首页 / 专利库 / 空气动力学 / 后缘 / 磁阻传感器屏蔽

磁阻传感器屏蔽

阅读:1088发布:2020-06-18

专利汇可以提供磁阻传感器屏蔽专利检索,专利查询,专利分析的服务。并且本 申请 公开了磁阻 传感器 屏蔽。本文所公开的实施方式提供用于包括合成反 铁 磁(SAF)结构的磁阻(MR)传感器,SAF结构磁耦合到侧屏蔽元件。SAF结构包括至少一个由铁磁材料与耐火材料组成的 合金 的非晶 磁性 层。非晶磁性层可以与非磁性层 接触 并且反 铁磁性 耦合到与非磁性层的相反表面接触的层。,下面是磁阻传感器屏蔽专利的具体信息内容。

1.一种磁阻传感器包括:
合成反磁SAF结构磁耦合到侧屏蔽元件,所述的SAF结构包括由耦合间隔层隔开的钉扎层和参考层,所述耦合间隔层在两个相反表面与所述钉扎层和所述参考层接触,以及所述钉扎层和所述参考层各自包括交替的非晶合金层和结晶铁磁层,所述的非晶合金层包括铁磁材料和耐火材料。
2.如权利要求1所述的磁阻传感器,其中所述的非晶合金层具有小于所述的结晶铁磁层厚度一半的厚度。
3.如权利要求1所述的磁阻传感器,其中所述的耐火材料从包括钽、铌、铪和锆的组中选择。
4.如权利要求1所述的磁阻传感器,其中所述的SAF结构被包括在屏蔽元件与传感器堆的前缘之间。
5.如权利要求1所述的磁阻传感器,其中所述的SAF结构被包括在屏蔽元件与传感器堆的后缘之间。
6.如权利要求1所述的磁阻传感器,其中所述的非晶合金层与间隔耦合层接触。
7.如权利要求1所述的磁阻传感器,其中所述的非晶合金层被反铁磁地耦合到另一个非晶合金层。
8.如权利要求1所述的磁阻传感器,其中所述的非晶合金层与反铁磁层接触。
9.如权利要求1所述的磁阻传感器,其中所述的非晶合金层包括少于30%的耐火材料。
10.一种磁阻传感器包括:
第一合成反铁磁结构(SAF)和第二合成反铁磁结构(SAF),所述第一合成反铁磁结构(SAF)和所述第二合成反铁磁结构(SAF)各自包括由耦合间隔层隔开的钉扎层和参考层,所述耦合间隔层在两个相反表面与所述钉扎层和所述参考层接触,所述钉扎层和所述参考层各自包括交替的非晶合金层和结晶铁磁层,所述的非晶合金层包括铁磁材料与耐火材料。
11.如权利要求10所述的磁阻传感器,其中所述的耐火材料从包括钽、铌、铪和锆所述的组中选择。
12.如权利要求10所述的磁阻传感器,其中所述的第一SAF结构和所述第二SAF结构被磁性地耦合到所述的磁阻传感器的侧屏蔽。
13.如权利要求10所述的磁阻传感器,其中所述的第一SAF结构被磁性地从邻近磁阻传感器的后缘的屏蔽解耦。
14.如权利要求10所述的磁阻传感器,其中所述的耦合间隔层具有与所述的钉扎层接触的第一表面以及与所述参考层接触的第二相反表面。
15.如权利要求10所述的磁阻传感器,其中所述的第一SAF结构和所述第二SAF结构各自与反铁磁(AFM)层接触。
16.如权利要求10所述的磁阻传感器,其中所述的第二SAF结构被包括在屏蔽元件与传感器堆前缘之间。
17.如权利要求10所述的磁阻传感器,其中所述的第一SAF结构被包括在屏蔽元件与传感器堆后缘之间。
18.一种SAF结构包括:
钉扎层;
参考层;以及
在所述的钉扎层与所述的参考层之间并且在两个相反表面与所述钉扎层和所述参考层接触的耦合间隔层,
其中所述钉扎层和所述参考层各自包括交替的非晶合金层和结晶铁磁层。

说明书全文

磁阻传感器屏蔽

背景技术

[0001] 通常,磁性硬盘驱动器包括读取和写入编码在有形的磁存储介质的数据的传感器头。从磁介质的表面检测到的磁通导致传感器头内的磁阻(magnetoresistive,简称MR)传感器的感知层或者多层的磁化矢量的旋转,这反过来导致MR传感器的电阻率的变化。可以通过使电流通过MR传感器并且测量MR传感器上电压所产生的变化来检测MR传感器的电阻率的变化。相关电路可以将所测量的电压变化信息转换成适当的格式并且处理这些信息以恢复光盘上的编码数据。
[0002] 随着在磁记录密度的能方面的改善的追求,传感器头的尺寸不断缩小。典型地,传感器头被形成为具有MR传感器的多层薄膜层结构,在其他结构中。在一些方法中,多层薄膜结构包括合成反磁体(syntheticanti-ferromagnet,简称SAF)来增强MR传感器的稳定性。但是,现有基于MR传感器用于构成SAF的薄膜工艺和结构设计呈现出限制MR传感器性能与稳定性的效果。发明内容
[0003] 本发明所描述和要求保护的实现提供磁耦合侧屏蔽元件的合成反铁磁(SAF)结构,SAF结构包括至少非晶质合金层,其包括铁磁材料和耐火材料。
[0004] 本发明内容被提供用于以简化形式,引入在具体实施方式中进一步描述的所选概念。本发明内容不旨在标识所要求保护的主题的关键特征或必要特征,也不是旨在用于限制所要求保护的主题的范围。其他所要求保护的主题的特征、细节、实用程序和优点从各种实施方式与在附图中进一步说明和所附的权利要求书中限定的实施方式的以下更具体的书面详细描述是显而易见。

附图说明

[0005] 图1示出示例磁盘驱动器组件和示例MR传感器的俯视图。
[0006] 图2示出包括与耦合间隔层接触的非晶磁性材料的合成反铁磁结构的MR传感器的另一个示例。
[0007] 图3示出包括第一SAF结构和第二SAF结构的另一个MR传感器示例的ABS面视图。
[0008] 图4示出在外加磁场下钴铁铌片膜的非晶态铁磁层的磁化。
[0009] 图5示出在外加磁场下镍铁的结晶铁磁层的磁化。
[0010] 图6示出在外加的磁场下两个不同SAF结构的磁化。

具体实施方式

[0011] 减少交叉轨道磁场干扰是创建具有更高的磁录密度的存储设备的一个挑战。一些磁阻(MR)传感器的设计采用侧屏蔽以减少交叉轨道磁场干扰;然而,侧屏蔽对杂散磁场的变化敏感。这种敏感性可能导致MR传感器内的自由层的偏变性,它可以必然降低MR传感器的信噪比(SNR)。
[0012] 为了有助于稳定侧屏蔽,钉扎合成反铁磁(SAF)的结构可以被结合到接近传感器堆前缘或后缘的屏蔽元件。SAF结构被磁性耦合到侧屏蔽,并且包括至少两个通过非磁性间隔耦合层反铁磁性耦合在一起的铁磁层。
[0013] 在上述传感器设计中,耦合在SAF结构中的反铁磁的强度在SAF结构的稳定性与侧屏蔽的稳定性中起主要作用。当间隔耦合层和铁磁性层间的交界面粗糙时,SAF结构中的铁磁耦合的强度被降低。这使得侧屏蔽稳定性的降低,并最终增加MR传感器的噪声。
[0014] 本文所公开的实现方式为SAF结构提供了一个或多个包括非晶磁性合金的铁磁性耦合层。非晶磁性合金有助于铁磁性层和间隔耦合层之间的“平滑的”交界面。其结果是,MR传感器表现出增加的稳定性与在交叉的磁干扰的减少。
[0015] 在此公开的技术可以用于与各种不同类型的MR传感器(例如,各向异性磁阻(AMR)传感器、隧道磁阻(TMR)传感器、巨型磁阻(GMR)传感器等)的。因此,本文所公开的实现方式也可以适用于基于新的物理现象,如横向自旋(LSV)、自旋霍尔效应(SHE)、自旋扭矩振荡(STO)等的新的MR传感器的设计。
[0016] 图1示出示例磁盘驱动器组件100的俯视图。示例磁盘驱动器组件100包括位于介质磁盘108上面的执行臂110远端的滑动件120。绕旋转动执行轴106的旋转音圈电机用于在数据磁道(例如,数据磁道140)上定位滑动件120,并且绕旋转动盘轴111的主轴电动机用于旋转介质磁盘108。具体参照视图A,介质磁盘108包括外径102与内径104,它们之间是若干数据磁道,例如数据磁道140,由圆形虚线所示。弹性电缆130为滑动件120提供必要的电气连接通路,同时允许操作期间,执行臂110的轴转运动。
[0017] 滑动件120是具有执行多种功能的多层的层叠结构。滑动件120包括记录器部分(未示出)和一个或多个用于从介质磁盘108读取数据的MR传感器。视图B中示出了当磁盘驱动器组件100使用时,示例MR传感器130朝向介质磁盘108的空气轴承表面(air-bearing surface,简称ABS)的一侧。因此,当如视图A所示可操作地连接至滑动件120时,在视图B中所示的MR传感器130可以旋转约180度(例如,绕Z轴)。
[0018] 滑动件120的MR传感器130包括传感器堆132,它具有多个用于执行多个功能层(未示出)。在各种方式中,这些层的功能和数量可以改变。然而,传感器堆132包括至少一个具有自由响应所施加磁场(即,自由层(未示出))磁矩的磁性层。介质磁盘108上的数据位被磁化的方向垂直于图1的平面,要么进入图的里面,或从图的平面出来。因此,当MR传感器130经过数据位,自由层的磁矩转动或者进入图1的平面,或离开图1的平面,同时改变MR传感器130的电阻。因此,由MR传感器130感应的位的值(例如,1或0)可以根据流过传感器堆132的电流来确定。
[0019] 侧屏蔽元件116和118提供传感器堆132的自由层的稳定性偏离。侧屏蔽116和118在交叉磁道(x方向)上被置于邻近传感器堆132,并且可以使用软或硬磁材料制成。
[0020] 在下行磁道的方向(z方向),传感器堆132被置于屏蔽元件112与114之间。屏蔽元件112与114使得传感器堆132与电磁干扰隔离,主要是z方向上的干扰,并用作连接到处理电路的电气导电性的第一与第二导线(未示出)。在一个实施方式中,屏蔽元件112与114使用软磁性材料构造(例如,镍铁合金)。在另一个实施方式中,屏蔽元件112和114沿z方向具有基本上比旋转磁性介质的单个数据位长度宽的厚度。这个厚度可以是沿数据磁道140的1-2微米(例如,大约1微米)的数量级。
[0021] 在操作中,在介质磁盘108上沿着磁道140的位连续地在屏蔽元件112下面,在传感器堆132,并且然后在屏蔽元件114下面通过。因此,传感器堆132接近屏蔽元件112的边缘可以被称为传感器堆的“前缘”并且接近屏蔽元件114的边缘可以被称为传感器堆的“后缘”。
[0022] 在图1中,传感器堆132的前缘与屏蔽元件112接触。在其他实现方式中,一个或多个层可以在传感器堆132与屏蔽件112之间交错。
[0023] 传感器堆的前缘132邻近合成反铁磁(SAF)结构134,其包括钉扎层124、参考层122和间隔耦合层126。钉扎层124具有受邻近的反铁磁(AFM)层136偏离的磁矩。这一偏离的方向(由钉扎层124中的箭头所示)基本上逆平行于参考层122。这些逆平行的磁取向是由于间隔耦合126上的反铁磁性耦合引起的,它可以是一层钌或其它合适的鲁德曼-基特尔-粕谷-吉田(Ruderman-Kittel-Kasuya-Yosida,简称RKKY)耦合材料。
[0024] 钉扎层124和参考层122可以由相同或不同材料制成。在一个实施方式中,钉扎层124和参考层122中的一个或两个是非晶磁性合金,包括铁磁材料(例如,钴、铁、钴铁、镍铁等),和耐火材料,如钽(Ta)、铌(Nb)、铪(Hf)和锆(Zr)。
[0025] 例如,非晶磁性合金可以是钴铁X或镍铁X,其中X是一种耐热材料。在一个实施方式中,非晶磁性合金包括在0至约30%的耐热材料,或足够的以确保所得到的合金是非晶态的。在一个示例实施方式中,非晶磁性合金是钴铁铌并且包含10%的铌。非晶磁性材料中包括的耐火材料的百分比是可变值,这可以取决于使用的材料类型以及工艺条件,诸如退火温度
[0026] 如本文所用的“非晶态”是指缺少晶体的长时间有序特征的一种固体。非晶磁性合金可以沉积为薄膜并且在后沉积处理期间保持非晶态,例如在磁退火工艺期间。合适的非晶磁性合金呈现以下一种或多种特性:磁性的柔软性、相对低的磁致伸缩、高磁矩以及与传感器130中使用的一种或多种软磁性材料(例如,镍铁、钴铁)基本相同的研磨率。在一个实施方式中,合适的非晶磁性合金具有-1x10-5和1×10-5之间的磁致伸缩系数。在另一实现方式中,合适的非晶磁性合金具有大于包括在非晶磁性合金中的铁磁材料的磁矩的磁矩。例如,非晶磁性合金可以包括镍铁连同其他材料,并且具有总磁矩大于的镍铁各自的磁矩。
[0027] 使用非晶磁性合金用于钉扎层124和/或参考层122,而不是结晶材料,这允许与隔离耦合层126有更平滑的交界面。更平滑的交界面增加了钉扎层124与参考层122间的反铁磁性耦合的强度,MR传感器130的稳定性的增强。
[0028] 钉扎层124使用的非晶磁性材料,而不是结晶材料还可以允许在钉扎层124与相邻的反铁磁性(antiferromagnetic,简称AFM)层136之间有更光滑的交界面。AFM层136在垂直于MR传感器130的空气支承表面(ABS)的方向偏置钉扎层124的磁性取向。钉扎层124更强的偏置可以在与AFM层136的交界面更平滑而不是粗糙时,能够被实现。
[0029] 覆盖层128与AFM层136接触,并且用作磁性地将AFM层136从相邻的屏蔽元件114解耦。
[0030] 在至少一个实施方式中,非晶磁材料不包括玻璃形成剂。玻璃形成剂可以是,例如,在非晶固态材料中,一种有利于玻璃化转变发生的元件。玻璃形成剂包括但不限于,、锗、、锆、铍、镁、锌,、铅、锂、钠和。将这些玻璃形成剂从非晶磁性合金排除相比于相同或包括玻璃形成剂的类似合金呈现增加的磁矩。这种增加的磁矩可以转化为增加传感器的稳定性。将玻璃形成剂从非晶磁性合金中排除也改善了非晶层的热稳定性。包括玻璃形成剂的非晶磁性合金在退火处理期间可能缺乏稳定性并且结晶。
[0031] 图2示出包括包括非晶磁性材料SAF结构的MR传感器200另一个示例的ABS面视图。MR传感器200包括位于侧屏蔽元件216和218之间的传感器堆232。侧屏蔽216和218在交叉磁道方向(x方面)与传感器堆232相邻,并且可以使用软或硬磁性材料制造。
[0032] 传感器堆232的前缘直接相邻第一屏蔽元件212,而传感器堆的后缘232直接相邻合成反铁磁(SAF)结构,其包括钉扎层堆224、参考层堆222、以及间隔耦合层226。SAF结构被磁耦合到侧屏蔽216和218。
[0033] 每个钉扎层堆224和参考层堆222包括多个交替的结晶铁磁材料和非晶体铁磁材料层。例如,参考层堆224包括两个非晶铁磁层252和254,各自交错在一对结晶铁磁材料层之间(例如,结晶的磁性层240、242和244)同样地,钉扎层堆122包括两个非晶铁磁层258和260,交错在结晶铁磁层246、248和250之间。其它实施方式可以包括更少或更多交替结晶铁磁与非晶铁磁层的数目。
[0034] 在每个钉扎层堆224和参考层堆222的结晶铁磁层可以是,例如,镍、钴、镍铁或钴铁。非晶形铁磁材料是非晶磁性合金,包括铁磁性材料(如镍、钴、镍铁或钴铁)和耐热材料(如钽、铌、铪和锆)。在一个实施方式中,非晶铁磁材料包括介于0和大约30%的耐热材料,或者足以确保所得到的材料是非晶态的。
[0035] 在一个实施方式中,结晶的铁磁性层240、242、244、246、248、与250是镍铁层和非晶铁磁层252、254、258与260是钴铁X层,其中X是耐热材料。在另一个实施方式中,非晶铁磁层252、254、258,和260是钴铁铌层。
[0036] 根据不同的设计准则,结晶的铁磁性层(例如,结晶性强磁性层240)的z方向上的厚度为约5~10纳米并且非晶铁磁性层的z方向上的厚度(例如,非晶铁磁层252)是约0.2至3纳米。
[0037] 在钉扎层堆224中的层磁耦合在一起并且在图2中箭头所示的方向上由AFM层236偏置。同样地,在参考层堆222中的层在与钉扎层堆224磁性取向相反的方向上磁耦合在一起。覆盖层228磁性地从第二屏蔽元件214分离SAF结构。MR传感器200的其他特征没有明确描述可以是相同或类似于关于图1所讨论的MR传感器的特征。
[0038] 图2中在结晶的铁磁性层间的非晶铁磁层的杂质可以打破结晶铁磁层晶粒的生成并且在间隔耦合层226与直接邻近的结晶铁磁层244与246之间提供更平滑的交界面。这个更平滑的交界面在其上增加的耦合强度,而不会降低结晶铁磁层之间的耦合。
[0039] 除MR传感器200的上述优点,结晶铁磁材料和非晶铁磁材料的交替层允许提高在AFM层236与直接相邻的参考层224之间的钉扎场的强度,进一步提高MR传感器200的稳定性。
[0040] 图3示出MR传感器300的另一个示例的ABS面视图,它包括第一SAF结构334和第二SAF结构350。第一SAF结构334和第二SAF结构350各自包括由铁磁材料构成的非晶磁性合金和耐火材料。MR传感器300包括位于侧屏蔽元件316与318之间的传感器堆332。侧屏蔽元件316和318在交叉磁道方向(x方向)与传感器堆332相邻,并且并且可以由软或硬磁材料制成。
[0041] 传感器堆的后缘332与第一SAF结构334相邻。第一SAF结构334包括钉扎层324、参考层322和间隔耦合层326。钉扎层324通过间隔耦合层326提供的RKKY耦合方式被反铁磁性耦合到参考层322。第一AFM层336磁性地偏置钉扎层324并且覆盖层328磁性地从第一屏蔽元件314分离第一SAF结构。
[0042] 传感器堆的前缘332邻近于第二SAF结构350。类似于第一SAF结构334,第二SAF结构350包括钉扎层340、参考层338和间隔耦合层342。通过由隔离耦合层342提供了RKKY耦合的方式,钉扎层340反铁磁性耦合到参考层338。第二AFM层344磁性地偏置钉扎层340,并且籽晶层346从第二屏蔽元件312磁性地分离第二SAF结构350。在另一实施方式中,至少一个第一SAF结构334和第二SAF结构350是层叠结构。
[0043] 在另一种实施方式中,MR传感器300包括第二SAF结构350,但不包括第一SAF结构334。
[0044] 图4示出在外加磁场下钴铁铌片膜的非晶铁磁层在容易与难磁化轴(即,最容易和最难磁性旋转的轴)的磁化行为。在难磁化轴,其中磁场强度为0(在原点),没有磁化。然而,非晶铁磁材料的磁化随着所施加的磁场增加直到饱和点,其中所施加的磁场达到约50奥斯特。
[0045] 图5示出在磁场下镍铁片膜的结晶铁磁在容易与难磁化轴的磁化行为。镍铁的层的厚度为约10nm,这与图4中用于产生数据的钴铁铌片膜的厚度相同或基本相似。在难磁化轴,在所施加的磁场下,结晶铁磁材料的磁化增加直到饱和点,大约±5奥斯特。
[0046] 总之,图4和5表明,完全磁化钴铁铌具有较高的各向异性磁场(Hk),这需要大约10倍磁场强度的外加磁场以在难磁化轴充分饱和镍铁。因此,SAF屏蔽包括镍铁,可以比钴铁铌更容易地被杂散磁场影响。此外,钴铁铌比镍铁具有更高的磁矩,这有助于作为屏蔽使用时,传感器的分辨率增加。
[0047] 图6示出在所施加的磁场下对于两个不同的SAF结构的磁化行为。第一SAF结构,通过线602所示数据,包括镍铁层反铁磁性耦合在一起。第二SAF结构,通过线604所示数据,包括钴铁铌层反铁磁性耦合在一起。该图显示,包括钴铁铌的SAF结构具有更高的饱和磁场,其表示了改进RKKY耦合。此外,数据表明,包括钴铁铌的SAF结构比包括镍铁的SAF结构具有更高成核场。
[0048] 以上说明、示例和数据提供了对本发明的示例性实施方式的结构和使用的完整描述。由于可以做出本发明的许多实现,而不脱离本发明的精神和范围,本发明存在于所附的权利要求。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈