首页 / 技术领域 / 发散冷却 / 专利数据
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 Expansion-nozzle cryogenic refrigeration system with reciprocating compressor EP04257607.4 2004-12-07 EP1541942A3 2007-08-01 Pruitt, Gerald R.; Price, Kenneth D.; Kirkconnell, Carl S.

A cryogenic refrigeration system (20) includes an expansion nozzle (31) having a high-pressure nozzle inlet (32) and a low-pressure nozzle outlet (33), and a compressor (24) having a compression device (53), such as a pair of opposing pistons (54), operable to compress gas within a compression volume (56). The compression volume (56) has an inlet port (74) and an outlet port (76). A flapper inlet valve (78) has an inlet valve inlet (80), and an inlet valve outlet (82) in gaseous communication with the inlet port (74) of the compression volume (56). The inlet valve (78) opens when a gaseous pressure at the inlet valve inlet (80) is sufficiently greater than a gaseous pressure in the compression volume (56) to overcome a spring force of the flapper inlet valve (78). A flapper outlet valve (88) has an outlet valve inlet (90) in gaseous communication with the outlet port (76) of the compression volume (56), and an outlet valve outlet (92) in gaseous communication with the nozzle inlet (32). The outlet valve (88) opens when a gaseous pressure in the compression volume (56) is greater than a gaseous pressure at the outlet valve outlet (92) to overcome a spring force of the flapper outlet valve (88). A drive motor (22) is in driving mechanical communication with the compression pistons (54). The compression volume (56) is hermetically isolated from the drive motor (22).

42 Convergent Divergent Nozzle With Slot Cooled Nozzle Liner US11676595 2007-02-20 US20090072044A1 2009-03-19 Debora F. Kehret; Jorge I. Farah
A nozzle system includes a multitude of circumferentially distributed convergent flaps and seals that circumscribe an engine centerline. A cooling liner body cooperates with a cooling liner panel attached to respective convergent flaps and convergent seals to define an annular cooling airflow passageway which is movable therewith. Each cooling liner panels includes an arcuate cooling liner leading edge with a multiple of openings to distribute cooling airflow over both the inner “cold-side” and outer “hot-side” surfaces thereof. Through this backside cooling, thermal gradients are controlled at the attachment interface between the arcuate cooling liner leading edge and the main cooling liner body.
43 Convergent-divergent film coolant passage US81209285 1985-12-23 US4705455A 1987-11-10 SAHM MICHAEL K; MILANO ROBERT
A coolant passage through a wall to be cooled, such as the wall of a hollow airfoil, is shaped and oriented to eject coolant fluid therefrom within the boundary layer of hot gases flowing over the surface to film cool the wall downstream of the outlet. The passage includes a metering portion near its inlet, followed by a diffusing portion and nozzle portion. The nozzle portion, adjacent the outlet, simultaneously diverges and converges in mutually perpendicular directions to produce a more uniform coolant velocity profile, which results in increased coolant area coverage and improved cooling effectiveness.
44 Cooling liner for convergent-divergent exhaust nozzle US255008 1981-04-17 US4643356A 1987-02-17 Richard P. Holler; Connie W. McMath
A gas turbine exhaust nozzle capable of long term, reliable operation is disclosed. Nozzle cooling concepts specifically directed to convergent-divergent exhaust nozzles are developed. The exhaust nozzle disclosed has a cooling liner which is strategically positioned in the nozzle to take advantage of aerodynamic conditions along the axial length of the nozzle.
45 Cooling system for a divergent section of a nozzle US274523 1994-07-13 US5484105A 1996-01-16 Robert M. Ausdenmoore; Wilbert B. Freid
A nozzle cooling system having apparatus to overexpand the exhaust flow in a divergent section of an aircraft gas turbine engine nozzle, relative to the air in the engine nozzle's bay and a valve to allow ambient air from the bay to flow over divergent flaps and seals of the divergent section, and rapidly cool the divergent section of the nozzle for IR suppression. An area ratio control apparatus may be used to change a ratio of the nozzle exit area to the nozzle throat area to an overexpanded level that reduces static pressures along at least a longitudinally extending portion of the surfaces to below the ambient pressure of air outside the nozzle to draw the ambient air into the exhaust gas flowpath, and a valve apparatus to controllably flow the ambient air into the exhaust gas flowpath when the static pressures are below the ambient pressure. Further embodiments of the present invention provide alternative area ratio control apparatus, such as a variable exit area control apparatus to vary the exit area or a variable throat area control apparatus to vary the throat area, or both. Valve apparatus with a gap apparatus to controllably open gaps between the circumferentially adjacent divergent flaps and seals are provided such as spring loaded divergent seal retainers and flapper valves sealingly disposed over corresponding cooling apertures through the divergent seals.
46 METHOD AND SYSTEMS FOR CO2 SEPARATION WITH COOLING USING CONVERGING-DIVERGING NOZZLE EP13718455.2 2013-04-12 EP2841181A1 2015-03-04 SIPOCZ, Nikolett; FRITZ, Jassin, Marcel; GONZALEZ SALAZAR, Miguel, Angel; DU CAUZE DE NAZELLE, Rene; SHISLER, Roger, Allen; LISSIANSKI, Vitali, Victor; MICHELASSI, Vittorio
A method for separating carbon dioxide (CO2) from a gas stream is provided. The method includes cooling the gas stream in a cooling stage to form a cooled gas stream and cooling the cooled gas stream in a converging-diverging nozzle to form one or both of solid CO2 and liquid CO2. The method further includes separating at least a portion of one or both of solid CO2 and liquid CO2 from the cooled gas stream in the converging-diverging nozzle to form a CO2-rich stream and a CO2-lean gas stream. The method further includes expanding the CO2-lean gas stream in an expander downstream of the converging-diverging nozzle to form a cooled CO2-lean gas stream and circulating at least a portion of the cooled CO2-lean gas stream to the cooling stage for cooling the gas stream. Systems for separating carbon dioxide (CO2) from a CO2 stream are also provided.
47 Convergent divergent nozzle with slot cooled nozzle liner US11676595 2007-02-20 US07757477B2 2010-07-20 Debora F. Kehret; Jorge I. Farah
A nozzle system includes a multitude of circumferentially distributed convergent flaps and seals that circumscribe an engine centerline. A cooling liner body cooperates with a cooling liner panel attached to respective convergent flaps and convergent seals to define an annular cooling airflow passageway which is movable therewith. Each cooling liner panels includes an arcuate cooling liner leading edge with a multiple of openings to distribute cooling airflow over both the inner “cold-side” and outer “hot-side” surfaces thereof. Through this backside cooling, thermal gradients are controlled at the attachment interface between the arcuate cooling liner leading edge and the main cooling liner body.
48 Gas turbine engine component with converging/diverging cooling passage US13544210 2012-07-09 US09279330B2 2016-03-08 JinQuan Xu; Glenn Levasseur
A component for a gas turbine engine includes a gas path wall having a first surface and a second surface and a cooling hole extending through the gas path wall from the first surface to the second surface. The cooling hole includes an inlet portion having an inlet at the first surface, an outlet portion having an outlet at the second surface, and a transition defined between the inlet and the outlet. The inlet portion converges in a first direction from the inlet to the transition and diverges in a second direction from the inlet to the transition. The outlet portion diverges at least in one of the first and second directions from the transition to the outlet.
49 System and method for cooling lateral edge regions of a divergent seal of an axisymmetric nozzle US11140667 2005-05-27 US07377099B2 2008-05-27 Curtis C. Cowan; Stephen A. Paul; Meggan Harris; Paul Attridge
An axisymmetric nozzle for a gas turbine engine has divergent flaps and seals disposed about a central longitudinal axis thereof. The divergent flaps and seals each have an inner surface defining cooling air inlet holes at an upstream portion, cooling air exit holes at a downstream portion, and cooling air channels disposed within the divergent flap and seal, and communicating at a first end with the inlet holes and at a second end with the exit holes for conducting cooling air therethrough. Some of the exit holes of the divergent flap are disposed along lateral edge regions thereof. The divergent seals are interposed between adjacent divergent flaps, and each include lateral edge regions extending laterally beyond the exit holes. The lateral edge regions of each divergent seal have an outer surface overlying at least a portion of the exit holes of an adjacent divergent flap.
50 System and method for cooling lateral edge regions of a divergent seal of an axisymmetric nozzle US11140667 2005-05-27 US20060266016A1 2006-11-30 Curtis Cowan; Stephen Paul; Meggan Harris; Paul Attridge
An axisymmetric nozzle for a gas turbine engine has divergent flaps and seals disposed about a central longitudinal axis thereof. The divergent flaps and seals each have an inner surface defining cooling air inlet holes at an upstream portion, cooling air exit holes at a downstream portion, and cooling air channels disposed within the divergent flap and seal, and communicating at a first end with the inlet holes and at a second end with the exit holes for conducting cooling air therethrough. Some of the exit holes of the divergent flap are disposed along lateral edge regions thereof. The divergent seals are interposed between adjacent divergent flaps, and each include lateral edge regions extending laterally beyond the exit holes. The lateral edge regions of each divergent seal have an outer surface overlying at least a portion of the exit holes of an adjacent divergent flap.
51 发散面板 CN202311268774.8 2023-09-27 CN117345427A 2024-01-05 王景玉; 何柯佳; 刘江帆; 刘小龙
发明涉及一种发散面板,所述发散面板包括面板本体和第一换热件,面板本体上设有沿其厚度方向贯穿面板本体的发散孔,发散孔适于通入冷却气,以便冷却气与面板本体换热以降低面板本体的温度,第一换热件的表面积与其体积之比为a,发散孔的侧壁的面积与其容积之比为b,a大于b,第一换热件设在发散孔内且与发散孔的侧面相连,以便第一换热件扰动发散孔内的冷却气以提高发散孔的侧面的换热系数。本发明的发散面板具有结构简单、冷却气用量少等优点。
52 高超声速飞行器及其前缘热防护结构 CN201810870515.5 2018-08-02 CN109110104A 2019-01-01 王建华; 丁锐; 贺菲; 伍楠
发明公开了一种高超声速飞行器的前缘热防护结构,包括主体结构面和发散面;发散面固定在主体结构面上;发散面为多个,并且各发散面在主体结构面上间断布置;发散面和主体结构面围成冷却腔,冷却腔的第一端开口,且冷却腔的截面面积沿第一端到第二端的方向逐渐减小;其中,各发散面的孔隙率不同,并且越靠近冷却腔的第二端,发散面的孔隙率越大。该前缘热防护结构中,发散面为多个,且各发散面中靠近前缘的头部的发散面孔隙率较大,能够使更多冷却剂流过靠近前缘头部的发散面,使冷却剂实现按需分配。本发明还公开一种高超声速飞行器,其应用了上述前缘热防护结构,冷却剂的分配与飞行器前缘各处的需求量匹配,热防护效果好。
53 涡轮翼型后缘分叉式冷却孔 CN201380024105.4 2013-04-11 CN104285039A 2015-01-14 R.F.小伯格霍尔斯; D.L.杜尔斯托克
燃气涡轮发动机涡轮翼型件具有压侧壁和吸力侧壁,该压力侧壁和吸力侧壁沿着翼展向外延伸,并且在相对的前缘和后缘之间沿弦向延伸。包封在压力侧壁中的沿翼展方向成排的间隔开的分叉式后缘冷却孔在沿弦向基本上延伸到后缘的对应的后缘冷却槽口处结束。沿轴向延伸的孔间分隔件分开冷却孔。相邻的成对的孔间分隔件之间的入口包括发散入口区段。轴向孔内分隔件使冷却孔分叉为在发散入口区段的下游和后部的发散的上部发散区段和下部发散区段。孔内分隔件的前端将发散入口区段的后端分成上部入口流径和下部入口流径,它们通往上部发散区段和下部发散区段,从而通入后缘冷却槽口中。
54 高性能冷却系统 CN201780007446.9 2017-01-13 CN109070427B 2022-09-02 R·E·科瑞; W·J·伦道夫
发明涉及一种用于冷却的装置,其包括吹塑薄膜模具,其能够操作以产生熔融薄膜管的流;和用于接收熔融薄膜管的流的发散冷却元件,其具有发散冷却界面。发散冷却界面能够操作以朝着由熔融薄膜管的流和第一出口末端限定的第一出口间隙在与熔融薄膜管的流相反的路径上以及朝着由熔融薄膜管的流和第二出口末端限定的第二出口间隙在顺着熔融薄膜管的流的路径上排出冷却气体。发散冷却界面包括发散冷却气体偏转器,其能够操作以沿着与熔融薄膜管的流相反的路径以及沿着顺着熔融薄膜管的流的路径导向被排出的冷却气体。第一出口间隙和第二出口间隙中的至少一个限定发散冷却界面与熔融薄膜管的流之间的最小间隙。本发明还涉及用于冷却的方法。
55 一种燃烧室火焰筒壁面双层复合冷却结构 CN201811113272.7 2018-09-25 CN109340826A 2019-02-15 张群; 李程镐; 刘强; 杨福正; 曹婷婷; 寇睿; 李承钰; 宋亚恒
发明提供了一种燃烧室火焰筒壁面双层复合冷却结构,由冲击孔壁和发散孔壁组成,冲击孔壁上均匀分布一定形状的小直径孔即冲击孔,发散孔壁上表面有波纹状凹槽与异形孔结构。本发明的冷却结构,采用“冲击冷却”加“发散孔冷却”的复合微小孔冷却结构,并采用了压窝板结构和复合异形孔结构,“冲击冷却”加“发散孔冷却”的复合冷却结构压损失小,冷却效率高,压窝板结构的粗糙靶板构型可以显著增大平均换热系数,复合异形孔结构降低小孔出流平均速度,增强扩散能力,从而增强了冷却效果,使冷却气流的冷却能力更好的发挥,提高火焰筒表面耐热强度和使用寿命。
56 电子设备 CN200510068499.0 2005-04-28 CN1691881A 2005-11-02 畑由喜彦; 富冈健太郎
发明提供了一种电子设备,在该电子设备中,易于完成发热单元与冷却之间的定位。根据本发明的电子设备包括:壳体,具有发热单元;热量发散部分,位于壳体中,用于将热量从发热单元发散出去;泵,位于壳体中,并与发热单元相连接,该泵用于将液态冷却剂输送到热量发散部分处;循环流路,连接在泵与热量发散部分之间,循环流路用于使液态冷却剂在泵与热量发散部分之间循环流动,从而从发热单元带走热量,并将热量传递到热量发散部分中。泵包括泵壳,该泵壳具有泵腔和受热部分,受热部分与发热单元实现热连接,受热部分包括与发热单元相对应的凹陷。泵还包括叶轮,位于泵腔中。泵还包括电机,与叶轮相连,电机可转动所述叶轮。
57 一种全壁面可替换的框架燃烧室 CN202410049515.4 2024-01-12 CN117869932A 2024-04-12 张弛; 胡英琦; 薛鑫; 王建臣; 陶超; 蒲亮宇
发明涉及燃气轮机燃烧室技术领域,尤其涉及一种全壁面可替换的框架式燃烧室,包括火焰筒框架主体,火焰筒框架主体第一端部可拆卸安装头部端壁,头部端壁上安装有旋流器;火焰筒框架主体第二端部设置火焰筒连接法兰,火焰筒框架主体侧壁上形成有多个壁面窗口,多个壁面窗口可拆卸安装有至少一个金属发散壁和多个玻璃发散壁,其中的一个金属发散壁穿设有点火电嘴。金属发散壁和玻璃发散壁可根据实际需求进行选装,通过选用金属发散壁和透明的石英型玻璃发散壁,可以使试验件同时满足性能测试冷却需求和光学测试激光打光和拍摄需求,同时通过两者组合安装也可尽可能地使模型燃烧室的气动特征和燃烧状态更加贴近真实燃烧室的模式。
58 一种具有高抗损伤能激光器关闸系统 CN201410504742.8 2014-09-26 CN104280878B 2017-06-06 林学春; 陈寒; 张志研; 于海娟; 张玲; 邹淑珍
发明公开了一种具有高抗损伤能激光器关闸系统,其包括偏转控制系统、全反镜、位于全反镜光路上的吸收体;其中,所述偏转控制系统利用旋转的方式控制全反镜移入和移出激光光路;所述吸收体为空心柱体结构,其一端为封闭端,另一端为激光入射端,所述封闭端内部底端具有一凸起的圆锥体,所述激光入射端固定有光束发散元件,使入射的激光预先发散;所述光束发散元件的表面、空心柱体的内部侧壁及圆锥体表面构成一冷却体,其内部注入冷却,用于冷却光束发散元件、空心圆柱体内部侧壁及圆锥体表面。
59 一种具有高抗损伤能激光器关闸系统 CN201410504742.8 2014-09-26 CN104280878A 2015-01-14 林学春; 陈寒; 张志研; 于海娟; 张玲; 邹淑珍
发明公开了一种具有高抗损伤能激光器关闸系统,其包括偏转控制系统、全反镜、位于全反镜光路上的吸收体;其中,所述偏转控制系统利用旋转的方式控制全反镜移入和移出激光光路;所述吸收体为空心柱体结构,其一端为封闭端,另一端为激光入射端,所述封闭端内部底端具有一凸起的圆锥体,所述激光入射端固定有光束发散元件,使入射的激光预先发散;所述光束发散元件的表面、空心柱体的内部侧壁及圆锥体表面构成一冷却体,其内部注入冷却,用于冷却光束发散元件、空心圆柱体内部侧壁及圆锥体表面。
60 发光二极管冷却装置 CN201010507139.7 2010-09-24 CN102095173A 2011-06-15 吴权五; 朴商权; 李廷民; 李性旿
发明公开一种可有效冷却LED的LED冷却装置,其包括LED模及与之热连接的多孔性泡沫金属(Metallic Foam),所述多孔性泡沫金属用于发散所述LED模块产生的热量。
QQ群二维码
意见反馈