首页 / 专利库 / 工业自动化和数控机床 / 工业机器人 / SCARA机器人 / 一种基于双目立体视觉的SCARA机器人轨迹规划方法

一种基于双目立体视觉的SCARA机器人轨迹规划方法

阅读:1009发布:2020-06-20

专利汇可以提供一种基于双目立体视觉的SCARA机器人轨迹规划方法专利检索,专利查询,专利分析的服务。并且一种基于双目 立体视觉 的SCARA 机器人 轨迹规划方法,首先,建立双目立体视觉系统。对双目相机进行标定,然后进行数字 图像处理 算法 的设计,利用标定结果得到机器人工作区域的三维环境;其次,对 SCARA机器人 进行建模。建模可以得到机器人的 末端执行器 位置 与各个 关节 角 度 的转化关系,是轨迹规划的前提;最后,利用五次多项式插值算法,完成对 机器人关节 空间的轨迹规划,实现了机器人快速和准确的抓取功能,减小机械的冲击和振动;本 发明 具有提高生产线的自动化 水 平的特点。,下面是一种基于双目立体视觉的SCARA机器人轨迹规划方法专利的具体信息内容。

1.一种基于双目立体视觉的SCARA机器人轨迹规划方法,其特征在于,包括以下步骤;
Step1、安装工业相机,获取工作区域图片
将两个相机安装在机器人工作区域的正上方,调整相机的焦距使整个工作区域处在两个相机的视野范围内;
Step 2、进行双目立体相机的标定
通过两个相机对不同方位的标定板进行同时拍照,并将每一次的标定板的位置与标定板的状态都记录下来,然后寻找一个公共的平面,使得两个相机的光轴平行,确定了此平面后,每次采集到的左右相机的图像都要先变换到此平面,然后利用三定位法根据相同物体在左右相机中的视差来计算物体的高度H1和障碍物的高度H2;
Step 3、障碍物和工件的位置的确定
第一步,对工作区域进行拍照,利用背景相减法,用左相机的图像与背景图像相减得到只含有工件和障碍物的图像;
第二步,利用模板匹配的方法确定工件的位置,在背景相减后的图像中搜索模板图像,即将制作好的模板在当前图像上进行滑动和转动,用相似性度量来算出每图像与模板图像的相似度,最终当相似值大于0.75时,认为匹配到模板,同时记录下当前坐标为匹配到工件的坐标,图片中去掉工件的图像,就可以确定障碍物的位置;
Step 4、确定轨迹插值点,轨迹的起点为工件坐标位置(X0,Y0),终点为装配位置(Xf,Yf),为了绕开障碍物增加插值点(Xc,Yc);
Step 5、对SCARA机器人进行建模
计算机器人末端执行器与各个关节角度的转换关系,利用DH方法对机器人进行建模,机器人末端执行器的坐标为(Px,Py,Pz),机器人第一和第二关节转过的角度分别为θ1与θ2,第一关节与第二关节的长度分别为L1和L2,第三个关节上下移动的距离为d3;0T4表示O3坐标系相对于O0坐标系的转换关系可由坐标系的转换公式得到公式1,最后一列与机器人坐标系的对应关系如公式2所示,即已知一点的机器人坐标(Px,Py,Pz)就可得到对应各个关节旋转的角度;
Step 6、对机器人进行关节空间的轨迹规划
采用五次多项式对轨迹进行拟合,其表达式如公式3所示,如公式4所示,计算起点的角度、速度和加速度分别为θ0、 和 计算终点的角度、速度和加速度分别为θf、 和 轨迹规划要保证轨迹的初始速度和加速度都为零,终点的速度与加速度也为零,即起点的角度θ0和终点的角度θf都已知,即可解方程得到关节的运动曲
线方程如公式5所示,以此类推,其他关节运动的轨迹也可得到,这样就完成了机器人的轨迹规划,保证了机器人各个关节运动的速度和加速度都是连续可导的;

说明书全文

一种基于双目立体视觉的SCARA机器人轨迹规划方法

技术领域

[0001] 本发明涉及双目立体视觉系统技术领域,特别涉及一种基于双目立体视觉的SCARA机器人轨迹规划方法。

背景技术

[0002] 工业机器人机电一体化高度集成的产物,作为《中国制造2025》重点发展的十大领域之一,是工业自动化平和工业4.0的重要标志。工业机器人具有重复精度高、可靠性好、适用性强等优点,广泛应用于汽车、机械、电子、物流等行业,已被证明是当前最高效的生产工具,需求量不断攀升。自上世纪60年代初以来,工业机器人经历了三个阶段的发展。第一代是示教再现型工业机器人,只能将操作者告诉它的轨迹、顺序、要求等把知识记忆下来,然后根据再现指令读取这些知识,完成规定任务。第二代工业机器人是感知型工业机器人,通过给工业机器人安装相关传感器使其有所感知,对外部信息能进行反馈。第三代工业机器人是智能工业机器人,可对周围环境、作业条件等做出判断然后再执行任务。一般由机器视觉作为反馈,通过图像处理信息引导工业机器人执行任务。
[0003] 机器视觉是工业机器人的重要研究领域,而目前生产线上多数工业机器人都通过预先示教或者离线编程的方式来控制机器人执行预定的指令动作,一旦工作环境或目标对象发生变化,机器人不能及时适应这些变化,从而导致任务失败,而且这种工作方式在很大程度上限制了工业机器人的灵活性和工作效率。

发明内容

[0004] 为了克服上述现有技术的不足,本发明的目的在于提供一种基于双目立体视觉的SCARA机器人轨迹规划方法,利用双目立体视觉的方法,对障碍物和工件进行自动识别及定位,对传统的机器人固定点抓取方法进行改进,提高机器人对环境的适应能和生产效率,通过机器人关节空间的五次多项式插值算法完成对机器人轨迹的规划,能够改善定位精度和轨迹跟踪精度,减少冲击和振动,提高生产线的自动化水平。
[0005] 为了实现上述目的,本发明采用的技术方案是:
[0006] 一种基于双目立体视觉的SCARA机器人轨迹规划方法,包括以下步骤;
[0007] Step1、安装工业相机,获取工作区域图片
[0008] 将两个相机安装在机器人工作区域的正上方,调整相机的焦距使整个工作区域处在两个相机的视野范围内;
[0009] Step 2、进行双目立体相机的标定
[0010] 通过两个相机对不同方位的标定板进行同时拍照,并将每一次的标定板的位置与标定板的状态都记录下来,然后寻找一个公共的平面,使得两个相机的光轴平行,确定了此平面后,每次采集到的左右相机的图像都要先变换到此平面,然后利用三定位法根据相同物体在左右相机中的视差来计算物体的高度H1和障碍物的高度H2;
[0011] Step 3、障碍物和工件的位置的确定
[0012] 第一步,对工作区域进行拍照,利用背景相减法,用左相机的图像与背景图像相减得到只含有工件和障碍物的图像;
[0013] 第二步,利用模板匹配的方法确定工件的位置,在背景相减后的图像中搜索模板图像,即将制作好的模板在当前图像上进行滑动和转动,用相似性度量来算出每图像与模板图像的相似度,最终当相似值大于0.75时,认为匹配到模板,同时记录下当前坐标为匹配到工件的坐标,图片中去掉工件的图像,就可以确定障碍物的位置;
[0014] Step 4、确定轨迹插值点,轨迹的起点为工件坐标位置(X0,Y0),终点为装配位置(Xf,Yf),为了绕开障碍物增加插值点(Xc,Yc),如图1所示;
[0015] Step 5、对SCARA机器人进行建模。
[0016] 计算机器人末端执行器与各个关节角度的转换关系,利用DH方法对机器人进行建模,机器人末端执行器的坐标为(Px,Py,Pz),机器人第一和第二关节转过的角度分别为θ1与θ2,第一关节与第二关节的长度分别为L1和L2,第三个关节上下移动的距离为d3;如图2所示,0T4表示O3坐标系相对于O0坐标系的转换关系可由坐标系的转换公式得到公式1,最后一列与机器人坐标系的对应关系如公式2所示,即已知一点的机器人坐标(Px,Py,Pz)就可得到对应各个关节旋转的角度;
[0017]
[0018]
[0019] Step 6、对机器人进行关节空间的轨迹规划
[0020] 采用五次多项式对轨迹进行拟合,其表达式如公式3所示。如公式4所示,计算起点的角度、速度和加速度分别为θ0、 和 计算终点的角度、速度和加速度分别为θf、 和轨迹规划要保证轨迹的初始速度和加速度都为零,终点的速度与加速度也为零,即起点的角度θ0和终点的角度θf都已知,即可解方程得到关节的运动曲线方程如公式5所示,以此类推,其他关节运动的轨迹也可得到,这样就完成了机器人的轨迹规划,保证了机器人各个关节运动的速度和加速度都是连续可导的;
[0021]
[0022]
[0023]
[0024] 本发明的有益效果:
[0025] 本发明可以实现机器人在线的轨迹规划,从而实现机器人的自动装配功能。与传统的固定点抓取系统相比,机器人对环境的适应性大大提高,生产效率极大的提高。若将本发明应用于工业现场的装配领域,大大提高生产线的效率,为基于机器人的工业自动装配提出新的解决方案。附图说明
[0026] 图1为本发明插值点规划图。
[0027] 图2为本发明SCARA机器人关节坐标系示意图。

具体实施方式

[0028] 下面结合附图对本发明作进一步详细说明。
[0029] 一种基于双目立体视觉的SCARA机器人轨迹规划方法,包括以下步骤;
[0030] Step1、安装工业相机,获取工作区域图片
[0031] 将两个相机安装在机器人工作区域的正上方,调整相机的焦距使整个工作区域处在两个相机的视野范围内;
[0032] Step 2、进行双目立体相机的标定
[0033] 通过两个相机对不同方位的标定板进行同时拍照,并将每一次的标定板的位置与标定板的状态都记录下来,然后寻找一个公共的平面,使得两个相机的光轴平行,确定了此平面后,每次采集到的左右相机的图像都要先变换到此平面,然后利用三角定位法根据相同物体在左右相机中的视差来计算物体的高度H1和障碍物的高度H2;
[0034] Step 3、障碍物和工件的位置的确定
[0035] 第一步,对工作区域进行拍照,利用背景相减法,用左相机的图像与背景图像相减得到只含有工件和障碍物的图像;
[0036] 第二步,利用模板匹配的方法确定工件的位置,在背景相减后的图像中搜索模板图像,即将制作好的模板在当前图像上进行滑动和转动,用相似性度量来算出每块图像与模板图像的相似度,最终当相似值大于0.75时,认为匹配到模板,同时记录下当前坐标为匹配到工件的坐标,图片中去掉工件的图像,就可以确定障碍物的位置;
[0037] Step 4、确定轨迹插值点,轨迹的起点为工件坐标位置(X0,Y0),终点为装配位置(Xf,Yf),为了绕开障碍物增加插值点(Xc,Yc),如图1所示;
[0038] Step 5、对SCARA机器人进行建模。
[0039] 计算机器人末端执行器与各个关节角度的转换关系,利用DH方法对机器人进行建模,机器人末端执行器的坐标为(Px,Py,Pz),机器人第一和第二关节转过的角度分别为θ1与θ2,第一关节与第二关节的长度分别为L1和L2,第三个关节上下移动的距离为d3;如图2所示,0T4表示O3坐标系相对于O0坐标系的转换关系可由坐标系的转换公式得到公式1,最后一列与机器人坐标系的对应关系如公式2所示,即已知一点的机器人坐标(Px,Py,Pz)就可得到对应各个关节旋转的角度;
[0040]
[0041]
[0042] Step 6、对机器人进行关节空间的轨迹规划
[0043] 采用五次多项式对轨迹进行拟合,其表达式如公式3所示。如公式4所示,计算起点的角度、速度和加速度分别为θ0、 和 计算终点的角度、速度和加速度分别为θf、 和轨迹规划要保证轨迹的初始速度和加速度都为零,终点的速度与加速度也为零,即起点的角度θ0和终点的角度θf都已知,即可解方程得到关节的运动曲线方程如公式5所示,以此类推,其他关节运动的轨迹也可得到,这样就完成了机器人的轨迹规划,保证了机器人各个关节运动的速度和加速度都是连续可导的;
[0044]
[0045]
[0046]
[0047] 本发明的工作原理为:
[0048] 首先,建立双目立体视觉系统。对双目相机进行标定,然后进行数字图像处理算法的设计,利用标定结果得到机器人工作区域的三维环境。
[0049] 其次,对SCARA机器人进行建模。建模可以得到机器人的末端执行器位置与各个关节角度的转化关系,是轨迹规划的前提。
[0050] 最后,利用五次多项式插值算法,完成对机器人关节空间的轨迹规划,实现了机器人快速和准确的抓取功能,减小机械的冲击和振动。
相关专利内容
标题 发布/更新时间 阅读量
SCARA型机器人结构及相应的机器人 2020-05-16 187
一种四轴SCARA机器人逆解方法 2020-05-20 569
SCARA机器人关节回零控制方法 2020-05-21 514
一种Scara机器人 2020-05-11 542
一种SCARA型码垛机器人 2020-05-15 822
SCARA机器人 2020-05-11 533
一种SCARA机器人 2020-05-17 755
SCARA机器人 2020-05-12 841
一种SCARA机器人 2020-05-18 246
一种Scara机器人 2020-05-19 969
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈