首页 / 专利库 / 复合材料 / 莫来石 / / 一种铁掺杂超细镍粉的制备方法

一种掺杂超细镍粉的制备方法

阅读:542发布:2024-02-20

专利汇可以提供一种掺杂超细镍粉的制备方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种 铁 掺杂超细镍粉的制备方法,该方法为将第一沉淀剂和Fe3O4粉末加入反应釜,并对反应釜进行加热,再向所述反应釜中加入镍盐、第二沉淀剂、 表面活性剂 ,控制所述镍盐和所述第二沉淀剂的进料流量使反应体系的pH值保持在7.2~9.2,获得包裹Fe3O4的 碱 式镍盐前驱体,之后,对包裹Fe3O4的碱式镍盐粉末进行高温氢气还原,获得铁掺杂超细镍粉;这样,本发明在制备碱式镍盐前驱体的过程中进行掺杂,再对包裹Fe3O4的碱式镍盐前驱体进行高温 煅烧 ,能够有效避免铁镍 复合粉末 混合不均匀的现象,获得的铁掺杂超细镍粉具有良好的均一性,能够增强镍粉导电屏蔽和 微波 吸收等性能在 复合材料 中应用。,下面是一种掺杂超细镍粉的制备方法专利的具体信息内容。

1.一种掺杂超细镍粉的制备方法,其特征在于,其方法通过以下步骤实施:
步骤1,将第一沉淀剂加入反应釜中作为底液,以25Hz的搅拌频率对底液进行搅拌,并向所述第一沉淀剂中加入Fe3O4粉末,搅拌30~60min至所述Fe3O4粉末分散于第一沉淀剂中,之后,将所述反应釜进行加热至60~70℃并保持恒温,再向所述反应釜中加入镍盐、第二沉淀剂、表面活性剂,控制所述镍盐和所述第二沉淀剂的进料流量使反应体系的pH值保持在7.2~9.2,反应3~5h,获得包裹Fe3O4的式镍盐前驱体;
步骤2,采用纯对所述步骤1获得的包裹Fe3O4的碱式镍盐前驱体进行洗涤,洗涤后再进行干燥,获得包裹Fe3O4的碱式镍盐粉末;
步骤3,将所述步骤2获得的包裹Fe3O4的碱式镍盐粉末进行气流破碎,之后,进行高温氢气还原,获得铁掺杂超细镍粉。
2.根据权利要求1所述的一种铁掺杂超细镍粉的制备方法,其特征在于,所述步骤1中加入的Fe3O4粉末与镍盐的质量比为1:50~2:50。
3.根据权利要求2所述的一种铁掺杂超细镍粉的制备方法,其特征在于,所述步骤1中的镍盐为硝酸镍溶液、硫酸镍溶液或氯化镍溶液中的一种。
4.根据权利要求3所述的一种铁掺杂超细镍粉的制备方法,其特征在于,所述步骤1中镍盐的镍含量为2mol/L,所述镍盐的进料流量为200L/H。
5.根据权利要求4所述的一种铁掺杂超细镍粉的制备方法,其特征在于,所述步骤1中第一沉淀剂和第二沉淀剂均为酸钠、碳酸氢铵、碳酸铵或氢化钠中的一种。
6.根据权利要求5所述的一种铁掺杂超细镍粉的制备方法,其特征在于,所述步骤1中加入的第一沉淀剂的体积为400~500L,所述第一沉淀剂的浓度为0.05mol/L。
7.根据权利要求6所述的一种铁掺杂超细镍粉的制备方法,其特征在于,所述步骤1中加入的第二沉淀剂与镍盐的体积比为1.8:1~2.5:1,所述第二沉淀剂的浓度为2mol/L,所述第二沉淀剂的进料流量为400L/H。
8.根据权利要求7所述的一种铁掺杂超细镍粉的制备方法,其特征在于,所述步骤1中的表面活性剂为(L)-酒石酸柠檬酸或乙二酸中的一种。
9.根据权利要求8所述的一种铁掺杂超细镍粉的制备方法,其特征在于,所述步骤1中加入的表面活性剂的体积为8~16L。
10.根据权利要求1-9任意一项所述的一种铁掺杂超细镍粉的制备方法,其特征在于,所述步骤3中高温氢气还原的还原温度为300~500℃,还原时间为2~3h。

说明书全文

一种掺杂超细镍粉的制备方法

技术领域

[0001] 本发明属于镍粉的制备技术领域,具体涉及一种铁掺杂超细镍粉的制备方法。

背景技术

[0002] 超细镍粉是良好的电、磁热敏材料,在催化剂、磁性材料、烧结活化剂、导电浆料、电池材料、硬质合金粘结剂等方面具有广阔的应用前景。
[0003] 目前,在很多合金方面,均会和铁粉混合使用,传统的铁镍复合粉末的制造方法包括机械混合法和雾化法,而采用这两种方法制得的铁镍复合粉末混合不均匀,从而容易导致合金存在较多的缺陷,影响合金寿命。

发明内容

[0004] 为了克服现有技术的不足,本发明的目的旨在提供一种铁掺杂超细镍粉的制备方法。
[0005] 本发明提供一种铁掺杂超细镍粉的制备方法,其方法通过以下步骤实施:
[0006] 步骤1,将第一沉淀剂加入反应釜中作为底液,以25Hz的搅拌频率对底液进行搅拌,并向所述第一沉淀剂中加入Fe3O4粉末,搅拌30~60min至所述Fe3O4粉末分散于第一沉淀剂中,之后,将所述反应釜进行加热至60~70℃并保持恒温,再向所述反应釜中加入镍盐、第二沉淀剂、表面活性剂,控制所述镍盐和所述第二沉淀剂的进料流量使反应体系的pH值保持在7.2~9.2,反应3~5h,获得包裹Fe3O4的式镍盐前驱体;
[0007] 步骤2,采用纯对所述步骤1获得的包裹Fe3O4的碱式镍盐前驱体进行洗涤,洗涤后再进行干燥,获得包裹Fe3O4的碱式镍盐粉末;
[0008] 步骤3,将所述步骤2获得的包裹Fe3O4的碱式镍盐粉末进行气流破碎,之后,进行高温氢气还原,获得铁掺杂超细镍粉。
[0009] 上述方案中,所述步骤1中加入的Fe3O4粉末与镍盐的质量比为1:50~2:50。
[0010] 上述方案中,所述步骤1中的镍盐为硝酸镍溶液、硫酸镍溶液或氯化镍溶液中的一种。
[0011] 上述方案中,所述步骤1中镍盐的镍含量为2mol/L,所述镍盐的进料流量为200L/H。
[0012] 上述方案中,所述步骤1中第一沉淀剂和第二沉淀剂均为酸钠、碳酸氢铵、碳酸铵或氢化钠中的一种。
[0013] 上述方案中,所述步骤1中加入的第一沉淀剂的体积为400~500L,所述第一沉淀剂的浓度为0.05mol/L。
[0014] 上述方案中,所述步骤1中加入的第二沉淀剂与镍盐的体积比为1.8:1~2.5:1,所述第二沉淀剂的浓度为2mol/L,所述第二沉淀剂的进料流量为400L/H。
[0015] 上述方案中,所述步骤1中的表面活性剂为(L)-酒石酸柠檬酸或乙二酸中的一种。
[0016] 上述方案中,所述步骤1中加入的表面活性剂的体积为8~16L。
[0017] 上述方案中,所述步骤3中高温氢气还原的还原温度为300~500℃,还原时间为2~3h。
[0018] 与现有技术相比,本发明在制备碱式镍盐前驱体的过程中进行掺杂,获得包裹Fe3O4的碱式镍盐前驱体,再对包裹Fe3O4的碱式镍盐前驱体进行高温煅烧,获得包裹Fe3O4的碱式镍盐粉末,能够有效避免铁镍复合粉末混合不均匀的现象,获得的铁掺杂超细镍粉具有良好的均一性,能够增强镍粉导电屏蔽和微波吸收等性能在复合材料中应用。附图说明
[0019] 图1为本发明实施例1提供的一种铁掺杂超细镍粉的制备方法的扫描电镜图。

具体实施方式

[0020] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例和附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
[0021] 本发明实施例提供一种铁掺杂超细镍粉的制备方法,其方法通过以下步骤实施:
[0022] 步骤1,将400L~500L浓度为0.05mol/L的第一沉淀剂加入反应釜中作为底液,以25Hz的搅拌频率对底液进行搅拌,并向第一沉淀剂中加入Fe3O4粉末,加入的Fe3O4粉末与镍盐的质量比为1:50~2:50,搅拌30~60min至Fe3O4粉末分散于第一沉淀剂中,之后,将反应釜进行加热至60~70℃并保持恒温,之后,采用计量以200L/H的进料流量向反应釜中加入镍含量为2mol/L的镍盐、以400L/H的进料流量向反应釜中加入浓度为2mol/L的第二沉淀剂,第二沉淀剂与镍盐的体积比为1.8:1~2.5:1,同时,加入8~16L的表面活性剂,使反应体系的pH值保持在7.2~9.2,反应3~5h,获得包裹Fe3O4的碱式镍盐前驱体;
[0023] 其中,镍盐为硝酸镍溶液、硫酸镍溶液或氯化镍溶液中的一种;第一沉淀剂和第二沉淀剂均为碳酸钠、碳酸氢铵、碳酸铵或氢氧化钠中的一种;表面活性剂为(L)-酒石酸、柠檬酸或乙二酸中的一种;
[0024] 步骤2,将步骤1获得的包裹Fe3O4的碱式镍盐前驱体置于二合一洗涤机中,采用60~80℃的纯水洗涤4~6次,洗涤后置于闪蒸机内,在60~80℃下再进行干燥,获得包裹Fe3O4的碱式镍盐粉末;
[0025] 步骤3,将步骤2获得的包裹Fe3O4的碱式镍盐粉末经气流破碎后放入还原炉,在300~500℃的还原温度下高温氢气还原2~3h,获得铁掺杂超细镍粉。
[0026] 本发明在制备碱式镍盐前驱体的过程中进行掺杂,获得包裹Fe3O4的碱式镍盐前驱体,再对包裹Fe3O4的碱式镍盐前驱体进行高温煅烧,获得包裹Fe3O4的碱式镍盐粉末,能够有效避免铁镍复合粉末混合不均匀的现象,获得的铁掺杂超细镍粉具有良好的均一性,能够增强镍粉镍粉在复合材料中导电屏蔽和微波吸收等性能,本发明采用两次沉淀剂方法能够有效控制制备镍粉前驱体粒径分布,从而控制了镍粉粒径分布;控制铁镍质量比的能够将获得产品直接用于合金混合,增加了铁镍粉末应用范围;通过加入少量表面活性剂大大增强了Fe3O4和镍粉前驱体之间混合分布,避免出现大量团聚行为,增强了铁掺杂镍粉在合金工具行业的适用性,有效减弱因生产合金过程中因为混合不均匀导致合金工具性能受到限制。
[0027] 实施例1
[0028] 本发明实施例1提供一种铁掺杂超细镍粉的制备方法,其方法通过以下步骤实施:
[0029] 步骤1,将400L浓度为0.05mol/L的碳酸钠加入反应釜中作为底液,以25Hz的搅拌频率对底液进行搅拌,并向碳酸钠中加入Fe3O4粉末,加入的Fe3O4粉末与硝酸镍溶液的质量比为1:50,搅拌30min至Fe3O4粉末分散于碳酸钠中,之后,将反应釜进行加热至60℃并保持恒温,之后,采用计量泵以200L/H的进料流量向反应釜中加入镍含量为2mol/L的硝酸镍溶液、以400L/H的进料流量向反应釜中加入浓度为2mol/L的碳酸钠,碳酸钠与硝酸镍溶液的体积比为2:1,同时,加入12L的(L)-酒石酸,使反应体系的pH值保持在7.2~9.2,反应4h,获得包裹Fe3O4的碱式镍盐前驱体;
[0030] 步骤2,将步骤1获得的包裹Fe3O4的碱式镍盐前驱体置于二合一洗涤机中,采用72℃的纯水洗涤5次,洗涤后置于闪蒸机内,在70℃下再进行干燥,获得包裹Fe3O4的碱式镍盐粉末;
[0031] 步骤3,将步骤2获得的包裹Fe3O4的碱式镍盐粉末经气流破碎后放入还原炉,在460℃的还原温度下高温氢气还原2.8h,获得铁掺杂超细镍粉。
[0032] 本发明实施例1提供的一种铁掺杂超细镍粉的制备方法的扫描电镜图,如图1所示,可以看出,铁粉和镍粉混合分布均匀,没有单独团聚行为。
[0033] 实施例2
[0034] 本发明实施例2提供一种铁掺杂超细镍粉的制备方法,其方法通过以下步骤实施:
[0035] 步骤1,将450L浓度为0.05mol/L的碳酸钠加入反应釜中作为底液,以25Hz的搅拌频率对底液进行搅拌,并向碳酸钠中加入Fe3O4粉末,加入的Fe3O4粉末与硝酸镍溶液的质量比为1.5:50,搅拌45min至Fe3O4粉末分散于碳酸钠中,之后,将反应釜进行加热至66℃并保持恒温,之后,采用计量泵以200L/H的进料流量向反应釜中加入镍含量为2mol/L的硝酸镍溶液、以400L/H的进料流量向反应釜中加入浓度为2mol/L的碳酸钠,碳酸钠与硝酸镍溶液的体积比为2:1,同时,加入12L的(L)-酒石酸,使反应体系的pH值保持在7.2~9.2,反应4h,获得包裹Fe3O4的碱式镍盐前驱体;
[0036] 步骤2,将步骤1获得的包裹Fe3O4的碱式镍盐前驱体置于二合一洗涤机中,采用72℃的纯水洗涤5次,洗涤后置于闪蒸机内,在70℃下再进行干燥,获得包裹Fe3O4的碱式镍盐粉末;
[0037] 步骤3,将步骤2获得的包裹Fe3O4的碱式镍盐粉末经气流破碎后放入还原炉,在460℃的还原温度下高温氢气还原2.8h,获得铁掺杂超细镍粉。
[0038] 与现有技术相比,采用上述制备工艺获得的铁掺杂超细镍粉,铁粉和镍粉混合分布均匀,没有单独团聚行为。
[0039] 实施例3
[0040] 本发明实施例3提供一种铁掺杂超细镍粉的制备方法,其方法通过以下步骤实施:
[0041] 步骤1,将500L浓度为0.05mol/L的碳酸钠加入反应釜中作为底液,以25Hz的搅拌频率对底液进行搅拌,并向碳酸钠中加入Fe3O4粉末,加入的Fe3O4粉末与硝酸镍溶液的质量比为2:50,搅拌60min至Fe3O4粉末分散于碳酸钠中,之后,将反应釜进行加热至70℃并保持恒温,之后,采用计量泵以200L/H的进料流量向反应釜中加入镍含量为2mol/L的硝酸镍溶液、以400L/H的进料流量向反应釜中加入浓度为2mol/L的碳酸钠,碳酸钠与硝酸镍溶液的体积比为2:1,同时,加入12L的(L)-酒石酸,使反应体系的pH值保持在7.2~9.2,反应4h,获得包裹Fe3O4的碱式镍盐前驱体;
[0042] 步骤2,将步骤1获得的包裹Fe3O4的碱式镍盐前驱体置于二合一洗涤机中,采用72℃的纯水洗涤5次,洗涤后置于闪蒸机内,在70℃下再进行干燥,获得包裹Fe3O4的碱式镍盐粉末;
[0043] 步骤3,将步骤2获得的包裹Fe3O4的碱式镍盐粉末经气流破碎后放入还原炉,在460℃的还原温度下高温氢气还原2.8h,获得铁掺杂超细镍粉。
[0044] 与现有技术相比,采用上述制备工艺获得的铁掺杂超细镍粉,铁粉和镍粉混合分布均匀,没有单独团聚行为。
[0045] 实施例4
[0046] 本发明实施例4提供一种铁掺杂超细镍粉的制备方法,其方法通过以下步骤实施:
[0047] 步骤1,将500L浓度为0.05mol/L的碳酸氢铵加入反应釜中作为底液,以25Hz的搅拌频率对底液进行搅拌,并向碳酸氢铵中加入Fe3O4粉末,加入的Fe3O4粉末与硫酸镍溶液的质量比为1:50,搅拌40min至Fe3O4粉末分散于碳酸氢铵中,之后,将反应釜进行加热至68℃并保持恒温,之后,采用计量泵以200L/H的进料流量向反应釜中加入镍含量为2mol/L的硫酸镍溶液、以400L/H的进料流量向反应釜中加入浓度为2mol/L的碳酸氢铵,碳酸氢铵与硫酸镍溶液的体积比为1.8:1,同时,加入8L的柠檬酸,使反应体系的pH值保持在7.2~9.2,反应3h,获得包裹Fe3O4的碱式镍盐前驱体;
[0048] 步骤2,将步骤1获得的包裹Fe3O4的碱式镍盐前驱体置于二合一洗涤机中,采用70℃的纯水洗涤5次,洗涤后置于闪蒸机内,在60℃下再进行干燥,获得包裹Fe3O4的碱式镍盐粉末;
[0049] 步骤3,将步骤2获得的包裹Fe3O4的碱式镍盐粉末经气流破碎后放入还原炉,在340℃的还原温度下高温氢气还原3h,获得铁掺杂超细镍粉。
[0050] 与现有技术相比,采用上述制备工艺获得的铁掺杂超细镍粉,铁粉和镍粉混合分布均匀,没有单独团聚行为。
[0051] 实施例5
[0052] 本发明实施例5提供一种铁掺杂超细镍粉的制备方法,其方法通过以下步骤实施:
[0053] 步骤1,将500L浓度为0.05mol/L的碳酸氢铵加入反应釜中作为底液,以25Hz的搅拌频率对底液进行搅拌,并向碳酸氢铵中加入Fe3O4粉末,加入的Fe3O4粉末与硫酸镍溶液的质量比为1:50,搅拌40min至Fe3O4粉末分散于碳酸氢铵中,之后,将反应釜进行加热至68℃并保持恒温,之后,采用计量泵以200L/H的进料流量向反应釜中加入镍含量为2mol/L的硫酸镍溶液、以400L/H的进料流量向反应釜中加入浓度为2mol/L的碳酸氢铵,碳酸氢铵与硫酸镍溶液的体积比为2.3:1,同时,加入12L的柠檬酸,使反应体系的pH值保持在7.2~9.2,反应4h,获得包裹Fe3O4的碱式镍盐前驱体;
[0054] 步骤2,将步骤1获得的包裹Fe3O4的碱式镍盐前驱体置于二合一洗涤机中,采用70℃的纯水洗涤5次,洗涤后置于闪蒸机内,在60℃下再进行干燥,获得包裹Fe3O4的碱式镍盐粉末;
[0055] 步骤3,将步骤2获得的包裹Fe3O4的碱式镍盐粉末经气流破碎后放入还原炉,在340℃的还原温度下高温氢气还原3h,获得铁掺杂超细镍粉。
[0056] 与现有技术相比,采用上述制备工艺获得的铁掺杂超细镍粉,铁粉和镍粉混合分布均匀,没有单独团聚行为。
[0057] 实施例6
[0058] 本发明实施例6提供一种铁掺杂超细镍粉的制备方法,其方法通过以下步骤实施:
[0059] 步骤1,将500L浓度为0.05mol/L的碳酸氢铵加入反应釜中作为底液,以25Hz的搅拌频率对底液进行搅拌,并向碳酸氢铵中加入Fe3O4粉末,加入的Fe3O4粉末与硫酸镍溶液的质量比为1:50,搅拌40min至Fe3O4粉末分散于碳酸氢铵中,之后,将反应釜进行加热至68℃并保持恒温,之后,采用计量泵以200L/H的进料流量向反应釜中加入镍含量为2mol/L的硫酸镍溶液、以400L/H的进料流量向反应釜中加入浓度为2mol/L的碳酸氢铵,碳酸氢铵与硫酸镍溶液的体积比为2.5:1,同时,加入16L的柠檬酸,使反应体系的pH值保持在7.2~9.2,反应5h,获得包裹Fe3O4的碱式镍盐前驱体;
[0060] 步骤2,将步骤1获得的包裹Fe3O4的碱式镍盐前驱体置于二合一洗涤机中,采用70℃的纯水洗涤5次,洗涤后置于闪蒸机内,在60℃下再进行干燥,获得包裹Fe3O4的碱式镍盐粉末;
[0061] 步骤3,将步骤2获得的包裹Fe3O4的碱式镍盐粉末经气流破碎后放入还原炉,在340℃的还原温度下高温氢气还原3h,获得铁掺杂超细镍粉。
[0062] 与现有技术相比,采用上述制备工艺获得的铁掺杂超细镍粉,铁粉和镍粉混合分布均匀,没有单独团聚行为。
[0063] 实施例7
[0064] 本发明实施例7提供一种铁掺杂超细镍粉的制备方法,其方法通过以下步骤实施:
[0065] 步骤1,将400L浓度为0.05mol/L的碳酸铵加入反应釜中作为底液,以25Hz的搅拌频率对底液进行搅拌,并向碳酸铵中加入Fe3O4粉末,加入的Fe3O4粉末与氯化镍溶液的质量比为2:50,搅拌60min至Fe3O4粉末分散于碳酸铵中,之后,将反应釜进行加热至65℃并保持恒温,之后,采用计量泵以200L/H的进料流量向反应釜中加入镍含量为2mol/L的氯化镍溶液、以400L/H的进料流量向反应釜中加入浓度为2mol/L的碳酸铵,碳酸铵与氯化镍溶液的体积比为2:1,同时,加入12L的乙二酸,使反应体系的pH值保持在7.2~9.2,反应3.6h,获得包裹Fe3O4的碱式镍盐前驱体;
[0066] 步骤2,将步骤1获得的包裹Fe3O4的碱式镍盐前驱体置于二合一洗涤机中,采用60℃的纯水洗涤6次,洗涤后置于闪蒸机内,在60℃下再进行干燥,获得包裹Fe3O4的碱式镍盐粉末;
[0067] 步骤3,将步骤2获得的包裹Fe3O4的碱式镍盐粉末经气流破碎后放入还原炉,在300℃的还原温度下高温氢气还原3h,获得铁掺杂超细镍粉。
[0068] 与现有技术相比,采用上述制备工艺获得的铁掺杂超细镍粉,铁粉和镍粉混合分布均匀,没有单独团聚行为。
[0069] 实施例8
[0070] 本发明实施例8提供一种铁掺杂超细镍粉的制备方法,其方法通过以下步骤实施:
[0071] 步骤1,将400L浓度为0.05mol/L的碳酸铵加入反应釜中作为底液,以25Hz的搅拌频率对底液进行搅拌,并向碳酸铵中加入Fe3O4粉末,加入的Fe3O4粉末与氯化镍溶液的质量比为2:50,搅拌60min至Fe3O4粉末分散于碳酸铵中,之后,将反应釜进行加热至65℃并保持恒温,之后,采用计量泵以200L/H的进料流量向反应釜中加入镍含量为2mol/L的氯化镍溶液、以400L/H的进料流量向反应釜中加入浓度为2mol/L的碳酸铵,碳酸铵与氯化镍溶液的体积比为2:1,同时,加入12L的乙二酸,使反应体系的pH值保持在7.2~9.2,反应3.6h,获得包裹Fe3O4的碱式镍盐前驱体;
[0072] 步骤2,将步骤1获得的包裹Fe3O4的碱式镍盐前驱体置于二合一洗涤机中,采用72℃的纯水洗涤5次,洗涤后置于闪蒸机内,在72℃下再进行干燥,获得包裹Fe3O4的碱式镍盐粉末;
[0073] 步骤3,将步骤2获得的包裹Fe3O4的碱式镍盐粉末经气流破碎后放入还原炉,在400℃的还原温度下高温氢气还原2.2h,获得铁掺杂超细镍粉。
[0074] 与现有技术相比,采用上述制备工艺获得的铁掺杂超细镍粉,铁粉和镍粉混合分布均匀,没有单独团聚行为。
[0075] 实施例9
[0076] 本发明实施例9提供一种铁掺杂超细镍粉的制备方法,其方法通过以下步骤实施:
[0077] 步骤1,将400L浓度为0.05mol/L的碳酸铵加入反应釜中作为底液,以25Hz的搅拌频率对底液进行搅拌,并向碳酸铵中加入Fe3O4粉末,加入的Fe3O4粉末与氯化镍溶液的质量比为2:50,搅拌60min至Fe3O4粉末分散于碳酸铵中,之后,将反应釜进行加热至65℃并保持恒温,之后,采用计量泵以200L/H的进料流量向反应釜中加入镍含量为2mol/L的氯化镍溶液、以400L/H的进料流量向反应釜中加入浓度为2mol/L的碳酸铵,碳酸铵与氯化镍溶液的体积比为2:1,同时,加入12L的乙二酸,使反应体系的pH值保持在7.2~9.2,反应3.6h,获得包裹Fe3O4的碱式镍盐前驱体;
[0078] 步骤2,将步骤1获得的包裹Fe3O4的碱式镍盐前驱体置于二合一洗涤机中,采用80℃的纯水洗涤4次,洗涤后置于闪蒸机内,在80℃下再进行干燥,获得包裹Fe3O4的碱式镍盐粉末;
[0079] 步骤3,将步骤2获得的包裹Fe3O4的碱式镍盐粉末经气流破碎后放入还原炉,在500℃的还原温度下高温氢气还原2h,获得铁掺杂超细镍粉。
[0080] 与现有技术相比,采用上述制备工艺获得的铁掺杂超细镍粉,铁粉和镍粉混合分布均匀,没有单独团聚行为。
[0081] 以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈