首页 / 专利库 / 酿酒 / 葡萄酒酿造 / 稳定性 / 肽组合物的修饰以提高稳定性和递送效率

肽组合物的修饰以提高稳定性和递送效率

阅读:139发布:2023-03-12

专利汇可以提供肽组合物的修饰以提高稳定性和递送效率专利检索,专利查询,专利分析的服务。并且本 发明 涉及修饰肽组合物以提高 稳定性 和递送效率的方法。具体地,本发明涉及提高蛋白激酶C(PKC)调节肽组合物的稳定性和递送效率的方法。“ 治疗 性肽组合物”包括“载体肽”和“货物肽”。“载体肽”是促进细胞吸收所述治疗性肽组合物的肽或肽内的 氨 基酸序列。所述“货物肽”是PKC调节肽。本发明所述的对所述载体肽、所述货物肽或两者的肽修饰通过减少二硫键交换、物理稳定性、减少蛋白 水 解 降解、和增加细胞吸收的效率而提高治疗性肽组合物的稳定性和递送效率。,下面是肽组合物的修饰以提高稳定性和递送效率专利的具体信息内容。

1.蛋白激酶C(PKC)调节肽组合物,其包括:
包含第一半胱酸类似物的PKC调节肽和包含第二半胱氨酸类似物的载体肽,其中所述PKC调节肽和所述载体肽通过第一和第二半胱氨酸类似物之间的二硫键连接,其中所述第一半胱氨酸类似物选自D-半胱氨酸,高半胱氨酸,青霉胺,α-甲基半胱氨酸,巯基丙酸以及它们的乙酰化形式,
其中所述第二半胱氨酸类似物选自D-半胱氨酸,高半胱氨酸,青霉胺,α-甲基半胱氨酸,巯基丙酸以及它们的乙酰化形式。
2.权利要求1的组合物,其中所述PKC调节肽是抑制PKC同工酶活性的抑制性肽。
3.权利要求1的组合物,其中所述PKC调节肽是促进PKC同工酶活性的激活肽。
4.权利要求1的组合物,其中所述载体肽是YGRKKRRQRRR(SEQ ID NO:166)。
5.权利要求1的组合物,其中所述载体肽在其N-端末端被酰基、烷基、或磺酰基取代。
6.权利要求1的组合物,其中所述载体肽在其N-端末端被酰化。
7.权利要求1的组合物,其中所述载体肽还在其C-端末端被修饰。
8.权利要求1的组合物,其中所述载体肽还通过在其C-端末端形成酰胺而修饰。
9.权利要求1的组合物,其中所述PKC调节肽与所述载体肽的氨基酸侧链共价连接。
10.权利要求9的组合物,其中所述PKC调节肽与选自半胱氨酸、赖氨酸和酪氨酸的残基的侧链共价连接。
11.权利要求1的组合物,其中所述PKC调节肽与N-端半胱氨酸残基的侧链共价连接。
12.权利要求11的组合物,其中所述载体肽的N-端半胱氨酸被酰化。
13.权利要求11的组合物,其中所述载体肽的C-端精氨酸是伯羧酰胺。
14.权利要求11的组合物,其中所述PKC调节肽通过在其N-末端酰化、或在其C-末端酰胺化、或通过在其N-末端酰化和在其C-末端酰胺化二者而被修饰。
15.权利要求1的组合物,其中所述载体肽是Ac-CYGRKKRRQRRR-NH2。
16.权利要求15的组合物,其中所述PKC调节肽通过所述载体肽的半胱氨酸残基的巯基基团与所述载体肽共价连接。
17.权利要求1的组合物,其还包括第二膜转运肽。
18.权利要求1的组合物,其中所述第一半胱氨酸类似物和第二半胱氨酸类似物独立地选自高半胱氨酸、青霉胺、α-甲基半胱氨酸、巯基丙酸以及它们的乙酰化形式。
19.权利要求1的组合物,其中所述第一半胱氨酸类似物位于所述PKC调节肽的氨基端或羧基端。
20.权利要求1的组合物,其中所述第二半胱氨酸类似物位于所述载体肽的氨基端或羧基端。
21.权利要求1的组合物,其中所述第一半胱氨酸类似物位于所述PKC调节肽的氨基端或羧基端,并且所述第二半胱氨酸类似物位于所述载体肽的氨基端或羧基端。
22.权利要求1的组合物,其中所述PKC调节肽包含紧邻所述第一半胱氨酸类似物的脂族残基。
23.权利要求1的组合物,其中所述载体肽包含紧邻所述第二半胱氨酸类似物的脂族残基。
24.权利要求1的组合物,其中所述PKC调节肽包含紧邻所述第一半胱氨酸类似物的第一脂族残基,并且所述载体肽包含紧邻所述第二半胱氨酸类似物的第二脂族残基。
25.权利要求24的组合物,其中所述第一和第二脂族残基独立地选自丙氨酸、缬氨酸、亮氨酸和异亮氨酸。

说明书全文

肽组合物的修饰以提高稳定性和递送效率

技术领域

[0001] 本申请涉及用于提高生物活性试剂的载体进入活组织细胞的组合物和方法。所述组合物和方法包括与修饰的tat肽缀合的PKC调节肽,所述修饰的tat肽为所述缀合物赋予提高的血浆稳定性,允许更有效地吸收PKC调节肽进入细胞。

背景技术

[0002] 研究已经产生了许多具有作为治疗性组合物的潜的肽。然而,由于多种原因,尚未获得实现和利用针对细胞内靶标的肽的全部治疗性潜力。其中最重要的一个原因是大部分治疗性肽不具有穿过细胞膜到达它们的治疗靶标的能力。对该问题的一种解决方案是使用作用为运送货物(cargo)肽进入靶细胞的载体肽。
[0003] 存在许多有效促进货物肽穿过靶细胞膜的载体肽的著名实例。一个实例是来源于HIV病毒TAT蛋白的肽序列。参见,美国专利号6,316,003,其通过引用完全结合于此。另一种公知的载体肽序列是“聚-Arg”序列。参见,例如,美国专利号6,306,993。 [0004] 在许多情形中,利用二硫键连接载体和货物肽而产生治疗性肽构建体是解决使可溶肽靶向细胞内靶标的问题的有效策略。解释二硫键的用途的一种理论认为,一旦载体-货物构建体进入靶细胞,这两种肽可以通过二硫键还原而分离。与保留所述载体-货物连接的其它连接机制相反,在细胞内环境中的这种分离可以允许货物肽在细胞内更好的扩散。然而,在这一点上,治疗性肽的施用仍然遇到许多挑战,诸如二硫键交换,蛋白解降解和细胞吸收的效率。指导控制这些问题的方法应该增加治疗性肽的稳定性和功效。 [0005] 一种提高包括以二硫键与货物肽键合的载体肽的治疗性肽的功效的方法是减少二硫键交换。二硫键交换通过允许一个载体肽将其货物肽换成另一个载体肽而减少给定样品中的载体-货物肽构建体的量,由此导致产 生载体-载体构建体和货物-货物构建体。仅有载体的构建体将不具有治疗作用。所述货物-货物构建体将具有急剧减少的治疗作用,如果不是完全消除的作用的话,因为所述载体肽能够将所述货物递送至其细胞内靶标。
同样地,控制二硫键交换的问题对于使载体-货物肽构建体的治疗潜力最大化非常重要。 [0006] 使用治疗性肽所面对的另一个问题是蛋白水解降解。肽是众所周知的不稳定分子,并且在施用给受试者时经常容易受到蛋白水解攻击而分解。在施用时降解的不稳定的载体肽将减少或者甚至消除所述货物肽的功效,因为所述货物依赖于所述载体肽到达细胞内靶标。因此,控制或消除治疗性肽的不稳定的性质的方法对于最大化载体-货物肽的治疗潜力也是重要的。
[0007] 提高治疗性肽的细胞吸收效率是可能减少治疗性肽的功效或潜力的另一个问题。针对货物肽最优化载体肽的序列和位置提供用于提高治疗性肽构建体的稳定性和潜力的方法。
发明内容
[0008] 本公开的发明涉及制备包括载体肽和PKC活性调节货物肽的治疗性肽组合物的方法,由此形成的治疗性肽组合物相对于未修饰的治疗性肽具有提高的稳定性和潜力。本发明的一个实施方案是减少治疗性肽组合物中的二硫键交换的方法,所述方法包括提供这样的治疗性肽组合物,所述治疗性肽组合物包括包含第一半胱酸残基的载体肽和包含第二半胱氨酸残基的PKC活性调节货物肽,其中所述载体肽和所述货物肽通过在所述第一和第二半胱氨酸残基之间的半胱氨酸-半胱氨酸二硫键连接;和引入至少一个紧邻所述第一或第二半胱氨酸残基、或两者的脂族残基,由此二硫键交换率相对于未修饰的治疗性肽组合物减少。
[0009] 本公开的发明的另一个实施方案涉及减少治疗性肽组合物的蛋白水解降解的方法,所述方法包括提供这样的治疗性肽组合物,所述治疗性肽组合物包括载体肽和PKC活性调节货物肽,并且其中所述载体肽与所述货物肽连接;确定在所述载体肽、货物肽、或这两种肽上的蛋白水解不稳定位点;和修饰在所述不稳定位点的氨基酸序列,以便使所述位点处的蛋 白水解降解率相对于未修饰的治疗性肽组合物而减少。
[0010] 本公开的发明的另一个实施方案涉及提高治疗性肽组合物的血浆稳定性的方法,所述方法包括提供这样的治疗性肽组合物,所述治疗性肽组合物包括载体肽和PKC活性调节货物肽,并且其中所述载体肽与所述货物肽连接;修饰所述载体肽、货物肽、或二者的氨基端、羧基端或两端的残基,以便所述治疗性肽组合物的血浆稳定性相对于未修饰的治疗性肽组合物得到提高。
[0011] 还打算在本文中公开组合物。所公开的组合物的一个实施方案包括蛋白激酶C(PKC)调节肽组合物,其包括与细胞内载体肽共价连接的PKC调节肽,其中所述细胞内载体肽、所述调节肽、或二者均在N-端被修饰。
[0012] 附图简述
[0013] 图1显示绘制CK释放相对于治疗性肽KAI-9706和KAI-1455的浓度的图。 [0014] 图2显示绘制梗死百分数相对于增加浓度的治疗性肽KAI-9706和KAI-1455的图。
[0015] 图3A-3B显示绘制完整的治疗性肽KAI-9803、KAI-9706、和KAI-1455在人血清中(3A)、猪血清(3B)、和大鼠血清(3C)中随时间存活的百分数的图。
[0016] 图4显示包括通过二硫键连接的载体肽和货物肽的治疗性肽转化为线性形式治疗性肽的图解。该线性肽(KP-01547)已在其氨基端和羧基端加帽,并且包含短的氨基酸序列连接体。
[0017] 图5显示绘制完整的治疗性肽(线性的和非线性的)随时间(天数)的百分数的图。
[0018] 图6显示比较治疗性肽随时间(天数)的稳定性的图。
[0019] 图7显示示例的两种线性肽。
[0020] 图8显示比较各种PKC-βI治疗性肽随时间的稳定性的图。
[0021] 图9显示比较各种PKC-βII治疗性肽随时间的稳定性的图。
[0022] 图10A-10D显示举例说明在26℃(10A)和37℃(10B)温度对 KAI-9706的稳定性的影响,和在26℃(10C)和37℃(10D)温度对KAI 1455的稳定性的影响的图。 [0023] 图11显示绘制在Langendorff体外局部缺血后测定中采用10分钟灌流时,在存在增加浓度的KAI-9803或KAI-1355肽的条件下肌酸激酶释放的图。
[0024] 图12显示描述构建KAI-1479的图解。
[0025] 图13A和13B显示来自再灌流研究的结果的柱状图,其中13A举例说明实验过程中事件的时间线索,13B显示举例说明各种治疗性肽(KAI-9803,KAI-1479,和KAI-1482)的保护特性的柱状图。
[0026] 图14显示SEQ ID NO:33的货物肽的图解,其中在所述肽的氨基端具有一个半胱氨酸残基。
[0027] 图15A-15D显示治疗性肽多聚体的4种不同的可能的构型。
[0028] 图16显示线性肽KP-1680,KP-1681,KP-1633,和KP-1678。
[0029] 图17A-D显示测试溶液中随时间残余的肽的百分数的图。
[0030] 实施发明的方式
[0031] 本公开的发明涉及修饰肽组合物以提高稳定性和递送效率的方法。具体地,本公开的发明涉及提高蛋白激酶C(PKC)调节肽组合物的稳定性和递送效率的方法。“治疗性肽组合物”包括“载体肽”和“货物肽”。“载体肽”是促进细胞吸收治疗性肽组合物的肽或肽内的氨基酸序列。所述“货物肽”是PKC调节肽。本发明所述的对所述载体肽、所述货物肽或两者的肽修饰通过减少二硫键交换、物理稳定性、减少蛋白水解降解、和增加细胞吸收的效率而提高治疗性肽组合物的稳定性和递送效率。
[0032] 二硫键交换
[0033] 所公开的治疗性肽组合物的优选实施方案提供通过在两个连接性含硫残基之间的二硫键与载体肽偶联的货物肽,所述连接性含硫残基在每个肽中各有一个。无论所述治疗性肽组合物处于溶液中、冻干、沉淀、结晶、或喷雾干燥,该实施方案的二硫键可以是不稳定的,这导致载体-货物组合降解成无活性的载体-载体组合物、和同样无活性且通常不溶的货物-货 物组合物。所公开的治疗性肽组合物的稳定性通过使用化学修饰和通过在使用前控制所述肽组合物的物理环境而得到提高。
[0034] 化学修饰
[0035] 连接性含硫残基可以位于所述载体或货物肽序列中的任何位置。例如,所公开的治疗性肽组合物的优选实施方案典型地具有位于所述载体肽和货物肽的氨基端处的连接性含硫残基。所述连接性含硫残基可以位于所述肽的羧基端,或备选地位于肽的氨基端和位于另一种肽的羧基端。另外,所述连接性含硫残基可以位于任一种或这两种肽序列中的任何位置处。已经观察到将所述连接性含硫残基置于所述载体肽、所述货物肽、或二者内减少了二硫键交换率。
[0036] 有效用于稳定所述治疗性肽组合物的二硫键的化学修饰的实例包括最优化紧邻用来连接所述载体和货物肽的含硫残基的一个或多个氨基酸残基。稳定二硫键的优选方法包括将脂族残基置于所述载体肽和/或货物肽中紧邻含硫残基的位置处。脂族残基包括丙氨酸、缬氨酸、亮氨酸和异亮氨酸。因此,当将所述连接性含硫残基置于肽的氨基端时,将脂族残基置于该肽的倒数第二个氨基端位置处,从而减少二硫键交换率。当所述连接性含硫残基位于肽的羧基端时,脂族残基位于该肽的倒数第二个羧基端位置处,从而减少二硫键交换率。当所述连接性含硫残基位于肽的序列内时,可以将脂族残基置于该残基的氨基端或羧基端侧、或两侧。
[0037] 预计多种含硫残基用于本公开的发明。半胱氨酸和半胱氨酸类似物也可以用作肽组合物中的连接性半胱氨酸残基。具体的半胱氨酸类似物包括D-半胱氨酸,高半胱氨酸,α-甲基半胱氨酸,巯基丙酸,巯基乙酸,青霉胺,这些类似物的能够接受乙酰基基团的乙酰化形式,以及用其它封闭基团修饰的半胱氨酸类似物。例如,已经表明在所述货物肽、载体肽或这两种肽中使用高半胱氨酸、乙酰化的高半胱氨酸、青霉胺、和乙酰化的青霉胺稳定所述肽组合物并且减少二硫键交换。α-甲基半胱氨酸抑制二硫键降解,因为介导从一个半胱氨酸中夺取α氢被硫原子的存在而阻止。已经表明通过二硫键连接的货物/载体肽缀合物比未修饰的肽更抗谷胱甘肽还原。其它半胱氨酸类似物也有效用作连接性半胱氨酸。类似地,半胱 氨酸的立体异构体将抑制二硫键交换。
[0038] 可以通过连接所述载体和货物肽形成单一的线性肽而完全消除二硫键交换。下文讨论该方法。
[0039] 物理稳定性
[0040] 二硫键的物理环境对稳定性有影响。如在图10中(部分)所示,溶液中的稳定性在溶液的pH减小(酸性环境优于碱性)、溶液温度降低时,和在溶液中肽组合物的浓度减小时提高。采用冻干形式时,稳定性随pH减小、温度降低,和所述肽组合物与赋形剂的比例升高而提高。优选的赋形剂在于2005年9月30日提交的美国专利申请号11/240,962中讨论,其通过引用完全结合于此。
[0041] 出乎意料的“赋形剂作用”对于甘露糖醇是最显著的,所述甘露糖醇是一种高度晶体状的赋形剂。使用较少晶体状赋形剂(诸如蔗糖)或者甚至不使用赋形剂,表现出对肽组合物的量少得多的依赖性。尽管不希望受到任何理论的束缚或局限,应该认为使用非晶体状赋形剂产生非晶形基质,其辅助防止分子间缔合。理论上,在晶体状基质中,所述肽组合物被排斥并且被迫使到瓶壁处,可能引起高的局部浓度。使用少量的API,所形成的薄膜具有高的肽-玻璃接触面积,并且使石不稳定。
[0042] 许多因素影响靶细胞吸收治疗性肽组合物的效率。例如,治疗性肽的溶解性影响靶细胞吸收该肽的效率。载体或货物肽的氨基酸序列又在很大程度上决定在其中使用它们的肽组合物的溶解性。一些肽,特别是货物肽,应该包含具有常规间隔的疏水残基,(例如,Phe,Tyr,Leu),所述间隔允许通过“拉链”机制进行分子内相互作用从而引起聚集。所述有潜在问题的肽的实例显示在图14中。据信所示例的序列在δPKC的V1结构域中形成β-链。所述肽具有形成不溶沉淀物的倾向。
[0043] 所述肽的溶解性可以通过对货物肽序列进行某些修饰而提高。例如,在氨基和或羧基端或内部残基上引入增溶基团,诸如水合基团,如聚乙二醇(PEG),高度带电荷基团,如季铵盐,或特定氨基酸残基的大的、分支链,将提高肽,如在图14中所示例的那种肽的溶解性。另外,显示对于活性不是必需的那些疏水性侧链可以通过缺失或用保守或非干扰性残基 如丙氨酸、甘氨酸、或丝氨酸取代而去除,由此提高该肽的溶解性。 [0044] 蛋白水解降解:血浆稳定性
[0045] 血液和血浆包含蛋白酶,所述蛋白酶可以降解本文公开的蛋白激酶C调节肽或促进细胞吸收肽组合物的载体肽,或二者。减少载体或货物肽的蛋白水解降解的一种方法是掩蔽由所述治疗性肽组合物呈递的蛋白酶的靶标。
[0046] 所述治疗性肽一旦进入受试者的血浆,它变得容易受肽酶的攻击。提供这样的策略,所述策略针对由外肽酶(水解由肽链的末端氨基酸形成的肽键的一组酶中的任一种)或内肽酶(水解在蛋白分子长链内部的肽键的一组酶中的任一种)引起的肽降解。外肽酶是从肽或蛋白的氨基或羧基端分裂氨基酸残基的酶,并且可以在特定的或非特定的位点分裂。内肽酶,其在氨基酸序列内部分裂,也可以是非特异性的,然而,内肽酶通常识别特定的氨基序列(识别位点),并且在那些位点处或在那些位点附近分裂该肽。 [0047] 保护肽组合物免于蛋白水解降解的一种方法包括对该肽的氨基和/或羧基端进行“加帽”。术语“加帽”是指通过共价修饰向肽的末端引入封闭基团。适当的封闭基团作用为对该肽的末端加帽,但不减小该肽的生物活性。所述肽的氨基端的乙酰化是保护肽免于蛋白水解降解的优选方法。其它的加帽部分是可能的。选择酰化部分为对肽“加帽”并且调整化合物的疏水性提供机会。例如,对于下述酰基基团系列疏水性增加:甲酰基、乙酰基、丙酰基(propanoyl)、己酰基、肉豆蔻酰基,并且还考虑作为加帽部分。所述肽的羧基端酰胺化也是保护该肽免于蛋白水解降解的一种优选方法。
[0048] 保护肽免受内肽酶作用典型地包括识别并且消除肽的内肽酶识别位点。蛋白酶识别位点是本领域普通技术人员所公知的。因此,识别潜在的内肽酶识别位点并且然后通过改变所述识别位点内的氨基酸序列而消除所述位点是可能的。可以移动或移除识别序列内的残基,以破坏所述识别位点。优选地,使用包括确定的蛋白酶识别位点的一个或多个氨基酸进行保守取代。这些氨基酸的侧链具有多种化学特性。为了本讨论的目的,将 最常见的氨基酸归纳为9组,在下文列出。认为在这些组内的取代是保守取代。
[0049] 保守氨基酸取代
[0050]小的/脂族残基: Gly,Ala,Val,Leu,Ile
环状亚氨基酸: Pro
羟基残基: Ser,Thr
酸性残基: Asp,Glu
酰胺残基: Asn,Gln
碱性残基: Lys,Arg
咪唑残基: His
芳香残基: Phe,Tyr,Trp
含硫残基: Met,Cys
[0051] 细胞吸收效率
[0052] 除了上文讨论的修饰之外,改进所公开的治疗性肽组合物的效用可以通过改变所述载体和货物肽的连接而实现。例如,在一个实施方案中,载体和货物肽通过肽键连接,形成线性肽。还可以通过构建肽多聚体而提高治疗性肽的稳定性和效力,其中将多个货物肽连接于一个或多个载体肽。还讨论了本发明的另一个实施方案,其包括可分裂的连接体序列。
[0053] 线性肽
[0054] 提高肽组合物稳定性的另一种策略包括将所述货物和载体肽连接成单一的肽,这与通过二硫键连接肽相反。例如,在图4A所示的实施方案中,货物肽(SEQ ID NO:13)通过氨基端半胱氨酸连接。货物和载体肽的线性形式显示在图4B中,其中所述货物和载体肽通过短的二肽连接体(例如,Ser-Gly)连接。该连接体是示例性的。
[0055] 在所示例的实例中,货物的C-端与载体的N-端通过连接体连接。然 而,还考虑了其它可能的变换,包括通过它们的C-端、它们的N-端连接所述肽,并且其中所述载体肽位于该肽组合物的N-端部分。
[0056] 另外,在适宜的情形中,还可以对线性的使用上文讨论的稳定二硫键连接的肽组合物的步骤。例如,图4B所示的线性肽组合物已经在其氨基和羧基端加帽。此外,在肽内的序列可以混杂(scramble)或取代为D-氨基酸。
[0057] 如在图7中所示,已经观察到在β-I的位置7处的Asn的脱氨作用在通过Asn-Gly连接的线性化肽组合物形式中引起显著的不稳定性。将Gly改变为Leu稳定该线性的肽组合物。类似地,观察到在线性β-II组合物的位置2处的Gln残基的脱氨作用引起显著的不稳定性。用Glu取代提高所述线性组合物的稳定性。比较这些肽的修饰形式的数据显示在图8和9中。
[0058] 在不受任何特定理论局限的条件下,认为脱氨作用由α或主链酰胺HN-C-末端对Asn的侧链酰胺上的Asn残基的攻击引起,产生环状天冬酰胺中间体,所述中间体可以水解成天冬氨酸部分。认为增加Asn的C-端残基的尺寸增加对主链酰胺的空间位阻,显著减慢脱酰胺作用。
[0059] 肽多聚体
[0060] 提高稳定性和效力的另一种方法通过形成具有与一个或多个载体肽缔合的多个货物肽的多聚体而提供。所述制剂的实例显示在图15中。分支的、多价肽组合物将提高所述组合物的亲和性、效力和稳定性。通过将分裂位点或其它释放机制改造成多聚体组合物,多个组合物可以几乎同时在靶细胞内释放PKC调节性货物肽。多聚体肽的实例在Yu等.JBC275(6):3943-9(2000)中讨论。
[0061] 可分裂的序列
[0062] 典型地,所述载体和货物通过可以由遍在酶诸如酯酶、酰胺酶等分裂的连接而连接。假设所述酶的浓度在细胞内比在细胞外环境中更高。因此,所述缀合物一旦在细胞内时,它更可能遇到可以分裂货物和载体之间的连接的酶。因此,该酶可以在细胞内释放生物活性货物,在此处大概是 最有效的。
[0063] 蛋白激酶C调节肽
[0064] 术语蛋白激酶C调节肽是指来源于PKC同工酶-和/或可变区的肽。已经描述了多种PKC同工酶-和可变区-特异性的肽,并且其可以用于本公开的发明。优选地,PKC调节肽是V1,V3或V5-来源的肽。(术语“V1”和“C2”是同义的。)下述美国专利或美国申请描述了多种可以用于本公开的发明的适宜的肽:5,783,405,6,165,977,6,855,693,US2004/0204364,US2002/0150984,US2002/0168354,US2002/057413,US2003/0223981,US2004/0009922和10/428,280,其每一个通过引用完全结合于此。表1提供了用于本发明的优选的PKC调节肽的列表。
[0065] 表1
[0066] 来源于PKC同工酶的货物肽
[0067]肽 SEQ ID NO. 序列
αV3-1 SEQ ID NO:2 I-P-E-G-D-E-E-G
αV5-1 SEQ ID NO:3 Q-L-V-I-A-N
αV5-1.1 SEQ ID NO:4 G-L-G-A-E-N
αV5-1.2 SEQ ID NO:5 A-R-G-A-E-N
αV5-1.3 SEQ ID NO:6 C-G-K-G-A-E-N
αV5-1.4 SEQ ID NO:7 C-G-K-G-A-E-N
βC2-1 SEQ ID NO:8 K-Q-K-T-K-T-I-K
βC2-2 SEQ ID NO:9 M-D-P-N-G-L-S-D-P-Y-V-K-L
βC2-3 SEQ ID NO:10 I-P-D-P-K-S-E
βC2-4 SEQ ID NO:11 S-L-N-P-E-W-N-E-T
βV3-1 SEQ ID NO:12 V-P-P-E-G-S-E-A
βIV5-1 SEQ ID NO:13 K-L-F-I-M-N
βIV5-2 SEQ ID NO:14 R-D-K-R-D-T-S
βIV5-2.1 SEQ ID NO:15 C-A-R-D-K-R-D-T-S
βIV5-2.2 SEQ ID NO:16 G-R-D-K-R-D-T-S
βIV5-2.3 SEQ ID NO:17 A-R-D-K-R-D-T-S
βIV5-3 SEQ ID NO:18 A-R-D-K-R-D-T-S-N-F-D-K
[0068]肽 SEQ ID NO. 序列
βIV5-4 SEQ ID NO:19 A-G-F-S-Y-T-N-P-E-F-V-I-N-V
βIIV5-1 SEQ ID NO:20 Q-E-V-I-R-N
βIIV5-2 SEQ ID NO:21 C-G-R-N-A-E
βIIV5-3 SEQ ID NO:22 A-C-G-R-N-A-E
βIIV5-3.1 SEQ ID NO:23 A-C-G-K-N-A-E
βIIV5-4 SEQ ID NO:24 K-A-C-G-R-N-A-E
βIIV5-5 SEQ ID NO:25 C-G-R-N-A-E-N
βIIV5-6 SEQ ID NO:26 A-C-G-R-N-A-E
βIIV5-7 SEQ ID NO:27 S-F-V-N-S-E-F-L-K-P-E-V-L-S
γV3-1 SEQ ID NO:28 V-A-D-A-D-N-C-S
γV5-1 SEQ ID NO:29 G-R-S-G-E-N
γV5-1.1 SEQ ID NO:30 G-L-S-G-E-N
γV5-2 SEQ ID NO:31 R-L-V-L-A-S
γV5-3 SEQ ID NO:32 P-C-G-R-S-G-E-N
δV1-1 SEQ ID NO:33 C-S-F-N-S-Y-E-L-G-S-L
Leu-剪截体 SEQ ID NO:165 C-S-F-N-S-Y-E-L-G-S
δV1-1.1 SEQ ID NO:34 S-F-N-S-Y-E-L-G-S-L
δV1-1.2 SEQ ID NO:35 T-F-N-S-Y-E-L-G-S-L
δV1-1.3 SEQ ID NO:36 A-F-N-S-N-Y-E-L-G-S-L
δV1-1.4 SEQ ID NO:37 S-F-N-S-Y-E-L-G-T-L
δV1-1.5 SEQ ID NO:38 S-T-N-S-Y-E-L-G-S-L
δV1-1.6 SEQ ID NO:39 S-F-N-S-F-E-L-G-S-L
δV1-1.7 SEQ ID NO:40 S-N-S-Y-D-L-G-S-L
δV1-1.8 SEQ ID NO:41 S-F-N-S-Y-E-L-P-S-L
δV1-1.9 SEQ ID NO:42 T-F-N-S-Y-E-L-G-T-L
δV1-1.10 SEQ ID NO:43 S-F-N-S-Y-E-I-G-S-V
δV1-1.11 SEQ ID NO:44 S-F-N-S-Y-E-V-G-S-I
δV1-1.12 SEQ ID NO:45 S-F-N-S-Y-E-L-G-S-V
δV1-1.13 SEQ ID NO:46 S-F-N-S-Y-E-L-G-S-I
δV1-1.14 SEQ ID NO:47 S-F-N-S-Y-E-I-G-S-L
δV1-1.15 SEQ ID NO:48 S-F-N-S-Y-E-V-G-S-L
δV1-1.16 SEQ ID NO:49 A-F-N-S-Y-E-L-G-S-L
δV1-1.17 SEQ ID NO:50 Y-D-L-G-S-L
δV1-1.18 SEQ ID NO:51 F-D-L-G-S-L
δV1-1.19 SEQ ID NO:52 Y-D-I-G-S-L
δV1-1.20 SEQ ID NO:53 Y-D-V-G-S-L
δV1-1.21 SEQ ID NO:54 Y-D-L-P-S-L
δV1-1.22 SEQ ID NO:55 Y-D-L-G-L-L
δV1-1.23 SEQ ID NO:56 Y-D-L-G-S-I
δV1-1.24 SEQ ID NO:57 Y-D-L-G-S-V
δV1-1.25 SEQ ID NO:58 I-G-S-L
δV1-1.26 SEQ ID NO:59 V-G-S-L
δV1-1.27 SEQ ID NO:60 L-P-S-L
δV1-1.28 SEQ ID NO:61 L-G-L-L
[0069]肽 SEQ ID NO. 序列
δV1-1.29 SEQ ID NO:62 L-G-S-I
δV1-1.30 SEQ ID NO:63 L-G-S-V
δV1-2 SEQ ID NO:64 A-L-S-T-E-R-G-K-T-L-V
δV1-2.1 SEQ ID NO:65 A-L-S-T-D-R-G-K-T-L-V
δV1-2.2 SEQ ID NO:66 A-L-T-S-D-R-G-K-T-L-V
δV1-2.3 SEQ ID NO:67 A-L-T-T-D-R-G-K-S-L-V
δV1-2.4 SEQ ID NO:68 A-L-T-T-D-R-P-K-T-L-V
δV1-2.5 SEQ ID NO:69 A-L-T-T-D-R-G-R-T-L-V
δV1-2.6 SEQ ID NO:70 A-L-T-T-D-K-G-K-T-L-V
δV1-2.7 SEQ ID NO:71 A-L-T-T-D-K-G-K-T-L-V
δV1-3 SEQ ID NO:72 V-L-M-R-A-A-E-E-P-V
δV1-4 SEQ ID NO:73 Q-S-M-R-S-E-D-E-A-K
δV1-5 SEQ ID NO:163 A-F-N-S-Y-E-L-G-S
δV3-1 SEQ ID NO:74 Q-G-F-E-K-K-T-G-V
δV3-2 SEQ ID NO:75 D-N-N-G-T-Y-G-K-I
δV5-1 SEQ ID NO:76 K-N-L-I-D-S
δV5-2 SEQ ID NO:77 V-K-S-P-R-D-Y-S
δV5-2.1 SEQ ID NO:78 V-K-S-P-C-R-D-Y-S
δV5-2.2 SEQ ID NO:79 I-K-S-P-R-L-Y-S
δV5-3 SEQ ID NO:80 K-N-L-I-D-S
δV5-4 SEQ ID NO:81 P-K-V-K-S-P-R-D-Y-S-N
εV1-1 SEQ ID NO:82 N-G-L-L-K-I-K
εV1-2 SEQ ID NO:83 E-A-V-S-L-K-P-T
εV1-3 SEQ ID NO:84 L-A-V-F-H-D-A-P-I-G-Y
εV1-4 SEQ ID NO:85 D-D-F-V-A-N-C-T-I
εV1-5 SEQ ID NO:86 W-I-D-L-E-P-E-G-R-V
εV1-6 SEQ ID NO:87 H-A-V-G-P-R-P-Q-T-F
εV1-7 SEQ ID NO:88 N-G-S-R-H-F-E-D
εV1-7.1 SEQ ID NO:89 H-D-A-P-I-G-Y-D
εV1-7.2 SEQ ID NO:90 H-D-A-P-I-G
εV1-7.3 SEQ ID NO:91 H-D-A-A-I-G-Y-D
εV1-7.4 SEQ ID NO:92 H-D-A-P-I-P-Y-D
εV1-7.5 SEQ ID NO:93 H-N-A-P-I-G-Y-D
εV1-7.6 SEQ ID NO:94 H-A-A-P-I-G-Y-D
εV1-7.7 SEQ ID NO:95 A-D-A-P-I-G-Y-D
εV1-7.8 SEQ ID NO:96 H-D-A-P-A-G-Y-D
εV1-7.9 SEQ ID NO:97 H-D-A-P-I-G-A-D
εV1-7.10 SEQ ID NO:98 H-D-A-P-I-A-Y-D
εV1-7.11 SEQ ID NO:99 H-D-A-P-I-G-Y-A
εV3-1 SEQ ID NO:100 S-S-P-S-E-E-D-R-S
εV3-2 SEQ ID NO:101 P-C-D-Q-E-I-K-E
εV3-3 SEQ ID NO:102 E-N-N-I-R-K-A-L-S
εV3-4 SEQ ID NO:103 G-E-V-R-Q-G-Q-A
εV5-1 SEQ ID NO:104 E-A-I-V-K-Q
[0070]肽 SEQ ID NO. 序列
εV5-2 SEQ ID NO:105 I-K-T-K-R-D-V
εV5-2.1 SEQ ID NO:106 I-K-T-K-R-L-I
εV5-3 SEQ ID NO:107 C-E-A-I-V-K-Q
εV5-4 SEQ I NO:108 T-K-R-D-V-N-N-F-D-Q
ζV1-1 SEQ ID NO:109 V-R-L-K-A-H-Y
ζV1-2 SEQ ID NO:110 V-D-S-E-G-D
ζV1-3 SEQ ID NO:111 V-F-P-S-I-P-E-Q
ζV3-1 SEQ ID NO:112 S-Q-E-P-P-V-D-D-K-N-E-D-A-D-L
ζV3-2 SEQ ID NO:113 I-K-D-D-S-E-D
ζV3-3 SEQ ID NO:114 P-V-I-D-G-M-D-G-I
ζV5-1 SEQ ID NO:115 E-D-A-I-K-R
ζV5-1.1 SEQ ID NO:116 E-D-A-I-R
ζV5-2 SEQ ID NO:117 I-T-D-D-Y-G-L-D
ζV5-2.1 SEQ ID NO:118 I-T-D-D-Y-G-D-L
ζV5-3 SEQ ID NO:119 D-D-Y-G-L-D-N
ηV1-1 SEQ ID NO:120 N-G-Y-L-R-V-R
ηV1-2 SEQ ID NO:121 E-A-V-G-L-Q-P-T
ηV1-3 SEQ ID NO:122 L-A-V-F-H-E-T-P-L-G-Y
ηV1-4 SEQ ID NO:123 D-F-V-A-N-C-T-L
ηV1-5 SEQ ID NO:124 W-V-D-L-E-P-E-G-K-V
ηV1-6 SEQ ID NO:125 H-S-L-F-K-K-G-H
ηV1-7 SEQ ID NO:126 T-G-A-S-D-T-F-E-G
ηV5-1 SEQ ID NO:127 E-G-H-L-P-M
ηV5-1.1 SEQ ID NO:128 E-G-H-D-P-M
ηV5-2 SEQ ID NO:129 I-K-S-R-E-D-V-S
ηV5-3 SEQ ID NO:130 V-R-S-R-E-D-V-S
ηV5-4 SEQ ID NO:131 P-R-I-K-S-R-E-D-V
λV1-1 SEQ ID NO:132 H-Q-V-R-V-K-A-Y-Y-R
λV1-2 SEQ ID NO:133 Y-E-L-N-K-D-S-E-L-L-I
λV3-1 SEQ ID NO:134 M-D-Q-S-S-M-H-S-D-H-A-Q-T-V-I
λV3-2 SEQ ID NO:135 L-D-Q-V-G-E-E
λV3-3 SEQ ID NO:136 E-A-M-N-T-R-E-S-G
λV5-1 SEQ ID NO:137 D-D-I-V-R-K
μV5-2 SEQ ID NO:138 V-K-L-C-D-F-G-F
μV5-2.1 SEQ ID NO:139 I-R-L-C-D-F-A-F
μV5-3 SEQ ID NO:140 Q-V-K-L-C-D-F-G-F-A
μV1-1 SEQ ID NO:141 M-S-V-P-P-L-L-R-P
μV1-2 SEQ ID NO:142 K-F-P-E-C-G-F-Y-G-L-Y
μV3-1 SEQ ID NO:143 D-P-D-A-D-Q-E-D-S
μV3-2 SEQ ID NO:144 S-K-D-T-L-R-K-R-H
μV3-3 SEQ ID NO:145 I-T-L-F-Q-N-D-T-G
μV3-4 SEQ ID NO:146 G-S-N-S-H-K-D-I-S
μV5-1 SEQ ID NO:147 S-D-S-P-E-A
ΘV1-1 SEQ ID NO:148 G-L-S-N-F-D-C-G
[0071]肽 SEQ ID NO. 序列
ΘV1-2 SEQ ID NO:149 Y-V-E-S-E-N-G-Q-M-Y-I
ΘV1-3 SEQ ID NO:150 I-V-K-G-K-N-V-D-L-I
ΘV1-4 SEQ ID NO:151 D-M-N-E-F-E-T-E-G-F
ΘV3-1 SEQ ID NO:152 C-S-I-K-N-E-A-R-L
ΘV3-2 SEQ ID NO:153 G-K-R-E-P-Q-G-I-S
ΘV3-3 SEQ ID NO:154 D-E-V-D-K-M-C-H-L
ΘV5-1 SEQ ID NO:155 R-A-L-I-N-S
ΘV5-2 SEQ ID NO:156 V-K-S-P-F-D-C-S
ΘV5-2.1 SEQ ID NO:157 V-R-S-P-F-D-C-S
ΘV5-3 SEQ ID NO:158 D-R-A-L-I-N-S
ιV5-1 SEQ ID NO:159 I-S-G-E-F-G-L-D
ιV5-1.1 SEQ ID NO:160 C-S-G-E-F-G-L-D
ιV5-2 SEQ ID NO:161 D-D-D-I-V-R-K
ιV5-3 SEQ ID NO:162 D-D-I-V-R-K
[0072] 表2
[0073] 载体肽
[0074]
[0075] 载体的其它实例包括octa-Arg,octa-D-Arg,和触足(Antennapedia)来源的肽,其是本领域已知的。
[0076] 提供下述实施例用以举例说明而不是限制本发明。
[0077] 实施例1
[0078] 外肽酶保护:加帽的肽的血浆稳定性
[0079] 比较了加帽的肽的血浆稳定性。在KAI-9706的氨基和羧基端逐步修饰KAI-9706。通过在15分钟后残留的肽组合物的百分数测量血浆稳定性。结果提供在表2中。 [0080] 表2
[0081] KAI-9706的血浆稳定性
[0082]
[0083] 在15分钟残留的%亲本
[0084] 在大鼠血浆中的t1/2=40-45分钟,对于最长存活的衍生物
[0085] 上述提供的数据表明包括未修饰的货物和载体肽的肽组合物最不稳定。此外,仅对载体肽进行保护不能提高所述肽组合物在血浆中的半衰期。并且,修饰货物肽而不修饰载体肽对血浆中的半衰期稳定性没有明显的影响。然而,对载体肽添加保护基团,不管是在氨基还是羧基端,均导致所述肽组合物血浆稳定性的显著的和几乎等价的提高。保护载体肽中的两个基团提供额外的保护。令人感兴趣的是对货物肽的保护对所述组合物的稳定性具有很少或者没有影响。
[0086] 实施例2
[0087] D-肽对血浆稳定性的影响
[0088] 用D-氨基酸改造KAI-9706,以确定它们对肽组合物稳定性的影响。将未修饰的KAI-9706与具有相同氨基酸序列的肽组合物比较,但是所用的氨基酸为d-对映体而不是l-氨基酸。还制备了所述肽组合物的逆-反形式和混杂形式。实验数据显示在表3中。 [0089] 表3
[0090] KAI-9706的血浆稳定性
[0091]
[0092] 在15分钟残留的%亲本
[0093] 对载体的修饰表现出提高所述组合物的半衰期的极大的倾向,而对货物的修饰表现出很小的作用。
[0094] 实施例3
[0095] 加帽的KAI-9706保持体外效力
[0096] 对载体肽部分KAI-9706(KAI-1455)加帽表现出提高所述肽组合物的血浆半衰期。与未修饰的形式对比评估加帽的组合物抑制大鼠心脏模型中(Langendorff测定)局部缺血损伤的能力。结果显示在图1中。
[0097] 实施例4
[0098] 加帽的KAI-9706表现出提高的效力
[0099] 在中模型中检测KAI-1455。如在图2中所示,当通过梗死(infract)百分数判断时,肽组合物的加帽形式对脑组织提供提高的保护作用。这一数据表明以较低剂量获得对脑组织的显著保护。
[0100] 实施例5
[0101] 与物种无关的肽稳定性的提高
[0102] 在人(图3A),猪(图3B)和大鼠血清(图3C)中,针对KAI-9706和KAI-9803比较修饰的KAI-9706肽(KAI-1455)的稳定性。加帽的形式,KAI-1455,在所有三种物种中表现出提高的血浆稳定性。
[0103] 实施例6
[0104] 加帽的KAI-9706表现出提高的效力
[0105] 在中风模型中检测KAI-1455。如在图2中所示,当通过梗死(infract)百分数判断时,肽组合物的加帽形式对脑组织提供提高的保护作用。这一数据表明以较低剂量获得对脑组织的显著保护。
[0106] 实施例7
[0107] 与物种无关的肽稳定性的提高
[0108] 在人(图3A),猪(图3B)和大鼠血清(图3C)中,针对KAI-9706和KAI-9803比较修饰的KAI-9706肽(KAI-1455)的稳定性。加帽的形式,KAI-1455,在所有三种物种中表现出提高的血浆稳定性。
[0109] 实施例8
[0110] 线性肽的稳定性
[0111] 构建KAI-9803和BC2-4的线性形式,以评估它们相对于这些和其它肽组合物的二硫键连接形式的稳定性。将所述肽以0.1mg/ml的溶液在37℃置于PBS(pH 7.4)中。如图5所示,KAI-9803和BV2-4的线性形式表现出提高的稳定性。
[0112] 实施例9
[0113] 线性PKC-βI和PKC-βII肽组合物表现出超越二硫键连接的组合物的提高的稳定性
[0114] 在实施例8所述的条件下,温育PKC-βI和PKC-βII肽组合物的线性和二硫键连接形式。如图6所示,PKC-βI和PKC-βII肽的线性形式,与它们的非线性负体相比,表现出提高的稳定性。
[0115] 实施例10
[0116] 线性PKC-βI和PKC-βII肽组合物的提高的稳定性
[0117] PKC-βI和PKC-βII肽组合物的线性形式表现出提高的稳定性,但是还 是脱氨反应的对象。特别是在β-I和β-II肽的位置7处的Asn残基和在β-II肽的位置2处的Gln。这些线性肽组合物通过用在β-I肽组合物中的Leu取代紧邻Asn C-端的Gly,或用在β-II肽组合物中的Ile取代Gly来修饰。还用Glu残基取代在β-II肽组合物中位置2处的Gln。在实施例8所述的条件下研究该肽的稳定性。如在图8和9中所示,上文讨论的氨基酸取代起稳定这些线性肽组合物的作用。
[0118] 实施例11
[0119] KAI-9803衍生物(KAI-1355)保持效力
[0120] 检测KAI-9803的剪截形式即KAI-1355的效力,在KAI-1355中去除了羧基端亮氨酸。对KAI-1355的稳定性研究表明缺失C-端Leu残基提高该货物肽的稳定性。在Langendorff体外局部缺血后模型中,比较衍生的肽组合物的效力与全长形式即KAI-9803的效力。实验的结果显示在图11中。如所示,KAI-1355(KAI-9803的修饰形式)仍然能够以与全长KAI-9803相当的效力保护心脏组织免于局部缺血。
[0121] 实施例12
[0122] 最优化KAI-9803产生KAI-1479
[0123] 已经表明对KAI-9803的货物肽的剪截对效力具有很小或没有(now)影响,同时稳定所述肽组合物。如在图12中所示例,TAT载体肽的加帽形式与KAI-1355的剪截的货物肽结合,产生KAI-1479,其包括剪截的9803货物肽和完全加帽的TAT载体肽。 [0124] 在大鼠中脑动脉闭塞(MCAO)中风模型中测定修饰的KAI-1479、KAI-9803和KAI-1482肽组合物,以确定所述肽组合物抑制梗死尺寸的能力。大鼠经受2小时期间的中脑动脉闭塞。在即将进行22小时的再灌流期间之前对测试动物施用所述肽组合物或盐水中的一种,此时间之后,将动物处死,并且测量梗死的尺寸。如图13所示,与KAI-9803相比,修饰的KAI-1479肽组合物表现出提高的阻止梗死尺寸的能力。KP-01482具有与带有N-端Cys的TAT肽连接的货物序列(CELGSLQAEDD),其在两端加帽并且与货物二硫键缀合。 [0125] 实施例13
[0126] 一系列线性εPKC抑制剂的体外生物学稳定性
[0127] 研究了N-端乙酰化和C-端酰胺化对化合物在大鼠和人血浆和血清中的稳定性的影响。检验的线性肽显示在图16中。化合物以100μg/ml的浓度在血浆/血清中进行检测。溶液在室温温育,用5%TCA沉淀,并且然后用乙酸铵中和上清。然后通过LC/MS分析所述肽。如从图17A-17D中的数据可以看出,所有检测的化合物在人血浆中均相对稳定,而包含C-端酰胺的KP-1633和KP-1678在人血清中表现出提高的稳定性。单独的N-端乙酰化不稳定所述肽。令人感兴趣的是,KP-1680的氨基酸序列及其降解产物表明该肽的代谢形式表现出从C-端连续分裂精氨酸残基。在血浆而非血清中的羧肽酶N活性可以解释所观察到的稳定性的差异。血浆样品是用EDTA收集的,已知EDTA抑制这种锌金属蛋白酶。
相关专利内容
标题 发布/更新时间 阅读量
稳定性好的船 2020-05-11 1031
高稳定性机架 2020-05-11 101
稳定性试验台 2020-05-11 677
低压总线稳定性 2020-05-12 60
转发器稳定性 2020-05-12 677
网络稳定性状态 2020-05-12 375
生物材料稳定性的改进 2020-05-11 69
稳定性控制系统 2020-05-12 893
稳定性组合物Ⅰ 2020-05-12 616
稳定性供气系统 2020-05-11 602
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈