首页 / 专利库 / 农用化学品和农药 / 固体制剂 / 制备定向释放活性成分的功能性纤维素成型制品的方法

制备定向释放活性成分的功能性纤维素成型制品的方法

阅读:881发布:2020-05-08

专利汇可以提供制备定向释放活性成分的功能性纤维素成型制品的方法专利检索,专利查询,专利分析的服务。并且本 发明 公开的是制备受 控释 放活性成分的 纤维 素成型制品的方法。为此,将纸浆分散在 纤维素 的 水 性直接 溶剂 中以形成配浆。与此平行地,将有机改性的或通过离子交换活化的层状 硅 酸盐在纤维素的直接溶剂中均化,并且在此通过剪切导致剥离,和然后与纸浆配浆混合。与此分开地,用无机或有机 增稠剂 稳定化活性成分与亲脂性基质材料的混合物或含有活性成分的油包水乳液,并将其转 化成 凝胶状糊料,然后同样将该糊料与纸浆配浆混合。将水从所述混合物中 抽取 出直到所述纤维素全部溶解。然后将所述混合物在溶液纺丝法中形成为成型制品并干燥。所述活性成分例如是 化妆品 活性成分、脂溶性维生素或非极性 植物 提取 物。在通过所述方法制备的成型制品内含有精细分布的由活性成分和基质材料或含有活性成分的乳液构成的微区。所述成型制品可特别用作在针织物、 机织物 、非织造物、纸以及还有在箔和膜中的功能性纤维。,下面是制备定向释放活性成分的功能性纤维素成型制品的方法专利的具体信息内容。

1.制备受控释放活性成分的纤维素成型制品的方法,所述方法包括如下阶段:
a)将纸浆分散在纤维素性直接溶剂中以形成纤维素配浆,
b)在所述方法的一个单独的步骤中,将有机改性的纳米级层状酸盐或通过与离子进行的离子交换被预活化的纳米级层状硅酸盐用纤维素的水性直接溶剂均化,并通过剪切部分地或完全剥离,将所述纳米级层状硅酸盐添加到所述纤维素配浆中并与之混合,
c)在所述方法的另一个单独的步骤中,由亲脂性活性成分和所述活性成分的亲脂性基质材料形成的组合物或者含有亲脂性活性成分的油包水乳液通过无机或有机增稠剂稳定化,并转化成凝胶状糊料,这种糊料同样被添加到所述纤维素配浆中并在最高至130℃的温度下在搅拌下与之混合,
d)从混合物中抽取出水直至完全溶解所述纤维素,和
e)通过溶液纺丝方法将所得的纺丝溶液成型为成型制品,对其进行后处理,和任选地光泽处理和干燥。
2.根据权利要求1的方法,其特征在于纤维素的直接溶剂是水性N-甲基吗啉-N-化物溶液,可以额外包含有机溶剂的含水离子液体,或二甲基乙酰胺(DMAc)和氯化锂的溶液。
3.根据权利要求1的方法,其特征在于所述有机改性的纳米级层状硅酸盐是由铵阳离子改性的合成层状硅酸盐,所述铵阳离子具有至少一个具有14或更多个原子的长链非支化烷基和/或烯基,其中所述烷基或烯基是任选取代的。
4.根据权利要求3的方法,其特征在于所述铵阳离子具有至少一个具有14至20个碳原子的长链非支化烷基和/或烯基。
5.根据权利要求3的方法,其特征在于所述烷基或烯基是被一个或多个羟基或羧基基团取代的。
6.根据权利要求1至5中任一项的方法,其特征在于在所述纤维素成型制品中,一种或多种有机改性的纳米级层状硅酸盐的比例为0.5至20wt%,基于纤维素的重量。
7.根据权利要求6的方法,其特征在于在所述纤维素成型制品中,一种或多种有机改性的纳米级层状硅酸盐的比例为5至15wt%,基于纤维素的重量。
8.根据权利要求6的方法,其特征在于所述纤维素成型制品是功能性的纤维素纤维。
9.根据权利要求1至5中任一项的方法,其特征在于所述活性成分选自固体或液体亲脂性活性成分。
10.根据权利要求9的方法,其特征在于所述活性成分选自化妆品活性成分。
11.根据权利要求10的方法,其特征在于所述化妆品活性成分选自月见草油、金丝桃油、霍霍巴油、鳄梨油、脂溶性维生素和原维生素、油包水乳液、或非极性或水性植物提取物。
12.根据权利要求11的方法,其特征在于所述脂溶性维生素和原维生素是维生素A、视黄醇、维生素D或维生素E。
13.根据权利要求1至5中任一项的方法,其特征在于所述活性成分的亲脂性基质材料是具有多于8个碳原子的,(C8-C22)脂肪醇,(C8-C22)脂肪酸和/或在脂肪酸部分中具有8至22个碳原子的脂肪酸酯。
14.根据权利要求13的方法,其特征在于所述烃具有8至22个碳原子。
15.根据权利要求1至5中任一项的方法,其特征在于所述无机增稠剂是由热解二氧化硅、金属氧化物陶瓷和/或金属制成的纳米粒子
16.根据权利要求1至5中任一项的方法,其特征在于所述有机增稠剂是脂族-芳族嵌段共聚物。
17.根据权利要求1至5中任一项的方法,其特征在于以0.1至200g/kg纤维素的浓度使用由亲脂性活性成分和亲脂性基质材料形成的组合物。
18.根据权利要求17的方法,其特征在于所述油包水乳液包括分散在油相中的亲水相。
19.根据权利要求18的方法,其特征在于所述油包水乳液是化妆品活性成分的水性制剂或植物成分的水性提取物,它们各自与非极性烃、脂肪醇、脂肪酸和具有多于8个碳原子的脂肪酸酯和天然或合成乳化剂混合,其中所述水性组分的浓度为0.1至200g/kg液相。
20.根据权利要求1至5中任一项的方法,其特征在于通过所述层状硅酸盐的剥离度、通过在所述层状硅酸盐中的阳离子的化学结构和浓度、通过在所述有机改性的层状硅酸盐的预溶胀过程中和/或在由亲脂性活性成分和所述活性成分的亲脂性基质材料形成的糊料的制备过程中的温度、通过其中使用的分散剂的粘度、通过其中的水含量、通过所述亲脂性基质材料的性质以及还有所述有机改性的层状硅酸盐的混合/剪切的强度和持续时间,控制所述活性成分的释放。
21.根据权利要求1的方法,其特征在于步骤c)中的有机或无机增稠剂是选自以下的纳米粒子:热解法二氧化硅、金属氧化物陶瓷、溶剂相容性金属纳米粒子及其组合,所述纳米粒子以基于由活性成分和所述活性成分的亲脂性材料形成的混合物的总重量计0.1至10重量%的比例存在。
22.根据权利要求1至5中任一项的方法,其特征在于所述纺丝溶液的剪切变稀指数n在
0.0至-1.2范围内。
23.根据权利要求22的方法,其特征在于所述纺丝溶液的剪切变稀指数n在-0.1至-1.0范围内。
24.纤维素成型制品,其具有精细分布在其中的微区,该微区由亲脂性活性成分和所述活性成分的亲脂性基质材料的组合物或含亲脂性活性成分的油包水乳液构成,所述纤维素成型制品通过根据权利要求1至23中任一项的方法制备,其特征在于将有机改性的层状硅酸盐通过具有至少一个14或更多个碳原子的直链烃基的铵或 阳离子进行改性。
25.根据权利要求24的纤维素成型制品,其特征在于所述铵或 阳离子具有至少一个
14-20个碳原子的直链烃基。
26.根据权利要求24或25的纤维素成型制品,其特征在于其用于纺织品应用中,并且可再加载以高挥发性的热和/或化学敏感的活性成分。
27.根据权利要求24-26中任一项的纤维素成型制品的用途,作为功能性纤维用于与聚酯纤维、聚酰胺纤维、聚丙烯纤维、粘胶纤维、纤维或羊毛形成的混纺纱中,用于纺织品针织物和机织物中,在非织造物和非织造物复合材料中,用于纸和纸复合材料中,或用于箔和膜中。

说明书全文

制备定向释放活性成分的功能性纤维素成型制品的方法

技术领域

[0001] 本发明涉及制备定向释放活性成分包含物的纤维素成型制品的方法。所述活性成分(或活性物质)是固体或液体亲脂性活性成分,或者它们是油包(W/O)乳液。这种方法导致在制备所述纤维素成型制品的过程中,所述活性成分牢固地整合在所述成型制品中,而在使用时可控制活性成分的释放。

背景技术

[0002] WO 2009 062 657中已经描述了用于将非极性物质,例如相变材料(PCM)和/或非极性活性成分并入到纤维素成型制品中的方法。那里综述的现有技术涉及莱赛尔(Lyocell)法。制备由纤维素在水性直接溶剂和所述非极性物质中形成的乳液。这种乳液通过并入纳米级疏水改性的热解和/或添加平面状和/或细长的纳米级粒子而稳定化。通过这种类型的方法实现所述非极性物质非常牢固整合到周围的纤维素基质中,由此非常显著地防止了任何受控的释放。类似的途径描述在DE 10 2006 046 358 A1中。没有对于所包含的活性成分的定向释放速率给出任何教导。
[0003] 同样,在DE-PS 10 2010 007 497 A1中描述了在可熔融塑料基质中直接并入石蜡。此处将40至75%石蜡和60至25%聚合物载体组分的塑化混合物在130至220℃下挤出通过模口,并在离开所述模头时立即骤冷下降到10至80℃的温度,所述聚合物载体组分由5至20%的可热塑化聚合物,5至20%的苯乙烯嵌段共聚物和0至20%的一种或多种添加剂组成。采用这样的操作方式时主要的缺点是,所述成型制品的强度低,最高至大于500%的巨大伸长率,和需要后续拉伸2至12倍。另外,这种用于并入到熔体中的方法不可转移到采用通常具有低得非常多的粘度的水溶液操作的方法。
[0004] Outlast Technologies Inc.的也通过溶液纺丝方法由纤维素制备的具有可逆热性能的多组分纤维描述在专利文献US 7,244,497 B2和WO 2005/017 247 A2中和在实用新型文献DE 20 2004 021 259 U1中。这种类型的纤维通过使用含有所述PCM的包含结构,通常是胶囊,或者通过皮/芯或海-岛结构(在该结构情况下所述PCM材料被非含PCM材料牢固地包围)获得。可逆热性能是目标,所述性能通过将所述PCM材料牢固整合到所述复合制品中获得,它们因此不适合用于定向释放活性成分。
[0005] 最后,专利文献US 5,153,066描述了热致性染料整合在聚合物基体中,其中染料相包埋在位于内部和外部的保护性聚合物基体层中。这里发明的目的也仅是有效防止活性成分由于外部影响的释放和/或过早分解。另外没有提供任何关于这样稳定化的组合物和/或W/O乳液如何可用于从溶液以及随后挤出而制备纤维的教导,因为这些组合物和/或乳液已经是终产物。
[0006] 另外,从DE69600181 T2或DE 102004014704 A1已知使用改性的二氧化硅用于蛋白物质/乳液的机械稳定化和/或用于W/O乳液的稳定化。它们的使用的主要理由是混合物的不同组分之间相互作用的增强并因此不涉及活性成分的受控释放。另外丝毫没有对于在那里占支配地位的高温和剪切下通过溶液纺丝工艺而将这些乳液整合成纤维给出任何教导。
[0007] T.Fornes等人的论文(T.Fornes,P.Yoon,D.Hutter,H.Keskkula和D.Paul:Polymer 2002,43,5915)公开了使用具有插层的有机改性剂分子的层状硅酸盐用于控制在聚合物混合物或共混物中的剥离度。在此甚至插层改性剂的结构自身已经能导致聚合物结构和/或共混物结构的一系列结构改变(参见T.Fornes,D.Hutter和D.Paul:
Macromolecules 2004,37,1793)。单个二氧化硅薄片之间的分离度在这样的程序中可能差别非常大。尽管在非常小分离的情况下微米复合材料占主导地位,但是通过分子或分子链包含入二氧化硅薄片通道(Galerien)中得到插层或甚至剥离的结构,其中单个二氧化硅薄片的完全释放导致在聚合物组分的相界面处的相互作用的显著改变。
[0008] Hasegawa等人(N.Hasegawa,H.Okamoto,M.Kato,A.Usuki和N.Sato:Polymer 2003,44,2933)额外证明,甚至未改性或低程度改性的纳米层状硅酸盐,例如Na+蒙脱土(NaMMT)可在某些情况下只是采用水(水蒸气)就已经可以剥离,在此据称导致得到类似于使用改进的层状硅酸盐获得的那些类似的聚合物结构。水和/或水蒸气可导致NaMMT溶胀,在此使得可以随后,类似于采用有机改性层状硅酸盐的情况那样,分子链能侵入增大的通道间隔。N.Fedullo等人(N.Fedullo,M.Sclavons,C.Bailly,J.-M.Lefebvre和J.Devaux:
Macromol.Symp.2006,233,235)另外表明,结合入的PA6分子链在一些情况下非常耐受洗脱,并且甚至是采用六氟异丙醇(HFIP)的多次萃取也没有实现完全除去包含物。因此,以此方式也不可达到对释放行为的有针对性的控制。没有描述使用这些层状硅酸盐用于在通过莱赛尔工艺制备纤维素成型制品过程中亲脂性物质或甚至W/O乳液的稳定化。

发明内容

[0009] 从所述现有技术出发,本发明要解决的技术问题是开发一种方法,采用该方法可以将亲脂性活性成分组合物以固态或熔融态,而不使用包含结构或载体物质,或作为W/O乳液,在该纤维素成型制品的制备过程中整合入纤维素成型制品中,使得活性成分在成型制品中形成细分布,并且在凝结过程中没有洗脱,所述凝结经常在水性介质中发生。特别的困难由于如下事实产生:从溶液制备成型制品的方法中经常有能引起相分离的非常高剪切力的作用,并且溶剂的凝结或除去经常在水性介质中发生,在那里溶剂被洗脱并且存在的险是活性成分的组合物也一起被洗脱。在纺织品应用范围内,本发明的纤维素成型制品应以受控方式释放活性成分,并且所包含的物质因此被送到目标应用而不必须接受现有技术中描述的技术和经济缺点。本发明要解决的技术问题另外是,也可将亲脂性的、但对水分具有亲和力的以溶解或分散形式的活性成分,以耐洗涤方式贮存并且以受控方式在延长的时间内递送到成型制品周围环境中。本发明要解决的技术问题另外是,可在使用阶段期间对官能化成型制品重新加载高挥发性或热敏和/或化学敏感的活性成分。
[0010] 所述技术问题根据本发明通过多阶段方法解决,在该方法中:
[0011] a)将纸浆在已知的水性直接溶剂中分散,所述溶剂例如NMMO、离子液体或任选的有机液体与所提及的直接溶剂的混合物,或DMAc/LiCl,
[0012] b)在该方法的单独步骤中,将任选地有机改性的,或通过用较高周期的金属和/或碱土金属离子(例如K+、Ca2+、Al3+离子)进行离子交换或用水预活化的纳米级层状硅酸盐,采用直接溶剂的水溶液在Ultraturrax中进行均化,并且通过调节剪切速率(转速)和剪切时间而以限定的程度部分地或完全进行剥离,将其添加到配浆中并且与纤维素配浆混合;
[0013] c)在该方法的另一个单独步骤中,如果必要的情况下通过加热而使得可流动的含活性成分的亲脂性物质,或者含活性成分的W/O乳液,通过有机或无机增稠剂稳定化并转化为凝胶状糊料,该糊料同样添加到纤维素配浆中并且在取决于溶剂而定的最高至130℃的温度下在搅拌下混合;
[0014] d)然后,进一步进行蒸馏直到将纤维素完全溶解;并且
[0015] e)所得纺丝溶液通过已知溶液纺丝工艺之一成型为成型制品,例如短切纤维、长丝、薄膜或直接纤维网和任选地通过已知工艺之一进行后处理、光泽处理(aviviert)和干燥。
[0016] 含活性成分的亲脂性物质应理解为意指活性成分和亲脂性基质材料的混合物。含活性成分的W/O乳液使得能够实现,除了亲脂性活性成分以外,还将溶解在水或亲水溶剂中的亲水活性成分“包装”在亲脂性基质中。也有其中W/O乳液再次“包装”在亲脂性基质中的工艺。
[0017] 溶液纺丝工艺优选是莱赛尔纺丝工艺,即在多数情况下,溶液纺丝工艺是“干-湿纺丝工艺”。
[0018] 与本发明有关的“纳米级”表示至少在一个维度上具有等于或小于100nm的尺寸的物质和/或层状硅酸盐。
[0019] 步骤b)包括将层状硅酸盐预溶胀,即通过用例如如下物质插层:长链脂肪胺的铵盐、元素周期表较高周期(第三周期或更高周期)的碱金属、碱土金属或族阳离子,或水,增大了层状硅酸盐的单个片层(层)之间的间距,这对于纺丝溶液中随后的剥离度具有决定性影响。该分散体的粘度同时增加。插层度受到插层化合物的尺寸、插层水量以及限定的剪切持续时间和剪切速率的调节的影响(参见图1)。步骤c)中的混合优选进行不多于15分钟并且更优选进行约10分钟。
[0020] 步骤c)中的有机或无机增稠剂包括材料上基于如下物质的纳米粒子:热解法二氧化硅、金属氧化物陶瓷或溶剂相容性金属纳米粒子和/或脂族-芳族嵌段共聚物。在此,材料上基于热解法二氧化硅或金属氧化物陶瓷的无纵横(aspektlos)纳米粒子可以是有机改性的。
[0021] 除了控制层状硅酸盐的剥离以控制活性成分的释放速率,层状硅酸盐还起到作为体系中相增容剂的重要作用。
[0022] 在此方面发现的是,令人惊奇地,特别是通过单独的步骤b)和c)可实现将亲脂性的活性成分组合物和/或含活性成分的W/O乳液稳定地整合成纺丝液,而不需要进一步将活性成分的混合物或包封物稳定化。它们最终以微区形式精细分布在成型制品中,所述微区应理解为是指与相邻区段在功能和结构上(准)独立的区域。
[0023] 同样令人惊奇的并且对于本领域技术人员而言绝对不可预见到的是,通过在所述方法的单独步骤b)中所应用的层状硅酸盐的预溶胀,甚至多于通过纤维素溶液、活性成分组合物和层状硅酸盐的混合物的剪切,可在时间和强度上控制层状硅酸盐的剥离度并因此释放结合的活性成分和/或W/O乳液。
[0024] 方法步骤b)中的层状硅酸盐优选是有机改性的层状硅酸盐,其在层状硅酸盐薄片通道中含有有机分子,所述有机分子促进与纤维素的连接并且同时将亲脂性物质(活性成分组合物)和/或W/O乳液在纤维素基质中的精细分布状态稳定化。但是,当要将更亲水的活性成分或更优选是W/O乳液整合到纤维素纤维基质中并随后从中释放时,甚至可以使用未改性的层状硅酸盐,例如钠蒙脱土。已经发现,层状硅酸盐的插层/剥离度对于亲脂性物质和/或活性成分组合物连接在纤维素基质中的牢固性施加了决定性影响。这可以如下由层状硅酸盐的构造加以解释:
[0025] 层状硅酸盐,如已知的那样,由平行堆叠的硅酸盐薄片(单个片层)构成,其中所述薄片又具有由交替地四面体和八面体配位的阳离子层构成的三层构造(层厚度为约1nm),所述阳离子层与共同的阴离子层连接。片层间的中间层(通道)中排布有为了电荷平衡所需(阳离子层中的同晶阳离子交换)的可移动的阳离子,所述阳离子又可以非常简单地被“有机阳离子”,优选带有至少一个具有14个或更多的原子,更优选14至20个碳原子,特别是14、16或18个碳原子的较长链的、非支化的、饱和或不饱和的残基的铵或 阳离子替换。
术语“不饱和的烃残基”特别表示具有1、2或3个双键的未支化的烷基。特别通过采用具有烷基和/或烯基的所提及的有机阳离子进行插层,片层间相互作用,即单个片层的内聚力被改变。所述烷基或烯基可以是取代的,特别是被羟基或羧基取代。这又反映在或多或少快速的分裂成单个的片层(剥离)。当例如通道中含有的阳离子,例如钠离子,被交换为元素周期表更高周期的等价阳离子,例如离子,或者层状硅酸盐被预溶胀于极性溶剂例如水中时,采用非有机改性的层状硅酸盐时获得相同的效果。
[0026] 层状硅酸盐的完全剥离(分层),即完全分裂成硅酸盐薄片(单个片层)导致亲脂性物质和/或活性成分组合物牢固连接到单个片层和连接入纤维素基质中,而弱的剥离/插层导致的成型制品在纤维素成型制品制备后仍然含有活性成分,但是该活性成分根据调节的剥离度而定再次比较快速地释放。
[0027] 剥离度就此可能受到如下方面的影响:
[0028] -原则上,受在层状硅酸盐中的有机阳离子的化学结构和浓度影响;
[0029] -插层离子尺寸或非有机改性的层状硅酸盐的溶胀度;
[0030] -在步骤b)和c)中,受温度、周围介质(所用分散剂、水分、经稳定化的活性成分混合物中使用的烃)的粘度以及层状硅酸盐的混合/剪切的强度和持续时间影响;和[0031] -在步骤b)至d)中,受周围介质的流变性能(就此也受溶解步骤中纤维素溶解的完全性的影响)、温度和同样还有剪切强度和持续时间的影响。
[0032] 在所选择的由于过强的挥发性和/或热敏性或/和化学敏感性而沿着纺织品增值方向的成纤和纤维加工工艺中不可直接整合到纤维素功能性成型制品中的活性成分(例如气味物质)的情况下,另外也可能的是实施功能性成型制品用效果上相关量的活性成分的加载/重新加载。
[0033] 释放活性成分的本发明纤维可利用如下物质制备:使用任何通常的溶解纸浆,例如具有高至最高的α-纤维素含量(>80%)的硬木和软木纸浆,高α-纸浆(短绒)以及α-含量大于或等于90%的一年生植物的纸浆。
[0034] 作为根据本发明的固体或液体活性成分组合物可优选但不是仅仅使用化妆品活性成分组合物,例如月见草油、金丝桃油、霍霍巴油或鳄梨油,脂溶性维生素和原维生素,例如维生素A、视黄醇、维生素D或维生素E,含活性成分的W/O乳液或非极性植物提取物,以浓度为0.1至200g/kg纤维素使用。
[0035] 已知的直接溶剂包括例如NMMO、离子液体或任选地有机液体与所提及的直接溶剂的混合物,或DMAc/LiCl。
[0036] 所用层状硅酸盐是天然和有机改性的粘土矿物,例如滑石、蒙脱土、膨润土高岭石,和/或合成和有机改性的硅酸盐,例如 或 纤维素功能纤维中的层状硅酸盐含量是基于所用纤维素数量计的0.5至20%,优选5至15%。
[0037] 为了将方法步骤1c)中由含活性成分的亲脂性物质,任选地与烃组合构成的高粘度混合物和/或W/O乳液稳定化,使用材料上基于以下物质的纳米粒子:热解法二氧化硅、金属氧化物陶瓷或溶剂相容性金属纳米粒子和/或脂族-芳族嵌段共聚物,其浓度为0.1至10%,基于由活性成分或活性成分/烃或W/O乳液构成的混合物的总量计。
[0038] 所述W/O乳液是化妆品活性成分(例如尿素)的含水制剂,或是植物成分的含水提取物,各自与如下物质混合:非极性烃,具有多于8个碳原子的脂肪醇、脂肪酸和脂肪酸酯(在脂肪酸酯的情况下,在脂肪酸部分中具有多于8个碳原子),和天然或合成乳化剂,其中水性组分的浓度是从0.1到200g/kg非极性烃。
[0039] 根据本发明方法包含有改性的层状硅酸盐、烃和固体或液体亲脂性活性成分的混合物或W/O乳液的纤维素成型制品可作为功能纤维用于与其它天然纤维或化学纤维(例如由聚酯、聚酰胺、聚丙烯、粘胶纤维、棉或毛构成的那些)的混纺纱,用于具有额外功能益处的纺织品针织物和机织物,用于功能性非织造物和功能性非织造物复合材料,用于纸和纸复合材料以及用于功能性箔和膜。
[0040] 最重要的表征层状硅酸盐纳米复合材料的剥离度的方法一方面是X-射线散射(WAXS)和另一方面是透射电子显微术(TEM)。但是,两种方法都对于纳米复合材料样品的剥离度的对比评价而言仅具有有限的说服力。与此相对,纳米复合材料分散体的流变学研究提供至少两个显著的优点:
[0041] i)它们考察宏观的样品体积,但仅需要少数几克的样品,并且
[0042] ii)它们是物理化学方面的标准方法并且与WAXS或TEM相比是实验上不太繁琐的。
[0043] 所述方法基于测定剪切变稀指数n,它是纳米层状硅酸盐的分层的半定量性量度[R.Wagener等人:“Rheologische Charakterisierung von Nancompositen”(纳米复合材料的流变学表征),8. Kunststofftag,2003年5月21日]。所述测量在Haake Mars 2板-板流变仪中,在低于1%的小偏转下进行。在预先研究中检查测量仪器中的这种剪切振幅不导致薄片的不希望的取向。每种情况下样品的粘度在0.1至100Hz的剪切速率范围内测量。因此获得的流动曲线采用幂律方程拟合:
[0044] η*=A·ω(n),
[0045] 其中:
[0046] η*=实验测定的溶液粘度(或者,在热塑性聚合物的情况下也是熔体粘度)[0047] A=指前因子
[0048] ω=流变仪的振荡频率(等同于剪切速率)
[0049] n=剪切变稀指数
[0050] 由η*对ω的双对数曲线,通过在最低剪切速率下沿曲线图的线性部分绘制直线,来测定剪切变稀指数n。作为所述直线的斜率获得n的数值。附图说明
[0051] 图1显示对于采用层状硅酸盐纳米复合材料改性并且经历了不同的剪切强度和/或剪切持续时间的纤维素溶液进行的这样的流变学研究的结果。
[0052] 数值等于和/或稍微低于“0”仅指示剥离度的低的变化。倾斜程度较大的直线应该是层状硅酸盐纳米复合材料中增加的剥离的量度,并且指示剪切变稀程度增加。但是,剪切变稀不必定是纳米复合材料中的不同剥离的结果导致的,而也可能是由温度作用导致的。
[0053] 为此,类似于实施例1的复合材料的样品经历了在间隔为85℃对流动曲线的影响。通过具有强的边缘-面相互作用的硅酸盐薄片的比较规则的空间结构,明显确定了对于固体更为典型的纳米复合材料的这种行为,如也在对于例如聚碳酸酯层状硅酸盐纳米复合材料进行的研究中所表明的那样[P. 等人,“Rheological behavior of multiwalled carbon nanotube/polycarbonate composites”(多壁碳纳米管/聚碳酸酯复合材料的流变学行为);Polymer 43:2002,3247-3255]。
[0054] 借助所描述的方法学成功制备和半定量性可比地评价了纤维素成型制品,其中活性成分的释放是可控的。另外,由此方式也首次成功将甚至高挥发性和/或水溶性活性成分整合到成品的纤维素成型制品中,并控制其释放。

具体实施方式

[0055] 实施例
[0056] 下面的实施例的目的在于举例说明本发明。它们是根据本发明的方法的可能的具体实施方案,但不要求排他性。所含的百分比数据是质量百分比,除非另外说明。
[0057] 实施例1
[0058] 将2.265kg棉短绒纸浆(DP:618)和114g没食子酸丙酯与21.000kg的60%NMMO水溶液混合并将混合物传送到搅拌罐。在50min-1下的搅拌下,将配浆在40毫巴的真空和50℃的-1温度下抽除约5升水。与此平行地,在25 000min 下借助Ultra Turrax剪切30min的情况下,将2.242kg的80%的NMMO水溶液和364.5g层状硅酸盐(用甲基油双(2-羟乙基)铵改性的蒙脱土-蒙脱土中天然存在的阳离子已经交换为这些
得自Southern Clay)分散并添加到配浆中。将所述配浆批料在50min-1、100℃、20毫巴真空下进一步搅拌,直到形成高粘度物料。然后向高粘度物料中添加如下物质的分散体:135g月见草油、545g正十八烷和91.1g热解法二氧化硅( R 106),该分散体在借助UltraTurrax的强烈剪切下单独制成,并将整个混合物在100℃和20毫巴下进一步搅拌,直到所有组分实现均匀的分布。剪切变稀指数经测定为-0.86(图1中的曲线d))。在已经转移制成的纺丝液之后,使用干-湿纺丝工艺(120μm模头开孔,20mm空气隙)制造细度为2.2dtex和60mm切割长度的短切纤维。
[0059] 将1500g如此制成的短切纤维与3500g棉纤维混合,将混合物送往实验室梳理机,并在十字搭接后,用针缝制成基重为150g/m2的纤维网。
[0060] 为了测量活性成分在25℃和60%空气湿度下由于机械应力从纺织品面转移出到皮肤的技术模型上,根据DIN EN ISO 105-X12 2002-12,使用磨损测试仪进行支承模拟试验。随后使用HPLC-MS用甲苯最大限度提取皮肤而检测活性成分的转移出的含量。5次平行测试的平均值是0.073mg/100g月见草油。
[0061] 通过长的剪切时间和高的剪切速率确立的对于纺丝溶液测定的高的负剪切变稀指数因此与并入的月见草油的非常缓慢的释放相关联。
[0062] 实施例2
[0063] 在其它方面相似的操作程序中,向根据实施例1制备的配浆中添加如下物质的分散体:135g月见草油、545g正十二烷和91.1g热解法二氧化硅( R 106)。剪切变稀指数n=-0.56(图1中的曲线b))的混合物然后类似于实施例1进一步处理并成型。由所获得的短切纤维形成与实施例1中相同的组成和相同基重的纤维网。
[0064] 测量活性成分转移时测得平均值为0.754mg/100g的月见草油。
[0065] 通过改变活性成分基质组成测得较低负值剪切变稀指数和达到更快的活性成分释放。
[0066] 实施例3
[0067] 在借助UltraTurrax分散仅10分钟后,,向根据实施例1制备的配浆中添加平行制成的如下物质的分散体:2.242kg的80%NMMO水溶液和364.5g层状硅酸盐(30B),并类似于实施例1进一步加工。溶液的剪切变稀指数是-0.67(图1中的曲线c))。
[0068] 在测量活性成分的转移时检测到平均释放为0.522mg/100g的月见草油。
[0069] 与实施例1相比显著缩短的剪切持续时间导致可测得的剪切变稀指数的绝对值降低,和导致与实施例1相比活性成分释放量的显著增加。
[0070] 实施例4
[0071] 在其它方面相似的操作程序中,向根据实施例1制备的配浆中添加如下物质的分散体:135g的α-生育酚、545g棕榈仁油和91.1g热解法二氧化硅。该混合物的剪切变稀指数是-0.13,将该混合物然后类似于实施例1进一步处理并成型。由所获得的短切纤维形成与实施例1中相同的组成和相同基重的纤维网。
[0072] 测量活性成分转移时测得平均值为1.290mg/100g的α-生育酚。
[0073] 与已经描述的实施例相比,具有其它方面可比的参数的活性成分基质的组成改变在此也导致释放速率显著提高。
[0074] 实施例5
[0075] 在其它方面相似的操作程序中,向根据实施例1制备的配浆中添加如下物质的分散体:135g W/O乳液(尿素、可可脂、羊毛蜡醇)、545g正十八烷和91.1g热解法二氧化硅(N 20)。测得剪切变稀指数为-0.04(图1中的曲线a))。将该混合物然后类似于实施例1进一步处理并成型。由所获得的短切纤维制造由30%功能纤维和70%棉构成的纱线,将其进一步加工成为细的圆形针织件。
[0076] 测量活性成分转移时测得平均值为2.680mg/100g尿素。
[0077] W/O乳液在其它方面可比的处理参数情况下对活性成分基质组合物的剪切变稀指数显示非常敏感的影响,最低的剪切变稀指数和比较高的释放速率。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈