首页 / 专利库 / 生物学 / 生物反应器 / 膜生物反应器 / Verfahren und Vorrichtung zum Kultivieren von humanen, tierischen, pflanzlichen sowie hybriden Zellen und Mikroorganismen

Verfahren und Vorrichtung zum Kultivieren von humanen, tierischen, pflanzlichen sowie hybriden Zellen und Mikroorganismen

阅读:85发布:2023-09-15

专利汇可以提供Verfahren und Vorrichtung zum Kultivieren von humanen, tierischen, pflanzlichen sowie hybriden Zellen und Mikroorganismen专利检索,专利查询,专利分析的服务。并且In einem Verfahren zur Kultivierung von Gewebezellen und Mikroorganismen werden wenigstens drei aneinander liegende Kammern durch Membranen (A, B) von einander getrennt. In einer Zellzuchtkammer (1) befinden sich die immobilisierten Zellen. Es wird lediglich durch eine Membran (A) getrenntes Nährmedium über eine Mediumkammer (2) zirkuliert und ein Produkt über eine Membran (B) und eine Produktkammer (3) abgezogen.
Die Vorrichtung zur Durchführung der Verfahrens besteht aus wenigstens einer Zellzuchtkammer (1) einer Mediumkammer (2) und einer Produktkammer (3), welche durch Membranen (A, B) voneinander getrennt sind. Die Zellzuchtkammer (1) enthält Gewebe (25) zur Immobilisierung von Zellen. Es kann eine beliebige Anzahl von Kammern zu einer Zellzuchtvorrichtung zusammengestellt werden.
Die Erfindung ermöglicht eine schonende Kultivierung von Gewebezellen und eine hohe Volumenausnutzung.,下面是Verfahren und Vorrichtung zum Kultivieren von humanen, tierischen, pflanzlichen sowie hybriden Zellen und Mikroorganismen专利的具体信息内容。

1. Verfahren zum Kultivieren von humanen, tierischen pflanzlichen sowie hybriden Zellen und Mikroorganismen in einem Bioreaktor mit wenigstens drei aneinander anliegenden Kammern, wobei wenigstens eine erste Kammer eine Zellzuchtkammer (1) eine zweite Kammer eine Mediumkammer (2) und eine dritte Kammer eine Produktkammer (3) ist und die einzelnen Kammern von einander durch Membranen (A,B) begrenzt sind, dadurch gekennzeichnet, dass eine Nährlösung enthaltene Mediumkammer (2) in ihrer Längsrichtung durchströmt wird und dass die Zellzuchtkammer (1) sowie die daran anschliessende Produktkammer (3) mit ihrem Inhalt sich in relativer Ruhe zur Strömungsgeschwindigkeit der Nährlösung befinden.2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Zellen innerhalb der Zellzuchtkammer (1) an Trägern aus netzartigen Geweben (25,25') immobilisiert werden.3. Vorrichtung zur Durchführung des Verfahrens nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass wenigstens eine Zellzuchtkammer (1) über eine Membran (B) mit einer Produktkammer (3) und über eine weitere Membran (A) mit einer Mediumkammer (2) in Verbindung steht und dass die Membranen (A) und die Membranen (B) unterschiedliche Porengrössen aufweisen.4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Membran (A) eine Ausschlussgrenze von 100'000 Dalton aufweist.5. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Membran (B) eine Porengrösse von 0,2 pm aufweist.6. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Membranen (A,B) in der Zellzuchtkammer (1) einen Abstand von 0,3 bis 10 mm aufweisen.7. Vorrichtung nach den Ansprüchen 3 bis 6, dadurch gekennzeichnet, dass eine Mess-Sonde (7) durch einen orthogonal durch die beiden an die Zellzuchtkammer (1) anliegenden Kammern (2;3) hindurchführenden Anschlussstutzen (6') und eine weitere Mess-Sonde (7') durch einen Anschlussstutzen (6") mit dem Messkopf (7a) innerhalb der Zellzuchtkammer (1) fixiert ist.8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Mess-Sonden (7,7') mittels Feststellbolzen (8,8') fixiert sind.9. Vorrichtung nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass zwischen den beiden Membranen (A,B) der Zellzuchtkammer (1) netzartige Gewebe (25,25') befestigt sind.10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die netzartigen Gewebe (25,25') aus Kunststoffgeweben bestehen.11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die netzartigen Gewebe (25,25') rautenförmige Öffnungen aufweisen.
说明书全文

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Kultivieren von humanen, tierischen, pflanzlichen sowie hybriden Zellen und Mikroorganismen in einem Bioreaktor mit wenigstens drei aneinander anliegenden Kammern, wobei wenigstens eine erste Kammer eine Zellzuchtkammer eine zweite Kammer eine Mediumkammer und eine dritte Kammer eine Produktkammer ist und die einzelnen Kammern von einander durch Membranen begrenzt sind.

Zellen höherer Eukaryonten (tierische Zellen, humane Zellen, Pflanzenzellen und Mikroorganismen) sind in vitro durch folgende Eigenschaften charakterisiert:

  • - Wachstum in komplexen Nährmedien.
  • - Hohe Empfindlichkeit gegenüber mechanischen und hydraulischen Schereffekten.
  • - Hohe Empfindlichkeit gegenüber physikalischen und chemischen Umwelteinflüssen.
  • - Weitgehende Abhängigkeit von einer ausgeglichenen Versorgung mit Nährstoffen und Entsorgung der Stoffwechselprodukte.
  • - Die Kinetik der Produktbildung kann sowohl an das Zellwachstum gebunden sein als auch unabhängig davon erfolgen.
  • - Die Produkte werden entweder ausgeschieden oder sind zellassoziiert.

Bei der Züchtung von Zellen werden diese mit Nährstoffen aus dem sie umgebenden Nährmedium versorgt. Die Stoffwechselprodukte der Zellen werden in das Medium abgegeben. Wenn das die Zellen enthaltende flüssige Nährmedium in einem Behälter ruhig steht, so setzen sich die Zellen wegen ihres grösseren spezifischen Gewichtes am Behälterboden ab und/oder lagern sich an den Behälterwänden an. Die sich daraus ergebenden hohen Zelldichten haben zur Folge, dass die Diffusion zum Nährstoffnachschub bzw. zur Entsorgung von Stoffwechselprodukten nicht ausreicht und die Zellen absterben. Darüber hinaus ist zur Erlangung von hohen Zelldichten, wie sie bei Produktionsprozessen vielfach gewünscht werden, ein Nachschub und/oder ein Austausch bzw. eine Regenerierung des Mediums notwendig. Üblicherweise muss daher die Zellsuspension entweder in sehr dünnen Schichten kultiviert werden oder für eine ständige Aufrechterhaltung einer Suspension gesorgt werden, bzw. müssen die Zellen beim Mediumnachschub oder Mediumtausch kurzfristig vom Medium separiert werden.

Im Zusammenhang mit der geringen mechanischen und chemischen Belastbarkeit der Zellen ergeben sich aus den notwendigen Massnahmen wie Rühren, Füllen, Zentrifugieren, Filtrieren, Sterilhalten usw. grosse Probleme bei der Übertragung solcher Kultivierungsverfahren vom Labormassstab zur technischen und grosstechnischen Anlage.

Bei allen bekannten Verfahren, bei denen Nährstoffe über semipermeable Membranen zugeführt oder Stoffwechselprodukte über solche Membranen abgeführt werden, werden die Zellen zusammen mit einem Kulturmedium bewegt, was in der Regel durch Umpumpen erfolgt. Das Umpumpen von Zellen führt jedoch zu einer mechanischen Beanspruchung der Zellen, welche dadurch geschädigt werden.

Aufgabe der Erfindung ist es, unter weitgehend natürlichen Bedingungen, die Zufuhr von Nährstoffen und die Abfuhr von Stoffwechselprodukten unter Vermeidung von mechanischen und chemischen Einflüssen zu erzielen.

Die vorgenannte Aufgabe wird erfindungsgemäss dadurch gelöst, dass eine Nährlösung enthaltende Mediumkammer in ihrer Längsrichtung durchströmt wird und dass die Zellzuchtkammer sowie die daran anschliessende Produktkammer mit ihrem Inhalt sich in relativer Ruhe zur Strömungsgeschwindigkeit der Nährlösung befinden.

Die Zellen werden in einer Zellzuchtkammer kultiviert, deren Raum durch die beiden gegenüber liegenden Membranen und durch zusätzliche Haltevorrichtungen, Anschlüsse usw. begrenzt wird.

Auf der Aussenseite der Membranen der Zellzuchtkammer befinden sich ebenfalls Kammern, die mit Nährmedium ganz oder teilweise gefüllt sind. Die Nährmediumzufuhr erfolgt vorzugsweise durch die Poren der Membrane entweder durch Diffusion oder durch Massenfluss. Eine direkte Nährmediumzufuhr in die Zellzuchtkammer ist gleichfalls möglich. Ebenso können Produkte der Zellen durch die Membranen abgeführt aber auch - wählbar durch die Durchlässigkeit der Membrane - im Kulturraum zurückgehalten werden. Die Medien können kontinuierlich oder diskontinuierlich durch die Kammern geführt werden, wobei das Medium ausserhalb oder innerhalb der Mediumkammern konditioniert (chemisch oder physikalisch behandelt usw.) werden kann.

Von besonderem Vorteil ist die Fixierung der Zellen an Trägerelemente, bevorzugt an Gewebe in Form von Netzen. Das hat den Vorteil, dass zur Fixierung der Zellen keine Biocarrier benötigt werden, sondern das Netz selbst als Zellcarrier verwendet wird.

Zur Durchführung des Verfahrens ist es, gemäss Anspruch 3 zweckmässig, eine Zellzuchtkammer über je eine Membran sowohl mit einer Produktkammer als auch mit einer Nährmediumkammer zu verbinden.

Die Kulturkammern können als Stapel mit gemeinsamen Zu- und Ablaufkanälen aufgebaut werden, wobei entweder ein Zweikammersystem (Medium/Zellen) oder ein Dreikammersystem (Medium/Zellen/Produkt) als minimale funktionelle Einheit angewendet werden kann. Die Anzahl der Kammern in einem Stapel kann jedoch beliebig gewählt werden. Die Fläche der Kulturkammern ist durch die produktionsbedingte Maximalgrösse der Membranen begrenzt.

In einer Zellzuchtkammer können zwei'Membranen mit unterschiedlicher Porengrösse verwendet werden. Dabei ist die Porengrösse der Membran zwischen Zellen und Nährmedium so zu wählen, dass ein Nährstofftausch stattfinden kann und die Membran zwischen den Zellen und der Produktekammer, dass lediglich die Stoffwechselprodukte auf die Produktseite hindurchtreten können.

Die Membranen können aus jedem brauchbaren Material bestehen und jede Porengrösse aufweisen. Sie können symmetrisch oder asymmetrisch, polar oder unpolar, hydrophil oder hydrophob sein und müssen in ihrer Stärke dem System angepasst werden. Die Membranen müssen jedoch so beschaffen sein, dass im wesentlichen die Zellen zurückgehalten werden. Es gelten die genannten Kriterien auch für gaspermeable Membranen. Die Höhe der Kammer zwischen den bevorzugt horizontal liegenden Membranen ist durch die Nährmediumzufuhr und die gewünschten Zelldichten begrenzt. Die Kulturkammer kann mit Einbauten zum Stützen der Membranen und/oder zur Erzeugung von Konvektion und/oder zur kontrollierten Leitung der Suspension versehen werden. Die Mediumkammern sind in ihren Volumina nur durch den gewünschten Durchfluss bzw. durch die Leiteinrichtungen zur Steuerung der Konvektion und der Strömung sowie das gewünschte Volumen begrenzt.

Der Gesamtaustausch (Ver- und Entsorgung) von Gasen, wie 02, C02 usw., kann entweder durch externe oder interne Anreicherung im Kulturmedium in gelöster Form oder als Gas/Flüssigkeits-Dispersion erfolgen, aber auch durch gaspermeable Membranen beliebiger Form durchgeführt werden. Dies kann entweder analog zu den Medienströmen oder durch Einsatzmembranen, z.B. schlauchförmige Membranen, die durch die Kulturkammern geführt werden und gleichzeitig als Stütznetze der Flachmembranen und/oder Träger der Zellen dienen, erfolgen.

Es hat sich, gemäss Anspruch 4, als günstig erwiesen, die Membranen zwischen dem Medium und der Zellzuchtkammer in ihrer Porengrösse so zu wählen, dass Stoffe mit Teilchen, die 100`000 Dalton übersteigen, nicht mehr durch die Membranen passieren können.

Für die Membranen zwischen der Produktkammer und der Zellzuchtkammer, gemäss Anspruch 5, ist es zweckmässig, eine Porengrösse zu wählen, die zwischen 0,1 pm und 0,6 pm, vorzugsweise 0,2 pm beträgt.

Gemäss Anspruch 6 ist es zweckmässig, die Membranen innerhalb der Zellzuchtkammer in einem Abstand von 0,3 bis 10 mm anzubringen. Es hat sich als besonders vorteilhaft erwiesen, den Abstand beider Membranen mit 0,5 mm zu wählen, da die als Träger für die Zellen dienenden Netze auch 0,5 mm dick sind und so mit ihrer Textur die ganze Zellzuchtkammer ausfüllen.

Nach Anspruch 7 ist es zweckmässig, Mess-Sonden in die Leitungen einzuführen, welche zum Einbringen der Zellsuspension und zur Ernte dienen. Diese Leitungen führen rechtwinklig durch alle Kammern hindurch, wobei der Kopf eines Messfühlers etwa in der Mitte einer Zellzuchtkammer fixiert ist. Es sind insbesondere Sonden für pH, p02 vorgesehen.

Zur Fixierung der Sonden haben sich, gemäss Anspruch 8, Feststellbolzen als besonders geeignet erwiesen, welche von der Gegenseite der Leitung so eingeführt und befestigt sind, dass sie die Lage der Mess-Sonden begrenzen. Durch den Feststellbolzen wird das Totvolumen im Leitungsrohr zur oder von der Zellzuchtkammer verringert.

Als besonders vorteilhaft zum Immobilisieren von Zellen, haben sich als Träger, gemäss Anspruch 9, Gewebe erwiesen, welche eine netzförmige Textur aufweisen.

Als Zellträgernetze sind, gemäss Anspruch 10, Netze aus Kunststoffen, insbesondere aus Fluorkohlenwasserstoffen geeignet.

Gemäss Anspruch 11, sind Netze mit rautenförmigen Öffnungen vorteilhaft. Hierbei setzen sich die Zellen um die Gewebefäden fest und lassen eine mittige Öffnung für den Stoffaustausch frei.

Die Erfindung soll anhand von Zeichnungen beispielhaft näher beschrieben werden.

Es zeigt:

  • Fig. 1 ein Prinzipschema des Verfahrens mit einem Aufriss durch die Vorrichtung gemäss der Erfindung,
  • Fig. 2 einen Grundriss durch die Zellzuchtvorrrichtung gemäss Fig. 1,
  • Fig. 3 einen Schnitt A-A gemäss Fig. 2,
  • Fig. 4 einen Schnitt B-B gemäss Fig. 2,
  • Fig. 5 eine Anordnung der Sonden in der Zellzuchtkammer,
  • Fig. 6 eine Vergrösserung im Bereich der Befestigung der Membranen,
  • Fig. 7 eine schematische Darstellung eines Zweikammersystems,
  • Fig. 8 ein Schema eines Dreikammersystems und
  • Fig. 9 ein perspektivischer Einblick in den Aufbau der Zellzuchtvorrichtung.

Gemäss Fig. 1 besteht eine Zellzuchtvorrichtung in ihrer einfachsten Ausführung aus je einer Zellzuchtkammer 1, welche von einer Mediumkammer 2, und einer Produktkammer 3 eingeschlossen wird. In Fig. 1 sind weitere Zellzuchtkammern 1', 1", eine weitere Mediumkammer 2' und eine weitere Produktkammer 3' gezeigt. Die Vorrichtung ist je nach den Bedürfnissen beliebig erweiterungsfähig. Die drei Kammern werden durch eine Deckplatte 4 und eine Bodenplatte 5 begrenzt. Die einzelnen Kammern sind durch Membranen und an diesen randseitig angebrachten Dichtungen steril abgedichtet. In einer Leitung 6 zur Zellenzufuhr und Zellenernte sind Sonden 7 bzw. 7' zur Messung bzw. Steuerung von pH und p02 vorgesehen. Zur Fixierung der Sonden innerhalb beispielsweise in der Zellzuchtkammer 1' sind Feststellbolzen 8 bzw. 8' vorgesehen. Die Zellzuchvorrichtung ist mit Anschlüssen 9,9' für ein Nährmedium sowie mit Anschlüssen 10, 10' für das Produkt versehen. Ein Behälter 11 zur Aufbereitung des Nährmediums ist über eine Leitung 12, ein Dosierventil 13, eine Pumpe 14, ein Ventil 15 und eine flexible Leitung 16 mit dem Anschluss 9 an der Zellzuchtvorrichtung verbunden. Über eine Leitung 17 wird das zirkulierende Medium in den Behälter 11 zurückgeführt. Der Behälter 11 ist mit einer Temperaturregelung 18 verbunden sowie einer Begasungseinrichtung 19. Die Begasungsstation 19 beinhaltet eine Zufuhrleitung 20 für Luft und eine Zufuhrleitung 21 für Kohlenstoffdioxid. Zwischen der Begasungsstation 19 und dem Behälter 11 ist eine Zuluftfilter 22 und in der Abluftleitung 23 ein Abluftfilter 24 vorgesehen.

Fig. 2 zeigt den Grundriss der Zellzuchtvorrichtung gemäss Fig. 1 mit der Bodenplatte 5, dem Anschluss 9 für die Mediumzufuhr und dem Anschluss 9' für die Mediumabfuhr von und zu den Mediumkammern 2 und 2' sowie die Anschlüsse 6' und 6" zu den Zellzuchtkammern 1,1',1".

In Fig. 3 ist die Zellzuchtkammer 1, die Mediumkammer 2 und die Produktkammer 3 zwischen der Deckplatte 4 und der Bodenplatte 5 befestigt. Zwischen der Zellzuchtkammer 1 und der Mediumkammer 2 ist eine Membran A und zwischen der Produktkammer 3 eine weitere Membran B vorgesehen. Die Mediumzufuhr erfolgt über den Anschluss 9 und die Mediumabfuhr über den Anschluss 9'. Der Anschluss 10 ist für den Produkteintritt und der Anschluss 10' für den Produktaustritt vorgesehen. Sowohl der Mediumstrom als auch der Produktstrom sind durch mit Pfeilen vorgesehenen punktgestrichelten Linien angedeutet.

In Fig. 4 ist der Anschluss 6' für den Eintritt der Zellsuspension und der Anschluss 6" für den Austritt der Zellsuspension vorgesehen. Hier ist der Weg der Zellsuspension gleichfalls durch eine strich-punktierte Linie wiedergegeben.

In Fig. 5 ist die Anordnung von Sonden 7,7' im Eintrittsstutzen 6' und Austrittsstutzen 6" der Zellzuchtkammer 1 gezeigt, die zur Fixierung in ihrer Eindringtiefe von den Feststellbolzen 8 und 8' begrenzt sind. Ein Messkopf 7a befindet sich in der Mitte der Zellzuchtkammer 1.

In Fig. 6 ist die Befestigung der Membranen A,B und von Geweben 25,25', welche zur Immobilisierung der Zellen oder Mikroorganismen dienen, gezeigt. Die Befestigung erfolgt durch Zusammenklemmen an der Peripherie, wobei auf den Geweben aufgebrachtes Dichtungsmaterial 27,27' und 28,28'--gleichzeitig als Distanzhalterung dient.

Fig. 7 zeigt das Schema eines-Zweikammersystems, wobei Nährstoffzufuhr und Produktabfuhr über gleichartige Membranen A erfolgen. Das Nährmedium zirkuliert über die Anschlüsse 9 mit Abzweigungen in die Mediumkammern 2,2',2",2"' zum Anschluss 9'. Die Zellzuchtkammern 1,1',1" sind mit Membranen A versehen. Die Zellen werden über den Anschluss 6' in die Zellzuchtkammern eingebracht und nach beendeten Wachstum oder aus anderen Gründen über den Anschluss 6" geerntet.

In Fig. 8 erfolgt die Mediumzufuhr und Produktabfuhr in gleicher Weise wie in Fig. 7. Die Zellzuchtkammern hingegen sind durch entsprechende Rohrverbindungen hintereinander geschaltet.

Fig. 9 zeigt eine geöffnete Zellzuchtkammer mit der Deckplatte 4 und der Bodenplatte 5. Zwischen den Membranen A und B sind Gewebe 25 mit der erfindungsgemässen Textur versehen, die gleichzeitig als Stützgewebe für die Membranen und als Träger 25 bzw. 25' für die Zellen dienen.

Die Betriebsweise wird anhand von Fig. 1 erläutert. Nach dem Zusammenbau einer Zellzuchtvorrichtung bestehend aus den Zellzuchtkammern 1,1',1", den Mediumkammern 2,2', den Produktkammern 3,3' sowie der Deckplatte 4 und der Bodenplatte 5, des weiteren den Membranen A und B sowie die in den Zellzuchtkammern 1,1',1" zwischen den Membranen befestigten Netzen (Fig. 9), wird die Apparatur auf Dichtigkeit geprüft und in bekannter Weise mit Dampf sterilisiert. Zur Immobilisierung der Zellen wird eine Zellsuspension über die Leitung 6 der linken Seite die Zellzuchtkammern 1,1',1" und die Ausgangsleitung 6a auf der rechten Seite der Vorrichtung über ein entprechendes nicht gezeigtes Impfgefäss so lange zirkuliert, bis alle Zellen auf den Netzen fixiert sind.

Gleichzeitig wird eine im Behälter 11 bereitete sterile Nährlösung als Medium mittels der Pumpe 14, über die Leitung 16, den Anschluss 9, die Mediumkammern 2 und 2', die Sammelleitung 9', Leitung 17 in den Behälter 11 rezirkuliert. Die Menge des Medienstroms wird mit dem Ventil 13 eingestellt. Die Begasung des Nährmediums erfolgt mittels der Begasungseinrichtung 19, welche eine Dosiereinheit für die Zugabe von Luft über die Leitung 20 und C02 über die Leitung 21 vorsieht. Diese Gase werden vor dem Eintritt in den Behälter 11 über das Zuluftfilter 22 sterilfiltriert. Die Abgase aus dem Behälter 11 können über das Abluftfilter 24 entweichen.

Über den Anschluss 10 kann produktseitig eine geeignete Flüssigkeit beispielsweise für den kontinuierlichen Abtransport der Stoffwechselprodukte aus den Zellzuchtkammern 1, 1',1" geleitet werden. Diese durchströmt die Produktekammern 3 und 3' und verlässt die Zellzuchtvorrichtung über den Anschluss 10'. Das Produkt kann aber auch diskontinuierlich abgezogen werden, wobei während des Zellzuchtbetriebs die Ventile zu den Anschlüssen 10 und 10' geschlossen bleiben, bis sich durch die Permeation durch die Membranen in den Produktskammern 3 und 3' genügend Produkt angesammelt hat, welches unter Druck steht und über die Leitung 10' im Bedarfs- bzw. Erntefall abgezogen werden kann.

Die Betriebsweise der Kulturkammmern lässt sich auf die jeweilige Produktionskinetik optimal abstimmen. Dies wird dadurch gewährleistet, dass eine Immobilisierung der Zellen in einem gewünschten Ausmass erreicht wird und sowohl die Zellseite als auch die Medium- und gegebenenfalls die Produktseite getrennt kontinuierlich oder diskontinuierlich durchströmt werden können. Die Vorteile der bekannten Verfahren der Zellimmobilisierung, der Dialysekultur und der Perfusionskultur können mit der Methode der Batchkultur, der einströmigen und mehrströmigen kontinuierlichen Betriebsweise dadurch kombiniert werden. Es ist daher möglich, für jede beliebige Produktionskinetik die optimale Betriebsweise.zu wählen. Es kann das erfindungsgemässe Verfahren für biokatalytische Umwandlungen von Substraten zu Produkten verwendet werden. Das erfindungsgemässe Verfahren ergibt eine leichtere Bearbeitbarkeit und bessere Kontrollierbarkeit sowie die Möglichkeit der kontrollierten Durchströmung und der Messwerterfassung im Kulturraum. Im Vergleich zum komplizierten Verfahren der Mikroverkapselungstechnik gewährleisten weit einfachere und kleinere Anlagen eine bessere Kontrollierbarkeit und liefern dabei gleich gute oder bessere Ergebnisse.

Beispiel:

Die Kulturkammern werden mit Polysulfon von 0,2 pm Porengrössen bestückt, die Zu- und Ablaufkanäle von Kultur- und Mediumkammern parallel zusammengefasst und der Apparat sterilisiert.

Die Kulturkammern werden mit einer Zellsuspension der Hybridom-Zellinie C28 befüllt. Es ist dies eine Hybridomzellinie zwischen primären Humanzellen und einer Mäusemyeolomzellinie. Sie produziert humanes lgG1 und scheidet dieses in das umgebende Medium aus. Dieses Kulturmedium besteht aus 90 % Dulbecco's MEM und 10 % foetalem Kalbserum. Die Startzelldichte beträgt 500'000 Zellen/ml. Die Kultivierungstemperatur ist 36,5 °C. In den Mediumkanälen wird Kulturmedium, das mittels einer Airliftpumpe mit Luft angereichert wird, umgepumpt und mit einem Volumenäquivalent des Kulturkammervolumens täglich durchströmt. Nach drei Tagen ist eine Zelldichte von 1,8 x 106 Zellen/ml erreicht, die lgGl-Konzentration auf der Mediumseite beträgt etwa 30 mg/1. Die Globulinkonzentration steigt allmählich auf etwa 100 mg/1 und stabilisiert sich nach einer weiteren Woche.

Durch das erfindungsgemässe Verfahren werden den Zellen auf schonende Weise ausreichend Nährstoffe zugeführt sowie Stoffwechselprodukte abgeführt. Ein schädlicher physikalischer oder chemischer Einfluss kann durch die Membranen von den Zellen ferngehalten werden. Durch die Anordnung der Membrankammern in Stapeln ist eine hohe Volumenausnützung gegeben und damit die Möglichkeit, technisch relevante Kulturgrössen als Einheitsoperation zu erreichen.

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈