首页 / 专利库 / 物理 / 辐射 / 辐射源

辐射

阅读:1048发布:2020-05-25

专利汇可以提供辐射专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种 辐射 源,包括贮存器、 喷嘴 、 激光器 以及正透镜。贮存器配置成保持一体积的 燃料 。喷嘴与贮存器 流体 连接并配置成沿着朝向 等离子体 形成 位置 的轨迹引导燃料流。激光器配置成将激光辐射引导到在等离子体形成位置处的所述流上,以在使用中产生用于产生辐射的等离子体。正透镜布置配置成朝向等离子体形成位置聚焦燃料流的轨迹的至少潜在的展度范围,透镜包括 电场 生成元件和/或 磁场 生成元件。,下面是辐射专利的具体信息内容。

1.一种辐射源,包括:
贮存器,配置成保持一体积的燃料
喷嘴,与贮存器流体连接并配置成沿着朝向等离子体形成位置的轨迹引导燃料流;
激光器,配置成将激光辐射引导到在等离子体形成位置处的所述流上,以在使用中产生用于产生辐射的等离子体;和
正透镜布置,配置成朝向等离子体形成位置将燃料流的轨迹的至少潜在的展度范围聚焦,所述透镜包括电场生成元件和/或磁场生成元件。
2.根据权利要求1所述的辐射源,其中透镜布置配置成确保喷嘴的位置或方向变化被在等离子体形成位置的预期位置处或相对于等离子体形成位置的预期位置以小于或等于1的倍数放大。
3.根据权利要求1或2所述的辐射源,其中所述透镜布置还配置成用作下述配置中的一个或更多个、或至少形成下述配置中的一个或更多个的一部分:
用于从喷嘴抽取燃料的抽取配置;
用于将构成燃料流的燃料加速的加速配置;
用于将构成燃料流的燃料减速的减速配置;和
用于给构成或将构成燃料流的燃料充电的充电配置。
4.根据权利要求3所述的辐射源,其中所述透镜布置能够在所述一个或更多的配置之间切换。
5.根据权利要求4所述的辐射源,其中所述透镜布置能够通过在下述部件之间施加适合的电势差来进行切换:
透镜布置的一个或更多的部件;
透镜布置和喷嘴的一个或更多的部件;和/或
透镜布置和充电布置中的一个或更多的部件。
6.根据权利要求4或5所述的辐射源,其中控制器布置成在燃料流的一部分从喷嘴行至等离子体形成位置时执行在所述配置中的一个或更多个配置之间的切换。
7.根据前述权利要求中任一项所述的辐射源,其中所述透镜布置的位置和/或方向是能够控制的,用于控制聚焦点的位置。
8.根据前述权利要求中任一项所述的辐射源,其中一个或更多的另外的正透镜布置被沿着轨迹的潜在展度范围提供和设置。
9.根据前述权利要求中任一项所述的辐射源,其中所述透镜布置是静电透镜布置、静磁透镜布置和/或单透镜。
10.根据前述权利要求中任一项所述的辐射源,还包括用于给构成燃料流或将构成燃料流的燃料充电的充电配置。
11.根据前述权利要求中任一项所述的辐射源,其中所述燃料流包括燃料液滴的流。
12.根据前述权利要求中任一项所述的辐射源,其中所述燃料是熔融的金属。
13.一种流体流生成器,包括:
贮存器,配置成保持一体积的流体;
喷嘴,与贮存器流体连接并配置成沿着朝向目标位置的轨迹引导流体流;和正透镜布置,配置成朝向目标位置将流体流的轨迹的至少潜在的展度范围聚焦,所述透镜包括电场生成元件和/或磁场生成元件。
14.一种光刻设备,包括:
照射系统,用于提供辐射束;
图案形成装置,用于在辐射束的横截面中将图案赋予辐射束;
衬底保持装置,用于保持衬底;
投影系统,用于将图案化的辐射束投影到衬底的目标部分上,和
其中所述光刻设备还包括根据前述权利要求中任一项所述的辐射源或流体流生成器,或与根据前述权利要求中任一项所述的辐射源或流体流生成器相连接。
15.一种使燃料流生成器的带电的燃料流的轨迹的潜在展度范围会聚的方法,所述方法包括步骤:
使用电场和/或磁场建立正透镜;和使带电的燃料流穿过正透镜。

说明书全文

辐射

技术领域

[0001] 本发明涉及辐射源,所述辐射源适合于结合光刻设备使用或形成光刻设备的一部分。另外,本发明更主要涉及流体流生成器。

背景技术

[0002] 光刻设备是一种将所需图案应用到衬底上,通常是衬底的目标部分上的机器。光刻设备可用于例如IC制造过程中。在这种情况下,可以将可选地称为掩模或掩模版的图案形成装置用于生成待形成在所述IC的单层上的电路图案。可以将该图案转移到衬底(例如,晶片)上的目标部分(例如,包括一部分管芯、一个或多个管芯)上。通常,通过将图案成像到设置在衬底上的辐射敏感材料(抗蚀剂)层上而实现图案的转移。通常,单一衬底将包括相邻目标部分的网络,所述相邻目标部分被连续地图案化
[0003] 光刻术被广泛地看作制造IC和其他器件和/或结构的关键步骤之一。然而,随着通过使用光刻术制造的特征的尺寸变得越来越小,光刻术正变成允许制造微型IC或其他器件和/或结构的更加关键的因素。
[0004] 图案印刷的极限的理论估计可以由用于分辨率的瑞利法则给出,如等式(1)所示:
[0005]
[0006] 其中λ是所用辐射的波长,NA是用以印刷图案的投影系统的数值孔径,k1是依赖于工艺的调节因子,也称为瑞利常数,CD是所印刷的特征的特征尺寸(或临界尺寸)。由等式(1)知道,特征的最小可印刷尺寸的减小可以由三种途径实现:通过缩短曝光波长λ、通过增大数值孔径NA或通过减小k1的值。
[0007] 为了缩短曝光波长并因此减小最小可印刷尺寸,已经提出使用极紫外(EUV)辐射源。EUV辐射是波长在5-20nm范围内的电磁辐射,例如波长在13-14nm范围内。还已经提出可以使用波长小于10nm的EUV辐射,例如波长在5-10nm范围内,例如6.7nm或6.8nm的波长。这样的辐射被用术语极紫外辐射或软x-射线辐射表示。可用的源包括例如激光产生的等离子体源、放电等离子体源或基于由电子存储环提供的同步加速器辐射的源。
[0008] 可以通过使用等离子体产生EUV辐射。用于产生EUV辐射的辐射系统可以包括用于激发燃料以提供等离子体的激光器和用于容纳等离子体的源收集器模。等离子体可以例如通过将激光束引导至燃料来产生,燃料例如可以是合适的燃料材料(例如,其当前被认为是最受期望的材料,且因此是EUV辐射源的燃料的可能选择的方案)的颗粒(即,液滴),或合适的气体或蒸汽的流,例如氙气或锂蒸汽。所形成的等离子体辐射输出辐射,例如EUV辐射,其通过使用辐射收集器收集。辐射收集器可以是反射镜式正入射辐射收集器,其接收辐射并将辐射聚焦成束。源收集器模块可以包括包围结构或腔,所述包围结构或腔布置成提供真空环境以支持等离子体。这种辐射系统通常称为激光产生等离子体(LPP)源。在可替代的系统(其还可以采用使用激光)中,可以通过使用放电形成的等离子体——放电产生等离子体(DPP)源来产生辐射。
[0009] 所提出的LPP辐射源产生连续的燃料液滴流。辐射源包括用于朝向等离子体形成位置引导燃料液滴的喷嘴。液滴需要被以高的精度引导至等离子体形成位置,用于确保激光束可以被朝向液滴引导且与液滴接触。为了实现其,燃料应当穿过喷嘴,而不遇到任何不被预期或不是有意安排的障碍或限制。这样的障碍或限制可能由沉积到喷嘴的内表面上的燃料中的污染物造成。污染物可能导致被喷嘴引导的液滴流不具有一种或更多种所需要的性质,例如期望的轨迹。辐射源的动学(例如热漂移)还可能造成不具有期望的轨迹的液滴流。结果,这可能导致辐射源作为整体不像预期的那样发挥作用,例如,不能产生辐射,或者不能产生所需强度的辐射或产生辐射持续所需的持续时间。
[0010] 虽然已经关于LPP辐射源描述了所述问题,但是可能其他流体(例如液体)流生成器(液滴或连续)遇到同样的问题或类似的问题,例如用在喷墨和/或(熔融的)金属印刷或类似物中的喷嘴。另外,所述问题不一定限于包括液滴的流,这是因为在将产生连续的流时将可能会遇到同样的或类似的问题。

发明内容

[0011] 期望减轻现有技术中的至少一个问题,不论是否在此处提及的或在其它地方提及的,或提供一种对现有的设备或方法的替代方案。
[0012] 根据本发明的第一方面,提供了一种辐射源,包括:贮存器,配置成保持一体积的燃料;喷嘴,与贮存器流体连接并配置成沿着朝向等离子体形成位置的轨迹引导燃料流;激光器,配置成将激光辐射引导到在等离子体形成位置处的所述流上,以在使用中产生用于产生辐射的等离子体;和正透镜布置,配置成朝向等离子体形成位置聚焦燃料流的轨迹的至少潜在的展度范围,所述透镜包括电场生成元件和/或磁场生成元件。
[0013] 透镜布置可以配置成确保喷嘴的位置或方向变化被在等离子体形成位置的预期位置处或相对于等离子体形成位置的预期位置以小于或等于1的倍数放大。这确保了透镜布置不会放大喷嘴的位置或方向变化,由此不会放大由此引起的任何问题或缺点。
[0014] 所述透镜布置还可以配置成用作下述配置中的一个或更多个、或至少形成下述配置中的一个或更多个的一部分:用于从喷嘴抽取燃料(例如成液滴的形式)的抽取配置;和/或用于加速构成燃料流的燃料的加速配置;用于减速构成燃料流的燃料的减速配置;
和/或用于给构成或将构成燃料流的燃料充电的充电配置。
[0015] 所述透镜布置可以在所述一个或更多的配置之间切换(例如以电方式切换)。
[0016] 所述透镜布置可以通过在下述部件之间施加适合的电势差进行切换:透镜布置的一个或更多的部件;和/或透镜布置和喷嘴的一个或更多的部件;和/或透镜布置和充电布置中的一个或更多的部件。
[0017] 控制器可以布置成在燃料流的一部分从喷嘴通至等离子体形成位置时执行所述配置中的一个或更多个配置之间的切换。这意味着所述透镜布置可以选择性地配置成在一时间段中相对于同一部分执行不同的功能。
[0018] 所述透镜布置的位置和/或方向可以是能够控制的,用于控制聚焦点的位置。这可以通过透镜布置或其的一个或更多的部件的物理移动、和/或通过控制透镜布置所使用的电场和/或磁场的幅值、形状或总体配置的控制来实现。
[0019] 一个或更多的另外的正透镜布置可以被沿着(例如在已有的透镜的上游或下游)轨迹的潜在展度范围(和至少部分地围绕其延伸)提供或设置。
[0020] 所述透镜布置可以是静电透镜布置、和/或静磁透镜布置、和/或单透镜(Einzel lens)。
[0021] 所述辐射源还可以进一步包括用于给构成燃料流或将构成燃料流的充电燃料的充电配置。该充电配置可以与燃料、贮存器、喷嘴或任何一个或更多的其他部件中的一个或更多个电连接,其允许或便于在从喷嘴喷射燃料之前或之后充电燃料。
[0022] 所述燃料流将最可能包括燃料液滴的流。
[0023] 所述燃料可以是熔融的金属或包括熔融的金属。
[0024] 根据本发明的第二方面,提供了一种流体流生成器,包括:贮存器,配置成保持一体积的流体;喷嘴,与贮存器流体连接并配置成沿着朝向目标位置(例如衬底、物体、片等)的轨迹引导流体流;和正透镜布置,配置成朝向目标位置将流体流的轨迹的至少潜在的展度范围聚焦,所述透镜包括电场生成元件和/或磁场生成元件。
[0025] 根据本发明的第三方面,提供了一种光刻设备,包括:照射系统,用于提供辐射束;图案形成装置,用于在辐射束的横截面中将图案赋予辐射束;衬底保持装置,用于保持衬底;投影系统,用于将图案化的辐射束投影到衬底的目标部分上,其中所述光刻设备还包括根据本发明的第一和/或第二方面的辐射源或流体流生成器,或与根据本发明的第一和/或第二方面的辐射源或流体流生成器相连接。
[0026] 根据本发明的第四方面,提供了一种使燃料流生成器中的燃料的带电的流的轨迹的潜在展度范围会聚的方法,所述方法包括:使用电场和/或磁场建立正透镜,和引导带电的流体流穿过所述正透镜。
[0027] 应当理解,关于本发明的任一特定的方面描述的一个或更多的特征,在适合的情况下,可以应用至本发明的任何其它方面。
[0028] 本发明的另外的特征和优点以及本发明各实施例的结构和操作将在下文中参考附图进行详细描述。注意到,本发明不限于此处描述的具体实施例。此处呈现的这些实施例仅是为了说明的目的。基于此处包含的教导,相关领域的技术人员将明白另外的实施例。

附图说明

[0029] 此处包含的且形成了说明书的一部分的附图示出了本发明,且与所述描述一起进一步用于说明本发明的原理,和使相关领域的技术人员能够完成和使用本发明。
[0030] 图1示出根据本发明的一实施例的光刻设备。
[0031] 图2是包括LPP源收集器模块的图1的设备的更详细的视图。
[0032] 图3示意性地示出配置成沿着朝向等离子体形成位置的轨迹引导燃料液滴的流的辐射源的喷嘴。
[0033] 图4示意性地显示在图3的喷嘴的内表面上的污染物沉积以及对离开喷嘴的液滴的轨迹的影响。
[0034] 图5示意性示出燃料流生成器以及所生成的燃料流的轨迹的潜在的展度范围。
[0035] 图6示意性示出根据本发明的一实施例的燃料流生成器,包括配置成朝向等离子体形成位置聚焦所生成的燃料流的轨迹的展度范围的正透镜布置。
[0036] 图7和8示意性示出燃料流生成器的喷嘴的方向或位置的变化可以如何影响燃料流轨迹的展度范围被引导所至的聚焦点。
[0037] 图9和10示意性示出燃料流生成器的喷嘴的方向或位置的变化可以如何影响燃料流轨迹的展度范围被引导所至的聚焦点,但是包括对透镜布置的修改,用于减小对位置或方向的变化的影响。
[0038] 图11示意性示出透镜布置的一个示例。
[0039] 图12示意性示出图11中的透镜布置可以如何被用于从喷嘴加速和/或抽取带电的液滴。
[0040] 图13-15显示图11和图12中的透镜布置可以如何被用于选择性地聚焦和/或加速带电的燃料液滴。
[0041] 在结合附图时,将从下文阐述的详细描述更加明白本发明的特征和优点,在附图中相同的参考标记在全文中表示对应的元件。在附图中,相同的参考标号通常表示相同的、功能类似的和/或结构类似的元件。元件首次出现的附图由对应的参考标号中的最左边的数字示出。

具体实施方式

[0042] 本说明书公开了包括本发明的特征的一个或更多的实施例。所述公开的实施例仅示例性地说明本发明。本发明的范围不限于所公开的实施例。本发明仅由随附的权利要求书来限定。
[0043] 所描述的实施例和在说明书中对“一个实施例”、“一实施例”、“示例性实施例”等的提及表示所述的实施例可以包括特定的特征、结构或特点,但是每个实施例可以不必包括特定的特征、结构或特点。此外,这些措词不必表示同一实施例。此外,当特定特征、结构或特点被结合实施例进行描述时,应该理解,无论是否明确描述,结合其他的实施例实现这些特征、结构或特点在本领域技术人员的知识范围内。
[0044] 本发明的实施例可以在硬件固件软件或其任何组合中实施。本发明实施例还可以被实施为存储在机器可读介质上的指令,所述指令可以通过一个或更多个处理器读取和执行。机器可读介质可以包括用于储存或传输成机器(例如计算装置)可读形式的信息的任何机制。例如,机器可读介质可以包括:只读存储器(ROM);随机存取存储器(RAM);磁盘存储介质;光学存储介质;闪存装置;电、光、声或其他形式的传播信号(例如,载波、红外信号、数字信号等),以及其他。此外,固件、软件、例行程序、指令可以在此处被描述成执行特定动作。然而,应该认识到,这样的描述仅是为了方便并且这些动作实际上由计算装置、处理器、控制器或执行所述固件、软件、例行程序、指令等的其他装置所导致。
[0045] 然而,在更加详细地描述这样的实施例之前,呈现出可以实施本发明的实施例的示例性环境是有指导意义的。
[0046] 图1示意地示出了根据本发明一个实施例的包括源收集器模块SO的光刻设备LAP。所述设备包括:照射系统(照射器)IL,其配置成调节辐射束B(例如EUV辐射);支撑结构(例如掩模台)MT,其构造用于支撑图案形成装置(例如掩模或掩模版)MA,并与配置用于精确地定位图案形成装置的第一定位装置PM相连;衬底台(例如晶片台)WT,其构造用于保持衬底(例如涂覆有抗蚀剂的晶片)W,并与配置用于精确地定位衬底的第二定位装置PW相连;和投影系统(例如反射式投影系统)PS,其配置成用于将由图案形成装置MA赋予辐射束B的图案投影到衬底W的目标部分C(例如包括一根或更多根管芯)上。
[0047] 照射系统可以包括各种类型的光学部件,例如折射型、反射型、磁性型、电磁型、静电型或其它类型的光学部件、或其任意组合,以引导、成形、或控制辐射。
[0048] 所述支撑结构MT以依赖于图案形成装置MA的方向、光刻设备的设计以及诸如图案形成装置MA是否保持在真空环境中等其他条件的方式保持图案形成装置MA。所述支撑结构可以采用机械的、真空的、静电的或其它夹持技术来保持图案形成装置。所述支撑结构可以是框架或台,例如,其可以根据需要成为固定的或可移动的。所述支撑结构可以确保图案形成装置位于所需的位置上(例如相对于投影系统)。
[0049] 术语“图案形成装置”应该被广义地理解为表示能够用于将图案在辐射束的横截面上赋予辐射束、以便在衬底W的目标部分上形成图案的任何装置。被赋予辐射束的图案可以与在目标部分上形成的器件中的特定的功能层相对应,例如集成电路。
[0050] 图案形成装置可以是透射式或反射式的。图案形成装置的示例包括掩模、可编程反射镜阵列以及可编程液晶显示(LCD)面板。掩模在光刻术中是公知的,并且包括诸如二元掩模类型、交替型相移掩模类型、衰减型相移掩模类型和各种混合掩模类型之类的掩模类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置,每一个小反射镜可以独立地倾斜,以便沿不同的方向反射入射的辐射束。所述已倾斜的反射镜将图案赋予由所述反射镜矩阵反射的辐射束。
[0051] 与照射系统类似,投影系统可以包括多种类型的光学部件,例如折射型、反射型、磁性型、电磁型和静电型光学部件、或其它类型的光学部件,或其任意组合,如对于所使用的曝光辐射所适合的、或对于诸如使用真空之类的其他因素所适合的。可以期望将真空环境用于EUV辐射,因为气体可能会吸收太多的辐射。因此借助真空壁和真空可以在整个束路径上提供真空环境。
[0052] 如此处所示,所述设备是反射型的(例如采用反射式掩模)。
[0053] 光刻设备可以是具有两个(双平台)或更多衬底台(和/或两个或更多的掩模台)的类型。在这种“多平台”机器中,可以并行地使用附加的台,或可以在一个或更多个台上执行预备步骤的同时,将一个或更多个其它台用于曝光。
[0054] 参照图1,所述照射器IL接收从源收集器模块SO发出的极紫外辐射束。用于产生EUV光的方法包括但不必限于将材料转换为等离子体状态,该材料具有至少一个元素(例如氙、锂或锡),其中在EUV范围内具有一个或更多个发射线。在一种这样的方法中,通常称为激光产生等离子体(“LPP”),所需的等离子体可以通过以激光束照射燃料来产生,燃料例如是具有所需线发射元素的材料的液滴、流或簇团。源收集器模块SO可以是包括用于提供激光束和激发燃料的激光器(图1中未示出)的EUV辐射系统的一部分。所形成的等离子体发射输出辐射,例如EUV辐射,其通过使用设置在源收集器模块内的辐射收集器收集。激光器和源收集器模块可以是分立的实体(例如当使用CO2激光器提供用于燃料激发的激光束时)。
[0055] 在这种情况下,不会将激光器考虑成形成光刻设备的一部分,并且通过包括例如合适的引导反射镜和/或扩束器的束传递系统的帮助,将所述辐射束从激光器传到源收集器模块。在其它情况下,所述源可以是源收集器模块的组成部分(例如当所述源是放电产生的等离子体EUV产生器(通常称为DPP源)时)。
[0056] 所述照射器IL可以包括用于调整所述辐射束的强度分布的调整器。通常,可以对所述照射器的光瞳平面中的强度分布的至少所述外部和/或内部径向范围(一般分别称为σ-外部和σ-内部)进行调整。此外,所述照射器IL可以包括各种其它部件,例如琢面场反射镜装置和琢面光瞳反射镜装置(或称为多小平面反射镜装置和多小平面光瞳反射镜装置)。可以将所述照射器用于调节所述辐射束,以在其横截面中具有所需的均匀性和强度分布。
[0057] 所述辐射束B入射到保持在支撑结构(例如,掩模台)MT上的所述图案形成装置(例如,掩模)MA上,并且通过所述图案形成装置MA来形成图案。已经从图案形成装置(例如,掩模)MA反射后,所述辐射束B穿过投影系统PS,所述投影系统PS将辐射束B聚焦到所述衬底W的目标部分C上。通过第二定位装置PW和位置传感器PS2(例如,干涉仪器件、线性编码器或电容传感器)的帮助,可以精确地移动所述衬底台WT,例如以便将不同的目标部分C定位于所述辐射束B的路径中。类似地,可以将所述第一定位装置PM和另一个位置传感器PS1用于相对于所述辐射束B的路径精确地定位图案形成装置(例如,掩模)MA。可以使用掩模对准标记M1、M2和衬底对准标记P1、P2来对准图案形成装置(例如,掩模)MA和衬底W。
[0058] 示出的设备可以用于下列模式中的至少一种:
[0059] 1.在步进模式中,在将支撑结构(例如掩模台)MT和衬底台WT保持为基本静止的同时,将赋予所述辐射束的整个图案一次投影到目标部分C上(即,单一的静态曝光)。然后将所述衬底台WT沿X和/或Y方向移动,使得可以对不同目标部分C曝光。
[0060] 2.在扫描模式中,在对支撑结构(例如掩模台)MT和衬底台WT同步地进行扫描的同时,将赋予所述辐射束的图案投影到目标部分C上(即,单一的动态曝光)。衬底台WT相对于支撑结构(例如掩模台)MT的速度和方向可以通过所述投影系统PS的(缩小)放大率和图像反转特征来确定。
[0061] 3.在另一模式中,将用于保持可编程图案形成装置的支撑结构(例如掩模台)MT保持为基本静止,并且在对所述衬底台WT进行移动或扫描的同时,将赋予所述辐射束的图案投影到目标部分C上。在这种模式中,通常可以采用脉冲辐射源,并且在所述衬底台WT的每一次移动之后、或在扫描期间的连续辐射脉冲之间,根据需要更新所述可编程图案形成装置。这种操作模式可易于应用于利用可编程图案形成装置(例如,如上所述类型的可编程反射镜阵列)的无掩模光刻术中。
[0062] 也可以采用上述使用模式的组合和/或变体,或完全不同的使用模式。
[0063] 图2更详细地示出光刻设备LAP,包括源收集器模块SO、照射系统IL以及投影系统PS。源收集器模块SO构造并布置成使得在源收集器模块的包围结构2内可以保持真空环境。
[0064] 激光器4布置成将激光能量经由激光束6照射到燃料,例如氙(Xe)、锡(Sn)或者锂(Li),其由流体流生成器8提供。最可能的是液体(即熔融的)锡(最可能成液滴形式)或成液体形式的另一种金属当前被认为是最期望的,且因此是EUV辐射源的燃料的可能选择。沉积到燃料中的激光能量在等离子体形成位置12处生成高度电离的等离子体10,其具有数十电子伏特(eV)的电子温度。在这些离子的去激发和再结合期间产生的高能辐射从等离子体发射,由近正入射辐射收集器14收集并聚焦。激光器4和流体流生成器8(和/或收集器14)可以一起被认为是包括辐射源,具体是EUV辐射源。该EUV辐射源可以被称为激光产生的等离子体(LPP)辐射源。
[0065] 可以提供第二激光器(未显示),第二激光器配置成在激光束6入射到燃料上之前预加热燃料。使用该方法的LPP源可以被称为双激光器脉冲(DLP)源。
[0066] 虽然未示出,但是燃料流生成器将包括喷嘴或与喷嘴连接,该喷嘴配置成沿着朝向等离子体形成位置12的轨迹引导流,例如燃料液滴的流。
[0067] 由辐射收集器14反射的辐射B被聚焦在虚源点16处。虚源点16通常被称为中间焦点,并且源收集器模块SO被布置成使得中间焦点16位于包围结构2中的开口18处或该开口18附近。虚源点16是用于发射辐射的等离子体10的像。
[0068] 随后,辐射B穿过照射系统IL,该照射系统IL可以包括琢面场反射镜装置20和琢面光瞳反射镜装置22,所述琢面场反射镜装置20和琢面光瞳反射镜装置22布置成在图案形成装置MA处提供辐射束B的期望的角分布以及在图案形成装置MA处提供辐射束强度的期望的均匀性。在辐射束在由支撑结构MT保持的图案形成装置MA处反射时,形成图案化的束24,并且所述图案化的束24通过投影系统PS经由反射元件26、28成像到由晶片平台或衬底台WT保持的衬底W上。
[0069] 在照射系统IL和投影系统PS中可以通常存在比图示的元件更多的元件。此外,可以存在比图示的反射镜更多的反射镜,例如在投影系统PS内可以存在比图2中示出的多1-6个附加的反射元件。
[0070] 图3示意性地显示在图2中显示的且参考其描述的燃料流生成器的一部分。燃料流生成器的该部分显示为包括导管30,该导管30包括喷嘴32且通向喷嘴32,所述喷嘴32配置成沿着朝向等离子体形成位置(未显示)的轨迹引导燃料的液滴流34。在另一例子中,燃料流生成器的同一(或修改后的)部分可以提供燃料的连续的流。
[0071] 喷嘴32的稳定性和/或堵塞(即至少部分的阻挡)是如在喷嘴32的使用期间可能引起的问题,如它们针对于喷墨打印应用所进行的那样。堵塞将由燃料中的污染物形成。喷嘴32的堵塞可能对喷嘴的寿命施加限制,且因此对燃料流生成器的寿命施加限制(或者至少是时间限制,在该时间限制下需要限制更换、保养或清洁),且因此可以限制辐射源或光刻设备在整体上的可用性。
[0072] 最可能的是,燃料流生成器的喷嘴32与形成流体流生成器的一部分的燃料流系统中的其他的导管及类似物相比将具有最小直径或最小直径之一。因为喷嘴32将具有最小直径中的一个直径,所以可能的是,燃料流路径中的堵塞将在喷嘴32附近或在喷嘴32处发生以及可能在喷嘴32内发生,喷嘴32是燃料流系统中的约束(restriction)。这样的堵塞可能导致喷嘴的有效几何构型变化。
[0073] 有效几何构型的变化可能导致所生成的流/液滴流的参数(例如液滴或流形状或尺寸)的变化,或最可能是导致所述流/液滴流的轨迹的方向变化。在许多应用中,这样的参数将需要满足严格的要求。尤其在EUV辐射源中,液滴生成器的要求将在液滴流的轨迹的位置精度方面上是极其严格的。例如,在等离子体形成位置处,液滴的位置可能需要精确至几个微米的范围内,但是同时喷嘴32自身可能需要定位成相对远离等离子体形成位置,例如,离开等离子体形成位置大约几十厘米的距离。这导致了对液滴流的轨迹可能小于10微弧的方向稳定性要求。总的结果是即使沉积到喷嘴的内表面上的或穿过喷嘴的非常小的颗粒污染物可能将喷嘴的有效几何构型(甚至在非常短的时间段内)改变至不能满足方向稳定性要求的程度。这可能又对辐射源的操作产生不利的影响,因此对光刻设备在整体上产生不利的影响,例如在辐射的产生方面上。
[0074] 图4示意性地示出与在图3中显示地且参考其描述的相同的导管30、喷嘴32以及液滴流34。然而,在图4中,成颗粒36的形式的污染物已经沉积到喷嘴32的内表面上。这样的沉积导致了喷嘴32的有效几何构型的变化(如上文所述),其又导致液滴流34的轨迹变化。如果污染物36保持在同一位置上,则所述变化可能是长期的且恒定的,但是如果污染物移动,例如移动通过喷嘴,则所述变化可能是短期的和可变化的。这可能导致轨迹方向快速变化。
[0075] 颗粒36是污染物的一个例子。污染物可以是微粒形式,或是可能在用于形成液滴流34的燃料中出现的任何其他物质(例如薄片、聚结块等)。污染物可能由燃料的化引起。例如,如果燃料是锡(或另一种熔融金属),那么污染物可能是氧化锡的颗粒(或被使用的任何金属的氧化物)等。可替代地和/或另外地,污染物可以是来自在燃料流系统的上游使用的设备的材料的颗粒或类似物。
[0076] 图5示意性地示出辐射源的流体流生成器。流体流生成器包括配置成保持用于生成辐射的一体积的燃料42(例如,熔融的金属(诸如锡))的贮存器40。贮存器40流体连接至(即能够供给燃料至)已经在上文的图3和4中显示的且参考它们描述的导管30和喷嘴32。返回参考图5,可以施加压力(例如机械或流体压力)至燃料42,以迫使通过喷嘴32喷射燃料42。可替代地和/或另外地,可以设置电场或磁场以从喷嘴吸取燃料42(例如从在喷嘴32处的弯液面等吸取液滴)。
[0077] 燃料液滴34的流显示为具有与预期的等离子体形成位置10、12完全一致的理想轨迹。然而,液滴不总是具有这样的轨迹。替代地,可能存在具有展度范围50的轨迹或潜在轨迹52(潜在轨迹是可能的轨迹,但是其可能不总是在展度范围内)。轨迹52的展度范围50可能归因于喷嘴32内的污染物或流过喷嘴32的污染物,其可能导致轨迹的相对长期的缓慢地改变的变化(例如,如果污染物粘住在喷嘴32内的位置),或轨迹52的相对短期的快速改变的变化(例如由于流过喷嘴32的污染物或由于在喷嘴32处或喷嘴32附近的其它干扰)。最可能的是,轨迹52将由于喷嘴32的有效几何构型的变化而非常快速地改变方向,例如以100Hz或200Hz或更高的频率变化。这与也可能影响燃料液滴34的轨迹52的更加缓慢的变化状况形成对比。例如,更加缓慢地改变的变化可能由系统动力学造成,例如热漂移等,其可能导致喷嘴32的位置或方向变化。
[0078] 虽然未在图中示出,但是可替代地或另外地,轨迹52的展度范围可以与从喷嘴32抽取液滴34的方法相关联。例如,如果电场等被用于从喷嘴32抽取液滴34,那么电场可以另外地引起这些液滴的轨迹略微发散(即展度范围),尤其是如果液滴流不穿过具有平行于所述流的磁通线的电场的情况(例如由于小的错位或系统漂移)。可替代地或另外地,轨迹52的展度范围可能是由于喷嘴的磨损,其还可能导致其有效几何构型的变化。
[0079] 在典型的燃料流生成器中,可能已经有在考虑和校正燃料流轨迹的缓慢地改变的变化的位置上的系统,例如由喷嘴的位置或方向的缓慢地改变的变化引起的。这些变化可能以每秒几次地发生,或以更低的频率发生。然而,这些系统不能校正由系统中的更加快速地改变的变化引起的轨迹的更高频率的变化,该更加快速地改变的变化可能导致100Hz或200Hz或更高的变化。简单地说,在补偿或校正较慢的变化的位置上的系统不具有针对于更高的频率变化进行校正所需要的带宽。
[0080] 在图5中,显示出不同的轨迹52,结果是这些轨迹中的至少一些轨迹未到达或绕过等离子体形成位置10、12。虽然在图2中被夸大,但是轨迹52的变化可能至少导致激光束等未如所期望的那样击中液滴,例如未击中整个液滴(例如具有掠入射角)或不具有期望的入射角等。这可能导致比期望(即针对于给定的一组输入参数产生的EUV辐射量)更低的转换效率。因此,期望确保轨迹尽可能远(以及精确地)与期望的等离子体形成位置一致,以便最大化转换效率或保持有效的以及一致的转换效率。
[0081] 根据本发明的一实施例,可以消除或缓解上述的问题。本发明提供了一种辐射源。所述辐射源包括配置成保持一体积的燃料的贮存器。还设置了喷嘴,其与贮存器流体连通且配置成沿着朝向等离子体形成位置(其可以被称作为预期的等离子体形成位置或目标位置)的轨迹引导燃料流。还提供了一激光器,且该激光器配置成将激光辐射引导到在等离子体形成位置处的所述流上,以在使用中产生用于产生辐射的等离子体。本发明与已有的辐射源(或更通常地,用于这样的源中的流体流生成器)的区别在于设置有正透镜布置,所述正透镜布置配置成将总体上朝向等离子体形成位置来聚焦燃料流轨迹的至少潜在的展度范围。术语“至少潜在的展度范围”被包含,这是因为必然地在使用中可能遇到不是所有的轨迹都在展度范围的极限内。正透镜布置包括电场产生元件和/或磁场产生元件,例如用于分别产生电场和/或磁场,用于聚焦轨迹的展度范围。透镜布置可以是静电透镜和/或静磁透镜。
[0082] 本发明尤其适合于校正轨迹方向的快速地改变的变化。这是因为,根据本发明,所述校正(其合计入聚焦)事实上是被动的,且不需要任何类型的反馈回路或在线校正等。本发明还可以用于校正和调节轨迹的缓慢地改变的变化(或减小其的作用),轨迹的缓慢地改变的变化可能归因于系统动力学,例如热漂移等,所述动力学也可能导致喷嘴的位置或方向变化。因此,包含正透镜布置可能解决当前现有设备和方法不可解决的问题以及还解决当前通过替代的方式解决的问题。这可能导致了燃料流生成器或辐射源的更加简化的和/或更便宜的设计,或者,即使不能考虑高频率(例如大于100Hz或200Hz)变化和低频(例如10Hz或更小的)变化两者,也最少是能够考虑至少轨迹的快速地改变的变化的设计。
[0083] 图6显示在图5中显示并参考图5描述的相类似的流体流生成器。然而,图6的流体流生成器现在设置有正透镜布置60。正透镜布置60定位在喷嘴32的下游,且在本实施例中,至少部分地围绕燃料流的轨迹52的潜在的展度范围。
[0084] 正透镜布置60配置成朝向意图的等离子体形成位置10、12将轨迹52的展度范围聚焦。透镜布置60的焦点将理想地与期望的等离子体形成位置10、12一致。正透镜布置60使用电场和/或磁场来偏转或以其他方式引导流体流来实现聚焦的功能。为了实现其,流体流(例如成分、丝、液滴或其的类似物)可能需要被充电。因此,充电配置可能还形成燃料流生成器的一部分(尽管未在图中示出),用于提供燃料流的充电。例如,电荷隧道可能提供所述充电。可替代地,贮存器或喷嘴可以保持在升高的电位,以确保其中的燃料也保持在所述电位。在所述流之后离开喷嘴时,它将被充电。
[0085] 可将正透镜布置60描述成带正电的粒子透镜。存在许多这样的带电粒子的例子。带电粒子透镜可以例如是四极透镜、孔径透镜、圆柱形透镜或单透镜(其是在下文更详细地描述的圆柱形透镜的特定例子)。单透镜可能是优选的,因为该透镜将在不改变被聚焦的流的能量的情况下进行聚焦。这样的透镜的精确类型和设计等不是本发明的主题。替代地,本发明在于将这样的透镜应用于流体液滴生成器,以控制被这样的生成器生成的流体流的轨迹的展度范围。类似地,可以对流体流进行充电的配置也不是本发明的主题,且将例如是流体液滴生成器的领域中公知的。结果,在此处没有对充电所述流的配置进行更详细地描述。
[0086] 图7示意性示出喷嘴32、潜在轨迹70的展度范围的外部范围以及所针对的等离子体形成位置10、12。还提供了正透镜布置60,其将轨迹70的展度范围聚焦至等离子体形成位置10、12。图8显示了喷嘴32的位置的缓慢的但是可能是长期的变化是怎样影响轨迹70的展度范围被聚焦所在的位置的。总之,可以看到,喷嘴32的位置72的变化被相对于等离子体形成位置10、12的预期位置74以大于1的倍数放大。这意味着,在考虑了轨迹70相对于等离子体形成位置的预期位置的聚焦点时,即使喷嘴32的位置或方向的小的偏移也将在下游被放大。这样的放大可能使得更加难以用激光击中燃料流,其可能导致整个辐射源的性能劣化。可替代地或另外地,所述放大可能使得校正系统更难于调整和校正喷嘴的位置或方向的这样的偏移。
[0087] 图9提供了在图7和8中显示的并在参考它们描述的问题的方案。通常,透镜布置60现在配置成确保喷嘴32的位置或方向的变化被在等离子体形成位置10、12的预期位置处或相对于等离子体形成位置10、12的预期位置以小于1或等于1的倍数放大。在图9中,这已经通过确保透镜布置60定位在比图7和8中显示的位置更下游但是同时比图7和8中显示的更宽和功率更大来实现。参考图10,喷嘴32的缓慢但是可能是长期的位置变化又影响轨迹70的展度范围被聚焦所在的位置。然而,可见,在考虑了轨迹70相对于等离子体形成位置10、12的预期位置74的聚焦点时,喷嘴32的位置72的变化被缩小。这意味着,轨迹70的展度范围的聚焦位置的任何所形成的变化将比所述位移72更加靠近预期的等离子体形成位置10、12。因此,图10中的布置比图8中的布置对长期的缓慢的变化的漂移更不敏感。
[0088] 实现在图9和10中显示的并参考它们所描述的影响所需要的透镜的配置可以通过移动给定的透镜布置中的一个或更多的元件或通过提供不同的透镜布置(例如在更下游处)或通过适当地激励相同的透镜布置的下游的部件来实现。
[0089] 根据在图9和10中显示的并参考它们描述的原理,本发明可以用于校正和补偿快速改变的轨迹方向(即通过聚焦),而且还可以用于至少部分地校正和补偿缓慢改变的系统动力学(例如热漂移等)(或至少最小化其的作用),缓慢改变的系统动力学可能导致喷嘴32的位置或方向变化。可替代地和/或另外地(通常),透镜布置60的位置和/或方向可以是可控制的,用于控制聚焦点的位置。这可能导致不需要能够提供用于补偿喷嘴等的位置的漂移的独立的设备,从而允许整个流体流生成器具有较少的部件。透镜布置60的位置和/或方向可以是可通过透镜布置或其的一个或更多的部件的物理移动、和/或通过对透镜布置所用的电场和/或磁场的幅度、形状或总体配置控制的。
[0090] 图11显示透镜布置的典型的配置,采用单透镜的形式。透镜布置包括沿着和围绕流体流的轨迹的潜在展度范围轴向地设置的三个圆柱形电极80,82,84。用于聚焦燃料流88的发散的轨迹的适合的电场86可以通过在透镜的圆柱形电极80,82,84之间建立适合的电势差来提供。在图11中,在三个电极80,82,84的中心圆柱形电极82之间建立电势差,以实现电极80,82,84内的聚焦电场。该电势差可以通过提供电压90至中心电极82来建立,其保持剩余的外部电极80、84接地。当然,其它的布置是可行的,例如在不同的电极80,
82,84之间提供任何适合的电势差(不一定是相对于零电位)。
[0091] 现在提供了数值示例。外部圆柱体80、84可以是接地的,而中心圆柱体连接至例如1000V的静态电压(被选择成这么低,是因为带电的圆柱体82和接地的圆柱体80、84之间的电势击穿)。
[0092] 带电的液滴穿过由一组的接地圆柱形电极80、84和带电的圆柱形电极82产生的场86的偏移速度由下式给出:
[0093]
[0094] z是沿电极80,82,84的对称轴线所测量的坐标,Q是液滴的电荷,Er是径向上的电场的梯度,M是液滴的质量以及v是速度。
[0095] 在一个典型的示例中,液滴半径=12.3μm,体积=7.85pl以及液滴质量=-11 -125.46*10 kg(在燃料是锡时)。洛利电荷极限(Raleigh charge limit)呈现为2.4*10 C。
5
场梯度的估计是在10mm(例如电极80,82,84的典型直径)上1000伏特=10V/m。透镜化/聚焦在超过例如10mm上发生。对于100m/s的液滴速度,径向速度上的变化呈现为约
0.5m/s。这将聚焦点限定在约1m处。
[0096] 应当理解,透镜化/聚焦动作依赖于液滴的电荷和所施加的电压。这给出了限定聚焦点的位置的两种可能性,其可以被提前适当地设定,和/或在操作或建立期间调节。
[0097] 此处讨论的透镜布置可以具有多种目的功能性。例如,透镜布置还可以配置成用于或至少形成下述中的一个或更多个的一部分:
[0098] 用于从喷嘴抽取燃料(例如成液滴的形式)的抽取配置;和/或用于加速构成燃料流的燃料的加速配置;和/或用于使构成燃料流的燃料减速的减速配置(所述加速和/或减速被用于例如控制燃料流的液滴之间的间隔,或甚至用于如果被期望和在被期望时融合液滴);和/或
[0099] 用于使构成或其将构成燃料流的燃料充电的充电配置。
[0100] 透镜布置将不一定需要永久地处于上述的配置中的一种配置。替代地,最可能地,将不需要物理变化,替代地,透镜布置将可以在一个或更多的配置之间(电)切换。例如,透镜布置可以通过应用下述部件之间的适合的电位差在配置之间切换:透镜布置中的一个或更多的部件(例如其的电极或线圈)之间;和/或所述流引导所自的喷嘴和透镜布置中的一个或更多的部件;和/或透镜布置和充电布置中的一个或更多的部件(如果存在的话和在存在时)。这样的切换可以通过适合地配置的控制器来实现,例如包括适合的电子装置等。在一些实施例中,透镜布置可以在一个或更多的液滴或燃料流部分穿过透镜期间的特定时间段起到透镜布置的作用,且之后在另一时间段起到加速或减速或充电配置的作用。由于透镜布置提供的多功能性,最可能的是控制器可以布置成在燃料流的一部分从喷嘴行至等离子体形成位置时执行在一个或更多的配置之间的切换。例如,给定部分可以被充电和/或从喷嘴抽取,和/或朝向等离子体形成位置加速(或减速),和/或都被使用同一透镜布置聚焦。在液滴从喷嘴行至等离子体形成位置时,同样可以在多于一个的场合使用不同配置,或者可以在多于一个的场合使用不同配置的相同部分。
[0101] 现在将参考图12-15描述配置之间如何切换的示例。
[0102] 图12显示在图11中显示并参考图11描述的透镜布置有许多相同之处的透镜布置。当前也显示出喷嘴32。在本实施例中,喷嘴32可以由导电材料制造,诸如钼或。为了从喷嘴32处的弯液面等分离液滴34,且以被控制的方式分离液滴34,连续的流可以被保持通过喷嘴32,或使得燃料的主体保持在喷嘴32出口处或靠近喷嘴32出口处。不时地,电场100被通过在喷嘴32和一个或更多的电极80,82,84(其可能接地)之间建立电势差90而被接通。场100给弯液面充电,从而将液滴34与喷嘴32分离,且将其在电场100中加速,该场100是发散的。如果液滴32没有被引导直接通过电极80,82,84的中心,那么所述液滴将具有遵循发散的场线100的轨迹。
[0103] 图13显示如在图11中显示的以及参考图11描述的相同的布置,尽管液滴34当前没有被关于初始的发散轨迹显示。有时,在被抽取和穿过电极80,82,84的液滴34之间,透镜化/聚焦电场86被接通,朝向透镜/透镜化场的聚焦点重新引导带电的液滴34。
[0104] 透镜可以用于加速或进一步加速液滴34。参考图14,第一圆柱形电极80连接至电压源90。中心电极82可以留有浮动电势。第三电极84被接地。具有轴向梯度的电场110被建立在第一电极80和第三电极84之间,从而加速液滴34。在短的时间之后,加速场被关断,透镜化场被接通,如图15所示。这一程序可以被重复许多次,用于连续地或顺序地加速(如果需要的话,或减速)液滴34,并将其轨迹聚焦。
[0105] 作为数值例子,透镜化和加速区域可以是约10-15mm长。速度为50m/s的液滴将在该区域中停留约300微秒。电极布置的电容可能很小,任何相关的布线的电阻和寄生电容还可以被设置得很小。这可以允许单透镜的RC时间尽可能低达大约1μs。这允许至少100kHz的切换速率,且因此在透镜化/聚焦以及加速配置之间切换。因此,在一半时间,液滴可以被加速,在一半时间,轨迹可以被聚焦。通过选择用于透镜化和加速的不同时间,可以使用不同的计时机制。这样,可以增大液滴速度(例如每秒数米,或每秒数十米),同时保证还获得如所需要的聚焦。
[0106] 在上述的实施例中,已经显示了单个透镜的布置。然而,可以提供一个或更多的另外的正透镜布置。可以沿着已经在图中显示地并参考图描述的透镜布置的(例如上游或下游)轨迹的潜在展度范围提供和设置这样的另外的透镜布置。所述一个或更多的另外的透镜布置不一定需要是设备等的分立的独立件,其被沿着燃料流的轨迹间隔地设置在不同的点处。替代地,电极和/或线圈的阵列等(或其它的磁场产生元件)可以被沿着燃料流的潜在轨迹设置,和被选择性地激励或去激励以沿着所述轨迹提供一个或更多的透镜布置。
[0107] 在上文的实施例中,电场已经被用于显示可以如何将轨迹的展度范围聚焦。电场生成元件可以包括一个或更多的电极或其它部件。磁场还可以用于实现同一效应。可以通过使用永磁体布置(例如是一个或更多的永磁体或包括一个或更多的永磁体)或通过电磁布置(例如是一个或更多个螺线管或包括一个或更多个螺线管)提供或建立磁场。
[0108] 在图中,贮存器、导管和喷嘴被显示为具有大致垂直的方向。然而,其它的方向是可行的,例如大致平的方向或处于另一角度的方向。
[0109] 在图中,喷嘴被显示为经由导管从贮存器延伸。在另一实施例中,喷嘴可以直接从导管延伸,或可以形成导管的一部分(例如喷嘴可以形成在导管的壁中)。
[0110] 在实施例中,对燃料为液态锡或包括液态锡以及污染物是氧化锡的颗粒等或包括氧化锡的颗粒等做出了阐述。然而,本发明可以应用于其它类型的液体/燃料,例如墨或熔融的金属,其中污染物潜在地包括所述墨或金属的氧化物。
[0111] 虽然已经关于辐射源描述了上述的实施例,但是本发明可以用于且尤其是用于需要用在流体流生成器中的喷嘴的情形中的其它应用中,例如用在喷墨打印、或金属印刷等领域中。在其他应用中,流体流可能不被朝向等离子体形成位置引导,而是更一般地被朝向目标位置引导。目标位置可以是例如材料片、衬底等。然而,考虑到这样的辐射源对燃料流的轨迹方向的甚至非常小(例如微米量级)的变化的敏感性,关于这样的辐射源实施本发明可能是尤其优选的。
[0112] 虽然在本文中详述了光刻设备用于制造IC(集成电路),但是应该理解到这里所述的光刻设备可以有其他的应用,例如制造集成光学系统、磁畴存储器的引导和检测图案、平板显示器、液晶显示器(LCD)、薄膜磁头、LED、太阳能电池等。本领域技术人员应该认识到,在这种替代应用的情况中,可以将这里使用的任何术语“晶片”或“管芯”分别认为是与更上位的术语“衬底”或“目标部分”同义。这里所指的衬底可以在曝光之前或之后进行处理,例如在轨道(一种典型地将抗蚀剂层涂到衬底上,并且对已曝光的抗蚀剂进行显影的工具)、量测工具和/或检验工具中。在可应用的情况下,可以将所述公开内容应用于这种和其他衬底处理工具中。另外,所述衬底可以处理一次以上,例如以便产生多层IC,使得这里使用的所述术语“衬底”也可以表示已经包含多个已处理层的衬底。
[0113] 在允许的情况下,在描述光刻设备时,术语“透镜”可以表示不同类型的光学构件中的任何一种或其组合,包括折射式的、反射式的、磁性的、电磁的以及静电的光学构件。
[0114] 尽管以上已经描述了本发明的特定的实施例,但是应该理解的是本发明可以以与上述不同的形式实现。上文的描述的意图是说明性的,不是限制性的。因此,本领域技术人员将明白可以在不背离随附的权利要求的范围的情况下,对所述的本发明进行修改。
[0115] 应该认识到,具体实施方式部分,而不是发明内容和摘要部分,被意图用于诠释权利要求。发明内容和摘要部分可以阐明由本发明人设想的本发明的一个或更多个示例性实施例,但不是本发明的全部示例性实施例,因而不是要以任何方式限制本发明和随附的权利要求。
[0116] 借助示出具体功能的实施方式及其关系的功能构建块,在上文描述了本发明。为了描述方便,这些功能构建块的边界在本文被任意限定。可以限定可替代的边界,只要特定功能及其关系被适当地执行即可。
[0117] 具体实施例的前述说明如此充分地揭示了本发明的一般特性,使得其他人可以通过应用本领域的知识在不需要过多的实验且在不背离本发明的总体构思的情况下针对于各种应用容易地修改和/或适应这样的具体实施例。因此,基于这里给出的教导和引导,这种适应和修改意图是在所公开的实施例的等价物的范围和含义内。应当理解,这里的措词或术语是为了描述的目的,而不是限制性的,使得本说明书的术语或措辞由本领域技术人员根据教导和引导进行解释。
[0118] 本发明的宽度和范围不应该受上述的任何示例性实施例的限制,而是应该仅根据随附的权利要求及其等价物来限定。
相关专利内容
标题 发布/更新时间 阅读量
防辐射定向保护系统 2020-05-13 437
无辐射电吹风 2020-05-11 199
一种大功率无辐射电磁炉的消辐射装置 2020-05-13 427
无辐射电吹风的消辐射装置 2020-05-12 394
重型电动辐射防护门 2020-05-12 767
防辐射观察窗 2020-05-11 388
热辐射节能涂料 2020-05-11 131
一种辐射管加工工装 2020-05-12 55
一种防辐射面料 2020-05-11 204
防辐射门 2020-05-11 612
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈