Document Document Title
US11019394B2 Automated transition classification for binge watching of content
Novel techniques are described for automated transition classification for binge watching of content. For example, a number of frame images is extracted from a candidate segment time window of content. The frame images can automatically be classified by a trained machine learning model into segment and non-segment classifications, and the classification results can be represented by a two-dimensional (2D) image. The 2D image can be run through a multi-level convolutional conversion to output a set of output images, and a serialized representation of the output images can be run through a trained computational neural network to generate a transition array, from which a candidate transition time can be derived (indicating a precise time at which the content transitions to the classified segment).
US11019392B2 Methods and apparatus for an output buffer
Various embodiments of the present technology may provide methods and apparatus for an output buffer. The output buffer is configured to perform in both a DP mode and an HDMI mode, as well as meet certain compliance conditions in an HDMI compliance testing mode. The output buffer includes a plurality of transistors and resistors arranged to operate in DP mode and HDMI mode. The plurality of transistors and resistors are arranged to reduce leakage current during the HDMI compliance testing mode.
US11019390B2 Recovery data with content identifiers
A method and a receiver to receive “recovery data table” (See FIGS. 36A and 38F.) which is used for retrieving “supplementary content” are disclosed. Said “recovery data table” (See FIGS. 36A and 38F.) has “contentID. type” field describing “type of content identifier” and defining “uniform resource name”.
US11019389B2 Determination of enhanced viewing experiences based on viewer engagement
An enhanced viewing device may move with a user as the user moves around the room. An amount of movement associated with the enhanced viewing device may be determined. Based on the amount of movement, an enhanced viewing experience may be determined and displayed to the user.
US11019387B2 Method and apparatus for providing video content using collaborative end points
A method embodying the disclosure includes facilitating communications with mobile user equipment (UE) devices to form a collaborative group that uses a local wireless network. A UE receives video content from a content provider via a first network, presents the video content, and predicts a degradation of presentation quality for a portion of the video content. The UE sends requests to other UEs in the group for subportions of the video content, and receives the subportions via the local wireless network. The requesting UE aggregates the received subportions to obtain an alternate video portion for presentation and thus mitigate the predicted degradation of presentation quality. Other embodiments are disclosed.
US11019385B2 Content selection for networked media devices
A server for providing selected content to networked display devices is presented. The server includes a memory configured to store instructions. At least one processor is configured to execute the instructions to: receive television programming data and automatic content recognition data from a networked display device, and selectively link the networked display device to a viewing group based on the television programming data and automatic content recognition data. An advertisement engine is configured to provide an advertisement to the networked display device. The advertisement is selected based on the viewing group linked to the networked display device.
US11019381B2 Systems, methods and computer-readable media for configuring receiver latency
The present disclosure is related to transmitting and receiving media channels, such as audio and video channels. These channels may be transmitted as packets from one or more transmitting devices to one or more receiving devices for playout. Certain embodiments of the present disclosure include systems, methods, and computer-readable media for determining latency of a data network for synchronised playout of received signals. Additionally, certain embodiments of the present disclosure include systems, methods, and computer-readable media for synchronising playout among devices connected to a data network.
US11019375B2 Method and apparatus for installing conditional access system information
Various exemplary embodiments of the present disclosure relate to method and an apparatus a broadcast receiver for a conditional access system (CAS) information download. The CAS information download method includes acquiring broadcast provider information. The method also includes, selecting a broadcast provider based on the broadcast provider information. The method further includes, transmitting a subscription request including identity information of the broadcast reception device to a broadcast provider server of the selected broadcast provider. The method also includes, downloading CAS information from a CAS server.
US11019373B2 Multimedia device and control method therefor
A multimedia device and a control method therefor are disclosed. The multimedia device according to one embodiment of the present invention comprises: a reception unit for receiving a stream segment, of a first bitrate, among stream segments, which constitute first content, of several bitrates; a display unit for displaying video data corresponding to the received stream segment of the first bitrate; and a control unit, wherein the control unit detects a size change of a screen on which the video data is displayed, requests a stream segment of a second bitrate, which is different from the first bitrate, on the basis of the detected size change of the screen, controls the reception unit such that the reception unit receives the requested stream segment of the second bitrate, and controls the display unit such that the display unit displays video data corresponding to the received stream segment of the second bitrate.
US11019372B2 Layered multicast and fair bandwidth allocation and packet prioritization
Embodiments include an overlay multicast network. The overlay multicast network may provide a set of features to ensure reliable and timely arrival of multicast data. The embodiments include a congestion control system that may prioritize designated layers of data within a data stream over other layers of the same data stream. Each data stream transmitted over the network may be given an equal share of the bandwidth. Addressing in routing tables maintained by routers may utilize summarized addressing based on the difference in location of the router and destination address. Summarization levels may be adjusted to minimize travel distances for packets in the network. Data from high priority data stream layers may also be retransmitted upon request from a destination machine to ensure reliable delivery of data.
US11019370B2 Channel usage management in terrestrial distribution systems
Devices, methods, and storage media provide for identifying, by an ad insertion device, at least one prospect for inserting a selected ad via a set of hidden channels during a target programming timeslot based on ad schedules for a plurality of networks; determining based on hidden channel usage data for a programming timeslot corresponding to the target programming timeslot, that a likelihood of availability of at least one hidden channel of the set of hidden channels during the target programming timeslot exceeds a first threshold level; and sending an instruction to an interface device to insert the selected ad via the at least one hidden channel during the target programming timeslot.
US11019369B2 Supplemental audio content for group communications
Systems, methods, software and apparatus enable providing supplemental audio content to members of a communication group via a group communication service that manages the multiple member user nodes' transmission and receipt of communications between and among the member user nodes. A request for audio content (e.g., from the communication group or a member user node) causes the group communication service to launch a bot node member to locate and deliver the requested audio content. The audio content can be merged with user node communications (e.g., as transmission packets or as streaming audio content). In some implementations each user node includes a wearable push-to-talk end user device linked to a communication device executing a communication application connected to the group communication service.
US11019365B2 Methods and systems for image compression
A method relating to image compression includes acquiring image data of an image, wherein the image includes a matrix of pixels, and the image data include pixel values of the matrix of pixels. The method also includes generating, based on the image data, a first-level data set including pixel values of a portion of the matrix of pixels. The method further includes determining at least one coding mode for the first-level data set, encoding the first-level data set into a code stream based on the at least one coding mode, and packaging the code stream into a modified code stream.
US11019362B2 Information processing device and method
Provided are an information processing device and an information processing method that enable suppression of a reduction in coding efficiency while suppressing a reduction in subjective quality. Information regarding a three-dimensional region is encoded on the basis of a distribution related to overlapping of visual fields of the three-dimensional region to be imaged by a plurality of imaging units, the distribution being specified by using a parameter relating to overlapping of visual fields that are imaging ranges of the plurality of imaging units.
US11019361B2 Methods, systems and devices for adjusting panoramic view of a camera for capturing video content
Aspects of the subject disclosure may include, for example, embodiments for selecting a first camera from one or more cameras communicatively coupled to a computing device. Further embodiments include adjusting a first hardware controller on the first camera in response to detecting a network condition of a communication network resulting in an adjusted first camera. Additional embodiments include capturing first video content with the adjusted first camera. Also, embodiments include transmitting the first video content to a video content server over the communication network. Other embodiments are disclosed.
US11019358B2 Image decoding method and apparatus based on affine motion prediction in image coding system
An image decoding method performed by a decoding apparatus includes the steps of: acquiring motion prediction information on a current block from a bitstream; generating an affine MVP candidate list including affine motion vector predictor candidates for the current block; deriving CPMVPs for CPs of the current block on the basis of one affine MVP candidate among the affine MVP candidates included in the affine MVP candidate list; deriving CPMVDs for the CPs of the current block on the basis of the motion prediction information; deriving CPMVs for the CPs of the current block on the basis of the CPMVPs and the CPMVDs; and deriving prediction samples for the current block on the basis of the CPMVs.
US11019353B2 Unequal weight planar prediction
A method of decoding JVET video includes receiving a bitstream and calculating a final planar prediction in planar mode to predict pixel values for a current coding block. The final planar prediction may rely on using unequal weights applied to each of a horizontal and vertical predictor, where such predictors may be generated by interpolating neighboring pixels for each predicted pixel within a coding block. The computation may be made more accurate by deriving a value for a bottom right neighboring pixel.
US11019351B2 Video coding with trade-off between frame rate and chroma fidelity
A video decoder or encoder can be used to convert and process different video streams having different combinations of frame rate and Chroma fidelity. Rather than setting the maximum sample rate of the encoder based on a Luma sample rate, the encoder's throughput is set based on a maximum color sample rate. Additionally, the picture buffer size can be set based on a maximum number of color pictures. An input of the video decoder receives an input video stream having a given display resolution and encoded in a first format employing a first combination of frame rate and Chroma fidelity. Processing circuitry in the decoder converts the input video stream from the first format to an output video stream having a second format, the second format having the given display resolution and employing a second combination of frame rate and Chroma fidelity different from the first combination.
US11019348B2 Image processing apparatus and image processing method
An image processing apparatus divides a plurality of difference images that are based on addition and subtraction between a plurality of parallax images, and a second difference image between a current composite image that is based on addition of the plurality of parallax images and a past composite image, into a plurality of sub-bands. As for the plurality of first difference images, the image processing apparatus then encodes data of a sub-band that includes high-frequency components, out of the plurality of sub-bands. As for the second difference image, the image processing apparatus encodes data of the plurality of sub-bands.
US11019347B2 Content adaptive light field compression
A compression method for high-resolution light field display is disclosed for applications in which computer memory constraints and latency are critical. The disclosed compression algorithm takes advantage of the 3D structure of a light field to compress the raw light field information with a fixed compression ratio and simple decoding instructions. The compressed high-resolution light field achieves a reduced bandwidth with acceptable quality, and is packed in a way that can be transmitted using common interfaces. In a preferred embodiment, the compression algorithm is used as a post-processing stage after light field information acquisition or after rendering. In a further preferred embodiment, the compression algorithm is incorporated into the acquisition or rendering procedure to reduce memory and rendering processing. These and further embodiments generate a compressed light field with all information required for direct display.
US11019344B2 Position dependent intra prediction
A method for video processing is provided. The method includes determining, for a conversion between a current video block of a video that is a chroma block and a coded representation of the video, parameters of a cross-component linear model based on selected chroma samples based on positions of the chroma samples, wherein the selected chroma samples are selected from a group of neighboring chroma samples; and performing the conversion based on the determining.
US11019343B2 Data block encoding method and apparatus
A data block encoding method and apparatus are provided. The data block encoding method includes: determining whether a data block includes an intensive edge region, where the intensive edge region is a region including an image distortion generated by ring noise, and the data block is a data block in a to-be-encoded image; and when the data block includes an intensive edge region, reducing a value of a quantization parameter used for encoding the data block, and encoding the data block by using a reduced value of the quantization parameter, or dividing the data block into multiple coding units of different sizes according to different coding layers, adjusting rate-distortion costs of the multiple coding units of different sizes, and encoding the data block by using a coding unit with a minimum rate-distortion cost obtained after the adjustment.
US11019341B2 Efficient context handling in arithmetic coding
An apparatus for decoding a current block in a scan order identifies a current entropy coded transform coefficient from the current block; determines, based on the scan order and using a scan order distance table, a first scan order distance, where the first scan order distance being a difference between a first scan order location corresponding to the current entropy coded transform coefficient and a second scan order location corresponding to a first context coefficient; identifies, using the first scan order distance, a first location into a context coefficient register; identifies, at the first location of the context coefficient register, a first context coefficient value; identifies a probability distribution using the first context coefficient value; entropy decodes the current entropy coded transform coefficient using the probability distribution to obtain an entropy decoded current transform coefficient; and includes the entropy decoded current transform coefficient in an output bitstream.
US11019335B2 Method for encoding/decoding image and device therefor
Provided is an image decoding method of decoding an image, the image decoding method including: obtaining at least one of block shape information and split shape information about a first coding unit included in the image, from a bitstream; determining at least one second coding unit included in the first coding unit based on at least one of the block shape information and the split shape information; and decoding the image based on the at least one second coding unit, wherein the block shape information indicates a shape of the first coding unit and the split shape information indicates whether the first coding unit is split into the at least one second coding unit. Also, provided is an image encoding method corresponding to the image decoding method. Also, provided is an image encoding apparatus and image decoding apparatus for respectively performing the image encoding method and image decoding method.
US11019330B2 Multiple camera system with auto recalibration
A method for a computing device to recalibrate a multiple camera system includes collecting calibration data from one or more pictures captured by the multiple camera system of the computing device. The multiple camera system includes two or more cameras that are each physically separated by a distance from one another. The method further includes detecting decalibration of the camera system. The method further includes, when the camera system is decalibrated, generating recalibration parameters based on the calibration data. The method further includes determining whether the recalibration parameters are valid parameters and, when they are, updating the multiple camera system based on the recalibration parameters.
US11019327B2 Endoscope employing structured light providing physiological feature size measurement
Disclosed herein are systems, methods, and structures providing accurate and easy to use size measurement of physiological features identified from endoscopic examination. In sharp contrast to the prior art, systems, methods, and structures according to the present disclosure employ structured light that advantageously enables size and/or distance information about lesions and/or other physiological features in a gastrointestinal (GI) tract. Advantageously, systems, methods, and structures according to the present disclosure are applicable to both capsule endoscopes and insertion endoscopes.
US11019326B2 Light-source characterizer and associated methods
A method characterizes a scanning light source configured to emit illumination propagating in any one of a plurality of directions spanning an angular range. The method includes (i) detecting, with a camera, illumination propagating at each of the plurality of directions; (ii) storing image data corresponding to a response of the camera to the detected illumination. The method also includes (iii) processing the image data to characterize at least one of the angular range, pointing accuracy, pointing jitter, a divergence of the illumination, a uniformity of the illumination, and a fidelity of a scanning pattern, formed by the scanning light source, to a predetermined pattern.
US11019323B2 Apparatus and method for 3D like camera system in a handheld mobile wireless device
A camera system for use in a mobile handheld computing and communication device with a front side with a display screen and a back side has two separate and independent cameras positioned on the back side of the device, wherein the cameras have a physical separation between them of substantially the same separation as between the eyes on a human face and, wherein the camera system creates a 3D-Like image of an object for storage and for viewing on a display screen.
US11019321B2 Method for encoding and method for decoding a color transform and corresponding devices
A method for encoding a colour transform is disclosed that comprises encoding first parameters representative of video signal characteristics of colour output decoded pictures remapped by said at least one color transform; and encoding second parameters representative of said at least one colour transform.
US11019319B2 Systems and methods for controlled dichoptic viewing
Disclosed are implementations, including a method for video presentation to cause controllable stimulation of a subject's eyes, that includes preparing a video presentation comprising successive frames of moving images, and, for one or more of the successive frames, selecting a target feature(s) represented in the moving images, with the moving images further comprising one or more background features, the target feature causing stimulation of one of a first eye or a second eye of the subject. For at least some of the frames in which the target feature(s) appears, the method also includes controlling a first contrast characteristic of the target feature(s) to form a first portion of the moving images, and controlling a second contrast characteristic of the one or more background features to form a second portion of the moving images. The method further includes providing the prepared video presentation.
US11019318B2 Methods to compensate manufacturing variations and design imperfections in a display device
A display device includes (a) a non-volatile memory containing corrective data for compensating input image data received; (b) display hardware receiving control and data signals for displaying an image; and (c) an image processing circuit that retrieves the corrective data from the non-volatile memory to generate the data signals for the display hardware, after applying the corrective data to each color component of each pixel in the input image data.
US11019314B2 Projector and method for controlling projector
A projector moves a first imaging lens and a second imaging lens in a direction that intersects the optical axis of an imaging section to adjust the imaging range of the imaging section and moves the first imaging lens and the second imaging lens in the direction that intersects the optical axis of the imaging section to switch the imaging lens located in a position corresponding to the imaging section from one to another.
US11019307B2 Defining content of interest for video conference endpoints with multiple pieces of content
A video conference system may include two or more video conference endpoints, each having a display configured to display content. The video conference system may detect a plurality of participants within a field of view of a camera of the system. The video conference system may determine an attention score for each endpoint based on the participants. The video conference system may determine whether the content of the first endpoint and/or the content of the second endpoint are active content based on whether the attention scores exceed a predetermined threshold value. The video conference system may send to secondary video conference systems an indication of the active content to enable the secondary video conference systems to display the active content.
US11019301B2 Methods and apparatus to perform an automated gain control protocol with an amplifier based on historical data corresponding to contextual data
Methods and apparatus to perform an automated gain control protocol with an amplifier based on historical data corresponding to contextual data are disclosed. Example apparatus disclosed herein include a first controller to, in response to a trigger to identify an automatic gain control (AGC) parameter for an AGC protocol, determine the AGC parameter for the AGC protocol based on historical data corresponding to contextual data. Disclosed example apparatus also include a processor to perform the AGC protocol based on the selected AGC parameter. Disclosed example apparatus further include a second controller to update the historical data based on the contextual data and a result of the AGC protocol.
US11019300B1 Providing soundtrack information during playback of video content
Disclosed are various embodiments for providing soundtrack information during the playback of video content. A video content item is rendered upon a display. A command is received from a user. In response to this command, a current time in the playback of the video content item is determined. Further, an item associated with the current time in the playback is identified. The item is featured in corresponding video or audio content of the video content item at the current time when the command is received. An information user interface is rendered upon the display to provide information regarding the identified item.
US11019299B2 Portable device, display apparatus, display system, and method for controlling power of display apparatus thereof
A portable device, a display apparatus, a display system, and a method for controlling power of a display apparatus thereof are provided. The method includes sensing, while a portable device operates in a standby mode, a movement of the portable device using a motion sensor, converting, using the portable device, the standby mode of the portable device into a normal mode in response to the movement of the portable device being sensed, generating, using the portable device, a pre-power on signal in response to the standby mode being converted into the normal mode, transmitting the pre-power on signal to the display apparatus, and activating, by the display apparatus, some elements of the display apparatus in response to the pre-power on signal being received.
US11019298B2 Method of integrating cameras in vehicles, corresponding system, circuit, kit and vehicle
The method includes providing a front view camera on a vehicle equipped with radio equipment. Video frames from the front view camera are supplied to video signal handling circuitry in a mobile communication device. The video frames from the front view camera are handled by the video signal handling circuitry under the control of the radio equipment.
US11019291B2 Solid-state imaging device and imaging system
A solid-state imaging device including a plurality of pixels including a photoelectric conversion portion, a charge holding portion accumulating a signal charge transferred from the photoelectric conversion portion, and a floating diffusion region to which the signal charge of the charge holding portion is transferred, wherein the photoelectric conversion portion includes a first semiconductor region of a first conductivity type, and a second semiconductor region of a second conductivity type formed under the first semiconductor region, the charge holding portion includes a third semiconductor region of the first conductivity type, and a fourth semiconductor region of the second conductivity type formed under the third semiconductor region, and a p-n junction between the third semiconductor region and the fourth semiconductor region is positioned deeper than a p-n junction between the first semiconductor region and the second semiconductor region.
US11019287B2 Semi-global shutter imager
This disclosure is directed to an image sensor. The image sensor includes a two-dimensional pixel array divided into a plurality of blocks, each of the plurality of blocks comprising pixels arranged in at least two different rows and two different columns, and a shutter mechanism that exposes the plurality of blocks sequentially, with all pixels in each block being exposed synchronously.
US11019285B2 Calibration method of infrared camera and calibration system of infrared camera
A calibration method of an infrared camera includes setting a placing table on which a substrate is placed to different temperatures and acquiring a measurement value of radiation amount of infrared light emitted from each of multiple zones provided in a top surface of the placing table by an infrared camera at each of the temperatures; calculating, as a calibration value, a difference between a measurement value of a reference zone which is one of the zones provided with a temperature sensor and a measurement value of another one of the zones at each of the temperatures; specifying an interpolation curve indicating a variation tendency of the calibration value with respect to the measurement value of the reference zone for each of the zones; and storing parameters of the interpolation curve specified for each of the zones.
US11019283B2 Augmenting detected regions in image or video data
Systems and methods are provided for identifying one or more portions of images or video frames that are appropriate for augmented overlay of advertisement or other visual content, and augmenting the image or video data to include such additional visual content. Identifying the portions appropriate for overlay or augmentation may include employing one or more machine learning models configured to identify objects or regions of an image or video frame that meet criteria for visual augmentation. The pose of the augmented content presented within the image or video frame may correspond to the pose of one or more real-world objects in the real world scene captured within the original image or video.
US11019281B2 Augmented reality telescope
An augmented reality telescope comprises an optical image acquisition module, an electronic image acquisition module, an imaging module communicating optically to the optical image acquisition module and the electronic image acquisition module, and an image observation module open optically to the imaging module. The optical image acquisition module is arranged for the acquisition of object images by means of optical acquisition, and the electronic image acquisition module is arranged for the acquisition of object images in the form of electronic imaging. Since the imaging module is simultaneously open optically to the optical image acquisition module and the electronic image acquisition module, a mixed display of the optical image and the electronic image is realized.
US11019280B2 Systems and methods for video processing and display
A method for processing video data of an environment includes, with aid of one or more processors individually or collectively, obtaining in or near real-time a reference position of an imaging device located on a movable object based on one or more previously traversed positions of the imaging device, and modifying an image frame in the video data to obtain a modified image frame based on the reference position of the imaging device and an actual position of the imaging device at which the image frame is taken. The one or more previously traversed positions are obtained using at least one sensor on the movable object. The video data is acquired by the imaging device.
US11019277B2 LED flicker reduction for high dynamic range imaging
A system for capturing a high dynamic range (HDR) image comprises an image sensor comprising a split pixel including a first pixel having higher effective gain and a second pixel having lower effective gain. The second pixels exposed with a capture window capture at least a pulse emitted by a light emitting diode (LED) controlled by a pulse width modulation. A first HDR image is produced by a combination including an image produced by the second pixels, and images produced by multiple exposures of the first pixels. A weight map of LED flicker correction is generated from the difference of the image produced by second pixels and the images produced by the first pixels, and the flicker areas in the first HDR image are corrected with the weight map and the image from the second pixels.
US11019272B2 Automatic dynamic range control for audio/video recording and communication devices
Automatic exposure control for audio/video (A/V) recording and communication devices in accordance with various embodiments of the present disclosure are provided. In one embodiment, an A/V recording and communication device is provided, comprising: a camera configured to capture image data of a foreground object within a field of view of the camera; a communication module; and a processing module comprising: a processor; and a camera application that configures the processor to: detect motion within the field of view that includes an active image region; capture image data of the field of view; detect the foreground object in the active image region and determine an external lighting level associated with the foreground object; determine at least one exposure control gain setting based on the determined external lighting level; and apply the at least one exposure control gain setting to configure the camera to capture image data focused on the foreground object.
US11019267B2 Display control apparatus and control method therefor
An apparatus includes a moving unit configured to move a focus detection position based on a user operation, within a predetermined range of an image, a display control unit configured to perform display control for displaying an enlarged portion of the image, and a control unit configured to perform control for displaying a display item that indicates the focus detection position and an indicator that indicates the predetermined range, together with the enlarged portion of the image, in a specific state including a state where the enlarged portion of the image is displayed.
US11019262B2 Omnidirectional moving image processing apparatus, system, method, and recording medium
An image processing apparatus including a storage unit, a correction unit, and an output unit. The storage unit stores moving-image data including a plurality of frames captured by an image-capturing device communicable with the image processing apparatus, time-series data of an inclination angle with reference to a reference direction of the image-capturing device, and time-series data of an angle velocity of the image-capturing device. The correction unit, based on the time-series data of the angle velocity, rotates an image of each of the plurality of frames of the moving-image data to reduce a rotational distortion around the reference direction within a prescribed frequency range. The output unit outputs image data of the rotated image of each of the plurality of frames to an external device communicable with the image processing apparatus.
US11019256B2 Image processing system, image processing method, and information processing device
An image processing system includes: a plurality of imaging devices each of which includes an image processing unit that executes image processing including development processing of RAW data obtained by imaging; and an information processing device that acquires power supply information regarding power supply states of the plurality of imaging devices, selects the imaging device that executes the development processing according to the power supply state represented by the acquired power supply information, and causes the selected imaging device to execute the development processing.
US11019252B2 Enhanced image capture
Disclosed are techniques that provide a “best” picture taken within a few seconds of the moment when a capture command is received (e.g., when the “shutter” button is pressed). In some situations, several still images are automatically (that is, without the user's input) captured. These images are compared to find a “best” image that is presented to the photographer for consideration. Video is also captured automatically and analyzed to see if there is an action scene or other motion content around the time of the capture command. If the analysis reveals anything interesting, then the video clip is presented to the photographer. The video clip may be cropped to match the still-capture scene and to remove transitory parts. Higher-precision horizon detection may be provided based on motion analysis and on pixel-data analysis.
US11019249B2 Mapping three-dimensional depth map data onto two-dimensional images
A 3D distance sensor projects a plurality of points of light onto a target. A 2D camera having a fixed position relative to the 3D distance sensor acquires a first image of the points on the target. A light receiving system of the 3D distance sensor acquires a second image of the points on the target. A set of 2D coordinates of a first point is associated with a distance coordinate of the first point to form a single set of coordinates for the first point. The set of 2D coordinates is obtained from the first image, and the distance coordinate is obtained from the second image. A relational expression is derived from the single set of coordinates and describes a relationship between a distance of the light receiving system to the target and a position of the first point on an image sensor of the 2D camera.
US11019248B2 Adaptive trail cameras
Example techniques are disclosed for altering trail camera settings when deployed. For example, settings relating to triggering functionality, time lapse functionality, image resolution, motion sensor sensitivity, flash intensity, and other camera functions can be altered. The settings can be altered based on environmental conditions such as weather and ambient noise. The settings can also be altered based on trail camera conditions such as available battery capacity or image storage capacity. The trail camera settings can also be altered based on images obtained by the trail camera, with or without analyzing content of the images.
US11019246B2 Estimating and using relative head pose and camera field-of-view
A video or still hand-held digital camera is activated or controlled based on estimation of a user head pose or gaze direction. The system comprises uses two wearable devices associated with right and left sides of the user body, each comprises an RF beacon. The head pose or gaze detection is estimated by comparing the signal strength (such as RSSI) or the phase of the RF signals from the wearable devices at the digital camera device. An angular deviation between the head pose (or gaze detection) and the digital camera (such as the line of sight) is estimated, and the digital camera is activated or controlled based on comparing the angular deviation to a set threshold. The RF signals may be Personal Area Network (PAN) signals, such as Bluetooth Low Energy (BLE) signals. The wearable devices may be head mounted, structured as glasses, earpieces, headphones, or hat mounted.
US11019245B2 Bundle adjustment system
Bundle adjustment systems and methods are disclosed for determining a solution for orientation information associated with a plurality of image frames captured by at least one rolling shutter camera in a rotating camera lens type imaging system having a camera lens that moves across track in an oscillating manner and captures image frames as the camera lens moves. The system may define a plurality of pose time domain polynomials for the rolling shutter camera, the pose time domain polynomials together defining pose information for the rolling shutter camera for scanlines of an image frame captured by the rolling shutter camera, and each pose time domain polynomial including a plurality of parameters to be adjusted in a bundle adjustment process and carry out a bundle adjustment process using the pose time domain polynomials to produce a bundle adjustment solution wherein the pose time domain polynomial parameters are adjusted to reduce error.
US11019242B2 Camera assembly and electronic device using the same, both having a decorative member mounted on a shell and comprising a decorative ring and a flange
The disclosure discloses a camera assembly. The camera assembly includes a shell, a light incident opening defined in the shell, a first imaging module accommodated in the shell, a light-redirecting element, a receiving recess defined in the shell and adjacent to the light incident opening; and a decorative member. The light-redirecting element is accommodated in the shell and configured to redirect an incident light from the light incident opening to the first imaging module. The decorative member is mounted on the shell in such a manner that the light entrance incident opening is exposed from the decorative member and the decorative member is arranged around the light incident opening and partially received in the receiving recess. The disclosure also provides an electronic device.
US11019240B2 Fixing ring, lens module, and electronic device including the same
A fixing ring of a certain design for a lens module substantially reduces stray light. The fixing ring defines a central axis, and comprises a base surface and a processing surface, formed from an edge of the base surface. A first angle θ1 exists between a first side cut surface and a surface perpendicular to the central axis, a distance L1 and the first angle θ1 satisfy formulas 0.015 mm
US11019239B2 Electronic device having a vision system assembly held by a self-aligning bracket assembly
An electronic device that includes a vision system carried by a bracket assembly is disclosed. The vision system may include a first camera module that captures an image of an object, a light emitting element that emits light rays toward the object, and a second camera module that receives light rays reflected from the object. The light rays may include infrared light rays. The bracket assembly is designed not only carry the aforementioned modules, but to also maintain a predetermined and fixed separation between the modules. The bracket assembly may form a rigid, multi-piece bracket assembly to prevent bending, thereby maintaining the predetermined separation. The electronic device may include a transparent cover designed to couple with a housing. The transparent cover includes an alignment module designed to engage a module and provide a moving force that aligns the bracket assembly and the modules to a desired location in the housing.
US11019237B2 Systems and methods for synchronizing visual content
Multiple image capture devices may individually generate time information and capture images. Individual image captures devices may receive time information of other image capture device(s). Individual image capture devices may transmit its time information to other image capture device(s) independent of reception of the time information of other image capture device(s). Individual image capture devices may generate time synchronization information for the captured images based on its time information and the received time information of other image capture device(s). Images captured by different image capture devices may be time-synchronized based on at least one of generated time-synchronization information.
US11019235B2 Image processing control and color adjustment for reproducing originals with spot colors or decorative attributes using a color sample
An image processing control apparatus includes a hardware processor. The hardware processor obtains: read image data obtained through reading a color sample and shown in a first color system; original image data corresponding to the color sample and shown in a second color system; and region-by-attribute information indicating a first region corresponding to spot-color printing and a second region corresponding to decoration printing, the first and second regions being in the original image data. The hardware processor determines a color conversion parameter for color conversion of the first region and a color conversion parameter for color conversion of a third region different from the first and second regions in the original image data by using the read image data. The hardware processor determines a color conversion parameter for color conversion of the second region according to predetermined values shown in the second color system.
US11019233B2 Optical scanning device, laser diode driver and image forming apparatus having shift register to receive a shift signal
An optical scanning device includes a controller, and a scanning unit connected with the controller via a signal line. The scanning unit includes a semiconductor laser having light emitting elements, an optical system configured to convert light emitted by each light emitting element into a beam, a deflector configured to deflect the beam received through the optical system, and a shift register including a plurality of output terminals each configured to output a light emission signal for controlling light emission from a corresponding one of the light emitting elements, and an input terminal configured to receive a shift signal from the controller via the signal line. The shift register is configured to, each time receiving the shift signal via the input terminal, shift a specific output terminal to output the light emission signal from one output terminal to another in sequence among the plurality of output terminals.
US11019223B2 Image forming apparatus and position correcting method
An image forming apparatus of an embodiment comprises a printer unit to print a sheet with a plurality of single colors and generate a correction sheet including a plurality of single color regions at different positions between a first reference region and a second reference region. The first and second reference regions are a reference color. An image reading unit is configured to read the correction sheet. A processor is configured to calculate a shift amount in a main scanning direction of the printer unit for each single color region based on RGB luminance values obtained from the correction sheet by the image reading unit and to correct a printer scan position along the main scanning direction for each single color in the plurality of single colors corresponding to the single color regions using calculated shift amounts.
US11019218B2 Talk station for intercom network
The invention relates to, among others, a communication station (10) for an intercom network (11), comprising a plurality of operating elements (15a, 15b, 15c, 15d) each of which are configured in the manner of a lever (49a, 49b, 49c, 49d, 49e, 49f, 49g, 49h, 49i, 49j), wherein a lever starting from an inactive middle position (39a) is manually shiftable in a first direction (31) into a first switching position (39b) or alternatively shiftable in a second direction (32) contrary to the first into a second switching position (39c), wherein the lever is biased toward its middle position. The special feature of the invention consists, among others, in that the lever comprises a rotatably mounted adjustment element (59, 59a, 59b, 59c, 59d, 59e, 59f, 59g, 59h, 59i, 59j) for changing a parameter.
US11019217B2 Method and apparatus for communications between carriers
Aspects of the subject disclosure may include, for example, responsive to determining that a second device is associated with a first carrier network, obtaining a first record associated with a called number of the second device from a first carrier network telephone number mapping equipment server of the first carrier network, and transmitting a first internet protocol address for the second device from the first record to a terminating call session control function server of the first carrier network to initiate the internet protocol call session. Responsive to a second determination that the second device is associated with a second carrier network, obtaining a second record associated with the called number according to a pointer to a second carrier network telephone number mapping equipment server of the second carrier network, and transmitting a second internet protocol address for the second device derived from the second record to a session border controller of the first carrier network to initiate the internet protocol call session. Other embodiments are disclosed.
US11019216B1 System and method for acoustically defined remote audience positions
A system and method of the present invention that assembles an acoustic arrangement of the participants (e.g. a square grid, a circle, etc. in a venue), wherein the sounds received by each participant from each of the other participants are processed according to a model of the selected arrangement and the acoustic signature of the venue to permit each participant to localize, identify the participant location and more easily comprehend what is said or presented. Also, corresponding visual representations are placed in the corresponding visual location of the selected arrangement, and together with rapid acoustic localization of a speaking participant, mental ‘overhead’ is significantly reduced and the participant can resume a near normal, in-person meeting behavior. Further enhancements and features include special venue simulations which generate and maintain audience interest, and may provide excitement or other positive experience that produces participant desirability that can surpass in-person meeting or audience experiences.
US11019206B2 Emergency 9-1-1 portal and application
A computer aided prioritization (CAP) system may receive, from the emergency event reporter device, an emergency event including a priority selected from a set of event priorities and a type of event selected from a set of event types associated with the selected event priority; determine, based on the emergency event and without querying the emergency event reporter device for additional information, whether the emergency event indicates a higher priority emergency event to be handled by a computer aided dispatch (CAD) system or a lower priority emergency event to be handled automatically by a computer aided event module (CAEM); and selectively route the emergency event report to at least one of the CAD system and the CAEM according to the determination.
US11019201B2 Systems and methods of gateway detection in a telephone network
Embodiments described herein provide for detecting whether an Automatic Number Identification (ANI) associated with an incoming call is a gateway, according to rules-based models and machine learning models generated by the computer using call data stored in one or more databases.
US11019199B2 Adaptable communication techniques for electronic devices
Improved approaches for users of electronic devices to communicate with one another are disclosed. The electronic devices have audio and/or textual output capabilities. The improved approaches can enable users to communicate in different ways depending on device configuration, user preferences, prior history, etc. In one embodiment, the communication between users is achieved by short audio or textual messages.
US11019195B2 Ranging between mobile devices
A mobile device can include ranging circuitry to determine distance to another mobile device. A first wireless protocol can establish an initial communication session to perform authentication and/or exchange ranging settings. A second protocol can perform ranging, and other wireless protocols can transmit content. In one example, the distance information can be used to display a relative position of another device on a user interface of a sending device. The user interface can allow a user to quickly and accurately select the recipient device for sending the data item. As other example, the distance information obtained from ranging can be used to trigger a notification (e.g., a reminder) to be output from a first mobile device or used to display a visual indicator on a receiving device. Proximity of a device (e.g., as determined by a distance) can be used to suggest recipient for a new communication.
US11019193B2 Device, method, and graphical user interface for establishing a relationship and connection between two devices
A device receives an instruction to authorize a relationship corresponding to communication over a first data connection with a peripheral display unit, and receives authentication data from the peripheral display unit over another data connection. The device then establishes a connection with the peripheral display unit over the first data connection, including providing the authentication information to the peripheral display unit. The device monitors a battery charge level and battery-usage patterns and provides alerts in accordance therewith. The device displays a reconfiguration interface for configuring the user interfaces of one or more peripheral display units, and detects a request to configure an interface of a peripheral. In response to detecting the request, the device displays an updated representation of the peripheral interface, and afterwards transmits instructions to the peripheral to display the user interface in accordance with the request.
US11019192B2 Auxiliary user interface and method
An auxiliary user interface for a mobile device is disclosed herein. The auxiliary user interface includes a mobile device encasement configured to enclose the mobile device and an auxiliary capacitive touchscreen fixed to the mobile device encasement and configured to communicably couple with the mobile device when the mobile device encasement is attached to the mobile device. The auxiliary capacitive touchscreen is configured to operate as a user interface of the mobile device. The auxiliary user interface may be useful for providing protection and an auxiliary interface for the mobile device.
US11019191B1 Claim a shareable device for personalized interactive session
In aspects of shareable devices, a shareable device implements a device sharing module that can recognize a user intends to claim the shareable device for temporary use. For instance, the device sharing module can determine that multiple users are present within a distance threshold of the shareable device and identify one of the users as intending to claim the shareable device. The device sharing module can then authenticate the identified user to the shareable device, without requiring user input, to enable claiming of the shareable device. The shareable device can obtain personalized content associated with the identified user for use on the shareable device. The device sharing module can then establish an interactive session which enables the identified user to access the personalized content through applications and services available on the shareable device.
US11019175B2 Method and real-time data acquisition and retrieval using a pass-through scalable architecture
A device may be configured to monitor operations of at least one application installed on the device. The device may include a processor and a non-transitory memory. When executed by the processor, an application stored in the memory may cause the processor to perform a plurality of operations. A beacon may be embedded in the application. When the application is executed by the processor, the beacon may cause the processor to establish a direct connection with a remote system comprising a storage database, gather data indicative of at least one of the plurality of operations as specified by at least one beacon microservice, and send the data through the direct connection to store the data in the storage database.
US11019170B2 Methods and systems for caching data communications over computer networks
A computer-implemented method of caching multi-session data communications in a computer network, includes the steps of: (a) receiving, intercepting, or monitoring one or more data sessions between a client executing a multi-session application for retrieving a desired content object and one or more metadata services, said client communicating with the one or more metadata services to discover metadata for the content object; (b) analyzing queries and responses exchanged between the client and the one of more metadata services to discover metadata for the content object; (c) receiving or intercepting subsequent data sessions between the client and content sources; (d) identifying a data protocol used by the client and identifying data queries within the data sessions; (e) identifying the content object or portions thereof requested by the client in the data queries; and (f) determining if the content object or portions thereof are stored in cache and, if so, sending the content object or portions thereof stored in cache to the client, and, if not, sending the data queries to the content sources, storing data responses from the content sources, and sending the data responses to the client.
US11019169B2 Graph for data interaction
The described technology is directed towards having user interface objects rendered on a client device based upon provider data of at least part of a client provider graph. The client provider graph comprises a plurality of providers (graph nodes), in which each provider has provider data corresponding to user interface object data. The data of one provider has a reference set containing one or more references (e.g., edges) that each identify another provider, thus forming the graph. Client requests for other provider data are made based upon the reference set. The other provider data is received in response to the client requests, and is maintained at the client (e.g., in a client cache) to build the client graph.
US11019166B2 Management services for distributed computing architectures using rolling changes
Management services for distributed computing architectures using rolling changes are provided herein. An example system includes clusters of nodes providing services and a plurality of management servers, each of the plurality of management servers including: at least a distributed coordination service for the clusters of nodes, the distributed coordination service being a datastore; and a constructor that manages allocation and life cycle deployments of the nodes of the clusters, the constructor further configured to manage topological changes to nodes of the clusters by implement rolling attribute changes for the nodes.
US11019165B2 Methods and systems for alerting users regarding availability of unconsumed content
Methods and systems are described for a media guidance application that limits the incentive for authorized users to share content with unauthorized users, while still allowing users to access content virtually anywhere. Specifically, the media guidance application allows an authorized user to receive only a portion of a media asset that he or she is authorized to access on a different device, after a designated time period, and/or when the remaining portion of the media asset is inaccessible.
US11019163B2 Methods and apparatus to monitor media presentations
Methods and apparatus to monitor media presentations are disclosed. Disclosed example apparatus include means for collecting demographic information from a user with a registrar of a media device, means for transmitting the demographic information to a central facility from the registrar, and means for storing a panelist identifier identifying the user in a shared memory of the media device, the panelist identifier accessible to a first monitoring-enabled application and a second monitoring-enabled application separate from the registrar, the panelist identifier to be retrieved by the first monitoring-enabled application, the first monitoring-enabled application to present media, the first monitoring-enabled application to collect monitoring information if the panelist identifier is in the shared memory and to disable collection of media monitoring information if the panelist identifier is not in the shared memory.
US11019161B2 System and method for profiling users interest based on multimedia content analysis
A method and system for profiling interests of users based on multimedia content analysis and creating users' profiles respective thereof is provided. The method comprises receiving a tracking information gathered with respect to an interaction of a user with at least one multimedia element displayed on a user node; determining a user impression respective of at least one multimedia content element using the received tracking information; generating at least one signature for the at least one multimedia element; determining at least a concept of the at least one multimedia element using the at least one generated signature, wherein an interest of the user is determined respective of the concept; creating a user profile to include at least the user interest; and storing the user profile in a data warehouse.
US11019160B2 Segment generation describing usage patterns
Segment generation describing usage patterns is described. In one or more implementations, user interaction with a browser is monitored to navigate through a plurality of web pages using a computing device. Data is extracted from web documents associated with the plurality of web pages automatically and without user intervention by one or more modules of the computing device, the data usable to describe a usage pattern involving the navigation through the plurality of web pages. A segment is generated which describes the usage pattern automatically and with user intervention, the segment configured to identify the usage pattern to target content.
US11019156B1 Automatic discovery and registration of service applications for files introduced to a user interface
A catalogue system automatically detects changes to configuration file at a service application. Based on the changes to the configuration file(s), the catalogue system stores mapping data that identifies a resource item type that can be processed by the service application and one or more user actions that are available for processing resource items of the resource item type. The techniques thus provide for dynamic interaction with service applications.
US11019155B2 Enhanced restful operations
A batch of CRUD operations can be coupled with the resource discovery operation and directly conducted on the matched resources, without initiating new CRUD requests. New functionality at the Originator and Receiver can differentiate the resources for which criteria matching is applied from the resources included in the discovery/filtering results. Enhanced functionality at the Originator and Receiver can combine discovery with RESTful operations targeting a resource set different than but related the discovered resources. Other enhancements may be used to request discovery of resources in a specified relationship to those matching a filter, or to request group formation based on the result.
US11019153B2 Dynamically managing data sharing
A computer-implemented method according to one embodiment includes receiving, at a server device, characteristics of a plurality of historical events from a plurality of client devices, receiving, at the server device, historical data sharing behavior associated with the plurality of historical events from the plurality of client devices, saving, by the server device, the characteristics of the plurality of historical events in association with the historical data sharing behavior, and automatically implementing, by the server device, one or more data sharing actions in response to an initialization of an event, utilizing the characteristics of the plurality of historical events and the historical data sharing behavior.
US11019152B2 Equipment installation support system
An equipment installation support system is usable to support setting of a plurality of pieces of equipment intended to be installed in a plurality of buildings. The support system includes a plurality of recording tools, and a server. Each recording tool is assigned to one of the plurality of pieces of equipment and includes a medium having recorded information concerning the assigned one of the plurality of pieces of equipment. The server manages the plurality of pieces of equipment. A specific piece of equipment is intended to be installed in a specific building among the plurality of buildings and has a configuration to adjust a room environment of the specific building. A specific recording tool is assigned second identification information that is assigned to the specific piece of equipment and identifies the specific piece of equipment from pieces of equipment other than the specific piece of equipment.
US11019151B2 Message schema control
A method and apparatus for controlling message schema and size for internet-of-things (IoT) devices is provided. An exemplary method includes determining if a cost function for a new schema and message size combination is less than the cost function of a current schema and message size combination by calculating the cost function for each of a plurality of schema and message size combinations, and determining if the cost function for one of the plurality of schema and message size combinations is lower than a current schema and message size combination.
US11019149B2 Hub apparatus and method for providing service thereof
A hub apparatus and a method are provided for selecting a device. The method includes receiving a service request; determining a sensor based on the received service request; receiving state information from a device including the determined sensor; and selecting the device based on the received state information.
US11019148B2 Apparatus and systems for detecting an environmental anomaly related to a shipping container using a package command node
A package command node detects an environmental anomaly related to a shipment package for transport within a shipping container on a transit vehicle having an external transceiver. The package command node has a command node housing disposed with the package, a processor within the housing, a memory maintaining package command node environmental detection program code, and a wireless transceiver communication interface that communicates with sensor-based ID nodes generating sensor data from different parts of the container. The package command node's processor is programmatically configured to detect the ID node sensor data; identify the anomaly when the detected sensor data indicates an environmental condition that exceeds an environmental threshold; generate an alert notification related to the anomaly; and transmit the alert notification to the external transceiver to initiate a mediation response related to the environmental anomaly.
US11019143B2 Adaptive gossip protocol
Systems, methods, and computer-readable media for an adaptive gossip protocol. A node in a cluster can detect a gossip protocol synchronization triggering event which can include an indication that the node has received data from a second node via a gossip protocol, an update to data maintained by nodes in the cluster, and/or an operation. In response to the triggering event, the node can determine a dynamic gossip interval for disseminating data from the node to other nodes via a gossip protocol, the dynamic gossip interval being based on a synchronization state associated with the cluster and/or one or more gossip protocol events associated with the cluster. Next, the node can select a third node in the cluster for disseminating the data from the node to the third node. The node can then transmit the data to the third node via the gossip protocol based on the dynamic gossip interval.
US11019142B2 Proximity based playlist merging
Merging media in a playlist associated with a cloud based media provider of a first mobile device of a first user with media being played on a second mobile device of a second user within a specific proximity, such that the second mobile device receives at least a portion of a media playlist of the first user from the cloud based media provider for merging with the media currently being played by the second device.
US11019138B2 Systems, apparatus and methods for cost and performance-based management of resources in a cloud environment
Systems, methods and apparatus, including computer program products, are disclosed for regulating access of consumers (e.g., applications, containers, or VMs) to resources and services (e.g., storage). In one embodiment, this regulation occurs through the movement of consumers between different providers of a resource or service, such as a cloud service provider. Moving consumers includes, for example, determining the cost of moving the consumer from a first provider to a second provider. According to various embodiments, the cost of moving the consumer is compared to cost and performance criteria associated with moving the consumer from the first provider to the second provider. Cloud-based services may be priced as templates, reserved instances, or a combination.
US11019136B2 Partitioning and mapping workloads for scalable SaaS applications on cloud
A system for migrating a non-tenant-aware local application to a tenant-aware cloud application environment is disclosed to migrate individual modules of the application to instances of the cloud by grouping the modules via common characteristics in partition groups. By grouping modules together by partition group before migrating the modules to cloud instances, modules that share resources can be placed in closer logical proximity to one another in the cloud to optimize performance.
US11019135B2 Configuring control devices operable for a load control environment
A control device configuration system may receive, store, process, and/or display control device configuration information. The control device configuration system may filter the control device configuration information based on user selections of configuration options for configuration parameters. The control device configuration system may identify compatible and incompatible configuration options for various configuration parameters. The control device configuration system may allow selections of the incompatible configuration options. The control device configuration system may adjust how it filters the control device configuration information based on the selections of the incompatible configuration options. The control device configuration system may implement a configuration model that includes configuration parameter groups for efficient evaluation of user selections.
US11019130B2 Method and apparatus for remotely controlling home device in home network system
A method for remotely controlling a home device in a mobile terminal is provided. The method includes receiving a chat message input to the mobile terminal for controlling at least one home device through an instant messenger application installed in the mobile terminal, and sending the chat message to a messenger server. The sent chat message is converted into a control command, which is sent to the home device.
US11019127B1 Adaptive media fragment backfilling
Techniques for adaptive backfilling of media fragments are described. As one example, a computer-implemented method includes sending, by a media player, a request for a plurality of media fragments from a content data store, receiving the plurality of media fragments from the content data store with at least one media fragment at a first quality level into a front buffer of the media player via a network, starting playback of the plurality of media fragments from the front buffer after a startup threshold number of media fragments are received in the front buffer, detecting when a backfill threshold of the media player is exceeded by a backfill indicator, and replacing at least one of the plurality of media fragments at the first quality level in the front buffer of the media player with a second, higher quality level variant via the network when the backfill threshold is exceeded.
US11019126B2 Quality-of-experience for adaptive bitrate streaming
The present disclosure generally discloses an adaptive bitrate streaming support capability configured to support adaptive bitrate streaming of content. The adaptive bitrate streaming support capability is configured to support adaptive bitrate streaming of content via a wireless access network including an application scheduler and a wireless access device. The application scheduler receives an adaptive bitrate streaming flow and sends the adaptive bitrate streaming flow toward the wireless access device based on scheduling of the adaptive bitrate streaming flow at the application scheduler. The wireless access device determines feedback information associated with the adaptive bitrate streaming flow and provides the feedback information associated with the adaptive bitrate streaming flow to the application scheduler. The application scheduler determines scheduling of the adaptive bitrate streaming flow, for transmission toward the wireless access device, based on the feedback information associated with the adaptive bitrate streaming flow.
US11019120B2 Data transmission method in wireless communication system, and apparatus therefor
A Station (STA) in a wireless communication system, the STA including a transceiver configured to transmit and receive a wireless signal; and a processor configured to control the transceiver. Further, the processor is further configured to: receive, from An access point (AP), a downlink (DL) multi-user (MU) Physical Protocol Data Unit (PPDU), wherein the DL MU PPDU includes a DL data and trigger frame for an uplink (UL) orthogonal frequency-division multiple access (OFDMA) transmission; and transmit, to the AP, an UL MU PPDU generated based on the DL MU PPDU, wherein the trigger frame is transmitted in a first frequency region of the DL MU PPDU, and the DL data is transmitted in a second frequency region of the DL MU PPDU, when the trigger frame is for multiple stations (STAs), and wherein the first frequency region and the second frequency region are different frequency region.
US11019119B2 Web-based live broadcast
Techniques for a web-based live broadcast in a network community are described herein. The disclosed techniques include a plurality of hosts each configured to capture content data using a HTML5 browser and transmit the content data via the HTML5 browser to a gateway server based on a WebRTC protocol; a gateway server configured to receive the content data from each of the plurality of hosts, convert the content data into streaming media data in a predetermined format, and transmit the streaming media data to a content distributor based on RTMP; and a plurality of clients each configured to receive the streaming media data from the content distributor based on HTTP, convert the predetermined format of the streaming media data into a format corresponding to each client and displayable on a corresponding client, and display the streaming media data.
US11019116B2 Conference system, conference server, and program based on voice data or illumination light
A conference system includes: a computer processing unit (CPU) that: acquires, for each of information processing devices used by participants of a conference, information specific to a first area in which the conference is held; extracts features from the information specific to the first area; compares the features of each of the information processing devices with one another; groups the information processing devices with similar features together; assigns, for each group of the information processing devices, a work space that can be accessed by the information processing devices of each group; and notifies the information processing devices of each group of information related to the work space that allows the information processing devices of each group to access the work space assigned to each group. The information processing devices access the work space using the information related to the work space.
US11019115B2 Object life cycle management in a publish-subscribe environment
A solution for objects in a publish-subscribe environment is described. An object determining unit determines an object identifier for the object, whereas a recipient determining unit determines a recipient identifier for the recipient which shall manipulate the object. An object request comprising at least the object identifier and the recipient identifier is then output to the publish-subscribe environment. Recipients of the object request check whether manipulation of an object is required and manipulate the object as required.
US11019111B2 Automated IPv4-IPv6 selection for voice network elements
A computing device, such as a mapping application server, may track data associated with a plurality of user devices, such as an Internet Protocol version. A system, such as an IMS system, may use may use the data associated with the plurality of user devices to process messages. When messages between devices are received, the computing device may provide information regarding at least one protocol associated with a communication. The computing device may respond to queries from various network elements. The responses may provide data that may be used to identify a protocol version, such as a Name Authority Pointer (NAPTR). Any necessary protocol interworking may be provided by the system.
US11019110B2 Access control to a voice service by a wireless access point
A wireless access point is configured to regularly monitor the status of WLAN, WAN and ePDG data links to determine whether the current connections are sufficient to support VoWiFI services. When a device connects to the WLAN of the hub and attempts to switch from its VoLTE service to VoWiFi via the hub, the hub is configured to determine whether the current conditions can satisfy a VoWiFi connection. If the VoWiFi service can support the connection, the request is routed to the ePDG associated with the mobile device's subscriber LTE network. However, if the current conditions cannot satisfactorily support a VoWiFi connection such that incoming calls may be missed or the quality of active calls would not be clear, then the hub is configured to block the request so that the client device will time out and remain connected to VoLTE.
US11019108B2 System and method for interception of IP traffic based on image processing
Methods and systems for monitoring communication traffic in communication networks, such as Internet Protocol (IP) traffic transferred over the Internet or over a wireless network. The disclosed techniques identify communication traffic that is associated with target individuals, by extracting digital images from the traffic and recognizing target individuals who appear in the images. A correlation system monitors communication sessions that are conducted in a communication network to identify known target individuals who appear in images. Upon recognizing a target individual in an image extracted from a certain session, the system correlates this target user with one or more of the communication identifiers used in the session. The system automatically identifies IP addresses or other identifiers that are used by target individuals, and enable subsequent tracking of such identifiers.
US11019106B1 Remotely accessed controlled contained environment
A remote access system for policy-controlled computing with a client device connected to a remote software environment is disclosed. The client device communicates with the remote software environment that securely runs applications. Both the client device and the remote software environment are policy-controlled. User input and sensor information from the client device is passed to remote software environment to spoof local control.
US11019101B2 Middle ware security layer for cloud computing services
The technology disclosed relates to enforcing multi-part policies on data-deficient transactions of independent data stores. In particular, it relates to combining active analysis of access requests for the independent object stores with inspection of objects in the independent object stores, each of the analysis and inspection generating and persisting object metadata in a supplemental data store, actively processing data-deficient transactions that apply to the objects by accessing the supplemental data store to retrieve object metadata not available in transaction streams of the data-deficient transactions, and actively enforcing the multi-part policies using the retrieved object metadata.
US11019098B2 Replay protection for memory based on key refresh
The present disclosure is directed to systems and methods for providing protection against replay attacks on memory, by refreshing or updating encryption keys. The disclosed replay protected computing system may employ encryption refresh of memory so that unauthorized copies of data are usable for a limited amount of time (e.g., 500 milliseconds or less). The replay protected computing system initially encrypts protected data prior to storage in memory. After a predetermined time or after a number of memory accesses have occurred, the replay protected computing system decrypts the data with the existing key and re-encrypts data with a new key. Unauthorized copies of data (such as those made by an adversary system/program) are not refreshed with subsequent new keys. When an adversary program attempts to use the unauthorized copies of data, the unauthorized copies of data are decrypted with the incorrect keys, which renders the decrypted data unintelligible.
US11019093B2 Graphical interface for incident response automation
Systems, methods, and software described herein enhances how security actions are implemented within a computing environment. In one example, a method of implementing security actions for a computing environment comprising a plurality of computing assets includes identifying a security action in a command language for the computing environment. The method further provides identifying one or more computing assets related to the security action, and obtaining hardware and software characteristics for the one or more computing assets. The method also includes translating the security action in the command language to one or more action procedures based on the hardware and software characteristics, and initiating implementation of the one or more action procedures in the one or more computing assets.
US11019092B2 Learning based security threat containment
Systems, methods, and software described herein provide action recommendations to administrators of a computing environment based on effectiveness of previously implemented actions. In one example, an advisement system identifies a security incident for an asset in the computing environment, and obtains enrichment information for the incident. Based on the enrichment information a rule set and associated recommended security actions are identified for the incident. Once the recommended security actions are identified, a subset of the action recommendations are organized based on previous action implementations in the computing environment, and the subset is provided to an administrator for selection.
US11019087B1 Computer vision-based intelligent anomaly detection using synthetic and simulated data-system and method
An intelligent system and method for anomaly, such as crime, detection is provided. In some embodiments, the system may comprise a computing device, defined by a generator and a discriminator, and at least one video camera. The generator may generate synthetic data and real data and, in turn, the discriminator may evaluate and classify the synthetic data and the real data as real or synthetic. In other embodiments, the computing device may be trained so as to classify the synthetic data and the real data as normal or anomaly. In further exemplary embodiments, the video camera may capture a plurality of live action events and generate video data, which the video camera may then transmit to the computing device. The computing device may then classify the live action events as normal or anomaly. In embodiments where the live action events may be classified as anomaly, an appropriate authority may be notified so as to provide decreased response times and ultimately, improve safety and prevent crimes.
US11019086B2 Smart home security system
A system includes a network gateway in communication with a plurality of servers, a household behavior model processor which models a household behavior model based at least on expected usage of each of a plurality of network appliances, wherein each one appliance of the plurality of network appliances is associated with one of the plurality of servers, and behavior of users associated with the network gateway, an anomaly detector which determines, on the basis of the household behavior model, if an anomalous control message which has been sent to one of the plurality of network appliances from one of the servers has been received at the network gateway, and a notification server which sends a notification to an application on an administrator's device upon receipt of the anomalous control message at the network gateway. Related systems, apparatus, and methods are also described.
US11019084B2 Controller, a context broadcaster and an alert processing device
A controller may include one or more processors configured to control an automotive operating function representing an operation of an actuator of an automobile; receive a first message in accordance with an automotive fieldbus communication protocol via a fieldbus communication network, wherein the first message comprises contextual information associated with the automobile; determine whether a relation between the contextual information and a status of the automotive operating function fulfills a predefined criterion; generate a second message in accordance with the automotive fieldbus communication protocol, wherein the second message comprises information representing a result of the determination.
US11019081B1 System and method of detecting delivery of malware using cross-customer data
According to one embodiment, an electronic device features processing circuitry and memory that includes a first logic and a second logic. When executed by the processing circuitry, the first logic organizes (i) a first plurality of indicators of compromise (IOCs) received from a first source, where the first plurality of IOCs being caused by a known origin of a malicious attack, and (ii) one or more IOCs received from a second source that is different from the first source and an origin of the one or more IOCs is unknown. The second logic conducts a predictive analysis that evaluates whether the one or more IOCs have at least a degree of correlation with the first plurality of IOCs, and determines a threat level. The threat level signifies a degree of confidence that IOCs received from the second source are caused by the known origin of the first plurality of IOCs.
US11019078B2 Enhanced network throughput using network intrusion detection and prevention service (NIDPS) detection
Aspects of the present invention provide an approach for performing network intrusion detection and prevention service (NIDPS) detection on a proxy server in a networked computing environment. In an embodiment, the proxy server has a front end proxy, a NIDPS component, and a back end proxy installed on it. The front end proxy decodes communications sent by external users to content servers over a network that are intercepted by the proxy server and forwards the communications to the NIDPS component. The NIDPS component performs NIDPS detection to detect whether communications comprise a network threat. Communications that have been verified as not comprising a network threat are forwarded to the back end proxy for routing to their destinations. Communications that have been verified as threats are forwarded to a cognitive engine, which initiates an automatic scaling of the NIDPS component in response to indications of network threats from the NIDPS component.
US11019072B2 Content management based on spatial and temporal information
Techniques for providing content management based on spatial and temporal information are disclosed herein. In an example, a service provides content management based on properties determined from a schedule of a user. The schedule of the user is processed to identify a geo-fenced area assigned for performing a task. Upon determining that the location of the client device as within the geo-fenced area, content identified by the task may be accessed through the client to perform the task.
US11019065B2 Digital consent system and associated methods
A method includes generating a core record identification (ID) associated with an electronic document. A processor sets one or more access rules indicative of whether the electronic document may be edited after saving the document. The one or more access rules are associated with at least one administrator ID of an administrative user. The method further includes determining, based on a core record ID, whether or not to obtain the electronic consent of a consenting party. The processor evaluates whether the first consenting party ID must provide an electronic consent to the electronic document based on one or more organization consent rules indicative of i) whether consent is required for each access of the computing resource, and ii) whether per-user consent or organizational consent is required. The processor provides access to the computing resource based at least in part on the first consenting party and the core record ID.
US11019064B2 Data security across data residency restriction boundaries
Data security across data residency restriction boundaries is provided by profiling a dataset on which a desired analysis is to be performed, with some results of the desired analysis to be transferred from one location to another, the dataset subject to data residency restrictions that restrict transfer of the dataset across a boundary to the another location, and the profiling identifying a profile level for the dataset, automatically generating, based on the profile level and the data residency restrictions that restrict the transfer of the dataset across the boundary, a container for processing the dataset into a reformatted dataset not restricted by the data residency restrictions for transfer across the boundary, instantiating the generated container on a data processing system at the one location, and processing the dataset into the reformatted dataset using the instantiated generated container, and transferring the reformatted dataset to the another location.
US11019063B2 System and method for aggregating client data and cyber data for authentication determinations
The invention relates to a method and system that aggregates client data and cyber indicators to authenticate a client. The system comprises: a computer server comprising at least one computer processor and coupled to the memory, programmed to: receive, via an electronic input, an authorization request from a requester for access to an account; identify a client identifier associated with the authorization request; using the client identifier, retrieve, from the memory, a client profile, wherein the client profile is based on an aggregation of client data, client device data, claims data and cyber data; generate a risk score based on the aggregated combination of the client data, client device data, claims data and cyber data to determine whether the requester is authenticated to access the account; and automatically apply an authentication determination to the authorization request.
US11019061B2 Protecting supervisor mode information
Embodiments of an invention for protecting supervisor mode information are disclosed. In one embodiment, an apparatus includes a storage location, instruction hardware, execution hardware, and control logic. The storage location is to store an indicator to enable supervisor mode information protection. The instruction hardware is to receive an instruction to access supervisor mode information. The execution hardware is to execute the instruction. The control logic is to prevent execution of the instruction if supervisor mode information protection is enabled and a current privilege level is less privileged than a supervisor mode.
US11019057B2 Systems and methods for endpoint management
A system and method for mitigating security vulnerabilities of a computer network by detecting a management status of an endpoint computing device attempting to authenticate to one or more computing resources accessible via the computer network includes: detecting an authentication attempt by the endpoint computing device to the computer network; during the authentication attempt, collecting management status indicia from the endpoint computing device, wherein the management status indicia comprise data used to determine a management status of the endpoint computing device; using the management status indicia to identify the management status of the endpoint computing device and identifying the management status of the endpoint computing device; and controlling access to the computer network based on (a) whether the authentication attempt by the endpoint computing device is successful and (b) the identified management status of the endpoint computing device.
US11019055B1 Biometric authentication, decentralized learning framework, and adaptive security protocols in distributed terminal network
Biometric authentication, decentralized learning frameworks, and adaptive security protocols and services for a distributed operator terminals network are described. In some embodiments, the terminals may be hardware terminals, kiosks, or clients. In some embodiments, a security analysis may be performed, and security scores may be determined, for visitors requesting operations at terminals. Security scores may be determined by a vendor, in communication with the operator terminals, based on aggregation of a plurality of factors, wherein each factor may be weighted. The factors may incorporate operator settings or preferences. In one embodiment, the factors include one or more facial recognition factors. The one or more facial recognition factors may be used for biometric authentication. The vendor may use the security scores to determine user privileges or permissions for the operations. The vendor may deliver instructions or messages to the terminals based on the determinations.
US11019052B2 Vehicle integration platform (VIP) security integration
Systems and methods are directed to improvements for secure communications between client systems and a vehicle integration platform associated with a service provider entity. In one example, a communication infrastructure is provided which includes a vehicle integration platform that includes a plurality of application programming interfaces configured to facilitate communication among clients. The communication infrastructure includes a security integration system which is configured to receive and validate a client certificate forwarded to the vehicle integration platform from a client and determine an identity of the client and an origin of a request associated with the client certificate. The security integration system is configured to generate a certificate signing request associated with the client certificate based in part on the identity of the client and obtain an operational certificate for the client based in part on the certificate signing request to establish ability for client authentication within the vehicle integration platform.
US11019049B2 Licensing authentication via intermediary using time and proximity
An application client receives an open window event from an intermediary device before transmitting a licensing request to the intermediary device. The intermediary device transmits the licensing request to an authentication server, which responds by transmitting a message indicating approval status of the request back to the intermediary device. If the intermediary device is not within a predetermined proximity of the application client, the intermediary can wait predetermined amount of time for the intermediary device to return to the predetermined proximity of the application client before transmitting a second message indicating approval status to the application client. The application client receives, from the intermediary device, a licensing response reporting the approval status indicated by the message from the authentication server.
US11019046B2 System and method for generating enhanced distributed online registry
A system for generating an enhanced distributed online registry that utilizes an interoperable framework, and machine learning and natural language processing technologies to automatically provide compatible registry items. A persistent secure connection across distributed systems facilitates automatic synchronization of the generated online registry items across the distributed systems and devices accessing those systems. The online registry application processor utilizes machine learning and natural language technologies to generate an acquisition trending model which may be utilized to generate an enhanced distributed online registry that may determine and provide registry items that are compatible with the customer acquisition. Utilizing a persistent bi-directional connection, the online registry application processor may automatically synchronize the enhanced distributed online registry in real time as registry items are added and purchased.
US11019044B2 Correlating network flows through a proxy device
A network appliance stores a session identifier that uniquely identifies a network communication session between a first device and the network appliance. A first communication is received from the first device over the network communication session. The network appliance also receives from a proxy tool, a second communication that includes a header specifying the session identifier and that includes data generated by the proxy in response to the first communication. The network appliance associates the first communication with the second communication using the session identifier. An encrypted representation of the data generated by the proxy is transmitted to a second device based on the association between the first communication and the second communication.
US11019042B1 Data assisted key switching in hybrid cryptography
A method and system for encrypting and decrypting data messages which are communicated between two devices. The method for encrypting/decrypting data messages uses hybrid symmetric/asymmetric encryption, where symmetric encryption is used for data records and asymmetric encryption is used to encode new symmetric keys. All data records and symmetric key data are sent in a single data stream. The method allows the data producer to create a new symmetric key at any desired time, and also allows the data consumer to recover symmetric keys needed for decryption, on the fly by using the cipher text data stream itself, as the data messages are consumed. Data consumption can be at a later time and independent of production, and symmetric keys need not be shared between producer and consumer in advance.
US11019038B2 Methods to strengthen cyber-security and privacy in a deterministic internet of things
Methods to strengthen the cyber-security and privacy in a proposed deterministic Internet of Things (IoT) network are described. The proposed deterministic IoT consists of a network of simple deterministic packet switches under the control of a low-complexity ‘Software Defined Networking’ (SDN) control-plane. The network can transport ‘Deterministic Traffic Flows’ (DTFs), where each DTF has a source node, a destination node, a fixed path through the network, and a deterministic or guaranteed rate of transmission. The SDN control-plane can configure millions of distinct interference-free ‘Deterministic Virtual Networks’ (DVNs) into the IoT, where each DVN is a collection of interference-free DTFs. The SDN control-plane can configure each deterministic packet switch to store several deterministic periodic schedules, defined for a scheduling-frame which comprises F time-slots. The schedules of a network determine which DTFs are authorized to transmit data over each fiber-optic link of the network. These schedules also ensure that each DTF will receive a deterministic rate of transmission through every switch it traverses, with full immunity to congestion, interference and Denial-of-Service (DoS) attacks. Any unauthorized transmissions by a cyber-attacker can also be detected quickly, since the schedules also identify unauthorized transmissions. Each source node and destination node of a DTF, and optionally each switch in the network, can have a low-complexity private-key encryption/decryption unit. The SDN control-plane can configure the source and destination nodes of a DTF, and optionally the switches in the network, to encrypt and decrypt the packets of a DTF using these low-complexity encryption/decryption units. To strengthen security and privacy and to lower the energy use, the private keys can be very large, for example several thousands of bits. The SDN control-plane can configure each DTF to achieve a desired level of security well beyond what is possible with existing schemes such as AES, by using very long keys. The encryption/decryption units also use a new serial permutation unit the very low hardware cost, which allows for exceptional security and very-high throughputs in FPGA hardware.
US11019033B1 Trust domain secure enclaves in cloud infrastructure
An apparatus comprises at least one processing device that includes a processor coupled to a memory. The processing device is configured to establish a secure enclave in cloud infrastructure as part of a trust domain, to load the secure enclave with a program for execution in the secure enclave, and to provide the secure enclave with information sufficient to allow the secure enclave to prove to one or more clients of the trust domain that the secure enclave was established within the trust domain. The provided information customizes the secure enclave for the trust domain in a manner that is detectable by the one or more clients of the trust domain. The establishing, loading and providing are illustratively performed at least in part by an orchestrator component that is part of the trust domain and is implemented using a first physical machine that is separate from a second physical machine used to implement the secure enclave.
US11019031B1 Client software connection inspection and access control
A controlled content system for providing a controlled and contained environment that is remotely accessible is disclosed. A third party app on the end user device is modified to allow certain sites and services to be mediated in a mid-link server. The app uses policies to know when to access the mid-link server for the controlled and contained environment. Policies can specify the type of processing performed on the mid-link server. Some embodiments support the app selectively using the mid-link server for mediated sites and services.
US11019024B2 Monitoring system and method for connecting a monitoring device to a service server
Methods and techniques for configuring a monitoring device to communicate with a service server. The method includes sending, by the monitoring device to a control server, an initial connection message, authenticating, by the control server, the monitoring device using the initial connection message, in response to authenticating the monitoring device, sending, by the control server, a list of one or more addresses to the monitoring device, and establishing, by the monitoring device, a service connection between the monitoring device and a service server using the list of one or more addresses received from the control server.
US11019018B2 Artificial intelligent systems and methods for presenting a prompting message on a mobile device
Systems and methods for presenting a prompting message on a user interface of an online to offline service application in a user terminal are provided. A method includes: obtaining, from a user terminal, a service request for a first service type, wherein the service request includes a location of the user terminal; determining a first supply-demand ratio of the first service type based on the location of the user terminal; determining whether the first supply-demand ratio is greater than a first ratio threshold; and in response to determining that the first supply-demand ratio is not greater than the first ratio threshold, sending, to the user terminal, a first bubble prompting message presented on a user interface of the user terminal, wherein the first bubble prompting message includes a second service type and a response time of the second service type.
US11019015B1 Notifying users of offensive content
Techniques are described that determine when content to be shared by a user may be offensive, and providing the user with a notification that the content may be offensive. In some examples, the user may be provided with a notification that includes a selectable option allowing the user to withdraw or undo the content from being shared, additional information regarding why the content was determined to be offensive, content sharing guidelines, and/or advice for how to revise the content to be less offensive. In some examples, the notification may be presented for a predetermined period of time, and the content may be held in a pending state and not shared with other users until expiration of the predetermined period.
US11019014B2 Simultaneous message blocking and delivery
Methods and systems for simultaneous message blocking and delivery are disclosed. A method includes: receiving, by a computing device, from a first user, a first message and a request to transmit the first message as a simultaneous message; receiving, by the computing device, an additional message from each of at least one additional user; determining, by the computing device, using natural language processing, a similarity score for each of the additional messages; and in response to the similarity score for each of the additional messages exceeding a predetermined threshold, the computing device transmitting the first message and the additional messages.
US11019009B2 E-mail testing and rendering platform
A method for automatically modifying hyper-text markup language (HMTL) code of an e-mail within an email pre-deployment platform comprises receiving previously-created e-mail content comprising a plurality of e-mail content types, each of the e-mail content types written in HMTL code, automatically detecting, by parsing the received HTML code, one or more deficiencies in the e-mail content, identifying the one or more deficiencies in the HTML of the e-mail content types for a user by presenting a natural language explanation of the one or more deficiencies on the user interface, guiding a user of the platform to rectify the one or more deficiencies in the e-mail content by using one or more user interface tools for rectifying the one or more deficiencies; and automatically editing the HTML code based on the user's use of the one or more user interface tools.
US11019005B2 Proximity triggered sampling
In one embodiment, a computer-implemented method comprising receiving data corresponding to an interaction with a user; based on the received data, predicting a moment in time when a state of the user is likely to change; and causing a change in one or a combination of message function characteristics or data collection function characteristics at the moment in time.
US11019002B2 Secure electronic messaging with dynamic content
A computing device is described that receives an electronic message encoded with first rendering instructions and second rendering instructions. The first rendering instructions are accelerated mobile pages instructions and the second rendering instructions are at least one of plain text or hypertext markup language instructions. The computing device generates a rendering of the electronic message by at least: rendering the second rendering instructions, while refraining from rendering the first rendering instructions, in response to determining that the first rendering instructions are not valid accelerated mobile pages instructions. The computing device outputs, using a display, the rendering of the electronic message.
US11019001B1 Selective presentation of group messages
Systems and methods for soft deletion of a group chat conversation are provided. In example embodiments, a listing of suggested chat conversations are displayed in response to receiving a chat message initiation input. The listing of suggested chat conversations includes a first group chat conversation in which the user is a participant. Subsequently, it is determined that the first group chat has remained inactive for a threshold period of time, and in response a soft deletion of the first group chat is executed. The soft deletion comprises removing the first group chat from the listing of suggested chat conversations, however the first group chat remains accessible to the user in a chat feed of the user.
US11018998B1 Systems and methods for chat sessions involving multiple chatbots
Generally, this disclosure enables a chatbot to host a chat session with a user. In some implementations, when the chatbot is not able to or does not know an answer to a query from the user, then the chatbot can import another chatbot into the chat session such that the user is aware of such importation and such that the other chatbot can output the answer to the query into the chat session. In other implementations, when the chatbot is not able to or does not know the answer to the query from the user, then the chatbot can query another chatbot, in background, without notifying the user, and when the response is received from the other chatbot, the chatbot can output that response to the user seamlessly such that the user is not aware of such querying.
US11018997B2 Systems and methods for maintaining a conversation
Systems and methods for an interactive communications system capable of generating a response to conversational input are provided. The interactive communications system analyzes the conversational input to determine relevant topics of discussion. The interactive communications system further determines which of the relevant topics of discussion can potentially lead to an unwanted end to a conversation. The interactive communications system redirects the conversation by providing responses to the conversational input that are intended simply to avoid the unwanted end to the conversation.
US11018992B2 Systems and methods for generating virtual session connection leases using templates
A computing device may include a memory and a processor cooperating with the memory and configured to access a plurality of connection lease templates corresponding to published resources stored in a shared memory. The processor may further be configured to provision connection leases for respective client devices using a connection lease issuing appliance based upon the stored connection lease templates. The connection leases may be provisioned on demand responsive to selection of the published resources by the client devices, and the connection leases may provide instructions for connecting the client devices to virtual computing sessions corresponding to the published resources.
US11018991B1 System and method for autonomous and dynamic resource allocation in storage systems
Embodiments are described for an autonomously and dynamically allocating resources in a distributed network based on forecasted a-priori CPU resource utilization, rather than a manual throttle setting. A multivariate (CPU idle %, disk I/O, network and memory) rather than single variable approach for Probabilistic Weighted Fuzzy Time Series (PWFTS) is used for forecasting compute resources. The dynamic throttling is combined with an adaptive compute change rate detection and correction. A single spike detection and removal mechanism is used to prevent the application of too many frequent throttling changes. Such a method can be implemented for several use cases including, but not limited to: cloud data migration, replication to a storage server, system upgrades, bandwidth throttling in storage networks, and garbage collection.
US11018988B2 Translating high level requirements policies to distributed configurations
Embodiments of the disclosure provide techniques for partitioning a resource object into multiple resource components of a cluster of host computer nodes in a distributed resources system. The distributed resources system translates high-level policy requirements into a resource configuration that the system accommodates. The system determines an allocation based on the policy requirements and identifies resource configurations that are available. Upon selecting a resource configuration, the distributed resources system assigns the allocation and associated values to the selected configuration and publishes the new configuration to other host computer nodes in the cluster.
US11018983B2 Mechanism to coordinate end to end quality of service between network nodes and service provider core
Systems, methods, and devices are disclosed for providing a quality of service between nodes. A service provider can receive, from a first node of a customer network to an ingress node of a service provider network, packets bound for a second node on the customer network that is remote from the first node. The packets are mapped to a network segment according to a traffic type based on an identifier associated with the packets that identifies the traffic type of the packets. The packets are sent via their mapped network segment to an egress node with connectivity to the second node of the customer network according to a quality of service associated with the traffic type identified by the identifier.
US11018980B2 Data-interoperability-oriented trusted processing method and system
A data-interoperability-oriented trusted processing method and system applied to a P2P network system are provided. The P2P network system includes a plurality of nodes. The trusted processing method includes a storage method and a query method. Firstly, a directed acyclic graph ledger structure is employed to be matched with an nRW consensus mechanism during a storage process, so that a supervision problem in a large-scale sharing exchange process is solved. Secondly, in a query process, a P2P network system is optimized by maintaining a tree structure with high fault tolerance and load balance through a hop optimization method to construct the P2P network system with a relatively balanced network, so that a query delay is not greatly influenced on the premise of ensuring the load balance, and an expandability of the system is ensured.
US11018977B2 Pre-built match-action tables
A method is implemented by a processor of a computing device for generating an output match action table (MAT) or output MAT template from an input MAT template. The input MAT template is transformed through successive updates of symbolic actions using policy rules into the output MAT or output MAT template. The method includes selecting a first MAT row from the input MAT template and selecting a first action field from the first MAT row. A check is made whether the first action field includes a first symbolic action. The first symbolic action is looked up to determine whether a first policy rule has been defined for the first symbolic action. A first action specified by the first policy rule is written into a corresponding action field of a corresponding MAT row in the output MAT template or the output MAT to replace the first symbolic action.
US11018976B2 Enhanced infrastructure routing with prefixed network addressing in content delivery networks
Systems, methods, apparatuses, and software for a content delivery network that caches content for delivery to end user devices is presented. In one example, a method includes assigning prefixed network addresses for the sites of the content delivery network, with ones of the prefixed network addresses indicating associated pathways for routing network traffic to reach the sites over more than one backhaul packet network. The method includes announcing groups of the prefixed network addresses to selected ones of the backhaul packet networks, with each to the groups comprising a backhaul network-independent prefixed network address, a backhaul network-specific prefixed network address, and a failover prefixed network address. The method includes receiving the network traffic at the sites over ones of the backhaul packet networks that are selected among for routing the network traffic by source network addresses indicated in content requests issued from the sites.
US11018975B2 Caching flow operation results in software defined networks
Described herein are systems, methods, and software to enhance flow operations on a host computing system. In one implementation, a virtual switch on a host identifies a packet from a virtual node. In response to identifying the packet, the virtual switch determines whether the packet corresponds to a cached result action based on traits of the packet. If the packet corresponds to a cached result action, then the virtual switch may process the packet in accordance with the cached result action. In contrast, if the packet does not correspond to a cached result action, then the virtual switch may process the packet in accordance with first flow operations to determine a result action, and cache the result action for use with future packets.
US11018968B2 Packet transmission method and packet transmitting device
In order to efficiently transmit measurement packets to a plurality of receiving devices at a constant transmission interval, provided is a packet transmission method that comprises a procedure in which transmission requests for a packet sequence composed of a plurality of packets transmitted at a first time interval are grouped every first time interval, and the packet sequence is transmitted on the basis of a transmission request for a group for which the number of transmission requests is at least a specified value.
US11018967B2 Determining an end user experience score based on client device, network, server device, and application metrics
A device receives client delay metrics associated with a client device, network delay metrics associated with a network, server delay metrics associated with a server device, and application delay metrics associated with an application provided by the server device, wherein the client device and the server device communicate via the network. The device calculates client delay scores based on the client delay metrics, and calculates network delay scores based on the network delay metrics. The device calculates server delay scores based on the server delay metrics, and calculates application delay scores based on the application delay metrics. The device calculates an end user experience score based on the client delay scores, the network delay scores, the server delay scores, and the application delay scores, and performs an action based on the end user experience score.
US11018959B1 System for real-time collection, processing and delivery of data-telemetry
A configurable data collection, processing and delivery system implements a unified data-flow execution pipeline in collection, processing and delivery of data to a target within or external to a computing device. Multiple data collection sets are defined from data available to the system and organized into at least one tensor based telemetry data stream associated with a service flow. At least one dynamically modifiable execution unit is provided to process the telemetry stream and the service flow. The telemetry stream is also processed into one or more target destination delivery streams that adheres to protocol, network characteristics, and transmission process required by the set of targets.
US11018956B2 Systems and methods for rapid booting and deploying of an enterprise system in a cloud environment
The present disclosure relates to systems and methods for deploying enterprise systems in cloud environments. In one implementation, a system for deploying an enterprise system in a cloud environment may include at least one processor configured to provide: one or more first containers hosting at least one application with at least one enterprise function; one or more second containers hosting at least one microservice configured to activate the at least one enterprise function; at least one application programming interface (API) between the at least one microservice and at least one client; and at least one gateway configured to manage access to the at least one API.
US11018947B2 System and method for supporting on-demand setup of local host channel adapter port partition membership in a high-performance computing environment
Systems and methods for dynamically assigning membership in a data partition to an end-port of a requesting host channel adapter. An exemplary embodiment can provide a subnet manager configured to operate within a subnet of a network fabric. The subnet can include a plurality of nodes, and the plurality of nodes can include at least one switch and a plurality of end-nodes, where the subnet manager executes on one of the plurality of nodes. A host channel adapter of a node in the subnet can request membership for an end-port of the host channel adapter. In response to the request, the subnet manager can request data from the data store to confirm that the end-port is a member of an admin partition and that the admin partition is associated with the data partition in which membership was requested.
US11018946B1 Wireless device feedback for semi-persistent scheduling release
A wireless device may receive first configuration parameters, second configuration parameters and a third configuration parameter. The first configuration parameters are for a first SPS configuration and comprise a first configuration index and a first HARQ codebook identifier. The second configuration parameters are for a second SPS configuration and comprise a second configuration index and a second HARQ codebook identifier. The third configuration parameter indicates a deactivation state associated with the first configuration index and the second configuration index. A DCI is received that comprises a HARQ process number field. A value of bit(s) of the HARQ process number field indicates the deactivation state. The first HARQ codebook identifier may be the same as the second HARQ codebook identifier. An acknowledgement is transmitted indicating reception of the DCI.
US11018944B2 Method and apparatus for virtualized network function scaling that is initiated by network management and/or element management
A method and apparatus may include transmitting a scaling request. The scaling request comprises a request for virtualized network function expansion or virtualized network function contraction. The scaling request is transmitted to a second network node. A first domain is directed to application level details. A second domain is directed to virtualization level details. The scaling request comprises: (1) a relative target capacity that is generic to both the first domain and the second domain, (2) an absolute target capacity that is specific to the first domain, or (3) a relative target capacity that is specific to virtualized network function level targets. The method may also include receiving a notification that a virtualization network function has been updated based on the transmitted scaling request.
US11018940B2 Service orchestration method and apparatus, and service provisioning method and apparatus
This application belongs to the field of service orchestration and discloses a service orchestration method and apparatus, and a service provisioning method and apparatus. The method includes: obtaining a service template; obtaining a service identity, a service attribute, and a service policy that are entered by an operator and a default service parameter; substituting the options of the service template with the service attribute and the service policy that are entered by the operator and the default service parameter; associating the service template that is filled in with the service identity; and storing the service template that is associated with the service identity in a service type library, and publishing the service template to the user.
US11018936B2 Methods and systems for configuring system
The present invention discloses methods and systems for configuring a second system. The system of the present invention determines at least one configuration and the identity information of the second system. The at least one configuration is then sent to the second system. The second system is configured with the at least one configuration. The at least one configuration can be sent through an SMS message, a USB modem plugged in the second system, or NFC. Additionally, the at least one configuration may comprise an APN. The at least one configuration may also be used to configure the second system to establish one or more VPN connections.
US11018935B1 Network traffic quality-based dynamic path change
Network apparatus includes a plurality of ports for connection to respective links in a packet communication network, the ports having respective port costs assigned thereto. One or more packet processors are configured to transfer data packets between the ports. A controller is configured to select, using a spanning tree protocol responsively to the port costs, one of the ports as a root port, thereby defining a forwarding topology, to receive data with respect to a quality of packet transmission through the ports over the respective links according to the defined topology, and responsively to a change in the packet transmission quality indicated by the received data, to modify a cost of at least one of the ports so as to cause a modification of the forwarding topology by the spanning tree protocol.
US11018934B2 Systems and methods for automated access to relevant information in a mobile computing environment
A system for configuring and providing automated access to content based on the access rights of a mobile computing device, the location of a mobile computing device, and the user operating the mobile computing device. The system uses a centralized database and management system to configure and manage access to content. The system determines the information that is relevant when a device and user are physically present at a specific location. The system then facilitates access to content on the mobile computing device for user interaction. Access to information is controlled by the system based on a combination of permissions shared by the mobile computing device, the user, and the current location. In one embodiment, access to content is governed by the spatial proximity of the device to some physical asset. In one embodiment, multiple location checks are performed before content is delivered.
US11018933B2 Context aware based adjustment in visual rendering of network sites
The present disclosure is directed to systems and methods that enable adjusting of focal point of maps displaying network sites of an enterprise network for access by an authorized network controller, based on network provider's access privilege. In one aspect a method includes receiving an access request to access a network controller management dashboard for managing network sites of a network; determining an access privilege associated with the access request; identifying one or more network sites for the access request based on the access privilege; and providing an interactive visual rendering of the one or more network sites by adjusting a focal point of a map of the network sites to display only the one or more network sites.
US11018931B2 Data driven user interface for configuring device settings
Examples described here include systems and methods for configuring device settings for a number of user devices across an enterprise. A management server can provide a user interface at an administrator console for creating a profile and identifying an associated device type. The management server can then retrieve a schema file associated with the device type. Based on information in the schema file, the management server can populate the user interface at the administrator console with available configuration options pertaining to the device type. An administrator can configure the options and send instructions to the management server to deploy the profile across the number of user devices. The management server can instruct each user device to download a device configuration application from an application repository and transmit the settings information to an agent application of the user device that has permission to configure the device configuration application.
US11018928B2 Adaptive access point configuration
A computer-implemented method for optimizing a quality of service of a network includes: determining (i) a set of configuration settings of a plurality of devices and (ii) a set of capabilities of the plurality of devices located within a coverage area of a wireless network; determining a set of capabilities of a plurality of wireless access points of the wireless network; determining an underutilized network capability of the wireless network based, at least in part, on the set of configuration settings of the plurality of devices, the set of capabilities of the plurality of devices, and the set of capabilities of the plurality of wireless access points; and configuring one or more wireless access points of the plurality of wireless access points based, at least in part, on the underutilized network capability. A corresponding computer program product and computer system are also disclosed.
US11018922B2 Methods and apparatuses for signaling with geometric constellations
Communication systems are described that use signal constellations, which have unequally spaced (i.e. ‘geometrically’ shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes dmin, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.
US11018921B2 Signaling of modulation configuration
The present disclosure pertains to a terminal for a wireless network, the terminal being adapted to receive a control message. The terminal further is adapted to read from one of a set of alternative tables based on the control message, and to perform modulation configuration based on information read from the table.
US11018918B1 Peak-to-average-power reduction for OFDM multiple access
An Orthogonal Frequency Division Multiplexing (OFDM) transmitter generates OFDM multiple-access signals with low Peak-to-Average-Power Ratio (PAPR). A code-division multiplexer arranges original data symbols from different data streams inside each length-N symbol block, which is spread by a Discrete Fourier Transform (DFT) spreader. The arrangement of the original data symbols configures the DFT spreader to spread each original data symbol into a predetermined spread-DFT code division multiple access channel. The resulting DFT-spread data symbols are mapped to OFDM subcarriers, and an inverse discrete Fourier transform (IDFT) operates on the DFT-spread data symbols to generate an OFDM transmission signal having low PAPR.
US11018914B2 Transmitter, method, device, receiver and computer product for the wireless transmission of additional information signals
Provided is a transmitter for the wireless transmission of an additional information signal, which is configured to transmit the additional information signal in response to a control signal that corresponds to a transmission time within a guard interval of a wirelessly transmitted primary information signal originating from another transmitter, the transmitter being adapted to wirelessly transmit the additional information signal at the transmission time within the guard interval of the primary information signal. Furthermore, methods for transmitting and receiving and a corresponding receiver and computer program product are the subject of the present disclosure.
US11018913B2 Multichannel-based signal transmission method and apparatus
This application provides a multichannel-based signal transmission method and apparatus. The method includes: combining N groups of lower-order modulation symbols into N groups of higher-order modulation symbols, where an ith higher-order modulation symbol in each group of higher-order modulation symbols is obtained by combining ith lower-order modulation symbols in all the N groups of lower-order modulation symbols, each group of lower-order modulation symbols includes M lower-order modulation symbols, i=1, 2, . . . , M, N is a positive integer greater than 1, and M is a positive integer greater than 1; determining N to-be-sent signals based on the N groups of higher-order modulation symbols; and sending a kth to-be-sent signal in the N to-be-sent signals by using a kth channel in N channels, where k=1, 2, . . . , N.
US11018911B2 Apparatus for measuring a physical parameter and method of operating such apparatus
An apparatus includes a series connection of at least a first impedance and a second impedance, the first impedance having a first terminal and a second terminal and the second impedance having a first terminal and a second terminal. The second terminal of the first impedance is connected to the first terminal of the second impedance forming a first node. The apparatus further includes a signal generator to apply a first amplitude modulated signal to the first terminal of the first impedance and a second amplitude modulated signal to the second terminal of the second impedance; and further includes an evaluation device configured to receive a first measurement signal from the first node and to determine information on the at least one physical parameter depending on the first measurement signal.
US11018909B2 Receiver adaptation using stochastic gradient hill climbing with genetic mutation
A receiver receives communications over a communication channel, which may distort an incoming communication signal. In order to counter this distortion, the frequency response of the receiver is manipulated by adjusting several frequency response parameters. Each frequency response parameter controls at least a portion of the frequency response of the receiver. The optimal values for the frequency response parameters are determined by modifying an initial set of values for the frequency response parameters through one or more of stochastic hill climbing operations until a performance metric associated with the receiver reaches a local maximum. The modified values are displaced through one or more mutation operations. The stochastic hill climbing operations may subsequently be performed on the mutated values to generate the final values for the frequency response parameters.
US11018908B2 Pulse amplitude modulation level optimization and equalization in optical systems
An optical communication system includes a transmission side system for multi-level pulse amplitude modulation (PAM) and a corresponding receiver side system, where the transmission side comprises a laser source providing an optical beam, a signal source of electrical signals to be modulated onto the optical beam, and a modulator coupled to the laser source and the signal source to modulate the electrical signals onto the optical beam using amplitude modulation and at least four signal levels, wherein the at least four signal levels are non-uniformly distributed. The receiver side includes a corresponding equalizer which is implemented as a filter of the form f1y+f2y2+f0, where y is the incoming signal and the parameters f0, f1 and f2 are obtained using an adaptive filter.
US11018907B2 Sampler reference level, DC offset, and AFE gain adaptation for PAM-N receiver
In a PAM-N receiver, sampler reference levels, DC offset and AFE gain may be jointly adapted to achieve optimal or near-optimal boundaries for the symbol decisions of the PAM-N signal. For reference level adaptation, the hamming distances between two consecutive data samples and their in-between edge sample are evaluated. Reference levels for symbol decisions are adjusted accordingly such that on a data transition, an edge sample has on average, equal hamming distance to its adjacent data samples. DC offset may be compensated to ensure detectable data transitions for reference level adaptation. AFE gains may be jointly adapted with sampler reference levels such that the difference between a reference level and a pre-determined target voltage is minimized.
US11018904B1 Equalization for a transmitter circuit
Certain aspects of the present disclosure provide methods and apparatus for equalizing a transmitter circuit for use in high-speed data links, such as in a serializer/deserializer (SerDes) scheme. One example transmitter circuit generally includes at least one driver stage, a first equalization circuit coupled to an output of the transmitter circuit, and a second equalization circuit coupled to an input of the at least one driver stage. One example method of transmitting data generally includes operating a transmit circuit comprising: at least one driver stage, a first equalization circuit coupled to an output of the transmitter circuit, and a second equalization circuit coupled to an input of the at least one driver stage; and selectively enabling at least one of the first equalization circuit or the second equalization circuit.
US11018902B1 High frequency Morse code transmission
The present specification describes a system. The system includes a code generator to 1) generate a Morse code message from an intended message and 2) decode a received Morse code message. The system also includes a high-frequency transceiver to 1) transmit Morse code messages in the high frequency electromagnetic range and 2) receive Morse code messages in the high frequency electromagnetic range.
US11018899B1 Onboarding a VNF which includes a VDU with multiple VNFCs
The instant solution includes at least one element or action described or depicted herein.
US11018898B2 Multicast multipathing in an overlay network
The subject technology addresses a need for improving utilization of network bandwidth in a multicast network environment. More specifically, the disclosed technology provides solutions for extending multipathing to tenant multicast traffic in an overlay network, which enables greater bandwidth utilization for multicast traffic. In some aspects, nodes in the overlay network can be connected by virtual or logical links, each of which corresponds to a path, perhaps through many physical links, in the underlying network.
US11018895B2 Method and system for transmitting train network data based on CANopen protocol, and apparatus thereof
The present disclosure discloses a CANopen-based train network data transmission method. The method includes: monitoring, on an active network, a heartbeat packet transmitted through a first CAN channel by each slave node related to an active master node; determining whether the first CAN channel of each slave node is faulty; transmitting a reset instruction to a first node from the active network if no heartbeat packet of the first node is received within the preset first heartbeat period; learning, if no heartbeat packet of the first node is received, that the first CAN channel of the first node is faulty, and switching to a standby network to monitor the heartbeat packet transmitted by the first node; otherwise, receiving, on the standby network, data transmitted by the first node, and also receiving, on the active network, data transmitted by other slave nodes that normally transmit heartbeat packets.
US11018894B2 Apparatuses and methods for transmitting a communication signal and electric power between two user stations of a bus system
A method of transmitting a communication signal and electric power between two user stations of a bus system includes coupling the communication signal into a bus line via a low-pass filter that filters the communication signal, such that signal frequencies below a cut-off frequency of the low-pass filter are coupled into the bus line of the bus system. The method also includes coupling, using a power coupling device, electric power in the form of a high-frequency signal into the bus line, transmitting the communication signal and the electric power as a bus signal to an electrical load using the bus line, and decoupling the communication signal from the bus line via a low-pass filter that filters the bus signal, such that signal frequencies below the cut-off frequency of the low-pass filter are decoupled from the bus line of the bus system.
US11018892B2 Broadband remote access server (BRAS) system-based packet encapsulation
A BRAS system-based packet encapsulation method includes: obtaining user access information when receiving a user access protocol packet, performing VXLAN GPE encapsulation on the user access protocol packet based on the user access information, the encapsulation structure includes a user information header that is used to store the user access information, a quantity of bytes occupied by the user information header is less than or equal to 12. In this application, the foregoing encapsulation structure is used to encapsulate a packet.
US11018890B2 Building system with a dynamic space graph with temporary relationships
A building system including one or more memory devices configured to store instructions thereon, the instructions causing one or more processors to generate a temporary relationship between a first entity and a second entity of a space graph, cause the space graph to include the temporary relationship, perform one or more control operations based on the space graph including the temporary edge, receive new building data from the one or more building data sources, determine whether to generate a permanent relationship to replace the temporary relationship based on the new building data, and update the space graph by causing the permanent relationship to replace the temporary relationship of the space graph in response to a determination to generate the permanent relationship to replace the temporary relationship by causing a permanent edge to replace the temporary edge.
US11018887B2 Adjusting ambience of a room
An ambience adjustment method, system, and non-transitory computer readable medium, includes identifying an ambient condition in a user profile for a most similar first device to a second device and setting the ambient condition of the most similar first device as the ambient condition in the user profile of the second device.
US11018882B2 Session filtering method and device
A session filtering method including displaying session page entries corresponding to at least a part of communication sessions in which a user at a local end participates via a preset communication application, presentation areas of the session page entries containing filterable labels associated with corresponding communication sessions; when a filterable label is triggered, filtering one or more communication sessions associated with the filterable label from communication sessions corresponding to the displayed session page entries; and presenting one or more session page entries corresponding to the filtered communication sessions to the user at the local end. Through the technical solution of the present disclosure, a communication session is quickly filtered and found, which is conducive to improve communication efficiency.
US11018881B2 Device security with physically unclonable functions
A device may include one or more sources such as circuit elements and electrical components that function as sources for physically unclonable function (PUF) data. PUF data may be acquired from the PUF sources and one or more error correction codes may be applied to the PUF data. The resulting PUF values may be used to generate information that may be used for device security operations such as encryption and tamper detection.
US11018877B2 Cryptographic methods and systems for managing digital certificates
Pseudonym digital certificates (160p) are generated for devices (110/150) by a Pseudonym Certificate Authority (PCA), which communicates with devices via another entity—registration authority (RA)—so that the PCA and RA cannot associate certificates with devices. Each certificate is associated with a public signature key, and with a public encryption key used by PCA to encrypt the certificate to hide it from the RA. Both keys are derived by PCA from a single key. For example, the signature key can be derived from the public encryption key rather than generated independently. However, high security is obtained even when the PCA does not sign the encrypted certificate. Reduced bandwidth and computational costs are obtained as a result. Other embodiments are also provided.
US11018874B2 Digital signature verification for asynchronous responses
A client obtains, in response to a request to a server, a response that includes data for fulfillment of the request, a digital signature that can be verified using a digital certificate, and location information that specifies a location where the digital certificate can be obtained. The client uses the location information to access the location and obtains the digital certificate. Using the digital certificate, the client evaluates the digital signature provided in the response to determine whether the digital signature is valid. If the digital signature is valid, the client accepts the data included in the response for fulfillment of the request.
US11018873B1 Collision resistant digital signatures
The present specification discloses a computer tangible medium storing instructions for a collision resistant process for signing a digital message with a digital signature using different hash digests derived from the same message data with the same hashing algorithm by hashing the message data in different ways. The collision resistant process protects networks from hacking attacks based different files having the same hash digest, commonly referred to as birthday attacks.
US11018872B2 Validating and securing caller identification to prevent identity spoofing
A device receives call information associated with a call from a first user device to a second user device, where the first user device is associated with a first network, and the second user device is associated with a second network separate from the first network. The call information includes a caller identification and is received via an originating network device of the first network. The device determines whether the caller identification is verified, and adds authentication information to the call information when the caller identification is verified. The device receives the call information and the authentication information from a terminating network device of the first network, and removes the authentication information from the call information. The device adds a cryptographic signature to the call information, and causes the call information and the cryptographic signature to be provided to the second network for routing to the second user device.
US11018871B2 Key protection for computing platform
A security accelerator device stores a first credential that is uniquely associated with the individual security accelerator device and represents a root of trust to a trusted entity. The device establishes a cryptographic trust relationship with a client entity that is based on the root of trust, the cryptographic trust relationship being represented by a second credential. The device receives and store a secret credential of the client entity, which is received via communication secured by the second credential. Further, the device executes a cryptographic computation using the secret client credential on behalf of the client entity to produce a computation result.
US11018870B2 Biometric verification process using certification token
A method for performing biometric authentication is disclosed. In one example, the method includes obtaining first and second biometric templates and comparing them to determine if they match. The method also includes determining if a biometric certification token is valid. A computing device or other device may communicate with a verification system to determine the validity of the biometric certification token.
US11018868B2 Communication apparatus, method and program for controlling the apparatus, and storage medium storing the program
The present invention relates to a communication apparatus including a receiving unit and a restricting unit. The receiving unit is configured to receive a signal from another communication apparatus after code information is displayed by a display control unit. The signal includes identification information indicated by the code information. The code information is information in which information necessary for performing a sharing process for sharing a communication parameter for radio communication among apparatuses is coded. The restricting unit is configured to restrict execution of the sharing process when the communication apparatus has received the signal including the identification information from a plurality of other communication apparatuses with the receiving unit.
US11018867B1 Asynchronous step-up authentication for client applications
Embodiments described herein disclose methods and systems for authorizing transactions received from client applications. The transaction request can include a first access token. After validating the first access token, the system can determine whether additional authentication is needed to authorize the transaction. If additional authentication is needed, the system can determine the authentication requirements. Once the additional authentication is received and verified, the system can generate a second access token and authorize the transaction by releasing the first access token.
US11018866B2 Dynamic second factor authentication for cookie-based authentication
A server sends information to a client that allows the client to establish a first key at the client. The server then receives a session ID that has been encrypted using the first key. The first key is then established at the server, which can then decrypt the session ID using the first key. After the server validates the session ID, it determines a second key that is different from the first key. The server then receives the session ID encrypted with the second key, and decrypts the session ID encrypted with the second key.
US11018864B2 Method, device, and system for task processing
A number of RSA computing tasks that have different word lengths which are less than a maximum word length of an operand register are processed at the same time by combining a number of different word lengths to be equal to or less than the maximum word length of the operand register.
US11018859B2 Deduplication of client encrypted data
Plaintext data is encrypted to produce ciphertext which is transmitted along with a hash of the plaintext data and corresponding metadata comprising an initialization vector and information about the encryption key version used to encrypt the plaintext data to a backend storage system. The encrypted ciphertext is deduplicated at the backend storage system (without first decrypting it) using the hash and stored based upon the metadata.
US11018858B2 Method for re-keying an encrypted data file
A method for re-keying an encrypted data file, the data file being stored chunkwise on a storage entity (SE), data file chunks being encrypted with a global secret, and the method being performed in a memory available to a computing device, includes partially updating a global secret for encryption data for a data chunk to be re-keyed such that an output of a non-interactive oblivious key exchange is used to identify the private key of the data chunk to be re-keyed with a new private key; and reencrypting the data chunk to be re-keyed with the updated global secret.
US11018856B2 Auditable system and methods for secret sharing
Parties communicate input values to a central entity by first decomposing them according to a chosen operation into share values, which are sent either directly or, in a transformed form such as being hashed and/or encrypted, via a bulletin board data structure, to respective nodes, such that no node receives the input value itself. The nodes then combine the share values using the operation and pass these respective node values to the central entity for computation of a global value. The operation of the parties and of the nodes may be made verifiable by aggregating the share values within a party or the received share values within a node using a data and computational structure such as a hash tree or skip list. Digital signing and timestamping may also be applied.
US11018853B2 Workflow management via distributed ledgers and smart contracts
Systems and methods as described herein may include creating and monitoring workflows in a blockchain network. A workflow may be implemented by using a smart contract or the steps in the workflow may be recorded in a distributed ledger in a blockchain network. Completion of a workflow step may be verified by identifying a blockchain transaction executed by the workflow step performer assigned to the workflow step. The blockchain transaction is associated with encryption keys of the workflow step performer assigned to the workflow step. The completion of the execution of a workflow may be verified by determining whether the status of the last workflow step is complete, and identifying a blockchain transaction associated with encryption keys of the workflow step performer assigned to the last workflow step.
US11018850B2 Concurrent transaction processing in a high performance distributed system of record
A high-performance distributed ledger and transaction computing network fabric over which large numbers of transactions (involving the transformation, conversion or transfer of information or value) are processed concurrently in a scalable, reliable, secure and efficient manner. In one embodiment, the computing network fabric or “core” is configured to support a distributed blockchain network that organizes data in a manner that allows communication, processing and storage of blocks of the chain to be performed concurrently, with little synchronization, at very high performance and low latency, even when the transactions themselves originate from distant sources. This data organization relies on segmenting a transaction space within autonomous but cooperating computing nodes that are configured as a processing mesh. Each computing node typically is functionally-equivalent to all other nodes in the core. The nodes operate on blocks independently from one another while still maintaining a consistent and logically-complete view of the blockchain as a whole. According to another feature, safe and performant transaction processing is provided using an optimistic concurrently control that includes a collision detection and undo mechanism.
US11018848B2 Blockchain management platform for performing asset adjustment, cross sectional editing, and bonding
Aspects of the disclosure relate to processing systems perform dynamic asset adjustment. A computing platform may split a parent element of a stored element chain into sub-elements, containing a fixed parameter and a variable parameter and each linked to the parent element through the stored element chain. The computing platform may determine a change in the variable parameter, resulting in a modified variable parameter. Based on a comparison of the modified variable parameter to a plurality of predetermined discrepancy thresholds, the computing platform may determine a number of quorum approvers for approval of the change to the variable parameter. The computing platform may receive quorum approval inputs corresponding to the number of quorum approvers for the approval of the change to the variable parameter. Based on the plurality of quorum approval inputs received, the computing platform may determine that a quorum approval threshold is satisfied.
US11018847B2 Device keys protection
A method to protect a device key in a device comprising at least one secure element locally connected to at least one time programmable memory storing a global value in form of a bit string comprising locked bits and unlocked bits. The locked bits are irreversibly pre-programmed in the one-time-programmable memory during an initialization phase of the device while the un-locked bits remaining in an initial state may be programmable by the secure element. The secure element is configured to generate, at initialization of the device, a device specific value by using the global value, program the device specific value previously obtained in the one time programmable memory, and erase the global value by programming the unlocked bits of the corresponding bit string. A further object of the disclosure includes a device configured to carry out the method.
US11018843B2 Sensor communication control shaped for EMC compliance
A restraint control module is provided in this disclosure. The restraint control module is configured to communicate a sync pulse to a sensor. The control module may include a sync pulse driver circuit and a memory. The memory may store the waveform profile of a sync pulse. The sync pulse driver circuit generates a sync pulse in response to the waveform profile stored in the memory. The sync pulse may be transmitted to one or more sensors. The waveform profile stored in the memory may be derived from a sync pulse with reduced electro-magnetic emissions by applying spectrum analysis.
US11018841B2 Method for transmitting and receiving acknowledgement information in wireless LAN system and device for same
The present specification discloses a method for transmitting and receiving acknowledgement (ACK) information in a wireless local area network (WLAN) system and a device for the same. More specifically, the present specification describes a method in which a station device scheduled according to a time division duplex (TDD) scheduling scheme transmits and receives ACK information based on TDD scheduling information and a device for the same.
US11018834B2 Opportunistic retransmission scheme based on dynamic reassignment of downlink resources
In an embodiment, a BS transmits, on a set of resources, a first communication to each of a plurality of UEs. The BS receives ACKs to the transmitted first communications from a first subset of UEs, and determines that a second subset of UEs fails to ACK the transmitted first communication (e.g., via implicit or explicit NACKs). The BS configures a group scheduling message that indicates an allocation of the set of resources to the second subset of UEs (e.g., a different subset of the set of resources being allocated to each UE in the second subset of UEs) based on a predetermined resource reallocation scheme. The BS transmits the group scheduling message to the second subset of UEs, and transmits, on the set of resources, a second communication to each UE in the second subset of UEs in accordance with the indicated allocation from the group scheduling message.
US11018829B2 System and method for determining a pilot signal
A method of configuring a pilot signal includes defining a first pilot signal arrangement and defining a second pilot signal arrangement. Also, the method includes determining, by a communications controller, a first determined pilot signal arrangement in accordance with the first defined pilot signal arrangement, the second defined pilot signal arrangement, and a set of characteristics and transmitting, by the communications controller, the pilot signal having the first determined pilot signal arrangement.
US11018825B2 Method for configuring reference point irrelevant to common resource block grid and apparatus therefor
Disclosed herein is a method for receiving a demodulation reference signal (DMRS) in a wireless communication system. In particular, the method may include receiving a synchronization signal/physical broadcast channel (SS/PBCH) block, acquiring information about control resource set (CORESET) #0 from a PBCH included in the SS/PBCH block, receiving a physical downlink control channel (PDCCH) through CORESET #0, and receiving a physical downlink shared channel (PDSCH) scheduled based on the PDCCH and a DMRS for the PDSCH, wherein, based on the PDCCH being addressed to a system information-radio network temporary identifier (SI-RNTI), a reference point for the DMRS may be subcarrier #0 of a resource block (RB) having a lowest number among RBs included in CORESET #0.
US11018824B2 Operation method of communication node supporting direct communication in network
Disclosed are operation methods of communication node supporting direct communications in network. The operation method may comprise generating control information which includes parameters used for transmitting and receiving data; transmitting, to a second UE, the control information through a physical sidelink control channel (PSCCH); and transmitting, to the second UE, the data through a physical sidelink shared channel (PSSCH) based on the parameters. Therefore, a performance of the network can be enhanced.
US11018823B2 Method and apparatus for transmitting and receiving demodulation reference signal
Methods, apparatuses, and systems described herein generally relate to a reference signal generation and mapping. For example, a method comprises determining a first set of antenna ports for a demodulation reference signal (DM-RS) transmission; determining, based on the first set, a frequency index associated with four adjacent resource elements, wherein the four adjacent resource elements correspond to two adjacent symbols in a time axis and to two adjacent subcarriers in a frequency axis; generating, based on a first orthogonal cover code and a second orthogonal cover code, a DM-RS associated with the first set of antenna ports; and transmitting, via a mapping to the four adjacent resource elements, the DM-RS associated with the first set of antenna ports.
US11018819B2 Method and device in UE and base station used for wireless communication
A method and a device for wireless communication in a User Equipment (UE) and a base station are disclosed in the present disclosure. The UE performs K channel listenings respectively in K frequency sub-bands; determines that a first radio signal can only be transmitted in K1 frequency sub-band(s) of the K frequency sub-bands; and then transmits the first radio signal in the K1 frequency sub-band(s). Herein, the K channel listenings are used for determining the K1 frequency sub-band(s) out of the K frequency sub-bands; the first radio signal comprises K1 first sub-signal(s), the K1 first sub-signal(s) is(are) respectively transmitted in the K1 frequency sub-band(s); each of the K1 first sub-signal(s) carries a first bit block, the first bit block comprises a positive integer number of bits, and the number of bits comprised in the first bit block is related to the K1.
US11018813B2 Uplink control information transmission method and apparatus
A terminal receives downlink scheduling information of a downlink subframe F(i, j), where a set M of preconfigured downlink subframes in which the downlink subframe F(i, j) is located is divided into N subsets of preconfigured downlink subframes, a bit quantity of a hybrid automatic repeat request-acknowledgement HARQ-ACK that needs to be fed back for each downlink subframe in one subset of preconfigured downlink subframes is a predetermined value, and bit quantities of HARQ-ACKs that need to be fed back for any downlink subframes in different subsets of preconfigured downlink subframes are different. The terminal generates a HARQ-ACK codebook according to a receiving status of downlink data. And the terminal generates uplink control information after encoding the HARQ-ACK codebook; and a sending module sends the uplink control information.
US11018812B2 Wireless telecommunications apparatus and methods
A retransmission method for use in a telecommunications system, the method comprising: transmitting, to a terminal, first data in a set of identified resources allocated for the transmission of the first data; identifying that a portion of the identified resources has been used to transmit data other than the first data; and retransmitting a subset of the first data, the subset of the first data comprising the portion of the first data that was previously scheduled to be transmitted in the portion of the identified resources.
US11018811B2 Method and user equipment (UE) for managing HARQ procedure for multiple numerologies
Embodiments herein provide a method for managing HARQ procedure for multiple numerologies multiplexing in a wireless communication network. The method includes transmitting, by a User Equipment (UE), capability parameters of the UE to a Base Station (BS). Further, the method includes receiving, by the UE, a plurality of HARQ configuration parameters corresponding to the capability parameters of the UE from the BS, and perfuming, by the UE, one of an individual HARQ process and a shared HARQ process based on the plurality of HARQ configuration parameters received from the BS.
US11018810B2 Adaptive multiple HARQ entity design
Systems and methods for an adaptive multiple Hybrid Automatic Repeat Request (HARQ) entity design to enable dynamic soft buffer sharing between HARQ entities are disclosed. In some embodiments, a transmitter estimates the total buffer consumption of the receiver. In response to determining that there is enough unused space in the soft buffer of the receiver for the new HARQ process of the HARQ entity, the transmitter assigns the new HARQ process of the HARQ entity for data transmission to the receiver. In this way, HARQ entity specific configurations may be enabled while increasing dynamic soft buffer sharing efficiency.
US11018808B2 Reception failure indication by legacy message
A first radio device receives a first radio transmission from a second radio device. In response to reception of the first radio transmission by the first radio device being unsuccessful, the first radio device sends a second radio transmission to the second radio device. The second radio transmission comprises an indication to the second radio device that reception of the first radio transmission by the first radio device was unsuccessful. The first radio device generates the second radio transmission to be decodable by one or more other radio devices than the second radio device as comprising a positive acknowledgement message, indicating to the second radio device that reception of the first radio transmission by the first radio device was successful, as comprising a clear-to-send message to the second radio device, or as some other legacy message supported by the other radio device(s).
US11018801B2 Method for performing bit level management in a wireless local area network system, and associated transmitter and receiver
A method for performing bit level management in a wireless local area network (WLAN) system, transmitter and receiver are provided. The method includes: calculating respective bit counts of one or more padding fields located in one or more locations within a packet in a transmitter within the WLAN system, respectively; and according to the respective bit counts of the one or more padding field, filling one or more sets of valid data corresponding to at least one predetermined bit count into the one or more padding fields, to replace one or more sets of redundant data. In addition, when a receiver within the WLAN system receives the packet that has the one or more sets of valid data, the WLAN system utilizes the one or more sets of valid data to enhance overall performance of the WLAN system.
US11018798B2 Auto-tuning reliability protocol in pub-sub RTPS systems
Adaptive tuning techniques are provided for data communications in an Object Management Group (OMG) Real-Time Publish Subscribe (RTPS) Protocol operable over a communication network to provide good throughput/latency tradeoff as well as efficient bandwidth utilization. With this invention, latency under high throughput conditions can be reduced several times compared with the latency obtained with traditional non-adaptive approaches.
US11018797B2 Fiber optic light intensity encryption
A fiber optic light intensity encryption method is provided. The method includes determining light intensities associated with multi-frequency light pulses emitted by a laser transmitter apparatus in response to an encryptions process. An encryption type for application of an encryption algorithm to each light intensity is determined and a first light intensity associated with a first light pulse is selected. Data indicating results of the random selection is transmitted to the laser transmitter apparatus and an initial security key is transmitted over a signaling channel of the laser transmitter apparatus. The signaling channel is secured based on the initial security key resulting in a secure signaling channel. In response, a secure bundle comprising said the secure signaling channel and an additional group of channels is generated and the data is transmitted via the secure bundle.
US11018793B2 Network optimisation
A method of optimising a network includes selecting an operating characteristic of a network to optimise; determining at least one operating parameter of network nodes within the network which affects the operating characteristic; selecting an optimisable network node from within the network; identifying a cluster of the network nodes whose operating characteristic is affected by a change in the at least one operating parameter of the optimisable network node; iteratively adjusting the at least one operating parameter of the optimisable network node; determining the operating characteristic of the cluster of the network nodes in response to that adjusted at least one operating parameter of the optimisable network node; and selecting that adjusted at least one operating parameter of the optimisable network node which improves the operating characteristic of the cluster of the network nodes.
US11018791B2 Method and device for time-controlled data transmission in a time-sensitive network
The disclosure relates to a method and device for time-controlled data transmission in a TSN. A new traffic shaping method is described for time-sensitive data streams. The objective is to offer the same real-time performance and configuration complexity as in the prior art but without the need for time synchronization throughout the entire network. The traffic shaper provides that a data frame that is received by a bridge in a first-time interval is passed by this bridge to the next hop/bridge in the next time interval. Each bridge knows the start time of the time interval that belongs to a particular data stream. Each data frame must contain a so-called “delay value,” thus a delay value which is measured by each bridge using a local clock that measures the delay time spent by the data frame in the queue at the outgoing port.
US11018790B2 Timing adjustment for distributed network architecture
In some embodiments, a first computing device detects a loss of a connection to a first source of timing information that the first computing device and a second computing device use to maintain synchronization with a first clock and a second clock. The first computing device receives a second source of timing information from the second computing device. The second source of timing information is also being transmitted to a third computing device. The first computing device uses the second source of timing information to determine a first timestamp and determines a second timestamp from the first clock. The first computing device uses the first timestamp and the second timestamp to adjust a rate of the first clock where the first clock is used to transmit the second source of timing information from the second computing device to the third computing device.
US11018789B2 End-to-end transparent clocks and methods of estimating skew in end-to-end transparent clocks
This invention relates to end-to-end transparent clocks and methods of estimating skew in end-to-end transparent clocks. Embodiments of the invention relate to techniques for estimating clock skew between a free-running clock in a transparent clock and a master clock, in particular by using the timing information embedded in timing messages passing through the transparent clock. Further embodiments of the invention set out uses of these estimates to modify the residence times computed by the transparent clock and a synchronization network including such transparent clocks.
US11018787B2 Time division multiplexing of synchronization channels
The apparatus may be a base station. The apparatus processes a first group of synchronization signals. The apparatus processes a second group of synchronization signals. The apparatus performs a first transmission by transmitting the processed first group of the synchronization signals in a first synchronization subframe. The apparatus performs a second transmission by transmitting the processed second group of the synchronization signals in a second synchronization subframe.
US11018786B2 Reduced transmission power time interval allocation
Aspects relate to allocation of reduced transmission power time intervals. Nodes may provide respective coverage areas. The nodes may indicate to each other respective configurations of reduced transmission power time intervals.
US11018785B2 Enclosure for testing electronic devices
Various devices and techniques help to reduce the entry of unwanted radio waves into an enclosure and reduce the reflection of radio waves inside the enclosure. Such devices and techniques enable a test environment inside the enclosure that provides high-quality functionality and performance testing.
US11018782B2 Method of determining sign of a calibration compensation
A method (20) of determining sign of a calibration compensation for use in an antenna system (10) is provided, the antenna system (10) comprising individually calibrated subarrays (2a, 2b). The method (20) comprises selecting (21) a set of antenna elements comprising two neighboring antenna elements of the first subarray (2a) and two neighboring antenna elements of the second subarray (2b); measuring (22): in a selected antenna element of the first subarray (2a) a first received signal Y31 as transmitted from the other selected antenna element of the first subarray (2a) and a second received signal Y34 as transmitted from the neighboring antenna element of the second subarray (2b), and in a selected antenna element of the second subarray (2b) a third received signal Y21 as transmitted from the other selected antenna element of the second subarray (2b) and a fourth received signal Y24 as transmitted from the neighboring antenna element of the first subarray (2a); calculating (23) for the first calibrated subarray (2a) a downlink compensation value Δta and an uplink compensation value Ara based on measurement values obtained from the measuring (22), each compensation value Ata, Ara having a positive and a negative solution; determining (24) a first compensation value estimate, kt, for downlink compensation and a second compensation value estimate, kr, for uplink compensation; and determining (25) the sign of the downlink compensation value Ata and the uplink compensation value Ara based on distance between the first compensation value estimate kt and the downlink compensation value, Ata, and the distance between the second compensation value estimate, kr, and the uplink compensation value Ara.
US11018779B2 Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
A method includes receiving a wireless communication signal indicating that a receiver is within a wireless-power-transmission range of a transmitter. In response to the receiving, the method further includes transmitting a plurality of radio frequency (RF) test signals using at least two test phases for a respective antenna. The method further includes receiving information identifying a first amount of power delivered to the receiver by a first RF test signal transmitted at a first of the at least two test phases, receiving information identifying a second amount of power delivered to the receiver by a second RF test signal transmitted at a second of the at least two test phases, and determining, based on the first and second amounts of power, an optimal phase for the respective antenna.
US11018775B2 Optical transmitter, optical receiver, and optical transmission method
An optical transmitter, an optical receiver, and an optical transmission method are disclosed. The optical transmitter includes an optical signal generator, N spreaders, N pairs of data modulators, and a combiner, where the optical signal generator generates N optical carriers; an ith spreader spreads an ith optical carrier, to obtain a spread optical signal having two subcarriers; splits the spread optical signal into a first optical signal and a second optical signal; and delays the second optical signal to obtain a third optical signal; an ith pair of data modulators modulate the first optical signal and the third optical signal to obtain a pair of modulated optical signals, transmit the pair of modulated optical signals to the combiner, where the pair of modulated optical signals reaching the combiner differ by 1/(4 fsi) in time domain; and the combiner combines, into one optical signal, N pairs of modulated optical signals.
US11018770B2 Silicon photonics phased array systems
High-performance ultra-wideband Phased Array Antennas (PAA) are disclosed, having unique capabilities, enabled through photonic integrated circuits and novel optical architectures. Unique capabilities for PAA systems are enabled by photonic integration and ultra-low-loss waveguides. Novel aspects include optical multiplexing combining wavelength division multiplexing and/or a novel extension to array photodetectors, providing the capability to combine many RF photonic signals with very low loss. Architectures include tunable optical up-conversion and down-conversion systems, moving a chosen frequency band between baseband and a high RF frequency band with high dynamic range. Simultaneous multi-channel RF beamforming is achieved through power combining/splitting of optical signals.
US11018769B2 Redundancy in a public safety distributed antenna system
A redundancy system for data transport in a Distributed Antenna System (DAS) includes a plurality of Digital Access Units (DAUs). Each of the plurality of DAUs is fed by a plurality of data streams and is operable to transport digital signals between others of the plurality of DAUs. The redundancy system also includes a plurality of Digital Distribution Units (DDUs). Each of the plurality of DDUs is in communication with each of the plurality of DAUs using cross connection communication paths. The redundancy system further includes a plurality of Digital Remote Units (DRUs). Each of the plurality of DRUs is in communication with each of the plurality of DDUs using cross connection communications paths.
US11018768B2 Transmission systems with controlled bit probabilities
A binary encoder includes an input configured to receive a binary signal, an encoding processor configured to compute a plurality of different variations of the binary signal, combine each of the different variations with a different redundancy sequence to create a plurality of optional output binary sequences, and select one of the optional output binary sequences according to a binary digit prevalence, and an output configured to output the selected binary sequence. A decoder configured to identify a redundancy sequence of a received binary signal to select a transformation function according to the redundancy sequence and to convert the binary signal according to the transformation function.
US11018765B1 Method of optical aperture integration for producing symmetric irradiance pattern
Aspects of the disclosure provide an optical communication system. The system may include a receiver lens system configured to receive a light beam from a remote optical communication system and direct the light beam to a photodetector. The system may also include the photodetector. The photodetector may be configured to convert the received light beam into an electrical signal, and the photodetector may be positioned at a focal plane of the receiver lens system. The system may also include a phase-aberrating element arranged with respect to the receiver lens system and the photodetector such that the phase-aberrating element is configured to provide uniform angular irradiance at the focal plane of the receiver lens system.
US11018764B2 Non-imaging receiver utilizing mirrors in optical wireless communication system
An optical mirror diversity receiver for a visible light communication system is provided with an array of photodiodes each having an optical-signal-receiving area, with a mirror positioned between an adjacent pair of photodiodes to preferentially redirect light toward one of the photodiodes while also blocking light that would otherwise be received at the photodiode. An angle-aided mirror diversity receiver is also provided with surfaces of the photodiodes aligned relative to the mirror to yield reductions in correlation.
US11018757B2 Satellite for end-to-end beamforming
Methods and systems are described for providing end-to-end beamforming. For example, end-to-end beamforming systems include end-to-end relays and ground networks to provide communications to user terminals located in user beam coverage areas. The ground segment can include geographically distributed access nodes and a central processing system. Return uplink signals, transmitted from the user terminals, have multipath induced by a plurality of receive/transmit signal paths in the end to end relay and are relayed to the ground network. The ground network, using beamformers, recovers user data streams transmitted by the user terminals from return downlink signals. The ground network, using beamformers generates forward uplink signals from appropriately weighted combinations of user data streams that, after relay by the end-end-end relay, produce forward downlink signals that combine to form user beams.
US11018756B2 Satellite for end-to-end beamforming with non-overlapping feeder and user frequencies
Methods and systems are described for providing end-to-end beamforming. For example, end-to-end beamforming systems include end-to-end relays and ground networks to provide communications to user terminals located in user beam coverage areas. The ground segment can include geographically distributed access nodes and a central processing system. Return uplink signals, transmitted from the user terminals, have multipath induced by a plurality of receive/transmit signal paths in the end to end relay and are relayed to the ground network. The ground network, using beamformers, recovers user data streams transmitted by the user terminals from return downlink signals. The ground network, using beamformers generates forward uplink signals from appropriately weighted combinations of user data streams that, after relay by the end-end-end relay, produce forward downlink signals that combine to form user beams.
US11018747B2 Configurable polarimetric phased array transceiver architecture
A method and system of a configurable phased array transceiver are provided. A first beamforming unit is configured to provide a first beam. A second beamforming unit is configured to provide a second beam. A first bi-directional power controller is configured to combine or to split the first beam and the second beam. Each beamforming unit comprises a plurality of radio frequency (RF) front-ends, each front-end being configured to transmit and receive RF signals. Each beam is independently configurable to operate in a transmit (TX) or a receive (RX) mode.
US11018745B2 Techniques for channel state information acquisition in new radio technology
Certain aspects of the present disclosure provide techniques for channel state information acquisition in wireless communication systems operating according to new radio (NR) technologies. An exemplary method that may be performed by a user equipment (UE) generally includes receiving a first beamformed channel state information reference signal (CSI-RS), determining, based on the first beamformed CSI-RS and the beacon reference signal, information regarding an adjustment, preferred by the UE, of a beam-former to be used for a forthcoming second beamformed CSI-RS, transmitting a beamformer adjustment indicator (BAI), periodically, semi-persistently, or aperiodically, that indicates the preferred adjustment, and reporting channel state information feedback (CSF), based on the first beamformed CSI-RS.
US11018743B2 QCL (quasi co-location) indication for beamforming management
Techniques for employing QCL (Quasi Co-Location) signaling for beamforming management are discussed. One example embodiment can comprise an apparatus that can determine whether a first set of RS (Reference Signal) APs (Antenna Ports) are QCL-ed (Quasi Co-Located) with a second set of RS APs with respect to one or more large-scale channel properties, wherein the properties comprise an average angle-of-arrival and an angle of arrival spread, and wherein the first set of RS APs are distinct from the second set of RS APs; and select, based on the determination, beamforming weights for reception via the second set of RS APs. In the same or other embodiments, QCL can be indicated between RS antenna port(s) and antenna port(s) of beam reference signal is used to assist UE beamforming for reception of data or control channel transmitted on DM-RS antenna ports.
US11018742B2 Downlink transmission beam configuration techniques for wireless communications
Methods, systems, and devices for wireless communications are described that provide for identification of beamforming parameters for a downlink transmission beam based at least in part on a set of rules that define a priority order for control transmission and data transmissions. Downlink resources may be allocated to a user equipment (UE) for a downlink transmission via a first set of downlink beamforming parameters, and the UE may also be configured to monitor a control resource set using a different set of downlink beamforming parameters within a same transmission time interval (TTI) as the downlink transmission. A UE and a base station may identify which beamforming parameters to use for the downlink transmission based on the priority order. The set of rules may define which set of downlink beamforming parameters are to be used, whether the downlink transmission is rate-matched around the control resource set, or combinations thereof.
US11018737B2 Codebook-based signal transmission and reception method in multi-antenna wireless communication system and apparatus therefor
Disclosed are a codebook-based signal transmission and reception method in a multi-antenna wireless communication system and an apparatus therefor. Specifically, a method for transmitting or receiving a signal on the basis of a codebook by a terminal in a 2-dimensional multi-antenna wireless communication system comprises the steps of: receiving a channel state information reference signal (CSI-RS) through a multi-antenna port from a base station; and reporting channel state information to the base station, wherein the channel state information may include a precoding matrix indicator (PMI) for indicating a precoding matrix, the PMI may include a first PMI for selecting a set of precoding matrixes from the codebook and a second PMI for determining one precoding matrix applied to a multi-layer from the set of precoding matrixes, the precoding matrix may be configured by a precoding vector applied to each layer, and the precoding vector may be determined in the set of precoding vectors determined by the first PMI.
US11018736B2 Signal generating method and signal generating apparatus
A transmission apparatus that (i) generates a Quadrature Phase Shift Keying (QPSK) modulation signal s1(t) by applying a QPSK modulation scheme to a first data sequence, (ii) generates a 16-Quadrature Amplitude Modulation (QAM) modulation signal s2(t) by applying a 16-QAM modulation scheme to a second data sequence, (iii) generates a transmission signal z1(t) and a second transmission signal z2(t) by applying a phase hopping process, a precoding process, and a power adjust process to the QPSK modulation signal s1(t) and the 16-QAM modulation signal s2(t), wherein an average transmission power of the 16-QAM modulation signal s2(t) being the same as an average transmission power of the QPSK modulation signal s1(t), and (iv) transmits the transmission signal z1(t) from a first antenna at a first time and a first frequency and the second transmission signal z2(t) from a second antenna at the first time and the first frequency.
US11018726B2 Radio-frequency front-end systems and devices
Radio-frequency front-end systems and devices. In some embodiments, a front-end system can include a first mid-band amplifier system configured to amplify transmit and receive signals in a first mid-band. The front-end system can further include a second mid-band amplifier system configured to amplify at least a transmit signal in a second mid-band, such that the front-end system is capable of simultaneous uplink operations in the first mid-band and the second mid-band.
US11018723B2 Controlled power transmission in radio frequency (RF) device network
In a first radio frequency (RF) device, circuits determine a non-line-of-sight (NLOS) radio path, and select a first plurality of reflector devices associated with the NLOS radio path from a second plurality of reflector devices. The first plurality of reflector devices, are selected based on a first set of criteria, includes an active reflector device and a passive reflector device, and are controlled to transmit a plurality of RF signals to a second RF device based on a second set of criteria. The second RF device is associated with electronic devices. The first RF signal interferes with a second RF signal of the RF signals. A first type of signal associated with the plurality of RF signals is converted to a second type of signal at the second RF device, and the second type of signal is transmitted by the second RF device to the one or more electronic devices.
US11018720B2 Wireless sensor with near field communication circuit
A sensor in a building HVAC system includes a transducer configured to measure a variable in the building HVAC system and to generate a sensor reading indicating a value of the measured variable. The sensor includes a communications interface configured to provide the sensor reading to a control device in the building HVAC system and a near field communication (NFC) circuit separate from the communications interface. The NFC circuit is configured to facilitate bidirectional NFC data communications between the sensor and a mobile device. The sensor includes a processing circuit having a processor and memory. The processing circuit is configured to wirelessly transmit data stored in the memory of the sensor to the mobile device via the NFC circuit, wirelessly receive data from the mobile device via the NFC circuit, and store the data received from the mobile device in the memory of the sensor.
US11018717B1 Snap-on triaxial cable balun and method for tuned trapping of RF current
Apparatus and method for trapping RF on shields of a multiply shielded RF cable. In some embodiments, the RF trap shorts an outer conductor shield to an inner shield conductor of the cable successively at selected locations along an end length of the shield conductors. Some embodiments provide an RF-trap apparatus for blocking stray signals on a shielded RF cable that has two or more concentric peripheral shield conductors separated from one another by one or more electrically insulating layers, and at least one inner conductor for carrying RF signals. The RF trap apparatus includes: a first housing; and a plurality of projections configured be coupled to the first housing and to move to selectively electrically connect an outer shield conductor to an inner shield conductor by a pierce operation on the shielded RF cable.
US11018711B2 Explosion proof assembly
An explosion proof assembly that includes a first portion with a window; an outer touchscreen coupled with the first portion to occlude the window; and a second portion releasably coupled to the first portion. The second portion has a second portion inner surface. The assembly includes a mobile device operable via a mobile device touchscreen. Upon assembly, the outer touchscreen is transmissive to the mobile device touchscreen. The explosion proof assembly has a sound material therein having a porosity of between about 10 microns to about 30 microns.
US11018710B2 Accessory device for an electronic device
This application relates to a computing device case that provides some amount of torsional force in order to cancel at least some static and dynamic loads experienced by the computing device when the case is arranged as a stand. By canceling out these loads, the computing device to be angled at an almost unlimited number of angles relative to a surface on which the computing device is resting. Flexible elements in the case can resist the static and dynamic loads of the computing device, thereby allowing the computing device to receive touch inputs at almost any angle without causing the case and the computing device to collapse.
US11018709B2 Active 1:N breakout cable
Accordingly, there are disclosed herein active cables and methods that enable direct connection between different generations of network interface ports or ports supporting different standards. One illustrative embodiment is an active 1:N breakout cable that includes a unary end connector connected by electrical conductors to each of multiple split end connectors. The unary end connector is adapted to fit into a network interface port of a primary host device to provide output PAM4 electrical signals that convey a multi-lane outbound data stream to the primary host device and to accept input PAM4 electrical signals that convey multi-lane inbound data stream from the primary host device. Each of the split end connectors is adapted to fit into a network interface port of a secondary host device to provide output NRZ electrical signals that convey a split portion of the inbound data stream to that secondary host device and to accept input NRZ electrical signals that convey a split portion of the outbound data stream from that secondary host device.
US11018706B2 Antenna device and electronic device including same
Various embodiments provide an antenna device that includes: a metal member configured to have a length that contributes to at least a part of an electronic device; a printed circuit board (PCB) configured to be feed-connected to a preset position of the metal member in order to apply the metal member as an antenna radiator; and at least one electronic component electrically connected to a position different from the feeding position of the metal member and grounded to the PCB, and provide an electronic device that includes the same. Accordingly, the antenna device is grounded to the PCB in a desired position of the metal member by using the basically provided electronic component so that it is possible to exclude a separate electrical connection member, thereby reducing the cost, increasing the use of space, enhancing the degree of freedom of the design of the antenna radiator.
US11018705B1 Interference mitigation, target detection, location and measurement using separable waveforms transmitted from spatially separated antennas
A system includes a set of spatially separated transmit antenna elements (SSTAE) broadcasting uniquely identifiable waveforms, a set of spatially separated receive antenna elements (SSRAE) and at least one circuit assembly. The at least one circuit assembly is electrically coupled to the SSRAE, which provide respective electrical signals responsive to the uniquely identifiable waveforms. The electrical signals include at least one target signal and electromagnetic interference. The circuit assembly operates on the electrical signals to create a matched projection space parallel to a reference related to the at least one target signal and a second projection space that is orthogonal or nearly orthogonal to the matched projection space. The second projection space includes the electromagnetic interference but not the at least one target signal. The circuit assembly uses the second projection space and the matched projection space to separate the electromagnetic interference from the at least one target signal.
US11018703B2 Systems and methods for antenna tuning
A wireless communication device is described. The wireless communication device includes a processor, a memory in communication with the processor and instructions stored in the memory. The instructions are executable by the processor to detect a signal degradation indication for a radio frequency (RF) signal. The instructions are also executable by the processor to cause a switch to select a combination of a first matching network and a second matching network coupled to an antenna in response to detecting the signal degradation indication.
US11018697B2 Transmission method and reception device
The present technology relates to a transmission method and a reception device for securing favorable communication quality in data transmission using an LDPC code. In group-wise interleaving, the LDPC code with a code length N of 69120 bits is interleaved in units of 360-bit bit groups. In group-wise deinterleaving, a sequence of the LDPC code after group-wise interleaving is returned to an original sequence. The present technology can be applied, for example, in a case of performing data transmission using an LDPC code, and the like.
US11018695B1 Fast-converging bit-flipping decoder for low-density parity-check codes
Disclosed are devices, systems and methods improving the convergence of a bit-flipping decoder in a non-volatile memory device. An example method includes receiving a noisy codeword, the codeword having been generated based on a parity check matrix of a low-density parity-check code and provided to a communication channel prior to reception by the bit-flipping decoder, and performing a single decoding iteration on the received noisy codeword, the single decoding iteration spanning a plurality of stages. In some embodiments, performing a single decoding iteration includes computing a metric corresponding to a single column of the parity check matrix, flipping at least one bit in the single column upon a determination that the metric exceeds a flipping threshold, computing, subsequent to the flipping, a syndrome as a product of the noisy codeword and the parity check matrix, and updating the flipping threshold upon a determination that the syndrome is not zero.
US11018690B2 Device for generating a random electrical signal and associated architecture
A device for generating a random electric signal, including an input duct, an output duct, a generator of magnetic particles generating magnetic particles in the input duct, a diffusion chamber connected to the input duct and the output duct, wherein the diffusion chamber is designed to diffuse the generated magnetic particles, a displacement unit for displacement of the generated magnetic particles towards the diffusion chamber, and a converter that is designed to generate an electrical signal proportional to a characteristic, wherein the characteristic is the particle density in the diffusion chamber or the passage of magnetic particles at a predetermined location of an output duct connected to the diffusion chamber.
US11018689B2 Parallel computing using stochastic circuits and deterministic shuffling networks
In some examples, a device includes shuffling circuitry configured to receive an input unary bit stream and generate a shuffled bit stream by selecting n-tuple combinations of bits of the input unary bit stream. The device also includes stochastic logic circuitry having a plurality of stochastic computational units configured to perform operations on the shuffled bit stream in parallel to produce an output unary bit stream, each of the stochastic computational units operating on a different one of the n-tuple combinations of the bits.
US11018687B1 Power-efficient compute-in-memory analog-to-digital converters
A time-multiplexed group of MAC circuits for a machine learning application is provided in which at least one MAC circuit in the time-multiplexed group also functions as a capacitive-digital-to-analog converter (CDAC) within a successive approximation analog-to-digital converter (ADC). A comparator in the ADC is shared by the time-multiplexed group of MAC circuits.
US11018685B2 Analog-to-digital converter and method of performing analog-to-digital conversion
An analog-to-digital converter includes a comparator configured to compare an input signal with a reference signal and to output a comparison signal indicating a corresponding comparison result, a control logic configured to output a control signal for adjusting the reference signal based on the comparison signal, and a reference signal adjusting circuit configured to adjust the reference signal based on the control signal. The comparator includes a first pre-amplifier configured to amplify a difference between the input signal and the reference signal using a first transistor having a first size, a second pre-amplifier configured to amplify the difference between the input signal and the reference signal using a second transistor having a second size different from the first size, and a latch configured to generate the comparison signal using at least one of an output of the first and second pre-amplifiers. The first and second pre-amplifiers share the latch.
US11018680B1 Phase lock loops (PLLS) and methods of initializing PLLS
A phase lock loop (PLL) includes a phase detector configured to output a signal indicative of a phase difference between a reference signal and a feedback signal, a loop filter configured to filter an output of the phase detector, and a voltage-controlled oscillator (VCO) configured to output an oscillating signal having a frequency corresponding to an output of the loop filter. The PLL further includes a frequency divider configured to output the feedback signal by frequency dividing the oscillating signal output by the VCO, and a reset circuit configured to reset the frequency divider in an initialization mode such that a phase difference between the reference signal and the feedback signal corresponds to a lock angle of the PLL.
US11018678B1 Field programmable gate array with internal phase-locked loop
The present invention relates to a field programmable gate array system that provides phase control with minimal latency.
US11018676B2 Coarse delay lock estimation for digital DLL circuits
Digital delay locked loop circuits, devices systems, and associated methods are provided and described. Such devices, systems, and methods utilize an open loop measurement for establishing a coarse delay lock.
US11018672B1 Linear input and non-linear output majority logic gate
A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates and threshold gates. Input signals in the form of analog, digital, or combination of them are driven to first terminals of non-ferroelectric capacitors. The second terminals of the non-ferroelectric capacitors are coupled to form a majority node. Majority function of the input signals occurs on this node. The majority node is then coupled to a first terminal of a capacitor comprising non-linear polar material. The second terminal of the capacitor provides the output of the logic gate, which can be driven by any suitable logic gate such as a buffer, inverter, NAND gate, NOR gate, etc. Any suitable logic or analog circuit can drive the output and inputs of the majority logic gate. As such, the majority gate of various embodiments can be combined with existing transistor technologies.
US11018671B2 Reconfigurable circuit and the method for using the same
A reconfigurable circuit includes: a first line; a first switch element disposed between the first line and a first power source line of first voltage; a second line; a second switch element disposed between the second line and a second power source line of second voltage which is different from the first voltage; and a resistive switch assembly disposed between the first line and the second line. The resistive switch assembly includes: a first non-volatile resistive switch; and a second non-volatile resistive switch whose first end is coupled to a first end of the first non-volatile resistive switch. The second end of the first non-volatile resistive switch is coupled to the first line, and the second end of the second non-volatile resistive switch is coupled to the second line.
US11018669B2 Interface circuitry with series switch and shunt attenuator
Methods, systems, and circuities for selectively connecting an RF signal to front end circuitry and selectively attenuating the RF signal are disclosed. In one example, an interface circuitry includes switching circuitry and attenuator circuitry. The switching circuitry is connected in series between an output of an amplifier and a front end circuitry configured to transmit a radio frequency (RF) signal output by the amplifier. The switching circuitry connects the output of the amplifier to a selected one or more front end circuitry inputs to create one or more signal paths. The attenuator circuitry is connected between the output of the amplifier and ground to create an attenuation path in a shunt configuration relative to the one or more signal paths. The attenuator circuitry is configured to attenuate the RF signal.
US11018665B2 Electronic control device
An electronic control device includes a first pull-up resistor connected between a power supply and a switch, a series circuit of a transistor and a second pull-up resistor with a resistance value lower than that of the first pull-up resistor, connected in parallel with the first pull-up resistor, and a microcomputer, an output port of which is connected to a base terminal of the transistor and which controls a turning on and off of the transistor using a signal output from the output port. A connection point of the switch, the first pull-up resistor, and the second pull-up resistor is connected to a first analog measurement port of the microcomputer, a power supply is connected to a second analog measurement port of the microcomputer, and current flowing into the switch is detected using a value of voltage input into the first analog measurement port.
US11018664B2 Smart semiconductor switch
An integrated circuit that may be employed as a smart switch. The integrated circuit includes a first part of a semiconductor switch coupled between a supply node and an output node and configured to provide a first current path in accordance with a first drive signal. The integrated circuit further includes a second part of the semiconductor switch coupled between the supply node and the output node and configured to provide a second current path in accordance with a second drive signal. The integrated circuit includes a drive circuit configured to generate, in response to a switch-on command, the first drive signal and the second drive signal such that the first part of the semiconductor switch and the second part of the semiconductor switch are alternatingly switched on and off. During an overlap period, both the first and the second part of the semiconductor switch are in an on-state.
US11018662B2 AC coupling modules for bias ladders
A positive-logic FET switch stack that does not require a negative bias voltage, exhibits high isolation and low insertion/mismatch loss, and may withstand high RF voltages. Embodiments include a FET stack comprising series-coupled positive-logic FETs (i.e., FETs not requiring a negative voltage supply to turn OFF), series-coupled on at least one end by an “end-cap” FET of a type that turns OFF when its VGS is zero volts. The one or more end-cap FETs provide a selectable capacitive DC blocking function or a resistive signal path. Embodiments include a stack of FETs of only the zero VGS type, or a mix of positive-logic and zero VGS type FETs with end-cap FETs of the zero VGS type. Some embodiments withstand high RF voltages by including combinations of series or parallel coupled resistor ladders for the FET gate resistors, drain-source resistors, body charge control resistors, and one or more AC coupling modules.
US11018659B2 Comparator, AD converter, solid-state image pickup device, electronic device, method of controlling comparator, data writing circuit, data reading circuit, and data transferring circuit
An imaging device for improving the determining speed of a comparator and reducing power consumption. The comparator imaging device includes a differential input circuit that operates with a first power supply voltage, the differential input circuit outputs a signal when an input signal is higher than a reference signal in voltage, and a positive feedback circuit that operates with a second power supply voltage lower than the first power supply voltage. The positive feedback circuit accelerates transition speed when a compared result signal indicating a compared result between the input signal and the reference signal in voltage, is inverted, on the basis of the output signal of the differential input circuit. The imaging device further includes a voltage conversion circuit that converts the output signal of the differential input circuit into a signal corresponding to the second power supply voltage.
US11018657B1 Clock glitch alerting circuit
A clock glitch alerting circuit is configured to detect a glitch in an input clock signal, and activate and provide an alert signal to a security controller when the glitch is detected. The clock glitch alerting circuit is further configured to delay the input clock signal based on multiple selection signals, and provide one of a delayed clock output signal and a filtered clock output signal to the security controller based on the alert signal. The clock glitch alerting circuit is further configured to generate and provide a count value to the security controller that indicates a time duration available by the security controller to execute a security critical operation after receiving the activated alert signal.
US11018654B1 Temperature sensor with reduced power supply voltage sensitivity
Circuitry for determining temperature of an integrated circuit device includes, on the device, a ring oscillator and a bias current generator. The bias current generator is selectably operable in (i) a first mode having a first sensitivity to device temperature or (ii) a second mode having a second sensitivity to device temperature, to provide bias current for the ring oscillator. A controller operates the bias current generator in the first mode and records a frequency output of the ring oscillator, then operates the bias current generator in the second mode and records a frequency output of the ring oscillator, and determines the temperature of the integrated circuit device from a ratio of (a) the frequency output of the ring oscillator while the bias current generator operates in the first mode to (b) the frequency output of the ring oscillator while the bias current generator operates in the second mode.
US11018653B1 Low voltage clock swing tolerant sequential circuits for dynamic power savings
Systems, apparatuses, and methods for implementing low voltage clock swing sequential circuits are described. An input signal is coupled to the gates of a first P-type transistor and a first N-type transistor of a first transistor stack. A low voltage swing clock signal is coupled to the gate of a second N-type transistor of the first transistor stack. An inverse of the input signal is coupled to the gates of a second P-type transistor and a third N-type transistor of a second transistor stack. The low-swing clock is coupled to the gate of a fourth N-type transistor of the second transistor stack. A first end of one or more enabling P-Type transistors with gates coupled to the low-swing clock is coupled to the first P-type transistor's drain, and a second end of the one or more enabling P-Type transistors is coupled to the second P-type transistor's drain.
US11018646B2 Filter and front end circuit
A filter includes: first and second parallel resonant circuits including a first capacitor, a first line, a second capacitor, and a second line that are shunt-connected to a series pathway connecting the input and output terminals; and first to sixth vias penetrating through a second dielectric layer on which the first and second lines are disposed, the first via connecting the first line to the series pathway, the second via connecting the first line to the ground terminal, the third via connecting the first line at a position between the first and second vias to the first connection line at a first position, the fourth via connecting the second line to the series pathway, the fifth via connecting the second line to the ground terminal, the sixth via connecting the second line at a position between the fourth and fifth vias to the first connection line at a second position.
US11018643B2 Signal amplifier device
A signal amplifier device is provided to ensure the continuity of the gain of an amplifier. The signal amplifier device includes a main path and a sub path connected in parallel to the main path. A main path first amplifier circuit amplifies an input signal on the main path. A main path second amplifier circuit includes a common-gate transistor connected in series with an output of the main path first amplifier circuit without sharing a DC current. On the main sub path, the sub path amplifier circuit amplifies the input signal by using a gain lower than the maximum gain in the main path.
US11018638B2 Multimode envelope tracking circuit and related apparatus
A multimode envelope tracking (ET) circuit and related apparatus is provided. The multimode ET circuit is configured to provide an ET voltage(s) to an amplifier circuit(s) for amplifying a radio frequency (RF) signal(s) that may correspond to a wider range of modulation bandwidth. In this regard, the multimode ET circuit is configured to switch dynamically and opportunistically between different operation modes based on the modulation bandwidth of the RF signal(s). In examples discussed herein, the multimode ET circuit is configured to support a single amplifier circuit in a high-modulation-bandwidth mode and an additional amplifier circuit(s) in a mid-modulation-bandwidth mode and a low-modulation-bandwidth mode. By switching dynamically and opportunistically between different operation modes, it may be possible to reduce undesired series resonance that may cause distortion in the ET voltage(s), thus helping to improve efficiency and performance of the amplifier circuit(s) supported by the multimode ET circuit.
US11018632B2 Envelope tracking power amplifier module and envelope tracking method for the same
An envelope tracking power amplifier module and an envelope tracking method are provided. The envelope tracking power amplifier module includes a power amplifier and a linear amplifier coupled to the power amplifier and configured to receive and amplify an envelope signal and provide the amplified envelope signal to the power amplifier. The power amplifier is configured to receive and amplify a signal according to the amplified envelope signal. The envelope tracking method includes: providing a signal to the power amplifier; deriving an envelope phase of the signal, the envelope phase corresponding to an output power of the power amplifier; providing an envelope signal including the envelope phase to the envelope tracking module; the envelope tracking module providing the amplified envelope signal to the power amplifier; and the power amplifier amplifying the signal according to the amplified envelope signal and outputting the amplified signal at the output power.
US11018631B2 Switch circuits having integrated overdrive protection and related transmit/receive circuits and MMIC amplifiers
Monolithic microwave integrated circuits are provided that include a substrate, a transmit/receive selection device that is formed on the substrate, a high power amplifier formed on the substrate and coupled to a first RF port of the transmit/receive selection device, a low noise amplifier formed on the substrate and coupled to a second RF port of the transmit/receive selection device and a protection circuit that is coupled to a first control port of the transmit/receive selection device.
US11018629B2 Integrated multiple-path power amplifier
A multiple-path amplifier (e.g., a Doherty amplifier) includes a first transistor (e.g., a main amplifier FET), a second transistor (e.g., a peaking amplifier FET), a combining node, and a shunt-inductance circuit. The first and second amplifiers and the combining node structure are integrally-formed with a semiconductor die, and the shunt-inductance circuit is integrated with the die. Outputs of the first and second transistors are electrically coupled to the combining node structure. The shunt-inductance circuit is electrically coupled between the combining node structure and a ground reference node. The shunt-inductance circuit includes a shunt inductance (e.g., including wirebond(s) and/or spiral inductor(s)) that is integrated with the semiconductor die. The multiple-path amplifier also may include an integrated phase shifter/impedance inverter coupled between the outputs of the first and second transistors, and which is configured to impart a 90-degree phase delay between intrinsic drains of the first and second transistors.
US11018626B2 Temperature compensation for a voltage controlled oscillator
An apparatus that is comprised of a controller, a digital-to-analog converter (DAC), a temperature sensor, an analog-to-digital converter (ADC), and a voltage controlled oscillator (VCO). The controller to reads temperature data proportional to a temperature of the VCO, reads previously-calculated calibration data based on the read temperature data, determines a frequency command signal based on the read previously-calculated calibration data, and outputs the frequency command signal. The DAC converts the frequency command signal into a frequency analog signal. The temperature sensor produces the temperature signal. The ADC converts the temperature signal into the temperature data. The VCO produces an output frequency based on the frequency analog signal.
US11018620B2 Solar module skirt assembly
A solar module skirt assembly includes a skirt that is attached to a frame of a solar module, and a clip to attach the skirt to the solar module. The clip includes a first portion to attach to a frame of the solar module and to the skirt, a second portion to hold a portion of the frame of the solar module and a portion of the skirt, and a fastener to affix the clip to the frame of the solar module and the portion of the skirt.
US11018617B2 Rotation angle detection device and ac rotating machine control device
Provided is a rotation angle detection device, including: a rotation angle sensor; an input circuit configured to output a rotation angle signal and an abnormality signal; a calculation processing unit con tired to calculate a rotation angle calculation value and a rotation speed calculation value based on a rotation angle detection value at a predetermined preset calculation timing; and a rotation angle estimation processing unit configured to calculate a rotation angle estimation value after the calculation timing based on the rotation angle calculation value and the rotation speed calculation value. When the abnormality signal is received, the calculation processing unit calculates the rotation angle calculation value and the rotation speed calculation value based on the rotation angle estimation value, in place of the rotation angle detection value.
US11018611B2 Control apparatus for multi-phase rotating electric machine
A control apparatus for a multi-phase rotating electric machine includes at least one electric power converter, a command value calculator and an input voltage determiner. The at least one electric power converter converts DC power into multi-phase AC power and supplies the multi-phase AC power to the rotating electric machine. The command value calculator calculates command values for operating the at least one electric power converter. The input voltage determiner determines whether an input voltage of the at least one electric power converter is within a normal operation range. When the input voltage is determined by the input voltage determiner to be outside the normal operation range, the control apparatus switches control to ignore voltage change or current change caused by the reverse input of an external force to the rotating electric machine from a load side or suppress control fluctuation caused by the reverse input of the external force.
US11018610B2 Motor drive system and method
A motor drive and method of controlling a motor are provided. The motor drive includes a controller generating a motor reference voltage; a DC bus providing a DC voltage having a ripple; an inverter including power switches operable to convert the DC voltage into an AC motor voltage by modulating the power switches during a plurality of switching cycles, the AC motor voltage based on the motor reference voltage; a capacitor circuit coupled to the DC bus and having a maximum capacitance that is less than 10 microfarads per ampere of a rated current; and voltage prediction logic structured to: detect a voltage value corresponding of the ripple during each of the plurality of switching cycles; and modify the motor reference voltage during each of the plurality of switching cycles using the voltage value.
US11018602B2 Power generating element and power generating device
A power generating element is provided. The power generating element includes a pair of electrodes, an intermediate layer being insulating, and a substrate being flexible. The intermediate layer is disposed between the electrodes. The substrate is configured to support the electrodes and the intermediate layer. When the substrate undergoes a deformation, the intermediate layer is separated from or pressed against one of the electrodes.
US11018597B2 Flyback power converter circuit and control circuit and control method thereof
A flyback power converter circuit includes: a transformer; a primary side switch, for controlling a primary winding to convert an input voltage to an output voltage and an internal voltage; a primary side control circuit, which is powered by the internal voltage; the primary side control circuit generates a switching signal according to a feedback signal, to operate the primary side switch; a secondary side control circuit, which generates the feedback signal according the output voltage; and a dummy load circuit, which is coupled to the output voltage, wherein when the output voltage drops to or is lower than a predetermined threshold, the dummy load circuit generates a dummy load current, to determine the feedback signal, so that the internal voltage is not undesirably low. When the output voltage exceeds the predetermined threshold, the dummy load circuit adjusts the dummy load current to zero current.
US11018595B1 Secondary controlled AC-DC converter and methodology for low frequency operation
A secondary controlled AC-DC converter including an oscillator in a primary-side controller (PSC), and method for operating the same to enable soft-start and low frequency operation are provided. Generally, the method includes driving a power switch coupled between an AC input and a primary-side of the converter with a gate-drive (GD-signal). At startup and following auto-restart the GD-signal is generated using an oscillator-signal from the oscillator. After receiving start-stop pulses from a secondary-side controller, the oscillator-signal is decoupled from the GD-signal using a controller in the PSC, and the PSC begins generating the GD-signal using pulse-width-modulated (PWM) generated using the start-stop pulses. The oscillator operates at a first frequency independent of the PWM signal. The PWM signal includes one of a number of frequencies selected based on a power drawn from the converter, and, in low power applications can be less than the first frequency.
US11018588B2 DC/DC converter
There is provided a DC/DC converter that can eliminate the necessity of current sense resistors to thereby reduce the mounting area, improve the efficiency, and realize favorable transient characteristics. A multi-phase DC/DC converter with N phases (N is an integer equal to or greater than 2) is provided. A high-side transistor MH, a low-side transistor ML, and an inductor L are provided for each phase φ. Output power supply wiring connects a load side end of each of N inductors L1 to LN and a load. The output power supply wiring is branched from the load toward the load side ends of the N inductors L1 to LN. A coil current flowing through an inductor Li of an ith phase φi (i=1, 2, . . . N) is detected based on a voltage drop Vsi of a branch portion bri corresponding to the phase φi of the output power supply wiring.
US11018585B2 Switching regulator stability control circuit and methodology
A power stage output node stabilizer may be used to reduce ringing of a power stage output node of a switching DC-DC power converter. The power stage output node stabilizer may be a network of resistors and switches coupling the power stage output node to a higher voltage level and a lower voltage level.
US11018584B2 Adaptive minimum on time control for a switching regulator
A switching regulator includes a high side transistor coupled to an input voltage node. The switching regulator also includes a low side transistor coupled to the high side transistor at a switch node. An adaptive on-time control circuit is also included and is configured to cause the high side transistor to turn on for an adaptive period of time based on a ratio of an output voltage from the switching regulator to input voltage. The adaptive period of time is configured to occur responsive to a current through an inductor falling below a predetermined threshold.
US11018582B2 Adaptive synchronous rectification in a voltage converter
A circuit includes a first transistor and a second transistor coupled to the first transistor at a switch node and to a ground node. An estimator circuit receives a first signal to control an on and off state of the first transistor. The estimator circuit generates a second signal to control the on and off state of the second transistor. The second signal has a pulse width based on a pulse width of the first signal. A clocked comparator includes a clock input, a first input, and a second input. The first input receives a voltage indicative of a voltage of the switch node. The second input is coupled to a ground node. The clock input receives a third signal indicative of the second signal. The clocked comparator generates a comparator output signal. The estimator circuit adjusts the pulse width of the second signal based on the comparator output signal.
US11018581B2 Methods and devices for operating converters
A converter includes a first circuit. The first circuit includes a first input that receives a power supply signal, a second input that receives a first signal, and a first output that outputs a second signal having an amplitude that is based on a frequency of the first signal. The first signal is based on an error value and a third signal, and the third signal is independent of feedback of the first circuit. The converter also includes a second circuit having a second output coupled to the second input and that outputs the third signal. The second circuit nonlinearly adapts the third signal based on the power supply signal and a reference signal.
US11018580B2 Devices and methods for bypassing voltage regulation in voltage regulators
Devices and method for bypassing voltage regulation in voltage regulators. A voltage regulator may include a duty cycle component configured to determine whether a duty cycle of the voltage regulator is greater than a threshold duty cycle. The voltage regulator may also include a first sensing component configured to determine whether an output voltage of the voltage regulator is less than a first threshold voltage. The voltage regulator may further include a regulating component, coupled to the duty cycle component and the first sensing component, the regulating component configured to pass an input voltage to the output of the voltage regulator based on a first determination that the duty cycle is greater than the threshold duty cycle and a second determination that the output voltage of the voltage regulator is less than the first threshold voltage.
US11018573B2 Power supply ripple detector
A system and method for power supply ripple detection is disclosed. A voltage across one or more capacitors of the power supply is measured. An AC ripple voltage component of the capacitor voltage is then filtered and rectified into a DC signal. A level of ripple represented by the DC signal is then compared to threshold values to assess a health of the power supply. In one implementation, the power supplies provide power to control panels of one or more building management systems. The power supplies determine and report information concerning health of the power supplies to the control panels, the information including the DC signal itself and the result of the comparison of the DC signal to the threshold values. A cloud-based connected services system then receives and analyzes the information concerning health of the power supplies forwarded from control panels of multiple building management systems to determine trends.
US11018571B2 Regulation of an electronic voltage adapter module
An electric module for adapting a first signal of a first system to a second signal of a second system, including: a power supply source supplying a first signal; a converter module configured to convert the first signal into an intermediate signal; a microcontroller controlling and regulating the converter module; and an inverter module configured to output a signal compatible with a second signal of a second system.
US11018568B2 Servovalve with adjustable air gaps
A torque motor for a servovalve is provided, the torque motor comprising an armature and a first pole piece. The first pole piece has a first portion and a second portion that is selectively moveable relative to the first portion such that a size of an air gap formed between the second portion and the armature is adjusted in response to the movement of the second portion relative to the first portion.
US11018565B2 Axial flux electric machine and methods of assembling the same
A stator assembly for use in an axial flux electric motor includes at least one tooth tip and at least one stator tooth coupled to the at least one tooth tip, wherein the at least one stator tooth includes an insertable portion. The stator assembly also includes at least one stator base including at least one receiving slot configured to receive the insertable portion to form a mechanical joint between the at least one stator base and the at least one stator tooth.
US11018560B2 Methods circuits devices systems and functionally associated machine executable code for powering a machine monitoring unit
Disclosed are methods, circuits, devices, systems and functionally associated machine executable code for powering a machine monitoring unit. A machine monitoring unit (MMU) monitors operational parameters of a machine during operation. A set of machine emissions sensors, convert a machine emission of a specific type, generated by the machine during machine operation, into an electric signal containing information about one or more characteristics of the respective converted emission. Communication circuits to enable communication of the information within the signal to another device. A machine emission energy harvester harvests and converts energy emissions from the monitored machine into electric energy suitable to provide power for operation of the MMU.
US11018559B2 Spindle motor
A spindle motor is provided, the motor comprising: a base plate, a PCB on the base plate, a bearing assembly arranged on the base plate, a stator coupled to a periphery of the bearing assembly, a rotor rotationally coupled to the bearing assembly, the rotor including a yoke and a magnet, and a rotation shaft rotationally coupled to the bearing assembly. The base plate includes a planar portion and a protruding portion arranged along with a periphery of the yoke, the protruding portion being apart from the yoke. The base plate is partially covered with the PCB in a region where the stator is arranged. And, a height from the planar portion to an upper surface of the protruding portion is smaller than a height from the planar portion to a lower surface of the periphery of the yoke.
US11018558B2 Drum motor with frequency converter and optional belt tension sensor
A drum motor, comprises a drum tube having a cavity formed therein and a longitudinal axis, a shaft, which runs in the longitudinal axis and on which the drum tube is mounted by means of at least one rotary bearing, an electric synchronous drive unit arranged in the cavity of the drum tube, having a stator and a rotor, which are arranged in the longitudinal axis of the drum tube and wherein the rotor is connected to the drum tube and the stator is connected to the shaft, and a control unit for controlling the synchronous drive unit. The control unit of the drum motor has a frequency converter and is fastened directly to the shaft.
US11018557B2 Speed detection apparatus of rotational shaft in robot arm
An speed detection apparatus of a rotational shaft in a robot arm that is applied to a drive mechanism is provided. The speed detection apparatus includes: first and second rotation sensors that are disposed on a side of a rotational shaft of the robot arm and outputs first and second rotational position signals with a phase difference of 90 degrees; first and second differentiators that differentiate the first and second rotational position signals; and a speed calculator that obtains a rotational speed of the robot arm by calculating a sum of squares of a first differential signal and a second differential signal.
US11018555B2 Induction motor rotor cooling design
An induction motor includes a motor shaft, a rotor, and a rotor conductor bar. In some embodiments described herein, the rotor has a first axial side and a second axial side, and is non-rotatably secured to the motor shaft. The rotor includes a rotor core having an interior surface defining a slot extending from the first axial side to the second axial side. The rotor conductor bar is disposed in the slot. The rotor conductor bar and the slot cooperate to define a channel configured to transfer a fluid through the rotor core from the first axial side to the second axial side while directly contacting the rotor conductor bar.
US11018554B2 Method of generating hydro electric energy in rivers and streams without dams and/or locks
A method of generating hydro-electric energy utilizing a conduit located beneath the surface of a river or stream to feed water into a hydro-electric turbine, eliminating the need to build costly and time-consuming dams and locks.
US11018553B2 Electrical machine disconnection systems
A hybrid drive system can include a shaft, an electrical machine comprising a rotor and a stator, and a mechanical disconnect system connecting the rotor to the shaft. The mechanical disconnect system is configured to mechanically connect the rotor to the shaft in a first state and to mechanically disconnect the rotor from the shaft in a second state such that rotor does not drive the shaft or such that the rotor is not driven by the shaft. The rotor can be a permanent magnet rotor, for example.
US11018551B2 Motor
Provided is a motor which includes a housing and a stator disposed in the housing and a rotor disposed in the stator and a busbar disposed on one side of the stator, wherein the stator includes a stator core and a coil wound around the stator core and an insulator disposed between the stator core and the coil, the insulator includes a first insulator and a second insulator wherein the busbar includes a guide, wherein the guide is disposed between a first insulator and a second insulator.
US11018550B2 Rotary electric machine
Provided is a rotary electric machine that decreases the rigidity of a frame into which a stator core is press-fitted and is also able to maintain the circularity of the frame. The rotary electric machine includes a rotatably held rotor, a stator having a stator core on which a coil is wound and which is disposed so as to oppose the rotor, and an annular frame holding the stator core. The frame has a tubular drum portion holding the stator core and a plurality of flange portions, and a plurality of grooves are formed on an end portion of the drum portion in an axial direction of the drum portion by cutting the drum portion.
US11018547B2 Electric motor
An electric motor includes a rotor with a rotor shaft mounted in at least one bearing bush of a friction bearing, a stator which surrounds the rotor, and at least one circular bearing plate which, relative to the rotor shaft, is mounted on the rotor shaft for co-rotation. An inner contour of the bearing plate surrounds a circumference of the rotor shaft by press-fit. The inner contour of the bearing plate is defined by at least two internal dimensions, wherein at least one internal dimension is smaller than the diameter of the rotor shaft. The at least one bearing plate is deformed in an axial direction when the bearing plate is in the pressed-in state on the rotor shaft.
US11018545B2 Electric machine winding assembly
An electric machine winding assembly including a stator and windings is provided. The stator may define a central axis. The windings may extend from the stator and each may include a pair of conductor ends. Each conductor end may include a minor side and a major side. The windings are arranged with the stator such that each of the major sides are aligned along a circumferential conductor axis relative to the central axis to facilitate welding adjacent conductor ends to one another. Each of the windings may further include two portions defining a U shape. Each of the two portions may include a lower portion, a mid-portion, and an upper portion. One of the mid-portions may include a first bend defining a twist shape to orient the major sides of one of the pair of conductor ends along the circumferential conductor axis.
US11018544B2 Motor
A motor includes a rotor having a shaft centered on a central axis that extends in an axial direction, a stator which is disposed to face the rotor and includes a plurality of coils, a housing in which the rotor and the stator are housed, and a bus bar assembly that is disposed on one side of the shaft in the axial direction, wherein the bus bar assembly includes a plurality of bus bars that are electrically connected to the plurality of coils of the stator and a bus bar holder that holds the plurality of bus bars, and wherein at least one bus bar among the plurality of bus bars is placed on a disposition surface part provided on the bus bar holder and extends in a direction crossing the central axis.
US11018534B2 Rotor, motor including rotor, and power unit including motor
A rotor is located around an outer periphery of a rotation shaft of a motor and rotates together with the rotation shaft. The rotor includes magnetic steel plates laminated in an axial direction and including a through-hole group passing therethrough in the axial direction. The through-hole group includes through-holes each including, as a central line, an imaginary line extending in the radial direction and having an arcuate shape extending from the central line to both sides and radially outward. The through-holes are arranged in the radial direction. Among the through-holes, a radius of curvature of an arcuate radially inner side surface of the radially innermost through-hole is the smallest, and/or a radius of curvature of an arcuate radially outer side surface of the radially outermost through-hole is the largest.
US11018532B2 Wireless power charger
A wireless power charger (WPC) integrated into a charging pad (CP) includes a wireless power transmitter (WPT), a location sense mechanism (LSM), a transport mechanism (TM) and a Central Control Unit (CCU). The LSM discovers and conveys the position of a portable device to the CCU when the device is placed on the CP to have its battery wirelessly charged. The LSM uses RF signaling and other capabilities in wireless connectivity standards to detect location of device. With information from the LSM, the CCU, via the TM, moves the WPTM in close proximity to the device. Once at the device position, the WPTM senses the location of the receiver coil in the device, adjusts its position via the TM to gain strong alignment and provides power wirelessly. When charging is complete or if the device is removed from the charging pad, the WPTM returns to its home-base location.
US11018524B2 Induction driven lighting
An inductive power system including an inductive power transmitter coupled to a non-conductive medium, and a power cord that electrically couples the transmitter to an AC power source. The inductive power transmitter is configured to emit an electromagnetic field based on the received AC power. There is an inductive power receiver coupled to the non-conductive medium and separated from the transmitter, wherein the receiver is configured to receive the electromagnetic field after it has passed through the non-conductive medium and in response develop power. A power cord electrically couples the developed power to a power sink.
US11018523B2 Utility grid, intermittent energy management system
A method for controlling an operating condition of an electric power grid having an intermittent power supply coupled thereto, comprising: using an energy variability controller, controlling variability of a delivered power output of the intermittent power supply to the grid by: monitoring an actual environmental value for a location proximate the intermittent power supply, an available power output of the intermittent power supply being dependent on the actual environmental value; when the actual environmental value is increasing and hence the available power output is increasing, increasing the delivered power output according to a predetermined rate of increase; monitoring a forecast environmental value for the location; when the forecast environmental value is decreasing, decreasing the delivered power output according to a predetermined rate of decrease; and, limiting the delivered power output to below a predetermined threshold. The electric power grid may be or may include an electric power microgrid.
US11018518B2 Intelligent wireless charging control method, device, and system
A method for intelligently controlling a wireless charging receiving device, where the method includes obtaining at least one of a first environment parameter, a first status parameter, or a first historical record of a wireless charging receiving device, setting a wireless charging requirement according to at least one of the first environment parameter, the first status parameter, or the first historical record, transmitting the wireless charging requirement to a wireless charging transmission device, receiving an energy signal, generating a wireless charging stop instruction according to the wireless charging requirement or a user instruction, and sending the wireless charging stop instruction to the wireless charging transmission device. Therefore, intelligent control over a wireless charging process is implemented, a personalized requirement of a user is satisfied, and user experience is improved.
US11018515B2 Secondary-battery protection circuit and battery pack
A secondary-battery protection circuit is configured to, in response to detecting that a first switching circuit is turned on and a second switching circuit is turned on, supply a first output voltage to a first load between a first terminal and a second terminal; and supply a third output voltage to a second load between the first terminal and a third terminal, the third output voltage indicating the sum of the first output voltage and a second output voltage, the second output voltage corresponding to a voltage across a second secondary battery. In response to detecting that the first switching circuit is turned off and the second switching circuit is turned on, the secondary-battery protection circuit is configured to stop supplying the first output voltage to the first load; and stop supplying the third output voltage via the first terminal and the third terminal.
US11018514B2 Electronic device and control method
An electronic device comprises a connector that receives power supplied from a power supply apparatus, a charging unit that charges a battery using power received from the power supply apparatus, and a testing unit that tests a power supply capability of the power supply apparatus by passing current supplied from the power supply apparatus to a load unit in a state where receiving power from the power supply apparatus is limited by the charging unit.
US11018512B2 Energy storage device charge balancing
In some examples, a controller may determine, from among a plurality of energy storage units, a first energy storage unit having a higher than median charge and a second energy storage unit having a lower than median charge. The controller may connect the first energy storage unit to a resonant circuit to transfer energy from the first energy storage unit to the resonant circuit. The controller may then disconnect the first energy storage unit from the resonant circuit, and connect the second energy storage unit to the resonant circuit to transfer energy from the resonant circuit to the second energy storage unit to at least partially balance a charge difference between the first energy storage unit and the second energy storage unit.
US11018508B1 Electrical power generating system
An electrical power generating system for providing auxiliary or backup power to a load bus. The system may be used indoors, and generally includes a fuel cell unit comprising a first DC output, an electrical storage unit comprising a DC input coupled to the first DC output of the fuel cell, the electrical storage unit further comprising a second DC output. An inverter coupled to the second DC output receives power, the inverter comprising a first AC output. The system includes a contactor connected between the first AC output and an AC load bus. The AC load bus comprises an AC voltage, and a controller comprising inputs is adapted to sense a phase, a frequency, and a magnitude of the first AC output and the AC voltage and close the contactor when they substantially match.
US11018507B2 Detection apparatus, power conditioner, detection method, and computer readable medium
An islanding operation is detected appropriately through interconnection to the power grid which may have various characteristics. A detection apparatus is provided, which includes a frequency parameter calculation unit configured to calculate frequency parameters according to frequencies of power supplied by a power supply, a deviation parameter calculation unit configured to calculate a deviation parameter according to a frequency deviation based on the frequency parameters in a first term and the frequency parameters in a second term earlier than the first term, an islanding operation detection unit configured to detect whether the power supply is in an islanding operation based on the deviation parameter, and a time gap change unit configured to change a time gap between the first term and the second term.
US11018504B2 Intermediate power supply unit for distributing lower voltage power to remote power distribution systems
An intermediate power supply unit for distributing lower voltage power to remote devices is disclosed. The intermediate power supply unit includes a higher voltage power input configured to receive power distributed by a power source and a power coupling circuit configured to couple the higher voltage power input to a plurality of power coupling outputs. If it is determined that a wire coupling the power source to the higher voltage power input is touched, the higher voltage power input is decoupled from the power coupling outputs. The intermediate power supply unit also includes a power converter circuit configured to convert voltage on higher voltage inputs to a lower voltage applied to one or more lower voltage outputs. The power converter circuit is also configured to distribute power from the one or more lower voltage outputs over a power conductor coupled to an assigned remote device.
US11018501B2 Directional overcurrent relay using superconducting fault current limiter voltage and method for correcting the same
A directional overcurrent relay using a superconducting fault current limiter voltage as a relay element includes: a current measuring circuit measuring a current of a line connected from a system power source to a load, a voltage measuring circuit measuring a voltage at both ends of a superconducting fault current limiter connected to the line, and a correcting circuit correcting a tripping time Ttrip by using a fault current If that is the current of the line and a superconducting fault current limiter voltage VSFCL that is the voltage at both ends of the superconducting fault current limiter and the tripping time Ttrip is maintained consistently regardless of whether the superconducting fault current limiter operates or not.
US11018499B2 Single phase fault isolation and restoration for power distribution network
A method for controlling a power distribution network includes receiving, by an electronic processor, a fault indication associated with a fault in the power distribution network from a first isolation device of a plurality of isolation devices. The processor identifies a first subset of a plurality of phases associated with the fault indication and a second subset of the plurality of phases not associated with the fault indication. The first and second subsets each include at least one member. The processor identifies an upstream isolation device upstream of the fault. The processor identifies a downstream isolation device downstream of the fault. The processor sends an open command to the downstream isolation device for each phase in the first subset. Responsive to the first isolation device not being the upstream isolation device, the processor sends a close command to the first isolation device for each phase in the first subset.
US11018498B2 Emarker-equipped cable and power management method thereof
An eMarker device is used in a cable electrically connected between a first port and a second port, wherein the cable includes a configuration channel communication wire. The eMarker device comprises: a first eMarker disposed near the first port and including a first active protection module coupled to the configuration channel communication wire, wherein the first eMarker is electrically connected to a first power pin of the first port and a second power pin of the second port; and a second eMarker disposed near the second port and including a second active protection module coupled to the configuration channel communication wire, wherein either of the first active protection module and the second active protection module changes an electric characteristic of the configuration channel communication wire to have the first port detect a disconnecting status of the second port when a specified event happens.
US11018486B2 Module of a seal or transition
The present invention concerns a module (1) of a seal or transition for cables or wires, which module (1) is to be placed inside a frame (10) together with one or more compression units (12). The module (1) comprises two module halves (2). Each module half comprises an outer part (3, 17, 19, 21, 23, 25, 27, 30, 33). The outer part has a straight section (3′) and two end sections (3″) at the ends of the straight section and placed perpendicular to the straight section, giving a U-form in end view. An inner part (5, 18, 20, 22, 24, 26, 28, 31, 34) is placed in a recess (4) formed between the end sections of the outer part (3, 17, 19, 21, 23, 25, 27, 30, 33). The inner part (5, 18, 20, 22, 24, 26, 28, 31, 34) has a number of layers (6).
US11018485B2 Explosion-proof structure
An explosion-proof structure includes a partition wall that partitions a sealed space in a container and wiring that connects the interior and the exterior of the sealed space. The partition wall includes a filling portion through which the wiring passes. The filling portion includes an inner peripheral wall surface that defines an opening having a central axis that passes through the partition wall, a filler that seals a gap between the inner peripheral wall surface and the wiring, a first peripheral groove provided on the inner peripheral wall surface and filled with the filler, and a second peripheral groove provided on the inner peripheral wall surface and filled with the filler. This explosion-proof structure is capable of improving the seal of the filling portion.
US11018479B2 Distribution board
Provided is a distribution board which includes a plurality of breaker units which are disposed so as to be inserted and removed, through a front side of a housing, in a front-rear direction, relative to a vertical bus disposed on an inner depth side of the housing so as to extend in an up-down direction, the plurality of breaker units being electrically connected to and disconnected from the vertical bus by insertion and removal operation. In the distribution board, the breaker units include a first breaker unit and a second breaker unit that are aligned in line in a horizontal direction and that can be individually inserted and removed, and the vertical bus includes a first vertical bus corresponding to the first breaker unit and a second vertical bus corresponding to the second breaker unit.
US11018472B2 Semiconductor light emitting device
A semiconductor light emitting device includes a mount section having an insulating property connected to a heat sink, a plurality of semiconductor laser elements disposed on the mount section, and a heat radiation block having an insulating property disposed on the plurality of semiconductor laser elements. A first wiring made of a metal is disposed on an upper surface of the mount section, and a second wiring made of a metal is disposed on a lower surface of the heat radiation block, a part of the second wiring being electrically connected to the first wiring. By electrically connecting the first wiring and the second wiring to each of the plurality of semiconductor laser elements, the plurality of semiconductor laser elements are connected in series, and have a same polarity with each other at a side that each of the plurality of semiconductor laser elements is connected to the first wiring.
US11018471B2 Method of producing light emitting device
A method of producing a light emitting device includes: providing a fluorescent material; dividing a plurality of laser elements into a shorter-wavelength group and a longer-wavelength group so that lights emitted from the laser elements in the shorter-wavelength group have peak wavelengths shorter than an excitation peak wavelength of the fluorescent material and lights emitted from the laser elements in the longer-wavelength group have peak wavelengths longer than the excitation peak wavelength of the fluorescent material; and selecting one or more of the laser elements from each of the shorter-wavelength group and the longer-wavelength group in combination with the fluorescent material to produce a light emitting device.
US11018463B2 Coaxial cable connector with integrated grounding member
A coaxial cable connector includes a nut; and a connector body coupled with the nut, the connector body including a plurality of inner fingers 122 separated from each other by a plurality of gaps 124, wherein the inner fingers 122 extend from a forward end of the connector body 116 in a forward direction and biased radially outwardly to provide sufficient electrical contact with the nut 112 when inserted within the end of the nut 112.
US11018450B2 Connector position assurance device, connector system and method for operating the connector system
A connector position assurance device having multiple features for assuring a full coupling and locking of a female housing with a male housing in a connector system, such that the female housing and male housing are placed into a fully coupled and locked position when the connector position assurance device is moved from a pre-lock position to a full-lock position. When the connector position assurance device is at a full-lock position, a first member on the connector position assurance penetrates a window formed on the female housing, and at least one ledge extending from the connector position assurance device prevents a flexible member of the female housing from being moved downward, providing assurance that the female and male housings are fully coupled and locked together.
US11018446B2 Connector
A male housing (12) includes a housing body (23) with a fitting space (28) that accommodates tabs (20) of male terminal fittings (11). An accommodation space (29) is rearward of the fitting space (28) and accommodates a sealing plug (17). An outer peripheral portion (24) of the male housing (12) defines an outer periphery of the accommodation space (29). An inner surface of the outer peripheral portion (24) closely contacts the sealing plug (17), and plate locks (44) project into the fitting space (28). A moving plate (14) to be locked by the plate locks (44) is arranged in the fitting space (28). The male housing (12) includes communication spaces (35) between the housing body (23) and the outer peripheral portion (24) and behind the plate locks (44). The communication spaces (35) allow communication between the fitting space (28) and the accommodation space (29).
US11018444B2 Multi-mode and/or multi-speed non-volatile memory (NVM) express (NVMe) over fabrics (NVMe-of) device
In an example, a device includes: a printed circuit board (PCB); at least one solid state drive (SSD) connected at a first side of the PCB via at least one SSD connector; at least one field programmable gate array (FPGA) mounted on the PCB at a second side of the PCB; and at least one connector attached to the PCB at a third side of the PCB, wherein the device is configured to operate in a first speed from a plurality of operating speeds based on a first input received via the at least one connector.
US11018434B2 Antenna apparatus, and manufacturing method
An antenna apparatus includes a first dielectric substrate including a first surface and a second surface opposite to the first surface, a radiating element located on the first surface or in the first dielectric substrate, a first electrode on the second surface, a first conductor provided through the first dielectric substrate from the first surface to the second surface, to connect electrically the radiating element and the first electrode, a second dielectric substrate including a third surface and a fourth surface opposite to the third surface, an adhesive layer between the second surface and the third surface, a second electrode on the third surface, a first signal line located on the fourth surface or in the second dielectric substrate, and a second conductor provided through the second dielectric substrate from the third surface to the fourth surface, to connect electrically the second electrode and the first signal line.
US11018428B2 Patch antenna feed
Present teachings relate to an antenna arrangement comprising, a first substrate comprising a first surface and a second surface, the first surface and the second surface being opposite sides of the first substrate, a second substrate comprising a third surface and a fourth surface, the third surface and the fourth surface being opposite sides of the second substrate, a patch antenna being realized in a first electrically conductive material attached to the first surface, a ground plane being realized in a second electrically conductive material attached to the second surface, and at least two feeds realized in a third electrically conductive material attached at least partially to the fourth surface. The patch antenna is arranged with respect to the ground plane so as to form a resonant antenna. The first substrate and the second substrate are adapted to be held in close proximity or in contact such that the third surface is facing the second surface, and each of said at least two feeds are having an individual corresponding opening in the ground plane for capacitively coupling each of said at least two feeds to the patch antenna, wherein footprint of each of said at least two feeds is smaller than footprint of its corresponding opening in the ground plane. Present teachings also relate to an antenna arrangement where the second substrate is replaced by a dielectric layer, and to a wireless device comprising the antenna arrangement.
US11018422B2 Semiconductor device package and method of manufacturing the same
A semiconductor device package includes a substrate, a first antenna pattern and a second antenna pattern. The substrate has a first surface and a second surface opposite to the first surface. The first antenna pattern is disposed over the first surface of the substrate. The first antenna pattern has a first bandwidth. The second antenna pattern is disposed over the first antenna pattern. The second antenna pattern has a second bandwidth different from the first bandwidth. The first antenna pattern and the second antenna pattern are at least partially overlapping in a direction perpendicular to the first surface of the substrate.
US11018421B2 Tunable matching network for antenna systems
A communication system is provided, including an antenna, a matching network coupled to the antenna, a controller configured to control the matching network, and a look-up table coupled to the controller. The look-up table includes characterization data according to frequency bands and conditions. The controller is configured to refer to the look-up table to determine optimum impedance for a frequency band selected under a condition detected during a time interval, and adjust the matching network to provide the optimum impedance.
US11018420B2 Display device and communication system
A display device includes a display panel displaying an image, a transparent antenna substrate arranged on one surface of the display panel and having transparency, a first conductive film having a mesh shape and arranged on a surface of the transparent antenna substrate opposite to the display panel, and a second conductive film having a mesh shape and arranged on a surface of the transparent antenna substrate facing the display panel. The first conductive film includes an antenna body portion having a thin film pattern and insulated from a surrounding portion by a slit, and the antenna body portion constitutes a transparent antenna performing wireless communication with an external communication device.
US11018419B2 Radome
The invention relates to a radome having a substantially extensive front plate the front face of which is transparent and the rear face of which is provided with an opaque layer, at least one cutout being provided in the opaque layer and acting as a light passage, in particular for a radar sensor for a motor vehicle.
US11018418B2 Chip antenna and chip antenna module including the same
A chip antenna includes a radiation portion having a block shape and a first surface and a second surface opposing each other, and configured to receive and radiate a feed signal as an electromagnetic wave; a first block made of a dielectric material and coupled to the first surface of the radiation portion; a second block made of a dielectric material and coupled to the second surface of the radiation portion; a ground portion having a block shape and coupled to the first block, and configured to reflect the electromagnetic wave radiated by the radiation portion back toward the radiation portion; and a director having a block shape and coupled to the second block, wherein an overall width of the ground portion, the first block, and the radiation portion is 2 mm or less, and the first block has a dielectric constant of 3.5 or more to 25 or less.
US11018413B2 Apparatus comprising an antenna and a ground plane, and a method of manufacture
An apparatus including a portion of a first external housing sidewall; an antenna at least partially encapsulated by the portion of the first external housing sidewall; a portion of a second external housing sidewall opposing the first external housing sidewall; an internal rigid chassis extending laterally from within the portion of a first housing sidewall to within the portion of the second housing sidewall, wherein the rigid chassis provides a ground plane for the antenna.
US11018408B2 Antenna apparatus in wireless communication device
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). An apparatus comprising an antenna includes a board having a stack structure, wherein the board comprises a first layer and a second layer, and at least one radiating unit disposed between the first layer and the second layer. Further, the present invention also includes embodiments different from the above-described embodiment.
US11018407B2 Electronic device
According to a notebook-sized personal computer of an embodiment, a base housing retains an arithmetic unit, an antenna having antenna elements, and covers. An LCD housing retains an LCD. Hinges rotatably couple the base housing and the LCD housing to each other. In the base housing, a pair of depression sections are formed by depressing both ends of one side thereof. In each of the pair of depression sections, an antenna element is accommodated. On the base housing, to end sections respectively adjacent to the pair of depression sections along the one side of the base housing, the hinges are respectively provided. The covers respectively accommodate each of the antenna elements, and are constituted of a material through which a radio wave is passed.
US11018405B2 Dielectric resonator, dielectric filter using dielectric resonator, transceiver, and base station
A dielectric resonator, a dielectric filter using the dielectric resonator, a transceiver, and a base station. The dielectric filter includes a body made of a solid-state dielectric material, where a plurality of indentations are disposed at a first surface of the body and where at least one of a hole or a groove is disposed between adjacent indentations of the plurality of indentations, and a conducting layer, wherein the first surface and other surfaces of the body, surfaces of the plurality of the indentations, and an interior of the at least one of the hole or the groove are covered with the conducting layer.
US11018401B2 Flared dielectric coupling system and methods for use therewith
In accordance with one or more embodiments, a dielectric coupler includes a neck portion configured to receive a first electromagnetic wave from a hollow waveguide. A flared portion is configured to generate, responsive to the first electromagnetic wave, a second electromagnetic wave along a surface of a transmission medium, wherein the flared portion at least partially surrounds the transmission medium, wherein the second electromagnetic wave propagates along the surface of the transmission medium without requiring an electrical return path. A tapered portion is configured to interface the neck portion to the flared portion.
US11018397B2 Thermal runaway shield
A thermal runaway protection system for serially-connected battery cells, comprises a flexible thermal runaway shield (“TRS”) and a channel separator. The flexible TRS is configured to be disposed around the serially-connected battery cells. The channel separator is configured to be disposed at a positive cap of one of the serially-connected battery cells. The channel separator comprises a body and a via configured to electrically connect two sides of the channel separator. The body has a raised outer ring with a gap for venting gas during thermal runaway. The raised outer ring is configured to be in contact with the positive cap. The flexible TRS has an opening aligned to the gap of the outer ring.
US11018394B2 Top loading battery holder
A top loading battery holder that is arranged in direct contact with a surface (e.g., circuit board) to allow for a battery to be arranged directly within the holder and in electrical contact with the surface. The battery holder can include a housing that is configured to at least substantially surround a battery that is arranged therein and a plurality of a flanges and/or protrusions that are configured to extend inwardly from the housing to aid in securing the battery within the housing.
US11018393B2 Battery frame
A battery frame (1) is provided for accommodating battery modules in a motor vehicle that can be driven electrically at times. The battery frame (1) has two outer longitudinal members (2) spaced apart from one another and outer (3) and inner crossmembers (4) connected thereto. Receptacles (5) for the battery modules are formed between the crossmembers (3, 4). Each outer longitudinal member (2) has a C-shaped profile. Ends of the inner crossmembers (4) engage in the C profile of the respective longitudinal member (2) via a deformation element (7). Thus, the battery frame has good crash performance in the event of a pole impact, and a relatively large accommodating volume.
US11018390B2 Lid for storage battery, injection molding method of the same lid, storage battery with the same lid, and terminal section for storage battery
An object of the invention is to provide a lid for storage battery comprising a terminal having a rectangular parallelepiped shape and a cavity portion, and a nut having a rectangular parallelepiped shape and being inserted into the cavity portion. The terminal has a first through-hole extending from an upper surface toward a lower surface of the terminal and a second through-hole extending from a front surface toward a rear plate portion of the terminal. The nut has a first screw hole extending from an upper surface toward a lower surface of the nut, and a second screw hole extending from a front surface toward a back surface of the nut, the first and second screw holes communicating with the first and second through-holes of the terminal, respectively. A direction in which the first screw hole extends does not intersect with a direction in which the second screw hole extends.
US11018385B2 Multi-domained sulfur electrodes, and manufacturing therefor
Provided herein are positive electrodes for lithium batteries, particularly lithium sulfur batteries, and the manufacture thereof. Particularly, such electrodes have good performance characteristics, such as capacity and capacity retention, even at very high loading of sulfur (e.g., >5 mg/cm2), as well as flexibility. Exemplary manufacturing techniques include the electrospraying of sulfur (e.g., electrode active sulfur compounds), and an optional additive (e.g., a nanostructured conductive additive), onto a porous, conductive substrate (e.g., a porous carbon substrate, such as comprising multiple layers and/or domains).
US11018370B2 Separator with wide temperature range and low shrinkage as well as method for preparing the same
The invention discloses a separator with a wide temperature range and a low heat shrinkage and a method for preparing the same. The invention belongs to the field of electrochemistry. The separator of the invention includes: an irradiation crosslinked fluoropolymer A with a melting point above 150° C. and/or a polymer B containing a benzene ring in its main chain; an ultrahigh molecular weight polyethylene having a molecular weight of 1.0×106-10.0×106, and a high density polyethylene having a density in the range of 0.940-0.976 g/cm3; the temperature difference between pore closing temperature and film breaking temperature of the separator is 80-90° C., preferably 85-90° C., the heat shrinkage of the separator is 2.0% or less. The separator of the invention has a high temperature difference between film breaking temperature and pore closing temperature, and a low heat shrinkage; when the separator of the invention is used in an electrochemical device, the reliability and safety of electrochemical device can be effectively improved.
US11018360B2 Fuel cell system
The fuel cell system includes a fuel cell, a hydrogen circulation pump, heating portion, and a controller. The hydrogen circulation pump is configured to circulate hydrogen to the fuel cell and includes a cylinder and a rotor accommodated in the cylinder. The heating portion is configured to heat the cylinder. The controller is configured to control an operation of the heating portion. The controller is configured to cause the heating portion to heat the cylinder in a case where a driving state of the hydrogen circulation pump is higher than or equal to a standard driving state.
US11018355B2 Fuel cell system and control method of fuel cell system
A fuel cell system includes: an air compressor that sends out oxidant gas to a fuel cell stack, including a motor, a housing, and an impeller; an oxidant gas supply and discharge passage; a pressure-regulating valve; and a controller. The controller executes at least one of a first process and a second process, the first process being executed for increasing a speed of the impeller after decreasing an opening degree of the pressure-regulating valve in a first operation where both decreasing the opening degree of the pressure-regulating valve and increasing the speed of the impeller are performed, the second process being executed for increasing the opening degree of the pressure-regulating valve after decreasing the speed in a second operation where both increasing the opening degree of the pressure-regulating valve and decreasing the speed are performed.
US11018354B2 Fuel cell system
A fuel cell system includes: a fuel cell; an air discharge passage configured to discharge an air exhaust gas from the fuel cell; a back pressure adjusting valve provided in the air discharge passage and configured to adjust pressure of the air exhaust gas; a cooling device configured to cool the fuel cell by carrying out heat exchange using a heat medium; a water reservoir storing water; a high pressure introduction passage connecting an upstream side of the air discharge passage which is more upstream than the back pressure adjusting valve in an air flow direction to the water reservoir; and a sprinkling device configured to sprinkle the water of the water reservoir over the cooling device. The sprinkling device is configured to sprinkle the water of the water reservoir pumped by pressure of the air exhaust gas over the cooling device.
US11018353B2 Fuel cell separator member and fuel cell stack
A first separator constituting a separator member of a fuel cell stack is provided with a first rib that protrudes from the first separator at a portion between a first seal line and a load receiving portion toward a second separator located on the opposite side across an MEA and that extends in a line along the extending direction of the first seal line. An opening is formed in at least one end of the first rib in the extending direction thereof.
US11018351B2 Single cell structure for fuel cell
A single cell structure for a fuel cell includes: a framed membrane electrode assembly; a pair of separators disposed on both sides of the framed membrane electrode assembly; a gas channel portion which is formed between one of the pair of separators and the membrane electrode assembly, and to which gas is supplied; a manifold portion having a hole that penetrates the frame and the separator in a stacking direction; a protrusion that protrudes from at least one of the pair of separators toward the framed membrane electrode assembly to support the frame near the manifold portion; an extended portion of the frame that extends toward the manifold portion beyond the protrusion; and a gas flowing portion that is formed at the extended portion to supply the gas from the manifold portion to the gas channel portion. The gas flowing portion includes a bump that is disposed at the extended portion of the frame.
US11018348B2 Cathode and lithium-air battery using the same
A cathode of a lithium-air battery includes a carbon nanotube composite film and a protecting layer. The carbon nanotube composite film includes a carbon nanotube network structure and a catalyst in particle form located in the carbon nanotube network structure. The carbon nanotube composite film is disposed on a surface of the protecting layer. The protecting layer allows conduction of lithium ions while preventing organic substances in an electrolyte of the lithium-air battery reaching the carbon nanotube composite film. A lithium-air battery is also disclosed.
US11018346B2 Catalyst coating of a perovskite film and particles exsoluted from the perovskite film
A hybrid catalyst coating composed of a conformal thin film with exsoluted PrOx nano-particles. The conformal PNM thin film can be a perovskite composition of PrNi0.5Mn0.5O3 (PNM). The PrOx nano-particles dramatically enhance the oxygen reduction reaction kinetics via a high concentration of oxygen vacancies while the thin PNM film effectively suppresses strontium segregation from the cathode of an intermediate-temperature solid oxide fuel cell.
US11018345B2 Method and electrochemical cell for managing electrochemical reactions
A method and/or electrochemical cell for utilising one or more gas diffusion electrodes (GDEs) in an electrochemical cell, the one or more gas diffusion electrodes have a wetting pressure and/or a bubble point exceeding 0.2 bar. The one or more gas diffusion electrodes can be subjected to a pressure differential between a liquid side and a gas side. A pressure on the liquid side of the GDE over the gas side does not exceed the wetting pressure of the GDE during operation (in cases where a liquid electrolyte side has higher pressure), and/or a pressure on the gas side of the GDE over the liquid side, does not exceeds the bubble point of the GDE (in cases where the gas side has the higher pressure).
US11018343B1 Current collector surface treatment
Energy storage devices, battery cells, and batteries of the present technology may include a first current collector, and may include a second current collector. At least one of the first current collector and the second current collector may be a metal current collector. The battery cells may include a seal between an external region of the first current collector and an external region of the second current collector. The seal may be coupled with a first portion of a first surface of the first current collector, and may be coupled with a first portion of a first surface of the second current collector. The battery cells may also include a coupling material positioned between the seal and the first portion of the first surface of the first current collector. The coupling material may also be positioned between the seal and the first portion of the first surface of the second current collector.
US11018341B2 Binder composition for secondary battery
A purpose of the present invention is to provide a binder composition for a secondary battery which can impart excellent battery characteristics, even when the heat treatment temperature is low. The binder composition for a secondary battery according to the present invention is characterized by comprising a polyamic acid comprising a repeating unit represented by chemical formula (1) and an aromatic compound comprising an electron donating group and an organic acid group, wherein A is a tetravalent group obtained by removing acid anhydride groups from a tetracarboxylic dianhydride, B is a divalent group obtained by removing amino groups from a diamine, and at least one of A and B is an aliphatic group.
US11018338B2 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
Provided is a positive electrode active material for nonaqueous electrolyte secondary batteries that is represented by the general formula (1): LiaNi1-x-yCoxMyWzO2+α (where 0≤x≤0.35, 0≤y≤0.35, 0.0008≤z≤0.030, 0.97≤a≤1.25, and 0≤α≤0.20, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al) and is constituted by a Li-metal composite oxide composed of primary particles and secondary particles formed by aggregation of the primary particles, wherein a compound including Li and W is formed on the surface of the primary particles of the composite oxide and the amount of W contained in the compound is such that the number of atoms of W is 0.08 to 0.30 at % with respect to the total number of atoms of Ni, Co, and M contained in the positive electrode active material.
US11018337B2 Negative electrode material for power storage device, electrode structure, power storage device, and production method for each
Provided is an anode active material for energy storage devices capable of electrochemically inserting and extracting lithium ions and production method thereof, an electrode structure including the active material and flake graphite, and an energy storage device using the electrode structure as an anode. The anode active material includes secondary particles that are aggregates of 10-300 nm primary particles containing silicon as a main component. The primary particles each include, as a surface layer, a composite metal oxide layer containing at least one or more metal elements selected from at least Al, Zr, Mg, Ca, and La and Li.
US11018336B2 Multi-level graphene-protected anode active material particles for fast-charging lithium-ion batteries
Provided is graphene-embraced particulate for use as a lithium-ion battery anode active material, wherein the particulate comprises primary particle(s) of an anode active material and multiple sheets of a first graphene material overlapped together to embrace or encapsulate the primary particle(s) and wherein a single or a plurality of graphene-encapsulated primary particles, along with an optional conductive additive, are further embraced or encapsulated by multiple sheets of a second graphene material, wherein the first graphene and/or the second graphene material is attached to a redox partner species (e.g. sulfonyl group, —NH2, etc.) capable of reversibly forming a redox pair with lithium. The invention also provides an anode electrode and a battery comprising multiple graphene-embraced particulates having redox forming species bonded thereto.
US11018333B2 Conductive mat for battery electrode plate reinforcement and methods of use therefor
According to one embodiment, a plate or electrode for a lead-acid battery includes a grid of lead alloy material, a paste of active material applied to the grid of lead alloy material, and a nonwoven fiber mat disposed at least partially within the paste of active material. The nonwoven fiber mat includes a plurality of fibers, a binder material that couples the plurality of fibers together, and a conductive material disposed at least partially within the nonwoven fiber mat so as to contact the paste of active material. In some embodiments, the nonwoven fiber mat may have an electrical resistant of less than about 100,000 ohms per square to enable electron flow on a surface of the nonwoven fiber mat.
US11018327B2 Mask module, method for manufacturing a film layer, organic electromagnetic light-emitting display panel and method for manufacturing the same
This disclosure provides a mask module, a method for manufacturing a film layer, and a method for manufacturing an organic electromagnetic light-emitting display panel. The mask module is configured to manufacture a display substrate. The display substrate has at least one display area. The display area has at least one island pattern. The mask module includes at least two open type masks. Each of the open type masks has an opening area corresponding to at least one of the display areas. The opening areas of the open type masks corresponding to the same display area are not overlapped with each other, and the open type masks are stitched to constitute a joint and a blocking structure. The joint has a shape as same as that of the display area, and the blocking structure has a shape as same as that of the island pattern.
US11018326B2 Polarizing plate with optical compensation layer and organic EL panel using same
There is provided a polarizing plate with optical compensation layers that is excellent in antireflection characteristic: in an oblique direction while maintaining an excellent antireflection characteristic in a front direction, and that has a neutral hue in the oblique direction. A polarizing plate with optical compensation layers according to the present invention is used for an organic EL panel The polarizing plate with optical compensation layers according to an embodiment of the present invention includes in the following order: a polarizer; a first optical compensation layer; and a second optical compensation layer. The first optical compensation layer shows a refractive index characteristic of nx>nz>ny and has an Re (550) of from 230 nm to 310 nm. The second optical compensation layer shows a refractive index characteristic of nx>nz>ny and satisfies a relationship of Re (450)
US11018321B2 Sealing structure and light emitting device
A sealing structure (200) seals a light emitting unit (140) and includes a first inorganic film (210), a second inorganic film (220), a first resin-containing film (230), and a second resin-containing film (240). The film thickness of the first inorganic film (210) is equal to or greater than 1 nm and equal to or less than 300 nm. The first resin-containing film (230) is in contact with the first inorganic film (210) and includes a first resin. The second inorganic film (220) is positioned on an opposite side of the first inorganic film (210) with the first resin-containing film (230) interposed between the first and second inorganic films. The second resin-containing film (240) is positioned between the first resin-containing film (230) and the second inorganic film (220) and is in contact with the second inorganic film (220). The second resin-containing film (240) includes a second resin.
US11018319B2 Electronic device with reduced non-device edge area
A first product as disclosed herein includes multiple devices, such as OLEDs, which are moveably connected to one another. The devices may be moveable from a first position in which they are stacked, closed, rolled, or the like, to a second expanded position in which they may be usable together as a single device. Active areas of the devices may be disposed within 3 mm from each adjacent or included active area when the device is in the first position, the second position, or both. Each active device may include a barrier film that covers at least a portion of the substrate and/or the active area of one or more of the devices.
US11018318B2 Display panel and manufacturing method thereof
The present application provides a display panel comprising a substrate, a light-emitting device disposed on the substrate, a first inorganic layer and a second inorganic layer sequentially covering the light-emitting device; wherein the density of the second inorganic layer is larger than that of the first inorganic layer, so as to improve the barrier properties against water and oxygen of the display panel. The present application further provides a manufacturing method of a display panel. The encapsulation for the display panel can be improved in the present application.
US11018315B2 Substrate and method of producing the same with display apparatus and producing method thereof
The present disclosure involves in a substrate and a method of producing the same, and a display apparatus and a method of producing the same. The substrate includes a base substrate, at least comprising an adhering region and an alignment area adjacent to the adhering region; a covering layer disposed on the base substrate, wherein a part of the covering layer located in the adhering region comprises an adhesive providing region and non-adhesive providing regions located at both sides of the adhesive providing region, wherein a groove is provided on a top of the adhesive providing region of the covering layer.
US11018313B2 Light-emitting element, light-emitting device, display device, electronic device, and lighting device
A light-emitting element which uses a plurality of kinds of light-emitting dopants emitting light in a balanced manner and has high emission efficiency is provided. Further, a light-emitting device, a display device, an electronic device, and a lighting device each having reduced power consumption by using the above light-emitting element are provided. A light-emitting element which includes a plurality of light-emitting layers including different phosphorescent materials is provided. In the light-emitting element, the light-emitting layer which includes a light-emitting material emitting light with a long wavelength includes two kinds of carrier-transport compounds having properties of transporting carriers with different polarities. Further, in the light-emitting element, the triplet excitation energy of a host material included in the light-emitting layer emitting light with a short wavelength is higher than the triplet excitation energy of at least one of the carrier-transport compounds.
US11018312B2 Organic light-emitting diode and display device comprising the same
Disclosed herein are an organic light-emitting diode and an organic light-emitting display device including the same. The organic light-emitting diode includes: a first electrode; a first light emitting structure disposed on the first electrode and including a first organic emissive layer; a second light emitting structure disposed on the first light emitting structure and including a second organic emissive layer; a third light emitting structure disposed on the second light emitting structure and including a third organic emissive layer; and a second electrode on the third light emitting structure, wherein a full width at half maximum (FWHM) of a peak wavelength of light emitted from each of the first organic emissive layer and the third organic emissive layer is within a range from 26 nm to 36 nm, inclusive.
US11018309B2 Organic electroluminescent materials and devices
This invention discloses phosphorescent metal complexes with novel ligand structures of Formula I: wherein X, Z1, Z2, Z3, rings A and C, RA, RB, RC, and ligand LA are as described herein. These complexes are used as emitters in phosphorescent OLEDs.
US11018305B2 Organic light-emitting device
An organic light emitting device includes: a first electrode; a second electrode facing the first electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the organic layer includes a first compound, a second compound, a third compound, and a fourth compound, and the first compound to the fourth compound satisfy Equations 1 to 8: E1,LUMO≥E2,LUMO+0.15 electron volts (eV)  Equation 1 E1,HOMO≥E2,HOMO+0.15 eV  Equation 2 E1,T1≥E4,T1  Equation 3 E2,T1≥E4,T1  Equation 4 E3,T1≥E4,T1  Equation 5 E3,LUMO≥E2,LUMO+0.1 eV  Equation 6 −5.6 eV≥E3,HOMO  Equation 7 Egap1≥Egap3.  Equation 8
US11018304B2 Organic light-emitting device
An organic light-emitting device having a low driving voltage, high efficiency, and a long lifespan is provided. The device includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode, wherein the organic layer includes an emission layer, a first compound, and a second compound. Various chemical structures for the first compound and the second compound are provided.
US11018303B2 Charge-transporting varnish
A charge-transporting thin film, which enables the achievement of an organic EL element having excellent durability in cases where the charge-transporting thin film is applied to a hole injection layer of the element, is obtained using a charge-transporting varnish that contains a charge-transporting substance, a nonionic fluorine-containing surfactant and an organic solvent, and wherein the nonionic fluorine-containing surfactant has, for example, a perfluoroalkenyl group-containing perfluorohydrocarbon structure represented by one of formulae (1)-(3) and an alkylene oxide structure.
US11018295B2 Non-volatile memory structure with positioned doping
Disclosed is a resistive random access memory (RRAM). The RRAM includes a bottom electrode made of tungsten and a switching layer made of hafnium oxide disposed above the bottom electrode, wherein the switching layer includes a filament and one or more lateral regions including a doping material that are between a top region and a bottom region of the switching layer. The RRAM further includes a top electrode disposed above the switching layer.
US11018294B2 Method for regulating phase transformation of hydrogen-containing transition metal oxide
A method for regulating a phase transformation of a hydrogen-containing transition metal oxide comprises steps of: providing a hydrogen-containing transition metal oxide having a structural formula of ABOxHy, wherein the hydrogen-containing transition metal oxide is in form of a first phase, A is one or more of alkaline earth metal elements and rare-earth metal elements, B is one or more of transition metal elements, x is a numeric value in a range of 1 to 3, and y is a numeric value in a range of 0 to 2.5; soaking the hydrogen-containing transition metal oxide with a first ionic liquid capable of providing hydrogen ions and oxygen ions; and applying a gating voltage to the hydrogen-containing transition metal oxide with the first ionic liquid as a gate to regulate the phase transformation of the hydrogen-containing transition metal oxide.
US11018290B2 Enhanced superconducting transition temperature in electroplated rhenium
This disclosure describes systems, methods, and apparatus for multilayer superconducting structures comprising electroplated Rhenium, where the Rhenium operates in a superconducting regime at or above 4.2 K, or above 1.8 K where specific temperatures and times of annealing have occurred. The structure can include at least a first conductive layer applied to a substrate, where the Rhenium layer is electroplated to the first layer. A third layer formed from the same or a different conductor as the first layer can be formed atop the Rhenium layer.
US11018288B2 Metal-base substrate and semiconductor device
A metal-base substrate includes a metal plate, an adhesive layer; and a film substrate. The adhesive layer is interposed between the metal plate and the film substrate. The film substrate has a wiring layer on a first surface opposite to a second surface on which the adhesive layer is arranged, with a through hole piercing through the film substrate in a thickness direction of the film substrate.
US11018286B2 Method of manufacturing light emitting device and light emitting device
A light emitting device including a molded package having leads including a pair of a first lead and a second lead, a molded resin, and a recess, where an upper surface of the leads is partially exposed from a bottom surface of the recess. The device further including a light emitting component mounted on the bottom surface, and at least one sealing member located in the recess to cover the light emitting component. At least one of the first lead and the second lead has a groove on an upper surface thereof, where the groove is positioned so as to correspond to a corner on the bottom surface of the recess in a cross sectional view. A portion of the molded resin located within the groove is exposed from the bottom surface. A surface of the corner is composed of a curved surface, and the sealing member covers the corner.
US11018281B2 Optoelectronic semiconductor body and light emitting diode
An optoelectronic semiconductor body includes an active region including a quantum well that generates electromagnetic radiation, a first region that impedes passage of charge carriers from the active region, and a second region that impedes passage of charge carriers from the active region, wherein the semiconductor body is based on a nitride compound semiconductor material, the first region is directly adjacent to the active region on a p-side, the second region is arranged on a side of the first region facing away from the active region, the first region has an electronic band gap larger than the electronic band gap of the quantum well and less than or equal to an electronic band gap of the second region, and the first region and the second region contain aluminum.
US11018280B2 Reduction of surface recombination losses in micro-LEDs
Disclosed herein are systems and methods for reducing surface recombination losses in micro-LEDs. In some embodiments, a method includes increasing a bandgap in an outer region of a semiconductor layer by implanting ions in the outer region of the semiconductor layer and subsequently annealing the outer region of the semiconductor layer to intermix the ions with atoms within the outer region of the semiconductor layer. The semiconductor layer includes an active light emitting layer. A light outcoupling surface of the semiconductor layer has a diameter of less than 10 μm. The outer region of the semiconductor layer extends from an outer surface of the semiconductor layer to a central region of the semiconductor layer that is shaded by a mask during the implanting of the ions.
US11018279B2 Light emitting element having excellent contact between semiconductor layer and electrode
A light emitting device can include a sapphire substrate; a first conductivity type semiconductor layer disposed on the sapphire substrate; an active layer disposed on the first conductivity type semiconductor layer; a plurality of p-type conductors disposed on the active layer, and separated from each other; a first pad disposed on the first conductivity type semiconductor layer; and a second pad disposed on the plurality of p-type conductors, in which the plurality of p-type conductors are arranged in a first direction, the second pad is spaced apart from the first pad in a second direction, the second direction is perpendicular to the first direction, each of the plurality of p-type conductors has a first width in the first direction and a second width in the second direction, the first width being less than the second width, the plurality of p-type conductors are evenly spaced apart by a first distance in the first direction, and the first distance being less than the first width of each of the plurality of p-type conductors in the first direction.
US11018278B2 Semiconductor body
A semiconductor body is disclosed. In an embodiment a semiconductor body includes a p-doped region, an active region, an intermediate layer and a layer stack containing indium, wherein an indium concentration in the layer stack changes along a stacking direction, wherein the layer stack is formed with exactly one nitride compound semiconductor material apart from dopants, wherein the intermediate layer is nominally free of indium, arranged between the layer stack and the active region, and directly adjoins the layer stack, wherein the intermediate layer and/or the layer stack are n-doped at least in places, wherein a dopant concentration of the layer stack is at least 5*1017 1/cm3 and at most 2*1018 1/cm3, and wherein a dopant concentration of the intermediate layer is at least 2*1018 1/cm3 and at most 3*1019 1/cm3.
US11018275B2 Method of creating CIGS photodiode for image sensor applications
Embodiments disclosed herein include photodiodes and methods of forming such photodiodes. In an embodiment, a method of creating a photodiode, comprises disposing an absorber layer over a first contact, wherein the absorber layer comprises a first conductivity type, and disposing a semiconductor layer over the absorber, wherein the semiconductor layer has a second conductivity type that is opposite from the first conductivity type. In an embodiment, the method further comprises disposing a hole blocking layer over the semiconductor layer, wherein the hole blocking layer is formed with a reactive sputtering process with a processing gas that comprises oxygen, and disposing a second contact over the hole blocking layer.
US11018267B2 Solar cells for shingled solar cell module, shingled solar cell module, and method of making solar cells
The present disclosure relates to solar cells for a shingled solar cell module, a shingled solar cell module, and a method of making solar cells for the shingled solar cell module. Said solar cell has a front side and a back side, a plurality of front side busbars being arranged on the front side, a plurality of back side busbars being arranged on the back side, the solar cell comprising a plurality of sections, each section comprising a front side busbar and a back side busbar located at edges thereof, the front side busbar of at least one section of the solar cell having an extension at one end or both ends, the extension extending along another edge of said at least one section intersecting with the above-mentioned edges. The shingled solar cell module is fabricated from solar cell strips split from the solar cell.
US11018265B1 Transient-voltage-suppression diode structure and manufacturing method thereof
A transient-voltage-suppression diode structure and a manufacturing method thereof are disclosed. The structure includes a substrate, an N− type epitaxial layer, a first metal layer, a first N+ type implant layer, a deep N+ type implant layer and plural polycrystalline plugs. The N− type epitaxial layer is disposed on the substrate. The first metal layer is disposed on the N− type epitaxial layer to form a working-voltage terminal. The first N+ type implant layer spatially corresponding to the working-voltage terminal and embedded in the N− type epitaxial layer is connected with the working-voltage terminal. The deep N+ type implant layer spatially corresponding to the working-voltage terminal and embedded in the N− type epitaxial layer is spaced apart from the first N+ type implant layer at a separation distance. The plural polycrystalline plugs are connected between the working-voltage terminal of the first metal layer and the deep N+ type implant layer.
US11018264B1 Three-dimensional nanoribbon-based logic
Described herein are three-dimensional nanoribbon-based logic ICs that include one of more of 1) individual gate control in a vertical stack of nanoribbons, 2) inter-ribbon interconnects in a vertical stack of nanoribbons, and 3) both P- and N-type nanoribbons in a vertical stack of nanoribbons. Using one or more of these features may help realize unique monolithic 3D logic architectures that were not possible with conventional logic circuits and may allow realizing logic devices with favorable metrics in terms of power and performance while preserving the substrate area and cost.
US11018263B2 Display device and method of manufacturing the same
A display device includes a semiconductor member, a first gate electrode, a pixel electrode, and a common electrode. The semiconductor member includes a source area, a drain area, and a channel area between the source area and the drain area. The first gate electrode includes a first gate barrier layer, a second gate barrier layer, and a gate metal layer. The first gate barrier layer overlaps the channel area. An oxide material of the first gate barrier layer is identical to an oxide material of the semiconductor member. The second gate barrier layer includes a metal oxide alloy and is positioned between the first gate barrier layer and the gate metal layer. The pixel electrode is electrically connected to the drain area. The common electrode overlaps the pixel electrode.
US11018260B2 Non-volatile memory device with reduced area
A memory device includes a substrate, a semiconductor fin over the substrate and extending in a first direction, and a first gate electrode and a second gate electrode over the substrate and extending in a second direction. The semiconductor fin extends through the second gate electrode and terminates on the first gate electrode. The memory device further includes a first conductive via over and electrically coupled to the first gate electrode.
US11018259B2 Semiconductor device comprising gate structure and doped gate spacer
A semiconductor device includes a substrate, at least one source drain feature, a gate structure, and at least one gate spacer. The source/drain feature is present at least partially in the substrate. The gate structure is present on the substrate. The gate spacer is present on at least one sidewall of the gate structure. At least a bottom portion of the gate spacer has a plurality of dopants therein.
US11018254B2 Fabrication of vertical fin transistor with multiple threshold voltages
A vertical fin field effect transistor including a doped region in a substrate, wherein the doped region has the same crystal orientation as the substrate, a first portion of a vertical fin on the doped region, wherein the first portion of the vertical fin has the same crystal orientation as the substrate and a first portion width, a second portion of the vertical fin on the first portion of the vertical fin, wherein the second portion of the vertical fin has the same crystal orientation as the first portion of the vertical fin, and the second portion of the vertical fin has a second portion width less than the first portion width, a gate structure on the second portion of the vertical fin, and a source/drain region on the top of the second portion of the vertical fin.
US11018249B2 Semiconductor component with edge termination region
A semiconductor component includes a semiconductor body having opposing first surface and second surfaces, and a side surface surrounding the semiconductor body. The semiconductor component also includes an active region including a first semiconductor region of a first conductivity type, which is electrically contacted via the first surface, and a second semiconductor region of a second conductivity type, which is electrically contacted via the second surface. The semiconductor component further includes an edge termination region arranged in a lateral direction between the first semiconductor region of the active region and the side surface, and includes a first edge termination structure and a second edge termination structure. The second edge termination structure is arranged in the lateral direction between the first edge termination structure and the side surface and extends from the first surface in a vertical direction more deeply into the semiconductor body than the first edge termination structure.
US11018242B2 Gate spacer structure of FinFET device
A method includes forming a fin extending above an isolation region. A sacrificial gate stack having a first sidewall and a second sidewall opposite the first sidewall is formed over the fin. A first spacer is formed on the first sidewall of the sacrificial gate stack. A second spacer is formed on the second sidewall of the sacrificial gate stack. A patterned mask having an opening therein is formed over the sacrificial gate stack, the first spacer and the second spacer. The patterned mask extends along a top surface and a sidewall of the first spacer. The second spacer is exposed through the opening in the patterned mask. The fin is patterned using the patterned mask, the sacrificial gate stack, the first spacer and the second spacer as a combined mask to form a recess in the fin. A source/drain region is epitaxially grown in the recess.
US11018241B2 Polysilicon design for replacement gate technology
The present disclosure provides an integrated circuit. The integrated circuit includes a semiconductor substrate; and a passive polysilicon device disposed over the semiconductor substrate. The passive polysilicon device further includes a polysilicon feature; and a plurality of electrodes embedded in the polysilicon feature.
US11018233B2 Flash memory cell structure with step-shaped floating gate
The present disclosure relates to a flash memory cell that includes a substrate and a floating gate structure over the substrate. The floating gate structure includes a first portion having a first top surface and a first thickness. The floating gate structure also includes a second portion having a second top surface and a second thickness that is different from the first thickness. The floating gate structure further includes a sidewall surface connecting the first and second top surfaces, and an angle between the first top surface and the sidewall surface of the floating gate structure is an obtuse angle. The flash memory cell also includes a control gate structure over the first and second portions of the floating gate structure.
US11018224B2 Semiconductor device with epitaxial source/drain
A semiconductor device and method of manufacturing the semiconductor device are provided. In some embodiments, the semiconductor device includes a fin extending from a substrate and a gate structure disposed over the fin. The gate structure includes a gate dielectric formed over the fin, a gate electrode formed over the gate dielectric, and a sidewall spacer formed along a sidewall of the gate electrode. In some cases, a U-shaped recess is within the fin and adjacent to the gate structure. A first source/drain layer is conformally formed on a surface of the U-shaped recess, where the first source/drain layer extends at least partially under the adjacent gate structure. A second source/drain layer is formed over the first source/drain layer. At least one of the first and second source/drain layers includes silicon arsenide (SiAs).
US11018213B2 Array substrate and method of fabricating same
An array substrate and a method of fabricating the same are described. The array substrate has an active area and a winding area, wherein the array substrate has a base substrate, an active layer, a first insulating layer, a first metal layer, a second insulating layer, a second metal layer, a third insulating layer, a third metal layer, a flat layer, a patterned inorganic layer, and a pixel defining layer. The first metal layer has at least one first wiring pattern. The second metal layer has at least one second wiring pattern. The third metal layer has at least one third wiring pattern. The patterned inorganic layer is disposed on the flat layer within the winding area and has an undercut structure. The array substrate and the method of fabricating the same can reduce a width of a boundary formed by the winding area.
US11018212B2 Electronic apparatus
An electronic apparatus includes a base substrate having an active area and a peripheral area adjacent to the active area. A plurality of pixels is disposed on the active area. The electronic apparatus also includes a plurality of power lines connected to the pixels. A power pad is disposed on a peripheral area and is configured to receive a power voltage. A power pattern is disposed on the peripheral area and connecting the power lines to the power pad. A plurality of sensing electrodes is disposed on the pixels in the active area. A plurality of sensing pads is disposed on the peripheral area and is electrically connected to the sensing electrodes. The sensing pads overlap with the power pattern.
US11018211B2 Array substrate and display pane, having subpixels including corresponding self-luminous units and photosensitive units
The embodiment of the present disclosure provides an array substrate, a display panel and a display device. The array substrate comprises a plurality of self-luminous units and photosensitive units disposed on a base substrate, wherein the photosensitive units are located on a side of the self-luminous units proximate to the base substrate, and each of the self-luminous units is correspondingly provided with the photosensitive unit; the self-luminous unit comprises a first electrode, a light-emitting functional layer and a second electrode disposed sequentially in a direction away from the base substrate; the first electrode comprises a light-transmitting region and a reflective region interconnected with each other; the second electrode is a transparent electrode.
US11018209B2 Display substrate, display apparatus, and method of fabricating display substrate
The present application discloses a display substrate. The display substrate includes a base substrate; a plurality of thin film transistors for driving image display on the base substrate; a planarization layer on a side of the plurality of thin film transistors distal to the base substrate; and a pixel definition layer defining a plurality of subpixel regions. The display substrate includes a recess extending into the planarization layer and in an inter-subpixel region of the display substrate. The display substrate further includes a recess fill layer in the recess. The recess fill layer has a light transmittance rate lower than that of the planarization layer.
US11018208B2 Image processing device, display device having the same, and image processing method of the same
An image processing device includes a region divider configured to receive an image data, generate a convert data by converting the image data by pixel rows, and generate a region dividing information that divides the image data into a plurality of regions based on the convert data, a luminance detector configured to detect a region maximum luminance and a region minimum luminance of each of the regions based on the image data and the region dividing information, and a compensator configured to generate compensation image data that compensate a contrast of each of the regions based on the region dividing information, the region maximum luminance, and the region minimum luminance.
US11018206B2 Display panel and information processing device
A novel display panel that can be used as a reflective display panel in an environment with strong external light and as a self-luminous display panel in a dim environment, for example and that has low power consumption and is highly convenient or reliable is provided. The display panel includes a pixel and a substrate that supports the pixel. The pixel includes a first display element (e.g., a reflective liquid crystal element) that includes a reflective film having an opening as a first conductive film and a second display element (e.g., an organic EL element) that emits light to the opening.
US11018205B2 Organic light emitting display module and organic light emitting display device having the same
Provided is an organic light emitting display module including an active area, a pad area, and a boundary area between the active area and the pad area. Unlike the active area and the pad area, since the boundary area does not include an inorganic layer, less stress is applied to the boundary area when the boundary area is bent. Display panel pads and touch sensing member pads are disposed at the same height without having a height difference therebetween. Thus, a dummy pad may be added to remove the height difference between the display panel pads and the touch sensing member pads.
US11018204B1 Display panel and display device
Provided is a display panel including: a light-emitting substrate; and a touch substrate. The touch substrate includes: touch units, first touch lines, and first connection structures, all of which are arranged at a side of the touch substrate facing the light-emitting substrate. Each first touch line has one end electrically connected to one touch unit and another end electrically connected to one first connection structure. The light-emitting substrate includes: second connection structures disposed in a non-display area, corresponding to the first connection structures and arranged at a side of the light-emitting substrate facing the touch substrate; and a light-emitting layer disposed in a display area and including a first electrode, a second electrode, and an organic light-emitting layer. Each second connection structure includes a first secondary electrode in electrical contact with one first connection structure. The first secondary electrode and the first electrode are arranged in a same layer.
US11018201B2 Display device
A display device with improved viewing angle characteristics is provided. A display device with suppressed mixture of colors between adjacent pixels is provided. The display device includes a first coloring layer, a second coloring layer, and a structure body therebetween. The structure body has a portion closer to a display surface side than a bottom surface of the first coloring layer or a bottom surface of the second coloring layer.
US11018200B2 Display device having a white emitting area
A display device including color filters overlapping each other on a non-emitting area of an upper substrate which is opposite to a lower substrate is provided. In the display device, color filters disposed close to a white emitting area include a same material, and the color filters extend a greater distance onto a non-emitting area disposed near the white emitting area, relative to distances extended onto other non-emitting areas. Thus, the display device may prevent light-leakage from the white emitting area.
US11018191B1 3D semiconductor device and structure
A 3D semiconductor device, the device including: a first level including a first single crystal layer and first transistors, where the first transistors each include a single crystal channel; first metal layers interconnecting at least the first transistors; and a second level including a second single crystal layer and second transistors, where the second level overlays the first level, where the second transistors are horizontally oriented and include replacement gate, where the second level is bonded to the first level, and where the bonded includes oxide to oxide bonds.
US11018190B2 Three-dimensional memory apparatuses and methods of use
A three dimensional (3D) memory array is disclosed. The 3D memory array may include an electrode plane and a memory material disposed through and coupled to the electrode plane. A memory cell included in the memory material is aligned in a same plane as the electrode plane, and the memory cell is configured to exhibit a first threshold voltage representative of a first logic state and a second threshold voltage representative of a second logic state. A conductive pillar is disposed through and coupled to the memory cell, wherein the conductive pillar and electrode plane are configured to provide a voltage across the memory cell to write a logic state to the memory cell. Methods to operate and to form the 3D memory array are disclosed.
US11018186B2 Multi-level memristor elements
There is described a two-terminal multi-level memristor element synthesised from binary memristors, which is configured to implement a variable resistance based on unary or binary code words. There is further described a circuit such as a synapse circuit implemented using a multi-level memristor element.
US11018184B2 Magnetoresistive random access memory with particular shape of dielectric layer
A magnetoresistive random access memory (MRAM), including multiple cell array regions, multiple MRAM cells disposed in the cell array region, a silicon nitride liner conformally covering on the MRAM cells, an atomic layer deposition dielectric layer covering on the silicon nitride liner in the cell array region, wherein the surface of atomic layer deposition dielectric layer is a curved surface concave downward to the silicon nitride liner at the boundary of MRAM cells, and an ultra low-k dielectric layer covering on the atomic layer deposition dielectric layer.
US11018179B2 Semiconductor structure
A semiconductor structure includes an ILD disposed over a semiconductive substrate, an isolation disposed between the semiconductive substrate and the ILD, and a conductive pad disposed within the semiconductive substrate, the isolation and the ILD. A top surface of the conductive pad is substantially parallel with two surfaces of the semiconductive substrate. The top surface of the conductive pad is between the two surfaces of the semiconductive substrate. Sidewalls of the conductive pad are in direct contact with the ILD and the isolation.
US11018178B2 Light receiving element, ranging module, and electronic apparatus
Disclosed is a light receiving element including an on-chip lens, a wiring layer, and a semiconductor layer disposed between the on-chip lens and the wiring layer. The semiconductor layer includes a photodiode, a first transfer transistor that transfers electric charge generated in the photodiode to a first charge storage portion, a second transfer transistor that transfers electric charge generated in the photodiode to a second charge storage portion, and an interpixel separation portion that separates the semiconductor layers of adjacent pixels from each other, for at least part of the semiconductor layer in the depth direction. The wiring layer has at least one layer including a light blocking member. The light blocking member is disposed to overlap with the photodiode in a plan view.
US11018176B2 Metal shielding layer in backside illumination image sensor chips and methods for forming the same
A device includes a semiconductor substrate having a front side and a backside. A photo-sensitive device is disposed at a surface of the semiconductor substrate, wherein the photo-sensitive device is configured to receive a light signal from the backside of the semiconductor substrate, and convert the light signal to an electrical signal. An amorphous-like adhesion layer is disposed on the backside of the semiconductor substrate. The amorphous-like adhesion layer includes a compound of nitrogen and a metal. A metal shielding layer is disposed on the backside of the semiconductor substrate and contacting the amorphous-like adhesion layer.
US11018164B2 Thin-film transistor substrate, display panel, and display device
A thin-film transistor substrate includes a thin-film transistor and a light-shielding part. The thin-film transistor includes a gate electrode, a semiconductor part made from a semiconductor material and superimposed on a part of the gate electrode via a first insulating film, a source electrode on a part of the semiconductor part and connected to the semiconductor part, and a drain electrode on a part of the semiconductor part and connected to the semiconductor part with spaced apart from the source electrode. The light-shielding part includes a first light-shielding section disposed above the semiconductor part, the source electrode, and the drain electrode via the second insulating film and superimposed on the semiconductor part, and a second light-shielding section not to be superimposed on the gate electrode, the source electrode, and the drain electrode and having an opening adjacent to the thin-film transistor.
US11018160B2 Thin-film transistor substrate and luminescent device
A thin-film transistor substrate includes a pixel circuit, an interlayer insulating film, electrodes, and a hard mask metal. The pixel circuit includes a thin film transistor. The interlayer insulating film has contact holes and covers the pixel circuit. The electrodes are exposed above a surface of the interlayer insulating film, and electrically coupled to the pixel circuit via the contact holes. The hard mask metal has openings at portions facing the contact holes and is provided on the surface of the interlayer insulating film.
US11018155B2 Vertical string of memory cells individually comprising a programmable charge storage transistor comprising a control gate and a charge storage structure and method of forming a vertical string of memory cells individually comprising a programmable charge storage transistor comprising a control gate and a charge storage structure
A method of forming a vertical string of memory cells comprises forming a lower stack comprising first alternating tiers comprising vertically-alternating control gate material and insulating material. An upper stack is formed over the lower stack, and comprises second alternating tiers comprising vertically-alternating control gate material and insulating material having an upper opening extending elevationally through multiple of the second alternating tiers. The lower stack comprises a lower opening extending elevationally through multiple of the first alternating tiers and that is occluded by occluding material. At least a portion of the upper opening is elevationally over the occluded lower opening. The occluding material that occludes the lower opening is removed to form an interconnected opening comprising the unoccluded lower opening and the upper opening. Charge storage material is deposited into the interconnected opening for the charge storage structures for the memory cells of the vertical string that are in each of the upper and lower stacks and thereafter tunnel insulator and channel material are formed into the interconnected opening for the memory cells of the vertical string that are in each of the upper and lower stack. Other embodiments are disclosed, including embodiments independent of method.
US11018151B2 Three-dimensional flat NAND memory device including wavy word lines and method of making the same
A three-dimensional memory device includes alternating stacks of insulating strips and electrically conductive strips located over a substrate, generally extending along a first horizontal direction, and laterally spaced apart from each other along a second horizontal direction by width-modulated line trenches, memory films located on a respective sidewall of the alternating stacks, the memory films containing a charge storage layer and blocking dielectric which generally extend along the first horizontal direction and laterally undulate along the second horizontal direction, and a plurality of discrete vertical semiconductor channels located on a sidewall of a respective one of the memory films.
US11018149B2 Building stacked hollow channels for a three dimensional circuit device
A three dimensional stacked circuit device includes multiple decks of circuit elements, each deck including multiple tiers of circuit elements. Each deck includes a highly doped hollow channel extending through the deck. Below the first deck is a source conductor to drive activity of the circuit elements. Between each deck is a conductive stop layer that interconnects the hollow channel from one deck to the hollow channel of the deck adjacent to it. Thus, all hollow channels of all decks are electrically coupled to the source conductor.
US11018145B2 Semiconductor device and method of manufacturing the same
A semiconductor device may include a first cell structure, a second cell structure, a pad structure, a circuit, and an opening. The pad structure may include a first stepped structure and a second stepped structure located between the first cell structure and the second cell structure. The first stepped structure may include first pads electrically connected to the first and second cell structures and stacked on top of each other, and the second stepped structure may include second pads electrically connected to the first and second cell structures and stacked on top of each other. The circuit may be located under the pad structure. The opening may pass through the pad structure to expose the circuit, and may be located between the first stepped structure and the second stepped structure to insulate the first pads and the second pads from each other.
US11018142B2 Memory cell and method of manufacturing the same
A memory cell includes a first and second pull up transistor, a first and second pass gate transistor and a metal contact. The first pull up transistor has a first active region extending in a first direction. The first pass gate transistor has a second active region extending in the first direction, and being separated from the first active region in a second direction. The second active region is adjacent to the first active region. The second pass gate transistor is coupled to the second pull up transistor. The metal contact extends in the second direction, and extends from the first active region to the second active region. The metal contact couples drains of the first pull up transistor and the first pass gate transistor. The first and second pass gate transistors and the first and second pull up transistors are part of a four transistor memory cell.
US11018140B2 Semiconductor device and method for manufacturing the same
A semiconductor device and a manufacturing method of the same are provided. The method includes forming a plurality of first conductive structures and a first dielectric layer between the first conductive structures on a substrate. The method also includes forming a trench between the first dielectric layer and the first conductive structures. The method further includes forming a liner material on a sidewall and a bottom of the trench. In addition, the method includes forming a conductive plug on the liner material in the trench. The method also includes removing the liner material to form an air gap, and the air gap is located between the conductive plug and the first dielectric layer.
US11018139B2 Integrated transistors and methods of forming integrated transistors
Some embodiments include an integrated device having a first transistor gate over a first region of a semiconductor base, and having a second transistor gate over a second region of the semiconductor base. First sidewall spacers are along sidewalls of the first transistor gate. The first sidewall spacers include SiBNO, where the chemical formula lists primary constituents rather than a specific stoichiometry. The first sidewall spacers have a first thickness. Second sidewall spacers are along sidewalls of the second transistor gate. The second sidewall spacers have a second thickness which is less than the first thickness. First source/drain regions are within the semiconductor base and are operatively proximate the first transistor gate. Second source/drain regions are within the semiconductor base and are operatively proximate the second transistor gate. Some embodiments include methods of forming integrated devices.
US11018136B2 Method of maintaining the state of semiconductor memory having electrically floating body transistor
Methods of maintaining a state of a memory cell without interrupting access to the memory cell are provided, including applying a back bias to the cell to offset charge leakage out of a floating body of the cell, wherein a charge level of the floating body indicates a state of the memory cell; and accessing the cell.
US11018129B2 Circuit that changes voltage of back electrode of transistor based on error condition
A circuit can comprise a transistor, a sensor, and a switch. The transistor can include a drain electrode, a gate electrode, a source electrode, and a back electrode. The sensor can be configured to detect an error condition in the transistor. The switch can be configured to change a voltage at the back electrode in response to the sensor detecting the error condition in the transistor, the change of the voltage at the back electrode reducing current flow between the drain electrode and the source electrode.
US11018127B2 Shielded gate trench MOSFET with ESD diode manufactured using two poly-silicon layers process
A SGT MOSFET having ESD diode and a method of manufacturing the same are disclosed. The SGT trench MOSFET according to the present invention, has n+ doped shielded electrode in an N channel device and requires only two poly-silicon layers, making the device can be shrunk with reducing shielded gate width for Rds reduction without increasing switching loss and having dynamic switching instability.
US11018119B2 LED filament assembly and lamp including the same
An LED filament assembly includes a frame, a first electrode disposed on a first end of the frame, and a second electrode disposed on a second end of the frame. The LED filament assembly includes a first group of LED chips capable of emitting a first color, a second group of LED chips capable of emitting a second color, and a third group of LED chips capable of emitting a third color. The first group of LED chips is disposed on the frame along a longitudinal axis, connected in series, and electrically connected to the first electrode and the second electrode. Similarly, the second and the third group of LED chips are also disposed on the frame along the longitudinal axis, connected in series, and electrically connected to the first electrode and the second electrode. A lamp including such an LED filament assembly is also disclosed.
US11018114B2 Monolithic silicon bridge stack including a hybrid baseband die supporting processors and memory
A semiconductive device stack, includes a baseband processor die with an active surface and a backside surface, and a recess in the backside surface. A recess-seated device is disposed in the recess, and a through-silicon via in the baseband processor die couples the baseband processor die at the active surface to the recess-seated die at the recess. A processor die is disposed on the baseband processor die backside surface, and a memory die is disposed on the processor die. The several dice are coupled by through-silicon via groups.
US11018112B2 Bonding method of semiconductor chip and bonding apparatus of semiconductor chip
A bonding method of a first member includes arranging an activated front surface of a first member and an activated front surface of a second member so as to face each other with a back surface of the first member attached to a sheet, pushing a back surface of the first member through the sheet to closely attach the activated front surface of the first member and the activated front surface of the second member, and stripping the sheet from the back surface of the first member while maintaining a state in which the activated front surface of the first member is closely attached to the activated front surface of the second member.
US11018110B2 Semiconductor device, manufacturing method, and solid-state imaging device
The present technology relates to a semiconductor device, a manufacturing method, and a solid-state imaging device which are capable of suppressing a decrease in bonding strength and preventing a poor electrical connection or peeling when two substrates are bonded to each other. Provided is a semiconductor device, including: a first substrate including a first electrode including a metal; and a second substrate bonded to the first substrate and including a second electrode including a metal. An acute-angled concavo-convex portion is formed on a side surface of a groove in which the first electrode is formed and a side surface of a groove in which the second electrode metal-bonded to the first electrode is formed. The present technology can be, for example, applied to a solid-state imaging device such as a CMOS image sensor.
US11018108B2 Method of fabricating semiconductor package
A semiconductor package includes: a redistribution substrate; a semiconductor chip on the redistribution substrate; and an external terminal on a bottom surface of the redistribution substrate, wherein the redistribution substrate comprises: a first insulating layer including a first opening; a second insulating layer on the first insulating layer and including a second opening, wherein the second opening is positioned in the first opening in a plan view; a first barrier metal layer disposed along a sidewall of the first opening and along a sidewall of the second opening; a first redistribution conductive pattern on the first barrier metal layer; a third insulating layer on a bottom surface of the first insulating layer; and a pad penetrating the third insulating layer and electrically connecting to the first redistribution conductive pattern, wherein the external terminal is provided on the pad, wherein the second insulating layer at least partially covers a chip pad of the semiconductor chip, and the second opening at least partially exposes the chip pad, wherein, inside the second insulating layer, the first barrier metal layer is in contact with the chip pad through the second opening, and wherein the first redistribution conductive pattern has a surface roughness including protrusions extending in a range of from about 0.01 μm to about 0.5 μm, and the first insulating layer has a surface roughness smaller than the surface roughness of the first redistribution conductive pattern.
US11018106B2 Semiconductor device including solder bracing material with a rough surface, and manufacturing method thereof
A semiconductor device includes a first substrate including a plurality of first pads disposed on a first surface of the first substrate, a second substrate including a plurality of second pads disposed on a second surface of the substrate, a plurality of conductive bumps bonded the plurality of first pads with the plurality of second pads correspondingly, a solder bracing material disposed on the first surface and surrounded the plurality of conductive bumps, an underfill material surrounded the plurality of conductive bumps and disposed between the solder bracing material and the second surface, and a rough interface between the solder bracing material and the underfill material. The rough interface includes a plurality of protruded portions and a plurality of recessed portions.
US11018105B2 Semiconductor device and method of manufacturing the same
A semiconductor device includes a semiconductor chip, a bump contract, and encapsulating layer, an insulating layer, and a connection terminal.
US11018100B2 Semiconductor device having a passivation layer
A semiconductor device includes a conductive pad over an interconnect structure, wherein the conductive pad is electrically connected to an active device. The semiconductor device includes a dielectric layer over the conductive pad, wherein the dielectric layer comprises silicon oxide. The semiconductor device includes a first passivation layer directly over the dielectric layer, wherein the first passivation layer comprises silicon oxide. The semiconductor device includes a second passivation layer directly over the first passivation layer, wherein the second passivation layer comprises silicon nitride.
US11018097B2 Electronic component guard ring
Guard ring technology is disclosed. In one example, an electronic component guard ring can include a barrier having a first barrier portion and a second barrier portion oriented end to end to block ion diffusion and crack propagation in an electronic component. The guard ring can also include an opening in the barrier between the first and second barrier portions extending between a first side and a second side of the barrier. Associated systems and methods are also disclosed.
US11018095B2 Semiconductor structure
A semiconductor structure includes a plurality of devices, a molding disposed between the plurality of devices, and a RDL. Each of the plurality of devices includes a first surface disposed with a conductive structure. The molding includes a first surface coupled to the first surfaces of the plurality of devices. The RDL is disposed on the first surfaces of the plurality of devices and the first surface of the molding. The RDL includes a first portion directly over the first surface of the molding, a second portion directly over the first surfaces of the plurality of devices. A thickness of the first portion is greater than a thickness of the second portion.
US11018090B2 Selective CVD alignment-mark topography assist for non-volatile memory
A semiconductor device and method for forming the semiconductor device are described. The method includes recessing a device pad to below a top surface of an interconnect layer and depositing a cap in the recess over the device pad. A topography assist layer is formed over each of at least one alignment mark using a selective deposition process that deposits material on conductive material of the at least one alignment mark selective to the metal nitride of the device pad such that a top surface of the topography assist feature is higher than a top surface of the cap. Device layers are deposited conformally over the interconnect layer such that the topography assist layer causes a topographical feature in a top surface of the deposited device layers, the topographical feature being vertically aligned with the topography assist layer. The device pad is aligned according to the topographical feature.
US11018088B2 Dummy features in redistribution layers (RDLS) and methods of forming same
An embodiment device includes an integrated circuit die and a first metallization pattern over the integrated circuit die. The first metallization pattern includes a first dummy pattern having a first hole extending through a first conductive region. The device further includes a second metallization pattern over the first metallization pattern. The second metallization pattern includes a second dummy pattern having a second hole extending through a second conductive region. The second hole is arranged projectively overlapping a portion of the first hole and a portion of the first conductive region.
US11018086B2 Passive devices in package-on-package structures and methods for forming the same
A device includes a polymer. A device die is disposed in the polymer. A passive device includes three Through Assembly Vias (TAVs) penetrating through the polymer, wherein the TAVs are coupled in series. A Redistribution Line (RDL) is underlying the polymer. The RDL electrically couples a first one of the TAVs to a second one of the TAVs.
US11018081B2 Heterogeneous fan-out structure and method of manufacture
A semiconductor device and method of manufacture are provided whereby an interposer and a first semiconductor device are placed onto a carrier substrate and encapsulated. The interposer comprises a first portion and conductive pillars extending away from the first portion. A redistribution layer located on a first side of the encapsulant electrically connects the conductive pillars to the first semiconductor device.
US11018080B2 Semiconductor package and method of forming the same
Various embodiments may provide a semiconductor package. The semiconductor package may include a routing layer including a plurality of first layer contact elements on a first side and a plurality of second layer contact elements on a second side opposite the first side, and a first semiconductor die including a plurality of first electrical die contact elements coupled to the plurality of first layer contact elements. The semiconductor package may further include a second semiconductor die including a plurality of second electrical die contact elements coupled to the plurality of second layer contact elements, and a mold structure covering the second semiconductor die. A first pitch between neighbouring first electrical die contact elements may be greater than a second pitch between neighbouring second electrical die contact elements.
US11018079B2 Land structure for semiconductor package and method therefor
A semiconductor package structure includes a substrate comprising a land structure. The land structure includes a first land section having a first height in a cross-sectional view and a second land section having a second height in the cross-sectional view that is different than the first height. A mold encapsulant is disposed adjacent a lateral portion of the first land section and is disposed below a bottom portion of the second land section. A semiconductor die is attached to the substrate, and includes a first major surface, a second major surface opposing the first major surface, and an outer perimeter. The semiconductor die further includes a bonding structure disposed adjacent the first major surface, which is coupled to the second land section such that the first land section is disposed outside the perimeter of the semiconductor die A mold member encapsulates at least portions of the semiconductor die.
US11018078B2 Method of producing electronic components, corresponding electronic component
A method of producing electronic components including at least one circuit having coupled therewith electrical connections including metallic wire bondable surfaces encased in a packaging, the method including bonding stud bumps, in particular copper stud bumps, at determined areas of said wire bondable surfaces.
US11018076B2 Cooling apparatus, semiconductor module, and vehicle
A semiconductor module is provided, where a coolant circulation portion of a cooling apparatus has a first coolant flow channel and a second coolant flow channel arranged so as to sandwich therebetween a fin region in which a cooling fin is provided, and each having two ends in a longitudinal direction, a casing portion of the cooling apparatus includes a first opening provided on an end side corresponding to a first end of the first coolant flow channel and a second opening provided on an end side corresponding to a second end of the second coolant flow channel, the second end and the first end are arranged on the same side of the casing portion, and the first coolant flow channel and the second coolant flow channel are each at least partly provided below the cooling fin.
US11018074B2 Energy supply
Apparatus for providing electrical energy, in particular for providing electrical energy from a heat flow originating from an electric motor, including a first component part, a second component part, wherein a Peltier element is arranged between the first component part and the second component part, said Peltier element being at least partially surrounded by a layer of insulation provided between the first component part and the second component part, with the result that the Peltier element forms a thermal bridge between the first and the second component parts, and wherein the first and the second component parts are selected from the following group: gear mechanism, motor and adapter plate.
US11018072B2 Semiconductor package having overlapping electrically conductive regions and method for producing the same
A semiconductor package includes an upper electrically conductive element having a lower carrier substrate having an upper electrically conductive layer, a lower electrically conductive layer having an outwardly exposed surface, and an electrical insulation layer arranged between the electrically conductive layers, a first electrically conductive spacer arranged between the upper electrically conductive element and the upper electrically conductive layer, a power semiconductor chip arranged between the upper electrically conductive element and the upper electrically conductive layer, and a second electrically conductive spacer arranged between the upper electrically conductive element and the chip. A first carrier region of the upper electrically conductive layer is configured to apply a positive supply voltage. A second carrier region alongside the first carrier region is configured as a phase. A first region of the upper electrically conductive element is configured to apply a negative supply voltage, and at least partly overlaps the first carrier region.
US11018065B2 Semiconductor device structure with magnetic element in testing region
A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate having a testing region and multiple first conductive lines over the testing region. The first conductive lines are electrically connected in series. The semiconductor device structure also includes multiple second conductive lines over the testing region. The second conductive lines are electrically connected in series, and the second conductive lines are physically separated from the first conductive lines. The semiconductor device structure further includes multiple magnetic structures wrapping around portions of the first conductive lines and wrapping around portions of the second conductive lines. The magnetic structures are arranged in a column.
US11018064B2 Multiple-tool parameter set configuration and misregistration measurement system and method
A multiple-tool parameter set configuration and misregistration measurement system and method useful in the manufacture of semiconductor devices including using a first misregistration metrology tool using a first set of measurement parameters to measure misregistration between at least two layers at multiple sites on a wafer, including a plurality of semiconductor devices, the wafer being selected from a batch of wafers including a plurality of semiconductor devices intended to be identical to corresponding semiconductor devices on all other wafers in the batch of wafers, thereby generating a plurality of first misregistration data sets, using a second misregistration metrology tool using a second set of measurement parameters to measure misregistration between the at least two layers at multiple sites on a wafer selected from the batch of wafers, thereby generating a plurality of second misregistration data sets, selecting an adjusted first set of modeled measurement parameters associated with the first misregistration data sets and an adjusted second set of modeled measurement parameters associated with the second misregistration data sets, thereby generating a matched misregistration data set and thereafter measuring misregistration between at least two layers of at least one additional wafer, selected from the batch of wafers, using at least one of the first misregistration metrology tool using the adjusted first set of modeled measurement parameters and the second misregistration metrology tool using the adjusted second set of modeled measurement parameters.
US11018050B2 Semiconductor device and method of fabricating the same
A semiconductor device includes a substrate having first fin and a second fin spaced apart and extending lengthwise in parallel. A fin remnant is disposed between the first fin and the second fin, extends lengthwise in parallel with the first and second fins, and has a height lower than a height of each of the first fin and the second fin. A first field insulation layer is disposed between a sidewall of the first fin and a first sidewall of the fin remnant and a second field insulating layer is disposed on a sidewall of the second fin. A blocking liner conforms to a sidewall and a bottom surface of a trench bounded by a second sidewall of the fin remnant and a sidewall of the second field insulating layer. A trench insulation layer is disposed on the blocking liner in the trench.
US11018049B2 Manufacturing method of isolation structure
A manufacturing method of an isolation structure includes the following steps. A semiconductor substrate is provided. A trench is formed in the semiconductor substrate. A first film forming process is performed to form a first dielectric layer conformally on the semiconductor substrate and conformally in the trench. An annealing process is performed to densify the first dielectric layer and convert the first dielectric layer into a second dielectric layer. A thickness of the second dielectric layer is less than a thickness of the first dielectric layer. A second film forming process is performed after the annealing process to form a third dielectric layer on the second dielectric layer and in the trench. The trench is filled with the second dielectric layer and the third dielectric layer.
US11018047B2 Hybrid lift pin
A lift pin and a substrate support assembly and reactor including the lift pin are disclosed. The lift pin includes first section comprising a material having a first transparency and a second section comprising a material having a second transparency. The lift pin can provide improved temperature uniformity across substrate support assembly including the lift pin during substrate processing.
US11018046B2 Substrate processing apparatus including edge ring
A substrate processing apparatus including a process chamber; a susceptor in the process chamber; and an inner edge ring and an outer edge ring on the susceptor, wherein the inner edge ring includes a semiconductor, the outer edge ring includes an insulator, an upper surface of the outer edge ring is at a higher level than an upper surface of the inner edge ring, and the outer edge ring has an overhang extending onto the inner edge ring.
US11018043B2 Wafer processing method using a ring frame and a polyester sheet
A wafer processing method includes a polyester sheet providing step of positioning a wafer in an inside opening of a ring frame and providing a polyester sheet on a back side of the wafer and on a back side of the ring frame, a uniting step of heating the polyester sheet as applying a pressure to the polyester sheet to thereby unite the wafer and the ring frame through the polyester sheet by thermocompression bonding, a dividing step of cutting the wafer by using a cutting apparatus to thereby divide the wafer into individual device chips, and a pickup step of blowing out air to push up each device chip and picking up each device chip from the polyester sheet.
US11018040B2 Carrier assisted substrate method of manufacturing an electronic device and electronic device produced thereby
An electronic device structure and a method for making an electronic device. As non-limiting examples, various aspects of this disclosure provide a method of manufacturing an electronic device that comprises the utilization of a carrier assisted substrate, and an electronic device manufactured thereby.
US11018038B2 Apparatus for sawing a semiconductor package
A semiconductor package sawing device is provided that includes a semiconductor package sawing unit, an automatic tool providing portion disposed adjacent to the semiconductor package sawing unit, and a semiconductor package alignment portion. The automatic tool providing portion includes a transfer unit for transferring a chuck unit to the semiconductor package sawing unit.
US11018035B2 Substrate processing system
A measurement processing process S103 of measuring a cut width of a film based on an image obtained by imaging, with an imaging unit 270, a peripheral portion of a substrate which is processed based on a substrate processing recipe; a creation process S602 of creating a management list in which a set value of the cut width of the film, a measurement value of the cut width of the film measured through the measurement processing process and time information at which the measurement result is obtained are correlated; an analysis process S603 (S606) of analyzing a state of the processed substrate based on the created management list; and a notification process S605 (S608, S609) of making a preset notification to a user based on an analysis result obtained through the analysis process are provided.
US11018033B2 Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
There is provided a technique that includes a process chamber including a gate valve that opens and closes a loading and unloading port configured to load and unload a substrate, and configured to heat and process the substrate by a heater using a microwave; a substrate transfer chamber including a purge gas distribution mechanism configured to distribute a purge gas supplied from a clean unit capable of introducing the purge gas; a transfer machine installed inside the substrate transfer chamber and configured to transfer the substrate into the process chamber; and a substrate cooling mounting tool configured to cool the substrate transferred from the process chamber by the transfer machine.
US11018029B2 Method for producing an at least partly packaged semiconductor wafer
A method for producing an at least partially housed semiconductor wafer is provided. This method comprises the steps of providing a semiconductor wafer which has components on its upper face and providing a cover disc, the surface of which at least partially covers the semiconductor wafer. After functionalizing the surface of the cover disc to form a functional layer, the upper face of the semiconductor wafer and the surface of the cover disc are joined together, followed by activating the functional layer using simultaneous chemical bonding of the semiconductor wafer and the cover disc such that the cover disc forms a housing for the semiconductor wafer.
US11018027B2 Interconnect structure
An interconnect structure includes a first dielectric layer, an etch stop layer, a conductive via, a conductive line, an intermediate conductive layer, a conductive pillar, and a second dielectric layer. The etch stop layer is over the first dielectric layer. The conductive via is in the first dielectric layer and the etch stop layer. The conductive line is over the conductive via. The intermediate conductive layer is over the conductive line. The conductive pillar is over the intermediate conductive layer. The second dielectric layer surrounds the conductive line, the intermediate conductive layer, and the conductive pillar, and a bottom of the second dielectric layer is lower than a top of the conductive line, and a top of the second dielectric layer is higher than the top of the conductive line.
US11018026B2 Interposer, semiconductor package, and method of fabricating interposer
A semiconductor package includes: a plurality of unit redistribution layers vertically stacked, each including: a first polymer layer having a first via hole pattern; a second polymer layer formed on the first polymer layer, and having a redistribution pattern on the first polymer layer and a second via hole pattern in the first via hole pattern; a seed layer covering sidewalls and bottom surfaces of the redistribution pattern and the second via hole pattern; a conductive via plug formed in the second via hole pattern; and a conductive redistribution line formed in the redistribution pattern; a connection terminal disposed on a bottom surface of a lowermost unit redistribution layer and electrically connected to the conductive via plug; a semiconductor device mounted on the unit redistribution layers with a conductive terminal interposed therebetween. Upper surfaces of the second polymer layer, the conductive redistribution line and the conductive via plug are substantially coplanar.
US11018023B2 Defect reduction of semiconductor layers and semiconductor devices by anneal and related methods
Systems and methods of the disclosed embodiments include reducing defects in a semiconductor layer. The defects may be reduced by forming the semiconductor layer on a substrate, removing at least a portion the substrate from an underside of the semiconductor layer, and annealing the semiconductor layer to reduce the defects in the layer. The annealing includes focusing energy at the layer.
US11018022B2 Method for forming semiconductor device structure having oxide layer
A method for forming a semiconductor device structure is provided. The method includes depositing a gate dielectric layer over a substrate. The substrate has a base portion and a first fin portion over the base portion, and the gate dielectric layer is over the first fin portion. The method includes forming a gate electrode layer over the gate dielectric layer. The gate electrode layer includes fluorine. The method includes annealing the gate electrode layer and the gate dielectric layer so that fluorine from the gate electrode layer diffuses into the gate dielectric layer.
US11018017B2 Substrate treatment method
A substrate in which a low dielectric constant film is formed on a front surface thereof is processed. A densification step of densifying a surface layer portion of the low dielectric constant film to change to a densified layer is executed. Then, after a densified layer forming step, a repair liquid supplying step of supplying a repair liquid, for repairing the densified layer, to a front surface of the low dielectric constant film is executed.
US11018014B2 Dry etching method
A dry etching method for isotropically etching each of SiGe layers selectively relative to each of Si layers in a laminated film is provided. The laminated film can include Si layers and SiGe layers alternately and repeatedly laminated. Each of the SiGe layers can be plasma-etched with plasma generated by a pulse-modulated radio frequency power using NF3 gas.
US11018013B2 Semiconductor device manufacturing method and semiconductor device
A semiconductor device manufacturing method includes: forming an electrode including an Ni layer and an Au layer successively stacked on a semiconductor layer; forming a Ni oxide film by performing heat treatment to the electrode at a temperature of 350° C. or more to deposit Ni at least at a part of a surface of the Au layer and to oxidize the deposited Ni; and forming an insulating film in contact with the Ni oxide film and containing Si.
US11018003B2 Method of selective silicon germanium epitaxy at low temperatures
In an embodiment, a method of selectively depositing a silicon germanium material on a substrate is provided. The method includes positioning the substrate within a substrate processing chamber, the substrate having a dielectric material and a silicon containing single crystal thereon; maintaining the substrate at a temperature of about 450° C. or less; exposing the substrate to a process gas comprising: a silicon source gas, a germanium source gas, an etchant gas, a carrier gas, and at least one dopant source gas; and epitaxially and selectively depositing a first silicon germanium material on the substrate.
US11018001B2 Method of growing two-dimensional transition metal dichalcogenide thin film and method of manufacturing device including the same
A method of growing a two-dimensional transition metal dichalcogenide (TMD) thin film and a method of manufacturing a device including the two-dimensional TMD thin film are provided. The method of growing the two-dimensional TMD thin film may include a precursor supply operation and an evacuation operation, which are periodically and repeatedly performed in a reaction chamber provided with a substrate for thin film growth. The precursor supply operation may include supplying two or more kinds of precursors of a TMD material to the reaction chamber. The evacuation operation may include evacuating the two or more kinds of precursors and by-products generated therefrom from the reaction chamber.
US11018000B2 Electronic apparatus and manufacturing method of the same
According to one embodiment, an electronic apparatus including a first substrate comprising a first conductive layer; a second substrate which is opposed to the first conductive layer and is separated from the first conductive layer, the second substrate including: a second conductive layer, and a first hole penetrating the second substrate; and a connecting material which electrically connects the first conductive layer and the second conductive layer via the first hole, wherein the second conductive layer is located on the second substrate on a side opposite to a side that is opposed to the first conductive layer.
US11017997B2 Methods and apparatus for low temperature silicon nitride films
Processing methods for forming a silicon nitride film comprising exposing a metal surface to a silicon precursor, a nitrogen-containing reactant and a hydrogen-containing plasma at a temperature less than or equal to about 250° C. to form a silicon nitride film with a low etch rate without damaging the metal surface.
US11017986B2 Deposition radial and edge profile tunability through independent control of TEOS flow
Disclosed embodiments generally relate to a processing chamber that includes a perforated lid, a gas blocker disposed on the perforated lid, and a substrate support disposed below the perforated lid. The gas blocker includes a gas manifold, a central gas channel formed in the gas manifold, a first gas distribution plate that includes inner and outer trenches surrounding the central gas channel, and a first and second gas channels formed in the gas manifold. The first gas channel is in fluid communication with a first gas source and the inner trench, and the second gas channel is in fluid communication with the first gas source and the outer trench and a second gas distribution plate The first gas channel is in further fluid communication with a third gas distribution plate that is disposed below the second gas distribution plate, and a plurality of pass-through channels that are disposed between the second gas distribution plate and the third gas distribution plate. The second gas distribution plate includes a plurality of through holes formed through a bottom of the second gas distribution plate as well as a central opening in fluid communication with the central gas channel The second gas distribution plate further includes a recess region formed in a top surface of the second gas distribution plate, and the recess region surrounds the central opening.
US11017985B2 Plasma processing apparatus, impedance matching method, and plasma processing method
In a plasma processing apparatus according to an embodiment, a first radio-frequency power supply is connected to a lower electrode of a substrate support provided within a chamber via a first matcher. The first radio-frequency power supply supplies first radio-frequency power for bias to the lower electrode. The second radio-frequency power supply is connected to a load via a second matcher. The second radio-frequency power supply supplies second radio-frequency power for plasma generation. A controller of the second matcher sets an impedance of a matching circuit of the second matcher such that a reflection from the load of the second radio-frequency power supply is reduced in a designated partial period within each cycle of the first radio-frequency power.
US11017984B2 Ceramic coated quartz lid for processing chamber
Implementations of the present disclosure include methods and apparatuses utilized to reduce particle generation within a processing chamber. In one implementation, a lid for a substrate processing chamber is provided. The lid includes a cover member having a first surface and a second surface opposite the first surface, a central opening through the cover member, wherein an inner profile of the central opening includes a first section having a first diameter, a second section having a second diameter, and a third section having a third diameter, wherein the second diameter is between the first diameter and the third diameter, and the first diameter increases from the second section toward the first surface of the cover member, and a trench formed along a closed path in the first surface and having a recess formed in an inner surface of the trench.
US11017982B2 Composite charged particle beam apparatus and control method thereof
Disclosed is a composite charged particle beam apparatus including: an ion supply unit supplying an ion beam; an acceleration voltage application unit applying an acceleration voltage to the ion beam supplied by the ion supply unit to accelerate the ion beam; a first focusing unit focusing the ion beam; a beam booster voltage application unit applying a beam booster voltage to the ion beam; a second focusing unit focusing the ion beam to irradiate a sample; an electron beam emission unit emitting an electron beam to irradiate the sample; and a controller setting a value of the beam booster voltage that the beam booster voltage application unit applies to the ion beam, based on a value of the acceleration voltage applied to the ion beam by the acceleration voltage application unit and of a set value predetermined according to a focal distance of the focused ion beam.
US11017981B2 Charged particle beam system
A charged particle beam system includes a charged particle beam device 101 and the detection circuit 114. The charged particle beam device 101 includes a first antenna 102 having a first resonant frequency and a second antenna 103 having a second resonant frequency. The detection circuit 114 includes a first amplitude detection unit 110 which detects a first amplitude of a signal after passing a first filter 107, a second amplitude detection unit 111 which detects a second amplitude of a signal after passing a second filter 108, and an amplitude comparison unit 113 which compares the first amplitude with the second amplitude.
US11017977B1 Liquid metal bearing assembly and method for operating said liquid metal bearing assembly
Liquid metal bearing assemblies and methods for operation of said assemblies are provided. One example liquid metal bearing assembly includes a liquid metal interface positioned between a stationary component and a rotational component. The rotational component includes a liquid metal reservoir configured to contain a liquid metal and positioned radially inward from the liquid metal interface, a liquid metal passage extending between the liquid metal reservoir and the liquid metal interface, and an anti-wetting surface in the liquid metal passage.
US11017974B2 Ion source
An ion source is provided that includes a gas source for supplying a gas, and an ionization chamber defining a longitudinal axis extending therethrough and including an exit aperture along a side wall of the ionization chamber. The ion source also includes one or more extraction electrodes at the exit aperture of the ionization chamber for extracting ions from the ionization chamber in the form of an ion beam. At least one of the extraction electrodes comprises a set of discrete rods forming a plurality of slits in the at least one extraction electrode for enabling at least one of increasing a current of the ion beam or controlling an angle of extraction of the ion beam from the ionization chamber. Each rod in the set of discrete rods is parallel to the longitudinal axis of the ionization chamber.
US11017973B2 Heat sink apparatus for microwave magnetron
A heat sink apparatus for a microwave magnetron includes a thermal conduction seat, a first heat-fin set, and at least one first heat pipe. One end of the first heat pipe protrudes into the thermal conduction seat, while another end of the first heat pipe protrudes into the first heat-fin set. An antenna of the microwave magnetron is to penetrate through the thermal conduction seat.
US11017972B2 Solderless surface mount fuse
A solderless surface mount fuse including a base having a floor and a plurality of adjoining sidewalls defining a cavity, a fuse element including a separation portion spanning between two electrode portions, the separation portion and the electrode portions formed of a contiguous piece of material, the separation portion suspended within the cavity below top edges of the sidewalls of the base, and a cap having a ceiling and a plurality of adjoining sidewalls, the cap fitting over the base and the fuse element with bottom edges of the sidewalls of the cap disposed below the top edges of the sidewalls of the base, wherein the cavity of the base contains a fuse filler that completely surrounds the separation portion.
US11017971B2 Differential electrical protection device that measures a differential current over a plurality of phase conductors
A differential electrical protection device D including N−1 phase conductors, each phase conductor including, between an input, or upper, connection land and an output, or lower, connection land, a portion able to pass through a torus and a portion able to pass through a current measurement and supply sensor, the input connection lands being situated in a first plane P1, and the output connection lands extending in a second plane P2, in that the supply and measurement sensors of the N−1 phase conductors are each positioned in the space situated between the two planes P1,P2, and wherein it includes an additional phase conductor including an input connection land and an output connection land, a portion able to pass through the torus and a portion able to pass through an additional measurement sensor only measuring the current, this additional measurement sensor being of small size and being positioned directly above the torus in such a way that the assembly formed by the torus and the additional sensor is situated substantially in the space between the two planes P1,P2.
US11017963B2 Intelligent lighting control system including releasable faceplate
The present disclosure provides an intelligent lighting control system including a releasable faceplate. The faceplate is used for installation of at least one base module. The base module has a base housing that forms a well and includes a first connector positioned in the well. The base module further includes a power terminal configured to receive electrical current and a dimmer circuit configured to modulate a flow of the electrical current to a load terminal coupled to a lighting circuit. A switch controller is mounted in the faceplate and includes a second connector configured to electrically engage with the first connector when the faceplate is pivoted to the base module. The switch controller is further configured to send one or more commands to the base module to control the dimmer circuit.
US11017962B2 Light device control apparatus
A light device control apparatus is designed to pair with a traditional switch device that has a traditional switch for accepting a first user manual operation to control a target device connected to the traditional switch device with an electrical wire. The traditional switch device has a connecting structure. The light device control apparatus has an attaching device, a cover body, a replacement switch and a wireless controller. The attaching device is attached to the connecting structure of the traditional switch device. The wireless controller wirelessly controls the target device. The replacement switch and the wireless component are not overlapped to each other vertically with respect to the surface cover of the traditional switch device.
US11017960B2 Electrical contact system
An electrical contact system includes a pair of static contacts, a rotatable member disposed between the static contacts and rotatable about a rotation axis between a first position and a second position, and a movable contact mounted on and rotated with the rotatable member. A pair of opposite ends of the movable contact are in electrical contact with the static contacts when the rotatable member is rotated to the first position. The ends of the movable contact are separated from the static contacts when the rotatable member is rotated to the second position. The movable contact has a Z-shape and is slidably mounted on the rotatable member. The movable contact slides under a pushing force from a first static contact of the static contacts toward a second static contact of the static contacts to be in electrical contact with the second static contact.
US11017959B2 Nanoelectromechanical devices with metal-to-metal contacts
Nanoelectromechanical systems (NEMS) devices/switches and methods for implementing and fabricating the same with conducting contacts are provided. A nanoelectromechanical system (NEMS) switch can include a substrate; a source cantilever formed over the substrate and configured to move relative to the substrate; a drain electrode and at least one gate electrode formed over the substrate; wherein the source cantilever, drain and gate electrodes comprises a metal layer affixed to a support layer, at least a portion of the metal layer at the contact area extending past the support layer; and an interlayer sandwiched between the support layer and substrate.
US11017956B2 Capacitor and method for manufacturing same
A capacitor has electrode foil (2, 60) and a terminal (tab 4) connected, an etch layer (16) being formed in the electrode foil, wherein a plurality of interrupting parts (12) are included in the etch layer, which is formed in the electrode foil, and at least in a connection part (stitching part 6) at which the terminal is connected. It makes it possible for the electrode foil of a higher capacitance to have flexibility, makes it possible to suppress cracks caused by pressing, and makes it possible to prevent cracks from spreading. In addition, such effects are expected that the electrode foil can be prevented from being damaged in a process of connecting the tab including folding the electrode foil, and pressing raised pieces of the electrode foil and the tab onto the electrode foil.
US11017946B2 Capacitor component
A capacitor component includes a body including dielectric layers and first and second internal electrodes disposed to face each other while having the dielectric layer interposed therebetween; and first and second external electrodes disposed on an external surface of the body and electrically connected to the first and second internal electrodes, respectively. The body includes a capacitance forming portion including the first and second internal electrodes disposed to face each other while having the dielectric layer interposed therebetween and in which capacitance is formed, and cover portions formed on upper and lower surfaces of the capacitance forming portion, and hardness of the cover portions is 9.5 GPa or more and 14 GPa or less.
US11017945B2 Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
A multilayer ceramic capacitor includes: a multilayer structure in which each of a plurality of dielectric layers and each of a plurality of internal electrode layers are alternately stacked, a main component of the dielectric layers being ceramic, a main component of the internal electrode layer being a metal, wherein an arithmetic average roughness Ra of at least a part of the internal electrode layer is 30 nm or less, wherein a maximum height Rz of the at least a part of the internal electrode layer is 360 nm or less.
US11017943B2 Method for preparing a permanent magnet material
The disclosure discloses a method for preparing a permanent magnet material. In this method, an ionic liquid electroplating process is used to electroplate a heavy rare earth metal onto a surface of a sintered magnet to form a magnet with a coating, wherein the sintered magnet has a thickness of 10 mm or less in at least one direction; in the ionic liquid electroplating process, an electroplating solution comprises an ionic liquid, a heavy rare earth salt, a group VIII metal salt, an alkali metal salt and an additive, an anode is a heavy rare earth metal or a heavy rare earth alloy, a cathode is the sintered magnet, an electroplating temperature is 20-50° C., an electroplating time is 15-80 min. The preparation method of the disclosure can improve an intrinsic coercive force of the magnet with low cost and high production efficiency. A utilization rate of heavy rare earth is high.
US11017938B2 Methods, apparatus and systems for dry-type transformers
In some embodiments, a connection bar is provided for connecting multiple high voltage coils of a dry-type transformer along a top or bottom of the dry-type transformer. The connection bar includes (1) an electrically insulating body having a plurality of openings, each opening sized to receive at least one of high voltage terminals of the transformer; (2) an electrical connection pathway within the electrically insulating body configured to create a predetermined electrical connection between multiple high voltage coils of the transformer; (3) external connector terminals embedded within and extending from the electrically insulating body, the external connector terminals connected to the electrical connection pathway; and (4) a ground shield embedded within the electrically insulating body and configured to shield high voltage terminals of each high voltage coil of the transformer. Numerous other aspects are provided.
US11017934B2 Electronic module
The present invention discloses an electronic module. The electronic module comprises: a substrate, having a top surface and a bottom surface; a plurality of coils on the top surface of the substrate, wherein each coil comprises a corresponding first end and a corresponding second end; and a molding body, disposed on the substrate to encapsulate said coils, wherein said corresponding first end and said corresponding second end of each coil are electrically coupled to a corresponding first electrode and a corresponding second electrode of the electronic module.
US11017932B2 Inductor apparatus optimized for low power loss in class-D audio amplifier applications and method for making the same
An inductor is provided, comprising: a first ferrite core piece and a second ferrite core piece, each of which are made of substantially similar materials, exhibit desired electromagnetic properties, and which are fashioned in a substantially similar manner and shape, and wherein each of the first and second ferrite core pieces comprises a substantially planar mating surface, a center post, and a wire core assembly channel, and wherein a first substantially planar mating surface of the first ferrite core piece is adapted to planarly mate with a second substantially planar mating surface of the second ferrite core piece; and a wire core assembly adapted to be substantially self-locating and self-centering about a first or second center post when located in a respective first or second wire core assembly channel.
US11017930B2 Inductor
An inductor includes a body structure, a first external electrode and a second external electrode disposed externally on the body structure and spaced apart from each other, and a conductive structure disposed inside the body structure and including a first end portion in contact with the first external electrode and a second end portion in contact with the second external electrode, wherein each of the first and second external electrodes includes an electroless plated layer and an electrolytic plated layer formed of a material different from that of the electroless plated layer and covering the electroless plated layer.
US11017927B2 System and method for perturbing a permanent magnet asymmetric field to move a body
A system and method for perturbing a permanent magnet asymmetric field to move a body includes a rotating body configured to rotate about a rotation axis, a permanent magnet arrangement arranged on the rotating body containing two or more permanent magnets, and a perturbation element. The permanent magnet arrangement is configured such that an asymmetric magnetic field is generated by the permanent magnets about a perturbation point. Actuation of the perturbation element at or near the perturbation point causes a tangential magnetic force on the rotating body and/or the permanent magnet arrangement, thereby causing the rotating body to rotate about the rotation axis. The disclosure may also be used for linear motion of a body.
US11017926B2 Coil component
A coil component includes a body including a coil including lead portions at both ends thereof and a magnetic material sealing the coil and external electrodes disposed on outer surfaces of the body and connected to the lead portions, respectively. An outer surface of the coil including at least one of an upper surface, a lower surface, and a side surface of the coil includes a surface area increasing portion.
US11017924B2 Thermistor element and method for manufacturing same
In a thermistor element, a thermistor body formed of a thermistor material, a conductive interlayer formed on the thermistor body, and an electrode layer formed on the conductive interlayer are provided, the conductive interlayer is formed along protrusions and recesses on a surface of the thermistor body, the conductive interlayer is a layer in which RuO2 grains in contact with each other are uniformly distributed and SiO2 interposes in gaps between the RuO2 grains, and the conductive interlayer is formed in a state of adhering to the thermistor body along the protrusions and the recesses on the surface of the thermistor body.
US11017921B2 Coaxial cable and method of construction thereof
A coaxial cable and method of construction thereof are provided. The coaxial cable includes an elongate central conductive member; a dielectric insulative layer encasing the central conductive member; an outer protective sheath, and a braided EMI shield layer including hybrid yarn sandwiched between the dielectric insulative layer and the outer protective sheath. The hybrid yarn includes an elongate nonconductive filament and an elongate continuous conductive wire filament. The wire filament is interlaced in electrical communication with itself or other wire filaments along a length of the EMI shield layer to provide protection to the central conductive member against at least one of EMI, RFI or ESD. The method includes providing a central conductive member; forming a dielectric insulative layer surrounding the central conductive member; braiding an EMI shield layer including hybrid yarn about the insulative layer, and forming an outer protective sheath about the braided EMI shield layer.
US11017914B2 Covered electric wire, terminal-fitted electric wire, copper alloy wire, and copper alloy stranded wire
A covered electric wire comprises an insulating coating layer on the outer side of a conductor. The conductor comprises a copper alloy consisting of: not less than 0.05% by mass and not more than 2.0% by mass of Fe; not less than 0.02% by mass and not more than 1.0% by mass of Ti; not less than 0% by mass and not more than 0.6% by mass of Mg; and the balance being Cu and impurities. The covered electric wire is a stranded wire comprising a plurality of copper alloy wires stranded together. The plurality of copper alloy wires each have a work hardening coefficient of not less than 0.1 and a wire diameter of not more than 0.5 mm.
US11017910B2 Method for producing an iodine radioisotopes fraction, in particular of I-131, iodine radioisotopes fraction, in particular of I-131
A method for producing an iodine radioisotopes fraction, comprising the steps of dissolving enriched uranium targets forming a slurry, filtering said slurry, absorbing salts of iodine radioisotopes on an aluminium resin doped with silver and recovering said iodine radioisotopes fraction, is disclosed. The recovery of the iodine radioisotopes fraction, in particular of I-131, comprises washing the aluminium resin doped in silver using a solution of NaOH and eluting of iodine radioisotopes by a solution of thiourea, and collecting an eluate containing said iodine radioisotopes in a thiourea solution.
US11017908B2 System and method for minimizing movement of nuclear fuel racks during a seismic event
A system for storing nuclear fuel, the system including a storage rack and a bearing pad. The storage rack includes an array of cells, each cell configured to receive and store nuclear fuel rods, a base plate configured to support the array of cells, and a support structure configured to support the base plate and to allow cooling fluid to circulate under and up through apertures in the base plate. The bearing pad is coupled to the support structure and is configured to limit lateral movement of the storage rack independent from lateral movement of the bearing pad. The base plate defines a base plate profile in a horizontal plane of the base plate, and the bearing pad defines a bearing pad profile in the horizontal plane of the base plate, wherein the bearing pad profile extends outside of the base plate profile.
US11017903B2 Heart failure readmission evaluation and prevention systems and methods
A method of treating a patient to prevent heart failure readmission can include identifying one or more risk factors for the patient, and selecting one or more interventions relating to the one or more risk factors in a graphical user interface (GUI) of a treatment support system. The method also includes receiving a statistical score of the one or more interventions to determine the effect of the one or more selected interventions on heart failure readmission, and treating the patient as a function of the received statistical score using the one or more interventions.
US11017902B2 System and method for processing human related data including physiological signals to make context aware decisions with distributed machine learning at edge and cloud
A system and method for processing human related data to make personalized and context aware decisions with distributed machine learning at an edge and a cloud is disclosed. A nearest edge computing device receives first, second and third sensed signals from first, second and third sensory devices, determines when the first, second and third sensed signals exceed corresponding thresholds, correlates pairs of the sensed signals to generate multiple correlation patterns, determines a lag time between the first sensed signal exceeding the first threshold and the second sensed signal exceeding the second threshold, provides each of the multiple correlation patterns and the lag time as inputs to multiple long short term memory (LSTM) neural networks, controls the multiple LSTM neural networks to provide outputs, and maps the patient to a stage of a medical condition based at least in part on the multiple correlation patterns and the lag time.
US11017894B1 Infusion monitoring device and patient compliance system
An infusion monitoring device (IMD) for facilitating infusion pump medication treatment compliance. The IMD having at least one sensor to monitor data on a tube extending from an infusion pump. The IMD may be part of a compliance system. The IMD able to collect data and communicate data to a network for remote compliance analysis. The system provides compliance feedback to support the patient and improve compliance with the treatment process.
US11017893B2 Medication container for dosage compliance
A medication container for validating self-administration of prescription medication by a patient wherein the prescription medication is administered over a series of timed dosages. A machine-readable optical code label such as a QR Code is affixed to an interior surface of a medication container containing the medication such as the interior of the bottle cap. The container must be open to electronically read the optical code label. The label contains data associated with the medication and is read by a software application installed on a smartphone. The software receives the label-embedded data and a timestamp to validate the patient is self-administering the medication consistent with the series of timed dosages.
US11017891B2 Titration of basal insulin with two modes
A medical device data management unit includes a data storage and a processor. The data storage stores multiple measurement values of a physiological parameter of a user including a blood glucose level, multiple applied medicament dose values, time information associated with the multiple measurement values of the physiological parameter and one or more target ranges of the physiological parameter. The processor can determine a suggestion for a subsequent medicament dose value, check a prior suggestion and adjust the suggestion based on other measured values. The data management unit can be included in a medical device. The instructions to operate the data management unit can be encoded on a computer-readable medium.
US11017884B2 Discovery routing systems and engines
The inventive subject matter provides apparatus, systems, and methods that improve on the pace of discovering new practical information based on large amounts of datasets collected. In most cases, anomalies from the datasets are automatically identified, flagged, and validated by a cross-validation engine. Only validated anomalies are then associated with a subject matter expert who is qualified to take action on the anomaly. In other words, the inventive subject matter bridges the gap between the overwhelming amount of scientific data which can now be harvested and the comparatively limited amount analytical resources available to extract practical information from the data. Practical information can be in the form of trends, patterns, maps, hypotheses, or predictions, for example, and such practical information has implications in medicine, in environmental sciences, entertainment, travel, shopping, social interactions, or other areas.
US11017882B2 Method for predicting the off-target biding of a peptide which binds to a target peptide presented by a major histocompatibility complex
The invention provides a method for predicting whether a binding peptide, which binds to a target peptide presented by a Major Histocompatibility Complex (MHC) and is for administration to a subject, has the potential to cross react with another peptide in the subject in vivo. The method comprises the steps of identifying at least one binding motif in the target peptide to which the binding peptide binds; and searching for peptides that are present in the subject that comprise the at least one binding motif and that are not the target peptide. The presence of one or more such peptides indicates that the binding peptide has the potential to cross react in vivo.
US11017877B2 Multi-chip package
Provided are multi-chip packages. A multi-chip package includes a first memory chip and a second memory chip on a printed circuit board; a memory controller electrically connected to the first memory chip and the second memory chip via a first bonding wire and a second bonding wire; and a strength control module configured to control a drive strength of each of a first output driver of the first memory chip and a second output driver of the second memory chip, wherein the memory controller includes an interface circuit configured to receive each of first test data and second test data from the first output driver and the second output driver in which the drive strength is set by the strength control module, and output detection data for detecting whether the first bonding wire and the bonding wire are short-circuited based on the first and second test data.
US11017876B2 Memory correcting method
A memory correcting method includes steps: providing a memory with a plurality of memory bytes; respectively adding a plurality of correcting bytes to the plurality of memory bytes; providing a plurality of non-volatile compared memory bytes; detecting whether there are any underperforming bits in the plurality of memory bytes, the plurality of correcting bytes, and the plurality of compared memory bytes of the memory to complete the correction. Alternatively, the method respectively provides a plurality of compared memory address bytes for the plurality of memory bytes and for the plurality of correcting bytes for labeling underperforming-bit addresses. Then, the method detects whether there are any underperforming bits in the plurality of memory bytes, the plurality of correcting bytes, and the plurality of compared memory address bytes of the memory to complete the correction.
US11017874B2 Data and memory reorganization
A method and system for improving data and memory reorganization and storage technology is provided. The method includes configuring data capture and analysis settings of a database system resulting in configured data capture settings. A data and associated memory analysis request is received and specified test code is selected. A specified portion of data and associated memory is selected and the specified analysis code is executed resulting in execution of said specified type of analysis with respect to the specified portion of said data and associated memory. The specified portion of said data and associated memory is modified and stored.
US11017873B2 Memory bypass function for a memory
A memory bypass circuit for a memory device comprises: a word line disable circuit; a read and write activation circuit; an internal clock generator; and a write data input circuit. The word line disable circuit is coupled to a word line of the memory device for disabling a write function to the word line. The read and write activation circuit is coupled to the memory device for reading and writing of input data. The internal clock generator is coupled to the word line disable circuit and the read/write activation circuit. The write data input circuit is coupled to a write driver of the memory device for providing write data.
US11017869B2 Programming process combining adaptive verify with normal and slow programming speeds in a memory device
Techniques are provided to adaptively determine when to begin verify tests for memory cells during a program operation. The memory cells are programmed using a normal programming speed until their threshold voltage exceeds an initial verify voltage. The memory cells are then programmed further using a reduced programming speed until their threshold voltage exceeds a final verify voltage. In one aspect, a count of memory cells which exceeds the initial verify voltage is used to determine when to begin verify tests for a higher data state. In another aspect, a count of the higher state memory cells which exceeds the initial or final verify voltage is used to determine when to begin verify tests for the higher data state. The counted memory cells are not subject to the reduced programming speed.