量的变化关联的模型被计算。以这种方式,当用户改变输入参数时,所述方法和系统可在程序期间输出辐射度量的变化而不需要中断。
[0019] 反馈系统包括x射线成像模拟器和辐射度量显示器。辐射度量显示器在x射线引导的程序期间向用户显示第一和第二辐射暴露度量。x射线成像模拟器在每个时间点基于x射线设备模型和人体暴露模型生成人体的x射线影像。x射线成像模拟器将噪声图案应用于x射线影像以建立模拟的有噪x射线影像。x射线成像模拟器然后向用户显示有噪x射线影像。以这种方式,显示给用户的x射线影像可在不需要电离辐射的情况下被生成;因此用户可在真实的手术室环境中训练特定的医疗程序而不需要将患者自身或其团队暴露于有害的辐射。
附图说明
[0020] 通过参数下面的详细描述和附图,本发明的目的和特征可被更好地理解,在附图中:
[0021] 图1是根据本发明的一个实施方式的系统的若干部件的框图
[0022] 图2示出了根据本发明的一个实施方式的控制箱;
[0023] 图3A、3B和3C示出了根据本发明的一个实施方式的可在模拟中使用的外部控制输入设备的示例;
[0024] 图4A、4B和4C示出了根据本发明的一个实施方式的与其它医疗模拟器集成的辐射防护模拟系统;
[0025] 图5是根据本发明的一个实施方式的用于计算辐射度量的方法的流程图
[0026] 图6示出了根据本发明的一个实施方式的x射线透视噪声和对比度可随用户改变控制输入参数而改变;
[0027] 图7示出了根据本发明的一个实施方式的虚拟准直器、楔形滤波器和桌子平移指示符可如何被显示在x射线成像模拟器上;
[0028] 图8A、8B和8C示出了根据本发明的一个实施方式的患者辐射剂量热图的示例;
[0029] 图9A、9B、9C和9D示出了根据本发明的一个实施方式的散射辐射;
[0030] 图10A和10B示出了根据本发明的一个实施方式的散射辐射等参数剖面的截面可视图;
[0031] 图11A和11B示出了根据本发明的另一实施方式的散射辐射可视图;
[0032] 图12示出了根据本发明的一个实施方式的呈现与患者相关和与散射相关的剂量的显示界面;
[0033] 图13是根据本发明的一个实施方式的辐射度量的时间轴;
[0034] 图14A和14B示出了根据本发明的一个实施方式的被用作模拟的系统输入的记录数据;
[0035] 图15示出了根据本发明的一个实施方式的患者专用训练的本发明的用途;以及[0036] 图16A和16B示出了根据本发明的一个实施方式的将本发明校正至单件x射线设备的过程。

附图说明

[0037]
[0038] 在本文中本发明描述了在无辐射环境中真实模拟x射线引导的医疗程序的系统和方法。所述系统和方法可用于训练和认证专业人员以减少医疗和职业的辐射暴露,并且教育x射线系统的操作员如何以最小危害方式使用x射线设备。本发明的实施方式还可用于治疗设备设计、开发和测试。
[0039] 图1示出了根据本发明的一个实施方式的辐射防护模拟系统的若干部件的图示。这些部件能使用户模拟x射线引导的程序,并且当用户在程序期间调整操作设备可视化辐射暴露和影像质量的变化。辐射防护模拟系统的部件可包括系统输入101、辐射度量处理器
102、反馈系统103和评估系统104。通过使用x射线设备和来自系统输入101的人体解剖信息,辐射防护模拟生成辐射度量、提供反馈且评估程序的性能。辐射防护模拟部件周期性地生成辐射度量和反馈而不需要将用户、患者或医疗团队的个体暴露于电离辐射。此外,辐射防护模拟部件在程序过程中生成辐射度量、反馈和性能评估,为用户提供亲身实践经验,即真实模拟程序过程中当设置被改变时辐射暴露和x射线影像质量的变化。
[0040] x射线设备和人体暴露模型生成被输入辐射度量处理器102的数据,辐射度量处理器102计算辐射度量(例如,剂量率和累积剂量信息)。辐射度量处理器可在程序期间为位于房间内的人计算辐射度量,包括对患者的直接辐射暴露和对医疗团队的散射辐射。在x射线引导的医疗程序期间,这些辐射度量可被提供给反馈系统103并且显示给用户。反馈系统103使用辐射度量提供当前操作设置下右x射线设备生成的x射线影像或散射辐射的真实可视化。通过可视化辐射度量,用户可调整x射线设备的操作设置以实现期望水平的辐射剂量或x射线影像噪声。评估系统104评估用户的性能和建议策略以改进他或她的剂量较少技术。
[0041] 系统输入101允许用户指定在模拟中使用的关于x射线设备以及患者或医疗团队的个体的位置和解剖结构的信息。模拟将这些信息合并到x射线设备模型和人体暴露模型中,使得模拟确定设备如何发射辐射以及患者或医疗团队成员如何暴露于辐射。系统输入还使用户改变x射线设备的设置或患者/医疗团队成员解剖。
[0042] x射线设备模型可被选择为对应于常见的现实配置。例如,为了将x射线设备模型配置为对应于透视x射线设备模型,用户可选择平板检测器、安装在桌子下面的x射线源,并且选择自动剂量控制能。x射线设备模型可被预安装在辐射保护模拟系统上并且被呈现给用户进行选择,或者模型的个体特征可由用户随意配置。
[0043] 人体暴露模型可由用于患者和/或手术团队的成员的模型库构成。对于患者,模型库可包括代表对辐射防护训练重要的各种训练目的的一组模型,例如,不同的年龄和体重、性别和孕妇患者。这些解剖模型可从CT或MRI数据获得,或者它们可由三维建模软件建模,并且可包含患者的皮肤以及其它器官。可选地,预安装的解剖可被使用,并且可用还可被允许通过输入解剖参数(例如,重量、长度或厚度)修改预安装的模型的外观。人体暴露模型可对应于患者的解剖特征。在一个实施方式中,人体暴露模型可以是解剖测量,例如眼睛的长度、高度,性腺的长度、高度。用户可修改这些解剖测量。
[0044] 在一个实施方式中,系统输入特征包括x射线设备控制。x射线设备控制仿真典型地用于控制x射线设备操作的控制。这些控制可例如为上面描述的输入参数,例如c臂运动和角度、x射线机器的透视脉冲率、透视剂量水平(低/正常/高)、电影获取(开/关)、电影获取帧速率、C形臂检测器高度、准直器(方或圆)、所使用的楔形滤波器数量、视角(FOV)放大率、数字减影造影(DSA)的使用、用于特定程序的剂量协议、x射线管电压和电流、射束成型滤波器的使用、自动剂量速率控制(ADRC)的使用、辐射源的位置(位于患者桌子之上或之下)、或取代平面板的影像增强器的使用。因为x射线设备控制典型地在x射线设备上发现的仿真控制界面,所以模拟为用户提供的真实体验。x射线设备模型还可允许用户改变与x射线设备有关的其它信息,例如构造、模型或制造年代。
[0045] x射线设备模型还处理从外部控制源接收的输入。例如,C形臂运动、角度或准直的变化由x射线模型处理以改变设备发射的辐射的特征。这又改变辐射度量、反馈和由系统提供的性能评估。
[0046] 除了指定与正被使用的x射线设备有关的信息以外,系统输入101允许用户指定人体暴露模型,其中人体暴露模型指定了模拟期间正动手术的患者和医疗团队的个体的解剖的位置和构造。人体暴露模型可被实现为三维网格模型。这些模型可通过将实际患者的CT或MRI扫描分段来生成。人体暴露模型还可包括患者的器官,包括但不限于心脏、大脑、眼睛和性腺以计算渗透、反向散射和器官剂量的更精确估算。此还可用于标识和强调额外敏感的特殊区域,因为不同的器官可能对辐射具有不同的敏感度。使用患者的三维网格模型能够精确地确定x射线系统(例如,x射线管或影像检测器)与患者皮肤之间的距离,该距离是估算所导致的辐射暴露的重要因素。
[0047] 在一些实施方式中,特定患者解剖模型可基于患者的CT或MRI扫描建立。CT或MRI扫描然后用于确定不同解剖特征的确切位置。所述特定患者模型可能在患者对辐射暴露非常敏感和/或确切解剖是至关重要的情况下(例如,孕妇或年轻患者)是有益的。特定患者模型然后用于模拟真实的程序,使医疗专业人员或团队实践如何在安全无辐射的环境中最佳最小化对具体患者的辐射。对患者身体的期望辐射的可视反馈和实践进行期间对程序改进的建议然后可被用于最小化在真实程序期间被传送至患者的实际辐射。
[0048] 人体暴露模型可解释与各种现实生活情况对应的患者解剖和患者背景的许多不同变型,例如,患者年龄、梯形、医疗历史、体重、性别或是否怀孕。对人体暴露模型的输入可来自肥胖/体重不足患者、男/女、孕妇、新生儿、儿童、青少年、成年人或老人、或他们的任意组合。
[0049] 辐射度量处理器102基于x射线设备模型和人体暴露模型计算辐射度量。辐射度量处理器102对传送的辐射将如何随着变化的输入参数而变化进行建模。这些辐射度量被反馈系统103处理并且使用户能确定如何调节输入参数以改变x射线图像噪声和患者/医疗团队辐射暴露。辐射度量还可由评估系统104使用以评估用户的性能,并且建议用户可如何减少辐射暴露。辐射度量处理器102可计算各个不同参考点处的各个不同度量。度量可反映当前剂量率和累积剂量率。度量可取决于在程序过程中改变的若干输入参数。
[0050] 反馈系统103基于由辐射度量处理器计算的当前剂量率和累积剂量率向用户提供信息。由反馈系统103提供的信息将辐射度量翻译成用户可关联至真实世界设置或可对提高对电离辐射的基本原理的理解有用的值。特别地,信息可包括模拟的x射线影像、剂量指示符、剂量热图、散射辐射分布和辐射度量时间轴。
[0051] 在一个实施方式中,反馈系统103将辐射度量存储到数据采集存储中。数据采集存储可存储辐射度量以在模拟的x射线程序之后例如作为报告提供。
[0052] 被显示给用户的x射线影像由x射线成像模拟器生成。X射线程序模拟器生成x射线图像,其中x射线图像被更改以包括与x射线设备输入参数相关联的噪声。模拟的x射线图像通过向基础x射线影像添加噪声来生成。基础x射线影像可从之前的程序、预先存在的x射线图像数据库获得,或从CT和MRI扫描建模。在优选实施方式中,它还可通过与血管内模拟器交互获得。x射线影像噪声水平和对比度基于当前的输入参数被计算。噪声图案然后被应用至影像以给予减少或改进x射线影像质量的效果。
[0053] 在本发明的一个方面,x射线程序模拟器可包括二维或三维叠加。例如,x射线成像模拟器可将x射线影像与掩膜叠加。掩膜是相关区域或身体部位(例如,血管)的叠加,帮助用户在程序中导航。另一类叠加可以是患者的实际解剖身体部位的影像。这些影像可在实际程序之前(例如,通过CT扫描)获得,或者,它可在程序期间(例如,使用旋转血管造影或CBCT)获得。投影的叠加还可被上色以使其更好地与x射线影像区分开。影像叠加还可与之前的x射线影像一起使用,并且从当前的影像数数字地减去以建立血管的“路线图”。叠加的影像的透明度可被改变以同时显示现场的x射线影像和叠加的掩膜影像。对于影像以及对于已经通过激活的掩膜影像获取的电影获取,用户可切换掩膜影像和相减的影像而不必进行新记录和将患者暴露于附加的辐射。它还可能够从电影获取得到已经记录的影像或帧并且直接选择将其用作掩膜影像。
[0054] x射线影像模拟器可提供透视存储功能。透视存储或透视环存储有限数量的透视帧(在激活时存储或在整个程序中连续地存储)。操作员然后可在需要时代替记录电影或DSA,选择存储来自透视存储的最后一个透视序列作为回顾或编制程序中的某一步骤的手段。以这种方式,使用透视存储避免了电影和DSA获取的过度使用。x射线成像模拟器通过保存许多最近查看的帧提供透视存储功能。保存的帧的数量可基于预定时间窗,例如至少30秒现场的x射线。
[0055] 反馈系统103还可基于辐射度量超过各种阈值管理对用户的通知。如果在模拟执行期间辐射度量接近或超过阈值,则模拟可通知用户。例如,当累积的皮肤峰值剂量、参考点空气比释动能、KAP和/或透视时间超过特定阈值时给予警告。这些警告可以是语音警告、显示器上的闪烁图标、或触摸屏平板电脑上显示已经超过阈值、阈值是多少且警告用户的书面消息。通知还可能需要用户确认通知。
[0056] 通知可由第一通知和随后在超过另一附加固定量的辐射时紧跟的通知构成。如果超过了随访患者的阈值,则可添加另一警告文本以指定可能已经发生了辐射诱导性损伤和患者应该接受随访。反馈系统可向用户提供指令以帮助避免超过这些阈值中的任一个。
[0057] 图2示出了根据本发明的一个实施方式的具有x射线设备控制的系统输入。系统输入可包括用于患者桌子移动的控制,例如对移动桌子的横向位置的控制201和对移动桌子上/下高度的控制202。系统输入还可包括用于移动C形臂的控制,例如用于移动C形臂机架角度的控制203、用于上/下移动检测器的控制204和用于改变检测器的亮度的控制205。系统输入还可包括用于C形臂的准直设置的控制,例如用于准直器/楔形滤波器的位置的控制206、用于准直器/楔形滤波器的使用的钮207、用于重置准直器/楔形滤波器的位置的重置的控制208、以及用于上/下调节放大率的控制209。系统输入还可包括能进行三维叠加的钮
210,其可用于将之前获得的半透明三维血管掩膜影像叠加到x射线影像上。系统输入还可包括用于影像存储的控制,例如能捕获透视影像的开关211、用于显示系列获取的开关212和暂停/停止系列获取的开关213。系统输入还可包括用于透视设置的控制,例如能捕获掩膜影像的开关214、用于打开/关闭路线图的钮215、对上/下盖板掩膜重量的控制216、以及将剂量水平改变为低/正常/高的钮217。系统输入还可包括用于双平面设置的控制,例如在c形臂的前向/侧向/双平面定位之间选择的钮218和在激活前向/侧向/双平面透视219之间选择的钮219。
[0058] 在本发明的一个实施方式中,x射线设备控制的选择和布置仿真在可操作x射线设备的真实特定供应商控制箱上找到的选择和布置。例如,x射线设备控制箱可由与Siemens、Philips、General Electrics或Toshiba x射线机器相同的控制和布置生产。因此,控制x射线设备的用户将感到他或她就像在真实的Siemens、Philips、General Electrics或Toshiba x射线机器上操作一样。以这种方式,系统可增强模拟的真实和亲身实践训练成分。在本发明的另一实施方式中,控制的选择和布置可独立于特定的供应商或与其无关。也就是说,控制箱可基于商用x射线系统常见的功能。常见控制可包括但不限于桌子和c形臂运动、影像、x射线、路线图、透视存储、准直、楔形滤波器和双平面设置。
[0059] 在其它实施方式中,x射线设备控制可以是来自x射线设备的实际控制箱。一些x射线设备系统允许控制箱与系统分离。这些分离的控制箱可适于提供模拟系统的输入。例如,来自Siemens、Philips、General Electrics或Toshiba x射线机器的控制接口可适于与x射线模型通信。
[0060] 图3A、3B和3C描绘了用平板电脑、智能电话、触摸屏监视器和相似设备实现x射线设备控制的附加实施方式。在图3A中,x射线设备控制301可以是物理控制箱,其控制被布置为仿真真的特定供应商x射线机器,例如Siemens、Philips、General Electrics或Toshiba x射线机器。控制箱还可以是独立于供应商,提供控制选择和与任何具体供应商无关的布置。控制箱301可耦接至计算机302或304,其中辐射处理处理器、反馈系统和评估系统可在计算机302或304上执行。在图3B中,x射线设备控制301可用平板电脑、智能电话或相似的移动设备303实现。辐射度量处理器可在计算机302和304、控制箱301、或移动设备303中执行。移动设备中的控制可用软件或触摸屏实现。使用移动设备使用户能自由地相对于系统移动。此外,用户界面可被编程为提供不同的控制选择和不同的布置,例如以容纳特定供应商控制设计。因此,当供应商更新或改变控制设计时模拟系统可适应。
[0061] 图3C示出了医疗模拟器305、以及触摸屏306和307。医疗模拟器305包括人形图。人形图可包括可用于模拟治疗的一个或多个开口308。触摸屏306和307可用于接收用户输入并在程序期间显示辐射度量、反馈和评估。在其它实施方式中,图3C中的医疗模拟器和显示器可与如上所述的控制箱301或移动设备303一起使用。辐射度量处理器可在医疗模拟器305、触摸屏306和307中执行。
[0062] 图4A、4B和4C示出了可耦接至系统输入的模拟器的各个实施方式。不同的模拟器向用户提供不同程度的真实性和便携性。
[0063] 根据图4A中所示的一个实施方式,系统输入401和显示器402可耦接至便携式医疗模拟器403。医疗模拟器可任选地具有集成的系统输入401。系统输入401包括如上所述用于操纵x射线设备的控制。然而,因为模拟器403未耦接至物理的x射线机器,所以显示器402模拟x射线设备将响应于由用户提供的输入被定位的情况。如图4A所示,显示器402还可模拟将由x射线设备在当前输入参数下生成的x射线影像。便携式模拟器403可用于例如提供血管内程序的模拟,例如血管造影术和介入式培训程序。用于血管内手术的模拟器是追踪医疗仪器通过单独的硬件设备的动作的系统,并且检测到的动作被翻译成虚拟仪器在患者的虚拟模型内的移动。仪器在虚拟患者体内移动的仿真x射线影像被显示在计算机屏幕上,允许医生对特定介入或某一程序的细节进行培训。
[0064] 在便携式模拟器403用于模拟血管内程序的一个实施方式中,模拟器可包括用于模拟进入心血管系统的进入点的开口404。例如,开口404可用于模拟右侧桡动脉的右侧冠状动脉导管插入。用户可将真实的导线或导管插入开口404;随着导线或导管更深入血管通路内,如果用户针对真实的患者动手术则显示器402将显示导线或导管将被定位的地方。以这种方式,便携式模拟器403可用于训练血管造影术或血管内介入的专业人员。
[0065] 根据图4B中所示的另一实施方式,系统输入405和显示器402可耦接至人类患者模拟器406。系统输入405和患者模拟器406通过提供用于x射线设备的控制输入的真实选择布置以及真实的全身人体模特,提供附加程度的真实性。全身人体模特可包括一个或多个开口407。类似于便携式医疗模拟器403,患者模拟器406允许用户模拟不同类型的x射线引导的医疗程序。显示器402模拟x射线设备将响应于由用户提供的输入被定位的情况。如图4A所示,显示器402还可模拟将由x射线设备在当前操作条件下生成的x射线影像。因此,类似于便携式模拟器403,患者模拟器406提供x射线引导的医疗程序的辐射训练。
[0066] 根据图4C中所示的另一实施方式,系统输入408和x射线机器409可耦接至显示器402或410。x射线机器409可以是在医疗设置中使用且用实际系统输入408操作的实际x射线机器。例如,x射线机器可以是在执行透视引导的程序中使用的移动的或静止的C形臂机器。
系统输入408可响应于在系统输入408处提供的控制信号,控制桌子和人类患者模拟器上方的C形臂的移动和设置。在x射线机器409响应于系统输入408移动时,x射线机器不发射辐射。用户在系统输入408处设置的位置和操作设置用于导出在显示器402或410上显示的模拟影像。显示器402或410上显示的模拟影像代表在真实程序期间由x射线机器409在该位置和这些具体设置下生成的x射线影像。以这种方式,真实机器409和系统输入408的使用为用户提供了又一维度的真实性。此外,显示给用户的x射线影像可在不使用电离辐射的情况下生成;因此用户(或团队)可在真实的手术室环境中对特定的医疗程序进行训练而不会使患者或其自身暴露于有害的辐射。在本发明的另一实施方式中,模拟器409可在医院或保健设施的实际手术室内被装配。
[0067] 在本发明的一个方面,x射线机器409耦接至桌子411。桌子可以的传统的导管台或操作台。如果桌子411是操作台,则模拟系统可用于模拟混合程序,其结合了x射线成像技术和在操作台上执行的开放手术。所述混合系统提供了用于x射线引导的程序和开放手术程序的训练,因此可用于团队和跨学科训练。
[0068] 图5示出了根据本发明的一个实施方式的用于计算辐射度量的方法。图5中的程序根据标准模型通过初始化IRP和KAR剂量率、然后根据不同输入参数的变化调整剂量率来计算辐射度量。图5中所示的一些步骤是任选的,不需要被执行以执行此模拟;图5中所示的任选步骤用于生成度量,在并入模拟时可对用户有益。
[0069] 由辐射度量处理计算的辐射度量数据包括在若干不同参考点计算的多个度量。在一个实施方式中,在“接入参考点”(IRP)处计算度量。IRP是典型地被测量为朝向辐射源的“等深点”前面15cm的参考点,通常位于患者桌子下面。“等深点”是C形臂的旋转中心,即,不管C形臂的角度如何总是待在目视中心的点。IRP可用作逼近患者皮肤位置,可用于计算IRP出的空气比释动能率。改变桌子高度不会改变IRP的位置,这可导致IRP处的估算的皮肤与患者接受的实际皮肤剂量之间的实质差异。
[0070] 根据本发明的其它实施方式,可在FDA剂量点(FDP)处计算剂量率。FDP可以是位于平板检测器前面30cm处的点。当改变检测器高度时,此点移动,这可导致许多情况:IPR和FDP重合、IRP位于FDP前面、或FDP位于IRP前面。偶尔,FDP可用作用于限制系统的最大可允许剂量率的参考点。例如,FDP处的透视剂量率可被限制为88mGy/分钟。对于具有自动调控输出剂量的成像系统(即,使用自动亮度控制(ABC)或自动剂量调控(ADRC)以通过检测器维持接近恒定影像质量),然后一旦达到该限制,此剂量率限制可导致x射线影像质量下降。在另一实施方式中,患者桌子的顶面与中心波束相交的实际位置可用作参考点。
[0071] 当参考点被确定时,辐射度量处理器可使用参考点和与x射线设备有关的信息(例如,源和桌子距离x射线设备模型的位置)计算度量。辐射度量可包括KAP率、IRP处的空气比释动能率、皮肤峰值剂量(PSD)和相应的累积度量。辐射度量数据还可包括患者热图、散射辐射图和等参数剖面。因为不同的辐射度量可随程序过程而改变,所以这些度量可在不同的时间点处被保存,建立辐射度量的时间轴。
[0072] 在步骤501,将辐射度量数据初始化为0,并且可设置辐射度量阈值。辐射度量阈值是用于某些度量的值,例如,剂量率,可在整个模拟中使用以触发警报或提供反馈和性能评估。阈值可被设置以反馈政府法规、医院政策和代替控制x射线系统可在其内操作的界限的技术阈值。例如,对于具有ADRC的系统上的现场透视,FDA规则将FDA剂量点处的剂量率限为最大88mGy/分钟。然而,此限制未应用于特殊的高剂量模式,例如高透视剂量设置,也未应用于DSA获取,在DSA获取中剂量率可达到多倍此阈值。大多数成像系统还具有用于特定程序的协议,将剂量率界限设为低于此FDA阈值。阈值还可在程序过程中改变或被设置。
[0073] 在步骤502中,系统设置标准的IRP剂量率和标准的KAP率kref。如上所述,模拟可包括用于设置任意数量输入参数的输入,包括桌子和C形臂机器的移动和角度、x射线机器的透视脉冲率、透视剂量水平(低/正常/高)、电影获取(开/关)、电影获取帧速率、C形臂检测器高度、准直(方或圆)、使用中的楔形滤波器的数量、放大率或视野(FOV)、数字减影造影(DSA)的使用、用于特定程序的剂量协议、x射线管电压和电流、射束成型滤波器的使用、自动剂量速率控制(ADRC)的使用、辐射源的位置(位于患者桌子之上或之下)、或取代平面板的影像增强器的使用的影响。标准的IRP剂量率和标准的KAP率基于具有预定值的预定的这些参数集合被计算。例如,在一个实施方式中,标准的IRP剂量率和标准的KAP率基于下面的一组参数被计算并且可具有下面的一组初始值:
[0074]
[0075] 如上面所解释的,在程序过程中,用户可调节或改变这些输入参数中的一些。而且,如上面所解释的,输入参数的变化可改变被传送至患者和团队的辐射剂量率、以及由机器生成的x射线影像。根据本发明的一些实施方式,参数值的变化可被忽略。
[0076] 在一个实施方式中,如上所述的阈值可取决于这些参数。例如,患者厚度、低/正常透射剂量设置、脉冲率和所传送的患者剂量率之间的关系确定在哪个点达到这些剂量阈值。与使用较低的脉冲率的情况相比,使用较高的脉冲率例如可导致为较小的患者厚度达到阈值。使用“低”透视剂量水平设置也将降低阈值并且导致更早地达到阈值。因此,参数值的变化可导致阈值的变化。在模拟期间,任意设置的阈值或阈值剖面之间的比较可被显示。另外,在模拟期间或之前,模拟器可向用户显示与保持在任意阈值或阈值剖面内相关的指令。例如,如果当前的剂量率太高,则模拟器可指示用户从正常设置切换至低剂量设置。一旦达到阈值,阈值还可用于限制某些参数值或设置。结果,模拟可防止输出的剂量率增大,影像质量可能恶化。例如,对于现场透视在超过88mGy/分钟的FDA剂量点之后,模拟期间的x射线影像噪声水平可能开始增加。或者,对于电影获取或DSA在超过1400mGy/分钟的剂量限制之后,记录的获取中的x射线影像噪声水平可能类似地增加。
[0077] 在本发明的一个方面,模型可将输入参数的变化与辐射暴露度量相关联。根据本发明的一些实施方式,在步骤503和504中通过计算倍数因子和当前剂量率,参数值的变化可用于修改辐射暴露度量。在步骤503中,计算倍数因子,在步骤504中,通过用倍数因子调整IRP剂量率和KAP率计算当前IRP率和当前KAP率。当前剂量率dt可被表达成:
[0078] 其中fi(wi,pref)=1
[0079] 其中dt是时间步t处的剂量率,kref是上述的基础剂量率(即,具有预定值集合pref的预定义参数集的期望剂量率),i是覆盖影响被传输至患者的剂量率的所有参数的索引,fi(wi,pt)是以权重wi和参数值pt为变量的函数计算的倍数因子。权重wi可用于将每个因子相关函数校正至真实可操作x射线系统的测量剂量率,以及pt是时间步t处的所有输入参数的向量。因子相关函数的要求为满足fi(wi,pref)=1,确保当pt=pref时dt=kref。
[0080] 上面的剂量率dt可用于计算各种剂量率,例如IRP处的空气比释动能率、KAP率、FDP处的空气比释动能率、桌子表面处的空气比释动能率和实际皮肤剂量。一些类别的剂量率可不受某些参数影响。例如,准直或楔形滤波器参数可影响KAP剂量率,但是不影响IRP处的空气比释动能率。因此,用于不同类别剂量率的kref值和权重可不同。
[0081] 因子函数fi(wi,pt)使用物理模型和经验数据生成以创建在模拟的输入参数改变时精确调节剂量率的系统。下面描述根据本发明的不同实施方式的用于若干参数的因子函数fi(wi,pt)的详细描述。
[0082] 在本发明的一个实施方式中,因子函数可基于参数“路径长度”。“路径长度”是x射线束穿过人体的长度。患者的路径长度可受三个子因子影响:(i)患者的厚度(例如,患者越厚,路径长度越长);(ii)c形臂的角度(例如,角度也小,路径长度越长,因为人体的宽度通常大于厚度);(iii)x射线束经过的人体部分(例如,腹部比臂部厚)。穿过身体的路径长度可使用这些子因子计算。以这种方式建模患者厚度使用户容易地模拟不同形状、性别和尺寸的患者,并使用户负责桌子的水平移动和患者在桌子上的定位。
[0083] 在实现“路径长度”因子的一些实施方式中,路径长度可通过用三维三角网络对象建模人体进行计算,并且将x射线束当做穿过网络对象的直线。射线追踪可用于识别与射线相交的所有三角形。这些相交点之间的内长然后可被求和以获得穿过三角对象的总路径长度。
[0084] 一般地,配有ADRC的x射线系统尝试将接收的剂量保持在检测器恒定,因此,穿过人体的“路径长度”较长与较短情况相比将导致发射的剂量的增加。同样,基于假设人体主要由水构成的理论模型建议患者厚度比“正常”20cm增加了约3cm将导致2倍的必要入射剂量。类似地,物理和几何模型建议如果患者身体从前后(AP)象旋转45度角则增加360%的入射剂量,如果患者身体从AP象旋转55度角则增加700%的入射剂量(假设20cm厚和40cm宽的具有完全椭圆体型的患者)。然而,经验研究表明实际入射剂量值明显不同于上面的理论值,因为理论值是基于身体主要由水构成的不精确前提。事实上,身体不仅由水构成还由骨头、器官和其它器官材料构成。经验研究表明当路径长度从12增加至36cm(因子为3:1)时皮肤剂量率可从0.4增加至5.6(因子为14:1)。
[0085] 为了解释理论模型与实验数据之间的差别,可使用下面的因子相关函数对路径长度建模:
[0086]
[0087] 其中lref是参考路径长度,lt是时间点t处的路径长度,以及wi是校正权重,在此情况下对应于导致辐射剂量加倍的路径长度增加。
[0088] 例如,为了对应于理论值,参考路径长度lref=20cm以及校正长度wi=3cm可给出剂量倍数因子fi=1,使得随后的路径长度增加3cm(lt=23cm)将产生fi=2。类似地,路径长度减少3cm(lt=17cm)则产生fi=0.5等等。
[0089] 可选地,权重可适于来自真实世界设备的经验值。在此实施例中,当路径长度增加24cm时,设权重wi=6.304将产生使剂量率增加因子14的经验测量值。
[0090] 如果路径长度变得非常小或为0(例如,当波束完全位于体外时)需要进行特殊考虑。如果路径长度变得非常长,则可能是x射线管和剂量调整方面的某些限制因子,其导致剂量率阈值转换和影像质量的降低,这些将在下面做更详细的讨论。
[0091] 在实现“路径长度”因子的一些实施方式中,路径长度因子可对视野内的单独波束进行建模。在真实环境中,视野内的各个点处的x射线束可具有中心x射线束不同的路径长度。然后可以与上面描述的中心波束相同的方式计算每个波束的路径长度,每个每个不同的路径长度计算单独的倍数因子贡献(取决于所考虑的x射线束的数量),然后对这些贡献求和以产生最终的倍数因子。
[0092] 在本发明的一个实施方式中,因子函数可基于参数“透视脉冲率”。脉冲率减少一半将在理论上使IRP处的空气比释动能率减少一半。例如,从30p/s减少至7.5p/s应该导致剂量节省75%。
[0093] 可使用下面的因子相关函数对透视脉冲率建模:
[0094]
[0095] 其中pref是参考脉冲率,pt是时间点t处的脉冲率,以及wi是校正权重,在此情况下对基于纯物理的模型将等于1。
[0096] 然而,经验研究表明皮肤入射剂量率可呈现更缓和的减少,从30p/s降至15p/s仅减少22%的剂量,从30p/s降至7.5p/s仅减少约50%的剂量,这是因为通过ADRC补偿管电流以保持影像质量。因此权重可被调节以通过设wi=2反映此现实的测量关系。
[0097] ADRC可被配置为明显地以线性剂量减少策略操作(具有明显的影像质量损失)或以平衡测量操作(具有较少的影像质量损失和较少的剂量减少)。因此还可将附加的输入参数并入此模型的更复杂版本。
[0098] 基于此信息,因此可在平衡的影像质量值上构建用于透视脉冲率的适当的辐射暴露模型。例如,对于设参考脉冲率pref=30p/s和设校正权重wi=2,脉冲率降至pt=15p/s将给出空气比释动能率因子fi=0.75,脉冲率进一步降至pt=7.5p/s将产生fi=0.5等等。
[0099] 在本发明的一个实施方式中,因子函数可基于参数“透视剂量水平”。许多现代系统为操作员提供快速设置以在情况不需要相同的高影像质量时减少透视剂量率。使用此选项也增加了影像噪声。有时候,还存在用于在程序的某些关系部分或在困难的成像情况下增加剂量的设置。典型地,较低的剂量率设置可将发射的剂量减少至正常情况的50%,而较高的剂量率设置可使剂量与正常剂量相比加倍。
[0100] 可使用下面的因子相关函数对透视剂量水平建模:
[0101]
[0102] 其中wi是校正权重,在该情况下等于2,这是因为期望经验测量值遵循理论值。标准参考至将对应于剂量水平被设为“正常”。
[0103] 作为辐射模拟的一部分,可添加选择以在低、正常和高剂量率设置之间切换。然而,可使用其它中间设置或中间设置的其它组合(例如,仅低和正常)。低剂量设置可将发射的剂量减少至50%(或其它值),影像噪声相应地增加。高剂量设置可将发射的剂量增加100%(或其它值),并且相应地减少影像噪声。
[0104] 当使用高剂量模式时,可在辐射模拟器中可发出明显的连续信号以警告高剂量的操作员(然而,应该能够在配置中将其关闭)。如果连续使用高剂量模式多于20秒或其它设定的时间周期,它可自动回复至正常模式。
[0105] 在本发明的一个实施方式中,因子函数可基于参数“电影获取”。对于电影获取,剂量水平远高于现实透视情况,以传送良好的影像质量。一般地,大多数x射线荧光电影赵信单元被校正使得用于该获取的每个帧剂量比透视情况大将近15倍。在一些情况下,获取可大10-15倍。因此,在使用电影获取时模拟辐射暴露模型可使用15倍透视剂量的值(或其它值)。
[0106] 可使用下面的因子相关函数对电影获取建模:
[0107]
[0108] 其中wi是校正权重,在该情况下被设为等于2以对应于经验测量值。标准参考至将对应于电影获取被设为“关”。
[0109] 尽管“正常”或“低”透视剂量水平设置通常不会改变获取电影系列时传送的剂量率,但是因子相关函数可被修改为在获取期间包含这些影响。然而,典型地,当电源获取被设置“开”时,用于透视剂量水平和脉冲率的因子相关函数将从总剂量率公式中被省略。
[0110] 在本发明的一个实施方式中,因子函数可基于参数“电影获取帧速率”。电影帧速率设置将导致与改变用于透视的脉冲率相同比例的变化,因此可以相同的方式建模:
[0111]
[0112] 其中通过使用与透视脉冲率完全相同的论点,pref是参考电影帧速率,pt是时间点t处的电影帧速率,以及wi是校正权重,对基于纯物理的模型将等于1,但是在更真实的经验模型中可被设为2。
[0113] 在本发明的一个实施方式中,因子函数可基于参数“C形臂检测器高度(SID)”。研究建议基于与距离的逆二次关系,将源图像距离(SID)从105cm升高至120cm使IRP处的空气比释动能剂量率增加近30%。其它研究建议检测器与患者之间的附加的10cm空气间隙导致皮肤剂量增加20-38%。
[0114] 此因子相关函数可被表达成:
[0115]
[0116] 其中sref是参考SID,st是时间点t处的SID,以及wi是校正权重,在该情况下对基于纯物理的模型将等于1。将检测器升高特定距离将导致SID的完全相同增加。
[0117] 在本发明的一个实施方式中,因子函数可基于参数“准直”。可调节圆形或方形准直器通常被置于辐射源与KAP读取器之间并且有效地将向患者发射的总剂量减少与非准直区域成正比的量。尽管发射的总辐射剂量被减少,但是IRP处的空气比释动能率大致不变,这是因为IRP位于准直窗口的中心。在真实环境中,IRP剂量率可甚至因ADRC的补偿而增加。因此,在辐射模拟器中,非准直区域与整个区域的比可确定总剂量减少,这又影响KAP值计算,但是不一定影响IRP处的皮肤剂量。例如,如果准直器覆盖整个视野的30%,则KAP率可同样减少30%而IRP处的空气比释动能率保持不变。
[0118] 由于IRP处的空气比释动能率典型地不太受准直器设置的影响,所以辐射模拟模型可完全排除此因子相关函数。然而,取而代之提供下面的用于KAP率的另一相似因子函数,其实际上需要说明此参数:
[0119]
[0120] 其中aref是参考非准直区域,at是时间点t处的非准直区域,以及wi是校正权重,对基于纯物理的模型将等于1。
[0121] 在本发明的一个实施方式中,因子函数可基于参数“楔形滤波器”。除了主要准直器叶片以外,还有使用半透明准直器和初次准直器组合的各种方式。主要准直器通常仅减少发射的总剂量,结果影响KAP率。半透明准直器常常被形成为跨准直器叶片具有变化厚度的楔形(从而叶片边缘将在x射线影像上建立平滑过渡)并且用于改善初次方形准直,均衡影像中的对比差异。因此它们也常常被称为楔形或均衡滤波器。它们可具有不同的形状(例如,方形、圆形、半圆形、椭圆形、三角形或它们的组合),但是典型地成对地用在现代x射线系统上,一个左滤波器和一个右滤波器从各侧插入并且还可被旋转以遮挡视野的对角部分。
[0122] 模拟模型可通过相应地改变剂量率解释因使用半透明准直器材料引起的剂量变化。确定因楔形滤波器引起的减少的辐射水平可能是复杂的,因为准直器叶片厚度不均匀,可具有不同的材料和形状并且可相对于彼此重叠。由此,主要准直器的位置可改变。在一些研究中,发现均衡滤波器至少减弱因子1:6的辐射。一些研究建议用于特定x射线it的值的大变化,其它研究甚至表明空气比释动能和KAP率可因ADRC的补偿在楔形滤波器被插入时增加。
[0123] 一个用于此参数以产生KAP率的因子函数可被表达成:
[0124]
[0125] 其中 是时间点t处的非准直区域, 是时间点t处的非准直和滤波区域,以及wi是准直权重,在此情况下对于基于经验的模型等于6。模型还可解释因插入楔形滤波器导致的辐射增加,在上面的实施例中意味着wi将被设为低于1的值。
[0126] 更复杂的模型还可解释堆叠的初次和/或次级准直器的作用,从而它们可被旋转或平移以形成致使的形状或透明度。这可通过分割实现,其中vref是参考FOV,vt是时间点t处的FOV,以及wi是准直权重,对空气比释动能和KAP而言可不同,但是在此情况下对二者都等于1。
[0127] 例如,在例示辐射模拟模型中,如果对于空气比释动能和KAP率,vref=23cm并且wi=1,则FOV变化至vt=15cm将给出IRP剂量率因子fi=1.5和KAP率因子
[0128] 图像噪声水平还可被假设为以与IRP处的空气比释动能率相同的方式线性增加。可选地,图像噪声水平可遵循更复杂的关系(例如,指数、log)。
[0129] 在本发明的一个实施方式中,因子函数可基于参数“数字减影造影(DSA)”。DSA是用于在程序期间更清楚地区分x射线影像中的血管与其它解剖结构的一种技术。它通过将造影剂注射到脉管中然后将此掩膜像从随后的影像中减去来实现。因为减去处理加重了图像噪声,所以有必要通过实质(几乎20倍)较高剂量/帧获取每个原始影像来削弱此效应。增加的剂量/帧可通过采集较慢帧速率的能力进行部分抵消。然而,使用数字减影成像的程序一般比使用非减影荧光电影摄像的程序具有更大的聚集辐射剂量,甚至比低剂量透视大325倍剂量/帧。一些研究启发为非减影电影获取可期望得到的剂量率的25-50倍剂量率的更大差异。
[0130] 为了解释DSA,与正常剂量透视相比,模拟器模型可增加非减影电影运行的因子150或10倍(或其它值)的IRP处的空气比释动能率。其可被表达成下面的因子相关函数:
[0131]
[0132] 其中wi是校正权重,在该情况下假设电影获取和DSA因子函数可被包含在最终的因子乘法内,可被设为10。另外,模拟模型可解释现实减影路线图与正常现实透视之间的剂量率差异。
[0133] 一旦所有的参数都已被独立地处理,来自各个剂量率因子的贡献可被相乘以给出给定时间处的“总剂量率”。一些剂量率因子还可与IRP处的锥束区域相乘以给出相应的“KAP率因子”。
[0134] 基于上面描述的模型和因子相关函数,可为程序期间的任意时间点计算IRP和KAP处的空气比释动能率。根据本发明的一个实施方式,可在程序的整个过程对当前剂量率(例如,IRP处的当前空气比释动能率和当前KAP率)求和以产生IRP处的累积空气比释动能率和累积KAP。任意给定时间的总累积剂量可被表达成从程序开始至当前时间点的各个剂量率之和,或:
[0135]
[0136] 累积值可被保持为单独的“透视”和“获取”部分直到程序结束以用于报告和教导目的。累积值还可被求和为程序期间的任意点处的“总”IRP剂量或KAP值并且在模拟显示器上显示给用户。
[0137] 随时间追踪IRP处的累积空气比释动能和累积KAP率使模拟表明这些率如何基于操作设置(例如,透视、电影记录或DSA获取)的变化而变化。
[0138] 首先计算当前IRP剂量和当前KAP率,它们被设为在上面的步骤502计算得到的标准的IRP剂量和KAP率。在随后的迭代中,通过生成用于所有输入参数的倍数因子计算IRP剂量和KAP率。每个生成的倍数因子乘以标准的IRP剂量和KAP率。
[0139] 在步骤505可使用当前的IRP和KAP剂量率计算x射线影像噪声的水平和对比度。可为恒定的影像质量(除去已经在上面提到的用于透视剂量水平和放大率的影像质量损失)计算所请求的IRP处的剂量率。当此剂量率超过例如极限22mGy/分钟(低设置)、44mGy/分钟(正常设置)或88mGy/分钟(高设置)时,模拟的噪声可增加。基于经验数据,当患者厚度在阈值之上增加6cm时相对噪声应该大致加倍。这种增加将与增加4倍所请求的剂量的情况相同。相应地,影像噪声的相对增加可按如下被计算:
[0140]
[0141] 其中nt是噪声倍数因子,dt是时间步t的剂量率,以及dthreshold是可适用的阈值剂量率。
[0142] 辐射模拟系统可将噪声建模成影像处理中常见的标准白噪声、散粒噪声、或类似的加性噪声。噪声倍数因子可被应用于白噪声图案来调节白噪声在影像中的分布。调节的白噪声然后可被应用于x射线影像来模拟有噪x射线影像的效果。
[0143] 在步骤506中,可计算辐射进入患者的表面区域位置。表面区域位置可使用患者和x射线设备的波束发射模型的三维或二维空间模型确定。如上所述,患者模型包含与患者解剖有关的空间信息,其可以是例如三维网格。在一个实施方式中,三维患者模型可从分段的患者的CT或MRI扫描获得。具体地,可使用皮肤的三维模型,因为这是辐射进入身体的位置和入射剂量最高的位置。而且,这是将患者的被照射部分可视化的最相关画布。
[0144] 波束发射模型使用来自x射线设备模型的信息和上面的操作设置生成。波束发射模型表现来自x射线源的x射线发射的几何结构。例如,x射线束的发射可被建模成具有四面体(用于平板检测器)或圆锥(用于影像增强检测器)形状,其顶点位于x射线源处以及其基底位于检测器处。准直器、楔形滤波器和FOV的设置也可影响产生的形状和波束发射模型的强度。例如,准直器和/或FOV设置可将平板四面体波束形状的基底限制为更小的长方形,楔形滤波器可以对角方式切去四面体基底的角以在四面体上形成八边形基底。而且,波束发射模型内的强度分布可通过楔形滤波器的存在被调制。X射线束的空间相干性可通过设置四面体的基底长方形被建模。其它几何模型可用于表现波束发射的形状,例如球形、椭圆形、正方形、长方形、多项函数或它们的线性组合。波束圆锥体的形状和强度可根据操作设置(例如使用准直器和/或楔形滤波器)被修改。在双面设置中,可同时使用若干不同的波束发射模型。
[0145] 辐射进入患者的表面区域位置可通过计算患者的空间模型与波束发射的空间模型之间的相交被确定。
[0146] 在步骤507中可使用在步骤506中计算的表面位置生成患者热图。从剂量率、患者解剖和患者几何结构的组合信息计算用于皮肤剂量、吸收的剂量和有效剂量。在一个实施方式中,热图是应用于患者解剖的可视三维或二维模型的点图案、灰阶、色阶。三维模型可例如为患者轮廓线。热图通过为不同剂量率值分配色阶生成。例如,红色可用于指示高水平的IRP剂量率,蓝色可用于指示低水平的IRP剂量率。然后色阶被应用于患者身体的不同位置,向与患者身体的该位置的剂量率对应的三维或二维模型添加颜色。热图可被动态地更新并且在整个程序过程中显示在模拟显示器上。在其它实施方式中,热图可用于显示累积剂量率,在整个程序过程中被显示。
[0147] 在本发明的一个方面,可根据训练目标使用不同的热图。例如,实心热图可用于显示空气比释动能或皮肤剂量率、或相应的累积剂量,而半透明热图可用于显示体内吸收的辐射、每个器官或身体部位的有效剂量或估算的癌症风险。
[0148] 在本发明的一个实施方式中,可在步骤508中计算随机风险系数。通过使用上面计算的剂量率和与患者解剖身体部位的位置有关的空间信息,每个身体部位的有效剂量可通过将组织或器官权重因子应用于剂量率被估算。身体部位的有效剂量可用于估算辐射暴露的随机和确定的效应。
[0149] 患者或其身体的一部分(例如,皮肤)或其整个身体的操作团队的成员接收的有效和进入辐射剂量贡献给它们增加的有害风险。由确定效应引起的风险是通过接收的剂量逐渐变化的效应,例如灼伤或掉头发。源自随机效应的风险典型地为晚发性的,并且该效应的严重性与每秒接收的剂量量无关。由辐射的随机效应引起的风险的示例是癌症。
[0150] 在一个实施方式中,用于程序的累积辐射剂量可被比作其它随机辐射源以增强用户对传送的剂量的意义的理解。例如,传送的剂量率可被比作胸部x射线或胸部CT扫描的等效数量、或自然背景辐射的年数。在其它实施方式中,过程期间作为接收的剂量的延长的癌症或死亡的风险可被比作等效的估算的寿命死亡风险、癌症或来自其它行为的伤害。例如,由25mSV剂量导致的随机效应死亡的增加风险可作为等效于抽3500根烟死亡的增加风险被描述给辐射防护模拟器的用户。这些风险等效可或可不考虑单独的风险因素,例如年龄和性别、或生活方式因素(例如抽烟)、饮食、或运动习惯、家庭和遗传历史、或之前的辐射暴露。
[0151] 一旦超过某些阈值剂量确定效应看起来可预见,并且效应的风险与传送的辐射的量有关。因此模拟还可监视这些阈值的任一个是否被超过,在模拟程序期间立即或在以后以总结方式警告用户如果这是个真实操作则将可能发生损伤。阈值可被设为警告用户损伤的风险,例如红疹、脱毛、脱屑、溃疡、真皮萎缩、硬结、毛细管扩张、晶状体混浊和白内障。这些剂量率阈值可用于触发在超过阈值之后或在发生的典型损伤的影像、或损伤发作可被期望发生的时间的显示。
[0152] 在本发明的一个方面,随机风险系数可被应用于热图以生成可视化由当前操作设置导致的估算的增加癌症风险的图。
[0153] 在步骤509中可计算当前三维散射辐射剖面以建模从患者散射回且被散射到手术室中的医疗团队的个体的二次辐射。散射辐射剖面基于患者解剖有关的信息、不同时间点处的患者剂量率和x射线束发射几何结构。
[0154] 在一个实施方式中,模型可构建在距离中心波束不同距离的区域上,其中每个区域的边界对应于具有固定散射剂量率的某一等值面。等值面可被选择为剂量率具有预定值的位置。例如,等值面可被选择为剂量率为4.0、2.0、1.0和0.5mGy/hr的位置。基于建议散射剂量率与设定距离和散射角处的KAP率近似成比例的研究,散射辐射剖面可建模与KAP率变化成比例的等值面处的剂量率。
[0155] 在优选实施方式中,散射辐射可建模绕x射线管与检测器之间的中心束轴线一致的散射辐射等值面。散射辐射剖面还可优选地被一维函数参数化,将沿中心轴线的给定点处的等值面的半径表达成距x射线管的距离的函数。该函数可以是例如多项式函数、半圆形的线性组合、贝塞尔曲线、或磁偶极子函数。在其它实施方式中,通过使用分离的短半径和长半径轮廓行确定与中心波束垂直的特定屏幕中的恒定剂量率椭圆,等值面可被建模为绕中心波束具有椭圆形。
[0156] 在一个实施方式中,等值面可被建模为三维表面。三维模型可与x射线设备和手术室有关的空间数据(例如,与安装在医院设置中的真实系统或这些详细数据何时从特定x射线系统的供应商获得有关的信息)一起使用。
[0157] 在本发明的一个方面,散射辐射剖面可建模可出现于手术室中的x射线遮挡物,例如患者桌子、x射线管和检测器、操作员或团队自身的身体、或专用的辐射防护遮挡物。散射辐射剖面可减少出现有遮挡物的位置的散射辐射。
[0158] 在步骤510中通过将当前KAP率应用于散射辐射剖面计算当前散射辐射量。一旦中心波束周围的散射辐射剖面以及所有相应的散射辐射等值面被确定,它们然后可用于对任意给定时间点计算患者周围空间中的任一点的散射剂量率。更特别地,这可通过选择最高剂量等值面来实现,其中所述空间中的点位于所述等值面内。空间中的特定点的剂量率可被设为与所选择的等值面相同的剂量率。可选地,空间中的特定点的剂量率还可使用与该点最接近的两个等值面的散射剂量率的线性组合,其中所述剂量率基于该点与每个等值面的距离一起被加权。
[0159] 随着c形臂的角度和其它x射线设备模型参数改变,散射场和三维散射等值面由此改变。在c形臂角度的情况下,可使用三维旋转矩阵的应用计算旋转的等值面。因为KAP与散射剂量近似成比例,所以通过将每个散射等值面的初始散射剂量率乘以由辐射度量处理器计算的KAP率因子解释所有其它输入参数的作用。
[0160] 在一个实施方式中,可随时间计算患者周围的累积散射辐射。这可通过将手术室内的患者周围的空间划分成子体积实现,如参考图9A-D更详细描述的。对于操作台周围的空间中的每个盒状子体积,每个子体积的当前散射剂量率被计算并且随时间求和。
[0161] 在本发明的一个实施方式中,可在步骤511中计算用于散射的等参数曲线的二维截面。该计算基于上面描述的三维剖面。该截面可使用医疗团队成员相对于c形臂的位置的位置得到。例如,在手术室中用右股骨方法执行血管内程序的医师的典型位置位于患者的右侧和c形臂的右边,且与c形臂平面成约45度角。用于医师的截面可基于此位置和角度。
[0162] 在步骤512中可计算医疗团队成员身体的特殊位置处的剂量值。使用上面描述的二维或三维散射辐射剖面和团队成员位置有关的信息,可确定精确的团队成员位置处的散射辐射剂量。此外,医疗团队的解剖有关的空间信息可用于确定包含对放射敏感的器官(例如,手、眼睛、甲状腺或性腺)的特定的感兴趣点的精确位置。以与上面描述的患者解剖相似的方式建模团队成员解剖能使辐射度量处理器基于个体的真实高度和构成确定不同器官或身体部位的位置。例如,代表医师眼睛剂量的散射场中的特定点可基于个体的真实视平线被设置;将为高医师选择较高点且为矮医师选择较低点。
[0163] 在本发明的一个方面,在程序期间操作医师、团队的位置以及它们身体的特定点(例如,眼睛、甲状腺、手和性腺)还可通过将它们装备有定位传感器被追踪。散射辐射剂量率可被更新以对应于新位置的散射辐射剖面。以这种方式,散射辐射剖面使模拟随团队成员在手术室中移动动态解释位置变化。这允许模拟解释团队对辐射事件(例如,如果团队在辐射被激活时走离机器,或将手移出x射线束)做出良好反应。
[0164] 在步骤513中将与当前时间点相关联的度量保存到时间轴。在整个程序过程中,时间轴包含不同时间点处的度量,其可用于随时间可视化控制输入参数集合与剂量率之间的关系。在一个实施方式中,在每个时间点处计算的辐射度量与时间点相关联,它们在过程期间被计算。每当辐射度量被更新时,它们然后可被存储在例如数据采集存储中。不同时间点的辐射度量的存储然后可用于可视化作为时间函数的曲线的剂量度量。因为对患者或团队成员的最大剂量贡献之一可随程序的有限时间帧发生,所以对用户理解如果他们以有效的方式使用x射线设备则辐射度量如何在任一时间点处变化以及不同剂量如何作为其结果变化是有用的。
[0165] 在步骤514中可基于步骤513中计算的时间轴度量生成性能评估。性能评估可被提供给模拟的用户,描述它们的用于程序的辐射剂量管理如何良好地被执行。性能可针对不同的标准被评估,例如医院、全国、全球中的其它标准的性能。评估可基于达到的用于辐射模拟器的用户的模拟剂量水平与测量的用于相同导管实验室、相同医院、区域、国家或全球内的相同程序的平均值的比较。所述平均剂量值可从医院质量系统、或国家或全球数据库和调查获得。剂量值还可与其它度量比较,例如中位剂量、或置信区间或四分位数的剂量范围。性能还可针对用户自身过去的性能、医院和社会标准和准则、估算的对社会或医院的保健成本被评估。系统还可允许比较值被用户自由地配置,允许辐射模拟器与来自所在的医院或国家的值比较。
[0166] 在本发明的一个实施方式中,模拟系统可包括校正步骤515。校正步骤可包括生成校正权重,校正权重在被应用于输出辐射度量时产生更接近逼近x射线设备和患者模型的辐射度量值。例如,输出辐射度量可被校正或调整以逼近在真实导管实验室中使用的x射线设备。在一个实施方式中,校正权重可使用在真实x射线引导的程序期间生成的辐射度量被计算。真实的辐射度量与模拟的辐射度量的比然后可用于确定校正权重。以这种方式,校正权重允许模拟估算实现模拟器训练程序对医院内的实际辐射质量度量的作用有多大。校正权重以与调整上面描述的因子函数的校正权重相似的方式调整输出辐射度量。
[0167] 在本发明的另一方面,系统可毕竟用户获得的模拟剂量水平与标准的或推荐的阈值水平。医院常常基于本地质量标准具有它们自己的阈值,并且超过阈值可导致发生某些行为或引发成本。所述行为可包括预约已经接受高剂量的患者的随访、将ALARA警告性发给已经超过本地ALARA剂量阈值的个人、或延缓已经超过法律规定的最大剂量水平的个人。所述阈值典型地在医院辐射安全手册和指南中找到,或由社会和管理机构公布。本发明中的阈值可被配置为对应于模拟所在地的当地法律、建议和方针。
[0168] 在本发明的一个方面,模拟可使用性能评估和阈值违规的记录以估算差性能如何影响保健设施或提供者的成本。一般地,以与引发用于发出ALARA警告信的成本、额外的患者随访、或延缓个人。如果性能评估指示ALARA警告信发出、患者随访被排程、或个人被延缓,则医院可使用该信息估算将引发的期望成本。在本发明的另一方面,估算的对社会的成本可使用暴露的每个人-Sievert的关联成本被计算。所述成本或成本范围可从公众健康和安全研究获得。
[0169] 在本发明的一个方面,模拟可模拟任意数量的x射线机器。多个x射线机器可通过单独模拟每个机器的效应、然后组合每个机器的净效应进行模拟。因此,例如,在由两个x射线机器机器A和机器B构成的双面配置中,501-513中描述的步骤可为每个机器独立执行以生成IRP和KAP剂量率两个集合。每个机器对患者和医疗团队的净效应然后可通过组合与每个机器相关联的度量被计算。任意数量的附加机器的总效应可同样通过组合每个附加机器的IRP和KAP剂量率被计算。
[0170] 图6是x射线透视噪声和对比度可如何随用户改变x射线设备模型控制参数而变化的实施例。在图6A中描绘了辐射剂量水平使得x射线影像质量非常好且插入的线清晰可见的情况。然而,此高图像质量导致对患者和操作团队的高辐射剂量。在图6B中描绘了相反情况。这里辐射剂量被保持在非常低,但是由于线勉强可见,所以可能有负面影响医疗程序成功执行的风险。辐射的最佳使用平衡这两种极端并且取决于操作员的程序性技能和辐射减少技能。
[0171] 图7示出了模拟操作设置对x射线影像的作用的本发明的另一实施方式。特别地,图7使用虚拟指示符来显示准直、楔形滤波器或桌子平移对模拟的x射线影像的作用。虚拟指示符可用作定位准直器、楔形滤波器和患者桌子的手段。这些指示符重叠在x射线影像并使其能在不需要使用现实x射线的前提下定位设备的各部分。虚拟准直器和桌子平移指示符703可为方形或圆形,可以虚线重叠在屏幕上最后捕获的x射线影像上。虚拟准直器和桌子平移指示符703显示一旦现实x射线被打开完整x射线视图的可见部分。虚拟准直器和桌子平移指示符703还可用于显示桌子是否移动则虚线可相应移动以显示一旦现实x射线被激活患者的哪个部位可见。左虚拟楔形滤波器指示符701和右虚拟楔形滤波器指示符702也可以点线显示在x射线成像模拟器屏幕上来指示它们的新位置。任选地,虚拟准直器和/或楔形滤波器下面的区域可被打上阴影以可视化在它们处于其新位置时影像如何变化。
[0172] 在图7中,显示器还使用户可视地监视辐射度量处理器计算的辐射度量。如图7所示,这些度量704-705可包括辐射度量处理器计算的IRP处的空气比释动能和KAP值。这些度量可在模拟的任意部分期间在模拟器的显示器上可见。当操作设置或输入参数改变时,所述度量可被动态更新。显示器可显示当前度量、累积度量或两者。
[0173] 图8A、8B和8C示出了辐射剂量热图可重叠在三维的患者解剖模型上的实施方式。患者模型的影像还可与不同的标记重叠以显示不同类型的信息。例如,图8A中的部分标记
801-803可用于示出皮肤峰值剂量的位置和水平、或与皮肤相交的x射线束的投影轮廓。它们还可显示在给定可用数据的前提下每个器官或身体部位的估算的增加癌症风险和/或有效剂量。
[0174] 在本发明的一个方面,显示器可显示上面描述的波束发射模型。例如,如果波束发射几何结构被建模成四面体,则显示器可显示如图8B所示的四面体807(以及如图8C所示的四面体804),其具有位于辐射源处的顶点805,并且与患者在806处相交。波束的形状和强度也可被切割或修改以包含准直器和/或楔形滤波器的效应。在图8A-8C中透视波束四面体被可视化以帮助用户理解当前患者身体上暴露的部位。
[0175] 图8A示出了患者的斜前视图。胸部和腹部的辐射暴露由区域803中在皮肤上显示的竖直点画图案指示。在此实施方式中,竖直点画图案指示低水平暴露。图8B示出了患者的左侧视图。患者背部的辐射暴露由水平点画图案指示,该水平点画图案在此实施方式中指示高剂量暴露水平。图8C示出了患者的斜后视图。患者背部的接受高辐射暴露的顶部区域由水平点画图案指示。患者背部的辐射暴露高于患者前部的辐射暴露,这是因为波束源更接近患者的背部。
[0176] 图9A、9B、9C和9D示例了用于计算每个盒中的散射辐射剂量分布的三维空间子体积盒。图9A-9D示出了散射辐射等值面901-904的二维切面。散射辐射等值面901-904位于C形臂源与检测器之间。手术室可被子划分成多个子体积。例如,在图9A-9D中一个具体子体积A由盒905和907指示,一个不同的子体积B由盒906和908指示
[0177] 位于散射辐射等值面901-904中的任意子体积指示暴露于来自该等值面的散射剂量率的子体积。在计算整个当前散射场剂量率期间,具有不同量级的若干这种散射剂量率等值面被计算且在子体积位于最高剂量等值面内时被添加到每个子体积。
[0178] 在图9A和9B中分别示出了患者的侧视图和头部向视图,其中x射线透视单元以前后角度被定位。图9C和9D示出了程序的不同时间点处的不同情形,其中x射线透视单元的角度已经变为斜视图。图9C示出了盒907指示的子体积A不再位于散射辐射等值面903内,指示它不再接收来自该等值面的剂量率贡献。相反,图9D中的子体积908仍然接收来自等值面904的剂量率贡献。随着程序的进展,每个子体积的累积散射辐射剂量率继续随时间被求和。在图9A-9D中所示的实施方式中,到程序结束为止子体积A(由盒905和907指示)接收比子体积B(由盒906和908指示)低的总散射剂量。
[0179] 通过使用上面描述的方法,在给定空间分辨率的前提下可获得患者周围的瞬时和累积散射场的三维体积估算。这些散射场然后可以各种方式被可视化以为系统用户建立最佳可能学习经验。在一个实施方式中,体积散射场可以三维方式被可视化为患者桌子周围的多个不同颜色的半透明等值面,其中颜色可取决于每个等值面处的剂量率或累计剂量。这种视觉表达还可被用户旋转以从任意角度观看散射情形。
[0180] 可选地,散射场的特定截面可被可视化,因为它们可比完整的散射场更容易让用户理解。特别感兴趣的一个这种截面位于散射场与接近患者的操作团队成员的身体相交的位置。典型地,操作团队的成员越接近患者,他们将接收到越高的职业散射剂量,因此所有截面中最感兴趣的截面是手术医师的截面,所述医师通常接收最高的剂量。
[0181] 图10A和10B是根据本发明的另一实施方式的手术医师周围的二维散射辐射等参数曲线的集合的截面可视图。每个等参数曲线1001-1004代表不同的散射辐射水平。图10A示出了头部向视图,其中贯穿操作员身体的不同高度处的散射辐射可被看到。图10B示出了具有横向角度的C形臂的俯视图,其中围绕患者桌子的散射场可被看到。
[0182] 图11A和11B示出了使用等参数曲线确定固定的或移动的医疗团队成员如何受散射辐射影像。在图11A中,与医师身体的辐射敏感部位(例如,眼睛1101、甲状腺1102和性腺1103)对应的位置用于观看这些位置处的剂量率。如上所述,这些位置处的散射辐射剂量率然后可用于确定这些具体器官的随机的或确定的风险。在图11B中,多个团队成员1104-
1106的位置用于计算每个个体的混合剂量估算。通过使用运动追踪或位置传感器技术,这些估算还可随时间改变并且可用于包括来自辐射减少技术的益处,例如当透视活跃时从桌子后退。
[0183] 不同的感兴趣点处和不同操作团队成员的剂量率和累积剂量测量可被一起呈现在显示器上。这些值还可乘以一个或多个衰弱因子,其中所述因子对应于通过使用不同的辐射防护设备(防护罩、围裙、眼镜、颈圈、手套、头罩)导致的减少剂量。显示界面还可混合概观方式联合来自初次和二次辐射患者、操作员和团队相关的剂量信息,使受训者快速得到某一辐射情形的风险水平的图片。
[0184] 图12示出了根据本发明的一个实施方式的显示辐射度量和剂量热图的显示器。显示器可将患者相关的剂量信息1201和散射相关的剂量信息1202和1203显示给模拟系统的用户。用户可选择显示当前剂量率测量1204还是总累积剂量1205。患者的动态更新的旋转三维模型1201显示实际的皮肤剂量(或剂量率)、吸收的剂量或有效剂量(与增加的癌症风险相关)。散射等参数曲线1206-1210显示了手术医师和患者桌子周围的辐射场。操作员眼睛1211、甲状腺1212和性腺1213剂量被计算和显示,并且使用辐射防护设备(例如铅围裙1214、眼镜1215或罩1216)对这些值的作用也被交互地呈现给用户已改善训练。
[0185] 图13示出了包括程序时间轴和相应的剂量曲线的一个实施方式,其中相对于时间描绘了辐射量。该曲线图示出了IRP处的剂量率、皮肤剂量率、KAP率或由辐射度量处理器计算的任意其它辐射度量。随着程序的进展和操作员改变x射线设备模型控制输入,导致剂量率上升和下降。通过点击或停留在曲线的时间点,用户可容易地访问挨着时间轴显示的窗口1301和1302,其中窗口1301和1302显示时间点处控制输入参数是什么,允许用户理解在任意给定时间处剂量为什么高或低。导致剂量在短时间帧内大幅增加的控制输入变化可被强调,在附图中为C形臂角度显示了此情况。而且,导致剂量率大幅增加的事件1303和1304可被自动识别且如图所示在曲线上被标识。显示参考或过去性能曲线的一个多个附加曲线1305也可在附图中示出以允许用户比较他们的性能与设置的标准或看出他们的技能如何通过训练得到提高。而且,通过使用已知的与某一类程序有关的信息和/或比较参考剂量率曲线,用户辐射减少技术较弱的特定技术人员可被识别并且可建议关注他们继续训练的一列可能的程序改进1306。
[0186] 在度量曲线的局部极大值点、极小值点或拐点、或在时间轴上的致使大幅增加的点处可进行事件的自动注释。它们还可通过比较曲线与标准参考曲线被确定,其中超过参考曲线某一度的点将被标记。事件还可通过识别设备参数可被优化的时间点被注释,例如透视踏板被按很长时间而不需要外科器械的任意移动的时候。
[0187] 自动识别的事件可随后用于访问期望的剂量减少技术是否被使用,以及给用户他们如何进一步减少辐射的建议。这可例如经常包括适当使用快和楔形滤波器的建议、减少不必要的透视时间、更少使用电影获取、改变桌子位置或C形臂角度。
[0188] 图14A和14B示出了在本发明的一个方面记录的来自真实程序的参数和辐射度量的数据可用作x射线设备模型和患者模型的输入。以这种方式,模拟可被执行为反映真实的x射线设备如何对实际患者操作。记录的数据可以是DICOM格式数据,被采集作为辐射剂量结构报告(RDSR)记录。RDSR的一个示例在图14B中示出。如图14A所示,系统输入由RDSR数据提供以取代来自用户控制的输入界面的数据。因此,每个时刻记录在RDSR上的不同参数值可用作模拟的输入。
[0189] 在系统输入从RDSR被处理的一个实施方式中,模拟可向用户提供允许用户在操作时前进或后退的界面。例如,该界面可以是滑条,用户可向前和向后移动程序的时间,并且每个时刻的辐射度量、可视化和反馈/评估可在与滑条位置对应的时刻被显示。
[0190] 图15示出了人体暴露模型基于特定患者解剖的本发明的一个实施方式。在1501中给予CT或MRI扫描。扫描可以是患者或医疗团队成员。扫描然后可被分割以确定不同人体解剖的位置并且建立人体暴露模型1502。这些位置然后可用于建立三维网格模型,该模型可包括人体器官的结构和位置。例如,人体暴露模型可包括心脏、大脑、眼睛、甲状腺和性腺的尺寸和形状。通过此特定患者模型,用户可运行模拟的x射线引导的程序并且从事于辐射减少训练1503。模拟系统然后可如上所述提供反馈1504和性能评估1505。以这种方式,特定患者模型可用于模拟真实程序,使医疗专业人员或团队实践如何最佳在安全的无辐射环境中最小化对具体患者的辐射。程序运行期间对患者身体的期望辐射的可视反馈和程序改进的建议可用于最小化在真实程序期间被传送至患者的实际辐射。
[0191] 图16A和16B示出了在本发明的一个方面中模拟系统可通过应用校正权重以调整输出辐射度量被校正至一件x射线设备。辐射权重以与如上所述比例因子函数的校正权重相似的方式调整输出辐射度量。例如,输出辐射度量可被校正或调整至适合训练发生的真实导管实验室。校正权重允许模拟估算实现模拟器训练程序对医院内的实际辐射质量度量由多大作用。
[0192] 校正权重可通过将一个或多个标准辐射“幻影”、来自PMMA(聚甲基丙烯酸甲脂)制成且常用作人体组织的剂量类似物的一类防止在手术台上以及测量辐射度量如何在每个参数上变化生成。图16A示出了为SID参数生成的校正权重的示例。影像检测器1601以固定补偿上下移动,由此改变源影像距离和相应的用于特定SID的剂量率。PMMA幻影1602处的辐射剂量在每个SID处被测量。图16B示出了针对固定的SID设置描绘的获得的剂量率数据点以及曲线的最佳匹配。最佳匹配参数模型的定义值然后可被馈入模拟辐射度量算法作为校正权重,允许使用本发明期间计算的剂量率更好地对应于单件x射线设备的值。可选地,相同校正程序可用作首先确定哪种类型因子函数(例如,线性、二次、指数或对数)的手段,以最佳建模特定x射线系统,然后用于将选择的因子函数最佳匹配至测量的曲线。
[0193] 上面描述的系统和方法可用于教导用于各类x射线或透视引导的程序(包括但不限于血管内和/或经皮应用、创伤外科、栓塞术、整形外科手术、胃肠道检查、CVC和PICC线放置、喂食管放置、泌尿外科手术、肿瘤应用、胆道引流和造影)的辐射减少技术。
[0194] 上面描述的系统和方法特别适于模拟血管内外科手术。血管内程序是使用通过典型地位于腹股沟、手腕或颈部区域的开口被引入患者血管内的医疗器械的微创的影像引导程序,它们在患者体内的运动被透视或x射线系统可视化。因此对介入心脏、介入放射、血管外科手术、介入神经辐射、电生理、结构性心脏疾病、介入肿瘤和心血管外科手术领域的程序最有用。
[0195] 本领域普通技术人员可想到本文描述的内容的变型、修改和其它实现而不偏离本发明及其权利要求的精神和范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈