首页 / 专利库 / 人工智能 / 人工智能 / 机器人技术 / 机器人 / 协作机器人 / 一种用于双移动机器人刚体协作搬运的协同定位方法

一种用于双移动机器人刚体协作搬运的协同定位方法

阅读:644发布:2020-05-14

专利汇可以提供一种用于双移动机器人刚体协作搬运的协同定位方法专利检索,专利查询,专利分析的服务。并且本 发明 提供一种用于双移动 机器人 刚体协作搬运的协同 定位 方法,包括以下步骤:S1、构建基于刚性约束的双机器人系统的 运动学模型 和量测模型;S2、初始化高斯-厄米特求积分卡尔曼 滤波器 ;S3、基于运动学模型对双机器人系统进行状态推演,得到刚体状态预测值;S4、获取双机器人系统的状态量测值,并且将状态量测值与量测模型相结合计算卡尔曼增益;S5、利用卡尔曼增益对刚体状态预测值进行更新后得到刚体状态估计值;S6、将更新后的刚体状态估计值转换为双机器人系统中的两个 移动机器人 的 位姿 状态,其能够融合由不变刚性约束产生的相对距离与方位约束条件限制误差上界,使得估计结果更加接近真实运动轨迹。,下面是一种用于双移动机器人刚体协作搬运的协同定位方法专利的具体信息内容。

1.一种用于双移动机器人刚体协作搬运的协同定位方法,其特征在于,包括以下步骤:
S1、构建基于刚性约束的双机器人系统的运动学模型和量测模型;
S2、初始化高斯-厄米特求积分卡尔曼滤波器
S3、基于运动学模型对双机器人系统进行状态推演,得到刚体状态预测值;
S4、获取双机器人系统的状态量测值,并且将状态量测值与量测模型相结合计算卡尔曼增益;
S5、利用卡尔曼增益对刚体状态预测值进行更新后得到刚体状态估计值;
S6、将更新后的刚体状态估计值转换为双机器人系统中的两个移动机器人位姿状态。
2.如权利要求1所述的一种用于双移动机器人刚体协作搬运的协同定位方法,其特征在于,所述的步骤S1具体包括以下步骤:
S1.1、设定刚体状态向量并对刚体状态向量赋初值,刚体状态向量记为
表示所搬运刚体的位置,其中(xc,yc)为两个移动机器人的几何中心连线中点在导航坐标系下的坐标; 为(xc,yc)到其中一个移动机器人Ri几何中心(xi,yi)的延长线与导航坐标系横轴XNav正半轴的夹,表示刚体的姿态;θ为移动机器人的朝向与XNav正半轴的夹角,表示刚体的运动方向;
S1.2、基于刚体状态向量构建带有刚性约束的双机器人系统离散运动方程,并得到相应的运动学模型:
Xk+1=f(Xk,uk,wk)=Xk+T·Φk(uk+wk);
其中f(·)为非线性状态转移方程;uk=[vi,k,vj,k,ωk]T为控制向量;vi,k,vj,k分别表示两个移动机器人Ri和Rj的线速度,ωk表示两个移动机器人共同的角速度,wk=[δvi,k,δvj,k,δωk]T为过程噪声并且服从高斯分布N(0,Q), 为过程噪声方差阵,k
表示时刻,Xk为k时刻的刚体状态,T为采样时间,L为刚体约束距离;
S1.3、构建绝对量测与相对量测相联合的量测模型:
其中Zk为k时刻的量测向量,h(·)为非线性量测方程, 为移动机器人Ri的绝对位置量测值,γi,k,γj,k分别是移动机器人Ri和Rj的旋转机构角度传感器的测量值,vk~N(0,R)为量测噪声, 为量测噪声方差阵, 为两机器人所搬
运刚体的姿态角。
3.如权利要求2所述的一种用于双移动机器人刚体协作搬运的协同定位方法,其特征在于,所述的步骤S2具体包括以下步骤:
S2.1、初始化刚体状态向量及其协方差矩阵:
其中,X0为刚体状态向量的初值,E(·)为求期望操作;
S2.2、将高斯-厄米特求积分卡尔曼滤波器的积分点个数记为m,计算厄米特多项式Hm(λ)的m个根
S2.3、计算 对应的单变量配置高斯积分点ξi及其系数ai:
S2.4、通过克罗内克张量积将单变量配置扩展得到n维状态,得到n维变量的高斯积分点配置向量 及系数 其中l=mn,
4.如权利要求3所述的的一种用于双移动机器人刚体协作搬运的协同定位方法,其特征在于,所述的步骤S3具体包括以下步骤:
其中,Sk-1|k-1为对k-1时刻的协方差矩阵Pk-1|k-1进行Cholesky分解得到的下三角矩阵,Xi表示刚体状态向量 的第i个积分点。
5.如权利要求4所述的一种用于双移动机器人刚体协作搬运的协同定位方法,其特征在于,所述的步骤S4中计算卡尔曼增益的具体方法为:
Zi,k|k-1=h(Xi,k|k-1);
其中Zi表示量测向量的第i个积分点,PZZ,k|k-1,PXZ,k|k-1分别为新息协方差阵和互协方差阵,Kk为卡尔曼增益。
6.如权利要求5所述的一种用于双移动机器人刚体协作搬运的协同定位方法,其特征在于,所述的步骤S5的具体方法为:
其中 Pk|k分别为k时刻更新后的刚体状态估计值及协方差矩阵。
7.如权利要求6所述的一种用于双移动机器人刚体协作搬运的协同定位方法,其特征在于,所述的步骤S6的具体方法为:
其中 为k时刻两个移动机器人Ri和Rj的联合估计状态,Tran(·)表示将刚体状态X转换为机器人状态XR的非线性转换函数,x,y,θ分别表示移动机器人机体在导航坐标系下的横轴坐标、纵轴坐标以及方位角。

说明书全文

一种用于双移动机器人刚体协作搬运的协同定位方法

技术领域

[0001] 本发明涉及多机器人协同定位领域,具体涉及一种用于双移动机器人刚体协作搬运的协同定位方法。

背景技术

[0002] 近年来,多机器人系统受到了广泛关注,其不仅能够克服单机器人系统在信息获取、处理和控制等方面的局限,而且运行效率高、灵活性好,可用于执行各种复杂任务。多机器人协作搬运是其主要应用之一,并在生产制造、物流仓储等工业自动化应用中扮演着重要色,除此之外,多机器人系统还能够在一些高危场景中代替人执行搬运任务,如太空与深海探索、核泄漏废弃物清理、战场排雷等。因此,多机器人协作搬运具有重要的研究价值。
[0003] 在多机器人刚体协作搬运中,如何对移动机器人团队进行精确定位是其顺利完成搬运任务的基础和关键。本领域有的技术人员利用放置于环境上方的相机采集机器人图像,并结合计算机视觉以实现搬运机器人定位。然而,该方法中有限的相机视野极大地限制了目标定位范围,且使用较为繁琐,需要对其进行标定。与借助外部设备不同,本领域有的技术人员利用机器人自身配备的传感器进行多传感器数据融合,以实现精确状态估计。然而,这些方法并没有考虑协作机器人之间的相关性,有可能导致根据定位结果计算出的相对信息具有较大方差,不利于协同控制,从而致使搬运任务失败。
[0004] 为了充分利用机器人之间的相对信息来改善定位性能,多机器人协同定位技术应运而生,其能够通过机器人之间相互通信实现导航资源共享,进而减少对外部环境的依赖性,增强单个机器人的感知。此外,协同定位将个体定位误差分散至协同网络,提高整体定位精度,同时利用分布式架构提高计算效率和鲁棒性。本领域有的技术人员利用扩展卡尔曼滤波器(EKF)对主从自主下航行器(AUV)之间的相对距离信息进行融合,有效提高了仅配备低精度导航设备的从AUV定位精度,但由于EKF使用一阶泰勒展开对非线性系统进行近似表示,会产生较大的截断误差,滤波精度仍有待于提高。本领域有的技术人员将能够对任意非线性系统进行逼近的高斯-厄密特粒子滤波器(GHPF)应用于协同定位中,可获得比EKF更高的滤波精度,但由于滤波器在每次递归中需要对多个粒子求高斯-厄米特积分,显著增加了计算成本,难以实现对机器人团队位置的实时估计。综上所述,以上协同定位方法没有对定位精度和效率进行较好地权衡,且没有考虑刚体协作搬运任务的特殊性,不适合直接应用于协作搬运任务中。

发明内容

[0005] 本发明的目的是提供一种用于双移动机器人刚体协作搬运的协同定位方法,其能够融合由不变刚性约束产生的相对距离与方位约束条件限制误差上界,使得估计结果更加接近真实运动轨迹;同时,其能够利用约束建立的耦合关系实现状态降维,可显著提高计算效率;而且,机器人之间的相对信息无需测量,有助于降低应用成本,便于实际应用。
[0006] 为了达到上述目的,本发明所采用的技术方案是:一种用于双移动机器人刚体协作搬运的协同定位方法,包括以下步骤:S1、构建基于刚性约束的双机器人系统的运动学模型和量测模型;
S2、初始化高斯-厄米特求积分卡尔曼滤波器;
S3、基于运动学模型对双机器人系统进行状态推演,得到刚体状态预测值;
S4、获取双机器人系统的状态量测值,并且将状态量测值与量测模型相结合计算卡尔曼增益;
S5、利用卡尔曼增益对刚体状态预测值进行更新后得到刚体状态估计值;
S6、将更新后的刚体状态估计值转换为双机器人系统中的两个移动机器人的位姿状态。
[0007] 进一步的,所述的步骤S1具体包括以下步骤:S1.1、设定刚体状态向量并对刚体状态向量赋初值,刚体状态向量记为
表示所搬运刚体的位置,其中(xc,yc)为两个移动机器人的几何中心连线中点在导航坐标系下的坐标; 为(xc,yc)到其中一个移动机器人Ri几何中心(xi,yi)的延长线与导航坐标系横轴XNav正半轴的夹角,表示刚体的姿态;θ为移动机器人的朝向与XNav正半轴的夹角,表示刚体的运动方向;
S1.2、基于刚体状态向量构建带有刚性约束的双机器人系统离散运动方程,并得到相应的运动学模型:
Xk+1=f(Xk,uk,wk)=Xk+T·Φk(uk+wk);
其中f(·)为非线性状态转移方程;uk=[vi,k,vj,k,ωk]T为控制向量;vi,k,vj,k分别表示两个移动机器人Ri和Rj的线速度,ωk表示两个移动机器人共同的角速度,wk=[δvi,k,δvj,k,T
δωk] 为过程噪声并且服从高斯分布N(0,Q), 为过程噪声方差阵,k
表示时刻,Xk为k时刻的刚体状态,T为采样时间,L为刚体约束距离;
S1.3、构建绝对量测与相对量测相联合的量测模型:
其中Zk为k时刻的量测向量,h(·)为非线性量测方程, 为移动机器人Ri的绝对位置量测值,γi,k,γj,k分别是移动机器人Ri和Rj的旋转机构角度传感器的测量值,vk~N(0,R)为量测噪声, 为量测噪声方差阵, 为两机器人所搬
运刚体的姿态角。
[0008] 进一步的,所述的步骤S2具体包括以下步骤:S2.1、初始化刚体状态向量及其协方差矩阵:
其中,X0为刚体状态向量的初值,E(·)为求期望操作;
S2.2、将高斯-厄米特求积分卡尔曼滤波器的积分点个数记为m,计算厄米特多项式Hm(λ)的m个根
S2.3、计算 对应的单变量配置高斯积分点ξi及其系数ai:
S2.4、通过克罗内克张量积将单变量配置扩展得到n维状态,得到n维变量的高斯积分点配置向量 及系数 其中l=mn,
[0009] 进一步的,所述的步骤S3具体包括以下步骤:其中,Sk-1|k-1为对k-1时刻的协方差矩阵Pk-1|k-1进行Cholesky分解得到的下三角矩阵,Xi表示刚体状态向量 的第i个积分点。
[0010] 进一步的,所述的步骤S4中计算卡尔曼增益的具体方法为:Zi,k|k-1=h(Xi,k|k-1);
其中Zi表示量测向量的第i个积分点,PZZ,k|k-1,PXZ,k|k-1分别为新息协方差阵和互协方差阵,Kk为卡尔曼增益。
[0011] 进一步的,S5的具体方法为:其中 Pk|k分别为k时刻更新后的刚体状态估计值及协方差矩阵。
[0012] 进一步的,所述的步骤S6的具体方法为:其中 为k时刻两个移动机器人Ri和Rj的联合估计状态,Tran(·)表示将刚体状态X转换为机器人状态XR的非线性转换函数,x,y,θ分别表示移动机器人机体在导航坐标系下的横轴坐标、纵轴坐标以及方位角。
[0013] 与现有技术相比,本发明的有益效果是:本发明通过刚性约束对漂移误差进行限制,同时利用耦合关系对待估计状态进行降维,有效提高了定位精度和计算效率。附图说明
[0014] 图1是本发明一种用于双移动机器人刚体协作搬运的协同定位方法的流程图;图2是基于刚性约束的双机器人协作搬运模型示意图;
图3是仿真实验中本发明与几种现有技术的定位轨迹示意图;
图4是仿真实验中本发明与几种现有技术的定位误差图。

具体实施方式

[0015] 为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0016] 如图1所示,一种用于双移动机器人刚体协作搬运的协同定位方法,通过结合由刚性约束产生的相对距离及方位约束条件与高斯-厄米特求积分卡尔曼滤波器实现。协作搬运示意图如图2所示,两移动机器人对同一刚体进行协作搬运,其中刚体上的两点分别固定于机器人机体上的水平旋转机构。搬运过程中,由于刚体对机器人运动产生约束,两机器人之间相对距离为定值,且它们的运动方向需始终保持一致。机器人内部配备轮式编码器,旋转机构配有测量水平方向的角度传感器。其中轮式编码器用于测量机器人的运动线速度和角速度,水平位置的角度传感器用于量测所搬运刚体与机器人机体的相对方位。此外,其中一个机器人能够获取绝对位置量测值,可通过GPS、无线传感器网络等定位系统得到。基于刚性约束的双机器人协同定位方法利用刚性约束模型和量测信息实现对每个机器人的位置和姿态估计,该方法包括S1至S5。
[0017] 一种用于双移动机器人刚体协作搬运的协同定位方法,其特征在于,包括以下步骤:S1、构建基于刚性约束的双机器人系统的运动学模型和量测模型;双机器人系统包括两个移动机器人,S1的具体方法包括S1.1至S1.3。
S1.1、设定刚体状态向量并对刚体状态向量赋初值(此处赋初值清楚,无需进一步说明),刚体状态向量记为 表示所搬运刚体的位置,其中(xc,yc)为两个移
动机器人的几何中心连线中点在导航坐标系下的坐标;为(xc,yc)到其中一个移动机器人Ri几何中心(xi,yi)的延长线与导航坐标系横轴XNav正半轴的夹角,表示刚体的姿态;θ为移动机器人的朝向与XNav正半轴的夹角,表示刚体的运动方向;此处需要说明的是,赋初值是指对刚体状态量初始化,由于滤波开始时对双机器人系统的真实状态是未知的,需要对初始状态量进行设置以使之后用于定位的滤波器可正常工作,这个值可根据先验知识设置在真实初始状态附近,也可以设置为任意值,不需要特别精确(但是不能与真实初始值相差太大,否则可能导致滤波器发散),因为初值会随着滤波器的运行逐渐收敛至真实值。设定了状态初值后,其根据运动模型进行演化(即预测),然后利用量测信息对其进行修正,使得估计出的值与真实值之间的误差越来越小,从而实现对真实状态的精确估计,即实现精确定位。在本实施例中,刚体状态为刚体的位置、姿态及运动方向,设定初值时,机器人处于静止状态还未开始运动,滤波器也未开始运行。可将人对这些状态的主观估计量作为初值赋给它们,也可以任意指定,如全设置为0。当机器人开始运动时,滤波器同时开始运行,每隔固定采样时间T输出一次状态估计值,从而实现对双机器人位置与姿态的实时估计;
S1.2、基于刚体状态向量构建带有刚性约束的双机器人系统离散运动方程,并得到相应的运动学模型:
Xk+1=f(Xk,uk,wk)=Xk+T·Φk(uk+wk);
其中f(·)为非线性状态转移方程;uk=[vi,k,vj,k,ωk]T为控制向量;vi,k,vj,k分别表示两个移动机器人Ri和Rj的线速度,ωk表示两个移动机器人共同的角速度,wk=[δvi,k,δvj,k,δωk]T为过程噪声并且服从高斯分布N(0,Q), 为过程噪声方差阵,k
表示时刻,Xk为k时刻的刚体状态,T为采样时间,L为刚体约束距离;
S1.3、构建绝对量测与相对量测相联合的量测模型:
其中Zk为k时刻的量测向量,h(·)为非线性量测方程, 为移动机器人Ri的绝对位置量测值,γi,k,γj,k分别是移动机器人Ri和Rj的旋转机构角度传感器的测量值,vk~N(0,R)为量测噪声, 为量测噪声方差阵, 为两机器人所
搬运刚体的姿态角。
[0018] S2、初始化高斯-厄米特求积分卡尔曼滤波器,S2的具体方法包括S2.1至S2.4。S2.1、初始化刚体状态向量及其协方差矩阵:
其中,X0为刚体状态向量的初值,E(·)为求期望操作;
S2.2、将高斯-厄米特求积分卡尔曼滤波器的积分点个数记为m,计算厄米特多项式Hm(λ)的m个根
S2.3、计算 对应的单变量配置高斯积分点ξi及其系数ai:
S2.4、通过克罗内克张量积将单变量配置扩展得到n维状态,得到n维变量的高斯积分点配置向量 及系数 其中l=mn, 此处需
要说明的是,使用克罗内克(Kronecker)张量积对单变量配置进行扩展的方法为现有技术,故不对其进行详细说明。
[0019] S3、基于运动学模型对双机器人系统进行状态推演,得到刚体状态预测值;步骤S3具体包括以下步骤:其中,Sk-1|k-1为对k-1时刻的协方差矩阵Pk-1|k-1进行Cholesky分解得到的下三角矩阵,Xi表示刚体状态向量 的第i个积分点,此处需要说明的是,Cholesky分
解是矩阵的一种分解方法,可以将对称正定的矩阵表示成一个下三角矩阵和其转置的乘积的分解,公式 即表示Cholesky分解,分解对象为k-1时刻的协方差
矩阵Pk-1|k-1。
[0020] S4、获取双机器人系统的状态量测值,并且将状态量测值与量测模型相结合计算卡尔曼增益;计算卡尔曼增益的具体方法为:
Zi,k|k-1=h(Xi,k|k-1);
其中Zi表示量测向量的第i个积分点,PZZ,k|k-1,PXZ,k|k-1分别为新息协方差阵和互协方差阵,Kk为卡尔曼增益。
[0021] S5、利用卡尔曼增益对刚体状态预测值进行更新后得到刚体状态估计值,具体方法如下:其中 Pk|k分别为k时刻更新后的刚体状态估计值及协方差矩阵。
[0022] S6、将更新后的刚体状态估计值转换为双机器人系统中的两个移动机器人的位姿状态,具体方法如下:其中 为k时刻两个移动机器人Ri和Rj的联合估计状态,Tran(·)表示将刚体状态X转换为机器人状态XR的非线性转换函数,x,y,θ分别表示移动机器人机体在导航坐标系下的横轴坐标、纵轴坐标以及方位角。
[0023] 本发明(在表1中简称为RCM-QKF)通过刚性约束对漂移误差进行限制,同时利用耦合关系对待估计状态进行降维,有效提高了定位精度和计算效率。为了验证本发明的效果,通过仿真实验将本发明与几种现有技术进行对比,具体仿真结果如图3和4所示,如图3所示,UM-EKF、UM-QKF以及本发明(RCM-QKF)的运动轨迹均与参考轨迹基本重合,如图4所示,UM-EKF的曲线位于最上方,本发明(RCM-QKF)的曲线位于最下方,UM-QKF的曲线基本位于两者之间,由此可以看出,本发明(RCM-QKF)具有最小的绝对定位误差,收敛后基本稳定在0.02m左右,而基于无约束模型的EKF协同定位方法(UM-EKF)由于对系统模型进行了一阶近似,定位误差较大。基于无约束模型的的QKF协同定位方法(UM-QKF)借助高斯-厄米特积分的高精度逼近能力,得到了较UM-EKF更小的定位误差,但其定位精度不及本发明,说明基于刚性约束的模型可以对误差上界进行有效限制。三种协同定位方法的计算时间如表1所示,可以看到,本发明的计算时间介于UM-EKF和UM-QKF之间。综上,本发明在保证较小定位误差的前提下仍具有较低的计算复杂度,实现对定位精度和效率的较好权衡。
表1不同协同定位方法计算时间对比
[0024] 对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈