首页 / 专利库 / 复合材料 / 核壳结构 / 一种太阳能电池

一种太阳能电池

阅读:0发布:2021-06-07

专利汇可以提供一种太阳能电池专利检索,专利查询,专利分析的服务。并且本 申请 涉及一种 太阳能 电池 ,所述 太阳能电池 基于染料敏化太阳电池,所述染料敏化太阳电池由光 阳极 、对 电极 和 电解 液构成;所述光阳极的结构为由外而内的FTO基底、生长于FTO基底表面的 氧 化钨 纳米线 、涂覆于氧化钨纳米线底部的玻璃微珠;所述氧化钨纳米线为 核壳结构 ,核为氧化钨纳米线,壳为氧化 钛 ;所述 对电极 为由外而内的FTO基底、反光层、Pt催化层;所述电解液中加入防冻剂正丙醇。,下面是一种太阳能电池专利的具体信息内容。

1.一种太阳能电池,其特征在于,所述太阳能电池基于染料敏化太阳电池,所述染料敏化太阳电池由光阳极、对电极电解液构成;所述光阳极的结构为由外而内的FTO基底、生长于FTO基底表面的化钨纳米线、涂覆于氧化钨纳米线底部的玻璃微珠;所述氧化钨纳米线为核壳结构,核为氧化钨纳米线,壳为氧化;所述对电极为由外而内的FTO基底、反光层、Pt催化层;所述电解液中加入防冻剂正丙醇。
2.根据权利要求1所述的太阳能电池,其特征在于,所述染料敏化太阳电池的制备步骤如下:
步骤一,制作FTO基底:
a)清洗FTO基底:选择FTO导电玻璃作为光阳极的基底,首先,切割FTO导电玻璃,用沾有洗洁精的超净布擦拭FTO导电一面,去除表面存在的油污、尘埃等杂质,然后用去离子反复冲洗数次,直至将洗洁精清洗干净,将其放入臭氧清洗机中,臭氧处理10min,接着依照丙乙醇、去离子水的顺序分别超声清洗30min,用氮气枪吹干待用;
b)生长氧化钨纳米线:使用磁控溅射膜技术在FTO表面蒸镀一层150nm厚的金属钨膜作为氧化钨纳米线生长源,同时使用陶瓷模板实现钨膜的定域生长,磁控溅射过程中将陶瓷模板贴附在FTO表面,其中,陶瓷模板的孔隙直径为2μm,间距为50μm,磁控溅射电流为2A;
氧化钨纳米线生长采用热氧化方法,将镀有钨膜的FTO导电玻璃放入热蒸发炉中,在惰性气体的保护下,400℃保温5h,自然冷却后取出;
c)制备核壳结构氧化钨纳米线:称量100ml的无水乙醇溶液,加入1ml的C16H36O4Ti,在
70℃水浴下搅拌均匀,将生长有氧化钨纳米线的FTO导电玻璃放入溶液中,静置11s,然后快速取出,该浸入溶液过程重复五次,以能够保证纳米线表面充分的包裹上壳结构,接着将取出的样品在400℃退火1h,自然冷却后即得带有核壳结构氧化钨纳米线的FTO基底;
步骤二,吸附玻璃微珠:
取20g购买的玻璃微珠(玻璃微珠直径为5~10μm)用去离子水清洗,干燥,加入到
20mol/l的氢氟酸溶液中磁搅拌20min后真空抽滤,用去离子水清洗至中性后干燥,取去离子水100ml,依次加入2.5g柠檬酸钠、2.2g硫酸铵和5g纳米粒子,随后加入水调节pH值为6,将干燥的玻璃微珠加入上述溶液中,在60℃下,磁力搅拌2h,反应后冷却至室温;将步骤一中得到的带有核壳结构氧化钨纳米线的FTO基底浸入上述溶液中,水浴80℃下静置
5h,即可在FTO基底表面形成玻璃微珠结合核壳结构氧化钨纳米线材料。
步骤三,制备对电极:
选取与光阳极相同尺寸的FTO导电玻璃,然后在其表面磁控溅射一层Ag,作为反光层,Ag厚度为300nm,然后再蒸镀Pt催化剂层,Pt催化剂层厚度为50nm。
步骤四,组装染料敏化太阳电池:
电解液应用传统的碘/碘三负离子电解液:首先称取100ml的乙腈溶液,向其中加入
0.1M的碘化锂,0.1M单质碘,0.6M 4-叔丁基吡啶和0.6M的四丁基碘化铵,避光超声5min,使其充分溶解,然后称取8g的纳米TiO2纳米粒子,在水浴70摄氏度下,将TiO2纳米粒子加入电解质溶液中,最后加入5ml防冻剂正丙醇,超声30min,使其充分混合均匀;
染料溶液:称取N719粉末50mg,无水乙醇30ml,将N719加入无水乙醇中,充分溶解,避光搅拌12h。取上述配制的染料溶液放入棕色玻璃皿中,然后将FTO基底进入该棕色玻璃皿中,避光在60℃下敏化3h,取出,然后对电极与该光阳极封装在一起,封装材料采用热封膜,将电解液从对电极一端的小孔注入,封装小孔,连接导线,形成本发明的改进型染料敏化太阳能电池。

说明书全文

一种太阳能电池

技术领域

[0001] 本申请涉及太阳能电池领域,尤其涉及一种太阳能电池。

背景技术

[0002] 能源是人类社会一切生产活动的基础,随着现代经济的发展,人类对能源的需求正变得日益加剧。传统能源的储量有限,其含量正在变得越来越枯竭,并且由于传统能源在利用过程中会产生大量有毒有害气体、固体等,已经成为日益严重的环境污染的罪魁祸首。基于此,发展新能源和可再生能源是二十一世纪的研究重点。其中,太阳能资源依赖于太阳光,是一种取之不尽的的清洁能源。近年,太阳能光伏产业得到了快速发展,开发廉价、高效的太阳能电池已经成为当前学术活动、企业活动的研究热点。
[0003] 染料敏化太阳能电池(DSSC)是一种纳米结构的光电转换器件,其一般由五部分组成,分别为透明导电基底、纳米半导体薄膜、染料敏化剂、电解质和对电极。染料敏化剂实现光吸收的功能,染料分子吸收太阳光之后,电子发生跃迁并注入纳米半导体薄膜的导带中,随后由经电极流出,产生工作电流,空穴留在化态的染料分子中被电解质中的氧化还原对还原,染料分子跃迁回基态,从而再次吸收光子;氧化态的电解质则扩散至对电极,由于对电极表面涂覆有催化剂薄膜,在催化剂作用下电解质发生还原反应,至此完成光电化学反应的循环。
[0004] 染料敏化太阳电池由于制作过程简单,价格低廉,效率高,具备十分广阔的市场应用前景。然而,由于电解质溶液一般呈酸性,会对纳米半导体薄膜产生腐蚀作用,影响染料敏化太阳电池的工作稳定性;另外,一般的染料敏化太阳电池中采用TiO2颗粒作为纳米半导体薄膜,由于TiO2纳米颗粒薄膜大的比表面积缺陷存在,容易引起电子的复合,从而降低光电转换效率。发明内容
[0005] 为克服相关技术中存在的问题,本申请提供一种太阳能电池。
[0006] 本申请通过以下技术方案实现:
[0007] 一种太阳能电池,所述太阳能电池基于染料敏化太阳电池,所述染料敏化太阳电池由光阳极、对电极和电解液构成;所述光阳极的结构为由外而内的FTO基底、生长于FTO基底表面的氧化钨纳米线、涂覆于氧化钨纳米线底部的玻璃微珠;所述氧化钨纳米线为核壳结构,核为氧化钨纳米线,壳为氧化;所述对电极为由外而内的FTO基底、反光层、Pt催化层;所述电解液中加入防冻剂正丙醇。
[0008] 优选地,所述染料敏化太阳电池的制备步骤如下:
[0009] 步骤一,制作FTO基底:
[0010] a)清洗FTO基底:选择FTO导电玻璃作为光阳极的基底,首先,切割FTO导电玻璃,用沾有洗洁精的超净布擦拭FTO导电一面,去除表面存在的油污、尘埃等杂质,然后用去离子反复冲洗数次,直至将洗洁精清洗干净,将其放入臭氧清洗机中,臭氧处理10min,接着依照丙乙醇、去离子水的顺序分别超声清洗30min,用氮气枪吹干待用;
[0011] b)生长氧化钨纳米线:使用磁控溅射膜技术在FTO表面蒸镀一层150nm厚的金属钨膜作为氧化钨纳米线生长源,同时使用陶瓷模板实现钨膜的定域生长,磁控溅射过程中将陶瓷模板贴附在FTO表面,其中,陶瓷模板的孔隙直径为2μm,间距为50μm,磁控溅射电流为2A;氧化钨纳米线生长采用热氧化方法,将镀有钨膜的FTO导电玻璃放入热蒸发炉中,在惰性气体的保护下,400℃保温5h,自然冷却后取出;
[0012] c)制备核壳结构氧化钨纳米线:称量100ml的无水乙醇溶液,加入1ml的C16H36O4Ti,在70℃水浴下搅拌均匀,将生长有氧化钨纳米线的FTO导电玻璃放入溶液中,静置11s,然后快速取出,该浸入溶液过程重复五次,以能够保证纳米线表面充分的包裹上壳结构,接着将取出的样品在400℃退火1h,自然冷却后即得带有核壳结构氧化钨纳米线的FTO基底;
[0013] 步骤二,吸附玻璃微珠:
[0014] 取20g购买的玻璃微珠(玻璃微珠直径为5~10μm)用去离子水清洗,干燥,加入到20mol/l的氢氟酸溶液中磁搅拌20min后真空抽滤,用去离子水清洗至中性后干燥,取去离子水100ml,依次加入2.5g柠檬酸钠、2.2g硫酸铵和5g纳米粒子,随后加入水调节pH值为6,将干燥的玻璃微珠加入上述溶液中,在60℃下,磁力搅拌2h,反应后冷却至室温;将步骤一中得到的带有核壳结构氧化钨纳米线的FTO基底浸入上述溶液中,水浴80℃下静置
5h,即可在FTO基底表面形成玻璃微珠结合核壳结构氧化钨纳米线材料。
[0015] 步骤三,制备对电极:
[0016] 选取与光阳极相同尺寸的FTO导电玻璃,然后在其表面磁控溅射一层Ag,作为反光层,Ag厚度为300nm,然后再蒸镀Pt催化剂层,Pt催化剂层厚度为50nm。
[0017] 步骤四,组装染料敏化太阳电池:
[0018] 电解液应用传统的碘/碘三负离子电解液:首先称取100ml的乙腈溶液,向其中加入0.1M的碘化锂,0.1M单质碘,0.6M 4-叔丁基吡啶和0.6M的四丁基碘化铵,避光超声5min,使其充分溶解,然后称取8g的纳米TiO2纳米粒子,在水浴70摄氏度下,将TiO2纳米粒子加入电解质溶液中,最后加入5ml防冻剂正丙醇,超声30min,使其充分混合均匀;
[0019] 染料溶液:称取N719粉末50mg,无水乙醇30ml,将N719加入无水乙醇中,充分溶解,避光搅拌12h。取上述配制的染料溶液放入棕色玻璃皿中,然后将FTO基底进入该棕色玻璃皿中,避光在60℃下敏化3h,取出,然后对电极与该光阳极封装在一起,封装材料采用热封膜,将电解液从对电极一端的小孔注入,封装小孔,连接导线,形成本发明的改进型染料敏化太阳能电池。
[0020] 本申请的实施例提供的技术方案可以包括以下有益效果:
[0021] 1.本发明的太阳能电池光阳极中采用核壳结构的氧化钨纳米线材料,其中,氧化钨属于宽禁带半导体材料,具有优良的导电性,能够保证电子快速的传输;另外,氧化钨纳米线采用核壳结构,可以有效的阻碍电子的复合,同时该结构能够有效的降低酸性染料对氧化钨纳米线的腐蚀,提高染料电池的稳定性;染料敏化太阳电池光阳极中,在核壳结构氧化钨纳米线的空隙吸附有玻璃微珠粒子,形成微珠-纳米线结构,该结构可以有效增加太阳光的散射,使得染料对太阳光的吸收率大大提高,进而提高太阳能电池的光电转换效率。
[0022] 2.本发明太阳电池的电解液中,加入了TiO2纳米粒子,该纳米粒子的粒径为30~70nm,其可以对太阳光起到散射作用,使得染料对太阳光的吸收效率提高,从而提高该电池的光电转换效率。
[0023] 3.染料敏化太阳能电池光阳极中氧化钨纳米线具有一定的密度,并且采用简单的模板法实现定域生长,操作简单,成本低廉,具有一定的市场前景。
[0024] 本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。附图说明
[0025] 此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
[0026] 图1是本发明的太阳电池制作流程图

具体实施方式

[0027] 这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
[0028] 下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不只是所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用性和/或其他材料的使用。另外,以下描述的第一特征在第二特征值“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
[0029] 在本申请的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
[0030] 能源是人类社会一切生产活动的基础,随着现代经济的发展,人类对能源的需求正变得日益加剧。传统能源的储量有限,其含量正在变得越来越枯竭,并且由于传统能源在利用过程中会产生大量有毒有害气体、固体等,已经成为日益严重的环境污染的罪魁祸首。基于此,发展新能源和可再生能源是二十一世纪的研究重点。其中,太阳能资源依赖于太阳光,是一种取之不尽的的清洁能源。近年,太阳能光伏产业得到了快速发展,开发廉价、高效的太阳能电池已经成为当前学术活动、企业活动的研究热点。
[0031] 染料敏化太阳能电池(DSSC)是一种纳米结构的光电转换器件,其一般由五部分组成,分别为透明导电基底、纳米半导体薄膜、染料敏化剂、电解质和对电极。染料敏化剂实现光吸收的功能,染料分子吸收太阳光之后,电子发生跃迁并注入纳米半导体薄膜的导带中,随后由经电极流出,产生工作电流,空穴留在氧化态的染料分子中被电解质中的氧化还原对还原,染料分子跃迁回基态,从而再次吸收光子;氧化态的电解质则扩散至对电极,由于对电极表面涂覆有催化剂薄膜,在催化剂作用下电解质发生还原反应,至此完成光电化学反应的循环。
[0032] 染料敏化太阳电池由于制作过程简单,价格低廉,效率高,具备十分广阔的市场应用前景。然而,由于电解质溶液一般呈酸性,会对纳米半导体薄膜产生腐蚀作用,影响染料敏化太阳电池的工作稳定性;另外,一般的染料敏化太阳电池中采用TiO2颗粒作为纳米半导体薄膜,由于TiO2纳米颗粒薄膜大的比表面积和缺陷存在,容易引起电子的复合,从而降低光电转换效率。
[0033] 本发明基于染料敏化太阳能电池的光阳极结构,首先在光阳极的透明电极表面磁控溅射一层定域的氧化钨薄膜,经过纳米线生长,并将纳米线做成核壳结构后,在其表面设置有玻璃微珠结构,产生了意想不到的有益效果。
[0034] 下面结合实施例对本发明做进一步的说明。
[0035] 实施例1:
[0036] 本申请的实施例涉及一种太阳能电池,所述太阳能电池基于染料敏化太阳电池,所述染料敏化太阳电池由光阳极、对电极和电解液构成;所述光阳极的结构为由外而内的FTO基底、生长于FTO基底表面的氧化钨纳米线、涂覆于氧化钨纳米线底部的玻璃微珠;所述氧化钨纳米线为核壳结构,核为氧化钨纳米线,壳为氧化钛;所述对电极为由外而内的FTO基底、反光层、Pt催化层;所述电解液中加入防冻剂正丙醇。
[0037] 优选地,如图1,所述染料敏化太阳电池的制备步骤如下:
[0038] 步骤一,制作FTO基底:
[0039] a)清洗FTO基底:选择FTO导电玻璃作为光阳极的基底,首先,切割FTO导电玻璃,用沾有洗洁精的超净布擦拭FTO导电一面,去除表面存在的油污、尘埃等杂质,然后用去离子水反复冲洗数次,直至将洗洁精清洗干净,将其放入臭氧清洗机中,臭氧处理10min,接着依照丙酮、乙醇、去离子水的顺序分别超声清洗30min,用氮气枪吹干待用;
[0040] b)生长氧化钨纳米线:使用磁控溅射镀膜技术在FTO表面蒸镀一层150nm厚的金属钨膜作为氧化钨纳米线生长源,同时使用陶瓷模板实现钨膜的定域生长,磁控溅射过程中将陶瓷模板贴附在FTO表面,其中,陶瓷模板的孔隙直径为2μm,间距为50μm,磁控溅射电流为2A;氧化钨纳米线生长采用热氧化方法,将镀有钨膜的FTO导电玻璃放入热蒸发炉中,在惰性气体的保护下,400℃保温5h,自然冷却后取出;
[0041] c)制备核壳结构氧化钨纳米线:称量100ml的无水乙醇溶液,加入1ml的C16H36O4Ti,在70℃水浴下搅拌均匀,将生长有氧化钨纳米线的FTO导电玻璃放入溶液中,静置11s,然后快速取出,该浸入溶液过程重复五次,以能够保证纳米线表面充分的包裹上壳结构,接着将取出的样品在400℃退火1h,自然冷却后即得带有核壳结构氧化钨纳米线的FTO基底;
[0042] 步骤二,吸附玻璃微珠:
[0043] 取20g购买的玻璃微珠(玻璃微珠直径为5~10μm)用去离子水清洗,干燥,加入到20mol/l的氢氟酸溶液中磁力搅拌20min后真空抽滤,用去离子水清洗至中性后干燥,取去离子水100ml,依次加入2.5g柠檬酸钠、2.2g硫酸铵和5g纳米银粒子,随后加入氨水调节pH值为6,将干燥的玻璃微珠加入上述溶液中,在60℃下,磁力搅拌2h,反应后冷却至室温;将步骤一中得到的带有核壳结构氧化钨纳米线的FTO基底浸入上述溶液中,水浴80℃下静置
5h,即可在FTO基底表面形成玻璃微珠结合核壳结构氧化钨纳米线材料。
[0044] 步骤三,制备对电极:
[0045] 选取与光阳极相同尺寸的FTO导电玻璃,然后在其表面磁控溅射一层Ag,作为反光层,Ag厚度为300nm,然后再蒸镀Pt催化剂层,Pt催化剂层厚度为50nm。
[0046] 步骤四,组装染料敏化太阳电池:
[0047] 电解液应用传统的碘/碘三负离子电解液:首先称取100ml的乙腈溶液,向其中加入0.1M的碘化锂,0.1M单质碘,0.6M 4-叔丁基吡啶和0.6M的四丁基碘化铵,避光超声5min,使其充分溶解,然后称取8g的纳米TiO2纳米粒子,在水浴70摄氏度下,将TiO2纳米粒子加入电解质溶液中,最后加入5ml防冻剂正丙醇,超声30min,使其充分混合均匀;
[0048] 染料溶液:称取N719粉末50mg,无水乙醇30ml,将N719加入无水乙醇中,充分溶解,避光搅拌12h。取上述配制的染料溶液放入棕色玻璃皿中,然后将FTO基底进入该棕色玻璃皿中,避光在60℃下敏化3h,取出,然后对电极与该光阳极封装在一起,封装材料采用热封膜,将电解液从对电极一端的小孔注入,封装小孔,连接导线,形成本发明的改进型染料敏化太阳能电池。
[0049] 优选的,在FTO基底上,当经过热氧化法生长的氧化钨纳米线长度在5~20μm,直径70nm,密度为107根/cm2,本发明染料敏化太阳能电池是能量转换器件,其性能测试在AM1.5G的标准光谱下进行性能测试,该器件短路电流密度约15.21mA/cm2,开路电压
0.74V,光电能量转换效率可达18.3%;重复测量500h后其电流衰减小于5%,在大气中放置
30天后,测试其能量转换效率衰减为初始值的94%;测试表明,该方案的染料敏化太阳能电池电流密度较高,光电转换效率较高,器件的稳定性良好。
[0050] 通过测试,本发明的太阳电池可以高效的实现光电转换,并且重复性好,衰减小,并且该照明设备防冻效果好,本发明实现了太阳光的充分利用,有效节约了能源。
[0051] 实施例2:
[0052] 本申请的实施例涉及一种太阳能电池,所述太阳能电池基于染料敏化太阳电池,所述染料敏化太阳电池由光阳极、对电极和电解液构成;所述光阳极的结构为由外而内的FTO基底、生长于FTO基底表面的氧化钨纳米线、涂覆于氧化钨纳米线底部的玻璃微珠;所述氧化钨纳米线为核壳结构,核为氧化钨纳米线,壳为氧化钛;所述对电极为由外而内的FTO基底、反光层、Pt催化层;所述电解液中加入防冻剂正丙醇。
[0053] 优选地,如图1,所述染料敏化太阳电池的制备步骤如下:
[0054] 步骤一,制作FTO基底:
[0055] a)清洗FTO基底:选择FTO导电玻璃作为光阳极的基底,首先,切割FTO导电玻璃,用沾有洗洁精的超净布擦拭FTO导电一面,去除表面存在的油污、尘埃等杂质,然后用去离子水反复冲洗数次,直至将洗洁精清洗干净,将其放入臭氧清洗机中,臭氧处理10min,接着依照丙酮、乙醇、去离子水的顺序分别超声清洗30min,用氮气枪吹干待用;
[0056] b)生长氧化钨纳米线:使用磁控溅射镀膜技术在FTO表面蒸镀一层150nm厚的金属钨膜作为氧化钨纳米线生长源,同时使用陶瓷模板实现钨膜的定域生长,磁控溅射过程中将陶瓷模板贴附在FTO表面,其中,陶瓷模板的孔隙直径为2μm,间距为50μm,磁控溅射电流为2A;氧化钨纳米线生长采用热氧化方法,将镀有钨膜的FTO导电玻璃放入热蒸发炉中,在惰性气体的保护下,400℃保温5h,自然冷却后取出;
[0057] c)制备核壳结构氧化钨纳米线:称量100ml的无水乙醇溶液,加入1ml的C16H36O4Ti,在70℃水浴下搅拌均匀,将生长有氧化钨纳米线的FTO导电玻璃放入溶液中,静置11s,然后快速取出,该浸入溶液过程重复五次,以能够保证纳米线表面充分的包裹上壳结构,接着将取出的样品在400℃退火1h,自然冷却后即得带有核壳结构氧化钨纳米线的FTO基底;
[0058] 步骤二,吸附玻璃微珠:
[0059] 取20g购买的玻璃微珠(玻璃微珠直径为5~10μm)用去离子水清洗,干燥,加入到20mol/l的氢氟酸溶液中磁力搅拌20min后真空抽滤,用去离子水清洗至中性后干燥,取去离子水100ml,依次加入2.5g柠檬酸钠、2.2g硫酸铵和5g纳米银粒子,随后加入氨水调节pH值为6,将干燥的玻璃微珠加入上述溶液中,在60℃下,磁力搅拌2h,反应后冷却至室温;将步骤一中得到的带有核壳结构氧化钨纳米线的FTO基底浸入上述溶液中,水浴80℃下静置
5h,即可在FTO基底表面形成玻璃微珠结合核壳结构氧化钨纳米线材料。
[0060] 步骤三,制备对电极:
[0061] 选取与光阳极相同尺寸的FTO导电玻璃,然后在其表面磁控溅射一层Ag,作为反光层,Ag厚度为300nm,然后再蒸镀Pt催化剂层,Pt催化剂层厚度为50nm。
[0062] 步骤四,组装染料敏化太阳电池:
[0063] 电解液应用传统的碘/碘三负离子电解液:首先称取100ml的乙腈溶液,向其中加入0.1M的碘化锂,0.1M单质碘,0.6M 4-叔丁基吡啶和0.6M的四丁基碘化铵,避光超声5min,使其充分溶解,然后称取8g的纳米TiO2纳米粒子,在水浴70摄氏度下,将TiO2纳米粒子加入电解质溶液中,最后加入5ml防冻剂正丙醇,超声30min,使其充分混合均匀;
[0064] 染料溶液:称取N719粉末50mg,无水乙醇30ml,将N719加入无水乙醇中,充分溶解,避光搅拌12h。取上述配制的染料溶液放入棕色玻璃皿中,然后将FTO基底进入该棕色玻璃皿中,避光在60℃下敏化3h,取出,然后对电极与该光阳极封装在一起,封装材料采用热封膜,将电解液从对电极一端的小孔注入,封装小孔,连接导线,形成本发明的改进型染料敏化太阳能电池。
[0065] 优选的,在FTO基底上,当经过热氧化法生长的氧化钨纳米线长度在5~22μm,直径70nm,密度为108根/cm2,本发明染料敏化太阳能电池是能量转换器件,其性能测试在AM1.5G的标准光谱下进行性能测试,该器件短路电流密度约16.21mA/cm2,开路电压约
0.74V,光电能量转换效率可达17.4%;重复测量500h后其电流衰减小于6%,在大气中放置
30天后,测试其能量转换效率衰减为初始值的94%;测试表明,该方案的染料敏化太阳能电池电流密度较高,光电转换效率较高,器件的稳定性良好。
[0066] 通过测试,本发明的太阳电池可以高效的实现光电转换,并且重复性好,衰减小,并且该照明设备防冻效果好,本发明实现了太阳光的充分利用,有效节约了能源。
[0067] 实施例3:
[0068] 本申请的实施例涉及一种太阳能电池,所述太阳能电池基于染料敏化太阳电池,所述染料敏化太阳电池由光阳极、对电极和电解液构成;所述光阳极的结构为由外而内的FTO基底、生长于FTO基底表面的氧化钨纳米线、涂覆于氧化钨纳米线底部的玻璃微珠;所述氧化钨纳米线为核壳结构,核为氧化钨纳米线,壳为氧化钛;所述对电极为由外而内的FTO基底、反光层、Pt催化层;所述电解液中加入防冻剂正丙醇。
[0069] 优选地,如图1,所述染料敏化太阳电池的制备步骤如下:
[0070] 步骤一,制作FTO基底:
[0071] a)清洗FTO基底:选择FTO导电玻璃作为光阳极的基底,首先,切割FTO导电玻璃,用沾有洗洁精的超净布擦拭FTO导电一面,去除表面存在的油污、尘埃等杂质,然后用去离子水反复冲洗数次,直至将洗洁精清洗干净,将其放入臭氧清洗机中,臭氧处理10min,接着依照丙酮、乙醇、去离子水的顺序分别超声清洗30min,用氮气枪吹干待用;
[0072] b)生长氧化钨纳米线:使用磁控溅射镀膜技术在FTO表面蒸镀一层150nm厚的金属钨膜作为氧化钨纳米线生长源,同时使用陶瓷模板实现钨膜的定域生长,磁控溅射过程中将陶瓷模板贴附在FTO表面,其中,陶瓷模板的孔隙直径为2μm,间距为50μm,磁控溅射电流为2A;氧化钨纳米线生长采用热氧化方法,将镀有钨膜的FTO导电玻璃放入热蒸发炉中,在惰性气体的保护下,400℃保温5h,自然冷却后取出;
[0073] c)制备核壳结构氧化钨纳米线:称量100ml的无水乙醇溶液,加入1ml的C16H36O4Ti,在70℃水浴下搅拌均匀,将生长有氧化钨纳米线的FTO导电玻璃放入溶液中,静置11s,然后快速取出,该浸入溶液过程重复五次,以能够保证纳米线表面充分的包裹上壳结构,接着将取出的样品在400℃退火1h,自然冷却后即得带有核壳结构氧化钨纳米线的FTO基底;
[0074] 步骤二,吸附玻璃微珠:
[0075] 取20g购买的玻璃微珠(玻璃微珠直径为5~10μm)用去离子水清洗,干燥,加入到20mol/l的氢氟酸溶液中磁力搅拌20min后真空抽滤,用去离子水清洗至中性后干燥,取去离子水100ml,依次加入2.5g柠檬酸钠、2.2g硫酸铵和5g纳米银粒子,随后加入氨水调节pH值为6,将干燥的玻璃微珠加入上述溶液中,在60℃下,磁力搅拌2h,反应后冷却至室温;将步骤一中得到的带有核壳结构氧化钨纳米线的FTO基底浸入上述溶液中,水浴80℃下静置
5h,即可在FTO基底表面形成玻璃微珠结合核壳结构氧化钨纳米线材料。
[0076] 步骤三,制备对电极:
[0077] 选取与光阳极相同尺寸的FTO导电玻璃,然后在其表面磁控溅射一层Ag,作为反光层,Ag厚度为300nm,然后再蒸镀Pt催化剂层,Pt催化剂层厚度为50nm。
[0078] 步骤四,组装染料敏化太阳电池:
[0079] 电解液应用传统的碘/碘三负离子电解液:首先称取100ml的乙腈溶液,向其中加入0.1M的碘化锂,0.1M单质碘,0.6M 4-叔丁基吡啶和0.6M的四丁基碘化铵,避光超声5min,使其充分溶解,然后称取8g的纳米TiO2纳米粒子,在水浴70摄氏度下,将TiO2纳米粒子加入电解质溶液中,最后加入5ml防冻剂正丙醇,超声30min,使其充分混合均匀;
[0080] 染料溶液:称取N719粉末50mg,无水乙醇30ml,将N719加入无水乙醇中,充分溶解,避光搅拌12h。取上述配制的染料溶液放入棕色玻璃皿中,然后将FTO基底进入该棕色玻璃皿中,避光在60℃下敏化3h,取出,然后对电极与该光阳极封装在一起,封装材料采用热封膜,将电解液从对电极一端的小孔注入,封装小孔,连接导线,形成本发明的改进型染料敏化太阳能电池。
[0081] 优选的,在FTO基底上,当经过热氧化法生长的氧化钨纳米线长度在5~24μm,直径70nm,密度为108根/cm2,本发明染料敏化太阳能电池是能量转换器件,其性能测试在AM1.5G的标准光谱下进行性能测试,该器件短路电流密度约16.21mA/cm2,开路电压约
0.74V,光电能量转换效率可达16.8%;重复测量500h后其电流衰减小于6%,在大气中放置
30天后,测试其能量转换效率衰减为初始值的94%;测试表明,该方案的染料敏化太阳能电池电流密度较高,光电转换效率较高,器件的稳定性良好。
[0082] 通过测试,本发明的太阳电池可以高效的实现光电转换,并且重复性好,衰减小,并且该照明设备防冻效果好,本发明实现了太阳光的充分利用,有效节约了能源。
[0083] 实施例4:
[0084] 本申请的实施例涉及一种太阳能电池,所述太阳能电池基于染料敏化太阳电池,所述染料敏化太阳电池由光阳极、对电极和电解液构成;所述光阳极的结构为由外而内的FTO基底、生长于FTO基底表面的氧化钨纳米线、涂覆于氧化钨纳米线底部的玻璃微珠;所述氧化钨纳米线为核壳结构,核为氧化钨纳米线,壳为氧化钛;所述对电极为由外而内的FTO基底、反光层、Pt催化层;所述电解液中加入防冻剂正丙醇。
[0085] 优选地,如图1,所述染料敏化太阳电池的制备步骤如下:
[0086] 步骤一,制作FTO基底:
[0087] a)清洗FTO基底:选择FTO导电玻璃作为光阳极的基底,首先,切割FTO导电玻璃,用沾有洗洁精的超净布擦拭FTO导电一面,去除表面存在的油污、尘埃等杂质,然后用去离子水反复冲洗数次,直至将洗洁精清洗干净,将其放入臭氧清洗机中,臭氧处理10min,接着依照丙酮、乙醇、去离子水的顺序分别超声清洗30min,用氮气枪吹干待用;
[0088] b)生长氧化钨纳米线:使用磁控溅射镀膜技术在FTO表面蒸镀一层150nm厚的金属钨膜作为氧化钨纳米线生长源,同时使用陶瓷模板实现钨膜的定域生长,磁控溅射过程中将陶瓷模板贴附在FTO表面,其中,陶瓷模板的孔隙直径为2μm,间距为50μm,磁控溅射电流为2A;氧化钨纳米线生长采用热氧化方法,将镀有钨膜的FTO导电玻璃放入热蒸发炉中,在惰性气体的保护下,400℃保温5h,自然冷却后取出;
[0089] c)制备核壳结构氧化钨纳米线:称量100ml的无水乙醇溶液,加入1ml的C16H36O4Ti,在70℃水浴下搅拌均匀,将生长有氧化钨纳米线的FTO导电玻璃放入溶液中,静置11s,然后快速取出,该浸入溶液过程重复五次,以能够保证纳米线表面充分的包裹上壳结构,接着将取出的样品在400℃退火1h,自然冷却后即得带有核壳结构氧化钨纳米线的FTO基底;
[0090] 步骤二,吸附玻璃微珠:
[0091] 取20g购买的玻璃微珠(玻璃微珠直径为5~10μm)用去离子水清洗,干燥,加入到20mol/l的氢氟酸溶液中磁力搅拌20min后真空抽滤,用去离子水清洗至中性后干燥,取去离子水100ml,依次加入2.5g柠檬酸钠、2.2g硫酸铵和5g纳米银粒子,随后加入氨水调节pH值为6,将干燥的玻璃微珠加入上述溶液中,在60℃下,磁力搅拌2h,反应后冷却至室温;将步骤一中得到的带有核壳结构氧化钨纳米线的FTO基底浸入上述溶液中,水浴80℃下静置
5h,即可在FTO基底表面形成玻璃微珠结合核壳结构氧化钨纳米线材料。
[0092] 步骤三,制备对电极:
[0093] 选取与光阳极相同尺寸的FTO导电玻璃,然后在其表面磁控溅射一层Ag,作为反光层,Ag厚度为300nm,然后再蒸镀Pt催化剂层,Pt催化剂层厚度为50nm。
[0094] 步骤四,组装染料敏化太阳电池:
[0095] 电解液应用传统的碘/碘三负离子电解液:首先称取100ml的乙腈溶液,向其中加入0.1M的碘化锂,0.1M单质碘,0.6M 4-叔丁基吡啶和0.6M的四丁基碘化铵,避光超声5min,使其充分溶解,然后称取8g的纳米TiO2纳米粒子,在水浴70摄氏度下,将TiO2纳米粒子加入电解质溶液中,最后加入5ml防冻剂正丙醇,超声30min,使其充分混合均匀;
[0096] 染料溶液:称取N719粉末50mg,无水乙醇30ml,将N719加入无水乙醇中,充分溶解,避光搅拌12h。取上述配制的染料溶液放入棕色玻璃皿中,然后将FTO基底进入该棕色玻璃皿中,避光在60℃下敏化3h,取出,然后对电极与该光阳极封装在一起,封装材料采用热封膜,将电解液从对电极一端的小孔注入,封装小孔,连接导线,形成本发明的改进型染料敏化太阳能电池。
[0097] 优选的,在FTO基底上,当经过热氧化法生长的氧化钨纳米线长度在5~26μm,直径8
90nm,密度为10 根/cm2,本发明染料敏化太阳能电池是能量转换器件,其性能测试在AM1.5G的标准光谱下进行性能测试,该器件短路电流密度约16.21mA/cm2,开路电压约
0.74V,光电能量转换效率可达15.1%;重复测量500h后其电流衰减小于6%,在大气中放置
30天后,测试其能量转换效率衰减为初始值的94%;测试表明,该方案的染料敏化太阳能电池电流密度较高,光电转换效率较高,器件的稳定性良好。
[0098] 通过测试,本发明的太阳电池可以高效的实现光电转换,并且重复性好,衰减小,并且该照明设备防冻效果好,本发明实现了太阳光的充分利用,有效节约了能源。
[0099] 实施例5:
[0100] 本申请的实施例涉及一种太阳能电池,所述太阳能电池基于染料敏化太阳电池,所述染料敏化太阳电池由光阳极、对电极和电解液构成;所述光阳极的结构为由外而内的FTO基底、生长于FTO基底表面的氧化钨纳米线、涂覆于氧化钨纳米线底部的玻璃微珠;所述氧化钨纳米线为核壳结构,核为氧化钨纳米线,壳为氧化钛;所述对电极为由外而内的FTO基底、反光层、Pt催化层;所述电解液中加入防冻剂正丙醇。
[0101] 优选地,如图1,所述染料敏化太阳电池的制备步骤如下:
[0102] 步骤一,制作FTO基底:
[0103] a)清洗FTO基底:选择FTO导电玻璃作为光阳极的基底,首先,切割FTO导电玻璃,用沾有洗洁精的超净布擦拭FTO导电一面,去除表面存在的油污、尘埃等杂质,然后用去离子水反复冲洗数次,直至将洗洁精清洗干净,将其放入臭氧清洗机中,臭氧处理10min,接着依照丙酮、乙醇、去离子水的顺序分别超声清洗30min,用氮气枪吹干待用;
[0104] b)生长氧化钨纳米线:使用磁控溅射镀膜技术在FTO表面蒸镀一层150nm厚的金属钨膜作为氧化钨纳米线生长源,同时使用陶瓷模板实现钨膜的定域生长,磁控溅射过程中将陶瓷模板贴附在FTO表面,其中,陶瓷模板的孔隙直径为2μm,间距为50μm,磁控溅射电流为2A;氧化钨纳米线生长采用热氧化方法,将镀有钨膜的FTO导电玻璃放入热蒸发炉中,在惰性气体的保护下,400℃保温5h,自然冷却后取出;
[0105] c)制备核壳结构氧化钨纳米线:称量100ml的无水乙醇溶液,加入1ml的C16H36O4Ti,在70℃水浴下搅拌均匀,将生长有氧化钨纳米线的FTO导电玻璃放入溶液中,静置11s,然后快速取出,该浸入溶液过程重复五次,以能够保证纳米线表面充分的包裹上壳结构,接着将取出的样品在400℃退火1h,自然冷却后即得带有核壳结构氧化钨纳米线的FTO基底;
[0106] 步骤二,吸附玻璃微珠:
[0107] 取20g购买的玻璃微珠(玻璃微珠直径为5~10μm)用去离子水清洗,干燥,加入到20mol/l的氢氟酸溶液中磁力搅拌20min后真空抽滤,用去离子水清洗至中性后干燥,取去离子水100ml,依次加入2.5g柠檬酸钠、2.2g硫酸铵和5g纳米银粒子,随后加入氨水调节pH值为6,将干燥的玻璃微珠加入上述溶液中,在60℃下,磁力搅拌2h,反应后冷却至室温;将步骤一中得到的带有核壳结构氧化钨纳米线的FTO基底浸入上述溶液中,水浴80℃下静置
5h,即可在FTO基底表面形成玻璃微珠结合核壳结构氧化钨纳米线材料。
[0108] 步骤三,制备对电极:
[0109] 选取与光阳极相同尺寸的FTO导电玻璃,然后在其表面磁控溅射一层Ag,作为反光层,Ag厚度为300nm,然后再蒸镀Pt催化剂层,Pt催化剂层厚度为50nm。
[0110] 步骤四,组装染料敏化太阳电池:
[0111] 电解液应用传统的碘/碘三负离子电解液:首先称取100ml的乙腈溶液,向其中加入0.1M的碘化锂,0.1M单质碘,0.6M 4-叔丁基吡啶和0.6M的四丁基碘化铵,避光超声5min,使其充分溶解,然后称取8g的纳米TiO2纳米粒子,在水浴70摄氏度下,将TiO2纳米粒子加入电解质溶液中,最后加入5ml防冻剂正丙醇,超声30min,使其充分混合均匀;
[0112] 染料溶液:称取N719粉末50mg,无水乙醇30ml,将N719加入无水乙醇中,充分溶解,避光搅拌12h。取上述配制的染料溶液放入棕色玻璃皿中,然后将FTO基底进入该棕色玻璃皿中,避光在60℃下敏化3h,取出,然后对电极与该光阳极封装在一起,封装材料采用热封膜,将电解液从对电极一端的小孔注入,封装小孔,连接导线,形成本发明的改进型染料敏化太阳能电池。
[0113] 优选的,在FTO基底上,当经过热氧化法生长的氧化钨纳米线长度在5~10μm,直径90nm,密度为108根/cm2,本发明染料敏化太阳能电池是能量转换器件,其性能测试在AM1.5G的标准光谱下进行性能测试,该器件短路电流密度约16.21mA/cm2,开路电压约
0.74V,光电能量转换效率可达13.4%;重复测量500h后其电流衰减小于8%,在大气中放置
30天后,测试其能量转换效率衰减为初始值的94%;测试表明,该方案的染料敏化太阳能电池电流密度较高,光电转换效率较高,器件的稳定性良好。
[0114] 通过测试,本发明的太阳电池可以高效的实现光电转换,并且重复性好,衰减小,并且该照明设备防冻效果好,本发明实现了太阳光的充分利用,有效节约了能源。
[0115] 本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
[0116] 应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈