首页 / 专利库 / 信号处理 / LC滤波器 / 一种三电平Buck变换器及其控制方法

一种三电平Buck变换器及其控制方法

阅读:1020发布:2020-10-28

专利汇可以提供一种三电平Buck变换器及其控制方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种三电平Buck变换器及其控制方法,主要由四个MOSFET管、三个 二极管 、一个飞跨电容及 LC 滤波器 组成。该变换器由D2的负极接在C2的左端,D2的正极接在输入电源的负端作为放电回路,D3和Q4 串联 后与输入电源相连替代原先的导通回路。优点:大大提高了DC/DC变换器的动态响应,缩短了一个周期内迅速达到稳态的时间;所涉及的三电平Buck变换器及控制方法适用于车载电源、通信电源等应用场合。,下面是一种三电平Buck变换器及其控制方法专利的具体信息内容。

1.一种三电平Buck变换器,其特征是,包括电源,第一MOSFET管Q1、第二MOSFET管Q2、第三MOSFET管Q3、第四MOSFET管Q4,第一二极管D1、第二二极管D2、第三二极管D3,一个飞跨电容C2及LC滤波器
所述电源、Q1、Q2、Q4及LC滤波器串联;D3的负极直接接电源的正端,D3的正极接Q4的漏极,Q4的源极接电源的负端;D2的正极直接接电源的负端D2的负极接Q1的源极,Q1的漏极接电源的正端;C2的一端接D2的负极,C2的另一端接Q3的漏极,Q3的源极接D3的正极;D1的负极接在Q2和LC滤波器之间,D1的正极接在C2和Q3之间。
2.根据权利要求1所述的一种三电平Buck变换器,其特征是,所述LC滤波器包括电容C1、负载R1、滤波电感L1,其中C1与R1并联后与滤波电感L1串联。
3.一种基于权利要求1-2任意一项三电平Buck变换器的控制方法,其特征在于:
开关变换器的状态空间方程为:

式中,为系统变量偏差及其各阶导数或积分构成的n维向量的偏导,f(x)和g(x)为定义在整个矢量场上的两个平滑矢量场,选取切换函数s(x)=kx,k为状态变量的假定系数,以闭环的输出电压的偏差x1及其微分x2和积分x3为状态变量,则有:

式中,Vref为输出参考电压,Vo为输出电压,
设滑模控制切换函数为
s(x)=k1x1+k2x2+k3x3
式中,k1、k2、k3分别为3个状态变量的假定系数且均大于0;
确定完切换函数之后,就应该选择控制开关信号u,以便使系统快速进入滑动模态,开关变换器的自身特点使得控制函数只存在1或0两种情况,本次设计选用的开关变换器的控制函数为

式中,s为上述确定完的切换函数,当s>0时,sgn(x)=1,反之sgn(x)=0,滑模控制其等效控制为

式中,Lfs为函数s(x)对矢量场f(x)的导数,Lgs函数s(x)对矢量场g(x)的导数,首先判断滑模存在的必要条件:LgS>0,然后把滑模变结构的等效控制等价为脉宽占空比d,从而实现对三电平Buck变换器的定频控制,即d=ueq。

说明书全文

一种三电平Buck变换器及其控制方法

技术领域

[0001] 本发明涉及一种三电平Buck变换器及其控制方法,属于电电子变换器技术领域。

背景技术

[0002] 随着工业设备及微处理器的迅速发展,越来越多的装置存在负载突变的特性,这对开关电源的性能提出了更高的要求。在传统的Buck电路中,负载发生突变,但系统不能及时响应输出的变化,会造成输出电压波动,进而影响负载的正常工作和安全。因此,如何改善电路的动态响应成为研究热点。
[0003] 目前,针对改善电路的动态响应的解决方法如下所示:
[0004] (1)LC滤波器的方案。并联大量滤波电容或采用低ESR电容可降低负载突变引起的电压波动,但增加了系统的体积和成本;采用较小的滤波电感能够提高动态响应能力,需考虑增加的磁芯损耗及开关损耗
[0005] (2)三电平Buck电路方案。相较于传统的Buck电路,三电平Buck电路的等效开关频率加倍,而且开关器件的电压应力减半。在相同的开关频率条件下,三电平Buck电路可以采用更小的电感,动态响应更高。此外,还可以采用变换器的多相组合、多级电路来提高动态响应。

发明内容

[0006] 本发明所要解决的技术问题是克服现有技术缺陷,提供一种三电平Buck变换器及其控制方法,在输出电压足够稳定的基础上,有效地提高了该变换器的动态响应,实现了输出功率的改变。
[0007] 为解决上述技术问题,本发明提供一种三电平Buck变换器,其特征是,包括电源,第一MOSFET管Q1、第二MOSFET管Q2、第三MOSFET管Q3、第四MOSFET管Q4,第一二极管D1、第二二极管D2、第三二极管D3,一个飞跨电容C2及LC滤波器;
[0008] 所述电源、Q1、Q2、Q4及LC滤波器串联;D3的负极直接接电源的正端,D3的正极接Q4的漏极,Q4的源极接电源的负端;D2的正极直接接电源的负端D2的负极接Q1的源极,Q1的漏极接电源的正端;C2的一端接D2的负极,C2的另一端接Q3的漏极,Q3的源极接D3的正极;D1的负极接在Q2和LC滤波器之间,D1的正极接在C2和Q3之间。
[0009] 进一步的,所述LC滤波器包括电容C1、负载R1、滤波电感L1,其中C1与R1并联后与滤波电感L1串联。
[0010] 一种三电平Buck变换器的控制方法,其特征在于:
[0011] 设开关变换器的状态空间方程为:
[0012]
[0013] 式中,为系统变量偏差及其各阶导数或积分构成的n维向量的偏导,f(x)和g(x)为定义在整个矢量场上的两个平滑矢量场,选取切换函数s(x)=kx,k为状态变量的假定系数,以闭环的输出电压的偏差x1及其微分x2和积分x3为状态变量,则有:
[0014] x1=Vref-Vo, x3=∫(Vref-Vo)dt
[0015] 式中,Vref为输出参考电压,Vo为输出电压,
[0016] 设滑模控制切换函数为
[0017] s(x)=k1x1+k2x2+k3x3
[0018] 式中,k1、k2、k3分别为3个状态变量的假定系数且均大于0,
[0019] 确定完切换函数之后,就应该选择控制开关信号u,以便使系统快速进入滑动模态,开关变换器的自身特点使得控制函数只存在1或0两种情况,本次设计选用的开关变换器的控制函数为
[0020]
[0021] 式中,s为上述确定完的切换函数。当s>0时,sgn(x)=1,反之sgn(x)=0,滑模控制其等效控制为
[0022]
[0023] 式中,Lfs为函数s(x)对矢量场f(x)的导数,Lgs函数s(x)对矢量场g(x)的导数,[0024] 首先判断滑模存在的必要条件:LgS>0,然后把滑模变结构的等效控制等价为脉宽占空比d,从而实现对三电平Buck变换器的定频控制,即d=ueq。
[0025] 滑模控制对开关变换器的非线性特征具有天然的适用性,具有稳定范围宽、动态响应快、控制实现简单等优点。
[0026] 本发明所达到的有益效果:
[0027] (1)保留了传统三电平Buck电路减小开关管电压应力和减小电感的优点;
[0028] (2)提高了变换器的动态响应性能,拓宽了应用场合。附图说明
[0029] 图1为本发明的三电平Buck电路示意图;
[0030] 图2为传统的三电平Buck电路示意图;
[0031] 图3为传统的三电平Buck电路模态图;
[0032] 图4为本发明的三电平Buck电路模态图;
[0033] 图5为本发明的三电平Buck电路输出电压闭环控制图;
[0034] 图6为本发明的三电平Buck电路飞跨电容的闭环控制图。

具体实施方式

[0035] 下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
[0036] 在传统的Buck电路中,当负载突增时,开通开关管,电感电流变化率可表示为:
[0037]
[0038] 当负载突降时,关断开关管,此时电感电流变化率为:
[0039]
[0040] 如图3所示,在传统的三电平Buck电路中,当负载突增时,开通开关管Q1。电感电流变化率为:
[0041]
[0042] 当负载突降时,关断Q1,电感电流变化率为:
[0043]
[0044] 由上可得,基于两种变换器的输入输出电压相等,传统的三电平Buck变换器中的电感相较于Buck变换器有着明显的减小,从而在负载突降的情况时,三电平Buck变换器的电感电流变化率更快,从而动态响应更好。
[0045] 在本发明的三电平Buck电路,当负载突增时,开通Q1、Q2、Q4,电感电流变化率为:
[0046]
[0047] 当负载突降时,电感电流变化率为:
[0048]
[0049] 本发明的三电平Buck变换器可以和传统的三电平Buck变换器一样正常工作。当负载突变的场合,根据上述公式可以得出在输入输出电压相等的前提下,本发明的三电平Buck变换器的电感相较于Buck变换器是减小的,从而负载突增时电感电流变化率相较于Buck变换器是增加的,与传统的三电平Buck变换器相等。而负载突降时,输入电源、飞跨电容和电感一起放电,从而电感电流变化率是增加的。由上可得,无论负载如何变化,电感电流变化率均是增加的。
[0050] 针对负载突变的应用场合,本发明提出的三电平Buck变换器在保证输出电压的前提下,有效地提高了变换器的动态响应,缩短了电压达到稳定值的时间。
[0051] 针对上述的三电平Buck变换器给出了相应的控制方法:采用闭环控制给予控制开关PWM驱动。对照附图的控制原理框图给出的具体工作原理如下:
[0052] 附图的控制原理框图给出的具体工作原理如下:
[0053] 对于三电平Buck电路的多模态工作,适合采用滑模控制来实现和改善变换器输出电压的动态品质。以闭环的输出电压的偏差及其微分和积分为状态变量,则有:
[0054] x1=Vref-Vo, 3=∫(Vref-Vo)dt
[0055] 设滑模控制切换函数为
[0056] s(x)=k1x1+k2x2+k3x3
[0057] 滑模控制其等效控制为
[0058]
[0059] 把滑模变结构的等效控制等价为脉宽占空比d,从而实现对三电平Buck变换器的定频控制,即d=ueq
[0060] 对于飞跨电容电压非线性的特性,适合采用模糊PID控制来实现飞跨电容电压的品质。以闭环的飞跨电容电压的偏差及其微分为状态变量,通过模糊控制器分别对Kp,Ki,Kd三个参数进行实时在线修正。
[0061] 本发明通过合理地改善电路拓扑,控制开关管的导通顺序,有效地提高了该变换器的动态性能,缩短了变换器达到稳定电压的所需时间。
[0062] 以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈