首页 / 专利库 / 电路 / 电压 / 一种具有可调控磁电效应的磁电驻极体及其制备方法

一种具有可调控磁电效应的磁电驻极体及其制备方法

阅读:2发布:2020-11-14

专利汇可以提供一种具有可调控磁电效应的磁电驻极体及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种具有可调控磁电效应的磁电 驻极体 及其制备方法,该磁电驻极体包括一层磁活性 聚合物 基体和一层带有表面电荷的聚合物基体,所述磁活性聚合物基体与带有表面电荷的聚合物基体进行粘结或堆叠,成为两层材料夹一层电荷的三明治结构;通过带有表面电荷的聚合物基体的电荷量、磁活性聚合物基体中 磁性 粉末的掺杂量、磁活性聚合物基体与带有表面电荷的聚合物基体的厚度比和外界 磁场 的大小来调整磁电驻极体的磁电效应;本发明还公开了该磁电驻极体的制备方法,该制备方法简单,制造成本低,易于大规模生产,可用于 能量 俘获、柔性 传感器 、人工 皮肤 、人造肌肉、自供电设备等领域。,下面是一种具有可调控磁电效应的磁电驻极体及其制备方法专利的具体信息内容。

1.一种具有可调控磁电效应的磁电驻极体,其特征在于,包括一层磁活性聚合物基体(1)和一层带有表面电荷的聚合物基体(2),所述磁活性聚合物基体(1)与带有表面电荷的聚合物基体(2)进行粘结或堆叠,成为两层材料夹一层电荷的三明治结构;通过带有表面电荷的聚合物基体(2)的电荷量、磁活性聚合物基体(1)中磁性粉末的掺杂量、磁活性聚合物基体(1)与带有表面电荷的聚合物基体(2)的厚度比和外界磁场的大小来调整磁电驻极体的磁电效应。
2.根据权利要求1中所述的一种具有可调控磁电效应的磁电驻极体,其特征在于,所述磁活性聚合物基体(1的材料采用内部含有磁性颗粒的橡胶材料,通过向硅橡胶材料中添加磁性颗粒使原本没有磁致变形的硅橡胶材料具有磁致变形能力。
3.根据权利要求2中所述的一种具有可调控磁电效应的磁电驻极体,其特征在于,所述硅橡胶材料为聚二甲基硅烷PDMS或铂催化硅橡胶ECOFLEX;所述的磁性颗粒为羟基粉、羟基Ni粉或者羟基钕铁NdFeB。
4.根据权利要求1中所述的一种具有可调控磁电效应的磁电驻极体,其特征在于,所述磁活性聚合物基体(1)的厚度为1μm~5mm。
5.根据权利要求1中所述的一种具有可调控磁电效应的磁电驻极体,其特征在于,所述带有表面电荷的聚合物基体(2)的材料采用聚四氟乙烯PTFE、聚偏二氟乙烯PVDF、聚丙烯PP、聚乙烯PE、聚对苯二甲酸PET、聚二甲酸乙二醇酯PEN、氟化乙丙烯共聚物FEP或环烯共聚物COC。
6.根据权利要求1中所述的一种具有可调控磁电效应的磁电驻极体,其特征在于,所述带有表面电荷的聚合物基体(2)的厚度为1μm~1mm。
7.权利要求1至6任一项所述的一种具有可调控磁电效应的磁电驻极体的制备方法,其特征在于,首先硅橡胶在制备的过程中掺杂磁性粉末形成磁活性聚合物基体(1);随后对聚合物薄膜采用极化处理进行充电,使聚合物薄膜携带表面电荷形成带有表面电荷的聚合物基体(2);最后使用混合均匀但尚未固化的硅橡胶作为粘接液,在带有表面电荷的聚合物基体(2)带有表面电荷的一侧粘接磁活性聚合物基体(1)或直接将带有表面电荷的聚合物基体2带有表面电荷的一侧和磁活性聚合物基体(1)堆叠在一起;随后进行固化,最后形成三明治结构的具有可调控磁电效应的磁电驻极体。
8.根据权利要求7所述的制备方法,其特征在于,所述掺杂采用物理掺杂法,将尚未固化的硅橡胶与磁性粉末混合搅拌均匀,室温搅拌10min-30min后将混合均匀的溶液倒入预制的模具中固化,其中磁性粉末的质量占总质量的百分比为1%~70%。
9.根据权利要求7所述的制备方法,其特征在于,所述极化处理采用电晕极化法,电晕极化法充电电压控制为±1kV~±100kV,聚合物薄膜的背面附有电极,充电时间为1s~1h,充电温度低于聚合物薄膜的熔点温度。
10.根据权利要求7所述的制备方法,其特征在于,所述固化是在常温到100℃范围中加热进行固化。

说明书全文

一种具有可调控磁电效应的磁电驻极体及其制备方法

技术领域

[0001] 本发明属于功能材料领域,主要涉及提出一种具有可调控磁电效应的磁电驻极体及其制备方法。

背景技术

[0002] 磁电效应指材料在磁场的作用下可以产生电极化,在电场的作用下可以产生磁极化。由于其天然的耦合效应使其具有很多的应用前景,如能量俘获,传感、数据存储,药物传输等领域。磁电效应的存在要求既具有磁有序和电有序两种有序结构共存,同时两种有序结构之间又存在一定形式耦合。但由于材料中磁有序与铁电有序的存在机理具有天然的矛盾性使得自然界中现存的磁电材料特别少,此外它们的磁电耦合都很低,工作温度远低于室温,很难应用于实际的器件
[0003] 软材料能发生大变形具有良好的生物相容性,易于集成到柔性电子器件中等优势,是研发柔性磁电耦合器件的候选者。然而天然的软的磁电材料是不存在。此外对于目前的磁电复合材料(通过将压电材料与磁致伸缩材料进行组合),也只限于硬材料。也就是说软的磁电材料是不存在。另外磁电复合材料要求两相材料的一相材料必须是压电或者磁致伸缩材料,且对它们的粘结层的强度有一定的要求。
[0004] 因此制备一种软的,磁电效应显著的且对材料的选择更为广泛的磁电材料对于促进磁电耦合器件的应用至关重要。

发明内容

[0005] 为了克服上述现有技术存在的问题,本发明在于提供一种具有可调控磁电效应的磁电驻极体及其制备方法,该方法运用驻极体与磁活性材料结合使其具有良好的磁电耦合效应。
[0006] 为了达到上述目的,本发明采用如下技术方案:
[0007] 一种具有可调控磁电效应的磁电驻极体,包括一层磁活性聚合物基体1和一层带有表面电荷的聚合物基体2,所述磁活性聚合物基体1与带有表面电荷的聚合物基体2进行粘结或堆叠,成为两层材料夹一层电荷的三明治结构;通过带有表面电荷的聚合物基体2的电荷量、磁活性聚合物基体1中磁性粉末的掺杂量、磁活性聚合物基体1与带有表面电荷的聚合物基体2的厚度比和外界磁场的大小来调整磁电驻极体的磁电效应。
[0008] 所述磁活性聚合物基体1的材料采用内部含有磁性颗粒的橡胶材料,通过向硅橡胶材料中添加磁性颗粒使原本没有磁致变形能的硅橡胶材料具有磁致变形能力。
[0009] 所述硅橡胶材料为聚二甲基硅烷PDMS或铂催化硅橡胶ECOFLEX;所述的磁性颗粒为羟基铁粉、羟基Ni粉或者羟基钕铁NdFeB等金属粒子。
[0010] 所述磁活性聚合物基体1的厚度为1μm~5mm。
[0011] 所述带有表面电荷的聚合物基体2的材料采用四氟乙烯PTFE、聚偏二氟乙烯PVDF、聚丙烯PP、聚乙烯PE、聚对苯二甲酸PET、聚二甲酸乙二醇酯PEN、氟化乙丙烯共聚物FEP或环烯共聚物COC。
[0012] 所述带有表面电荷的聚合物基体2的厚度为1μm~1mm。
[0013] 所述的一种具有可调控磁电效应的磁电驻极体的制备方法,首先硅橡胶在制备的过程中掺杂磁性粉末形成磁活性聚合物基体1;随后对聚合物薄膜采用极化处理进行充电,使聚合物薄膜携带表面电荷形成带有表面电荷的聚合物基体2;最后使用混合均匀但尚未固化的硅橡胶作为粘接液,在带有表面电荷的聚合物基体2带有表面电荷的一侧粘接磁活性聚合物基体1或直接将带有表面电荷的聚合物基体2带有表面电荷的一侧和磁活性聚合物基体1堆叠在一起;随后进行固化,最后形成三明治结构的具有可调控磁电效应的磁电驻极体。
[0014] 所述掺杂采用物理掺杂法,将尚未固化的硅橡胶与磁性粉末按一定的比例混合搅拌均匀,室温搅拌10min-30min后将混合均匀的溶液倒入预制的模具中固化。其中磁性粉末的质量占总质量的百分比为1%~70%。
[0015] 所述极化处理采用电晕极化法,电晕极化法充电电压控制为±1kV~±100kV,聚合物薄膜的背面附有电极,充电时间为1s~1h,充电温度低于聚合物薄膜的熔点温度。
[0016] 所述固化是在常温到100℃范围中加热进行固化。
[0017] 本发明具有以下优点:
[0018] 1、对材料的选择上更为广泛不需要材料具备本征的压电或者磁致伸缩性能。
[0019] 2、具有可观的磁电耦合效应,且工作温度位于室温。
[0020] 3、磁电驻极体的性能具有可调控性,可以通过带电薄膜的电荷量、磁活性聚合物基体1中磁性粉末的掺杂量、磁活性聚合物基体1与带有表面电荷的聚合物基体2的厚度比和外界磁场的大小来调整其磁电效应。
[0021] 4、本发明所用工艺简单易行。
[0022] 5、利用本发明制备的磁电驻极体薄膜可以应用于能量俘获、柔性传感器、人工皮肤,软机器人等领域。附图说明
[0023] 图1为本发明磁电驻极体的结构图。
[0024] 图2为制备流程图,其中图2a为制备实体说明,图2b为文字说明。
[0025] 图3为实验中磁电驻极体的磁电耦合系数与外加磁场的关系。
[0026] 图4为实验中磁电驻极体的磁电耦合系数与中间层电荷密度的关系。
[0027] 图5为实验中磁电驻极体的磁电耦合系数与磁活性聚合物基体厚度的关系。
[0028] 图6为实验中磁电驻极体的磁电耦合系数与磁活性聚合物中磁性粉末参杂量的关系。

具体实施方式

[0029] 下面将结合附图及具体实例来详细说明本发明,但并不作为对本发明的限定。
[0030] 如图1所示,本发明一种具有可调控磁电效应的磁电驻极体,包括一层磁活性聚合物基体1和一层带有表面电荷的聚合物基体2,所述磁活性聚合物基体1与带有表面电荷的聚合物基体2进行粘结形成中间夹杂电荷的三明治结构。
[0031] 如图2所示,选取厚度为30μm的聚四氟乙烯PTFE薄膜,使用电晕极化法对其进行充电处理,使其携带表面负电荷。电晕充电电压控制为-10kV,薄膜背面附有电极,充电温度为常温。通过控制充电电压的值来控制薄膜表面的电荷量,从而研究电荷量对磁电驻极体输出性能的影响。
[0032] 使用表面电位计测量带电薄膜的表面电位,以此表征其充电的程度,也就是电荷密度的大小。
[0033] 将ECOFLEX-0010A、ECOFLEX-0010B和铁粉混合均匀后,倒入预制的模具中,恒温70℃下进行固化。通过控制羟基铁粉的质量比来研究掺杂比对磁电驻极体输出性能的影响。
[0034] 聚四氟乙烯PTFE薄膜和磁活性聚合物薄膜制备完毕后,使用混合均匀但尚未固化的ECOFLEX混合液作为粘接液,在70℃下加热20分钟,最后形成如图1所示两层材料中间夹一层电荷的三明治结构磁电驻极体。
[0035] 制备出材料后,根据磁电耦合的定义,通过测量磁电驻极体的输出电荷与等效电容求得磁电耦合系数为:
[0036]
[0037] 其中,αME为磁电耦合系数,E为电场,he为外加磁场,ΔQA为采集到的电荷幅值,为外加磁场的幅值。运用公式(1)即可在实验中获得磁电耦合系数。
[0038] 如图3所示,磁电耦合系数随着外加磁场的不同而变化,并与外加磁场呈现线性关系。
[0039] 如图4所示,在控制材料的厚度和外加磁场的情况下,磁电耦合与中间层电荷密度呈线性关系。这说明可以通过控制中间层的电荷密度来调控材料的磁电耦合效应。
[0040] 如图5所示,在固定外加磁场的大小,电荷密度及聚四氟乙烯PTFE厚度的情况下,磁电耦合系数随着磁活性聚合物基体1厚度的增加而增大。这说明可以通过改变磁活性聚合物基体1的厚度来调控磁电耦合效应。
[0041] 如图6所示,在固定外加磁场的大小,电荷密度及聚四氟乙烯PTFE厚度的情况下,磁活性基体中羟基铁粉的含量对输出电荷的影响。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈