首页 / 专利库 / 农用化学品和农药 / 有害生物 / 具有有机磷水解酶活性的多肽

具有有机磷解酶活性的多肽

阅读:1021发布:2020-06-21

专利汇可以提供具有有机磷解酶活性的多肽专利检索,专利查询,专利分析的服务。并且本 发明 涉及具有有机磷 水 解 酶活性的分离的多肽和编码这些多肽的多核苷酸。本发明还涉及包括这些多核苷酸的核酸构建体、载体以及宿主细胞连同产生和使用这些多肽的方法。,下面是具有有机磷解酶活性的多肽专利的具体信息内容。

1.一种具有有机磷解酶活性的分离的多肽,该多肽选自下组,该组由以下各项组成:
(a)与SEQ ID NO:4或SEQ ID NO:8的成熟多肽具有至少65%,例如至少70%、至少
75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%序列一致性的一种多肽;
(b)由在中严谨度条件、中-高严谨度条件、高严谨度条件或非常高严谨度条件下与(i)SEQ ID NO:3或SEQ ID NO:7的成熟多肽编码序列,或(ii)(i)的全长互补体杂交的一种多核苷酸所编码的一种多肽;
(c)由与SEQ ID NO:3或SEQ ID NO:7的成熟多肽编码序列具有至少65%,例如至少
70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%序列一致性的一种多核苷酸所编码的一种多肽;
(d)SEQ ID NO:4或SEQ ID NO:8的成熟多肽的一种变体,该变体在一个或多个位置处包括取代、缺失、和/或插入;以及
(e)(a)、(b)、(c)、或(d)的多肽的一个片段,该片段具有有机磷水解酶活性。
2.如权利要求1所述的多肽,该多肽与SEQ ID NO:4或SEQ IDNO:8的成熟多肽具有至少
65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%序列一致性。
3.如权利要求1或2所述的多肽,该多肽由在中严谨度条件、中-高严谨度条件、高严谨度条件或非常高严谨度条件下与(i)SEQ ID NO:3或SEQ ID NO:7的成熟多肽编码序列,或(ii)(i)的全长互补体杂交的一种多核苷酸所编码。
4.如权利要求1-3中任一项所述的多肽,该多肽由与SEQ ID NO:3或SEQ ID NO:7的成熟多肽编码序列具有至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少
91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%序列一致性的一种多核苷酸所编码。
5.如权利要求1-4中任一项所述的多肽,该多肽包括SEQ ID NO:4、SEQ ID NO:8、SEQ ID NO:9至SEQ ID NO:26、或SEQ ID NO:27至SEQ ID NO:31;或SEQ ID NO:4、SEQ ID NO:8、SEQ ID NO:9至SEQ ID NO:26、或SEQ ID NO:27至SEQ ID NO:31的成熟多肽,或者由其组成。
6.如权利要求1-4中任一项所述的多肽,该多肽是SEQ ID NO:4、或SEQ ID NO:8的成熟多肽的一种变体,该变体在一个或多个位置处包括取代、缺失、和/或插入。
7.如权利要求1所述的多肽,该多肽是SEQ ID NO:4、SEQ ID NO:8、SEQ ID NO:9至SEQ ID NO:26、或SEQ ID NO:27至SEQ ID NO:31的一个片段,其中该片段具有有机磷水解酶活性。
8.一种组合物,该组合物包括如权利要求1-7中任一项所述的多肽。
9.如权利要求8所述的组合物,其中该组合物是微乳液或洗剂。
10.根据权利要求1-7中任一项所述的多肽、或如权利要求8或9所述的组合物用于净化被至少一种有害的或不希望的有机磷化合物污染的一个区域或一个设备的用途;优选地,其中该至少一种有害的或不希望的有机磷化合物是选自G-剂、V-剂以及杀有害生物剂。
11.一种用于去除有机磷化合物的方法,该方法包括使该有机磷化合物与如权利要求
1-7中任一项所述的多肽、或如权利要求8或9所述的组合物相接触
12.一种分离的多核苷酸,该多核苷酸编码如权利要求1-7中任一项所述的多肽。
13.一种核酸构建体或表达载体,包括可操作地连接至一个或多个控制序列的如权利要求12所述的多核苷酸,该一个或多个控制序列指导该多肽在一个表达宿主中的产生。
14.一种重组宿主细胞,该重组宿主细胞包括可操作地连接至一个或多个控制序列的如权利要求12所述的多核苷酸,该一个或多个控制序列指导该多肽的产生。
15.一种产生如权利要求1-7中任一项所述的多肽的方法,该方法包括在有益于产生该多肽的条件下培养一种细胞,该细胞处于其野生型形式时产生该多肽;并回收该多肽。
16.一种产生具有有机磷水解酶活性的多肽的方法,该方法包括在有益于产生该多肽的条件下培养如权利要求14所述的宿主细胞;并回收该多肽。
17.用一种多核苷酸转化的一种转基因植物、植物部分或植物细胞,该多核苷酸编码如权利要求1-7中任一项所述的多肽。
18.一种产生具有有机磷水解酶活性的多肽的方法,该方法包括在有益于产生该多肽的条件下培养如权利要求17所述的转基因植物或植物细胞;并回收该多肽。

说明书全文

具有有机磷解酶活性的多肽

[0001] 本申请是申请号为201380027675.9,发明名称为“具有有机磷水解酶活性的多肽”的发明专利申请的分案申请。
[0002] 序列表的引用
[0003] 本申请包括一个计算机可读形式的序列表,将其通过引用结合在此。
[0004] 背景发明领域
[0005] 本发明涉及具有有机磷水解酶活性的多肽和编码这些多肽的多核苷酸。本发明还涉及核酸构建体、载体以及包括这些多核苷酸的宿主细胞连同产生和使用这些多肽的方法。
[0006] 相关技术说明
[0007] 有机磷化合物在本领域中是已知的。特别地,众所周知一些战剂是有机磷化合物,例如G-型神经药剂,例如萨林(Sarin)、环萨林(Cyclosarin)、和索曼(Soman),以及V-型神经药剂,例如VX。其他有机磷化合物被称为杀有害生物剂。
[0008] 令人希望的是能够净化被这类有机磷化合物污染的区域。为此目的,已经提议了具有有机磷水解酶活性(例如二异丙基氟磷酸酶活性)的多肽,因为这类多肽能够水解有害有机磷化合物,并且从而将它们转化为更少有害的产物。
[0009] 在WO 99/43791中披露了一种来自欧洲枪乌贼(Loligo vulgaris)的二异丙基氟磷酸酶并且也描述了其除其他应用之外的用于净化的潜在用途。
[0010] WO 2009/130285、WO 2010/128115和WO 2010/128116披露了来自假交替单胞菌(Pseudoalteramonas haloplanktis)、真蛸(Octopus vulgaris)、以及海蜗(Aplysia californica)的其他二异丙基氟磷酸酶。
[0011] 本发明的一个目的是提供具有有机磷水解酶(例如二异丙基氟磷酸酶)活性的多肽和编码这些多肽的多核苷酸,特别地具有高稳定性和/或高比活性的。
[0012] 发明概述
[0013] 本发明涉及具有有机磷水解酶活性的分离的多肽,该多肽选自下组,该组由以下各项组成:
[0014] (a)与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、或SEQ ID NO:8的成熟多肽具有至少65%序列一致性的一种多肽;
[0015] (b)由在中严谨度条件下与(i)SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、或SEQ ID NO:7的成熟多肽编码序列,或(ii)(i)的全长互补体杂交的一种多核苷酸所编码的一种多肽;
[0016] (c)由与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、或SEQ ID NO:7的成熟多肽编码序列具有至少65%序列一致性的多核苷酸所编码的一种多肽;
[0017] (d)SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、或SEQ ID NO:8的成熟多肽的一种变体,该变体在一个或多个(例如若干个)位置处包括取代、缺失、和/或插入;以及[0018] (e)(a)、(b)、(c)、或(d)的多肽的一个片段,该片段具有有机磷水解酶活性。
[0019] 本发明还涉及编码本发明的多肽的分离的多核苷酸;核酸构建体;重组表达载体;包括这些多核苷酸的重组宿主细胞;以及产生这些多肽的方法。
[0020] 本发明还涉及用于去除有机磷化合物的方法,包括使该有机磷化合物与本发明的多肽相接触
[0021] 定义
[0022] 有机磷水解酶:术语“有机磷水解酶”在此定义为对有机磷化合物,特别是有机磷化合物(包括神经毒气)中的磷酐键的水解活性。因此,该术语包括一种具有水解酶活性和/或酯酶活性,例如有机磷水解酶活性(例如有机磷酯酶活性)或有机磷酸脱水酶(OPAA)活性,或羧酸酯酶活性、二异丙基氟磷酸酶(DFP酶)活性(EC 3.1.8.2)、脱卤素酶活性(催化磷-硫键的水解)、脯酸肽酶活性和/或亚氨基二肽酶活性的一种酶。
[0023] 术语“DFP酶(EC 3.1.8.2)”在此定义为二异丙基氟磷酸酶、二烷基氟磷酸酶、二异丙磷氟氢酸酯水解酶(diisopropylphosphorofluoridate hydrolase)、二异丙基氟膦酸酯脱卤素酶、二异丙基膦氟化酶(diisopropylphosphofluoridase)、异丙基磷氟化酶(isopropylphosphorofluoridase)、有机磷酸酯酸脱水酶(organophosphate acid anhydrase)、有机磷酸脱水酶、索曼酶(somanase)、塔崩酶(tabunase)。DFP酶作用于有机磷化合物(包括神经毒气)中的磷酐键(例如磷-卤化物以及磷-氰化物)。
[0024] 出于本发明的目的,根据实例3中所述的程序确定有机磷水解酶活性。在一个方面中,本发明的多肽具有至少20%,例如至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、或至少100%的SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6或SEQ ID NO:8的成熟多肽的有机磷水解酶活性。
[0025] 净化:术语“净化”在此应被理解为去除有害药剂,例如有机磷化合物,例如神经毒气、毒素、杀有害生物剂,从而该术语包括例如解毒活性。
[0026] 等位基因变体:术语“等位基因变体”意指占用同一染色体位点的一种基因的两个或更多个替代形式中的任一者。等位基因变异由突变天然产生,并且可以导致群体内的多态性。基因突变可以是静默的(在所编码的多肽中没有改变)或可编码具有改变的氨基酸序列的多肽。多肽的等位基因变体是由基因的等位基因变体编码的多肽。
[0027] 催化结构域:术语“催化结构域”意指一种酶的含有该酶的催化机构的区域。
[0028] cDNA:术语“cDNA”是指可以通过得自真核或原核细胞的成熟的、剪接的mRNA分子的反转录而制备的DNA分子。cDNA缺乏可以存在于对应基因组DNA中的内含子序列。早先的初始RNA转录本是mRNA的前体,其在呈现为成熟的剪接的mRNA之前要经一系列的步骤进行加工,包括剪接。
[0029] 编码序列:术语“编码序列”意指直接指定一个多肽的氨基酸序列的多核苷酸。编码序列的边界一般由一个开放阅读框架决定,该开放阅读框架从一个起始密码子(如ATG、GTG或TTG)开始并且以一个终止密码子(如TAA、TAG或TGA)结束。编码序列可以是一种基因组DNA、cDNA、合成DNA或其组合。
[0030] 控制序列:术语“控制序列”是指表达编码本发明的成熟多肽的多核苷酸所必需的核酸序列。每个控制序列对于编码该多肽的多核苷酸来说可以是原生的(即,来自相同基因)或外源的(即,来自不同基因),或相对于彼此是原生的或外源的。此类控制序列包括但不限于前导子、聚腺苷酸化序列、前肽序列、启动子、信号肽序列、以及转录终止子。至少,控制序列包括启动子,以及转录和翻译终止信号。出于引入有利于将这些控制序列与编码一种多肽的多核苷酸的编码区连接的特异性限制酶切位点的目的,这些控制序列可以提供有多个接头。
[0031] 表达:术语“表达”包括涉及多肽产生的任何步骤,包括但不限于:转录、转录后修饰、翻译、翻译后修饰、以及分泌。
[0032] 表达载体:术语“表达载体”意指一种直链或环状DNA分子,该分子包括编码一种多肽的一种多核苷酸并且可操作地连接至提供用于其表达的控制序列。
[0033] 片段:术语“片段”意指具有从成熟多肽或结构域的氨基和/或羧基端缺失的一个或多个(例如若干个)氨基酸的多肽或催化结构域;其中,该片段具有有机磷水解酶活性。在一个方面,一个片段包含至少302个氨基酸残基(例如SEQ ID NO:2的氨基酸12至314或SEQ ID NO:4的氨基酸7至309)。
[0034] 高严谨度条件:术语“高严谨度条件”是指对于长度为至少100个核苷酸的探针而言,遵循标准DNA印迹(Southern blotting)程序,在42℃下在5X SSPE、0.3%SDS、200微克/ml剪切并变性的鲑鱼精子DNA和50%甲酰胺中预杂交和杂交12至24小时。载体材料最终使用2X SSC、0.2%SDS,在65℃下洗涤三次,每次15分钟。
[0035] 宿主细胞:术语“宿主细胞”意指易于用包括本发明的一种多核苷酸的一种核酸构建体或表达载体进行转化、转染、转导等的任何细胞类型。术语“宿主细胞”涵盖由于复制期间发生的突变而与亲本细胞不同的亲本细胞的任何后代。
[0036] 分离的:术语“分离的”意指处于非天然存在的形式或环境中的物质。分离的物质的非限制性实例包括(1)任何非天然存在的物质;(2)至少部分地从与其在自然界中相关联的一种或多种或全部天然存在的组分中除去的任何物质,包括但不局限于任何酶、变体、核酸、蛋白质、肽或辅因子;(3)相对于自然界中发现的那种物质通过人工手动修饰的任何物质;或者(4)通过相对于与其天然相关联的其他组分增加该物质的量而修饰的任何物质(例如,编码该物质的基因的多个拷贝;比与编码该物质的基因天然相关联的启动子更强的启动子的使用)。一种分离的物质可以存在于发酵液样品中。
[0037] 成熟多肽:术语“成熟多肽”意指在翻译和任何翻译后修饰(例如N-端加工、C-端截短、糖基化、磷酸化等)之后处于其最终形式的多肽。本领域中已知的是,一个宿主细胞可以产生由同一多核苷酸表达的两种或更多种不同成熟多肽(即,具有不同C-末端和/或N-末端氨基酸)的混合物。
[0038] 成熟多肽编码序列:术语“成熟多肽编码序列”意指编码具有有机磷水解酶活性的一种成熟多肽的一种多核苷酸。
[0039] 中严谨度条件:术语“中严谨度条件”意指对于长度为至少100个核苷酸的探针而言,遵循标准DNA印迹程序,在42℃在5X SSPE、0.3%SDS、200微克/ml剪切和变性的鲑精DNA和35%甲酰胺中预杂交和杂交12至24小时。载体材料最终使用2X SSC、0.2%SDS,在55℃下洗涤三次,每次15分钟。
[0040] 中-高严谨度条件:术语“中-高严谨度条件”意指对于长度为至少100个核苷酸的探针来说,遵循标准DNA印迹程序,在42℃下在5X SSPE、0.3%SDS、200微克/毫升剪切并变性的鲑鱼精子DNA以及或者35%甲酰胺中预杂交和杂交12至24小时。载体材料最终使用2X SSC、0.2%SDS,在60℃下洗涤三次,每次15分钟。
[0041] 核酸构建体:术语“核酸构建体”意指单链或双链核酸分子,其分离自天然存在的基因,或其被修饰成以本来在自然界中不存在的方式含有核酸的区段,或其为合成的,其包含一个或多个控制序列。
[0042] 可操作地连接:术语“可操作地连接”意指一种配置,其中一个控制序列相对于一种多核苷酸的编码序列放置在一个适当位置处,以使得控制序列指引编码序列的表达。
[0043] 序列一致性:两个氨基酸序列之间或两个核苷酸序列之间的相关性由参数“序列一致性”描述。
[0044] 出于本发明的目的,使用如在EMBOSS包(EMBOSS:欧洲分子生物学开放软件套件(The European Molecular Biology Open Software Suite),赖斯(Rice)等人,2000,遗传学趋势(Trends Genet.)16:276-277)(优选5.0.0版或更新版本)的尼德尔(Needle)程序中所实施的尼德尔曼-翁施(Needleman-Wunsch)算法(尼德尔曼和翁施,1970,分子生物学杂志(J.Mol.Biol.)48:443-453)来测定两个氨基酸序列之间的序列一致性。使用的这些参数是空位开放罚分10、空位延伸罚分0.5,以及EBLOSUM62(BLOSUM62的EMBOSS版本)取代矩阵。将标记为“最长一致性”的尼德尔的输出(使用非简化选项(nobrief option)获得)用作一致性百分比并且计算如下:
[0045] (一致的残基X 100)/(比对长度-比对中的空位总数)
[0046] 出于本发明的目的,使用如在EMBOSS包(EMBOSS:欧洲分子生物学开放软件套件,赖斯等人,2000,同上)(优选5.0.0版或更新版本)的尼德尔(Needle)程序中所实施的尼德尔曼-翁施算法(尼德尔曼和翁施,1970,同上)来测定两个脱核糖核苷酸序列之间的序列一致性。使用的这些参数是空位开放罚分10、空位延伸罚分0.5以及EDNAFULL(NCBI NUC4.4的EMBOSS版本)取代矩阵。将标记为“最长一致性”的尼德尔的输出(使用非简化选项(nobrief option)获得)用作一致性百分比并且计算如下:
[0047] (一致的脱氧核糖核苷酸X 100)/(比对长度-比对中的空位总数)
[0048] 子序列:术语“子序列”意指使一个或多个(例如,若干个)核苷酸从成熟多肽编码序列的5'端和/或3'端缺少的多核苷酸,其中该子序列编码具有有机磷水解酶活性的一个片段。在一个方面,一个子序列含有至少906个核苷酸(例如SEQ ID NO:1的核苷酸34至942,或SEQ ID NO:3的核苷酸19至927)。
[0049] 变体:术语“变体”意指在一个或多个(例如若干个)位置上包含改变,即取代、插入、和/或缺失的具有有机磷水解酶活性的多肽。取代意指占据一个位置的氨基酸替换不同的氨基酸;缺失意指去除占据一个位置的氨基酸;并且插入意指在邻接并且紧随占据一个位置的氨基酸之后添加一个氨基酸。
[0050] 非常高严谨度条件:术语“非常高严谨度条件”是指对于长度为至少100个核苷酸的探针而言,遵循标准DNA印迹程序,在42℃下在5X SSPE、0.3%SDS、200微克/ml剪切并变性的鲑鱼精子DNA和50%甲酰胺中预杂交和杂交12至24小时。载体材料最终使用2X SSC、0.2%SDS,在70℃下洗涤三次,每次15分钟。
[0051] 详细说明
[0052] 具有有机磷水解酶活性的多肽
[0053] 在一个实施例中,本发明涉及与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、或SEQ ID NO:8的成熟多肽具有至少65%,例如至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列一致性的分离多肽,这些多肽具有有机磷水解酶活性。在一个方面,这些多肽与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、或SEQ ID NO:8的成熟多肽具有不超过10个(例如1、2、3、4、5、6、7、8或9个)氨基酸的差异。
[0054] 本发明的多肽优选地包括SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、或SEQ ID NO:8;或SEQ ID NO:9至SEQ ID NO:26或SEQ ID NO:27至SEQ ID NO:31的氨基酸序列或其等位基因变体或由其组成;或者是其具有有机磷水解酶活性的片段。在另一个方面,该多肽包括EQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、或SEQ ID NO:8;或SEQ ID NO:9至SEQ ID NO:26或SEQ ID NO:27至SEQ ID NO:31的成熟多肽或由其组成。
[0055] 在另一个实施例中,本发明涉及由在中严谨度条件、中-高严谨度条件、高严谨度条件或非常高严谨度条件下与(i)SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、或SEQ ID NO:7的成熟多肽编码序列,或(ii)(i)的全长互补体杂交的一种多核苷酸所编码的具有有机磷水解酶活性的一种分离的多肽(萨姆布鲁克(Sambrook)等人,1989,分子克隆实验指南(Molecular Cloning,A Laboratory Manual),第二版,冷泉港(Cold Spring Harbor),纽约)。
[0056] 可以使用SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、或SEQ ID NO:7,或其子序列,以及SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、或SEQ ID NO:8的多肽,或其片段来设计核酸探针以便根据本领域熟知的方法鉴定和克隆编码来自不同属或物种的菌株的具有有机磷水解酶活性的多肽的DNA。具体而言,可以根据标准DNA印迹程序,使用这类探针与感兴趣的细胞的基因组DNA或cDNA杂交,以便鉴别和分离其中的对应基因。这类探针可以明显短于完整序列,但是长度应为至少15,例如至少25、至少35、或至少70个核苷酸。优选地,该核酸探针的长度为至少100个核苷酸,例如长度为至少200个核苷酸、至少300个核苷酸、至少400个核苷酸、至少500个核苷酸、至少600个核苷酸、至少700个核苷酸、至少800个核苷酸、或至少900个核苷酸。DNA和RNA探针都可使用。典型地将探针进行标记(例如,用32P、3H、35S、生物素、或抗生物素蛋白),以检测相应的基因。本发明涵盖此类探针。
[0057] 可以针对与以上描述的探针杂交并且编码出具有有机磷水解酶活性的多肽的DNA对由这类其他菌株制备的基因组DNA或cDNA库进行筛选。来自这类其他菌株的基因组DNA或其他DNA可以通过琼脂糖或聚丙烯酰胺凝胶电泳,或其他分离技术来分离。来自文库的DNA或分离的DNA可转移到并固定在硝酸纤维素或其他适合的载体材料上。为鉴定与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、或SEQ ID NO:7,或其子序列杂交的克隆或DNA,在DNA印迹法中使用该载体材料。
[0058] 出于本发明的目的,杂交指示该多核苷酸在中到非常高严谨度条件下与对应于以下各项的经过标记的核酸探针杂交:(i)SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、或SEQ ID NO:7;(ii)SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、或SEQ ID NO:7的成熟多肽编码序列;(iii)其全长互补体;或(iv)其子序列。可以使用例如X-射线胶片或本领域已知的任何其他检测手段来检测在这些条件下该核酸探针所杂交的分子。
[0059] 在另一个实施例中,本发明涉及由与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、或SEQ ID NO:7的成熟多肽编码序列具有至少65%,例如至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列一致性的多核苷酸编码的具有有机磷水解酶活性的分离多肽。
[0060] 在另一个实施例中,本发明涉及SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、或SEQ ID NO:8的成熟多肽的变体,这些变体在一个或多个(例如若干个)位置处包括取代、缺失和/或插入。在一个实施例中,引入SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、或SEQ ID NO:8的成熟多肽中的氨基酸取代、缺失和/或插入的数目不超过10个,例如1、2、3、4、5、6、7、8或
9个。优选地,该取代、缺失、和/或插入是仅取代。这些氨基酸变化可以具有微小性质,即,不会显著地影响蛋白质的折叠和/或活性的保守氨基酸取代或插入;典型地1-30个氨基酸的较小缺失;较小的氨基-或羧基-末端延伸,如氨基末端的甲硫氨酸残基;多达20-25个残基的较小接头肽;或便于通过改变净电荷或另一种功能来纯化的较小延伸,如聚组氨酸段(tract)、抗原表位或结合结构域。
[0061] 保守取代的实例是在下组的范围内:性氨基酸(精氨酸、赖氨酸及组氨酸)、酸性氨基酸(谷氨酸和天冬氨酸)、极性氨基酸(谷氨酰胺和天冬酰胺)、疏水性氨基酸(亮氨酸、异亮氨酸及缬氨酸)、芳香族氨基酸(苯丙氨酸、色氨酸及酪氨酸)及小氨基酸(甘氨酸、丙氨酸、丝氨酸、苏氨酸及甲硫氨酸)。一般不会改变特异性活性的氨基酸取代是本领域已知的并且例如由H.诺伊拉特(Neurath)和R.L.希尔(Hill),1979在蛋白质(The Proteins),学术出版社(Academic Press),纽约中描述。常见取代是Ala/Ser、Val/Ile、Asp/Glu、Thr/Ser、Ala/Gly、Ala/Thr、Ser/Asn、Ala/Val、Ser/Gly、Tyr/Phe、Ala/Pro、Lys/Arg、Asp/Asn、Leu/Ile、Leu/Val、Ala/Glu、和Asp/Gly。
[0062] 可替代地,氨基酸改变具有这样一种性质:改变多肽的物理化学特性。例如,氨基酸改变可以提高多肽的热稳定性、改变底物特异性、改变最适pH,等等。
[0063] 可以根据本领域中已知的程序,如定点诱变或丙氨酸扫描诱变(坎宁汉(Cunningham)和威尔斯(Wells),1989,科学(Science)244:1081-1085)来鉴定多肽中的必需氨基酸。在后一项技术中,在该分子中的每个残基处引入单个丙氨酸突变,并且对所得突变体分子的有机磷水解酶活性进行测试以鉴别对于该分子的活性至关重要的氨基酸残基。还参见,希尔顿(Hilton)等人,1996,生物化学杂志271:4699-4708。也可结合假定接触位点氨基酸的突变,如通过以下技术例如核磁共振、结晶学、电子衍射、或光亲和标记进行确定的对结构进行物理学分析,从而确定酶的活性位点或其他生物学相互作用。参见,例如,德弗斯(de Vos)等人,1992,科学255:306-312;史密斯(Smith)等人,1992,分子生物学杂志
224:899-904;乌乐达维尔(Wlodaver)等人,1992,欧洲生化学会联合会快报309:59-64。还可以从与相关多肽的比对来推断鉴别必需氨基酸。
[0064] 在一个实施例中,SEQ ID NO:2的氨基酸序列中的必需氨基酸位于位置E25、N132、N190、以及D239。SEQ ID NO:2中的其他必需位置可以是N133、T204、S282、N283、以及H298。
[0065] 在另一个实施例中,SEQ ID NO:4的氨基酸序列中的必需氨基酸位于位置E20、N127、N185、以及D234。SEQ ID NO:4中的其他必需位置可以是N128、T199、S277、N278、以及H293。
[0066] 使用已知的诱变、重组和/或改组方法、随后进行一个相关的筛选程序可以做出单一或多种氨基酸取代、缺失和/或插入并对其进行测试,这些相关的筛选程序例如由Reidhaar-Olson(瑞德哈尔-奥尔森)和Sauer(萨奥尔),1988,科学241:53-57;Bowie(鲍依)和萨奥尔,1989,Proc.Natl.Acad.Sci.USA(美国国家科学院院刊)86:2152-2156;WO 95/17413;或者WO 95/22625所描述的那些。其他可以使用的方法包括易错PCR、噬菌体展示(例如洛曼(Lowman)等人,1991,生物化学(Biochemistry)30:10832-10837;美国专利号5,223,
409;WO 92/06204)以及区域定向诱变(德比什尔(Derbyshire)等人,1986,基因(Gene)46:
145;内尔(Ner)等人,1988,DNA 7:127)。
[0067] 可以结合诱变/改组方法与高通量自动化筛选方法来检测由宿主细胞表达的克隆的、诱变的多肽的活性(内斯等人,1999,《自然生物技术》17:893-896)。编码活性多肽的诱变的DNA分子可以回收自宿主细胞,并且使用本领域的标准方法对其进行迅速测序。这些方法允许迅速确定多肽中单个氨基酸残基的重要性。
[0068] 该多肽可以是一种杂合多肽,其中一种多肽的一个区域在另一种多肽的一个区域的N-末端或C-末端处融合。
[0069] 该多肽可以是融合多肽或可切割的融合多肽,其中另一种多肽在本发明多肽的N-末端或C-末端处融合。通过将编码另一多肽的多核苷酸融合到本发明的多核苷酸而产生融合多肽。用于产生融合多肽的技术在本领域是已知的,并包括连接编码多肽的编码序列,这样使得它们在框内并且使得融合多肽的表达处于相同的一个或多个启动子和终止子的控制下。还可以使用内含肽技术构建融合多肽,其中在翻译后产生融合多肽(库珀(Cooper)等人,1993,欧洲分子生物学学会杂志12:2575-2583;道森(Dawson)等人,1994,科学266:776-779)。
[0070] 融合多肽可以在两个多肽之间进一步包括一个切割位点。在融合蛋白分泌之时,该位点被切割,从而释放出这两个多肽。裂解位点的实例包括但不限于在以下各项中披露的 位 点 :丁 (Ma rt in) 等人 ,2 00 3 ,工业 微生物 与生 物技 术杂 志(J.Ind.Microbiol.Biotechnol.)3:568-576;斯韦蒂纳(Svetina)等人,2000,生物技术杂志(J.Biotechnol.)76:245-251;拉斯马森-威尔逊(Rasmussen-Wilson)等人,1997,应用与环境微生物学(Appl.Environ.Microbiol.)63:3488-3493;沃德(Ward)等人,1995,生物技术(Biotechnology)13:498-503;以及孔特雷拉斯(Contreras)等人,1991,生物技术9:378-381;伊顿(Eaton)等人,1986,生物化学(Biochemistry)25:505-512;柯林斯-瑞思(Collins-Racie)等人,1995,生物技术13:982-987;卡特(Carter)等人,1989,蛋白质:结构、功能与遗传(Proteins:Structure,Function,and Genetics)6:240-248;以及史蒂文斯(Stevens),2003,药物发现世界(Drug Discovery World)4:35-48。
[0071] 具有有机磷水解酶活性的多肽的来源
[0072] 本发明的具有有机磷水解酶活性的多肽可以从任何属的微生物获得。出于本发明的目的,如在此结合一种给定的来源使用的术语“从...中获得”应意指由多核苷酸编码的多肽是由该来源或者由其中已经插入来自该来源的多核苷酸的一种菌株产生的。在一个方面中,获得自给定来源的多肽被分泌到细胞外。
[0073] 该多肽可以是一种扃鳃亚目(Phlebobranchia)(肠生殖腺目中的海鞘的一个亚目)多肽。优选地,它是玻璃海鞘科(Cionidae)多肽,例如该多肽可以是一种玻璃海鞘属(Ciona)多肽,例如氏海鞘(Ciona edwardsi)、簇生海鞘(Ciona fascicularis)、胶性海鞘(Ciona gelatinosa)、不完全海鞘(Ciona imperfect)、玻璃海鞘、柔毛海鞘(Ciona mollis)、或萨氏海鞘多肽。
[0074] 这些物种的株系可以容易地在许多培养物保藏中心为公众所获得,如美国典型培养物保藏中心(ATCC)、德国微生物菌种保藏中心(Deutsche  Sammlung  von Mikroorganismen und Zellkulturen GmbH,DSMZ)、荷兰菌种保藏中心(Centraalbureau Voor Schimmelcultures,CBS)、以及美国农业研究菌种保藏中心北方地区研究中心(NRRL)。
[0075] 可以使用上述探针,从以上来源或获得的DNA样品中鉴定不获得该多肽。用于从自然生活环境中直接分离DNA的技术是本领域熟知的。然后可以通过类似地筛选基因组DNA或cDNA文库来获得编码该多肽的多核苷酸。一旦用一种或多种探针检测到编码多肽的多核苷酸,就可以通过使用本领域普通技术人员已知的技术分离或克隆该多核苷酸(参见例如,Sambrook(萨姆布鲁克)等人,1989,同上)。
[0076] 多核苷酸
[0077] 本发明还涉及编码本发明的多肽的分离的多核苷酸,如在此所述。
[0078] 用于分离或克隆多核苷酸的技术是本领域中已知的并且包括从基因组DNA或cDNA,或其组合进行分离。来自基因组DNA的多核苷酸的克隆可以例如通过使用众所周知的聚合酶链反应(PCR)或用以对具有共有的结构特征的克隆的DNA片段进行检测的表达库抗体筛选来实现。参见例如,伊尼斯(Innis)等人,1990,PCR:方法和应用指南(PCR:A Guide to Methods and Application),学术出版社,纽约。可以使用其他核酸扩增程序例如连接酶链式反应(LCR)、连接激活转录(LAT)和基于多核苷酸的扩增(NASBA)。这些多核苷酸可以由玻璃海鞘属菌株或相关有机体克隆,并且因此,例如可以是该多核苷酸的多肽编码区的等位基因或种类变体。
[0079] 编码本发明多肽的多核苷酸的修饰对于合成实质上类似于该多肽的多肽可以是必需的。术语“基本上类似于”该多肽是指该多肽的非天然发生的形式。这些多肽可能以某种工程化方式而不同于从其天然来源分离的多肽,例如在比活性、热稳定性、pH最佳值等方面不同的变体。这些变体可以基于以SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、或SEQ ID NO:7的成熟多肽编码序列(例如其子序列)形式呈现的多核苷酸,和/或通过引入不会改变该多肽的氨基酸序列,但对应于预定用于产生该酶的宿主有机体的密码子用法的核苷酸取代,或通过引入可以产生不同氨基酸序列的核苷酸取代来构建。对于核苷酸取代的一般描述,参见例如福德(Ford)等人,1991,蛋白表达与纯化(Protein Expression and Purification)2:95-107。
[0080] 核酸构建体
[0081] 本发明还涉及核酸构建体,这些核酸构建体包括可操作地连接至一个或多个控制序列的本发明的多核苷酸,在与控制序列相容的条件下,这些控制序列指导编码序列在合适的宿主细胞中的表达。
[0082] 可以按多种方式操纵多核苷酸,以提供多肽的表达。取决于表达载体,在其插入载体以前操纵多核苷酸可以是希望的或必需的。用于利用重组DNA方法修饰多核苷酸的技术是本领域熟知的。
[0083] 该控制序列可以是一个启动子,即,被宿主细胞识别以对编码本发明多肽的多核苷酸进行表达的一种多核苷酸。该启动子包含转录控制序列,这些序列介导了该多肽的表达。该启动子可以是在宿主细胞中显示出转录活性的任何多核苷酸,包括突变型、截短型及杂合型启动子,并且可以是由编码与该宿主细胞同源或异源的细胞外或细胞内多肽的基因获得。
[0084] 用于在细菌宿主细胞中指导本发明的核酸构建体的转录的合适启动子的实例是从以下基因中获得的启动子:解淀粉芽孢杆菌α-淀粉酶基因(amyQ)、地衣芽孢杆菌α-淀粉酶基因(amyL)、地衣芽孢杆菌青霉素酶基因(penP)、嗜热脂肪芽孢杆菌麦芽糖淀粉酶基因(amyM)、枯草芽孢杆菌果聚糖蔗糖酶基因(sacB)、枯草芽孢杆菌xylA和xylB基因、苏金芽孢杆菌cryIIIA基因(阿盖塞(Agaisse)和勒尔克吕(Lereclus),1994,分子微生物学(Molecular Microbiology)13:97-107)、大肠杆菌lac操纵子、大肠杆菌trc启动子(埃贡(Egon)等人,1988,基因69:301-315)、天蓝色链霉菌琼脂水解酶基因(dagA)、以及原核β-内酰胺酶基因(维拉-卡马洛夫(Villa-Kamaroff)等人,1978,美国国家科学院院刊75:3727-3731)、以及tac启动子(德波尔(DeBoer)等人,1983,美国国家科学院院刊80:21-25)。其他启动子描述在吉尔伯特(Gilbert)等人,1980,科学美国人(Scientific American)242:74-
94的“来自重组细菌的有用蛋白质(Useful proteins from recombinant bacteria)”;以及在萨姆布鲁克等人,1989(见上文)中。串联启动子的实例披露在WO 99/43835中。
[0085] 用于指导本发明的核酸构建体在丝状真菌宿主细胞中的转录的合适启动子的实例是从以下各项的基因获得的启动子:构巢曲霉乙酰胺酶、黑曲霉中性α-淀粉酶、黑曲霉酸稳定性α-淀粉酶、黑曲霉或泡盛曲霉葡糖淀粉酶(glaA)、米曲霉TAKA淀粉酶、米曲霉碱性蛋白酶、米曲霉丙糖磷酸异构酶、尖镰孢胰蛋白酶样蛋白酶(WO 96/00787)、镶片镰孢淀粉葡糖苷酶(WO 00/56900)、镶片镰孢Daria(WO 00/56900)、镶片镰孢Quinn(WO 00/56900)、米黑根毛霉(Rhizomucor miehei)脂肪酶、米黑根毛霉天冬氨酸蛋白酶、里氏木霉β-葡糖苷酶、里氏木霉纤维二糖水解酶I、里氏木霉纤维二糖水解酶II、里氏木霉内切葡聚糖酶I、里氏木霉内切葡聚糖酶II、里氏木霉内切葡聚糖酶III、里氏木霉内切葡聚糖酶IV、里氏木霉内切葡聚糖酶V、里氏木霉木聚糖酶I、里氏木霉木聚糖酶II、里氏木霉β-木糖苷酶,以及NA2-tpi启动子(一种修饰的启动子,其来自曲霉属中性α-淀粉酶基因,其中未翻译的前导序列由曲霉属丙糖磷酸异构酶基因的未翻译的前导序列替代;非限制性实例包括修饰的启动子,其来自黑曲霉中性α-淀粉酶的基因,其中未翻译的前导序列由构巢曲霉或米曲霉丙糖磷酸异构酶基因的未翻译的前导序列替代);以及其突变型启动子、截短型启动子、以及杂合型启动子。
[0086] 在酵母宿主中,有用的启动子从以下的基因获得:酿酒酵母烯醇酶(ENO-1)、酿酒酵母半乳糖激酶(GAL1)、酿酒酵母醇脱氢酶/甘油-3-磷酸脱氢酶(ADH1/GAP、ADH2/GAP)、酿酒酵母丙糖磷酸异构酶(TPI)、酿酒酵母金属硫蛋白(CUP1)、以及和酿酒酵母3-磷酸甘油酸激酶。罗马诺斯(Romanos)等人,1992,《酵母》(Yeast)8:423-488描述了酵母宿主细胞的其他有用的启动子。
[0087] 控制序列还可以是由宿主细胞识别以终止转录的一种转录终止子。该终止子可操作地连接到编码该多肽的多核苷酸的3'-末端。在该宿主细胞中起作用的任何终止子都可以用于本发明中。
[0088] 用于细菌宿主细胞的优选终止子是从克劳氏芽孢杆菌碱性蛋白酶(aprH)、地衣芽孢杆菌α-淀粉酶(amyL)、以及大肠杆菌核糖体RNA(rrnB)的基因获得。
[0089] 丝状真菌宿主细胞的优选终止子是从以下各项的基因中获得的:构巢曲霉邻氨基苯甲酸合酶、黑曲霉葡糖淀粉酶、黑曲霉α-葡萄糖苷酶、米曲霉TAKA淀粉酶以及尖孢镰刀菌胰蛋白酶样蛋白酶。
[0090] 用于酵母宿主细胞的优选终止子从以下基因获得:酿酒酵母烯醇酶、酿酒酵母细胞色素C(CYC1)、以及酿酒酵母甘油醛-3-磷酸脱氢酶。用于酵母宿主细胞的其他有用的终止子由罗马努斯等人,1992,见上文描述。
[0091] 控制序列还可以是启动子下游和基因的编码序列上游的mRNA稳定子区,其增加该基因的表达。
[0092] 适合的mRNA稳定子区的实例是从以下获得的:苏云金芽孢杆菌cryIIIA基因(WO 94/25612)和枯草芽孢杆菌SP82基因(化(Hue)等人,1995,细菌学杂志(Journal of Bacteriology)177:3465-3471)。
[0093] 该控制序列还可以是一个前导子,一种对宿主细胞翻译很重要的非翻译mRNA区域。该前导子可操作地连接到编码该多肽的多核苷酸的5'-末端。可以使用在宿主细胞中具有功能的任何前导子。
[0094] 用于丝状真菌宿主细胞的优选前导子是从米曲霉TAKA淀粉酶和构巢曲霉丙糖磷酸异构酶的基因获得。
[0095] 适用于酵母宿主细胞的前导子从以下各项的基因获得:酿酒酵母烯醇酶(ENO-1)、酿酒酵母3-磷酸甘油酸激酶、酿酒酵母α因子、以及酿酒酵母醇脱氢酶/甘油醛-3-磷酸脱氢酶(ADH2/GAP)。
[0096] 控制序列还可以是一种聚腺苷酸化序列,可操作地连接至该多核苷酸的3’-末端并且当转录时由宿主细胞识别为将聚腺苷酸残基添加至所转录的mRNA的信号的序列。在宿主细胞中起作用的任何聚腺苷酸化序列都可以使用。
[0097] 用于丝状真菌宿主细胞的优选聚腺苷酸化序列是从以下各项的基因获得:构巢曲霉邻氨基苯甲酸合酶、黑曲霉葡糖淀粉酶、黑曲霉α-葡糖苷酶、米曲霉TAKA淀粉酶、以及尖镰孢胰蛋白酶样蛋白酶。
[0098] 有用于酵母宿主细胞的聚腺苷酸化序列在郭(Guo)和谢尔曼(Sherman),1995,《分子细胞生物学》(Mol.Cellular Biol.)15:5983-5990中有过描述。
[0099] 控制序列也可以是编码与多肽的N-端连接并指导多肽进入细胞的分泌通路的信号肽编码区。多核苷酸的编码序列的5’-端可以固有地包括在翻译阅读框架中与编码多肽的编码序列的区段天然地连接的一个信号肽编码序列。可替代地,编码序列5’-末端可以包括对于该编码序列是外源的信号肽编码序列。在编码序列不天然地包含信号肽编码序列的情况下,可能需要外源信号肽编码序列。可替代地,外源信号肽编码序列可简单地替换天然的信号肽编码序列以便增强该多肽的分泌。然而,指导所表达的多肽进入宿主细胞的分泌路径中的任何信号肽编码序列都可以使用。
[0100] 用于细菌宿主细胞的有效信号肽编码序列是从以下各项的基因获得的信号肽编码序列:芽孢杆菌属NCIB 11837产麦芽糖淀粉酶、地衣芽孢杆菌枯草杆菌蛋白酶、地衣芽孢杆菌β-内酰胺酶、嗜热脂肪芽孢杆菌α-淀粉酶、嗜热脂肪芽孢杆菌中性蛋白酶(nprT、nprS、nprM)、以及枯草芽孢杆菌prsA。西蒙纳(Simonen)和帕尔瓦(Palva),1993,《微生物学评论》(Microbiological Reviews)57:109-137描述了另外的信号肽。
[0101] 用于丝状真菌宿主细胞的有效信号肽编码序列是获得自以下项的基因的信号肽编码序列:黑曲霉中性淀粉酶、黑曲霉葡糖淀粉酶、米曲霉TAKA淀粉酶、特异腐质霉(Humicola insolens)纤维素酶、特异腐质霉内切葡聚糖酶V、柔毛腐质霉(Humicola lanuginosa)脂肪酶、以及米黑根毛霉天冬氨酸蛋白酶。
[0102] 对于酵母宿主细胞有用的信号肽获得自以下项的基因:酿酒酵母α-因子和酿酒酵母转化酶。上文的罗马诺斯等人(1992)描述了其他有用的信号肽编码序列。
[0103] 该控制序列还可以是编码位于多肽的N-末端处的前肽的一个前肽编码序列。生成的多肽被称为前体酶(proenzyme)或多肽原(或者在一些情况下被称为酶原(zymogen))。多肽原通常是无活性的并且可以通过从该多肽原上催化切割或自动催化切割前肽而被转化成一种活性多肽。前肽编码序列可以从以下各项的基因获得:枯草芽孢杆菌碱性蛋白酶(aprE)、枯草芽孢杆菌中性蛋白酶(nprT)、嗜热毁丝霉漆酶(WO 95/33836)、曼赫根毛霉天冬氨酸蛋白酶、以及酿酒酵母α因子。
[0104] 在信号肽序列和前肽序列二者都存在的情况下,该前肽序列定位成紧邻多肽的N-末端并且该信号肽序列定位成紧邻该前肽序列的N-末端。
[0105] 还可以希望添加调节序列,这些调节序列相对于宿主细胞的生长来调节多肽的表达。调节系统的实例是响应于化学或物理刺激而引起基因的表达开启或关闭的那些,包括调节化合物的存在。原核系统中的调节序列包括lac、tac、以及trp操纵子系统。在酵母中,可以使用ADH2系统或GAL1系统。在丝状真菌中,可以使用黑曲霉葡糖淀粉酶启动子、米曲霉TAKAα-淀粉酶启动子、以及米曲霉葡糖淀粉酶启动子。调节序列的其他实例是允许基因扩增的那些。在真核系统中,这些调节序列包括在氨甲蝶呤存在下被扩增的二氢叶酸还原酶基因以及用重金属扩增的金属硫蛋白基因。在这些情况下,编码该多肽的多核苷酸将与调节序列可操作地连接。
[0106] 表达载体
[0107] 本发明还涉及包括本发明的多核苷酸、启动子、以及转录和翻译终止信号的重组表达载体。不同的核苷酸和控制序列可以连接在一起以产生一个重组表达载体,这一重组表达载体可以包括一个或多个便利的限制酶切位点以允许在这些位点处插入或取代编码该变体的多核苷酸。可替代地,该多核苷酸可以通过将该多核苷酸或包括该多核苷酸的核酸构建体插入用于表达的适当载体中来表达。在产生表达载体时,编码序列是位于该载体中,以使得该编码序列与用于表达的适当控制序列可操作地连接。
[0108] 重组表达载体可以是任何载体(例如,质粒或病毒),其能够方便地进行重组DNA程序,并且能够引起多核苷酸的表达。载体的选择将典型地取决于该载体与有待引入该载体的宿主细胞的相容性。该载体可以是一种线性的或闭合的环状质粒。
[0109] 载体可以是自主复制载体,即,作为染色体外实体存在的载体,其复制独立于染色体复制,例如,质粒、染色体外元件、微染色体、或人工染色体。该载体可以包含用于确保自我复制的任何装置。可替代地,该载体可以是这样一种载体,当它被引入该宿主细胞中时,被整合到基因组中并且与其中已整合了它的一个或多个染色体一起复制。此外,可以使用单一载体或质粒或两个或更多个载体或质粒(这些载体或质粒共同包含有待引入到宿主细胞的基因组中的总DNA)或转座子。
[0110] 该载体优选包含允许容易选择转化细胞、转染细胞、转导细胞或类似细胞的一个或多个选择性标记。选择性标记是一种基因,该基因的产物提供了杀生物剂抗性或病毒抗性、重金属抗性、营养缺陷型的原养型、等。
[0111] 细菌性选择性标记的实例是地衣芽孢杆菌或枯草芽孢杆菌dal基因,或赋予抗生素抗性(例如氨苄青霉素、氯霉素、卡那霉素、新霉素、大观霉素或四环素抗性)的标记。用于酵母宿主细胞的适合的标记包括但不限于ADE2、HIS3、LEU2、LYS2、MET3、TRP1、以及URA3。用于在丝状真菌宿主细胞中使用的选择性标记包含但不限于amdS(乙酰胺酶)、argB(氨酸氨甲酰基转移酶)、bar(草胺膦乙酰转移酶)、hph(潮霉素磷酸转移酶)、niaD(硝酸还原酶)、pyrG(乳清苷-5’-磷酸脱羧酶)、sC(硫酸腺苷基转移酶)、以及trpC(邻氨基苯甲酸合酶)、连同其等效物。优选在曲霉属细胞中使用的是构巢曲霉或米曲霉amdS和pyrG基因以及吸水链霉菌(Streptomyces hygroscopicus)bar基因。
[0112] 载体优选含有允许载体整合到宿主细胞的基因组中或载体在细胞中独立于基因组自主复制的一个或多个元件。
[0113] 对于整合到该宿主细胞基因组中,该载体可以依靠编码该多肽的多核苷酸序列或者通过同源或非同源重组整合到该基因组中的该载体的任何其他元件。可替代地,该载体可以包含用于指导通过同源重组而整合到宿主细胞基因组中的一个或多个染色体中的一个或多个精确位置处的另外的多核苷酸。为了增加在精确位置处整合的可能性,这些整合的元件应包含足够数量的核酸,例如100至10,000个碱基对、400至10,000个碱基对、以及800至10,000个碱基对,这些碱基对与对应的靶序列具有高度的序列一致性以提高同源重组的可能性。这些整合元件可以是与宿主细胞的基因组内的靶序列同源的任何序列。此外,这些整合元件可以是非编码多核苷酸或编码多核苷酸。另一方面,该载体可以通过非同源重组整合到宿主细胞的基因组中。
[0114] 对于自主复制,载体可以进一步包含使该载体能够在所讨论的宿主细胞中自主复制的复制起点。复制起点可以是在细胞中起作用的介导自主复制的任何质粒复制子。术语“复制起点”或“质粒复制子”意指使质粒或载体能够在体内复制的多核苷酸。
[0115] 细菌复制起点的实例是允许在大肠杆菌中复制的质粒pBR322、pUC19、pACYC177、以及pACYC184的复制起点,以及允许在芽孢杆菌中复制的质粒pUB110、pE194、pTA1060、以及pAMβ1的复制起点。
[0116] 用于在酵母宿主细胞中使用的复制起点的实例是2微米复制起点、ARS1、ARS4、ARS1与CEN3的组合、以及ARS4与CEN6的组合。
[0117] 适用于丝状真菌细胞的复制起点的实例是AMA1和ANS1(格姆斯(Gems)等人,1991,基因(Gene)98:61-67;卡伦(Cullen)等人,1987,核酸研究(Nucleic Acids Res.)15:9163-9175;WO 00/24883)。AMA1基因的分离和包括该基因的质粒或载体的构建可根据WO00/
24883披露的方法完成。
[0118] 可以将本发明的多核苷酸的多于一个的拷贝插入到宿主细胞中以增加多肽的产生。通过将序列的至少一个另外的拷贝整合到宿主细胞基因组中或者通过包含一个与该多核苷酸的可扩增的选择性标记基因可以获得增加的多核苷酸拷贝数目,其中通过在适当选择性试剂的存在下培养细胞可以选择包含选择性标记基因的经扩增的拷贝的细胞、以及由此该多核苷酸的另外的拷贝。
[0119] 用于连接以上所描述的元件以构建本发明的重组表达载体的程序是本领域的普通技术人员熟知的(参见,例如,萨姆布鲁克等人,1989,同上文)。
[0120] 宿主细胞
[0121] 本发明还涉及重组宿主细胞,这些重组宿主细胞包括本发明的多核苷酸,该多核苷酸可操作地连接至一个或多个控制序列,该一个或多个控制序列指导本发明的多肽的产生。将包含多核苷酸的构建体或载体引入到宿主细胞中,这样使得该构建体或载体被维持作为染色体整合体或作为自主复制的染色体外载体,如早前所描述。术语“宿主细胞”涵盖由于复制期间发生的突变与亲本细胞不同的亲本细胞的任何后代。宿主细胞的选择在很大程度上取决于编码该多肽的基因及其来源。
[0122] 该宿主细胞可以是有用于重组产生本发明的多肽的任何细胞,例如原核细胞或真核细胞。
[0123] 原核宿主细胞可以是任何革兰氏阳性或革兰氏阴性细菌。革兰氏阳性细菌包括但不限于:芽孢杆菌属、梭菌属、肠球菌属、土芽孢杆菌属、乳杆菌属、乳球菌属、海洋芽孢杆菌属、葡萄球菌属、链球菌属、以及链霉菌属。革兰氏阴性细菌包括但不限于:弯曲杆菌属、大肠杆菌、黄杆菌菌、梭杆菌菌、螺旋杆菌属、泥杆菌属、奈瑟氏菌属、假单胞菌属、沙氏菌属、以及脲原体属。
[0124] 细菌宿主细胞可以是任何芽孢杆菌细胞,包括但不限于:嗜碱芽孢杆菌、解淀粉芽孢杆菌、短芽孢杆菌、环状芽孢杆菌、克劳氏芽孢杆菌、凝结芽孢杆菌、坚强芽孢杆菌、灿烂芽孢杆菌、迟缓芽孢杆菌、地衣芽孢杆菌、巨大芽孢杆菌、短小芽孢杆菌、嗜热脂肪芽孢杆菌、枯草芽孢杆菌、以及苏云金芽孢杆菌细胞。
[0125] 细菌宿主细胞还可以是任何链球菌细胞,包括但不限于:似马链球菌、酿脓链球菌、乳房链球菌、以及马链球菌兽瘟亚种细胞。
[0126] 细菌宿主细胞还可以是任何链霉菌属细胞,包括但不限于:不产色链霉菌、阿维链霉菌、天蓝色链霉菌、灰色链霉菌以及变铅青链霉菌细胞。
[0127] 可以通过原生质体转化(参见,例如常(Chang)和科恩(Cohen),1979,分子遗传学和基因组(Mol.Gen.Genet.)168:111-115)、感受态细胞转化(参见,例如,杨(Young)和斯皮宰曾(Spizizen),1961,细菌学杂志(J.Bacteriol.)81:823-829、或者杜布(Dubnau)和大卫杜夫-阿贝尔森(Davidoff-Abelson),1971,分子生物学杂志56:209-221)、电穿孔(参见,例如,茂川(Shigekawa)和道尔(Dower),1988,生物技术(Biotechniques)6:742-751)、或接合(参见,例如,凯勒(Koehler)和索恩(Thorne),1987,细菌学杂志169:5271-5278)实现DNA到芽孢杆菌属细胞中的引入。可以通过原生质体转化(参见,例如,哈那汗(Hanahan),1983,分子生物学杂志166:557-580)或者电穿孔(参见,例如,道尔(Dower)等人,1988,核酸研究16:6127-6145)实现DNA到大肠杆菌细胞中的引入。可以通过原生质体转化、电穿孔(参见,例如,贡(Gong)等人,2004,叶线形微生物学(Folia Microbiol.(Praha))49:399-405)、接合(参见,例如,马佐迪耶(Mazodier)等人,1989,细菌学杂志171:3583-3585)、或者转导(参见,例如,伯克(Burke)等人,2001,美国国家科学院院刊98:6289-6294)实现DNA到链霉菌属细胞中的引入。可以通过如下方式实现将DNA引入到假单胞菌属细胞中:电穿孔(参见,例如,蔡(Choi)等人,2006,微生物学方法杂志(J.Microbiol.Methods)64:391-397)、或接合(参见,例如,皮内多(Pinedo)和斯梅茨(Smets),2005,应用与环境微生物学(Appl.Environ.Microbiol.)71:51-57)。可以通过如下方式实现将DNA引入链球菌属细胞中:天然感受态(参见,例如,佩里(Perry)和藏满(Kuramitsu),1981,传染与免疫(Infect.Immun.)32:1295-1297)、原生质体转化(参见,例如,卡特(Catt)和约里克(Jollick),1991,微生物(Microbios)68:189-207)、电穿孔(参见,例如,布克莱(Buckley)等人,1999,应用与环境微生物学65:3800-3804)、或接合(参见,例如,克莱怀尔(Clewell),
1981,微生物学综述(Microbiol.Rev.)45:409-436)。然而,可以使用本领域已知的用于将DNA引入宿主细胞中的任何方法。
[0128] 宿主细胞还可以是真核细胞,如哺乳动物、昆虫、植物、或真菌细胞。
[0129] 宿主细胞可以是真菌细胞。如在此所用的“真菌”包括子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、壶菌门(Chytridiomycota)、以及接合菌门(Zygomycota)、连同卵菌门(Oomycota)和全部有丝分裂孢子真菌(如由霍克斯沃思(Hawksworth)等人在安斯沃思和拜斯比真菌词典(Ainsworth and Bisby’s Dictionary of The Fungi),第8版,1995,国际应用生物科学中心(CAB International),大学出版社(University Press),英国剑桥(Cambridge,UK)中进行定义的)。
[0130] 该真菌宿主细胞可以是酵母细胞。如在此所使用的“酵母”包括产子囊酵母(酵母目)、产担子酵母及属于不完全真菌的酵母(芽生菌目)。由于酵母的分类在未来可能改变,因此出于本发明的目的,酵母应如酵母的生物学和活性(Biology and Activities of Yeast)(斯金纳(Skinner)、帕斯莫尔(Passmore)、以及达文波特(Davenport)编辑,应用细菌学学会讨论会系列号9(Soc.App.Bacteriol.Symposium Series No.9),1980)中所描述来定义。
[0131] 酵母宿主细胞可以是假丝酵母(Candida)、汉逊酵母(Hansenula)、克鲁维酵母(Kluyveromyces)、毕赤酵母(Pichia)、酵母属(Saccharomyces)、裂殖酵母(Schizosaccharomyces)、或耶氏酵母(Yarrowia)细胞,如乳酸克鲁维酵母(Kluyveromyces lactis)、卡尔斯伯酵母(Saccharomyces carlsbergensis)、酿酒酵母、糖化酵母(Saccharomyces diastaticus)、道格拉斯酵母(Saccharomyces douglasii)、克鲁维酵母(Saccharomyces kluyveri)、诺地酵母(Saccharomyces norbensis)、卵形酵母(Saccharomyces oviformis)、或解脂耶氏酵母(Yarrowia lipolytica)细胞。
[0132] 真菌宿主细胞可以是丝状真菌细胞。“丝状真菌”包括真菌门(Eumycota)和卵菌门的亚门(如由霍克斯沃思等人,1995,见上文所定义)的所有丝状形式。丝状真菌通常的特征在于由壳多糖、纤维素、葡聚糖、壳聚糖、甘露聚糖、以及其他复杂多糖构成的菌丝体壁。营养生长是通过菌丝延长,而分解代谢是专性需氧的。相反,酵母(如酿酒酵母)的营养生长是通过单细胞菌体的出芽(budding),而碳分解代谢可以是发酵的。
[0133] 丝状真菌宿主细胞可以是枝顶孢霉属、曲霉属、短梗霉属、烟管霉属(Bjerkandera)、拟腊菌属、金孢子菌属、鬼伞属、革盖菌属(Coriolus)、隐球菌属、线黑粉菌科(Filibasidium)、镰孢属、腐质霉属、梨孢菌属、毛霉属、毁丝霉属、新美鞭菌属、链孢菌属、拟青霉属、青霉属、平革菌属、射脉菌属(Phlebia)、瘤胃壶菌属、侧属(Pleurotus)、裂褶菌属、踝节菌属、嗜热子囊菌属、梭孢壳属、弯颈霉属、栓菌属(Trametes)、或木霉属细胞。
[0134] 例如,丝状真菌宿主细胞可以是泡盛曲霉、臭曲霉、烟曲霉、日本曲霉、构巢曲霉、黑曲霉、米曲霉、黑刺烟管菌(Bjerkandera adusta)、干拟赌菌(Ceriporiopsis aneirina)、卡内基拟蜡菌(Ceriporiopsis caregiea)、浅黄拟蜡孔菌(Ceriporiopsis gilvescens)、潘诺希塔拟蜡菌(Ceriporiopsis pannocinta)、环带拟蜡菌(Ceriporiopsis rivulosa)、微红拟蜡菌(Ceriporiopsis  subrufa)、虫拟蜡菌(Ceriporiopsis subvermispora)、狭边金孢子菌(Chrysosporium inops)、嗜质金孢子菌、拉克淖金孢子菌(Chrysosporium lucknowense)、粪状金孢子菌(Chrysosporium merdarium)、租金孢子菌、女王杜香金孢子菌(Chrysosporium queenslandicum)、热带金孢子菌、褐薄金孢子菌(Chrysosporium zonatum)、灰盖鬼伞(Coprinus cinereus)、毛革盖菌(Coriolus hirsutus)、杆孢状镰孢、谷类镰孢、库威镰孢、大刀镰孢、禾谷镰孢、禾赤镰孢、异孢镰孢、合欢木镰孢、尖镰孢、多枝镰孢、粉红镰孢、接骨木镰孢、肤色镰孢、拟分枝孢镰孢、硫色镰孢、圆镰孢、拟丝孢镰孢、镶片镰孢、特异腐质霉、疏状腐质霉、米黑毛霉、嗜热毁丝霉、粗糙链孢菌、产紫青霉、黄孢平革菌(Phanerochaete chrysosporium)、射脉菌(Phlebia radiata)、刺芹侧耳(Pleurotus eryngii)、土生梭孢霉、长域毛栓菌(Trametes villosa)、变色栓菌(Trametes versicolor)、哈茨木霉、康宁木霉、长枝木霉、里氏木霉、或绿色木霉细胞。
[0135] 可以将真菌细胞通过涉及原生质体形成、原生质体转化、以及细胞壁再生的方法以本身已知的方式转化。用于转化曲霉属和木霉属宿主细胞的适合程序在EP 238023和约尔顿(Yelton)等人,1984,美国国家科学院院刊81:1470-1474、以及克里斯滕森(Christensen)等人,1988,生物/技术(Bio/Technology)6:1419-1422中描述。用于转化镰刀菌属物种的适合方法由马拉迪尔(Malardier)等人,1989,基因(Gene)78:147-156、以及WO 96/00787描述。可以使用由如以下文献描述的程序转化酵母:贝克尔(Becker)和瓜伦特(Guarente),在阿贝尔森(Abelson),J.N.和西蒙(Simon),M.I.编,酵母遗传学与分子生物学指南,酶学方法(Guide to Yeast Genetics and Molecular Biology,Methods in Enzymology),第194卷,第182-187页,学术出版社有限公司(Academic Press,Inc.),纽约;伊藤(Ito)等人,1983,细菌学杂志(J.Bacteriol.)153:163;以及哈尼恩(Hinnen)等人,
1978,美国科学院院刊(Proc.Natl.Acad.Sci.USA)75:1920。
[0136] 产生方法
[0137] 本发明还涉及产生本发明的多肽的方法,包括(a)在有益于产生该多肽的条件下培养细胞,该细胞以其野生型形式产生该多肽;并且(b)回收该多肽。在一个优选的方面,该细胞是玻璃海鞘属细胞。在一个更优选的方面,该细胞是萨氏海鞘或玻璃海鞘细胞。
[0138] 本发明还涉及产生本发明的多肽的方法,包括(a)在有益于产生该多肽的条件下培养本发明的重组宿主细胞;并且(b)回收该多肽。
[0139] 这些宿主细胞是在适合于使用本领域中已知的方法产生该多肽的一种营养培养基中培养的。例如,可以通过在适合的培养基中和在允许表达和/或分离该多肽的条件下,进行摇瓶培养,或者在实验室或工业发酵罐中进行小规模或大规模发酵(包括连续,分批,分批补料,或固态发酵)来培养细胞。该培养是使用本领域中已知的程序,在一种适合营养培养基中发生,该培养基包含碳和氮来源及无机盐。合适的培养基可从商业供应商获得或可以根据公开的组成(例如,在美国典型培养物保藏中心的目录中)制备。如果多肽分泌到该营养培养基中,那么可直接从培养基中直接回收多肽。如果多肽不分泌,那么其可从细胞裂解液中进行回收。
[0140] 可以使用特异性针对该多肽的本领域已知的方法来检测该多肽。这些检测方法包括但不限于,特异性抗体的使用、酶产物的形成或酶底物的消失。例如,可以使用酶测定来确定该多肽的活性。
[0141] 可以使用本领域已知的方法来回收多肽。例如,该多肽可以通过常规程序,包括但不限于,收集、离心、过滤、萃取、喷雾干燥蒸发或沉淀,从该营养培养基回收。
[0142] 可以通过本领域中已知的多种程序来纯化该多肽以获得基本上纯的多肽,这些程序包括但不限于:色谱法(例如,离子交换色谱、亲和色谱、疏水作用色谱、色谱聚焦、以及尺寸排阻色谱)、电泳程序(例如,制备型等电点聚焦)、差别溶解度(例如,硫酸铵沉淀)、SDS-PAGE、或萃取(参见例如,Protein Purification(蛋白质纯化),Janson(詹森)和Ryden(赖登)编辑,VCH Publishers(VCH出版社),纽约,1989)。
[0143] 在一个替代性方面中,没有回收该多肽,而是将表达该多肽的本发明的宿主细胞用作该多肽的来源。
[0144] 植物
[0145] 本发明还涉及分离的植物,例如转基因植物、植物部分或植物细胞,这些植物包括本发明的多肽,从而表达并且产生可回收的量的多肽或结构域。多肽或结构域可从植物或植物部分回收。作为替代方案,包括该多肽或结构域的植物或植物部分可以按原样用于改善食品或饲料质量,例如改善营养价值、可口性及流变学特性,或破坏抗营养因素。
[0146] 转基因植物可以是双子叶的(双子叶植物)或单子叶的(单子叶植物)。单子叶植物的实例是草,如草甸草(蓝草,早熟禾属);饲草,如羊茅属(Festuca)、黑麦草属(Lolium);温带草,如翦股颖属(Agrostis);以及谷类,例如小麦、燕麦、黑麦、大麦、稻、高粱、以及玉蜀黍(玉米)。
[0147] 双子叶植物的实例是烟草、豆类(如羽扇豆(lupins)、马铃薯、糖甜菜(sugar beet)、豌豆、豆(bean)和大豆(soybean))、以及十字花科植物(十字花科(family Brassicaceae))(如花椰菜、油菜籽、以及紧密相关的模式生物拟南芥)。
[0148] 植物部分的实例是茎、愈伤组织、叶、根、果实、种子、以及茎、以及包括这些部分的独立组织,例如,表皮、叶肉、薄壁组织(parenchyme)、维管组织、分生组织。特定植物细胞区室,如叶绿体、质外体(apoplast)、线粒体、液泡、过氧化物酶体以及细胞质也被认为是植物部分。此外,任何植物细胞,无论是何种组织来源,都被认为是植物部分。同样地,植物部分,如分离以有助于本发明的利用的特定组织和细胞也被认为是植物部分,例如胚、胚乳、糊粉和种皮。
[0149] 同样包含于本发明范围内的是这类植物、植物部分以及植物细胞的子代。
[0150] 可以根据本领域已知方法构建表达该多肽或结构域的转基因植物或植物细胞。简而言之,通过将编码该多肽或结构域的一个或多个表达构建体结合到植物宿主基因组或叶绿体基因组中并且将所得改性植物或植物细胞繁殖成转基因的植物或植物细胞来构建植物或植物细胞。
[0151] 表达构建体方便地是核酸构建体,它包括编码多肽或结构域的多核苷酸,该多核苷酸可操作地与选择的植物或植物部分中表达该多核苷酸所需的适当调节序列连接。而且,表达构建体可包含用于鉴别整合了此表达构建体的植物细胞的选择性标记,和将此构建体引入所讨论的植物所必需的DNA序列(后者取决于所用的引入DNA的方法)。
[0152] 例如基于希望在何时、何处、和怎样表达该多肽或结构域来确定调节序列,例如启动子和终止子序列以及任选的信号序列或转运序列的选择。例如编码多肽或结构域的基因的表达可以是组成型的或诱导型的,或者可以是发育、阶段或组织特异性的,并且基因产物可以被靶向至特定组织或植物部分,例如种子或叶。调节序列由例如塔格(Tague)等人,1988,植物生理学(Plant Physiology)86:506描述。
[0153] 对于组成型表达,可以使用35S-CaMV、玉米泛素1、或稻肌动蛋白1启动子(弗兰克(Franck)等人,1980,细胞(Cell)21:285-294;克里斯滕森(Christensen)等人,1992,植物分子生物学(Plant Mol.Biol.)18:675-689;张(Zhang)等人,1991,植物细胞(Plant Cell)3:1155-1165)。器官特异性启动子可以是以下各项的启动子,例如来自贮藏库组织(例如种子、马铃薯块茎、和果实)(Edwards(爱德华兹)和Coruzzi(科鲁兹),1990,Ann.Rev.Genet.(遗传学年鉴)24:275-303),或来自代谢库组织(例如分生组织)(Ito(伊藤)等人,1994,Plant Mol.Biol.(植物分子生物学)24:863-878),种子特异性启动子,例如来自水稻的谷蛋白、醇溶谷蛋白、球蛋白或白蛋白启动子(Wu(吴)等人,1998,Plant Cell Physiol.(植物与细胞生理学)39:885-889),来自豆球蛋白B4的蚕豆启动子和来自蚕豆的未知种子蛋白基因(Conrad(康拉德)等人,1998,J.Plant Physiol.(植物生理学杂志)152:708-711),来自种子油体蛋白的启动子(Chen(陈)等人,1998,Plant Cell Physiol.(植物与细胞生理学)
39:935-941),来自欧洲油菜的贮藏蛋白napA启动子,或本领域已知的任何其他种子特异性启动子,例如,如在WO 91/14772中所述的。此外,启动子可以是叶特异性启动子,如来自稻或番茄的rbcs启动子(京冢(Kyozuka)等人,1993,植物生理学(Plant Physiol.)102:991-
1000)、小球藻病毒腺嘌呤甲基转移酶基因启动子(麦卓(Mitra)和希金斯(Higgins),1994,植物分子生物学26:85-93)、来自稻的aldP基因启动子(加贺屋(Kagaya)等人,1995,分子遗传学与基因组学(Mol.Gen.Genet.)248:668-674)、或伤口诱导型启动子(如马铃薯pin2启动子)(许(Xu)等人,1993,植物分子生物学22:573-588)。同样地,该启动子可以通过非生物处理来诱导,如温度、干旱、或盐度变化,或通过外源施加的激活该启动子的物质来诱导,例如乙醇、雌激素、植物激素(如乙烯、脱落酸和赤霉酸)、以及重金属。
[0154] 还可使用启动子增强子元件,从而在植物中达到多肽或结构域的更高表达。例如,启动子增强子元件可以是位于启动子和编码多肽或结构域的多核苷酸序列之间的内含子。例如Xu(徐)等人,1993,同上披露了使用水稻肌动蛋白1基因的第一内含子来增强表达。
[0155] 该选择性标记基因及该表达构建体的任何其他部分可以选自本领域中可用的那些。
[0156] 可以根据本领域中已知的常规技术将核酸构建体结合到植物基因组中,这些常规技术包括农杆菌介导的转化、病毒介导的转化、微注射、粒子轰击、生物射弹转化、以及电穿孔(Gasser(加塞尔)等人,1990,Science(科学)244:1293;Potrykus(波特里库斯),1990,Bio/Technology(生物/技术)8:535;Shimamoto(岛本)等人,1989,Nature(自然)338:274)。
[0157] 目前根癌农杆菌介导的基因转移是一种用于产生转基因双子叶植物(关于综述,请参见霍伊卡(Hooykas)和施尔伯鲁特(Schilperoort),1992,植物分子生物学19:15-38)并且用于转化单子叶植物的方法,但对于这些植物还常常使用其他的转化方法。用于产生转基因单子叶植物的方法是粒子(涂覆有转化DNA的微观金或钨粒子)轰击胚愈伤组织或发育中的胚(克里斯托(Christou),1992,《植物杂志》(Plant J.)2:275-281;岛本,1994,《生物技术当前述评》(Curr.Opin.Biotechnol.)5:158-162;瓦西尔(Vasil)等人,1992,《生物/技术》10:667-674)。用于转化单子叶植物的替代方法是基于原生质体转化,如由奥米儒勒(Omirulleh)等人,1993,《植物分子生物学》21:415-428所描述。另外的转化方法包括美国专利号6,395,966和7,151,204(两者都通过引用以其全文结合于此)中所描述的那些。
[0158] 在转化后,根据本领域熟知的方法选出已并入了表达构建体的转化体,并使其再生成为完整植物。通常设计转化程序用于通过如下方法在再生期间或在后续世代中选择性消除选择基因:例如,使用带有两个独立的T-DNA构建体的共转化或利用特异性重组酶位点特异性地切除选择基因。
[0159] 除用本发明的构建体直接转化特定植物基因型外,还可以通过使具有该构建体的植物与缺乏该构建体的第二植物进行杂交来产生转基因植物。例如,可以通过杂交将编码多肽或结构域的构建体引入特定植物品种中,无需总是直接地转化该给定品种的植物。因此,本发明不仅涵盖了从根据本发明已经转化的细胞直接再生的植物,而且还涵盖了这类植物的后代。如在此使用的,后代可以是指根据本发明制备的亲本植物的任何代的后代。此类后代可以包含根据本发明制备的DNA构建体。杂交导致通过供体植物系与起始系交叉授粉,将转基因引入植物系。此类步骤的非限制性实例描述于美国专利号7,151,204中。
[0160] 植物可以通过回交转化方法生成。例如,植物包含被称为回交转化的基因型、种系、近交体、或杂交体的植物。
[0161] 可以使用遗传标记以协助本发明的一种或多种转基因从一个遗传背景渗入到另一个。标记协助的选择提供了相对于常规育种的优势,在于其可以用于避免由表型变异导致的错误。另外,遗传标记可以在具体杂交的个别后代中提供有关良种种质相对程度的数据。例如,当具有所希望性状并且另外具有非农艺学所希望的遗传背景的植物与良种亲本杂交时,可以使用遗传标记来选择不仅具有感兴趣的性状,还具有相对较大比例所希望种质的后代。以此方式,使一种或多种性状渗入特定遗传背景所需的世代数得以最小化。
[0162] 本发明还涉及产生本发明的多肽或结构域的方法,这些方法包括(a)在有益于产生该多肽或结构域的条件下培养转基因植物或植物细胞,该转基因植物或植物细胞包含编码该多肽或结构域的多核苷酸;并且(b)回收该多肽或结构域。
[0163] 组合物
[0164] 本发明还涉及包含本发明的多肽的组合物。这些组合物可根据本领域已知的方法制备并且可以是液体或干燥组合物的形式。例如,该多肽组合物可以呈颗粒或微粒的形式。包括在该组合物中的多肽可以根据本领域中已知的方法稳定化。
[0165] 下面给出了本发明的多肽组合物的优选应用的实例。本发明的多肽组合物的剂量以及使用该组合物的其他条件可以基于本领域中已知的方法进行确定。
[0166] 用途
[0167] 本发明还针对用于使用具有有机磷水解酶活性的多肽(有机磷水解酶)或其组合物的方法。
[0168] 在一个优选实施例中,本发明还针对本发明的有机磷水解酶用于净化被至少一种有害或不希望的有机磷化合物污染的一个区域或一个设备的用途。将本发明的有机磷水解酶或包括本发明的有机磷水解酶的组合物以一种量施用到该区域或设备,该量足够降解至少一种有害或不希望的有机磷化合物的至少部分。
[0169] 在另一实施例中,可以以乳液例如微乳液使用本发明的有机磷水解酶用于施用到例如人类或动物。将本发明的有机磷水解酶或包括本发明的有机磷水解酶的组合物施用到该人类或动物以保护其免受至少一种有害或不希望的有机磷化合物。
[0170] 在一个另外的实施例中,本发明的有机磷水解酶可以结合在一个测定中,用于检测至少一种有害或不希望的有机磷化合物。这类测定对于快速评估不希望的有机磷化合物的存在可以是有益的。
[0171] 有害的或不希望的有机磷化合物包括有毒的有机磷胆碱酯酶抑制化合物,包括神经毒气(G剂或G-系列),例如N ,N-二甲氨基氰磷酸乙酯(ethyl  N ,N-dimethylphosphoramidocyanidate)(塔崩(tabun))、二异丙基氟磷酸酯(DFP)、O-甲氟膦酸异丙酯(O-isopropyl methylphosphonofluoridate)(萨林(sarin))、O-甲氟磷酸频哪酯(O-pinacolyl methyl phosphonofluoridate)(索曼(soman))以及O-甲氟磷酸环己酯(O-cyclohexyl methylphosphonofluoridate)。
[0172] 其他有害的化合物包括V剂(或V-系列),其可包括VX、VE、VG、VM、VR Tetriso和苏维尔特(Soviet)V-气体(俄国VX)。
[0173] 这些杀有害生物剂可包括杀真菌剂、杀昆虫剂、除草剂和减鼠剂。该杀有害生物剂可以是内吸磷(Demeton)-S、内吸磷-S-甲基、内吸磷-S-甲基硫(methylsulphon)、内吸磷-甲基、对硫磷、亚胺硫磷、卡波硫磷、苯噁磷、甲基谷硫磷(Azinphos-methyl)、乙基谷硫磷(Azinphos-ethyl)、胺吸磷(Amiton)、赛硫磷(Amidithion)、果虫磷(Cyanthoate)、氯亚胺硫磷(Dialiphos)、乐果、敌噁磷、乙拌磷、内毒磷(Endothion)、伊顿(Etion)、益果(Ethoate-methyl)、安果、马拉硫磷(Malathion)、灭蚜磷(Mercarbam)、氧乐果(Omethoate)、异亚砜磷(Oxydeprofos)、砜拌磷(Oxydisulfoton)、芬硫磷(Phenkapton)、甲拌磷、伏杀硫磷(Phosalone)、乙噻唑磷(Prothidathion)、发硫磷(Prothoate)、苏硫磷(Sophamide)、甲基乙拌磷(Thiometon)、灭蚜硫磷、甲胺磷。
[0174] 通过以下实例进一步描述本发明,这些实例不应当解释为限制本发明的范围。
[0175] 实例
[0176] 用作缓沖液和底物的化学品至少是试剂等级的商品。
[0177] 实例1
[0178] 有机磷水解酶基因的克隆与表达
[0179] 克隆
[0180] 设计编码来自萨氏海鞘(CSAV)(SEQ ID NO:6)和玻璃海鞘(CINT)(SEQ ID NO:8)的His标记的有机磷水解酶的合成基因并通过商业供应商合成这些基因。随后,使用标准分子生物学方法(萨姆布鲁克等人(1989);奥苏贝尔(Ausubel)等人(1995);哈伍德(Harwood)和卡廷(Cutting)(1990))创建用于表达该有机磷水解酶的表达构建体并通过同源重组将其整合到枯草芽孢杆菌宿主细胞基因组中。在三联启动子系统(如WO 99/43835中所述)的控制下表达该基因构建体,该启动子系统由包括该mRNA稳定化序列的地衣芽孢杆菌α-淀粉酶基因启动子(amyL)、解淀粉芽孢杆菌α-淀粉酶基因启动子(amyQ)和苏云金芽孢杆菌cryIIIA启动子组成。将编码氯霉素乙酰转移酶的基因用作标记。
[0181] 萨氏海鞘DFP酶的变体的克隆
[0182] 对萨氏海鞘DFP酶(SEQ ID NO:6)中包含以下的单一的氨基酸改变的17个变体进行克隆和表达:M63A(SEQ ID NO:9)、M63G(SEQ ID NO:10)、R107I(SEQ ID NO:11)、R107V(SEQ ID NO:12)、R107L(SEQ ID NO:13)、A109S(SEQ ID NO:14)、A109C(SEQ ID NO:15)、E178F(SEQ ID NO:16)、E178I(SEQ ID NO:17)、E178L(SEQ ID NO:18)、E178V(SEQ ID NO:19)、R180F(SEQ ID NO:20)、R180I(SEQ ID NO:21)、R180L(SEQ ID NO:22)、R180V(SEQ ID NO:23)、R180M(SEQ ID NO:24)、Y276H(SEQ ID NO:25)、以及Y276F(SEQ ID NO:26)。
[0183] 玻璃海鞘DFP酶的变体的克隆
[0184] 对玻璃海鞘DFP酶(SEQ ID NO:8)中包含以下的单一的氨基酸改变的5个变体进行克隆和表达:E173F(SEQ ID NO:27)、E173V(SEQ ID NO:28)、R175A(SEQ ID NO:29)、S60L(SEQ ID NO:30)、以及S60R(SEQ ID NO:31)。
[0185] CSAV和CINT DFP酶的变体的克隆
[0186] 为了产生SEQ ID NO:6和SEQ ID NO:8的变体,用引入了所希望的序列改变(取代)的诱变引物(参见表1)进行基于PCR的定点诱变。设计引物,这样使得突变位于具有足够侧翼核苷酸(15-25个)的寡核苷酸的中部。将具有CSAV DFP酶和CINT DFP酶的芽胞杆菌属基因组DNA用作模板并且用校正DNA聚合酶(Phusion DNA聚合酶(新英格兰生物实验室))建立PCR。随后,使用标准分子生物学方法(萨姆布鲁克等人(1989);奥苏贝尔(Ausubel)等人(1995);哈伍德(Harwood)和卡廷(Cutting)(1990))创建用于表达该有机磷水解酶的表达构建体并通过同源重组将其整合到枯草芽孢杆菌宿主细胞基因组中。在三联启动子系统(如WO 99/43835中所述)的控制下表达该基因构建体,该启动子系统由包括该mRNA稳定化序列的地衣芽孢杆菌α-淀粉酶基因启动子(amyL)、解淀粉芽孢杆菌α-淀粉酶基因启动子(amyQ)和苏云金芽孢杆菌cryIIIA启动子组成。将编码氯霉素乙酰转移酶的基因用作标记。通过对来自枯草芽孢杆菌转化体的菌落PCR产物进行测序验证正确的序列。
[0187] 表1.用于萨氏海鞘DFP酶的基于PCR的定点诱变的诱变引物粗体字母代表定向诱变的位点。
[0188]
[0189]
[0190] 表2.用于玻璃海鞘DFP酶的基于PCR的定点诱变的引物粗体字母代表定向诱变的位点。
[0191]
[0192] 有机磷水解酶表达
[0193] 将具有上述的His标记的有机磷水解酶基因的氯霉素抗性枯草芽孢杆菌转化体接种于250ml埃伦迈尔(Erlenmeyer)烧瓶中的100ml生长培养基中。使培养物在30℃和250rpm下生长3天。
[0194] 实例2
[0195] 纯化
[0196] 通过在5000rpm离心15min从这些培养物中收获细胞并通过0.22μm瓶盖过滤器(耐洁(Nalgene))过滤上清液。将固体MES和咪唑添加至以下浓度:10mM咪唑和0.5mM MES。将pH调节至7.6,并且在 探测器系统上使用预装载有Cu2+的螯合琼脂糖FF柱将该溶液进行纯化。以增加的咪唑浓度(0%-100%的500mM咪唑)分步执行洗脱。
[0197] 合并属于相同峰的级分,浓缩并且使用Amicon超离心过滤器设备以10kDa截止点缓冲液交换进50mM TRIS(pH 7.0)中。
[0198] 实例3
[0199] 有机磷水解酶活性的测量
[0200] 有机磷水解酶活性
[0201] 通过如描述于布卢姆(Blum)等人,JACS,128(2006):12750-12757中的pH stat测定或使用如描述于盖博 等人,分析生物化学(Anal Biochem),385(2009):187-193中的原位的傅立叶变换红外光谱术来确定萨氏海鞘DFP酶的有机磷水解酶活性。在该pH stat测定中,DFP水解是通过在氮气氛下在298K测量氟离子的释放来确定的。该测定是以3ml在pH 7.5进行的,包含10mM NaCl和10%乙腈。通过加入2微升的0.5mg/ml有机磷水解酶来启动该反应。初速度是在八种不同的底物浓度(0.5-10mM)下确定的,并且针对DFP水解的未催化速率进行校正。原位傅立叶变换红外(FTIR)光谱术是用来当神经药剂底物被水解为相应的磷酸和膦酸时测量其实时反应速率。
[0202] 随后在25℃,在分光光度计中235nm,通过将纯化的有机磷水解酶添加到在50mM Tris、2mM CaCl2(pH 7.5)中包含1mM二氢香豆素的溶液中进行二氢香豆素的水解。当被计算为235nm每分钟每mg蛋白的吸光度的减少时,针对有机磷水解酶,二氢香豆素的水解的比活性被计算为:3U/mg,对于萨氏海鞘。
[0203] 活性测试
[0204] 用以下G-剂来测试这些有机磷水解酶:DFP、索曼、环萨林和萨林。萨氏海鞘有机磷水解酶显示针对所有四种G-剂的活性。
[0205] 表3.比活性。一个U被定义为1μmol底物每分钟的水解。
[0206]
[0207]
[0208] 也使用NMR光谱术进行萨氏海鞘和玻璃海鞘有机磷水解酶对索曼和VX的酶活性。在以下中进行试验:50mM TRIS缓冲液,2mM CaCl2,20%D2O pH 7.0。从针对索曼分解产物频哪醇甲基膦酸(PMPA)的标准曲线计算对于有机磷水解酶而言索曼的水解的比活性。从针对VX分解产物乙基甲基膦酸(EMPA)的标准曲线计算对于有机磷水解酶而言VX的水解的比活性。
[0209] 表4.比活性。一个U被定义为1μmol底物每分钟的水解。
[0210]
[0211] 表5.比活性。一个U被定义为1μmol底物每分钟的水解。
[0212]
[0213] 在比色测定中,基于游离硫醇与DTNB(5,5’-二硫双-2-硝基苯甲酸盐)的测定(如描述于布鲁姆菲尔德(Broomfield)等人,CBMTS III会议论文集,Spietz,瑞士,五月7-12(2000))来确定这些有机磷水解酶的VX水解。
[0214]
[0215] 针对检测有机磷水解酶催化VX分解的DTNB测定原理。
[0216] 在该DTNB测定中,该有机磷水解酶催化的VX水解被测量为在412nm处5-硫,2-硝基双苯甲酸盐的累积。该测定在以下中进行:200μl,pH 7.0,包含50mM TRIS缓冲液,2mM CaCl2,0.2mM DTNB和3.4mM VX以及30μg有机磷水解酶(玻璃海鞘有机磷水解酶或萨氏海鞘有机磷水解酶)。
[0217] 测量了CINT和CSAV DFP酶的所有变体的VX水解。表6和7中的结果是三个独立重复的平均值。
[0218] 表6.萨氏海鞘DFP酶变体的相对VX分解活性。测量为在412nm处5-硫,2-硝基双苯甲酸盐的累积。在每个测定中使用30μg的CSAV DFP酶。
[0219]
[0220]
[0221] 表7.玻璃海鞘DFP酶变体的相对VX分解活性。测量为在412nm处5-硫,2-硝基双苯甲酸盐的累积。在每个测定中使用30μg的CINT DFP酶。
[0222]
[0223] 在此描述并且要求的本发明不限于在此披露的具体方面的范围,因为这些方面意图作为本发明若干方面的说明。预期任何等效方面都处于本发明的范围内。实际上,除在此所示和描述的那些之外,本发明的不同修改对于本领域普通技术人员而言从前述描述将变得清楚。这类修改也旨在落入所附权利要求书的范围内。在有冲突的情况下,以包括定义的本披露为准。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈