基于准位相匹配的激光脉冲高保真度信噪比单次测量装置 |
|||||||
申请号 | CN201110288183.8 | 申请日 | 2011-09-26 | 公开(公告)号 | CN102426062A | 公开(公告)日 | 2012-04-25 |
申请人 | 复旦大学; | 发明人 | 钱列加; 王永志; 袁鹏; 马金贵; 谢国强; | ||||
摘要 | 本 发明 属于激光技术领域,具体为一种基于准位相匹配的激光脉冲高保真度 信噪比 单次测量装置。该装置主要由取样光产生单元、高保真度非共线和频互相关单元和高灵敏度 信号 接收单元三部分构成。发明提出一种特殊的晶体设计,将其引入信噪比单次测量装置,作为非线性互相关晶体,将两类由相关过程引入的假信号分别移至窗口之外和主脉冲之后,从而消除了假信号对测量结果的影响,实现了对脉冲前沿信噪比的保真单次测量,同时不会对测量装置其它参数产生显著影响。本装置可适用于多种 波长 的高功率激光的信噪比测量。 | ||||||
权利要求 | 1.一种基于准位相匹配的激光脉冲高保真度信噪比单次测量装置,其特征在于由取样光产生单元,高保真度非共线和频互相关单元和高灵敏度信号接收单元三部分构成;由激光源出射的近红外激光脉冲经过一个分束镜分为两部分:一部分是取样光,另一部分是待测光;其中: |
||||||
说明书全文 | 基于准位相匹配的激光脉冲高保真度信噪比单次测量装置技术领域[0001] 本发明属于激光技术领域,具体涉及一种进行脉冲信噪比单次测量的装置。 背景技术 [0002] 脉冲的时间对比度(即信噪比)是高强度飞秒啁啾脉冲放大器面临的主要挑战之一,它不仅需要设计更加精密的激光系统和脉冲净化技术,更是对脉冲信噪比测量技术的挑战。脉冲信噪比测量主要基于非线性相关技术,即用一干净的取样脉冲与待测脉冲在非线性晶体内进行和频(SFG)或差频(DFG)形式的互相关,通过测量得到的和频信号(或闲散光)对时间延迟的依赖关系便可得到待测脉冲的信噪比曲线。干净的取样光基本都是由待11 测光的倍频(SHG)产生。目前在扫描型测量中动态范围已经达到10 ,而且已经有了商品化的产品。但是由于大多数高强度CPA系统脉冲重复率很低甚至无重复率,因此必须发展信噪比的单次测量技术。单次信噪比测量系统通常是通过“时间–空间”编码来得到一定的 9 时间窗口。最近,单次测量的时间窗口和动态范围分别已经达到200 ps和10。 [0003] 对于单次信噪比至关重要的是其精确的显示脉冲的本底和其可能存在的精细结构的能力。这不仅需要高的动态范围和大的时间窗口,同时要求互相关过程本身不会引入假信号。然而,由于透射式元件(如非线性晶体)中多次反射的存在,以时域的尖峰形式出现在假信号是普遍存在的。这些尖峰不仅会提高它附近本底的高度,同时也掩盖了待测脉冲在该处的真实结构,从而导致信噪比测量的失真。由于“时间–空间”编码以及从互相关晶体到探测器的成像,单次测量模式的假信号会更加复杂。 发明内容[0004] 针对目前信噪比单次测量存在的不足,本发明的目的在于提供一种在保证高动态范围,大时间窗口和较高分辨率的前提下,能够消除由相关过程引入的两类假信号影响的高保真度信噪比单次测量装置。 [0005] 为此目的,本发明提出了一种创新的晶体设计,将其引入信噪比单次测量装置,作为非线性互相关晶体,将两类由相关过程引入的假信号分别移至窗口之外和主脉冲之后,从而消除了假信号对测量结果的影响,实现了对脉冲前沿信噪比的保真单次测量,同时不会对测量装置其它参数(时间窗口,动态范围,时间分辨率)产生显著影响。 [0006] 本发明提出的基于QPM的高保真度信噪比单次测量装置,具体由取样光产生单元、高保真度非共线和频互相关单元和高灵敏度信号接收单元三部分构成。由激光源出射的近红外激光脉冲经过一个分束镜分为两部分:一部分是用于泵浦光参量产生-光参量放大(OPG-OPA)系统的脉冲激光,产生比待测光更干净的中红处波长取样光;另一部分是待测光。其中:所述取样光产生单元,包括一个OPA –OPG系统、一个延迟器、一个滤波片和两个缩束器;近红外光源输出的脉冲激光的一部分经过缩束器适当缩束和延迟器适当时间延迟调整后泵浦光参量产生-光参量放大系统,产生比待测光更加干净的中红外波段取样光; 所述高保真度非共线和频互相关单元,包括一块非线性互相关晶体、一个延迟器、一个潜望镜、两个扩束器和两个平凹柱面镜;待测光经过潜望镜转换偏振方向使之与取样光偏振方向相同(相对于晶体均为e光);然后取样光与待测光分别经过各自的扩束器适当扩束后分别被两个平凹柱面镜一维聚焦到一块非线性互相关晶体,两者(待测光和取样光)在这 0 0 块非线性互相关晶体内以30-40 的非共线角、e+e→e的位相匹配方式发生和频互相关作用,得到相应的沿空间分布的和频互相关信号;其中,所述非线性互相关晶体是在一块较长的LNB晶体基片上只对其中的一部分进行周期性极化而得到,即该晶体相对于目前同样系统中使用的LNB晶体增加了长度,并且仅对其中一部分晶体进行周期性极化处理)所述高灵敏度信号接收单元,包括一个光纤阵列、一个高灵敏的快速响应的光电倍增管、一片滤波片、一个中性光纤衰减片和三个平凸柱透镜;光纤阵列包含64-126根长度等间隔递变的光纤,根据每个通道的信号不同加有不同衰减倍数的光纤衰减器;空间分布的相关信号经过光纤阵列后变成时间上延迟的一系列脉冲,经过滤波片后被光电倍增管接收,并转换成电信号;该电信号经过计算机的分析计算,得到反映待测脉冲信噪比的曲线。 [0007] 本发明中需要解决的相关过程引入的假信号有两种,一种是由取样光在晶体前后表面的多次反射与待测光发生和频互相关(出现在前沿)或待测光在晶体前后表面的多次反射与取样光发生和频互相关(出现在后沿)形成的假信号(Ⅰ类假信号),它对应于图3(a)A1,A2 和B1,B2分别是待测光束与取样光束中的光线,其中A1与B1 相关形成相关信号的主峰,而A2与B2在晶体前后表面的反射RB2相关形成了一个Ⅰ类假信号,同理在相关信号主峰另外一侧还存在一个对应于取样光与待测光的反射形成的Ⅰ类假信号;另一类假信号是由和频信号在晶体前后表面的多次来回反射形成的(Ⅱ类假信号),它对应于图3(b)。对于Ⅰ类假信号,它们与主峰的时间间隔主要是由晶体的长度和光在晶体内的折射率决定的,所以可以通过增加晶体长度将其移至有效时间窗口之外。但简单的增加晶体的长度会同时降低测量装置的时间分辨率。因此采用在一块较长的LNB晶体基片上只对其中的一部分进行周期性极化的方法,就可以解决这个问题(图3(c))。其中,假信号与和频信号主峰的时间间隔由整个晶体基片的长度决定,而测量装置的分辨率则由晶体极化部分的长度决定。对于Ⅱ类假信号,让主峰的反射向到后沿或者垂直反射即可(信噪比测量只关心脉冲前沿)。在设计相关过程的位相匹配条件时,QPM结构的应用为我们提供了一个额外的自由度,使我们可以通过设计晶体的极化周期和位相匹配的角度将Ⅱ类假信号反射到主峰之后(图 3(d))。 [0008] 本发明信噪比单次测量装置实现了对于脉冲前沿信噪比的高保真度测量,它同时可以用于测量各种波长的高强度激光的信噪比。 [0010] 图2为本发明设计的PPLN晶体(非线性互相关晶体)。 [0011] 图3为两种类型假信号的形成和移除的基本原理图示。 [0012] 图4为不同互相关晶体和位相匹配条件下的脉冲信噪比相关曲线。 [0013] 图5为用于跟单次测量结果对比的两个用扫描方法测量的脉冲信噪比曲线。 [0014] 图中标号:1为近红外脉冲激光光源,2为近红外脉冲激光,3为第一分束镜,4为用作泵浦OPA–OPG系统的脉冲激光,5为第二分束束镜,6为第一缩束器,7第一非线性晶体,8为OPG产生的近红处信号光,9为第一滤波片,10为第一反射镜,11为第二反射镜,12为第三反射镜,13为第二缩束器,14为第一延迟器,15为第二非线性晶体,16为OPA产生的干净的中红外取样光,17为第四反射镜,18为第五反射镜,19为第一扩束器,20为第一柱凹面反射镜,21为待测脉冲激光,22为潜望镜系统,23为第二扩束器,24为第二延迟器,25为第六反射镜,26为第二柱凹面反射镜,27为和频非线性互相关晶体,28为和频信号,29点状中性衰减片,30为可调中性衰减片,31为第七反射镜,32为第一柱透镜,33为第二柱透镜,34为第三柱透镜,35为光纤阵列,36第二滤波片,37为光电部增管(PMT), 38为模数转换器,39为计算机。 具体实施方式[0015] 下面结合附图进一步描述本发明。 [0016] 图1所示为根据本发明设计的基于QPM的激光脉冲高保真度信噪比单次测量装置。该装置包括取样光产生单元、高保真度非共线和频互相关单元和高灵敏度信号接收单元三部分。 [0017] 近红外激光源1出射的脉冲激光2经过第一分束镜3分为两部分:一部分激光是用于泵浦OPG-OPA系统的脉冲激光4,可进一步用于产生长波长取样光,另一部分激光作为待测激光21。 [0018] 取样光产生单元主要包括第一缩束器6,第二缩束器13,一个OPAG–OPA系统、第一延迟器14、第一滤波片9。OPG–OPA系统由第二分束镜5、第一非线性晶体7、第二非线性晶体15(7和15均为体材料的铌酸锂晶体 LNB);脉冲激光4经过第二分束器5,分成两部分,一部分经过第一缩束器6缩束之后,打到第一非线性晶体7上,发生OPG过程,产生近红外光8,经过第一滤波片9滤掉剩余的泵浦光和同时产生的中红外光,依次经第一反射镜10,第二反射镜11到达第二非线性晶体15,作为OPA过程的信号光;另一部分经第三反射镜13,第一延迟器14,作为OPA过程的泵浦光入射到第二非线性晶体15上,OPA过程产生了干净的中红外闲频光16,即是互相关过程的取样光。 [0019] 高保真度非共线和频互相关单元主要包括第一扩束器19,第二扩束器23,潜望镜系统22,第二延迟器24,第一柱凹面镜20,第二柱凹面镜26,和频非线性互相关晶体27组成。OPA过程产生的取样光16依次经过第三反射镜17、第四反射镜18反射,再经过第一扩束器19进行适当扩束,由第一柱凹面镜20反射并一维聚焦到和频非线性互相关晶体27上;待测光21首先经潜望镜系统旋转偏振方向,使之与取样光偏振方向相同,并相对和频晶体为e光,然后经第二扩束器23扩束,再经过第二延迟器24适当延迟、第六反射镜25反射,到达第二柱凹面镜26,反射并一维聚焦到和频非线性互相关晶体27上,待测光与取样光在和频晶体内以30°~40°的非共线角度、e+e→e的位相匹配方式发生和频互相关作用,产生沿空间分布的和频信号光28。 [0020] 高灵敏度信号接收单元主要由一个点状中性衰减片29,可调中性衰减片30,第七反射镜31,第一柱透镜32,第二柱透镜33,第三柱透镜34,光纤阵列35,第二滤波片36,PMT37,模数转换器38,计算机39组成。和频信号光28从和频晶体27后表面出射后,首先经过一个衰减值为10~50倍、直径为1~2 mm的点状中性衰减片29对和频信号中峰的最强的部分进行衰减,这是为了抑制和频信号28引起的空气散射对最终测量到的信号本底的影响;然后和频信号光经过一可调式中性衰减片30和第七反射镜31反射到第一柱透镜32,该透镜放置于距晶体后表面1倍焦距处,对和频信号光进行竖直方向的准直,准直后的和频信号光经过第二柱透镜33进行水平方向的成像,可以根据需要,通过调节该第二柱透镜与晶体后表面和光纤接收端面的距离,成等大、放大或缩小的像,光束经过成像透镜到达第三柱透 镜34在竖直面内对光束进行聚焦,将和频信号光耦合到光纤阵列35中,光纤阵列35包含 64-126根长度等间隔递变的光纤,根据每个通道的信号不同加有不同衰减倍数的光纤衰减器;空间分布的相关信号经过光纤阵列35后变成时间上延迟的一系列强度较为均匀的脉冲。从光纤阵列35另一端出射的光经过第二滤波片36进行滤波,入射到高灵敏度PMT37上,从PMT中输出的模拟的脉冲电信号经过模数转换器38进行模数转换后传输到计算机39中,计算机39进行一系列的数据处理得到反映待测脉冲形状的曲线。 [0021] 在实验实施过程中,为清晰的表明去除假号的过程和最终效果,本发明首先使用一块普通的PPLN晶体作为和频互相关晶体,其长度为(L)0.5~1 mm,宽度(W)为10~15 mm,厚度(T)为0.5~1 mm,极化周期(Λ)为6~9 μm, 且极化方向与晶体前后表面平行。测量得到图4(a),其中,空心点曲线是没有加点状中性衰减片29时测得的相关信号,实心点曲线是衰减片29后测得的图,两者对对比可以看出中性衰减片对于空气散射的抑制作用。图中实心点曲线可以看到位于±15 ps处的两个大小约为主峰的1%的两个小尖峰即为Ⅰ类假信号,然后在不改变位相匹配条件的前提下,将和频互相关晶体换为特殊设计的晶体(图2),它除了增加了一部分长度为2~4 mm的未极化区(L0),其极化区的长度(L)、晶体宽度(W)、厚度(T )、极化周期(Λ)和极化方向均与前一块晶体相同。然后得到图4(b),可以看到Ⅰ类假信号已经被从时间窗口内移除了,我们通过移动第二延迟器24分别在±43 ps处进行两次测量(图4(a)插图),可以看到两个脉冲已被移到±43 ps处。同时看到,在主峰前沿-2.5 ps和-5 ps处分别出现了两个小尖峰,要据时间位置和相对强度我们判断它们分别为一阶和二阶的Ⅱ类假信号。我们改变位相匹配条件使Ⅱ类假信号反射到主峰后沿(图4(c)),由图可到出现在1.5 ps和3 ps处的两个小尖峰即是调整后Ⅱ类假信号,在这幅图脉冲前沿还剩余两个小尖峰(分别在7 ps和14 ps处)。 [0022] 为证明上述两个小尖峰是待测光中真实存在的信号,我们搭建了两个传统的时间扫描式信噪比测量装仪,将测得的结果(图5)与单次方法测量结果进行对比。两个时间扫描装置分别用400 nm光(虚线)和3.3 μm光(实线)作为取样光。其中以3.3μm光作为取样光的装置,因为相关信号与输入光波长不简并,因而测得的脉冲本底接近其真实本底。图中离散点为单次方法测量的数据点。对比图中曲线可以看出两种时间扫描方法测得的结果均包含前沿的两个小尖峰,据此我们判定这两个小峰为待测脉冲的真实时间结构。再与单次方式测量结果的对比,可以发现,我们的单次脉冲信噪比测量装置不仅准确的测量脉冲真实结构,同时测得的本底也与用3.3 μm光作为取样光的时间扫描方法测得的结果的本底很好地吻合,由此可以证明该发明对脉冲前沿信噪比的高保真度测量。 [0023] 综上所述,本信噪比单次测量装置创新性的实现了对于脉冲前沿信噪比的保真度测量。同时,由于QPM晶体极化周期设计的灵活性,该装置可以用于测量各种波长的高强度激光的信噪比。 |