首页 / 专利库 / 化学元素和化合物 / / 一种基于三明治结构的半导电材料介电性能测试方法

一种基于三明治结构的半导电材料介电性能测试方法

阅读:1036发布:2020-07-14

专利汇可以提供一种基于三明治结构的半导电材料介电性能测试方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种基于三明治结构的半导电材料介电性能测试方法,在进行半导电材料介电性能测试前,在半导电材料上下两个表面各附加一层绝缘材料,形成介电参数在宽频带介电谱测试系统量程内的三明治结构试样,然后对三明治结构试样进行介电性能测试,最后然后通过公式反推出半导电材料的介电参数,使得三明治试样的介电参数在宽频带介电谱测试系统的量程内,通过相应的公式反推出半导电材料的介电性能,与直接测量相比,本发明测量方法更具有效性和精确性。,下面是一种基于三明治结构的半导电材料介电性能测试方法专利的具体信息内容。

1.一种基于三明治结构的半导电材料介电性能测试方法,其特征在于,包括以下步骤:
步骤1、在半导电材料(2)的上下表面各涂覆一层厚度相等的绝缘浸渍漆,使其上下表面形成厚薄均匀的绝缘层(1),从而形成三层结构试样,然后将三层结构的试样室温固化热压结合,得到三明治结构试样;用涂覆在半导电材料(2)上的绝缘浸渍漆制备绝缘浸渍漆试样;
步骤2、将三明治结构试样和固化后的绝缘浸渍漆试样上下两面金制成电极;在绝缘浸渍漆试样上下两面镀金制成圆电极;
步骤3、将步骤2制得的带电极的三明治结构试样夹在两个电极之间放入宽频带介电谱测试系统的试样腔中,进行测试介电性能,得到三明治结构试样在不同测试频率下的相对介电常数εr和损耗因数tanδ;将步骤2制得的带电极的绝缘浸渍漆试样夹在两个电极之间放入宽频带介电谱测试系统的试样腔中,测试绝缘浸渍漆试样的介电性能,得到绝缘浸渍漆在不同测试频率下的相对介电常数εr1和损耗因数tanδ1;
步骤4、根据步骤3得到的测试数据,计算出所测半导电材料的相对介电常数εr2及损耗因数tanδ2;
步骤5、改变测试温度T,重复步骤3至步骤4,计算出不同测试温度、不同测试频率下半导电材料的相对介电常数εr2及损耗因数tanδ2。
2.根据权利要求1所述的一种基于三明治结构的半导电材料介电性能测试方法,其特征在于,半导电材料的相对介电常数εr2及损耗因数tanδ2的计算过程如下:
首先根据式1计算出明治结构试样在不同测试频率下的电容C和交流电阻R,根据式2计算出绝缘浸渍漆在不同测试频率下的电容C1和交流电阻R1,然后根据式3计算出半导电材料不同测试频率下的电容C2和交流电阻R2,最后根据式4计算出导电材料的相对介电常数εr2和损耗因数tanδ2,
其中,
3.根据权利要求1所述的一种基于三明治结构的半导电材料介电性能测试方法,其特征在于,在步骤1之前,将测试的半导电材料切成片状试样,片状试样的长和宽在35mm×
35mm-45mm×45mm范围内,厚度d2在0.5mm-2mm范围内。
4.根据权利要求1所述的一种基于三明治结构的半导电材料介电性能测试方法,其特征在于,步骤1中,绝缘浸渍漆的涂覆厚度d1在0.01mm-0.5mm范围内。
5.根据权利要求1所述的一种基于三明治结构的半导电材料介电性能测试方法,其特征在于,步骤2中,三明治结构试样和固化后的绝缘浸渍漆试样上下两面的电极均为圆形。
6.根据权利要求5所述的一种基于三明治结构的半导电材料介电性能测试方法,其特征在于,步骤2中,位于三明治结构试样和固化后的绝缘浸渍漆试样上表面的电极直径D在
20mm-40mm范围内,位于三明治结构试样和固化后的绝缘浸渍漆试样下表面的电极的直径大于D。
7.根据权利要求1所述的一种基于三明治结构的半导电材料介电性能测试方法,其特征在于,步骤1中,绝缘浸渍漆为聚酯绝缘浸渍漆、环绝缘浸渍漆、有机绝缘浸渍漆或聚酰亚胺绝缘浸渍漆。

说明书全文

一种基于三明治结构的半导电材料介电性能测试方法

技术领域

[0001] 本发明属于电气绝缘材料测试技术领域,具体涉及一种基于三明治结构的半导电材料介电性能测试方法。

背景技术

[0002] 半导电材料是绝缘材料与导电颗粒(炭黑)按照一定比例混合形成的一种电阻率介于绝缘材料与导电材料之间的复合材料,在电气领域常用于电缆、电缆附件及管型母线
的半导电层,主要作用是均衡电位和优化电场分布。交流场下半导电材料的电场分布与相
介电常数有关,而长期运行中材料逐渐发生老化,使得相对介电常数发生改变,进而影响
半导电材料的电场分布;损耗因数增大会在一定程度上促进半导电材料的老化。半导电材
料的相对介电常数和损耗因数与其工作频率温度密切相关。由此可见,在半导电材料的设
计制备及其应用设备的运维过程中,测试不同频率、温度下半导电材料的相对介电常数和
损耗因数具有重要意义。目前材料的相对介电常数和损耗因数常用测试方法包括电桥法、
波导法、双端口网络S参数传输法和谐振法,但对于半导电材料的介电性能测试都存在一定
的局限性。电桥法测试范围有限,不适用于相对介电常数和损耗因数都很大的半导电材料;
波导法存在厚度谐振,不易测试较薄材料;双端口网络S参数传输法存在多值问题,对样品
形状尺寸有具体要求,对薄膜和表面粗糙材料测量不准确;谐振法对于损耗因数测试不准
确,有误差。宽频带介电谱测试系统可准确测量绝缘材料介电性能,但该系统准确测试的电
容上限小于0.1F,介质损耗因数上限小于10,超过上限的测试具有较大误差,无法准确测量
相对介电常数高达103、损耗因数高达104的半导电材料。因此,需要提出一种能够有效准确
测量半导电材料的相对介电常数和损耗因数的方法。

发明内容

[0003] 为了解决上述问题,本发明提供了一种基于三明治结构的半导电材料介电性能测试方法,本发明设计出有效的多层结构,使得整体结构体的相对介电常数和损耗因数在宽
频带介电谱测试系统的可测试范围内,从而推算出半导电材料的相对介电常数和损耗因
数,既有效准确,又具有现实意义,与直接测试相比,该方法可靠有效,能够较为准确测出不
同频率和温度下半导电材料的介电性能(在宽范围的频率和温度内描述介电性能变化的曲
线分别称为介电频谱和介电温谱)。
[0004] 为达到上述目的,本发明所述一种基于三明治结构的半导电材料介电性能测试方法是:在进行半导电材料介电性能测试前,在半导电材料上下两个表面各附加一层绝缘材
料,形成介电参数在宽频带介电谱测试系统量程内的三明治结构试样,然后对三明治结构
试样进行介电性能测试,最后通过公式反推出半导电材料的介电性能。
[0005] 进一步的,包括以下步骤:
[0006] 步骤1、在半导电材料的上下表面各涂覆一层厚度相等的绝缘浸渍漆,使其上下表面形成厚薄均匀的绝缘层,从而形成三层结构试样,然后将三层结构的试样室温固化或热
压结合,得到三明治结构试样;用涂覆在半导电材料上的绝缘浸渍漆制备绝缘浸渍漆试样;
[0007] 步骤2、将三明治结构试样和固化后的绝缘浸渍漆试样上下两面金制成电极;在绝缘浸渍漆试样上下两面镀金制成圆电极;
[0008] 步骤3、将步骤2制得的带电极的三明治结构试样夹在两个电极之间放入宽频带介电谱测试系统的试样腔中,进行测试介电性能,得到三明治结构试样在不同测试频率下的
相对介电常数εr和损耗因数tanδ;将步骤2制得的带电极的绝缘浸渍漆试样夹在两个电极
之间放入宽频带介电谱测试系统的试样腔中,测试绝缘浸渍漆试样的介电性能,得到绝缘
浸渍漆在不同测试频率下的相对介电常数εr1和损耗因数tanδ1;
[0009] 步骤4、根据步骤3得到的测试数据,计算出所测半导电材料的相对介电常数εr2及损耗因数tanδ2;
[0010] 步骤5、改变测试温度T,重复步骤3至步骤4,计算出不同测试温度、不同测试频率下半导电材料的相对介电常数εr2及损耗因数tanδ2。
[0011] 进一步的,半导电材料的相对介电常数εr2及损耗因数tanδ2的计算过程如下:
[0012] 首先根据式1计算出明治结构试样在不同测试频率下的电容C和交流电阻R,根据式2计算出绝缘浸渍漆在不同测试频率下的电容C1和交流电阻R1,然后根据式3计算出半导
电材料不同测试频率下的电容C2和交流电阻R2,最后根据式4计算出导电材料的相对介电常
数εr2和损耗因数tanδ2,
[0013]
[0014]
[0015]
[0016]
[0017] 其中,
[0018] 进一步的,在步骤1之前,将测试的半导电材料切成片状试样,片状试样的长和宽在35mm×35mm-45mm×45mm范围内,厚度d2在0.5mm-2mm范围内。
[0019] 进一步的,步骤1中,绝缘浸渍漆的涂覆厚度d1在0.01mm-0.5mm范围内。
[0020] 进一步的,步骤2中,三明治结构试样和固化后的绝缘浸渍漆试样上下两面的电极均为圆形。
[0021] 进一步的,步骤2中,位于三明治结构试样和固化后的绝缘浸渍漆试样上表面的电极直径D在20mm-40mm范围内,位于三明治结构试样和固化后的绝缘浸渍漆试样下表面的电
极的直径大于D。
[0022] 进一步的,步骤1中,绝缘浸渍漆包括聚酯绝缘浸渍漆、环绝缘浸渍漆、有机绝缘浸渍漆和聚酰亚胺绝缘浸渍漆。
[0023] 与现有技术相比,本发明至少具有以下有益的技术效果:1、由于半导电材料的介电参数通常在宽频带介电谱测试系统的测试量程之外,直接测试有较大误差,甚至无法测
试,本发明通过利用“绝缘材料-半导电材料-绝缘材料”的三明治结构的特性,使得三明治
试样的介电参数在宽频带介电谱测试系统的量程内,通过相应的公式反推出半导电材料的
介电参数,与直接测量相比,本发明测量方法更具有效性和精确性;2、本发明采用的三明治
结构试样制备过程简易快捷,可测试出不同频率和温度下的介电性能,介电参数常用测试
方法只能测试单一频率、温度下的介电性能,本发明的测试效果更好,可为半导电材料的设
计制备及其应用设备的运维提供多频率多温度下的介电性能参数依据。
[0024] 进一步的,步骤2中,三明治结构试样和固化后的绝缘浸渍漆试样上下两面的电极均为圆形,使得试样与测试系统良好接触
附图说明
[0025] 图1是三明治结构示意图;
[0026] 图2是三明治结构试样电极示意图;
[0027] 图3是半导电材料直接测试的介电频谱图;
[0028] 图4是三明治结构的等效电路图;
[0029] 图5是本发明实施例1中的三明治结构试样测试的介电频谱图;
[0030] 图6是本发明实施例1中的聚酯绝缘浸渍漆试样测试的介电频谱;
[0031] 图7是本发明实施例1中推算出的半导电材料的介电频谱;
[0032] 图8是本发明实施例2中的三明治结构试样测试的介电频谱图;
[0033] 图9是本发明实施例2中的环氧绝缘浸渍漆试样测试的介电频谱;
[0034] 图10是本发明实施例2中推算出的半导电材料的介电频谱;
[0035] 附图中:1-绝缘层、2-半导电材料、3-第一电极、4-第二电极。

具体实施方式

[0036] 下面结合附图和具体实施方式对本发明进行详细说明。
[0037] 在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对
本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含
义是两个或两个以上。
[0038] 如图2所示,半导电材料相对介电常数和损耗因数在高频下的数量级在102-103,在低频下无法测量,且直接测量超过宽带介电谱仪的精准测试范围,具有较大误差。本发明利
用绝缘材料的相对介电常数和损耗因数都较小的可测试性优势,通过测试三明治结构试样
和上下两层绝缘浸渍漆试样的介电参数,通过等效电路公式推算出半导电材料的介电参
数,且计算精度较高。
[0039] 一种基于三明治结构的半导电材料介电性能测试方法包括以下步骤:
[0040] 步骤1、将测试的半导电材料切成表面平整(上下表面平行)的片状试样,形成半导电材料2,在半导电材料的上下表面各喷涂一层厚度相等的绝缘浸渍漆,使其上下表面形成
厚薄均匀的绝缘层1,从而形成如图1所示的三层结构试样:上下两层为绝缘浸渍漆,中间为
半导电材料,然后将三层结构的试样室温固化或热压结合,得到三明治结构试样。用涂覆在
半导电材料2上的绝缘浸渍漆制备绝缘浸渍漆试样;
[0041] 绝缘浸渍漆包括聚酯绝缘浸渍漆、环氧绝缘浸渍漆和聚酰亚胺浸渍漆等,喷涂厚度d1在0.01mm-0.1mm范围内;所述半导电材料片状试样的大小在35mm×35mm-45mm×45mm
范围内,厚度d2在0.5mm-2mm范围内。
[0042] 绝缘浸渍漆并联等效电路的电阻为 电容为 并联阻抗为半导电材料并联等效电路的电阻为 电容为 并联阻
抗为 其中σ1为绝缘浸渍漆的电导率,σ2为半导电材料的电导率,ε0为真空
电常数(8.85×10-12),εr1为绝缘浸渍漆的相对介电常数,εr2为半导电材料的相对介电常
数,ω为频率(ω=2πf,f为频率)。
[0043] 步骤2、将三明治结构试样和固化后的绝缘浸渍漆试样上下两面镀金(具体为两面镀金可以改成两面镀或者两面喷涂石墨)制成圆电极,如图3所示,在上下两层绝缘浸
渍漆及中间半导电材料2形成的“三明治”结构试样上表面喷涂第一电极3,第一电极3的直
径D在20mm-40mm范围内(应小于试样边长),第一电极3面积S=πD2/4,“三明治”结构试样下
表面喷涂第二电极4(面积略大于第一电极3)。同理在绝缘浸渍漆试样上下两面镀金(银、石
墨、铜)制成圆电极;
[0044] 步骤3、将步骤2制得的带电极的三明治结构试样夹在两个电极之间放入宽频带介电谱测试系统的试样腔中。设置测试参数(试样电极直径D,试样总厚度d,变频测试电压Uf,
测试频率f,测试温度T),开始测试介电性能,得到三明治结构试样在不同测试频率下的相
对介电常数εr和损耗因数tanδ;将步骤2制得的带电极的绝缘浸渍漆试样夹在两个电极之
间放入宽频带介电谱测试系统的试样腔中,测试绝缘浸渍漆试样的介电性能,得到绝缘浸
渍漆在不同测试频率下的相对介电常数εr1和损耗因数tanδ1;
[0045] 步骤4、根据步骤3得到的测试数据,计算出所测半导电材料的相对介电常数εr2及损耗因数tanδ2。
[0046] 首先,根据公式 推导出三明治结构试样在不同测试频率下的电容C和交流电阻R;同理,根据公式 推导出绝缘浸渍漆在不同测试频率下的电容C1
和交流电阻R1。
[0047] 然后根据并联等效电路三明治结构的等效电路(如图4所示),三明治结构试样阻抗Z=2Z1+Z2,其中Z1为绝缘浸渍漆层阻抗,Z2为半导电材料阻抗,即
[0048]
[0049] 由此解复数方程即可求出半导电材料的R2、C2:
[0050]
[0051] 从而可得所测半导电材料的相对介电常数及损耗因数为: 其中
[0052] 步骤5、改变测试温度T,重复上述步骤3-4,可计算出不同温度、不同测试频率下半导电材料的相对介电常数εr2及损耗因数tanδ2,即可测得不同测试频率和温度下半导电材
料的介电性能。
[0053] 实施例1:
[0054] 步骤1、将硅橡胶与炭黑按照1:1质量比混合形成的半导电材料切成大小为40mm×40mm,厚度d2=1.712mm,表面平整(上下表面平行)的片状试样。用涂覆在半导电材料2上的
绝缘浸渍漆制备绝缘浸渍漆试样;
[0055] 在半导电材料上下表面喷涂聚酯绝缘浸渍漆,上下表面的喷涂厚度均为d1=0.05mm±0.002mm,使其上下表面形成厚薄均匀的绝缘层,从而形成三层结构试样:上下两
层为聚酯绝缘浸渍漆,中间为半导电材料。然后将三层结构的试样室温固化。
[0056] 步骤2、将三明治结构试样和固化后聚酯绝缘浸渍漆试样上下两面镀金制成圆电极,电极直径D=30mm,电极面积S=πD2/4;在绝缘浸渍漆试样上下两面镀金制成圆电极。
[0057] 步骤3、进行介电性能测试,将三明治结构试样夹在两个镀金电极之间,放入宽频带介电谱测试系统的试样腔中。设置测试参数(试样电极直径D=30mm,试样总厚度d=
1.812mm,变频测试电压Uf=1V,测试频率f为10-1-106Hz,测试温度T=25℃),开始测试介电
性能,得到三明治结构试样在不同测试频率下的相对介电常数εr和损耗因数tanδ(如图5所
示),将三明治结构试样夹在两个石墨电极之间,放入宽频带介电谱测试系统的试样腔中,
设置测试参数(和三明治结构试样参数一直),得到绝缘浸渍漆在不同测试频率下的相对介
电常数εr1和损耗因数tanδ1(如图6所示),介电性能测试采用宽频带介电谱测试系统
(Concept80,Novocontrol Technology Ltd.,德国)。
[0058] 步骤4、根据公式 推导出三明治结构试样在不同测试频率下的电容C和交流电阻R,同理根据公式 可推导出聚酯绝缘浸渍漆在不同测试频率下的
电容C1和交流电阻R1。
[0059] 根据上述并联等效电路三明治结构的等效电路及公式推导,可得所测半导电材料的相对介电常数εr2及损耗因数tanδ2。
[0060] 计算出T=25℃温度时,各个测试频率下半导电材料的εr2及tanδ2,即可测得该温度下半导电材料的介电频谱(如图7所示)。
[0061] 实施例2:
[0062] 步骤1、将硅橡胶与炭黑按照1:1质量比混合形成的半导电材料切成大小为38mm×38mm,厚度d2=1.865mm,表面平整(上下表面平行)的片状试样;用涂覆在半导电材料2上的
绝缘浸渍漆制备绝缘浸渍漆试样;
[0063] 在半导电材料上下表面喷涂环氧绝缘浸渍漆,上下表面的喷涂厚度均为d1=0.1mm±0.005mm,使其上下表面形成厚薄均匀的绝缘层,从而形成三层结构试样:上下两层
为环氧绝缘浸渍漆,中间为半导电材料。然后将三层结构试样热压结合,得到三明治结构试
样。
[0064] 步骤2、将三明治结构试样和固化后环氧绝缘浸渍漆试样上下两面喷涂石墨制成圆电极,电极直径D=30mm,电极面积S=πD2/4;在绝缘浸渍漆试样上下两面镀金制成圆电
极。
[0065] 步骤3、进行介电性能测试,将三明治结构试样夹在两个石墨电极之间,放入宽频带介电谱测试系统的试样腔中。设置测试参数(试样电极直径D=30mm,试样总厚度d=
2.065mm,变频测试电压Uf=1V,测试频率f为10-1-106Hz,测试温度T=90℃),开始测试介电
性能,得到三明治结构试样在不同测试频率下的相对介电常数εr和损耗因数tanδ(如图8所
示),将三明治结构试样夹在两个石墨电极之间,放入宽频带介电谱测试系统的试样腔中,
设置测试参数(和三明治结构试样参数一直),得到绝缘浸渍漆在不同测试频率下的相对介
电常数εr1和损耗因数tanδ1(如图9所示);介电性能测试采用宽频带介电谱测试系统
(Concept80,Novocontrol Technology Ltd.,德国)。
[0066] 步骤4、根据公式 可推导出三明治结构试样在不同测试频率下的电容C和交流电阻R,同理根据公式 可推导出环氧绝缘浸渍漆在不同测试频率下
的电容C1和交流电阻R1。
[0067] 根据上述并联等效电路三明治结构的等效电路及公式推导,可得所测半导电材料的相对介电常数εr2及损耗因数tanδ2。
[0068] 计算出T=90℃温度时,各个测试频率下半导电材料的εr2及tanδ2,即可测得该温度下半导电材料的介电频谱(如图10所示)。
[0069] 在实施例1和2中,104-106频率范围内,利用本发明所述测试方法测得的半导电材料相对介电常数的数值约为300-100,作者刘文飞等人在文献基于S参数的电缆半导电层复
介电常数测量(山东工业技术期刊2017年第四期)中测得的半导电层相对介电常数(复介电
常数实部)的数值约为200-100,与本实施例结果接近,侧面验证了本发明测试方法的正确
性。
[0070] 由于半导电材料的测试频率越低,相对介电常数越大,低频测试时可能超出测试设备量程,上述文献测试最低频率仅为104,本发明实施例的测试最低频率为10-1,优于上述
文献测试方法。
[0071] 本发明的上述实施例并不是对本发明保护范围的限定,本发明的实施方式不限于此,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述
基本技术思想前提下,对本发明上述结构做出的其它多种形式的修改、替换或变更,均落在
本发明的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈