冷却装置和控制方法

申请号 CN200580038150.0 申请日 2005-11-02 公开(公告)号 CN101057116B 公开(公告)日 2010-08-18
申请人 阿塞里克股份有限公司; 发明人 Y·古尔达利; E·乌斯滕达格; S·霍考格卢;
摘要 本 发明 涉及一种冷却装置(1),这种冷却装置(1)包括 压缩机 (2)、压缩机室(8)、一个或多个 蒸发 器 (4)和一个或多个毛细管(5),压缩机(2)压缩制冷剂 流体 , 冷凝器 (3)使离开压缩机(2)的 过热 蒸汽 首先变成液汽相然后完全变成液相,压缩机室(8)位于与冷却室(7)分离的 位置 且压缩机(2)和冷凝器(3)位于压缩机室(8)中,毛细管(5)插在压缩机室(8)与 蒸发器 (6)之间。本发明还涉及一种冷却装置(1)的控制方法。
权利要求

1.一种冷却装置(1),所述冷却装置(1)包括一个或多个冷却室(7)、压缩机(2)、冷凝器(3)、压缩机室(8)以及一个或多个蒸发器(4),要进行冷却的物品储存在所述冷却室(7)中,所述压缩机(2)压缩制冷剂,所述冷凝器(3)通过冷凝使离开所述压缩机(2)的过热蒸汽首先变成液汽相然后完全变成液相,所述压缩机(2)和所述冷凝器(3)位于与所述冷却室(7)分离的所述压缩机室(8)中,将冷凝后的流体输送到所述蒸发器(4)中,所述冷凝后的流体吸收介质的热并能够使所述介质冷却,并且通过制冷剂吸收所述介质的热能够使所述冷却室(7)冷却,其特征在于:还包括检测所述压缩机室(8)中温度的第一温度传感器(10)和检测所述冷却室(7)中温度的一个或多个第二温度传感器(11)以及位于所述冷凝器(3)上和/或所述压缩机室(8)中的加热器(6),并且根据由所述第一温度传感器(10)和第二温度传感器(11)所检测到的温度值的差异而启动或关闭所述加热器(6)。
2.如权利要求1所述的冷却装置(1),其特征在于:还包括提供空气流动通过所述冷凝器(3)和/或所述压缩机(2)上方的扇(9),根据由所述第一温度传感器(10)和所述第二温度传感器(11)所检测到的温度值的差异而启动或关闭所述风扇(9)。
3.如权利要求1所述的冷却装置(1),其特征在于:所述第一温度传感器(10)位于所述压缩机室(8)内的所述冷凝器(3)上,用于检测所述冷凝器(3)的温度。
4.如权利要求1所述的冷却装置(1),其特征在于:所述第一温度传感器(10)位于所述压缩机室(8)内的所述压缩机(2)上,用于检测所述所述压缩机(2)的温度。
5.如权利要求1所述的冷却装置(1),其特征在于:所述第二温度传感器(11)位于所述冷却室(7)内的所述蒸发器(4)的入口和出口,用于检测所述冷却室(7)内的所述蒸发器(4)的入口和出口的温度。
6.如权利要求1所述的冷却装置(1),其特征在于:所述第二温度传感器(11)位于毛细管(5)的入口,所述毛细管插在压缩机室(8)与蒸发器(4)之间。
7.一种如权利要求1所述的冷却装置(1)的控制方法,所述方法包括以下步骤:若由所述第一温度传感器(10)和所述第二温度传感器(11)所检测到的温度值之间的差异大于某个值,关闭所述风扇(9)并启动所述加热器(6);使所述制冷剂的冷凝温度达到理想的值,从而使压达到理想的值;允许所述制冷剂保持在液相;避免所述制冷剂完全变成汽相,所述汽相在所述毛细管(5)的入口构成“汽阻”情形。
8.一种如权利要求1所述的冷却装置(1)的控制方法,所述方法包括以下步骤:若所述蒸发器(4)的入口和出口的温度值之间的差异大于某个值,提高所述压缩机(2)的旋转速度;在提高旋转速度的该过程结束时,若不能够实现双相流动,关闭所述风扇(9)并启动所述加热器(6);通过使所述制冷剂能够双相流动来增加可溶于压缩机的油中的制冷剂的量,从而降低油的粘度;以及使这种低粘度油在短时间内回收到所述压缩机(2)中。

说明书全文

技术领域

发明涉及冷却装置和这种冷却装置的控制方法,冷却装置的冷却循环得到提高。

背景技术

冷却循环中的制冷剂在离开压缩机时处于过热汽相,从压缩机以汽相释放的制冷剂首先在冷凝器中变成液汽相,然后在靠近毛细管入口的区域变成液相。制冷剂沿着毛细管变成液汽相且压降低,并以液汽相到达蒸发器且蒸汽干度较低。由于吸收周围的热的原因而在蒸发器变成汽相的制冷剂再次到达压缩机。
在“缝”式冷却装置中包括压缩机室、连接到压缩机室的蒸发器和由这些蒸发器冷却的冷却室,压缩机室包括压缩机、冷凝器和扇,其中,将压缩机室和蒸发器分开定位,且压缩机室所暴露给的周围温度以及蒸发器和插在压缩机室与蒸发器之间的管道周围的温度可以不同。当压缩机室周围的温度进而冷凝器的温度低于蒸发器周围的温度一定值时,冷凝器中的制冷剂快速变成液相。当制冷剂进入蒸发器介质时,制冷剂又变成蒸汽,因为周围温度升高且在汽相制冷剂阻止毛细管时在毛细管的入口出现称为“汽阻”的情况,在汽相制冷剂阻止毛细管时,阻止了制冷剂进入蒸发器、中断了冷却循环并接着导致冷却过程的中止。
而且,在压缩机中有一定量的油,这种油参与冷却循环以保护移动部件不受高温的影响并避免气体从压缩机的抽吸和送腔泄漏。当压缩机将制冷剂抽入系统中时,一定量的油与制冷剂混合并泄漏到冷却循环中。泄漏到冷却循环中的一些油敷在冷凝器的内表面上;而另一些油则特别地附到粘度特别高的蒸发器的出口部分和/或最后的段。对油的运动起最大作用的因素是粘度的变化。粘度越大,油返回到冷凝器的难度就越大。影响粘度的主要因素是温度和溶解度。溶解度的影响要大于温度的影响,尤其是在低温时。冷却循环中的油回收的最困难的部分是蒸发器和抽吸管线的最后盘管。因此,为了在油最受到阻止的位置尤其在蒸发器的出口利用溶解度的影响,应通过使制冷剂能够双相流动并降低粘度来提供油向压缩机的返回。随着泄漏到冷却循环中的油量的增加,压缩机就会缺油,这样,压缩机的性能就会降低。即便是在冷却室的负载低的情况下,由于以低转速运行的压缩机不能够达到必要的旋刮速度,所以也将油阻止在循环管线中,尤其是在蒸发器中。
现已对各种各样的实施例进行了改进,以将泄漏到冷却循环中的油回收到压缩机中并避免“汽阻”情况的出现。
现有技术中,欧洲专利No.EP1119732描述了一种冷却装置,这种冷却装置包括电动机,这种电动机响应于制冷剂的温度而改变速度。
在现有技术中,欧洲专利申请No.EP0498317描述了将不可溶于液体但可溶于油的材料加入制冷剂中。
在现有技术中,英国专利No.GB844272描述了一种实施例,在这种实施例中,在具有高温室和低温室的致冷器的冷却循环中产生“汽阻”情况,并因此而将两个室分别独立控制。

发明内容

本发明的目的在于设计一种冷却装置,在这种冷却装置中,降低了油的累积并避免了可在毛细管的入口出现的汽阻。
附图说明
设计用于实现本发明的目的的冷却装置在附图中示出,在这些附图中:
图1是冷却装置的示意图。
图2是放置冷却装置的厨房的示意图。
图中示出的元件用下面的数字表示:
1.    冷却装置
2.    压缩机
3.    冷凝器
4.    蒸发器
5.    毛细管
6.     加热器
7.     冷却室
8.     压缩机室
9.     风扇
10、11.温度传感器
12.    

具体实施方式

冷却装置1包括一个或多个冷却室7、压缩机2、冷凝器3、压缩机室8、一个或多个蒸发器4、一个或多个毛细管5、至少两个温度传感器10和11、风扇9和加热器6,要进行冷却的物品储存在冷却室7中,压缩机2使制冷剂能够压缩,冷凝器3通过冷凝使离开压缩机2的过热蒸汽首先变成液汽相然后完全变成液相,压缩机室8位于与冷却室7分离的位置且压缩机2和冷凝器3位于压缩机室8中,将冷凝后的流体输送到蒸发器4中,冷凝后的流体吸收介质的热并能够使介质冷却,且制冷剂在蒸发器吸收热并将冷却室7冷却,毛细管5插在压缩机室8与蒸发器4之间,且能够使制冷剂增压并完全变成液相,至少两个温度传感器10和11检测压缩机室8和/或冷却室7中的温度,风扇9根据由温度传感器10和11所检测到的温度值的差异启动并在冷凝器3和/或压缩机2上方提供空气流动,加热器6位于冷凝器3和/或压缩机室8中并根据由温度传感器10和11所检测到的温度值的差异启动或关闭(图1和图2)。
一个温度传感器10位于压缩机室8中和/或冷凝器3上并检测压缩机室8和/或冷凝器3中的温度,另一个温度传感器11位于冷却室7中并检测冷却室7的温度。温度调节器可用作温度传感器10和11。在本发明的替代实施例中,温度传感器11可位于毛细管5的入口,毛细管5位于泵送管线的端部。
冷却装置1包括一个或多个阀门12,尤其是电磁阀门12,阀门12通过以机械或电气方式打开或关闭来提供将离开毛细管5的流体引导到蒸发器4并接着引导到冷却室7。
在作为本发明的目的的冷却装置1中,压缩机2将制冷剂压缩并将其以过热蒸汽输送到冷凝器3。制冷剂的热在冷凝器3释放并具有由风扇9所产生的强迫气流,且制冷剂逐渐变成液汽相然后完全变成液相。离开压缩机室8的制冷剂流体进入毛细管5和蒸发器4中,毛细管5和蒸发器4在介质中,介质的周围温度不同于压缩机室8的周围温度。若由温度传感器10和11在压缩机室8和冷却室7中所检测到的温度值的差异大于某个值,那么就将压缩机室8中的风扇9关闭且制冷剂流体达到某种冷凝温度和压力值。在一定的时间段之后对由温度传感器10和11在压缩机室8和冷却室7中所检测的温度值进行控制,且若两种介质之间的差异大于某个值,那么就启动压缩机室8中的加热器6。这样就使冷凝温度并随后使制冷剂的压力处于理想的值,而将制冷剂保持在液相并避免由在毛细管5的入口完全变成汽相的制冷剂所构成的“汽阻”情况。以降低的温度和压力穿过毛细管5的制冷剂轻易地进入蒸发器4,且制冷剂吸收冷却室7的热,从而将冷却室7冷却,而且,出于所吸收的热的原因,制冷剂流体在穿过蒸发器4的出口或最后的盘管时快速地变成汽相。离开蒸发器4的制冷剂以汽相到达压缩机2并完成一个冷却循环。
在本发明的另一个实施例中,对由仅位于蒸发器4的入口和/或出口的温度传感器11所检测到的温度值进行评估。若蒸发器4的入口和出口之间的差异大于预先设定的值,那么制冷剂在蒸发器4的出口处于过热汽相,为了在蒸发器4的出口开启双相流动,首先提高压缩机2的旋转速度,这样就提高了循环管线中尤其是蒸发器4中的压缩机2的油的旋刮速度,并且,在此过程结束时,若不能够实现双相流动,关闭风扇9并然后启动压缩机室8中的和/或冷凝器3中的加热器8,这样就开启了在蒸发器4的出口的制冷剂流体的双相流动。因此,压缩机2的油的旋刮速度和蒸发器4的出口处的温度都得到了提高,因为压力得到了平衡,而且也因为可溶于油的流体增加、粘度降低且这种低粘度油在短时间内回收到压缩机2中。
在有了本发明的冷却装置1之后,通过将蒸发器4和包括压缩机2、冷凝器3和风扇9的压缩机室8置于具有不同温度值的位置就能够避免在毛细管5的入口无意间产生“汽阻”,尤其是在“缝”式冷却装置中,这些具有不同温度值的位置提供给压缩机室8以移动到不同于冷却室7的外部位置。而且,允许从压缩机2泄漏到循环管线中的油返回到压缩机2中。
QQ群二维码
意见反馈