首页 / 专利库 / 企业组织 / 客户忠诚度计划 / Methods for Developing Customer Loyalty Programs and Related Systems and Devices

Methods for Developing Customer Loyalty Programs and Related Systems and Devices

阅读:179发布:2020-05-24

专利汇可以提供Methods for Developing Customer Loyalty Programs and Related Systems and Devices专利检索,专利查询,专利分析的服务。并且In some aspects, methods for measuring a level of usage of one or more replaceable consumable components within a material processing system can include detecting a type of consumable component in use within a processing device of the material processing system; determining, using a computing system, if the type of consumable component in use is a specific type of consumable component; and determining, using the computing system, a usage ratio of the specific type of consumable component used relative to other types of consumable components used within the processing device during a cumulative time period of use of the material processing system.,下面是Methods for Developing Customer Loyalty Programs and Related Systems and Devices专利的具体信息内容。

What is claimed:1. A method for validating customer characteristics associated with a user's usage of one or more replaceable consumable components within a material processing system, the method comprising:detecting, using a computing system, a usage of the one or more replaceable consumable components within the material processing system;obtaining, over a communication network, a usage metric for the material processing system from the computing system, the usage metric for the material processing system being associated with the one or more replaceable consumable components used within the material processing system and based on identification of the consumable components installed in the material processing system during operation;comparing, using the computing system, the usage metric to a threshold usage metric; anddetermining, based on the comparing the usage metric to a threshold usage metric, if the user's usage indicates a selected level of customer usage.2. The method of claim 1 wherein the obtaining the usage metric includes determining a frequency of use of a particular type of consumable.3. The method of claim 1 wherein the comparing the usage metric includes determining a ratio that the particular type of consumable component is used relative to a total usage of the material processing system.4. The method of claim 1 wherein the comparing the usage metric includes determining whether or not a consumable component of a predetermined type is installed in the material processing system during usage.5. The method of claim 4 wherein the determining whether or not a consumable component of the predetermined type is installed within the material processing system during usage includes identifying the consumable component installed in the material processing system by communicating with a signal device disposed in or on the consumable component.6. The method of claim 1 wherein the obtaining the usage metric includes communicating with the consumable component during use.7. The method of claim 6 wherein the communicating with the consumable component during use includes obtaining system operating parameters of one or more uses of the material processing system.8. The method of claim 1, further comprising, responsive to determining that the user's usage indicates a predetermined level of customer usage, providing a user with one or more benefits.9. The method of claim 1, further comprising receiving information relating to usage of the processing device during one or more previous operation sequences.10. A method for measuring a level of usage of one or more replaceable consumable components within a material processing system, the method comprising:detecting a type of consumable component in use within a processing device of the material processing system;determining, using a computing system, if the type of consumable component in use is a specific type of consumable component; anddetermining, using the computing system, a usage ratio of the specific type of consumable component used relative to other types of consumable components used within the processing device during a cumulative time period of use of the material processing system.11. The method of claim 10 wherein the determining the usage ratio includes transferring information regarding the type of consumable component in use to an external computing device that is configured to determine the usage ratio.12. The method of claim 10 wherein the detecting the type of consumable component comprises communicating with a signal device disposed in or on the consumable component.13. The method of claim 10 wherein the specific type of consumable component comprises a particular manufacturer or OEM type or channel source.14. The method of claim 10 wherein the determining the usage ratio comprises determining a frequency of use of the specific type of consumable component relative to a frequency of use of consumable components that are not of the specific type.15. The method of claim 10 wherein the determining the usage ratio comprises repeatedly determining whether or not a consumable component of the specific type is installed in the material processing system during usage.16. The method of claim 15 wherein the determining whether or not a consumable component of the specific type is installed in the material processing system during usage comprises communicating with a signal device disposed in or on the consumable component.17. The method of claim 10 further comprising supplying information relating to usage of the processing device to the material processing system.18. A material processing system comprising:a material processing system control unit configured to be operably connected to a processing device;a consumable identification module in communication with the control unit, the consumable identification module being configured to detect a type of consumable component in use within a processing device of the material processing system;a usage tracking module in communication with the control unit, the usage tracking module configured to determine a usage ratio of a predetermined type of consumable component used within the processing device relative to other types of consumable components used within the processing device during a cumulative time period of use of the material processing system; anda communication module in communication with the control unit, the communication module being configured to provide over a communication network information regarding a usage ratio of the predetermined type of consumable component used within the material processing system.19. The material processing system of claim 18 wherein the consumable identification module comprises a communication device configured to communicate with a consumable component during use.20. The material processing system of claim 19 wherein the consumable identification module is disposed within the material processing device and is configured to communicate with a data tag disposed in or on the consumable component, the data tag comprising identifying information relating to the consumable component.21. The material processing system of claim 20 wherein the communication module is configured to transmit information relating to the consumable component to the communication network.22. The material processing system of claim 18 wherein the communication network comprises an Internet based cloud system configured to transmit material processing system usage information relating to the type of consumable components used to the third party.23. The material processing system of claim 18 wherein the communication network comprises a mobile telecommunication system configured to transmit material processing system usage information relating to the type of consumable components used to the third party.

说明书全文

TECHNICAL FIELD

This disclosure relates generally to material processing systems, and more specifically to methods for developing customer loyalty programs and related systems and devices.

BACKGROUND

Material processing systems, such as thermal processing torches (e.g., plasma arc torches), are used in the heating, cutting, gouging, and marking of materials. Typically, a plasma arc torch includes multiple replaceable consumable components, which can include an electrode mounted within a torch body, a swirl ring, a nozzle, one or more retaining caps, and a shield. The nozzle typically has an exit orifice, electrical connections, passages for cooling, and passages for arc control fluids (e.g., plasma gas). Optionally, the swirl ring can be used to control fluid flow patterns in the plasma chamber formed between the electrode and the nozzle. In some torches, a retaining cap can be used to position the nozzle and/or swirl ring in the plasma arc torch.

In operation, the torch produces a plasma arc, which is a constricted jet of an ionized gas with high temperature and sufficient momentum to assist with removal of molten metal. Each consumable can be selected to achieve optimal performance (e.g., an optimal current level, maximum lifespan, etc.) in view of specific processing constraints, such as the type of material being cut and/or the cut shape desired. Installing incorrect consumables into a torch can result in poor cut quality and decreased cut speed. In addition, incorrect consumables can reduce consumable life and lead to premature consumable failure. Additionally, in some cases, it can be difficult for a third party torch system manufacturer to guarantee performance of its systems if aftermarket consumables (e.g., consumables not manufactured or otherwise authorized by the system manufacturer) are used in the torch system by user without the manufacturer's knowledge or approval.

Other types of material processing systems, such as water jet processing systems or laser processing systems also typically include various consumable components that are used to operate their respective processing devices (e.g., water-jet cutting heads and laser cutting heads).

SUMMARY

In some aspects, methods for validating customer characteristics associated with a user's usage of one or more replaceable consumable components within a material processing system can include detecting, using a computing system, a usage of the one or more replaceable consumable components within the material processing system; obtaining, over a communication network, a usage metric for the material processing system from the computing system, the usage metric for the material processing system being associated with the one or more replaceable consumable components used within the material processing system and based on identification of the consumable components installed in the material processing system during operation; comparing, using the computing system, the usage metric to a threshold usage metric; and determining, based on the comparing the usage metric to a threshold usage metric, if the user's usage indicates a selected level of customer usage.

Embodiments can include one or more of the following features.

The obtaining the usage metric can include determining a frequency of use of a particular type (e.g., manufacturer or OEM or channel source) of consumable. The comparing the usage metric can include determining a ratio that the particular type of consumable component is used relative to a total usage of the material processing system. The comparing the usage metric can include determining (e.g., by periodically tracking) whether or not a consumable component of a predetermined type is installed in the material processing system during usage. For example, the determining whether or not a consumable component of the predetermined type is installed within the material processing system during usage can include identifying the consumable component installed in the material processing system by communicating with a signal device disposed in or on the consumable component. The obtaining the usage metric can include communicating with the consumable component during use. For example, communicating with the consumable component during use can include obtaining system operating parameters of one or more uses of the material processing system. The method can also include, responsive to determining that the user's usage indicates a predetermined level of customer usage, providing a user with one or more benefits. The method can also include receiving information relating to usage of the processing device during one or more previous operation sequences.

In some aspects, methods for measuring a level of usage of one or more replaceable consumable components within a material processing system can include detecting a type of consumable component in use within a processing device of the material processing system; determining, using a computing system, if the type of consumable component in use is a specific type of consumable component; and determining, using the computing system, a usage ratio of the specific type of consumable component used relative to other types of consumable components used within the processing device during a cumulative time period of use of the material processing system.

Embodiments can include one or more of the following features.

The determining the usage ratio can include transferring information regarding the type of consumable component in use to an external computing device (e.g., the third party client device, the communication networks, or another computing device) that is configured to determine the usage ratio. The detecting the type of consumable component can include communicating with a signal device disposed in or on the consumable component. The specific type of consumable component can include a particular manufacturer or OEM type or channel source. The determining the usage ratio can include determining a frequency of use of the specific type (e.g., a manufacturer, an original equipment manufacturer (OEM), or a channel source) of consumable component relative to a frequency of use of consumable components that are not of the specific type. The determining the usage ratio can include repeatedly determining (e.g., periodically tracking) whether or not a consumable component of the specific type is installed in the material processing system during usage. For example, the determining whether or not a consumable component of the specific type is installed in the material processing system during usage can include communicating with a signal device disposed in or on the consumable component. The method can also include supplying information relating to usage of the processing device to the material processing system.

In some aspects, material processing systems can include a material processing system control unit configured to be operably connected to a processing device (e.g., a plasma torch); a consumable identification module in communication with the control unit, the consumable identification module being configured to detect a type of consumable component in use within a processing device of the material processing system; a usage tracking module in communication with the control unit, the usage tracking module configured to determine a usage ratio of a predetermined type of consumable component used within the processing device relative to other types of consumable components used within the processing device during a cumulative time period of use of the material processing system; and a communication module in communication with the control unit, the communication module being configured to provide over a communication network information regarding a usage ratio of the predetermined type of consumable component used within the material processing system.

Embodiments can include one or more of the following features.

The consumable identification module can include a communication device configured to communicate with a consumable component during use. For example, the consumable identification module can be disposed within the material processing device and can be configured to communicate with a data tag disposed in or on the consumable component, where the data tag can include identifying information relating to the consumable component. The communication module can be configured to transmit information relating to the consumable component to the communication network. The communication network can include an Internet based cloud system configured to transmit material processing system usage information relating to the type of consumable components used to the third party. The communication network can alternatively or additionally include a mobile telecommunication system (e.g., a 3G antenna disposed on the material processing system power supply) configured to transmit material processing system usage information relating to the type of consumable components used to the third party.

Embodiments described herein can have one or more of the following advantages.

In some aspects, the systems and methods described herein can be used to enable a third party (e.g., a manufacturer, seller, reseller, original equipment manufacturer (OEM), or other similar party) that makes or sells one or more components of a material processing system (e.g., power supplies, torches, consumable components (e.g., consumables), etc.) to monitor and manage the use of their products by an end user in a more efficient manner than possible with some other systems. For example, the systems and methods described herein can generally permit the third party to track, monitor, or verify if and when a specific type (e.g., a preferred type (e.g., a certain brand or manufacturer)) of consumable components is installed and/or in use in the material processing system relative to other types (e.g., non-preferred types) of consumable components. In some embodiments, this may enable verification of matched installation and/or usage of consumables in or with a power supply (e.g., installation of a third party's consumables on the same third party's power supply). In some cases, as discussed herein, a third party may manufacture and/or sell both power supplies and consumable components and the verification of the matched consumables with a power supply can be used for quality or troubleshooting purposes. Additionally or alternatively, in some examples, the type of the processing device itself (e.g., a manufacturer or brand of a torch) being used with the material processing system can also be identified by a third party to track, monitor, or verify if and when a specific type of torch is used.

Based on information obtained about the user's usage of the preferred types of consumable components, the third party can offer beneficial treatments to the user. For example, the third party and the user can agree that if the user uses the preferred type of consumable components a certain amount of usage time (e.g., for over 90% (e.g., 100%) of operations while using the preferred type), the third party will provide products or services to the user at discounted or reduced costs. In some cases, the third party may provide the user with discounted (e.g., free) components of the material processing system (e.g., a torch or a power supply of a thermal torch processing system) if the user uses only the preferred type of consumable components (e.g., consumable components manufactured by the third party).

Additionally, using material processing systems with consumable components having signal devices (e.g., RFID data tags) can enable the third party to monitor the user's usage more easily and more accurately than with some other material processing systems. For example, in some cases, third parties can monitor and track what types of consumables are being used in a user's system automatically using any of various communications systems. Whereas, with some other types of material processing systems, a third party may need to rely on reports provided by the user (or other possibly inconclusive or inaccurate methods) in order to determine if the user is using the preferred type of consumable components in accordance with an agreement between the user and the third party.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of an example material processing system having a communication network to transmit usage information to a third party.

FIG. 2 is a schematic diagram of an example material processing system having a telecommunications based communication network to transmit usage information to a third party.

FIG. 3 is a schematic diagram of an example material processing system having a communication network that includes an Internet accessible computer system to transmit usage information to a third party.

FIG. 4 is a flow chart depicting an example method for validating customer characteristics associated with a user's usage of consumable components within a material processing system.

FIG. 5 is a flow chart depicting an example method for asserting customer loyalty based on usage of one or more replaceable consumable components within a material processing system.

DETAILED DESCRIPTION

In some aspects, material processing systems (e.g., thermal processing systems, water jet processing systems, etc.) can include components and systems that enable monitoring and tracking different types of consumable components that are used within the material processing system. By monitoring the types of consumables used by the material processing systems, third parties can execute various customer service programs to offer one or more beneficial treatments to users depending on their use of products from the third party.

Referring to FIG. 1, a material processing system (e.g., a thermal torch system (e.g., a plasma arc torch system), a water jet processing system, a laser processing system, or other material processing system) 100 generally includes a processing device (e.g., a torch device (e.g., a handheld torch or a mechanized or automated torch)) 102 that is operably connected to a material processing system power supply 104 to receive electrical power and gas (e.g., pilot gas or cutting gas) for operation. In examples in which the material processing system 100 is in the form of a water jet processing system, the processing device 102 can include a water-jet cutting head. In examples in which the material processing system 100 is in the form of a laser processing system, the processing device 102 can include a laser cutting head. Similarly, the power supply 104 can alternatively or additionally provide other connections to the processing device, for example to provide water to a water jet cutting head or to provide electricity to a laser cutting head.

During use, the processing device (e.g., torch) 102 can generate a cutting beam or arc (e.g., a plasma arc from a torch) for cutting a workpiece (e.g., a metal plate-like workpiece) when the processing device 102 is connected to the power supply 104. The torch 102 generally includes a torch body that defines a plasma gas flow path for directing a plasma gas to a plasma chamber in which a plasma arc is formed. An electrode (not shown) can be disposed within the torch body for generating the plasma arc. The torch 102 typically includes one or more consumable components (e.g., an electrode, a nozzle, a shield, and one or more retaining caps) that can be used to direct gas flow, to generate a plasma arc, and to protect torch components during use. Other types of material processing systems can also include various consumable components. For example, water jet processing systems can include various consumable components, such as an orifice, an orifice plate, a nozzle, or a pump device. Similarly, laser processing systems can include various consumable components, such as one or more lenses or nozzles.

The power supply 104 includes a control unit (e.g., a microprocessor) 106 that is configured to control the operation of the power supply 104 and the torch (or other processing device) 102 during use. The control unit 106 is also configured to communicate with other components (e.g., modules) of the material processing system, which can be part of the power supply 104. For example, the power supply 104 can also include a usage tracking module 108 and/or a communication module 110. It is noted that in some embodiments, the control unit 106, the usage tracking module 108, and/or the communication module 110 can be formed as separate modules or components in communication with one another or one or more components having multiple functionalities of one or more of these modules.

As discussed below, the usage tracking module 108 can be in communication with the control unit 106 and a consumable identification module (e.g., a consumable identification module arranged in or on the torch 102) 109 to track or monitor what types of consumable components are installed and used in the torch 102.

The communication module 110 can be configured to communicate (e.g., via wired or wireless communication) with the control unit 106, the usage tracking module 108, and/or the consumable identification module 109 disposed in the torch 102.

Additionally, one or more components of the power supply (e.g., the communication module 110 or the control unit 106) are typically in communication (e.g., wired communication or wireless communication) with a communication network (e.g., a communication system) 112 that is configured to provide information about the material processing system to a third party 114. The third party 114 can include a person (e.g., a serviceperson, a machine operator, a representative of the manufacturer of the material processing system, power supply, torch or consumable component). For example, the information can include information about the processing device, such as information regarding the type of consumable component (e.g., brand or manufacturer information) installed in the torch (or other type of processing device) 102 during one or more usages of the torch. Additionally or alternatively, as mentioned above, the type of the processing device itself (e.g., a manufacturer or brand of a torch) being used with the material processing system can also be monitored and identified by a third party. In some examples, the communication network is configured to provide information regarding a type of consumable component used within the material processing system. In some embodiments, the communication network can include a local area network (LAN) in communication with the power supply 104 and/or the third party 114.

The power supply 104 is typically configured to communicate with a consumable component during use, for example, using a consumable identification module 109 arranged in one or more system components. In some embodiments, the consumable identification module 109 can communicate with the consumable component installed in the system and also with the control unit 106 or another component of the power supply 104. Therefore, the material processing system can obtain information regarding the consumable component (e.g., identifying information) using the consumable identification module 109 and transmit the information to the third party 114, for example, via the control unit 106, the communication module 110, and the communication network 112. In some cases, usage of the power supply 104 may additionally or alternatively be monitored and verified so that it can be provided (e.g., reported) to the third party 114. Monitored usage of the power supply 104 can be used to enable the third party to determine an amount of use (e.g., a percentage of use) of the preferred type consumables associated with the power supply 104.

In some examples, the consumable identification module 109 is configured to communicate with a data tag (e.g., a radio-frequency identification (RFID) device) disposed in or on one or more of the consumable components installed in the torch (or other processing device) 102. For example, the consumable identification module 109 can include a data reading device (e.g., an RFID reading device) disposed within one or more components of the material processing system (e.g., the torch 102, the power supply 104, the control unit 106, or the communication network 112) that is configured to communicate with the data tag disposed in or on one or more of the consumable components. In some cases, the data tag can include identifying information relating to the consumable component, which can be read by the consumable identification module 109 so that the consumable component can be identified, for example, to determine if the consumable is a specific or preferred type (e.g., a particular brand or manufacturer). As discussed below, the identifying information can be used by a third party 114 in communication with the communication network 112 to enable any number of various customer service programs based on the user's usage of the preferred type of consumable component. As mentioned above, the material processing system can also be configured to monitor and determine the type of processing device (e.g., torch) being used therein. For example, the power supply can additionally or alternatively include an identification module (e.g., a torch identification module) to communicate with the torch. In some cases, the torch identification module can include a data reading device (e.g., an RFID reading device) disposed within or in communication with the power supply.

Additional information regarding communicating with and identifying consumable components installed in a material processing system (e.g., thermal processing system) can be found in U.S. patent application Ser. No. 13/838,919 entitled, “Systems, Methods, and Devices for Transmitting Information to Thermal Processing Systems,” the contents of which are hereby incorporated by reference in their entirety.

As mentioned above, in some embodiments, the communication module 110 is configured to transmit information relating to the consumable component to the communication network 112. As discussed below, such information can be used for any of various reasons including troubleshooting the material processing system or for analyzing system usage for providing additional services. In particular, the communication network can be used to transmit information regarding what type (e.g., what brand) of consumable components are being used by the material processing system during use. For example, the communication network can analyze and determine how often a particular type (e.g., brand or manufacturer) of consumable components are used by the material processing system relative to other types of consumable components. The communication network can include one or more systems that are configured to permit the third party 114 to analyze the types of consumable components that have been used by the material processing system 100. In some embodiments, the communication network 112 can include a computing system that the third party 114 can use to obtain information about the material processing system usage. For example, the material processing system 100 (i.e., and communication network 112) can be configured to track and/or record the types of consumable components used in the torch 102 during various processing operations.

Periodically, the third party can access the communication network 112 to review, study, and/or download the usage information to determine if the user's usage indicates that the user meets a certain predetermined level of usage loyalty (i.e., loyalty to the third party) in accordance with an agreement between the user and the third party. For example, the third party 114 can physically visit the user's work area (e.g., factory or similar manufacturing facility) and manually use the communication network 112 to access and extract the usage information. In some cases, the third party 114 could download the usage information to a memory device (e.g., a USB jump drive or similar portable memory storage device). However, other configurations are possible. In some examples, the third party 114 includes a client device (e.g., an external computing device) in communication (e.g., wired or wireless communication) with the communication network 112 that can be used to extract usage information.

As discussed below, the material processing systems can include other communication networks having any of various types of systems and communication techniques to permit the third party to access the user's usage information.

In some embodiments, referring to FIG. 2, a material processing system 200 can alternatively or additionally include a communication network 212 that utilizes cellular telephone based telecommunication networks (e.g., mobile telecommunication technology systems). The communication network 212 can be integrated within or in communication with the power supply 104 to transmit information from the power supply 104 to the third party 114. For example, the communication network 212 can include a telecommunication antenna (e.g., a mobile telecommunication antenna) 213 in communication with the power supply 104 (e.g., with the communication module 110), by which information can be transferred to the third party 114. In some cases, the antenna is in the form of a 3G-type mobile telecommunications antenna in wireless communication with the power supply and can broadcast a signal to be received by the third party 114. In some examples, the antenna can be disposed as an integral component within the power supply 104.

In some embodiments, referring to FIG. 3, a material processing system 300 can alternatively or additionally include a communication network 312 that is in communication with the Internet to communicate with the third party 114. For example, the communication network 312 can include an Internet based cloud network system 316 configured to transmit material processing system usage information relating to the type of consumable components used to the third party 114. The communication network 312 can include one or more devices in communication with the power supply 104 (e.g., with the communication module 110). Such devices can include a torch controller system (e.g., a computer numerical controller (CNC)) 318 used to control movement of the processing device 102 during use and a computing system (e.g., a production floor personal computer) 320 used to operate various components of the material processing system 300 that, using the Internet based cloud system, can be placed in communication with the third party 114. The third party 114 is also in communication with the Internet based cloud system 316 to receive usage information about the material processing system 300. As discussed above, the third party 114 can include a computing device accessible by a third party representative (e.g., a representative of the manufacturer of the material processing system, power supply, processing device or consumable components used within the system). In some embodiments, the communication network 312 can include a local area network (LAN) in communication with the power supply 104, the computer numerical controller 318, the computing system 320, and/or the third party 114.

The material processing systems described herein (e.g., the material processing system 100, 200, or 300) can be used to carry out any of various different system management, material processing, or customer service methods or processes.

For example, in some aspects, the material processing systems can be used to track and determine how much a certain type of consumable component (e.g., a certain manufacturer of consumable component(s)) is used by the material processing system relative to other types of consumable components (e.g., consumable components of other manufacturers). This information can be useful to third parties (e.g., consumable component manufacturers) because, in some cases, the third party may provide products or services at reduced (discounted) costs to users based on the users using components (e.g., consumable components) that are manufactured only by the manufacturer. For example, in some embodiments, a method (400) for validating a customer characteristic (e.g., a customer loyalty to a certain type of consumable component) associated with a user's usage of a replaceable consumable component within a material processing system can first include detecting a usage of a consumable component within the material processing system. (402) For example, a computing system (e.g., the power supply 104) can be used to detect a usage of one or more consumable components installed and used within a material processing device (e.g., the torch 102). In some embodiments, a consumable identification device (e.g., the consumable identification module 109) can communicate with a signal device disposed on the consumable components to detect the consumable installed in the torch.

Next, a usage metric (e.g., a usage ratio) of the material processing system associated with the usage of the one or more replaceable consumable components used within the material processing system can be obtained (e.g., collected (e.g., automatically collected)). (404) For example, the usage metric can be associated with the usage of a certain type (e.g., specific or preferred type) of consumable components within the material processing system. The usage metric can be obtained (e.g., by the third party) using the various systems and devices, such as the communication network 112, telecommunication communication network 212, the Internet cloud-based communication network 312, and/or other suitable communication networks that are configured to transmit information relating to usage of the processing device (e.g., torch) 102 using the consumable identification module 109, power supply 104, the control unit 106, the usage tracking module 108, or the communication module 110.

In some embodiments, obtaining the usage metric includes determining a frequency of use of a specific type (e.g., a preferred type (e.g., a certain manufacturer, OEM, or channel source)) of consumable component based on identification of the consumable component installed in the material processing system (e.g., in the processing device). For example, obtaining the usage metric can include determining a ratio that the preferred type of consumable component is used relative to a total usage of the material processing system. That is, the amount that the preferred type of consumable component is used relative to the amount that the non-preferred type of consumable is used in place of the preferred type of consumable can be determined. For example, the usage metric can include a percentage of time that the material processing system is used with the preferred type of consumable relative to other consumables.

Obtaining the usage metric can include repeatedly determining (e.g., periodically tracking) whether or not a consumable component of the preferred type is installed in the material processing system during usage. In some cases, determining whether or not a consumable component of the preferred type is installed in the material processing system during usage includes identifying the consumable component installed in the material processing system. For example, identifying the consumable component can include communicating with a signal device (e.g., a data tag) disposed in or on the consumable component. Additionally or alternatively, the consumable component can be identified by directing a fluid flow through a flow-restriction element of the consumable component and measuring a flow characteristic of the fluid flow therethrough.

Obtaining the usage metric can include communicating (e.g., using RFID technology) with the consumable component during use. For example, communicating with the consumable component during use can include reading a data tag (e.g., a radio-frequency identification (RFID) device) disposed in or on the consumable component, where the data tag contains identifying information relating to the consumable component.

In some embodiments, obtaining the usage metric can include receiving usage data from an Internet based source (e.g., the communication network 112 or 312) or broadcasting usage data to an Internet based source. In some embodiments, the obtaining the usage metric can include receiving usage data from a mobile telecommunication network (e.g., the communication network 212). In some cases, the obtaining the usage metric can include obtaining other system cutting information (e.g., system operating (e.g., cutting) parameters) including a time duration during which the system was operated using unidentified consumables, material thickness of material being cut or welded, number of system starts, arc hours of system operation, and other cutting information.

In some embodiments, the method can also include determining if the material processing system is properly configured based on the consumable component determined as being installed within the material processing system. For example, in some embodiments, the material processing system can access information from the consumable component that provides system setup instructions based on the type of consumable installed in the torch. For example, in some cases, the method can include determining if a gouging nozzle is installed in a torch when the material processing system is programmed to perform a gouging operation.

In some cases, obtaining a usage metric includes the system determining that it is unable to communicate with a particular consumable component during use. That is, a material processing system may be configured to communicate with preferred consumable components during recommended or authorized uses (e.g., any or all authorized uses) of the system and therefore, if the system determines that its processing device (e.g., torch) is being operated but the system cannot communicate with any consumable components, it can be determined that the preferred type of consumable components are not being used by the user during such monitored use. In particular, some consumable components are required for proper operation of the processing device (e.g., the electrode and the shield of a torch, a lens of a laser cutting head, or an orifice of a water jet cutting head), so if the processing device is being operated but the system cannot communicate with any consumable components, the system can determine that the processing device is being operated without using the preferred type of consumable component.

As discussed above, the material processing system can utilize the communication module and/or the consumable identification module to communicate with the consumable components during use of the processing device to monitor and track the type of consumable component in use. The power supply (e.g., the control unit or the usage tracking module) and the communication network can track and compile such usage information in order to form/determine the usage metric. By way of a non-limiting example for illustration purposes, if the material processing system determines that its processing device has been operated for 100 hours in total and the preferred type of consumable component was being used for 50 hours, then the usage metric would be 50% based on the 50 hours out of the total 100 hours. Similarly, if the preferred type of consumable was in use during the total 100 hours of usage, then the usage metric would be 100%.

The usage metric obtained from the communication network can then be compared to a threshold usage metric (406). In some embodiments, the usage metric can be compared using the power supply (e.g., the usage tracking module 108) or an external computing system. For example, the comparing the usage metric can include determining a ratio (e.g., a time ratio) that the specific (e.g., preferred) type of consumable component is used relative to a total usage of the material processing system. In some embodiments, the comparing the usage metric can include repeatedly determining (e.g., periodically tracking) whether or not a consumable component of the specific type is installed in the material processing system during usage. In some embodiments, the threshold usage metric represents a desired amount of time that the third party anticipates, expects, or requires the preferred type of consumable component to be used by the user relative to non-preferred types of consumable components. For example, the user of the material processing system may have an agreement with a third party manufacturer of consumable components that provides preferential treatment based upon certain usage metrics. In some cases, a user may agree to use a material processing system provided by the third party according to one or more usage metrics. For example, the threshold usage metric can include using the preferred type of components at least 50% of the total usage time (e.g., at least 60%, at least 75%, at least 85%, at least 90%, at least 95%, 100%). In some cases, the threshold usage metric may be based on a national and/or international average usage of the preferred type of components, this average being generated by monitoring users on a given material processing system provided by the third party. That is, in some embodiments, a user may receive beneficial treatment if their usage meets or exceeds a national and/or international average usage of the preferred type of components by other users.

With the collected usage metric compared to the threshold usage metric, it can be determined if the user's usage indicates a predetermined level of customer usage (e.g., customer loyalty) (408). That is, if the user's usage meets or exceeds the threshold metric, then it can be determined that the user is using the preferred type of consumable component in accordance with the third party's direction or agreement. For example, if the threshold usage metric was 75% but the obtained usage metric was only 50%, then it would be determined that the user's usage fails to indicate the predetermined level of customer loyalty. Therefore, the third party may elect to not provide beneficial treatment to the user. Alternatively, if the threshold usage metric was 75% and the obtained usage metric was 90%, then it would be determined that the user's usage indicates the predetermined level of customer loyalty. The example values for usage metrics provided herein are merely non-limiting examples for illustration purposes only and can be any of various other values based on the user and the third party.

In some embodiments, in response to determining that the user's usage indicates the predetermined level of customer loyalty, a user can be provided with one or more benefits. In some cases, based on the customer loyalty determined by the user's usage, the third party (e.g., the manufacturer or seller of one or more of the components of the material processing system) can provide the user with one or more benefits. For example, the benefits can include discounted equipment purchasing options (e.g., warranties, discounts on spare parts, discounted (e.g., free) material processing systems (e.g., power supplies or processing devices), or discounted system upgrade options). Alternatively or additionally, the benefits can also include one or more discounted service options (e.g., system service contracts, system training visits, or semi-automated (e.g., automated) consumable component replacement services based on receiving information that a consumable has reached its end of life usage). In some embodiments, the benefits based on the user's usage can be graduated, for example, as a percentage of use. For example, as the percentage of the user's usage increases, more (e.g., greater quantity or greater monetary value) benefits can be offered or provided to the user. In some cases, graduated usage levels can be established at any of various percentages. By way of an example, graduated levels can be set at 70%, 80%, 90%, and 100%, where additional benefits are made available at each increasing graduated level.

The material processing systems described herein can also be used by a user to assert that their usage meets or exceeds a threshold usage level set by the third party, for example, the predetermined level of customer loyalty.

For example, in some aspects, a method (500) for asserting a level of usage of one or more replaceable consumable components within a material processing system (e.g., the material processing systems 100, 200, 300) can first include detecting a type of consumable component in use within a material processing system (e.g., within a processing device (e.g., the torch, water-jet cutting head, laser cutting head, or other processing device) 102). (502) As discussed above, in some embodiments, a consumable component can include a signal device (e.g., an RFID device) with which one or more components the material processing system (e.g., the consumable identification module 109) can communicate to identify the consumable component and the type of consumable component can be detected by communicating with the signal device. In some cases, as discussed above, the signal device includes identifying information relating to the consumable component.

Next, it can be determined if the type of the consumable component is a specific predetermined (e.g., preferred) type of consumable component (504). For example, it can be determined if the consumable component in the material processing system is a particular manufacturer or OEM type. In some cases, the power supply or communication network can read the identifying information from the consumable component and compare it to expected identifying information values for the preferred type of consumable component. As discussed above with respect to the method 400, in some embodiments, it can be determined that the consumable component in use is not of the preferred type simply by determining that it cannot be communicated with. That is, if the preferred type of consumable component is configured to establish communication with the power supply during use, the lack of such communication can be interpreted as the consumable being a non-preferred type.

Additionally, a usage metric (e.g., a usage ratio) of the predetermined type of consumable component used within the material processing system relative to other types of consumable components can be determined (506). For example, as discussed above, the usage metric (e.g., usage ratio) can be a ratio of the amount of time that a predetermined (e.g., preferred) type of consumable component is used within the material processing system relative to a cumulative time period of total use of the material processing system. In some cases, determining the usage ratio includes determining a frequency of use of the predetermined type (e.g., manufacturer, OEM, or channel source) of consumable component relative to a frequency of use of consumable components that are not of the predetermined type.

In some examples, determining the usage ratio includes determining a percentage of time (e.g., arc hours) that a first type (e.g., the predetermined (e.g., preferred or specific) type) of consumable component is used relative to a usage of a second type (e.g., non-specific or non-preferred type) of consumable in place of the predetermined type of consumable. Determining the usage ratio can also include determining (e.g., periodically tracking) whether or not a consumable component of the preferred type is installed in the material processing system during usage. In some embodiments, the determining the usage ratio can include determining a number of starts during which the first type of consumable component is used relative to the number of starts during which a second type of consumable is used rather than (e.g., in place of) the first type of consumable.

In some embodiments, determining whether or not a consumable component of the predetermined (e.g., preferred) type is installed in the material processing system during usage comprises identifying the consumable component installed in the material processing system. For example, as discussed above, identifying the consumable component can include communicating with a signal device (e.g., an RFID data tag) disposed in or on the consumable component. In some cases, as discussed above (e.g., with respect to the method 400), identifying the consumable component and obtaining a usage metric can include the system determining that it is unable to communicate with a particular consumable component during use. Based on the lack of expected communication with a particular consumable component, the system can determine that the preferred type of consumable is not installed in the processing device during the use. Additionally or alternatively, identifying the consumable component can include directing a fluid flow through a flow-restriction element of the consumable component and measuring a flow characteristic of the fluid flow therethrough.

The method 500 can also include communicating the determined usage ratio to an external computing system in communication with a client device (e.g., a third party client device). In some cases, determining the usage ratio includes transferring information regarding the type of consumable component in use to an external computing device (e.g., the computing system (power supply 104), the communication networks 112, 212, 312, the third party client device 114, or one or more other computing devices). As discussed above, the material processing system can utilize the consumable identification module to communicate with the consumable components during use of the processing device to monitor and track the type of consumable component in use. Over time, the power supply (e.g., the control unit 106 and/or the usage tracking module 108) and the communication network can track and compile such usage information in order to form/determine the usage metric.

As discussed above (e.g., with respect to method 400), based on the determined usage metric of the user, the third party can consider the customer loyalty of the user. If the customer's usage metric meets or exceeds a threshold usage metric, it can be determined that the user meets a certain, predetermined level of usage (e.g., loyalty), which may be defined by an agreement between the user and the third party. Also as discussed above, if the user's usage indicated the predetermined level of loyalty, then the third party may provide the user with one or more beneficial treatments including discounted products or services.

The methods described herein can also include supplying information relating to use of the processing device during one or more prior operational sequences to a computing system (e.g., to the power supply) or to the third party. In addition or alternatively to monitoring use of the material processing system to enable the third party to provide benefits to a user, the systems and methods described herein can be used for monitoring and tracking warranty information relating to the material processing system. That is, third parties can utilize the systems described herein to review and validate warranty claims made by a user of the material processing system.

For example, as discussed herein, information can be exchanged (e.g., written) between the power supply or the processing device and the consumable installed within the processing device to record or otherwise document the usage of the system. In some embodiments, information can be provided to or otherwise stored on a signal device (e.g., an RFID tag) installed in or on a processing device (e.g., torch) or power supply relating to the usage of the material processing system. Then, if the material processing system is returned to a third party (e.g., as being damaged, returned for service, submitted for a warranty claim, or returned for another reason), the third party can access the signal device to review the stored information to understand the conditions in which the material processing system has been operated by the user. With the knowledge and better understanding of how the material processing system has been used (e.g., in accordance with or violation of a user agreement), the third party can make educated decisions regarding how to treat the user. For example, a third party may opt to not honor a warranty claim if it can be determined or established that the user violated a user agreement when using the system.

In some cases, the information can include conditions, such as power levels or gas flow provided to a processing device (e.g., a torch) during a failure scenario of the processing device. The information can include a number of hours during which the material processing system has been used, for example, to determine that the system has been used for more hours than authorized. In some embodiments, the information can include, for example, the number of different consumables (e.g., types, OEMs, or total number of consumables) that were used in the processing device during a specified time. In some cases, the specified time can include the life of the processing device. In some cases, the information can include a number of start sequences that the processing device has undergone during a specified time (e.g., its lifetime).

While the systems and methods herein have generally been described as including or being used with certain types of material processing systems, such as plasma arc processing systems, the material processing systems can additionally or alternatively include any of various other types of systems including laser processing systems, water jet processing systems, or other types of systems. Additionally, the methods discussed herein can be executed in association with any of various other types of material processing systems including laser processing systems, water-jet processing systems, or other types of systems.

While various embodiments have been described herein, it should be understood that they have been presented and described by way of example only, and do not limit the claims presented herewith to any particular configurations or structural components. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary structures or embodiments, but should be defined only in accordance with the following claims and their equivalents.

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈