首页 / 专利库 / 园艺 / 地表覆盖物 / 地膜 / 一种非织造降解纤维地膜及制备方法

一种非织造降解纤维地膜及制备方法

阅读:492发布:2020-05-12

专利汇可以提供一种非织造降解纤维地膜及制备方法专利检索,专利查询,专利分析的服务。并且本 发明 提出一种非织造降解 纤维 地膜 及制备方法,所述非织造降解纤维地膜是将亚麻秸秆裁切后辊压形成疏松纤维,然后浸入以 淀粉 、聚乙烯醇、 水 和酯化助剂为原料制成的胶黏物中,捞出后沥干得到负载淀粉、聚乙烯醇的复合纤维,接着将复合纤维铺网、针刺加固为纤维膜,再在纤维膜表面 喷涂 耐水涂层,接着热辊平整定型而制得。本发明提供的制作工艺简单,亚麻秸秆来源广泛,成本低,同时,所得地膜保墒效果更好,可防止纤维膜铺地后过早破损,因此有利于 农作物 的生长,可提高农作物的产量,使用后可以直接翻入 土壤 中降解,不会对土壤造成污染。,下面是一种非织造降解纤维地膜及制备方法专利的具体信息内容。

1.一种非织造降解纤维地膜,其特征在于,所述非织造降解纤维地膜是将亚麻秸秆裁切后辊压形成疏松纤维,然后浸入以淀粉、聚乙烯醇、和酯化助剂为原料制成的胶黏物中,捞出后沥干得到负载淀粉、聚乙烯醇的复合纤维,接着将复合纤维铺网、针刺加固为纤维膜,再在纤维膜表面喷涂耐水涂层,接着热辊平整定型而制得。
2.根据权利要求1所述的一种非织造降解纤维地膜,其特征在于,所述酯化助剂为磷酸酯、醋酸、丁酸、乙酸酐中的一种或两种以上的组合,所述酯化助剂、淀粉的质量比例为1-5:
100。
3.根据权利要求1所述的一种非织造降解纤维地膜,其特征在于,所述耐水涂层为丙烯酸乳液、聚酯乳液、滑石粉按照质量比例3-5:1-1.5:0.1-0.8复合而成,所述丙烯酸乳液的固含量为35-40%,所述聚氨酯乳液的固含量为38-42%。
4.如权利要求1-3任一权项所述的一种非织造降解纤维地膜的制备方法,其特征在于,具体制备方法如下:
(1)将亚麻秸秆扎后裁切为短节,然后自然晾干,接着将短节亚麻秸秆送入辊压机中进行辊压,使亚麻秸秆解束得到疏松的纤维;
(2)将淀粉、聚乙烯醇、水加入到带搅拌装置的容器中,分散后搅拌均匀形成浆状物,然后加入酯化助剂进行酯化处理,得到胶黏物;
(3)将疏松的纤维浸入过量的胶黏物中,使胶黏物浸润纤维,然后待浸润彻底后将纤维捞出,接着滤除多余的胶黏物,再将纤维放在热中悬浮干燥,待纤维干燥后收纳备用,得到纤维负载淀粉、聚乙烯醇的复合纤维;
(4)将复合纤维进行铺网,然后使用针刺机对复合纤维进行针刺,利用刺针的穿刺作用,将蓬松的纤维网加固得到纤维膜;
(5)向加固得到纤维膜的表面喷涂耐水涂层,使微孔封闭,然后使用热辊将纤维膜平整定型,待纤维膜被定型烘干,即得一种非织造降解纤维地膜。
5.根据权利要求4所述的一种非织造降解纤维地膜的制备方法,其特征在于,步骤(1)中所述裁切后短节亚麻秸秆的长度为1-2cm。
6.根据权利要求4所述的一种非织造降解纤维地膜的制备方法,其特征在于,步骤(1)中所述自然晾干后短节亚麻秸秆的含水量低于3%。
7.根据权利要求4所述的一种非织造降解纤维地膜的制备方法,其特征在于,步骤(2)中所述浆状物制备中,水、淀粉、聚乙烯醇的质量比例为100:4-7:0.8-1.5。
8.根据权利要求4所述的一种非织造降解纤维地膜的制备方法,其特征在于,步骤(2)中所述酯化处理的温度为60-80℃,酯化反应30-45min。
9.根据权利要求4所述的一种非织造降解纤维地膜的制备方法,其特征在于,步骤(4)
2
中所述针刺的刺针频率为500-600次/min,刺针密度为3000-4500枚/m,复合纤维的输送速度为8-12m/min。
10.根据权利要求4所述的一种非织造降解纤维地膜的制备方法,其特征在于,步骤(5)中所述热辊定型的温度为110-125℃,时间为10-20s。

说明书全文

一种非织造降解纤维地膜及制备方法

技术领域

[0001] 本发明涉及农用地膜技术领域,特别是涉及一种非织造降解纤维地膜及制备方法。

背景技术

[0002] 农用地膜不仅能够提高地温、保、保土、保肥,还能在育苗时确保苗齐、苗全、苗壮,而且还有抑草、防病虫、防旱抗涝等功能,最终提高作物产量。农用地膜的普及应用,尤其对于干旱、气候条件恶劣的地区,对农作物起到了保温保墒的关键性作用,使得作物产量明显增加,地膜已经逐渐成为农业中不可缺少的生产物资,对于现代农业的发展具有重要意义。
[0003] 随着地膜覆盖面积不断推广,地膜使用量逐年增加,由于普通地膜难以回收,而且在土壤中100年也不降解。因此,经过多年的累积使用,土壤中地膜残留量越来越多,大量废旧地膜年复一年残留累积在土壤中,其危害正日益凸现。随着使用时间和用量的增长,滞留在土地里地膜越来越多,会引起土壤板结、产量下降等一系列严重问题。
[0004] 目前,解决农用地膜污染的途径主要有回收利用和使用降解地膜。由于农用地膜的材质原因,回收利用普遍存在回收效率低、回收成本高、易造成二次污染且回收利用价值不大等缺点,因此,研究和应用可降解地膜成为农用地膜主要的发展趋势。可降解地膜按照降解方式,可分为光降解、热降解、化降解、生物降解以及组合降解等,其中,真正环保、真正绿色的就是生物降解地膜。近些年来,农技推广人员一直尝试推广生物降解地膜。如聚乳酸、淀粉基降解塑料地膜等,但由于生物降解塑料存在加工缺陷,特别是制备成膜工艺难度较大,对原料要求高,使得生物降解薄膜用于地膜成本高,影响了大面积推广使用。
[0005] 中国发明专利申请号201710486677.4公开了一种剑麻纤维增强淀粉环保地膜,包括以下重量份数的原料:淀粉40份、剑麻纤维100份、低熔指线形低密度聚乙烯树脂5份、乙烯-醋酸乙烯酯共聚物树脂3份、远红外陶瓷粉3份、苯并三唑类紫外线吸收剂1份、麦饭石5份、酪蛋白酸钠5份、酸正丁酯25份、聚对苯二甲酸丁二酯20份、白炭黑15份、亚麻油籽5份、丝素蛋白20份、磷酸胍5份、山梨醇5份、滑石粉5份、鱼腥草提取物20份。中国发明专利申请号201110036149.1公开了一种可生物降解的海藻液态地膜,包含的组分及其重量份为:海藻提取物100份;聚丙烯酸海藻胶树脂2-10份;木质磺酸盐50-70份;腐植酸10-20份;糖蜜、生化黄腐酸盐或者由糖蜜和生化黄腐酸盐以1:2的重量比混合的混合物20-30份;羧甲基纤维素10-20份;以及水300-500份。
[0006] 为了有效克服生物降解地膜成膜难度大、成本高的缺陷,以及现有的业态地膜使用操作难度大、保墒作用有限的问题,有必要提出一种新型生物降解地膜,进而促进生物降解农用地膜的发展和应用。

发明内容

[0007] 针对目前生物降解地膜存在难以加工、成本高的问题,本发明提出一种非织造降解纤维地膜及制备方法,从而可简单实现生物降解地膜的成膜,同时所得地膜保墒效果好,应用前景佳。
[0008] 为解决上述问题,本发明采用以下技术方案:一种非织造降解纤维地膜,所述非织造降解纤维地膜是将亚麻秸秆裁切后辊压形成疏松纤维,然后浸入以淀粉、聚乙烯醇、水和酯化助剂为原料制成的胶黏物中,捞出后沥干得到负载淀粉、聚乙烯醇的复合纤维,接着将复合纤维铺网、针刺加固为纤维膜,再在纤维膜表面喷涂耐水涂层,接着热辊平整定型而制得。
[0009] 优选的,所述酯化助剂为磷酸酯、醋酸、丁酸、乙酸酐中的一种或两种以上的组合,所述酯化助剂、淀粉的质量比例为1-5:100。
[0010] 优选的,所述耐水涂层为丙烯酸乳液、聚酯乳液、滑石粉按照质量比例3-5:1-1.5:0.1-0.8复合而成,所述丙烯酸乳液的固含量为35-40%,所述聚氨酯乳液的固含量为
38-42%。
[0011] 本发明还提供了一种非织造降解纤维地膜的制备方法,具体制备方法如下:(1)将亚麻秸秆扎后裁切为短节,然后自然晾干,接着将短节亚麻秸秆送入辊压机中进行辊压,使亚麻秸秆解束得到疏松的纤维;
(2)将淀粉、聚乙烯醇、水加入到带搅拌装置的容器中,分散后搅拌均匀形成浆状物,然后加入酯化助剂进行酯化处理,得到胶黏物;
(3)将疏松的纤维浸入过量的胶黏物中,使胶黏物浸润纤维,然后待浸润彻底后将纤维捞出,接着滤除多余的胶黏物,再将纤维放在热中悬浮干燥,待纤维干燥后收纳备用,得到纤维负载淀粉、聚乙烯醇的复合纤维;
(4)将复合纤维进行铺网,然后使用针刺机对复合纤维进行针刺,利用刺针的穿刺作用,将蓬松的纤维网加固得到纤维膜;
(5)向加固得到纤维膜的表面喷涂耐水涂层,使微孔封闭,然后使用热辊将纤维膜平整定型,待纤维膜被定型烘干,即得一种非织造降解纤维地膜。
[0012] 制备流程如附图5所示。
[0013] 优选的,步骤(1)中所述裁切后短节亚麻秸秆的长度为1-2cm。
[0014] 优选的,步骤(1)中所述自然晾干后短节亚麻秸秆的含水量低于3%。
[0015] 优选的,步骤(2)中所述浆状物制备中,水、淀粉、聚乙烯醇的质量比例为100:4-7:0.8-1.5。
[0016] 优选的,步骤(2)中所述酯化处理的温度为60-80℃,酯化反应30-45min。
[0017] 优选的,步骤(4)中所述针刺的刺针频率为500-600次/min,刺针密度为3000-4500枚/m2,复合纤维的输送速度为8-12m/min。
[0018] 优选的,步骤(5)中所述热辊定型的温度为110-125℃,时间为10-20s。
[0019] 公知的,亚麻纤维具有许多优良的性能,如吸湿散热、保健抑菌、防污抗静电、防紫外线、阻燃效果极佳,是极为可靠的的环境亲密型材料,并且强韧柔细,因此,本发明将亚麻纤维作为生物降解纤维地膜的基础原料,可得到学性能佳且环境友好型的生物降解地膜,所得地膜使用后可以直接翻入土壤中降解,不会对土壤造成污染。
[0020] 本发明首先将亚麻秸秆裁切成短节后,待自然晾干后导入辊压机中,晾干后的秸秆含水量低于3%,便于秸秆纤维后续处理,亚麻秸秆在辊压机中高压的作用下,纤维结构逐渐趋于松散,进而发生解束,可得到疏松的纤维,通过解束得到的疏松纤维成为良好的载体。
[0021] 进一步的,将疏松的纤维充分浸润胶黏物。其中,胶黏物主要是将淀粉、聚乙烯醇、水的浆状物放入可搅拌的容器中后加热容器,然后引入酯化剂进行酯化反应,使淀粉、聚乙烯醇、水的浆状物发生酯化反应形成胶黏状的酯化淀粉、酯化聚乙烯醇的混合物。通过酯化剂将淀粉和聚乙烯醇酯化,使得到的胶液具有良好的耐水性。浸润上述胶黏物的疏松纤维在滤除多余胶黏物并干燥后,可得到纤维负载淀粉、聚乙烯醇的复合纤维,不仅具有良好的耐水性,而且可实现生物降解。
[0022] 更进一步的,将负载淀粉、聚乙烯醇的复合纤维经开松梳理和铺网处理后使用针刺机对复合纤维进行针刺处理,通过有效控制针刺的频率、刺针密度及纤维的疏松速度,利用刺针的穿刺作用,将蓬松的纤维网加固为纤维膜,实现了利用非织造的铺网针刺得到纤维膜,无需利用吹膜工艺制备地膜,工艺简单。进而在表面喷涂以丙烯酸乳液、聚氨酯乳液、滑石粉为原料的耐水涂层,待耐水涂层分散在纤维膜上后,就会在纤维膜的微孔上形成膜封堵微孔,使纤维膜具有优异的耐水性以及防止纤维膜短时间分解,最后热辊定型得到耐水性好、保墒效果极佳、可实现生物降解的纤维地膜。
[0023] 现有的生物降解地膜存在难以加工、成本高的问题,限制了其应用。鉴于此,本发明提出一种非织造降解纤维地膜及制备方法,将亚麻秸秆扎捆后裁切为短节,然后送入辊压机辊压,使亚麻秸秆解束形成疏松的纤维;将淀粉与聚乙烯醇、水分散为浆状物,加入酯化助剂加热搅拌酯化处理,得到胶黏物;将疏松的纤维浸入过量的胶黏物,使胶黏物浸润纤维,然后将纤维捞出,滤除多余的胶黏物,在热风中悬浮干燥,得到纤维负载淀粉、聚乙烯醇的复合纤维;将复合纤维通过铺网、针刺,利用刺针的穿刺作用,将蓬松的纤维网加固为纤维膜;进一步在纤维膜表面喷涂耐水涂层,使微孔封闭,将热辊平整定型,得到一种非织造降解纤维地膜。本发明提供的制作工艺简单,亚麻秸秆来源广泛,成本低,同时,所得地膜保墒效果更好,可防止纤维膜铺地后过早破损,因此有利于农作物的生长,可提高农作物的产量,使用后可以直接翻入土壤中降解,不会对土壤造成污染。
[0024] 本发明提出一种非织造降解纤维地膜及制备方法,与现有技术相比,其突出的特点和优异的效果在于:1、本发明通过以亚麻纤维为基础原料,负载酯化的淀粉和聚乙烯醇,实现利用非织造的铺网针刺得到纤维膜,无需利用吹膜工艺制备地膜。
[0025] 2、本发明制作工艺简单,亚麻秸秆来源广泛,成本低。
[0026] 3、本发明制得的非织造降解纤维地膜采用具有耐水功能的涂料填充微孔,使得到的地膜保墒效果更好,而且可防止纤维膜铺地后过早破损,因此有利于农作物的生长,可提高农作物的产量。
[0027] 4、本发明制得的非织造降解纤维地膜主要原料为亚麻秸秆,因此该地膜使用后可以直接翻入土壤中降解,不会对土壤造成污染。

附图说明

[0028] 图1:实施例1得到的纤维膜在蒸馏水中浸泡前的表面图。
[0029] 图2:实施例1得到的纤维膜在蒸馏水中浸泡5天后的表面图。
[0030] 图3:实施例1得到的纤维膜在蒸馏水中浸泡10天后的表面图。
[0031] 图4:实施例1得到的纤维膜在蒸馏水中浸泡15天后的表面图。
[0032] 图5:本发明非织造降解纤维地膜制备流程图

具体实施方式

[0033] 以下通过具体实施方式对本发明作进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。
[0034] 实施例1(1)将亚麻秸秆扎捆后裁切为长度1.5cm的短节,然后自然晾干至含水量为2%,接着将短节亚麻秸秆送入辊压机中进行辊压,使亚麻秸秆解束得到疏松的纤维;
(2)将5kg淀粉、1kg聚乙烯醇、100kg水加入到带搅拌装置的容器中,分散后搅拌均匀形成浆状物,然后加入125g磷酸酯,在温度为70℃下进行38min的酯化处理,得到胶黏物;
(3)将疏松的纤维浸入过量的胶黏物中,使胶黏物浸润纤维,然后待浸润彻底后将纤维捞出,接着滤除多余的胶黏物,再将纤维放在热风中悬浮干燥,待纤维干燥后收纳备用,得到纤维负载淀粉、聚乙烯醇的复合纤维;
(4)将复合纤维进行铺网,然后使用针刺机对复合纤维进行针刺,利用刺针的穿刺作用,将蓬松的纤维网加固得到纤维膜;针刺的刺针频率为550次/min,刺针密度为3800枚/m2,复合纤维的输送速度为10m/min;
(5)向加固得到纤维膜的表面喷涂耐水涂层,使微孔封闭,然后使用热辊将纤维膜平整定型,待纤维膜被定型烘干,热辊定型的温度为120℃,时间为15s,即得一种非织造降解纤维地膜;耐水涂层为丙烯酸乳液、聚氨酯乳液、滑石粉按照质量比例4:1.2:0.4复合而成,丙烯酸乳液的固含量为38%,聚氨酯乳液的固含量为40%。
[0035] 实施例2(1)将亚麻秸秆扎捆后裁切为长度1.2cm的短节,然后自然晾干至含水量为1.8%,接着将短节亚麻秸秆送入辊压机中进行辊压,使亚麻秸秆解束得到疏松的纤维;
(2)将5kg淀粉、0.9kg聚乙烯醇、100kg水加入到带搅拌装置的容器中,分散后搅拌均匀形成浆状物,然后加入100g醋酸,在温度为65℃下进行40min的酯化处理,得到胶黏物;
(3)将疏松的纤维浸入过量的胶黏物中,使胶黏物浸润纤维,然后待浸润彻底后将纤维捞出,接着滤除多余的胶黏物,再将纤维放在热风中悬浮干燥,待纤维干燥后收纳备用,得到纤维负载淀粉、聚乙烯醇的复合纤维;
(4)将复合纤维进行铺网,然后使用针刺机对复合纤维进行针刺,利用刺针的穿刺作用,将蓬松的纤维网加固得到纤维膜;针刺的刺针频率为520次/min,刺针密度为3500枚/m2,复合纤维的输送速度为9m/min;
(5)向加固得到纤维膜的表面喷涂耐水涂层,使微孔封闭,然后使用热辊将纤维膜平整定型,待纤维膜被定型烘干,热辊定型的温度为115℃,时间为18s,即得一种非织造降解纤维地膜;耐水涂层为丙烯酸乳液、聚氨酯乳液、滑石粉按照质量比例4.5:1.2:0.3复合而成,丙烯酸乳液的固含量为36%,聚氨酯乳液的固含量为39%。
[0036] 实施例3(1)将亚麻秸秆扎捆后裁切为长度1.8cm的短节,然后自然晾干至含水量为2.5%,接着将短节亚麻秸秆送入辊压机中进行辊压,使亚麻秸秆解束得到疏松的纤维;
(2)将6kg淀粉、1.2kg聚乙烯醇、100kg水加入到带搅拌装置的容器中,分散后搅拌均匀形成浆状物,然后加入280g丁酸,在温度为75℃下进行35min的酯化处理,得到胶黏物;
(3)将疏松的纤维浸入过量的胶黏物中,使胶黏物浸润纤维,然后待浸润彻底后将纤维捞出,接着滤除多余的胶黏物,再将纤维放在热风中悬浮干燥,待纤维干燥后收纳备用,得到纤维负载淀粉、聚乙烯醇的复合纤维;
(4)将复合纤维进行铺网,然后使用针刺机对复合纤维进行针刺,利用刺针的穿刺作用,将蓬松的纤维网加固得到纤维膜;针刺的刺针频率为580次/min,刺针密度为4200枚/m2,复合纤维的输送速度为11m/min;
(5)向加固得到纤维膜的表面喷涂耐水涂层,使微孔封闭,然后使用热辊将纤维膜平整定型,待纤维膜被定型烘干,热辊定型的温度为120℃,时间为12s,即得一种非织造降解纤维地膜;耐水涂层为丙烯酸乳液、聚氨酯乳液、滑石粉按照质量比例3.5:1.4:0.2复合而成,丙烯酸乳液的固含量为38%,聚氨酯乳液的固含量为41%。
[0037] 实施例4(1)将亚麻秸秆扎捆后裁切为长度1cm的短节,然后自然晾干至含水量为1%,接着将短节亚麻秸秆送入辊压机中进行辊压,使亚麻秸秆解束得到疏松的纤维;
(2)将4kg淀粉、0.8kg聚乙烯醇、100kg水加入到带搅拌装置的容器中,分散后搅拌均匀形成浆状物,然后加入40g乙酸酐,在温度为60℃下进行45min的酯化处理,得到胶黏物;
(3)将疏松的纤维浸入过量的胶黏物中,使胶黏物浸润纤维,然后待浸润彻底后将纤维捞出,接着滤除多余的胶黏物,再将纤维放在热风中悬浮干燥,待纤维干燥后收纳备用,得到纤维负载淀粉、聚乙烯醇的复合纤维;
(4)将复合纤维进行铺网,然后使用针刺机对复合纤维进行针刺,利用刺针的穿刺作用,将蓬松的纤维网加固得到纤维膜;针刺的刺针频率为500次/min,刺针密度为3000枚/m2,复合纤维的输送速度为12m/min;
(5)向加固得到纤维膜的表面喷涂耐水涂层,使微孔封闭,然后使用热辊将纤维膜平整定型,待纤维膜被定型烘干,热辊定型的温度为110℃,时间为20s,即得一种非织造降解纤维地膜;耐水涂层为丙烯酸乳液、聚氨酯乳液、滑石粉按照质量比例5:1:0.1复合而成,丙烯酸乳液的固含量为35%,聚氨酯乳液的固含量为38%。
[0038] 实施例5(1)将亚麻秸秆扎捆后裁切为长度2cm的短节,然后自然晾干至含水量为2.5%,接着将短节亚麻秸秆送入辊压机中进行辊压,使亚麻秸秆解束得到疏松的纤维;
(2)将7kg淀粉、1.5kg聚乙烯醇、100kg水加入到带搅拌装置的容器中,分散后搅拌均匀形成浆状物,然后加入350g磷酸酯,在温度为80℃下进行30min的酯化处理,得到胶黏物;
(3)将疏松的纤维浸入过量的胶黏物中,使胶黏物浸润纤维,然后待浸润彻底后将纤维捞出,接着滤除多余的胶黏物,再将纤维放在热风中悬浮干燥,待纤维干燥后收纳备用,得到纤维负载淀粉、聚乙烯醇的复合纤维;
(4)将复合纤维进行铺网,然后使用针刺机对复合纤维进行针刺,利用刺针的穿刺作用,将蓬松的纤维网加固得到纤维膜;针刺的刺针频率为600次/min,刺针密度为4500枚/m2,复合纤维的输送速度为12m/min;
(5)向加固得到纤维膜的表面喷涂耐水涂层,使微孔封闭,然后使用热辊将纤维膜平整定型,待纤维膜被定型烘干,热辊定型的温度为125℃,时间为10s,即得一种非织造降解纤维地膜;耐水涂层为丙烯酸乳液、聚氨酯乳液、滑石粉按照质量比例3: 1.5: 0.8复合而成,丙烯酸乳液的固含量为40%,聚氨酯乳液的固含量为42%。
[0039] 测试方法:纤维地膜耐水性测试:从实施例1得到的纤维膜上切割下15cm×10cm的长方形状样品,如图1所示。然后将纤维膜样品浸泡在蒸馏水中5天后取出,观察纤维膜的表面,发现纤维膜的表面完好,没有破损等现象,如图2所示。观察完纤维膜的表面后,继续将纤维膜样品浸泡在蒸馏水中,再次浸泡5天后将样品取出,观察纤维膜的表面,发现纤维膜样品的表面出现少许溶胀现象,如图3所示,观察完后,继续将纤维膜样品浸泡在蒸馏水中,浸泡5天后将样品再次取出,观察纤维膜的表面,发现纤维膜样品的表面出现部分溶胀现象,如图4所示。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈