首页 / 专利库 / 太阳能 / 异质结太阳能电池 / 用于制造具有异质结和发射极扩散区的光伏太阳能电池的方法

用于制造具有异质结和发射极扩散区的光伏太阳能电池的方法

阅读:421发布:2020-05-12

专利汇可以提供用于制造具有异质结和发射极扩散区的光伏太阳能电池的方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种用于制造光伏 太阳能 电池 的方法,所述光伏 太阳能电池 具有至少一个扩散渗入的扩散区和至少一个 异质结 ,所述方法具有以下方法步骤:A.提供至少一个具有基区掺杂的 半导体 基板 ;B.在所述半导体基板的背面生成异质结,所述异质结具有掺杂的含 硅 的异质结层和直接或间接设置在异质结层与半导体基板之间的隧道 电介质 层;C.至少在所述半导体基板的与背面相对的 正面 上使所述半导体基板的表面纹理化;D.通过将至少一种具有与所述基区掺杂相反的掺杂类型的掺杂物扩散渗入所述半导体基板中,在所述半导体基板的正面上产生扩散区。,下面是用于制造具有异质结和发射极扩散区的光伏太阳能电池的方法专利的具体信息内容。

1.用于制造光伏太阳能电池的方法,所述光伏太阳能电池具有至少一个扩散渗入的扩散区(2)和至少一个异质结,所述方法具有以下方法步骤:
A.提供至少一个具有基区掺杂的半导体基板
B.在所述半导体基板的背面生成异质结,所述异质结具有掺杂的含的异质结层(5)和直接或间接设置在异质结层(5)与半导体基板(1)之间的隧道电介质层;
C.至少在所述半导体基板的与背面相对的正面上使所述半导体基板的表面纹理化;
D.通过将至少一种具有与异质结层相反的掺杂类型的掺杂物扩散渗入所述半导体基板(1)中,在半导体基板的正面上产生扩散区;
其特征在于,
在中间设置或不设置其他方法步骤的情况下,前面所述的方法步骤按A-C-B-D的顺序执行,在方法步骤D中,在贫气氛中在供应包含掺杂物的掺杂气体混合物的情况下在处于
700℃至1200℃的范围内的温度下通过从气相进行扩散的方式来产生所述扩散区(2),在方法步骤D之后,在中间设置或不设置其他方法步骤的情况下,至少在一个方法步骤D1中,在不供应所述掺杂气体混合物的情况下在处于700℃至1200℃的范围内的温度下进行温度处理,以便使扩散掺杂物向所述半导体基板(1)中推进,并使掺杂的异质结层(5)激活,并且
方法步骤D和D1原位进行并且在这两个方法步骤期间通过扩散抑制元件(8)保护半导体基板的背面,所述扩散抑制元件不是太阳能电池的组成部分。
2.根据权利要求1所述的方法,其特征在于,在不形成包含扩散掺杂物的玻璃层的情况下产生所述扩散区。
3.根据上述任意一项权利要求所述的方法,其特征在于,在方法步骤D和D1中,所述太阳能电池的背面不设置扩散抑制层,并且优选太阳能电池的正面不设置扩散抑制层。
4.根据上述任意一项权利要求所述的方法,其特征在于,隧道电介质层(4)在方法步骤B中以大于0.5的厚度形成,特别是以在1至5的范围内的厚度形成,并且在方法步骤D和/或D1中,实现所述异质结层从无定形状态到至少部分多晶型的状态的转换,特别是设计隧道型氧化物,使得产生低接触电阻
5.根据上述任意一项权利要求所述的方法,其特征在于,所述掺杂气体混合物包含掺杂物和氢,特别是由掺杂物和氢组成。
6.根据上述任意一项权利要求所述的方法,其特征在于,至少方法步骤D在具有少于
5%的氧的工艺气氛中进行,特别是在少于1%的氧的工艺气氛中进行,优选在无氧的工艺气氛中进行,特别是在方法步骤D1中重新给工艺气氛供应氧,以便形成氧化层。
7.根据上述任意一项权利要求所述的方法,其特征在于,在方法步骤D期间,改变所述掺杂气体混合物的气体供应,特别是根据预先给定的气体流动路径来控制掺杂气体混合物的气体供应。
8.根据上述任意一项权利要求所述的方法,其特征在于,多次交替地执行方法步骤D和D1。
9.根据上述任意一项权利要求所述的方法,其特征在于,方法步骤D设计成快速气相直接掺杂(RVD)。
10.根据上述任意一项权利要求所述的方法,其特征在于,在方法步骤D1中的温度处理进行至少1分钟,特别是至少10分钟。
11.根据上述任意一项权利要求所述的方法,其特征在于,不从掺杂层的固相进行扩散,以形成所述扩散区。
12.根据上述任意一项权利要求所述的方法,其特征在于,所述异质结层(5)以无定形的、包含硅的层施加,并且在方法步骤D和/或D1中所述异质结层(5)至少部分地转化成多晶硅层,优选地,在方法步骤D和/或D1中所述异质结层(5)完整地转化成多晶硅层。
13.根据上述任意一项权利要求所述的方法,其特征在于,所述扩散区(2)形成为覆盖至少90%的所述正面,特别是形成为覆盖整个正面,特别是所述扩散区形成为发射极或者形成为正面场。
14.根据上述任意一项权利要求所述的方法,其特征在于,在方法步骤D中使用含有氢的掺杂气体混合物,特别是所述掺杂气体混合物包含至少80%的氢,优选包含至少90%的氢,特别是包含至少98%的氢。

说明书全文

用于制造具有异质结和发射极扩散区的光伏太阳能电池

方法

技术领域

[0001] 本发明涉及一种根据本文所述的用于制造具有至少一个发射极扩散区和至少一个异质结的光伏太阳能电池的方法。

背景技术

[0002] 光伏太阳能电池是一种面式的半导体器件,在这种半导体器件中,通过吸收入射的电磁辐射产生载流子对并随后在pn结处使所述载流子对分离,使得太阳能电池的至少两个电触点之间产生电势并且电能可以得到利用。
[0003] pn结可以这样来实现,即,在具有基区掺杂(Basisdotierung)的半导体基板(Halbleitersubstrats)中,通过与基区掺杂相反的掺杂物的扩散形成相应的发射极区,从而在发射极区和半导体基板的基区掺杂的区域之间形成pn结。
[0004] 同样已知的是,通过向基底基板(Basissubstrat)上施加一个或多个层来形成发射极,特别是通过向由单晶组成的基底基板上施加由无定形硅组成的发射极层来形成发射极。所述发射极层这里还具有与基底(Basis)相反的掺杂类型(掺杂类型是指n型掺杂和与其相反的p型掺杂),以在发射极和基极之间形成pn结。由于发射极的无定形硅层相对于基底的晶体硅具有不同的带隙,形成所谓的异质pn结,从而形成所谓的异质发射极。
[0005] 如果基底基板和无定形硅层具有相同的掺杂类型,但具有不同的掺杂浓度,则同样形成异质结,在这种情况下是所谓的“高低结(High-Low-Junction)”。这种异质结用于形成异质接触
[0006] 在各半导体区域接通时,也已知不同的物理接触类型:通常是将金属的接触结构间接或直接地施加到待接通的半导体区域上。这里,特别地是已知欧姆接触和肖特基(Schottky)接触的形成。也已知为异质接触MOS/MIS接触的特殊形式。MOS/MIS接触的一种特殊实施方式具有以下结构:基板/隧道型化物/掺杂的多硅层。这种接触类型在半导体中是已知的,并且例如记载在Peter Würfel,太阳能电池物理学:从原理到新概念(Physics of Solar Cells:From Principles to New Concepts),2005,Weinheim:Wiley-VCH;(异质-接触(Hetero-Kontakt):第6.6章,第127页起;肖特基-接触(Schottky-Kontakt):第6.7.1章,第131页起;MIS-接触(MIS-Kontakt):第6.7.2章,第132页)和Sze,S.M.,半导体器件:物理和技术(Semiconductor devices:Physics and Technology),1985,纽约:John Wiley&sons。(MOS-接触(MOS-Kontakt):第5.4章,第186页;金属-半导体接触(Metall-Halbleiterkontakt):第5.1章,第160页起)
[0007] 异质结通常被称为具有不同带隙的材料的过渡部(结) 但异质接触也可以通过在半导体基板和异质结层之间设置隧道层的方式形成,例如如前面所述,形成为基板/隧道型氧化物/含硅层或MIS接触。术语“异质结”在本申请中在这种广泛的含义上使用。因此,异质结的“异质”性质可以基于半导体基板与异质结层之间和/或隧道层与异质层之间不同的带隙。
[0008] 在本发明中,术语“异质结”如上所述既包括具有不同掺杂类型的层的过渡部,特别是用于形成异质发射极,也包括具有相同掺杂类型的层的过渡部,特别是用于构成异质接触(Heterokontakten)。
[0009] 类似于对发射极引入的定义,在本发明中将不是异质接触的接触称为同质接触。
[0010] 需要一种结合扩散的异质结掺杂区的太阳能电池的制造方法。例如,这可以是异质pn结与基底空穴掺杂区的组合,基底空穴掺杂区即比基区掺杂更加高度掺杂的基区掺杂类型的区域(在设置在背面时,也称为“BSF”,即背面场;以及在设置在正面时,也称为“FSF”,即正面场)。同样地,这可以是异质接触与通过掺杂物的扩散产生的同质发射极的组合,也可以异质接触与相应地形成的同质pn结的组合。
[0011] 具有扩散区和异质结的太阳能电池由DE 10 2013 219 564A1已知。

发明内容

[0012] 本发明的目的在于,在所制造的光伏太阳能电池的成本效率和实现高效率的潜能方面改进在先已知的方法。
[0013] 所述目的通过本文的方法来实现。有利的实施形式在本文中给出。
[0014] 根据本发明的用于制造具有至少一个扩散渗入的扩散区和至少一个异质结的光伏太阳能电池的方法具有以下步骤:
[0015] 在方法步骤A中,提供至少一个具有基区掺杂的半导体基板。在方法步骤B中,在半导体基板的背面产生异质结。所述异质结形成有具有掺杂的含硅的异质结层和直接或间接设置在异质结层和半导体基板之间的隧道电介质层。在方法步骤C中,半导体基板的表面纹理化至少发生在与半导体基板的背面相对的正面上。在方法步骤D中,通过向半导体基板中扩散渗入至少一种具有与异质结层相反的掺杂类型的掺杂物,而在半导体基板的正面产生扩散区。
[0016] 重要的是,前面所述的方法步骤按A-C-B-D的顺序进行。这里在本发明范围内的是,在所述方法步骤中间设置或不设置有其他方法步骤。
[0017] 此外,在方法步骤D中,在贫氧气氛中在供应包含掺杂物的掺杂气体混合物的情况下,在处于700℃至1200℃的范围内的温度下,通过从气相进行扩散的方式来生成扩散区。
[0018] 在方法步骤D之后,在中间设置或不设置其他方法步骤的情况下,至少在一个方法步骤D1中,在没有供应掺杂气体混合物的情况下,在处于700℃至1200℃的范围内的温度下进行温度处理,以使扩散掺杂物向半导体基板中推进(eintreiben),并使掺杂的异质结层激活。
[0019] 方法步骤D和D1原位进行并且在这两个方法步骤期间通过扩散抑制元件保护半导体基板的背面,所述扩散抑制元件不是太阳能电池的组成部分。
[0020] 本发明基于这样的认知,即,具有扩散的扩散区的光伏太阳能电池,特别是具有扩散的发射极的光伏太阳能电池,特别是硅基太阳能电池多数会由于金属-半导体接触处的复合(Rekomination)受到限制,因为由此可能使得开路钳位电压(Offenklemmspannung)明显降低。因此需要提供一种用于制造光伏太阳能电池的方法,在所述方法中,通过降低金属-半导体接触部上的复合以及通过优化掺杂分布,特别是优化发射极分布,可以实现效率升高。同时,所述方法应设计得较为经济,由此所实现的效率提高不是通过提高的制造成本来换取的。
[0021] 根据本发明的方法提供了这样的可能性,在背面通过异质结的方式形成异质接触部(Heterokontakt),使得前面所述的在开路钳位电压中的损失明显降低。此外,通过在贫氧气氛中从气相产生扩散区,防止本身常规形成掺杂玻璃。由此,与常规的用于产生扩散渗入的发射极的方法相反,没有采用掺杂玻璃作为掺杂物源,所述掺杂玻璃在常规的工艺条件下构成所谓的“无限掺杂物源”。由此一方面实现了以下优点:可以更为精确地形成扩散区的掺杂分布,特别是发射极分布。
[0022] 在产生扩散区时,可供掺杂过程使用的掺杂物的量在本发明的方法中可以通过掺杂物在掺杂气体混合物中的量或浓度来预先给定。特别是在方法步骤D1中可以进行掺杂物的推进,而不必向半导体基板中供应或者至少明显更少地向半导体基板中供应新的掺杂物,因为在方法步骤D1中没有进行掺杂气体混合物的供应。由此可以产生明显更为精确的所需的掺杂分布,以便提高效率。
[0023] 此外,在本发明的方法中,不需要对掺杂玻璃进行蚀刻,因为如前面已经说明的那样,由于贫氧气氛避免了这种玻璃的形成。但此外,这使得至少可以原位进行方法步骤D和D1,此时,半导体基板的背面(由此以及异质结)通过扩散抑制元件保护,所述扩散抑制元件不是太阳能电池的组成部分。由此,以简单并且因此节省成本的方式实现了制作高效率的太阳能电池结构,其中,特别是对于方法步骤D和D1,不必对太阳能电池在背面上施加扩散阻隔层,并且也不必在这些处理步骤之间将半导体基板从处理腔中送出。
[0024] 根据本发明的方法此外还设计为在方法步骤D1中同时使扩散掺杂物向半导体基板中推进并且激活掺杂的异质结层,以节省成本。
[0025] 相应地,在根据本发明的方法中,与在先已知的方法中常规的处理方式不同,在根据方法步骤B产生异质结之前,根据方法步骤C在表面上进行纹理化(Texturieren)。
[0026] 由此,根据本发明的方法使得可以制造用于极高效率的太阳能电池结构,而不需要附加的、高成本的工艺步骤,或者说这是通过相对于在先已知的方法节省附加的步骤来实现的。
[0027] 因此,本发明的特征在于,直接从气相实现扩散区,而不形成掺杂玻璃,由此可以通过改变掺杂气体混合物实现对从气相进行的掺杂过程的修正,特别是改变掺杂气体混合物中的掺杂物浓度实现对从气相进行的掺杂过程的修正,以及不需要供应掺杂气体混合物就可以实现掺杂物的推进,并且在推进期间同时激活掺杂的异质结层。
[0028] 由此特别导致扩散区被扩散渗入而不需要对掺杂玻璃进行蚀刻的优点。通过使用不是太阳能电池的组成部分的扩散抑制元件,在产生扩散区期间太阳能电池背面上不需要保护层。通过在产生扩散区时由于掺杂气体混合物的改变和在不供应掺杂气体混合物情况下的渗入得到的额外的自由度,可以实现扩散区的最佳的掺杂分布。通过在方法步骤D1中激活异质结层,可以进行最佳的激活,而此时不会出现扩散区的不希望的掺杂。
[0029] 由此,根据本发明的方法使得可以实现一种非常简单和精细的工艺流程,与常规的在先已知的方法相比,这种工艺流程在使扩散区扩散时不需要背面的保护层,不需要高百分比的氢氟酸以去除掺杂玻璃,并且同时实现了最佳的掺杂分布和对异质结层的最佳激活。
[0030] 扩散区的产生因此优选在不形成包含扩散掺杂物的玻璃层的情况下实现,从而也不需要去除该玻璃层。
[0031] 如前面所述,在方法步骤D和D1期间,半导体基板的背面通过扩散抑制元件保护,该扩散抑制元件不是太阳能电池的组成部分。因此,在方法步骤D和D1中,有利地在太阳能电池的背面不设置扩散抑制层,并且优选在太阳能电池的正面不设置扩散抑制层。由此简化了工艺并且因此使工艺变得更为经济。
[0032] 在方法步骤B中生成的隧道层设置为隧道电介质层,用于形成本身已知的异质结。研究显示,通过隧道效应实现了经由这种异质结进行的电荷传输。根据当前的研究状况还发现,可以通过多个小孔(即所谓的“针孔(Pinholes)”)实现电荷传输。出于本申请的目的,隧道电介质层因此是指任何适于形成异质结层的电介质层。
[0033] 在方法步骤B中,有利地以大于0.5nm、特别是在1nm至5nm的厚度范围内构成隧道电介质层。此外,有利的是,在方法步骤D中和/或在方法步骤D1中使掺杂的含硅异质结层进行至少部分结晶,并且通过加热到大于850℃的温度来改善隧道层钝化质量,优选地持续至少5分钟。这有利于以高电子品质构成异质结。
[0034] 对于较厚(>2nm)的隧道层,其发生通过隧道进行的电荷传输的概率较小,超过950℃的较高温度可能导致隧道层发生部分破裂并且由此才可能通过“针孔”进行电荷传输。因此,对于在方法步骤B中较大的层厚也可以在方法步骤D中采用较高的过程温度。可以调整方法步骤B中的层厚和方法步骤D中的过程温度,使得可以形成最佳的电荷传输和非常好的发射极。在过程温度高达900℃时,隧道层的层厚优选为1.5nm以下,过程温度在900-1100℃的范围内时,隧道层的层厚优选在1.5nm至3nm的范围内。
[0035] 掺杂气体混合物优选包含掺杂物和氢。特别有利的是,所述掺杂气体混合物由掺杂物和氢组成。由此可以实现高效的、用于形成扩散区的扩散过程并且同时防止形成掺杂玻璃。
[0036] 掺杂物优选是第III主族或第V主族的物质,特别优选是或磷。
[0037] 所述半导体基板可以形成为本身已知的半导体基板,特别优选形成为硅层,特别是硅晶片。由锗形成半导体基板也在本发明的范围内。
[0038] 在一个优选的实施方式中,至少方法步骤D在具有少于5%的氧、特别是在少于1%的氧的工艺气氛中、优选在无氧的工艺气氛中进行,以防止形成掺杂玻璃。在另一个优选的实施方式中,在方法步骤D1中,重新向过程气氛中加入氧,因为由此在扩散区上形成钝化氧化层。
[0039] 如前面所述,不仅在方法步骤D1中,根据本发明的方法使得掺杂物的推进形成扩散层,而无需引入掺杂物或至少仅很少地额外引入掺杂物。此外,在一个有利的实施方式中,在方法步骤D期间改变掺杂气体混合物的气体供应,特别是根据预先给定的气体流动路径进行控制。由此可以有目的地产生扩散区的最佳掺杂分布。特别地,因此有利的是,在方法步骤D中,按照掺杂气体混合物中掺杂物浓度的预定时间剖面的函数,将掺杂气体混合物中给定的掺杂剂浓度进行调节。
[0040] 为了实现所需的掺杂分布,可能有利的是,在一个优选的实施方式中,方法步骤D和D1多次交替地进行。因此,在供应掺杂气体混合物的情况下实现形成扩散区(方法步骤D),紧接着在不供应掺杂气体混合物的情况下进行推进(方法步骤D1),在重新供应掺杂气体混合物的情况下从气相扩散(D),并最终再次在不供应掺杂气体混合物的情况下进行推进(D1)。衔接方法步骤D和D1的进一步的顺序也在本发明的范围内。这个有利的实施方式特别地对于发射极掺杂分布是有利的,这种发射极掺杂分布具有较少的复合并且尽管如此仍具有高表面浓度,因此它可以良好地接通。
[0041] 根据本发明的方法提供了设计扩散区的形成的可能性,作为有利的掺杂方法,特别是提供了设计发射极形式的扩散区的形成的可能性:
[0042] 在根据本发明的方法的一个有利的实施方式中,方法步骤D设计成快速气相直接掺杂(Rapid Vapour Phase Direct Doping,RVD)。由此可以得到附加的优点,即,通过快速地加热和冷却硅晶片,工艺顺序可以非常短并由此成本效益好。所述RVD法是本身已知的并且例如记载在以下文献中,Lindekugel等,通过快速气相相位增长的用于高效太阳能电池的发射极(EMITTERS GROWN BY RAPID VAPOUR-PHASE DIRECT DOPING FOR HIGH EFFICIENCY SOLAR CELL),第31届欧洲太阳能光伏能源会议暨展览会(31st European PV Solar Energy Conference and Exhibition),2015年9月14日至18日,德国汉堡。因此方法步骤D优选在750℃至1100℃过程温度的范围内进行。
[0043] 在方法步骤D1中的热处理优选进行至少一分钟,特别是进行至少十分钟。由此有利于完全激活异质结。特别是在方法步骤D设计成RVD工艺时,在5分钟至30分钟范围内进行温度处理是有利的。
[0044] 如前面所述的那样,根据本发明的方法使得特别能够实现高自由度和精确地形成所需的扩散分布,特别是发射极掺杂分布和与此相配的背面结构。有利地,因此不从掺杂层的固相扩散形成扩散区。因此,优选在形成扩散区之前和期间,特别是形成设置为发射极的没有设置这样的层,在生成扩散区期间,由所述层以很大的量向半导体层中渗入掺杂物并且由此影响扩散分布。由此确保了,根据预先规定实现精确地形成扩散掺杂分布。
[0045] 异质结层优选作为无定形的、含硅的层施加。在方法步骤D中和/或在方法步骤D1中,异质结层优选至少部分地转化成多晶硅层,特别优选完全地转化成多晶硅层。异质结的激活优选按本身已知的方式进行,特别是通过至少将异质结层的区域内的半导体基板加热到至少600℃,并且优选加热持续至少十分钟的时长。这对应于激活这种异质结本身已知的参数。
[0046] 隧道电介质层可以掺杂有掺杂物或者可以本征地形成(无掺杂的)。
[0047] 有利地仅在太阳能电池的正面上形成扩散区。扩散区优选覆盖半导体基板正面的至少50%,优选至少90%,特别优选至少99%。
[0048] 特别有利的是,扩散区构造成覆盖整个正面。
[0049] 在方法步骤D和D1中,半导体基体的背面通过扩散抑制元件保护,所述扩散抑制元件不是太阳能电池的组成部分。这可以以简单的方式进行,其方式是,根据一个有利的实施方式,将半导体基板放置到一个载体基板上,所述载体基板处于处理腔中。由此,可以以简单的方式实现原位进行方法步骤D和D1,此时同时避免发生或至少仅以很小的程度发生背面的扩散。
[0050] 阻隔扩散的元件可以设计为基底保持件,该基底保持件由陶瓷、石英石墨化硅或硅作为板件或体构成。
[0051] 在另一个优选的实施方式中,氢引入异质结层中和/或引入到隧道层和半导体基板之间的界面上。由此,特别是通过进一步降低表面复合速度提高了电气质量。
[0052] 将氢引入异质结层中和/或引入到隧道层和半导体基板之间的界面上的一种方法是采用RPHP,如例如在S.Lindekugel等,“用于晶体硅薄膜等离子体氢钝化(Plasma hydrogen passivation for crystalline silicon thin-films)”,第23届欧洲光伏太阳能会议论文集(in Proceedings of the 23rd European Photovoltaic Solar Energy Conference),西班牙巴伦西亚,2008,pp.2232-5中记载的那样。
[0053] 或者,可以将含氢的层间接施加在异质结层上,或优选直接施加在异质结层上,从而引入氢。这里在施加该层时已经通过过程热实现了氢的扩散渗入。有利地,接下来通过加热引入额外的氢,优选加热到至少350℃,使氢扩散渗入。
[0054] 在一个优选的实施方式中,前面所述的含氢的层形成为微晶硅层,特别是形成为氢化的微晶碳化硅层(μc-SixC1-x:H)。由此得到以下优点:这种层与例如a-Si:H层相比导电性更强并且在光学上透明度更高。特别是μc-SixC1-x:H层有利地用作透明的接通结构,由此可以代替本身已知的导电透明电极,例如TCO层。
[0055] 同样可以将含氢的层设计成氮化硅层,特别是氢化的氮化硅层。这里,优选加热进行到700℃至900℃的范围内的温度,但只持续几秒的时长,所述时长特别是在1秒至30秒之间,优选在1秒至15秒之间。由此,以特别有效的方式在耗时很少的方法步骤中使氢扩散渗入。由于短时间的热量施加,避免或至少减少了掺杂物的扩散。
[0056] 在另一个有利的实施方式中,在方法步骤D中使用含有氢的掺杂气体混合物,以将氢引入异质结层中和/或引入隧道层与半导体基板之间的界面上。由此,得到以简单、经济的方式引入氢的优点。特别有利的是,所述掺杂气体混合物包含至少80%、优选至少90%、特别是至少98%的氢。优选在氢气中使掺杂物稀释。
[0057] 前面所述的使用包含氢的掺杂气体混合物具有另外的优点,即不再需要引入氢。因此有利地在后续不向异质结层中和/或向隧道层与半导体基板之间的界面上进行引入氢,特别是优选不进行RPHP步骤。
[0058] 在另一个优选的实施方式中,在背向半导体基板的侧面上向异质结层上间接地施加金属接触层,或优选直接地施加金属接触层。这里特别有利的是,首先如前面所述那样将氢引入异质结层并接着施加金属接触层。
[0059] 通过根据本发明的方法由此建立了一种太阳能电池结构,所述太阳能电池结构具有扩散的扩散区和背面的异质结层。
[0060] 除了发射极区,半导体基板优选是以基区掺杂类型进行掺杂,优选以n型掺杂进行掺杂。
[0061] 在一个优选的实施方式中,异质结层同样是以基区掺杂类型掺杂。发射极通过扩散区的方式形成,并且相应地是用与基区掺杂类型相反的发射极掺杂类型掺杂的,优选是p型掺杂。
[0062] 在另一个有利的实施方式中,发射极通过异质结层的方式形成,特别是通过异质发射极的方式形成,并且具有与基区掺杂类型相反的掺杂类型。在这个实施方式中,扩散区具有基区掺杂类型的掺杂。在这种情况下,扩散区优选形成为减少扩散区的侧面上的有效复合的层,特别是形成为所谓的FSF(正面场)。附图说明
[0063] 下面参考一个实施例和附图来说明其他有利的特征和实施方式。这里,图1至5示出根据本发明的方法的实施方式的不同执行阶段。
[0064] 在图中,相同附图标记表示相同或等同的元件。
[0065] 附图标记说明
[0066] 1 半导体基板
[0067] 2 扩散区
[0068] 3 纹理
[0069] 4 隧道电介质层
[0070] 5 异质结层
[0071] 6 防反射层
[0072] 7 处理腔
[0073] 8 扩散抑制元件
[0074] 9 背面接触部
[0075] 10 正面接触部

具体实施方式

[0076] 在根据本发明的方法的示例性实施例中,在方法步骤A中提供设计为硅晶片的半导体基板1。所述半导体基板具有通过磷实现的浓度为1×1015cm-3的n型掺杂。在方法步骤C中,在正面(在图1至5中在上面示出)上形成纹理3。半导体基体1是以单晶硅基板的形式形成,因此传统的方法是通过在棱锥结构(所谓的“随机棱锥”)的正面上进行单侧蚀刻来形成。在当前情况下,采用KOH作为用于产生棱锥结构的蚀刻介质。
[0077] 所述棱锥结构导致发生多次反射并使入射倾斜,从而特别是在长波辐射时,当光从正面入射时,总吸收提高。
[0078] 在方法步骤B中,在半导体基板1的与正面相对置的背面上通过湿化学氧化施加隧道电介质层4和异质结层5,隧道电介质层4形成为二氧化硅层并且异质结层5形成为硅层或碳化硅(SixC1-x)层。隧道层4因此直接设置在异质结层5和半导体基板1之间。这个状态在图2中示出。
[0079] 隧道层4同样可以通过以下方法种的一种来施加:PECVD、LPCVD、HPCVD、热氧化法、原子层沉积发或利用UV辐射器进行的干氧化法。含硅的层(Si、SixC1-x)SiC层同样可以通过以下方法中的一种来施加:PECVD(等离子增强化学气相沉积法)、APCVD(常压化学气相沉积)、LPCVD(低压化学气相沉积)、HW-CVD(热线化学气相沉积)或溅射。
[0080] 在方法步骤D中,在半导体基板1的正面上形成扩散区作为发射极区2,所述扩散区完全覆盖正面。通过在正面的区域中用掺杂物硼对半导体基板1进行掺杂,发射极区2形成为p型掺杂的发射极。
[0081] 为了构成发射极区2,将半导体基板1以背面放置在设计为陶瓷载体的扩散抑制元件8上并且放入处理腔7中。接着,在处理腔7中形成接近无氧的气氛,其方式是将氢和硼作为掺杂气体混合物引入处理腔7并加热到1000℃的温度,并且加热持续30分钟的时长。由此这样就实现了掺杂物硼在半导体基板1的正面上的扩散渗入。相反,背面通过扩散抑制元件8保护,从而这里不会发生硼的渗入或最多仅发生很少的渗入。
[0082] 由于这种无氧的气氛,在硼由气相扩散渗入时不会形成玻璃层。
[0083] 这在图3中示出。
[0084] 接着,在方法步骤D1中原位地(也就是说没有将半导体基板从处理腔7中送出地)在1000℃范围的温度下在不供应掺杂气体混合物的情况下进行持续一分钟的温度处理。因此,在这个方法步骤D1中,硼不从气相扩散,或者最多只发生很少的扩散。在方法步骤D1中主要发生已经存在于半导体基板1中的掺杂物的推进。
[0085] 这在图4中示出。
[0086] 接下来,在背面施加整面金属的背面接触部9。为了进一步提高光吸收,在正面上施加构造成厚度为80nm的氮化硅层的防反射层6。在所述实施例的一个变型中,在防反射层和半导体基板之间设置钝化层,优选是氧化物层,特别是Al2O3层,所述氧化物层优选具有在5至20nm的范围内的厚度。此外,在正面上按本身已知的方式施加金属网格作为金属的正面接触部10,正面接触部穿过防反射层6并且由此与发射极区2电接通。这在图5中示出。
[0087] 在所述实施例的一个变型中,扩散区形成为具有基区掺杂类型的所谓“正面场”(FSF),特别是通过硼掺杂的所谓“正面场”(FSF),并且相应地异质结层形成为具有与基区掺杂层相反的掺杂类型的异质发射极,特别是通过磷掺杂的异质发射极。
[0088] 在下面的表格中列举出优选的参数范围以及用下划线示出地列举在该实施例中存在的参数,并且必要时还列举出各个层的制造方法:如前面所述,在一个优选的实施形式中,扩散区的掺杂以p型(发射极)进行,而基底以及异质结层的掺杂以n型进行。在另一个优选的实施形式中,扩散区和基底的掺杂以p型进行,而异质结层的掺杂以n型(发射极)进行。
[0089]
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈