Document Document Title
US11716906B2 MEMS process power
A transducer includes a first piezoelectric layer; and a second piezoelectric layer that is above the first piezoelectric layer; wherein the second piezoelectric layer is a more compressive layer with an average stress that is less than or more compressive than an average stress of the first piezoelectric layer.
US11716896B2 Photoelectric conversion film, photoelectric conversion element and electronic device
There is provided a photoelectric conversion film including a quinacridone derivative represented by the following General formula and a subphthalocyanine derivative represented by the following General formula.
US11716894B2 Method for preparing perovskite solar cell
A method for preparing a perovskite solar cell is disclosed, which comprises the following steps: providing a first electrode; forming an active layer on the first electrode; and forming a second electrode on the active layer. Herein, the active layer can be prepared by the following steps: mixing a perovskite precursor and a solvent mixture to form a precursor solution, wherein the solvent mixture comprises a first solvent and a second solvent, the first solvent is selected from the group consisting of γ-butyrolactone (GBL), dimethyl sulfoxide (DMSO), 2-methylpyrazine (2-MP), dimethylformamide (DMF), 1-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc) and a combination thereof, and the second solvent is an alcohol; and coating the first electrode with the precursor solution and heating the precursor solution to form the active layer.
US11716888B2 Display substrate comprising scattering structure formed in anode and including plurality of mutually staggered grooves, method for preparing the same, and display device
The present disclosure provides a display substrate, a method for preparing the same, and a display device. The display substrate includes a planarization layer located on a base substrate and a first electrode layer located on the planarization layer, a side of the planarization layer away from the base substrate includes a scattering structure, the first electrode layer is located on the scattering structure, and a thickness of the first electrode layer is substantially identical.
US11716886B2 Display device
A display device includes a lower electrode extending in a first direction and a first active layer disposed on the lower electrode and extending in a second direction perpendicular to the first direction. The first active layer includes a first area having a first width in the first direction, a second area having a second width wider than the first width in the first direction, and overlapping the lower electrode and a third area between the first area and the second area and connecting the first area to the second area.
US11716883B2 Light emitting diode display device
A light emitting diode display device includes: a pixel circuit; a data line connected to the pixel circuit to transmit a data voltage; an anode on the pixel circuit and the data line; an emission layer on the anode; and a cathode on the emission layer. The anode includes a first anode and a second anode, and the data line extends across the first anode and the second anode.
US11716880B2 Display device
A display device includes a pixel electrode electrically connected to a circuit layer, a pixel definition layer defining a first opening which exposes the pixel electrode and a second opening spaced apart from the pixel electrode, an auxiliary electrode in the second opening and including a material different from the pixel electrode, a light emitting functional layer on the pixel electrode, the pixel definition layer and the auxiliary electrode and defining a through hole corresponding to the auxiliary electrode, and a common electrode on the light emitting functional layer and electrically connected to the auxiliary electrode at the through hole.
US11716878B2 Display panel and method of manufacturing the same
A method manufacturing a display device includes: forming a pixel circuit in a display area; forming a sacrificial layer on an insulating layer arranged in a non-display area, the sacrificial layer including an isolated pattern hole; forming functional layers and an opposite electrode of an organic light-emitting diode that extends over the display area and the non-display area, the functional layers and the opposite electrode covering the sacrificial layer; irradiating a laser beam to the opposite electrode through the sacrificial layer and the pattern hole from below a substrate; and lifting off the sacrificial layer from the insulating layer and simultaneously, lifting off the opposite electrode to which the laser beam is irradiated, wherein at least a portion of the functional layers is left on a portion of the insulating layer corresponding to the opposite electrode that is removed.
US11716871B2 Light emitting diode, method for preparing the same, and display device
The present disclosure provides a light emitting diode, a method of preparing the same, and a display device. The light emitting diode includes an anode, a quantum dot light emitting layer, an electron transport layer, a cathode, and a transition layer located between the electron transport layer and the cathode, the cathode including a transparent conductive oxide material, and a material of the transition layer having a work function WF between an LUMO of a material of the electron transport layer and a work function WF of a material of the cathode.
US11716868B2 Organic light emitting display apparatus
An organic light emitting display apparatus can include an insulating film disposed on a substrate, a first electrode disposed on the insulating film, an organic light emitting layer disposed on the first electrode, and a second electrode disposed on the organic light emitting layer, wherein the first electrode can be provided with a contact area that covers a contact hole passing through the insulating film, and a protrusion vertically protruded from an upper surface of the first electrode on a boundary surface of the contact hole.
US11716864B2 Organic optoelectronic device
An organic optoelectronic device comprises a substrate having first and second regions, a first electrode positioned over the first region of the substrate, a shutter electrode positioned over the second region of the substrate, an organic heterojunction layer comprising an organic heterojunction material, positioned over at least a portion of the first electrode, an insulator layer positioned over at least a portion of the shutter electrode, an organic channel layer, comprising an organic channel material, positioned over at least a portion of the heterojunction and insulator layers, and a second electrode positioned over the channel layer in the second region of the substrate, wherein the shutter electrode is configured to generate a repulsive potential barrier in the channel layer, suitable to at least reduce movement of charge in the channel layer. A method of measuring received light in an optoelectronic device is also described.
US11716860B2 Semiconductor device and method for fabricating the same
A method for fabricating a semiconductor device includes the steps of: forming a magnetic tunneling junction (MTJ) on a substrate; forming a first inter-metal dielectric (IMD) layer around the MTJ; forming a first metal interconnection adjacent to the MTJ; forming a stop layer on the first IMD layer; removing the stop layer to form an opening; and forming a channel layer in the opening to electrically connect the MTJ and the first metal interconnection.
US11716858B1 Ferroelectric device film stacks with texturing layer which is part of a bottom electrode and a barrier, and method of forming such
Described are ferroelectric device film stacks which include a templating or texturing layer or material deposited below a ferroelectric layer, to enable a crystal lattice of the subsequently deposited ferroelectric layer to template off this templating layer and provide a large degree of preferential orientation despite the lack of epitaxial substrates.
US11716855B2 Three-dimensional memory device and method
In an embodiment, a device includes: a pair of dielectric layers; a word line between the dielectric layers, sidewalls of the dielectric layers being recessed from a sidewall of the word line; a tunneling strip on a top surface of the word line, the sidewall of the word line, a bottom surface of the word line, and the sidewalls of the dielectric layers; a semiconductor strip on the tunneling strip; a bit line contacting a sidewall of the semiconductor strip; and a source line contacting the sidewall of the semiconductor strip.
US11716854B2 Three-dimensional semiconductor memory device
A 3D semiconductor memory device includes a peripheral circuit structure on a first substrate, a second substrate on the peripheral circuit structure, an electrode structure on the second substrate, the electrode structure comprising stacked electrodes, and a vertical channel structure penetrating the electrode structure. The peripheral circuit structure includes a dummy interconnection structure under the second substrate. The dummy interconnection structure includes stacked interconnection lines, and a via connecting a top surface of an uppermost one of the interconnection lines to a bottom surface of the second substrate.
US11716852B2 Semiconductor device
A semiconductor body device includes a stacked body including a plurality of electrode layers stacked with an insulator interposed, a semiconductor body extending in a stacking direction of the stacked body through the electrode layers and having a pipe shape, a plurality of memory cells being provided at intersecting portions of the semiconductor body with the electrode layers, and a columnar insulating member extending in the stacking direction inside the semiconductor body having the pipe shape.
US11716851B2 Semiconductor memory devices
A semiconductor memory device including a first semiconductor layer, a second semiconductor layer, and a third semiconductor layer between the first and second semiconductor layers, gate electrodes arranged on the second semiconductor layer and spaced apart from each other in a first direction perpendicular to an upper surface of the second semiconductor layer, and channel structures penetrating the first, second and third semiconductor layers and the gate electrodes, each respective channel structure of channel structures including a gate insulating film, a channel layer, and a buried insulating film, the gate insulating film including a tunnel insulating film adjacent to the channel layer, a charge blocking film adjacent to the gate electrodes, and a charge storage film between the tunnel insulating film and the charge blocking film, and the charge storage film including an upper cover protruding toward the outside of the respective channel structure.
US11716847B2 Three-dimensional NAND memory device with split gates
A semiconductor device is provided. The semiconductor device includes word line layers and insulating layers that are alternatingly stacked along a vertical direction perpendicular to a substrate of the semiconductor device. The semiconductor device includes a channel structure that extends along the vertical direction through the word line layers and the insulating layers. A cross-section of the channel structure that is perpendicular to the vertical axis includes channel layer sections that are spaced apart from one another.
US11716846B2 Three-dimensional memory devices having through stair contacts and methods for forming the same
Embodiments of three-dimensional (3D) memory devices having through stair contacts (TSCs) and methods for forming the same are disclosed. In an example, a 3D memory device includes a memory stack and a TSC. The memory stack includes a plurality of interleaved conductive layers and dielectric layers. Edges of the interleaved conductive layers and dielectric layers define a staircase structure on a side of the memory stack. The TSC extends vertically through the staircase structure of the memory stack. The TSC includes a conductor layer and a spacer circumscribing the conductor layer.
US11716845B2 Semiconductor devices including channel pattern and method for manufacturing the same
A semiconductor device includes a gate structure on a substrate, the gate structure including insulating layers and gate electrodes, which are alternately stacked, a channel structure extending through the gate structure, and a source conductive pattern between the substrate and the gate structure. The source conductive pattern includes a lower source conductive pattern and an upper source conductive pattern on the lower source conductive pattern. The channel structure includes an insulating pattern extending through the source conductive pattern, a data storage pattern, and a channel pattern between the insulating pattern and the data storage pattern. A lower surface of the channel pattern is at a level higher than an upper surface of the upper source conductive pattern, but lower than a lower surface of a lowermost one of the gate electrodes in a cross-sectional view of the semiconductor device with the substrate providing a base reference level.
US11716844B2 Semiconductor memory devices having stacked structures therein that support high integration
A semiconductor device includes an upper stack structure extending on a lower stack structure, which extends on an underlying substrate. A channel structure extends through the upper stack structure and the lower stack structure. The lower stack structure includes a first lower electrode layer disposed adjacent to an interface between the lower stack structure and the upper stack structure, and a second lower electrode layer disposed adjacent a center of the lower stack structure. The upper stack structure includes a first upper electrode layer disposed adjacent to the interface, and a second upper electrode layer disposed adjacent a center of the upper stack structure. At least one of the first lower electrode layer and the first upper electrode layer is thicker than the second lower electrode layer. At least one insulating layer is disposed between the first lower electrode layer and the first upper electrode layer.
US11716842B2 Random bit circuit capable of compensating the process gradient
A random bit circuit includes four storage cells controlled by four different word lines. The first storage cell and the second storage cell are disposed along a first direction sequentially, and the first storage cell and the third storage cell are disposed along a second direction sequentially. The third storage cell and the fourth storage cell are disposed along the first direction sequentially. The first storage cell and the fourth storage cell are coupled in series, and the second storage cell and the third storage cell are coupled in series.
US11716838B2 Semiconductor device and method for forming the wiring structures avoiding short circuit thereof
A apparatus includes a memory cell region; a peripheral region adjacent to the memory cell region; first, second, third, fourth and fifth bit-lines arranged in numerical order and extending across the memory cell region and the peripheral region; and first, second and third bit-line contacts connecting with the first, third and fifth bit-lines in the peripheral region, respectively; wherein the first and second bit-line contacts are arranged adjacently without interposing the second bit-line therebetween; and wherein the second and third bit-line contacts are arranged adjacently with interposing the fourth bit-line therebetween.
US11716837B2 Electromagnetic shielding film
Disclosed is an electromagnetic shielding film, including a supporting layer and N conductive layers. The supporting layer has a first side surface and a second side surface arranged oppositely, the N conductive layers are stacked on at least one of the first side surface and the second side surface, and N≥2. Each of the N conductive layers includes a conductive grid, the conductive grid includes a conductive material filled in a grid-shaped trench, and at least two of the N conductive layers have conductive materials for shielding different bands, respectively. Different conductive layers have different conductive materials, and therefore can shield different bands, thereby broadening a shielding band of the electromagnetic shielding film, which can better meeting market demands.
US11716832B2 Enclosure for providing liquid film cooling
An enclosure for providing liquid film cooling to heat generating components includes a chassis, a sump, a first pump, a plumbing system, tube plates, and a heat exchanger. The chassis includes cassettes that hold one or more heat generating components. The sump stores a liquid to be supplied to the heat generating components. The first pump draws the liquid from the sump and supplies the liquid to the tube plates through the plumbing system. Each tube plate is positioned between two cassettes to deliver the liquid to the heat generating components. The tube plates directly spray the liquid onto the heat generating components by way of nozzles embedded on the tube plates. The liquid is evaporated into vapors upon contact with the plurality of heat generating components. The heat exchanger condenses the vapors into condensed liquid upon contact. The condensed liquid is collected in the sump to be re-circulated.
US11716828B1 Rotatable fastener mechanism for quick release of component tray
An expansion bay for a computer system having a rotatable fastening mechanism is disclosed. The expansion bay includes a bay housing having two facing side walls, a front open end and a bottom panel. A front tab and a rear tab extend from the interior of one of the side walls. A tray supporting an expansion component has a guide block with a threaded aperture. The tray may be positioned between an open position and a closed position. The rotatable fastener mechanism moves the tray into and out of the bay housing. A rod is inserted through apertures of the first tab and the second tab, allowing free rotation of the rod. The rod includes a threaded exterior section to rotationally engage the threaded aperture of the guide block. A knob is attached to an end of the rod to allow a user to rotate the rod and move the tray.
US11716827B1 Server chassis deflection driven by cable tensioning
A computing equipment box assembly can include a mechanical chassis component, which can include a support sheet configured for supporting computing components. A plurality of passages can be formed through the support sheet. A mechanical cable can be routable down through at least one of the passages and up through at least one other of the passages. A tensioner can be couplable with the cable and adjustable to modify an amount of tension in the cable so as to alter an amount of pre-bow or pre-bend present in the mechanical chassis component. For example, the mechanical cable may be tensioned to apply a force to the support sheet and counteract an upward pre-bend or pre-bow so that the computing components are prevented from protruding into an adjacent upper volume for an upper computer server overhead and from sagging into an adjacent lower volume for a lower computer server underneath.
US11716822B2 Display module, display device and assembling method of display module
The present disclosure relates to a display module, a display device, and an assembling method of the display module. The display module includes: a display panel; a backplane disposed on one side of the display panel away from a light emitting surface of the display panel; a reflective sheet disposed between the display panel and the backplane; and an adapter bracket disposed between the reflective sheet and the backplane, and configured to connect with an external support structure located outside the display module, wherein the adapter bracket has a first surface and a second surface, the first surface is fixed on a surface of the backplane adjacent to the display panel in a surface contact manner, and the second surface supports the reflective sheet.
US11716818B2 Embedded-type transparent electrode substrate and method for manufacturing same
A method of manufacturing a transparent electrode substrate according to an exemplary embodiment of the present application comprises: forming a structure comprising a transparent base, a bonding layer provided on the transparent base, and a metal foil provided on the bonding layer; forming a metal foil pattern by patterning the metal foil; heat-treating the structure comprising the metal foil pattern at a temperature of 70° C. to 100° C.; and completely curing the bonding layer.
US11716817B2 Board design assistance device, board design assistance method, and recording medium
A board design assistance device includes a design data acquirer to acquire design data for a printed circuit board, a first determiner to determine, based on the design data for the printed circuit board, whether a lengthwise direction of board fiber in the printed circuit board is perpendicular to a longitudinal direction of an electronic component mounted on the printed circuit board, a second determiner to determine, based on the design data for the printed circuit board, whether a wire is routed crosswise from a pad receiving the electronic component mounted on the printed circuit board, and a notifier to provide a notification including error information specifying an electronic component determined to have a longitudinal direction not perpendicular to the lengthwise direction of the board fiber and determined to be connected to a pad from which a wire is not routed crosswise.
US11716815B2 LED chip insert, lighting device, lighting module, and method of manufacturing the lighting device
In an embodiment a LED chip insert for a printed circuit board includes a lead frame in which a number of electrically conductive strings with respective ends are formed by punching, the strings having support surfaces which are configured for mounting on the printed circuit board and which form a common plane, wherein the lead frame has a region formed as a recess with respect to the ends, an injection molded frame including an electrically insulating material and annularly surrounding a surface of the lead frame exposed within the region formed as the recess facing the ends of the strings, and thereby effecting an overall trough-like structure; and at least one LED chip which is placed in the region formed as the recess and has a first electrical contact terminal and a second electrical contact terminal, the first electrical contact terminal being electrically conductively connected to a first one of the strings and the second electrical contact terminal being electrically conductively connected to a second one of the strings.
US11716813B2 Module
A module includes a wiring board having a first main surface, a first component mounted on the first main surface and having a first height H1, a second component mounted on the first main surface and having a second height H2 lower than the first height H1, and a sealing resin arranged so as to cover the first component and the second component while covering the first main surface. Compared to a first connection terminal used for connection between the first component and the first main surface, a second connection terminal used for connection between the second component and the first main surface has a higher height. A surface of the first component on a side far from the first main surface and a surface of the second component on a side far from the first main surface are exposed from the sealing resin.
US11716812B2 Millimeter-wave active antenna unit, and interconnection structure between PCB boards
A millimeter-wave active antenna unit and an interconnection structure between PCBs is provided. The interconnection structure between PCBs comprises a mainboard and an AIP antenna module. The mainboard is a first multilayer PCB on which a signal transmission line and a first pad electrically connected to the signal transmission line are provided. The AIP antenna module is a second multilayer PCB on which a second pad, an impedance matching transformation branch, an impedance line and a signal processing circuit are provided. The mainboard and the AIP antenna module are interconnected by directly welding multiple PCBs.
US11716811B2 Printed wiring board
A printed wiring board includes an insulating layer, and a conductor layer including a solid layer and wirings. The solid layer has an opening part. The wirings are formed in the opening part. The opening part includes first and second opening parts. The wirings include first and second wirings. The first wiring has a first land, a first portion, and a second portion. The second wiring has a second land, a third portion, and a fourth portion extending in parallel to the second portion. A first boundary between the first and second portions is in the second opening part. The first portion is bending at the first boundary and increasing distance between the first and second wirings. A second boundary between the third and fourth portions is in the second opening part. The third portion is bending at the second boundary and increasing distance between the first and second wirings.
US11716808B2 Tamper-respondent assemblies with porous heat transfer element(s)
Tamper-respondent assemblies are provided which include a circuit board, an enclosure assembly mounted to the circuit board, and a pressure sensor. The circuit board includes an electronic component, and the enclosure assembly is mounted to the circuit board to enclose the electronic component within a secure volume. The enclosure assembly includes a thermally conductive enclosure with a sealed inner compartment, and a porous heat transfer element within the sealed inner compartment. The porous heat transfer element is sized and located to facilitate conducting heat from the electronic component across the sealed inner compartment of the thermally conductive enclosure. The pressure sensor senses pressure within the sealed inner compartment of the thermally conductive enclosure to facilitate identifying a pressure change indicative of a tamper event.
US11716805B2 Matchless plasma source for semiconductor wafer fabrication
A matchless plasma source is described. The matchless plasma source includes a controller that is coupled to a direct current (DC) voltage source of an agile DC rail to control a shape of an amplified square waveform that is generated at an output of a half-bridge transistor circuit. The matchless plasma source further includes the half-bridge transistor circuit used to generate the amplified square waveform to power an electrode, such as an antenna, of a plasma chamber. The matchless plasma source also includes a reactive circuit between the half-bridge transistor circuit and the electrode. The reactive circuit has a high-quality factor to negate a reactance of the electrode. There is no radio frequency (RF) match and an RF cable that couples the matchless plasma source to the electrode.
US11716804B2 Lighting system for indoor grow application and lighting fixtures thereof
A light fixture for an indoor grow facility is provided. The light fixture includes a plurality of LED lights, a controller, a digital communication module, and an analog communication module. The controller is in signal communication with the plurality of LED lights. The digital communication module receives a digital control signal. The analog communication module receives an analog control signal simultaneously with the digital control signal. The controller is configured to select between either the digital control signal or the analog control signal for controlling the plurality of LED lights.
US11716802B2 Load control device having a wide output range
A load control device (e.g., an LED driver) for controlling the intensity of a lighting load (e.g., an LED light source) may provide a wide output range and flicker-free adjustment of the intensity of the lighting load. The load control device may comprise a load regulation circuit, a control circuit, and a filter circuit (e.g., a boxcar filter circuit) that operates in a different manner in dependence upon a target current. When the intensity of the lighting load is near a low-end intensity, the control circuit may adjust an operating frequency of the load regulation circuit in response to the target current, and may control the filter circuit to filter a current feedback signal during a filter window that repeats on periodic basis. When the intensity of the lighting load is near a high-end intensity, the control circuit may control the filter circuit to constantly filter the current feedback signal.
US11716797B2 Device and method for correcting indirect lighting color in response to changes in vehicle interior finishing material
A device corrects an indirect lighting color in response to changes in a vehicle interior finishing material. An input unit of the device receives a finishing material color of a vehicle interior and a target indirect lighting color. A light source control map of the device includes light source control signals of indirect lighting based on finishing material colors and target indirect lighting colors. A controller of the device generates a light source control signal according to the finishing material color and the target indirect lighting color input to the input unit from the light source control map. The controller also corrects the color of a light source of control target indirect lighting by the generated light source control signal.
US11716795B2 Method of controlling an agricultural vehicle lighting system and system thereof
An agricultural work vehicle for operating in a field includes a chassis, a cab mounted to the chassis, a controller for controlling operation of the work vehicle, and a lighting system including a array field light. The array field light projects a light emission to illuminate a defined zone. A light control module is disposed in electrical communication with the controller and operably controls the at least one array field light. A sensing device senses an area surrounding the work vehicle. The sensing device transmits a signal indicative of a detected object to the controller, which in turn determines if the detected object is in the defined zone. If the detected object is in the defined zone, the light control module controllably adjusts an output from the array field light so that only a portion of the defined zone in which the object is not located is illuminated.
US11716788B2 Heater control system based on slope of supply current
A heater control system includes a heater driver, a current sensor, a slope calculator, and a mode selector. The heater driver is configured to control current to a heater. The current sensor is configured to sense current supplied to the heater. The slope calculator is configured to calculate a slope of the current supplied to the heater. The mode selector is configured to adjust current supplied to the heater by the heated driver based on the slope of the current.
US11716786B2 D2D operation method of terminal in wireless communication system and terminal using method
The present invention provides a method by which a relay terminal determines priority in a wireless communication system including a base station, the relay terminal, and a remote terminal, the method comprising: acquiring remote terminal related information; acquiring the remote terminal related information, and then determining the priority between pieces of the remote terminal related information and the priority between the remote terminal related information and relay terminal related information; and transmitting the information on the basis of the priority, wherein the relay terminal transmits, on the basis of the priority determined by the relay terminal, the information by applying different physical channel parameters.
US11716785B2 Terminal devices, infrastructure equipment and methods
A terminal device for use with a wireless telecommunications system, the terminal device comprising: a transmitter; a receiver configured to receive a measurement radio signal from each of one or more potential relay nodes of the wireless telecommunications system, each measurement radio signal being transmitted using the same predetermined radio frequency band and identifying the one of the potential relay nodes from which it is transmitted; and a controller configured: to measure a characteristic of each received measurement radio signal, and based on each received measurement radio signal and its measured characteristic, to determine a suitable one of the one or more potential relay nodes for acting as a relay node for relaying the further radio signal between the terminal device and the infrastructure equipment.
US11716776B2 Methods and devices for pairing in a wireless network
A method for pairing a terminal with an access point in a wireless communication network is described. The network comprises a plurality of access points that are centrally coordinated by a manager device. The method comprises the following steps executed by at least one access point: receiving a first message comprising information indicating that said terminal wishes to pair with said access point; sending a second message to said manager device, said second message comprising information indicating that said terminal wishes to pair with said access point; adding, in at least one beacon frame of said access point, information indicating that a pairing session is active, only on receipt of a message from said manager device notifying said access point to engage a pairing session with said terminal; and pairing said access point and said terminal.
US11716774B2 Device pairing system and method, and device communication control system and method
In a described embodiment, a device pairing method is disclosed. The device pairing method comprises: generating, using a server (130), a user pairing identifier corresponding to a user profile; sending, using the server (130), the generated user pairing identifier for use by a first user device (110) of the user profile to pair a second user device (120) with the user profile. In another described embodiment, a device communication control method is disclosed. The method comprises: sending, using a challenging computing device (120) to a responding computing device (110), a random number and an associated key identifier; controlling communication based on a result of comparison of the response and verification HMAC values computed with the random number and one of a plurality of cryptographic keys identified by the key identifier.
US11716773B2 Association between devices
In an example implementation according to aspects of the present disclosure, a method may include randomly generating a value, illustrating a code containing the value, and scanning for a device advertising a service that is to use the value. Upon discovering the device advertising the service that is to use the value, the method may include associating with the device by connecting to the service and exchanging information with the device.
US11716771B2 Modularized control system to enable IoT wireless network control and sensing of other devices
Internet of Things (IoT) system and method of interfacing arbitrary non-network connected devices to wireless computer networks. The invention provides a configurable wireless communications module, in either fixed or removable formats, with wireless (e.g. WiFi) network connectivity. The invention uses at least one internal processor, which is configured to operate as a sandbox or virtual machine manner to isolate the code used to operate the arbitrary non-network connected device from the code used to operate the communications module.
US11716764B2 Receiving random access response with extended response window
Method, apparatuses, and computer program product for addressing random access responses with extended response windows. One method may include accessing, by a user equipment, a network by sending a random access channel preamble to a network element. The method may also include receiving, in response to the random access channel preamble, a random access response from the network element. The random access response provides an indication of which random access channel occasion in time within a span of one or a plurality of radio frames the random access response applies.
US11716763B2 User equipment, base station, and random access control method
A terminal is disclosed including a receiver that receives configuration information for random access. The terminal also includes a processor that determines a starting symbol position of a random access resource in one or more slots based on the configuration information. The terminal further includes a transmitter that transmits a preamble in a resource starting from the starting symbol position in the one or more slots. In other aspects, a preamble transmission method is also disclosed.
US11716762B2 Multiple network allocation vector operation
A wireless device determines a Basic Service Set (BSS) associated with a wireless transmitter by receiving a first frame, determining an address of the first frame, receiving a second frame, and determining, using the address of the first frame, a property of the second frame. Determining the property of the second frame may include determining whether the second frame is intra-BSS frame or an inter-BSS frame. Determining the property of the second frame may be performed by comparing an address of the second frame with the address of the first frame, and the second frame determined to be an intra-BSS frame when the address of the first frame matches the address of the second frame, and determined to be an inter-BSS frame otherwise. The address of the first frame may be a transmitter address (TA).
US11716761B2 Uplink transmission method for ultra-reliability and low-latency communication, and apparatus therefor
An uplink transmission method performed by a terminal includes: receiving, from a base station, at least one DCI for allocating first uplink transmission and second uplink transmission; performing a first LBT procedure for the first uplink transmission, and performing the first uplink transmission when the first LBT procedure is successful; and performing a second LBT procedure for the second uplink transmission, and performing the second uplink transmission when the second LBT procedure is successful, wherein the first uplink transmission and the second uplink transmission are consecutively performed with a time interval longer than a predetermined time.
US11716760B2 Channel access of a simultaneous-transmit-receive (STR) multi-link-device (MLD) with a non-STR MLD
A wireless communication protocol for an access point (AP) multi-link device (MLD) using carrier-sense multiple-access collision avoidance (CSMA/CA) with multi-link operations. Transmit opportunities (TXOPs) are obtained by setting a random number of backoff slots, as a random backoff, for channel contention on each link, and counting down the random backoff on each link independently. When the backoff for the link reaches zero, channel access is obtained and a TXOP duration of reserved on a link whose end time cannot occur later than the latest existing TXOPs of the AP MLD. Numerous variations are described for setting the random number of backoff slots and for reserving the TXOP duration on a link.
US11716756B2 Data communication method and apparatus for performing spatial reuse
Embodiments of the present disclosure disclose a data communication method and apparatus. The data communication method includes: when receiving a PPDU, obtaining, by a network node, a BSS identifier in the PPDU; if the BSS identifier in the PPDU is different from a first BSS identifier, and the BSS identifier in the PPDU is the same as a second BSS identifier, determining whether the PPDU meets a preset spatial reuse condition, where the first BSS identifier is an identifier of a first BSS to which the network node belongs, the second BSS identifier is an identifier of an extended BSS to which a target relay belongs, and the target relay and the network node belong to the first BSS; and if the PPDU meets the preset spatial reuse condition, contending for an access channel, and communicating with a station other than the target relay in the first BSS.
US11716749B2 Allocating resources to a plurality of mobile devices
Embodiments include methods performed by a processor of a mobile device for allocating resources to a plurality of mobile devices in communication with an Edge network. The processor may receive from the plurality of mobile devices one or more capabilities of each mobile device related to a computing task in which the plurality of mobile devices are participating. The processor may determine a fairness result for the plurality of computing devices based on the one or more capabilities of each mobile device and the computing task. The processor may allocate resources to each of the plurality of mobile devices based on the determined fairness result.
US11716743B2 Method for receiving downlink signal in wireless communication system and terminal using the same
Provided are a method and an apparatus for receiving a downlink signal in a wireless communication system. The method includes receiving resource block assignment information including a bitmap and receiving the downlink signal through a resource block group (RBG) indicated by the bitmap in a bandwidth part. A total number of resource block groups (RBGs) in the bandwidth part is determined based on an index of a start resource block of the bandwidth part, a size of the bandwidth part, and a size of one resource block group.
US11716740B2 Transmissions of downlink control channels for low cost UEs
Methods and apparatus are provided to support transmissions of control channels with coverage enhancements (CE) to low cost (LC) user equipments (LC/CE UEs) in a narrowband of a system bandwidth. A narrowband for a control channel transmission can depend on a type of information being scheduled for transmission by the control channel.
US11716737B2 Gratuitous PUSCH grants during LTE RRC connection and NAS attach procedures
One embodiment is directed to sending a request message from the base station to the UE on a downlink channel and making, by the base station, a gratuitous grant, to the UE, of resources on the uplink channel for the UE to transmit a response message on the uplink channel. The response message is responsive to the request message. The gratuitous grant is made without waiting for a request from the UE for a grant of resources on the uplink channel for the UE to transmit the response message on the uplink channel. The base station receives the response message transmitted by the UE on the uplink channel in response to the gratuitous grant. Other embodiments are disclosed.
US11716736B2 Method and apparatus for handling overheat of electronic device
An electronic device and method for efficiently processing overheat in an electronic device are provided. The electronic device includes a transceiver and at least one processor configured to identify overheat inside the electronic device and transmit, to a base station, a first message containing overheat assistance information generated in response to identifying the overheat inside the electronic device.
US11716733B2 Method for determining uplink control channel scheduling unit, base station and user equipment
The present disclosure discloses a method for determining an uplink control channel scheduling unit, a base station, a user equipment, and a computer readable storage medium, including: according to the number of scheduling units occupied by the uplink control channel of the user equipment, the initial scheduling unit used by the uplink control channel, the position of the starting symbol of the uplink control channel in the initial scheduling unit, the number of symbols used, and the agreed rule, the base station determines the subsequent scheduling unit used by the uplink control channel, and/or the position of the symbol used by the uplink control channel in the subsequent scheduling unit.
US11716730B2 User terminal and radio communication method
A user terminal according to one aspect of the present disclosure includes a transmitting section that transmits data and uplink control information using an uplink shared channel, and a control section that controls a mapping pattern of the uplink control information, based on whether or not a frequency resource to which the uplink shared channel is allocated is hopped in a slot.
US11716729B2 Resource mapping and multiplexing of uplink control channel and uplink data channel
Described is an apparatus of a User Equipment (UE). The apparatus may comprise a first circuitry, a second circuitry, and a third circuitry. The first circuitry may be operable to process a Physical Downlink Control Channel (PDCCH) within a bandwidth at a start of a slot. The second circuitry may be operable to allocate a Guard Period (GP) within the bandwidth and subsequent to the PDCCH. The third circuitry may be operable to generate a Physical Uplink Control Channel (PUCCH) within the bandwidth and in one or more Orthogonal Frequency-Division Multiplexing (OFDM) symbols at the end of the slot. The third circuitry may also be operable to generate a Physical Uplink Shared Channel (PUSCH) within the bandwidth and in one or more OFDM symbols extending between the GP and the PUCCH, the PUSCH being time-division multiplexed with the PUCCH.
US11716726B2 Message handling for device-to-device coordination messages
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may drop a first one or more device-to-device coordination messages for transmission, of a set of device-to-device coordination messages, according to a message dropping criterion in connection with a quantity of device-to-device coordination messages in the set of device-to-device coordination messages exceeding a threshold. The UE may transmit a second one or more device-to-device coordination messages of the set of device-to-device coordination messages, such that a quantity of transmitted device-to-device coordination messages, of the set of device-to-device coordination messages, does not exceed the threshold. Numerous other aspects are described.
US11716725B2 User equipment requests for a number of transmission configuration indicator states
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit a request to use a preferred number of transmission configuration indicator (TCI) states for communications with one or more base stations. The UE may receive an indication to use a number of TCI states based at least in part on the request. Numerous other aspects are described.
US11716724B2 Control signaling for radio access networks
There is disclosed a method of operating a signaling radio node in a radio access network, the method comprising transmitting control signaling to a user equipment based on configuration information indicating that the user equipment is configured with multiple sets of resources for use in receiving control signaling. Control information carried by the control signaling has a control information structure, wherein the control information structure is dependent on the target set of resources determined for use by the user equipment for receiving the control signaling, the target set of resources being one of the multiple sets of resources for use in receiving control signaling. The disclosure also pertains to related methods and devices.
US11716719B2 Method and UE for managing in-device co-existence (IDC) issue
Method and a UE for managing an IDC issue. The UE includes a memory, a processor, coupled to the memory and communication module based on LTE RAT, configured to transmit capability information on a licensed carrier associated with a primary cell, wherein the UE supports a LAA operation. Further, the processor, coupled to the communication module based on LTE RAT, is configured to receive an IDC indication from the primary cell served by an eNB. Further, the processor, coupled to the communication module based on LTE RAT, configured to detect the IDC issue in an unlicensed band associated with a secondary cell. Further, the processor, coupled to the communication module based on LTE RAT, configured to transmit an IDC message comprising assistance information to the primary cell and receive a message to resolve the IDC issue based on the assistance information from the primary cell served by the eNB.
US11716716B2 Barrage signal for protecting wireless communications
In embodiments of systems and methods for protecting wireless communications a base station and the wireless device, a base station receive from a wireless device channel feedback from a wireless device regarding a communication beam between the base station and the wireless device, generate a barrage signal precoder based on the received channel feedback regarding the communication beam, and transmit a barrage signal using the barrage signal precoder on a second beam that is different from the communication beam.
US11716715B2 Method of performing BWP operation in wireless communication system and an apparatus therefor
This specification provides a method of performing a bandwidth part (BWP) operation in a wireless communication system. Specifically, The method performed by a terminal includes receiving a first message including information related to at least one initial BWP configuration from a network, receiving a second message including configuration information for an additional BWP from the network, receiving downlink control information (DCI) related to BWP switching for at least one configured BWP from the network, and transmitting and receiving signals to and from the network in an activated BWP based on the received DCI.
US11716711B2 Time domain resource allocation for a time domain waveform
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, from a base station, an indication of a time domain resource allocation (TDRA), in a unit of a time domain resource block (RB) or in a unit of a time domain RB group, for a communication that is to use a time domain waveform. The unit of the time domain RB or the unit of the time domain RB group may be a sub-symbol unit. The UE may communicate with the base station, using the time domain waveform, based at least in part on the TDRA for the communication. Numerous other aspects are described.
US11716709B2 User terminals and radio communication methods
In one aspect, a user terminal is disclosed including a processor that controls a mapping of a first demodulation reference signal (DMRS), having a fixed location regardless of a symbol duration of an uplink shared channel (PUSCH), controls a mapping of a second DMRS, which is allocated depending on the symbol duration of the PUSCH, and determines a location of the second DMRS if the second DMRS is allocated. The user terminal also includes a transmitter that transmits at least one of the first DMRS and the second DMRS.
US11716706B2 Method and device in node for wireless communication
The present disclosure method and device in node used for wireless communication. A first node receives first information, the first information being used for indicating a first time-unit format; determines second information; and determines a first resource pool; herein, a first time window comprises Q first-type time-domain-resource blocks, the Q being a positive integer greater than 1; a first symbol is one of the positive integer number of multicarrier symbol(s) comprised in any of the Q first-type time-domain-resource blocks; the first time-unit format is used for indicating whether the first symbol is a first-type symbol; the second information is used for indicating a positive integer number of first-type time-domain-resource block(s) out of a first time-domain-resource-block subset. A flexible slot format has been taken into account in the process of V2X resource pool configuration in the present disclosure, thus ensuring that the resource pool can effectively meet traffic requirements.
US11716705B2 Base station and radio terminal for performing radio access network paging
A user equipment and apparatus receive from a base station, configuration information configuring the user equipment to provide assistance information indicating a preference of the user equipment to leave RRC connected state, and transmit to the base station, assistance information indicating that a preferred RRC state of the user equipment is an RRC state in which an RRC connection is suspended. A base station transmits to a user equipment, configuration information configuring the user equipment to provide assistance information indicating a preference of the user equipment to leave RRC connected state, and receives from the user equipment, assistance information indicating that a preferred RRC state of the user equipment is an RRC state in which an RRC connection is suspended.
US11716704B2 Beamformed paging transmission
One or more techniques for beamformed paging are disclosed. A transmission/reception point (TRP) may transmit a paging inquiry signal using beam sweeping in a paging inquiry (PI) block with a different time, frequency resource set and/or sequence configuration associated with the same paging occasion (PO), for example, to randomize and/or distribute WTRUs into different monitoring groups. A WTRU may transmit an uplink paging inquiry response indicating a downlink beam for a paging data transmission and/or a WTRU ID. A downlink control and/or a data channel transmission may be triggered by a paging inquiry response transmission. Paging downlink control information may be transmitted in a WTRU-specific control channel, which may contain CRC bits masked by a temporary paging identity, e.g., based on a WTRU ID that may be reported in a paging inquiry response transmission. A WTRU paging procedure may be based on a paging inquiry signal and/or response transmission.
US11716701B2 Estimating and reporting of side-information for enhanced reciprocal signaling-based positioning
Techniques for position estimation using uplink (UL) and downlink (DL) signals via a fully or partially reciprocal wireless channel between a User Equipment (UE) and terrestrial transceiver can be enhanced by leveraging information obtained from UL or DL signals having the stronger Signal-to-Noise Ratio (SNR). This information can include the number of paths and/or complex sinusoids, and can be shared with the base station or location server to parameterize the model of the wireless channel. In some embodiments, the UE can further determine a quality metric for the model and send it to the location server or terrestrial transceiver.
US11716700B2 False base station detection based on time of arrival or timing advance
A base station determines a window of time for arrival of uplink signals, wherein the window of time includes a start based on a first expected time of arrival for a first uplink signal from a first UE and an end based on a second expected time of arrival for a second uplink signal from a second UE. The base station detection detects a false base station, such as a L1 man-in-the-middle false base station, based on an uplink signal being received outside of the determined window of time for the arrival of uplink signals.
US11716698B2 Transmission management
The invention relates to a solution for determining an allowable round trip time for a communication between a base station and a terminal device served by the base station in an asynchronous communication system, At least some aspects of the solution relate to a method performed by a controller, the method comprises: determining round trip times of terminal devices served by the base station; selecting a maximum round trip time among the determined round trip times of the terminal devices served by the base station as the allowable round trip time; and delivering the selected allowable round trip time to the base station. The solution also relates to applying the determined round trip time by a base station and a terminal device as well as to a system comprising the mentioned entities and to computer program products.
US11716697B2 Network generated precision time
Precision digital chronography based on detected changes in state of a processor is described. The changes in state may be detected by another processor and an averaged time interval generated. A signal corresponding to the averaged time interval may be communicated to a distributed database and propagated to remote systems. Devices associated with the remote systems may adjust or set a device clock in accordance with the averaged time interval.
US11716695B2 Exception-robust time-averaged radio frequency exposure compliance continuity
Certain aspects of the present disclosure provide techniques for exception-robust time-averaged radio frequency (RF) exposure compliance continuity. A method that may be performed by a user equipment (UE) generally includes transmitting a first signal at a first transmission power based on time-averaged RF exposure measurements over a time window and storing RF exposure information associated with the time window. The method may also include detecting that an exception event associated with the UE occurred and transmitting a second signal at a second transmission power based at least in part on the stored RF exposure information in response to the detection of the event.
US11716686B2 Cross-cell group wake up messaging
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a base station (BS) may generate a radio resource control (RRC) message including an indication that a user equipment (UE) is to wake from a power saving state or to reconfigure a cycle associated with the power saving state; and transmit the RRC message toward the UE via a connection of a second cell group to cause the UE to wake from the power saving state or reconfigure the cycle associated with the power saving state. Numerous other aspects are provided.
US11716683B2 Method and system for aggregating power outage data and utilization
Systems, devices and automated processes are provided for configuring backup battery power for RF radio operations at a base station, including a module configured to communicate with an API tool to receive a plurality of data sets using an open API format about metrics of various operating distributed power sources; a cell site module configured to monitor power usage at a cell site and to generate a series of data sets about the power usage at the cell site; an analysis module configured to correlate the plurality of data sets of the various operated distributed power sources with the series of data sets of power usage at the cell site; the analysis module to forecast a frequency and a duration of a power outage at the cell site based on metrics of correlated data of the data sets of the various operated distributed power sources and the series of data sets about power usage at the cell site; and a backup power supply configured with a capacity at the cell site based on the metrics derived from the correlated data wherein the capacity backup power supply is determined in accordance the frequency and the duration of the power outage at the cell site.
US11716681B2 Systems and methods to control access in air-to-ground networks operating in unlicensed spectrum
Techniques for controlling or managing uplink access of a UE to a base station using unlicensed spectrum includes signaling an indication of different uplink access constraints so the UE connects to the base station when the UE and/or the uplink direction between the UE and the base station meet the uplink access constraints. The indication may be broadcast in a reference or synchronization signal, e.g., by utilizing unused or undesignated bits. Uplink access constraints may include a threshold distance of UEs from the base station, interference in the uplink direction (which may differ from interference in the downlink direction), etc. Based on the indicated constraints, the UE may determine whether or not to consider the base station as a candidate serving cell for wireless network access. The UE may be an in-flight aircraft and the base station may be a logical cell of a network that provides in-flight connectivity services.
US11716680B2 PDU type setting method, UE policy setting method, and related entity
A protocol data unit (PDU) type setting method, a user equipment (UE) policy setting method, and a related entity, where the PDU type setting method includes: setting, by UE, a requested PDU type of a PDU session in a process of establishing the PDU session, where the requested PDU type of the PDU session is set by the UE based on a first condition, the first condition includes an Internet Protocol (IP) version corresponding to an application, and the application is associated with the PDU session. In the embodiments of the present disclosure, the requested PDU type of the PDU session can be consistent with a PDU type requested by the application, such that the application can normally perform communication.
US11716678B2 Distributed ledger directory service for wireless communication networks
A wireless communication network comprises distributed ledgers that host network attributes that have data values that characterize wireless data services. Directory circuitry stores ledger information that characterizes the distributed ledgers and the network attributes. Network circuitry delivers the wireless data services to wireless User Equipment (UEs). The network circuitry generates and stores the data values and their network attributes in the distributed ledgers. The directory circuitry receives a directory information request and selects a portion of the ledger information that characterizes the distributed ledgers and the network attributes based on the directory information request. The network circuitry receives a ledger information request responsive to the selected portion of the ledger information. The network circuitry selects and transfers a portion of the network attributes and the related data values based on the ledger information request.
US11716673B2 Access rejection method, apparatus and system, and storage medium and processor
Disclosed are an access rejection method, apparatus and system, where the access rejection method includes: a first base station receives an access request from a terminal; and the first base station sends an access rejection message to the terminal; where the access rejection message at least carries: a check value generated based on a key of the terminal and at least part of contents of the access rejection message. And further disclosed are related computer storage media and processors.
US11716669B2 Internet of things service routing method
In an Internet of things (IoT) service routing method, a mapping relationship between a service feature and a network slice is established on an IoT platform, or a routing policy for determining a network slice based on a service feature is established on an IoT platform, so that the IoT platform can select, based on a service feature of a service message sent by an industry application, an appropriate network slice to send a service message to a terminal device, to meet a plurality of network requirements of the industry application.
US11716660B2 Method and apparatus for relaxing RRM measurement in wireless communication system
A method of relaxing frequency measurement by a terminal in a wireless communication system is provided. The method includes receiving, from a base station, system information comprising first configuration information associated with frequency measurement and second configuration information associated with relaxed frequency measurement, the second configuration information comprising at least one of first information associated with a criterion for the terminal with low mobility (low mobility criterion) or second information associated with a criterion for the terminal not at cell edge (not at cell edge criterion), identifying whether at least one of the low mobility criterion or the not at cell edge criterion is fulfilled, and determining whether to perform frequency measurement based on the identifying.
US11716659B2 Selecting a neighbor node in a wireless multi-hop network using a cost parameter
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a child node in a wireless multi-hop network may receive a cost parameter from a neighbor node in the wireless multi-hop network, wherein the cost parameter indicates a cost, due to an operating mode of the neighbor node, of selecting the neighbor node as a target node for a handover procedure, a cell selection procedure, or a cell reselection procedure. The child node may perform the handover procedure, the cell selection procedure, or the cell reselection procedure based at least in part on the cost parameter. Numerous other aspects are provided.
US11716658B1 Dynamic assignment of users in a multi-band network based on the antenna sector power ratio
Methods and systems are provided for delaying a dynamic connection modification of a user device connection. A first frequency band is determined to have a greater sector power ratio (SPR) than a second frequency band. The first frequency band is determined to have a loading factor above a threshold. Based at least in part on the first frequency band having the greater SPR and the first frequency band having the loading factor above the threshold, a connection of the user device to the first frequency band for access for to a wireless communication protocol is delayed.
US11716657B2 Movement direction based communications between user equipment (UE) and base station (BS)
This disclosure provides systems, methods and apparatus for wireless communication. In one aspect, a user equipment (UE) may generate an indication of a first doppler shift associated with the wireless communication device moving with reference to a first target base station (BS), obtain, from the serving BS, a handover command for conditional handover (CHO) (with the handover command including a first trigger for handover to the first target BS), and synchronize with the first target BS during CHO after the first trigger is met, wherein the first trigger is associated with the first doppler shift. In another aspect, a serving BS generates the handover command for CHO and provides the handover command to the UE. The UE is to synchronize with the first target BS during CHO after the first trigger associated with a first doppler shift is met.
US11716654B2 Systems and methods for hybrid management of an in-premises network
A system may include a management platform. The system may include a master system hosted by a first subscriber device that is communicatively coupled to the management platform over an external network. The system may include an agent system hosted by a second subscriber device that is communicatively coupled to the first subscriber device, and to an end-user device, over a WLAN. The agent system may be configured to cause the second subscriber device to output information regarding the end-user device. The management platform may be configured to cause one or more processors, of the management platform, to identify, based on the information, an insufficiency in network resource capacity, associated with the WLAN, for the end-user device, and provide one or more commands to the master system to cause the master system to perform an action to address the insufficiency.
US11716651B2 Method and device for transmitting data
A method and a device for receiving transmitting data in in a wireless local area network are provided. The device receives a physical layer protocol data unit (PPDU) from a station over a transmission bandwidth and determines whether the station is a member of a basic service set (BSS) managed by the device based on the PPDU. When the PPDU is a multi-user (MU)-PPDU, the AP determines that the station is not a member of the BSS managed by the AP. Such MU-PPDU includes a first signal field and a second signal field, the first signal field having bandwidth information indicating the transmission bandwidth, the second signal field having user-specific information with allocation for orthogonal frequency division multiple access (OFDMA) transmission.
US11716648B2 Congestion control for NR V2X
In one aspect, a method includes determining, by a user equipment (UE), a channel busy ratio (CBR) window for a CBR measurement for one or more resources; determining, by the UE, a CBR measurement value for the CBR window and for the one or more resources; determining, by the UE, a channel occupancy ratio (CR) window based on a first number of subframes used for a history of past transmissions and based on a second number of subframes used for future planned transmissions and corresponding retransmissions; and determining, by the UE, a CR value for the CR window based on subchannels used for the one or more resources for the first number of subframes and based on subchannels estimated for the one or more resources for the second number of subframes. In another aspect, a method includes determining a CR window based on a CBR measurement value.
US11716646B2 Performance measurements for 5GC network functions
A network management system can monitor and process raw measurements of network functions (NFs). The NFs are coupled to one another via service based interfaces in a 5G network core (5GC) of a 5G network system (5GS). A server producer generates performance measurements corresponding to the one or more NFs based on the raw measurements. The performance measurements are used to evaluate and optimize the performance related to network services enablement, mobility tracking and reachability with a user equipment (UE) or the gNB according to an Access Mobility Function (AMF) component, a Session Management Function (SMF) component, a Policy Control Function (PCF) component, a Network Exposure Function (NEF) component, or a Network Function Repository Function (NRF) component, as well as associated performance parameters or measurements disclosed.
US11716643B2 User equipment-based link adaptation for 5G new radio
Example aspects include a method, apparatus, and computer-readable medium for wireless communication at user equipment (UE) of a mobile network, comprising monitoring an uplink metric of an uplink transmission channel. The aspects further include calculating an uplink transmit power based at least on a tolerance threshold. Additionally, the aspects include transmitting, via the uplink transmission channel according to the uplink transmit power, an uplink transmission. Additionally, the aspects include detecting a change in the uplink metric. Additionally, the aspects include comparing the change in the uplink metric with performance improvement criteria. Additionally, the aspects include determining whether to adjust the uplink transmit power. Additionally, the aspects include iterating adjustments to the uplink transmit power. Additionally, the aspects include stopping the adjustments to the uplink transmit power in response to determining that the uplink metric meets a performance threshold or in response to determining that the tolerance threshold has been met.
US11716642B2 Determination of extender onboarding completion status
A system and a method are provided for a network access point device for use with a network extender device and a display device. The network access point device is configured to initiate an onboarding process to onboard the network extender device, to generate data to enable the display device to display a connecting status image when the onboarding process has started, to periodically check the connection state of the network extender device, and to generate data to enable the display device to display a connected status image after the network access point has been successfully onboarded.
US11716641B1 Systems and methods for generating synthetic wireless channel data
The present disclosure relates to a system for generating synthetic wireless channel data. The system comprises: an interface unit for receiving measured wireless channel data; a computing device comprising a first AI unit and a second AI unit to be trained; wherein the first AI unit is configured to transfer the measured wireless channel data into latent space data, and wherein the second AI unit is configured to convert the latent space data into synthetic wireless channel data; and wherein the first AI unit and the second AI unit are trained such that the synthetic wireless channel data resembles the measured wireless channel data; and an analyzer unit which is configured to produce correlation data which represents a correlation between the measured and/or the synthetic wireless channel data and at least one attribute of the latent space data.
US11716640B2 Method, apparatus, and computer-readable medium for providing synchronization signal block (SSB) transmission pattern
Embodiments include methods performed by a second network node in a wireless communications network that includes a first network node, the second network node, and a third network node. Such methods include receiving, from the first network node, a configuration comprising a pattern indicative of whether or not each of a plurality of Synchronization Signal Block (SSB) transmissions, that are configured based on a nominal timing, are actually transmitted by the third network node according to the nominal timing. Such methods include, based on the received configuration, managing transmission and/or reception configurations for one or more of the following: one or more cells served by the second network node; and one or more UEs served by the second network node via the one or more cells. Other embodiments include second network nodes configured to perform such methods.
US11716638B2 Systems and methods for providing services
Systems and methods for providing services are disclosed. One method can comprise receiving data having a first format and transmitting the data to a first device. The method may also comprise detecting a second device, automatically recognizing a supported second format of the detected second device, converting the data to the second format, and transmitting the converted data to the second device via wireless communication.
US11716635B2 Creating protocol data unit for early data transmission
Various communication systems may benefit from improved random access procedures. For example, it may be helpful to improve random access procedure when changing a coverage enhancement level. A method, according to certain embodiments, may include changing a coverage enhancement level in response to a failure of a random access procedure. The method may also include determining whether early data transmission may be initiated in the changed coverage enhancement level. In addition, the method may include building at a user equipment a protocol data unit corresponding to the changed coverage enhancement level when the early data transmission is initiated in the changed coverage enhancement level. Further, the method may include transmitting the early data from the user equipment to a network entity in the built packet data unit on the changed coverage enhanced level.
US11716634B2 Network node, method and computer program for unlicensed spectrum operation
A network node is arranged to provide communication at least in an unlicensed band where clear channel assessment, CCA, is required before transmissions. The unlicensed band comprises a plurality of carriers, or sets of carriers, defining channels. The network node is arranged to prepare code block groups comprising code blocks from transport blocks, which transport blocks each comprises a payload intended for a respective receiver, wherein each code block comprises a checksum enabling a hybrid automatic repeat request, HARQ, procedure on a per code block group basis, map the code block groups to a wideband signal comprising a consecutive set of channels on the carriers of the unlicensed band, assess whether the channels, respectively, are clear, and transmit the code block groups mapped on the channels which are clear and omit transmissions of code block groups mapped on channels that are not clear, wherein the assessment and the transmissions are performed within a first time interval, and transmit code blocks groups omitted to be transmitted using the HARQ procedure for retransmission prior receiving a non-acknowledgement, NAK, from a respective receiver of the code block group.
US11716633B2 Licensed supplemental uplink as fallback with unlicensed uplink and downlink
Wireless communications systems and methods related to communications in a network that supports data transmitted in an unlicensed frequency band and a licensed frequency band are provided. A first wireless communication device communicates, with a second wireless communication device, a configuration indicating a first resource in an unlicensed frequency band and a second resource in a licensed band. The first wireless communication device communicates, with the second wireless communication device in the unlicensed frequency band, a first communication signal based on the configuration. The first wireless communication device communicates with the second wireless communication device in the licensed frequency band, a second communication signal based on at least one of a channel status of the unlicensed frequency band or a transmission parameter associated with at least one of the first communication signal or the second communication signal.
US11716627B2 Trusted 5G network slices
Slice control elements in a 5G slicing framework are instantiated in trusted hardware to provide for sealed data transmission in a trusted slice. In addition to sealing the data plane in the trusted slice, the control plane for the slice may be secured by the instantiation into the trusted hardware of layer 2 (medium access control—MAC) scheduling functions for radio resources (e.g., subcarriers and time slots). Layer 1 (physical—PHY) may also be configured to further enhance security of the trusted slice by isolating its PHY layer from that of other trusted and non-trusted slices. Such isolation may be implemented, for example, by using dedicated PHY resources, or by limiting resource time sharing to provide temporal isolation.
US11716626B2 Network access control system
A network access control system includes a communication device and an authorization system. The communication device is configured to communicate time-critical messages through a time-sensitive network during scheduled time windows. The communication device is further configured to be communicatively connected to a candidate device and to receive a network access request from the candidate device while blocking the candidate device from communicating through the time-sensitive network. The authorization system is communicatively connected to the communication device and configured to authorize the candidate device via a multi-factor authentication protocol that requires a user of the candidate device to successfully provide multiple identification factors. In response to the authorization system authorizing the candidate device, the communication device is configured to grant the candidate device restricted access to one or more of send or receive approved messages through the time-sensitive network.
US11716619B2 System and method for using multiple wireless devices on a single wireless phone number
Aspects of the subject disclosure may include, for example, responsive to a first registration request to access a mobile network, determining whether a first phone number associated with a first IMSI assigned to a first SIM of a first mobile device matches a second phone number associated with a second IMSI assigned to a second SIM of a second mobile device, determining whether the second mobile device is currently registered to the mobile network, and, in turn, sending a request for authentication to register the first mobile device and to deregister the second mobile device, determining whether a response to the request for the authentication code matches an authentication code, and responsive to the determining the response matches the authentication code, registering the first mobile device to the mobile network and deregistering the second mobile device from the mobile network. Other embodiments are disclosed.
US11716618B2 Method and apparatus for authentication of Integrated Access and Backhaul (IAB) node in wireless network
Accordingly, the embodiments herein provide a method for authentication of an IAB node by an IAB-donor node in a wireless network. The method includes obtaining an IAB authorization information of the IAB node from one of an Access and Mobility Management Function (AMF) and a Mobility Management Entity (MME) of the wireless network, determining whether the IAB authorization information of the IAB node indicates the IAB node is authorized, and allocating a unique identity/parameter to the IAB node during an IAB-Mobile Termination (MT) setup and/or Backhaul Radio Link Control (RLC) channel establishment and/or Routing update phase. Further, the method includes storing the unique identity/parameter in a user equipment (UE)-context, which is used to identify the UE-context during an IAB-Distributed Unit (DU) part setup for authorization check and/or authentication.
US11716614B2 Secured data derivation for user devices
Methods, apparatuses, and systems are described for deriving secured keys and authenticating based on the derived keys. An entity may receive one or more derived keys and one or more key derivation algorithms associated with the one or more derived keys. A user device may derive, based on a key associated with the user device and unknown to the entity, a user key. The entity may derive, based on a first derived key and one of the key derivation algorithms, a second derived key, and may verify, based on the second derived key, the user key.
US11716613B2 Encryption mechanism used in multi-band channel access
An encryption mechanism used on cooperative multi-band wireless STA architecture that enables full duplex operations. In encrypting a frame, an AAD can be constructed by using a selected MAC address, which may not be associated with a band to be used for transmitting the frame in an upcoming TXOP. An STA that supports simultaneous transmission in a multi-band operation uses the same MAC address to encrypt the frames to be transmitted on different bands. An AAD is constructed by using a same MAC address corresponding to one of the transceivers. A transmit STA may specify band information used for encryption in the MAC header, which serves to signal the receive STA to decrypt the frame by using the proper information.
US11716611B2 Method for reporting blind decoding capability, blind decoding configuration, blind decoding method, terminal and base station
The present disclosure provides a method for reporting a blind decoding capability, blind decoding configuration, a blind decoding method, a terminal and a base station. The method for reporting a blind decoding capability includes: determining the blind decoding capability information of the terminal, where the blind decoding capability information of the terminal include a maximum number of blind decodings that the terminal is capable to process per time unit; reporting the blind decoding capability information of the terminal to a base station.
US11716610B2 Wideband uplink control channel capability indication during initial access
Apparatus, methods, and computer-readable media for wideband uplink control channel capability indication during initial access are disclosed herein. A user equipment (UE) may transmit an uplink message indicating an uplink resource bandwidth capability of a physical uplink control channel (PUCCH) of the UE based on a power spectral density (PSD) limitation and a maximum transmission power of the UE. The UE may receive a downlink message indicating an uplink resource allocation of the PUCCH corresponding to the uplink resource bandwidth capability. Alternatively, the UE may receive a downlink configuration that indicates a first set of uplink resources and a second set of uplink resources. The UE may transmit an acknowledgment message in response to a downlink message of a random access channel process. The acknowledgment message includes the uplink resource bandwidth capability that indicates a selection between the first set of uplink resources and the second set of uplink resources.
US11716605B2 Systems and methods for victim identification
Described herein are systems, devices, methods, and media for connecting a user for providing emergency response assistance to victims and emergency service providers. In some embodiments, a method for automatically populating an incident report includes the steps of: generating a victim code for display at a first electronic device; receiving an emergency data request comprising the victim code from a second electronic device associated with an emergency service provider (ESP) personnel; gathering emergency data associated with the victim code; transmitting the emergency data associated with the victim code to the second electronic device associated with the ESP personnel; and automatically populating, at the second electronic device associated with the ESP personnel, one or more fields of an incident report using the emergency data associated with the victim code.
US11716604B2 Inconsistency-determining apparatus for vehicle accident
An inconsistency-determining apparatus in an emergency notification system in which emergency information about a vehicle accident is able to be transmitted from each of the vehicles that have accidents includes an acquisition unit configured to acquire information about a number of times each of the vehicles collides or information with which the number of times is able to be specified, as emergency information about the vehicles that have the accidents, a counter configured to count the number of times each of the vehicles that have the accidents collides, a comparator configured to compare the number of times one of the vehicles that have the accidents collides with that of another thereof, and a generation unit configured to generate an inconsistency comparison result representing a possibility that an unknown vehicle having a collision exists when there is inconsistency in the number of times the vehicles that have the accidents collide.
US11716602B2 Low energy network
Methods and systems are disclosed relating to low energy communication devices. A device may be configured as a low energy central device that is associated with a particular location within a premises. Information may be received from a peripheral device when the peripheral device is within a threshold proximity of the low energy central device.
US11716595B1 Method for conveying event information based on roles assigned to users of a location tracking service
An improved system and method for defining an event based upon an object location and a user-defined zone and managing the conveyance of object location event information among computing devices where object location events are defined in terms of a condition based upon a relationship between user-defined zone information and object location information. One or more location information sources are associated with an object to provide the object location information. One or more user-defined zones are defined on a map and one or more object location events are defined. The occurrence of an object location event produces object location event information that is conveyed to users based on user identification codes. Accessibility to object location information, zone information, and object location event information is based upon an object location information access code, a zone information access code, and an object location event information access code, respectively.
US11716591B2 Determining a position of a mobile communication device
A method of determining a position of a mobile telecommunication device (10) which transmits a signal (S) to base stations (1, 2, 3, . . . ) connected by a data link (8) comprises the steps of: correlating the received signal (S) and a reference signal (S′) so as to produce a correlation for each base station, detecting a maximum in each correlation, which maximum is indicative of a time of arrival of the signal (S) at the respective base station, and using the respective times of arrival and the distances (D1, D2, . . . ) derived therefrom to derive a location of the mobile telecommunication device. The method uses receivers (21, 22, . . . ) coupled to a data network (7), each receiver (21, 22, . . . ) deriving the reference signal (S′) from the received signal (S). Each base station may select, if it receives multiple reference signals, the reference signal (S′) having the highest quality.
US11716589B2 Determining a significant user location for providing location-based services
Systems, methods, and program products for providing services to a user by a mobile device based on the user's daily routine of movement. The mobile device determines whether a location cluster indicates a significant location for the user based on one or more hints that indicate an interest of the user in locations in the cluster. The mobile device can perform adaptive clustering to determine a size of area of the significant location based on how multiple locations converge in the location cluster. The mobile device can provide location-based services for calendar items, including predicting a time of arrival at an estimated location of a calendar item. The mobile device can provide various services related to a location of the mobile device or a significant location of the user through an application programming interface (API).
US11716587B2 System and a processing method for customizing audio experience
The present disclosure relates to a system and a processing method in association with the system for customizing audio experience. Customization of audio experience can be based on derivation of at least one customized audio response characteristic which can be applied to an audio device used by a person. The customized audio response characteristic(s) can be unique to the person.
US11716586B2 Information processing device, method, and program
The present technology relates to an information processing device, a method, and a program that enable easy production of 3D Audio content.The information processing device includes a determination unit that determines one or more parameters constituting the metadata of an object on the basis of one or more pieces of attribute information of the object. The present technology can be applied to information processing devices.
US11716577B2 Ultrasound transducer and housing for same
An ultrasound energy delivery system is provided that includes a transducer and a housing.
US11716576B2 Dummy electrodes for performance improvement of piezoelectric microelectromechanical system microphones
A piezoelectric microelectromechanical system microphone comprises a piezoelectric element configured to deform and generate an electrical potential responsive to impingement of sound waves on the piezoelectric element, a sensing electrode disposed on the piezoelectric element and configured to sense the electrical potential, and a dummy electrode electrically unconnected to the sensing electrode and disposed on a portion of the piezoelectric element that is free of the sensing electrode, the dummy electrode configured to reduce static deformation of the piezoelectric element caused by residual stresses in the piezoelectric element.
US11716575B2 Bone conduction speaker and compound vibration device thereof
The present disclosure relates to a bone conduction speaker and its compound vibration device. The compound vibration device comprises a vibration conductive plate and a vibration board, the vibration conductive plate is set to be the first torus, where at least two first rods inside it converge to its center; the vibration board is set as the second torus, where at least two second rods inside it converge to its center. The vibration conductive plate is fixed with the vibration board; the first torus is fixed on a magnetic system, and the second torus comprises a fixed voice coil, which is driven by the magnetic system. The bone conduction speaker in the present disclosure and its compound vibration device adopt the fixed vibration conductive plate and vibration board, making the technique simpler with a lower cost; because the two adjustable parts in the compound vibration device can adjust both low frequency and high frequency area, the frequency response obtained is flatter and the sound is broader.
US11716572B2 Method of production of an electrodynamic acoustic transducer with a high density coil
A method for manufacturing an electrodynamic acoustic transducer is disclosed. The electrodynamic acoustic transducer comprises a frame and/or a housing, a membrane, at least one coil and a magnet system, wherein the coil, in a cross sectional view with a coil axis being part of the sectional plane, comprises a plurality of conductive layers formed by an electrical conductor of the coil. The electrical conductor has a rectangular cross section in said cross sectional view, wherein a longer side of the rectangular cross section is substantially perpendicular to the loop axis. According to this method, a stack of conductive layers is made from the electrical conductor by stacking of separate pieces of the electrical conductor and electrically connecting the stacked separate pieces and/or by folding of the electrical conductor.
US11716569B2 Methods, systems, and media for identifying a plurality of sets of coordinates for a plurality of devices
Methods, systems, and media for identifying a plurality of sets of coordinates for a plurality of devices are provided. In some embodiments, the method comprises: identifying each device in a plurality of devices associated with a user account; instructing the plurality of devices to perform an audio sequence; receiving a plurality of transit times from the plurality of devices; determining a plurality of distances based on the plurality of transit times; determining a plurality of sets of coordinates based on the plurality of distances; associating to each of the plurality of devices a corresponding unique one of the plurality of sets of coordinates; and causing at least one of the plurality of devices to play spatial audio determined from the plurality of sets of coordinates.
US11716565B2 Sound emitting device using loudspeaker to dissipate heat and control method thereof
A sound emitting device includes a speaker box, a loudspeaker, a temperature sensor, a central processing unit and a signal amplifier. The speaker box includes a sound hole. The temperature sensor detects a temperature of the sound emitting device and generates a detection signal. The central processing unit pre-stores a default audio signal. When the central processing unit determines that the loudspeaker is in a standby state and the temperature of the sound emitting device exceeds a threshold value, the central processing unit issues the default audio signal. The signal amplifier is connected to and disposed between the central processing unit and the loudspeaker for amplifying the default audio signal and transmitting the amplified default audio signal to the loudspeaker. A vibration diaphragm of the loudspeaker undergoes a vibration action according to the amplified default audio signal.
US11716558B2 Apparatus and methods for integrated high-capacity data and wireless network services
Apparatus and methods for unified high-bandwidth, low-latency data services provided with enhanced user mobility. In one embodiment, a network architecture having service delivery over at least portions of extant infrastructure (e.g., a hybrid fiber coax infrastructure) is disclosed, which includes standards-compliant ultra-low latency and high data rate services (e.g., 5G NR services) via a common service provider. In one variant, an expanded frequency band (e.g., 1.6 GHz in total bandwidth) is used over the coaxial portions of the HFC infrastructure, which is allocated to two or more sub-bands. Wideband amplifier apparatus are used to support delivery of the sub-bands to extant HFC network nodes (e.g., hubs or distribution points) within the network. Premises devices are used to provide the 5G-based services to users at a given premises and thereabouts. In another variant, local area (e.g., “pole mounted”) radio devices are used to provide supplemental RF coverage, including during mobility scenarios.
US11716554B2 Solid-state imaging device and method for driving the same, and electronic apparatus
The present technology relates to a solid-state imaging device, method for driving the same, and electronic apparatus capable of avoiding an occurrence of a blackout in low-speed read-out.The solid-state imaging device includes a pixel array unit in which a plurality of pixels is two-dimensionally arranged in a matrix, and a control unit that exposes all pixels of the pixel array unit at a same exposure timing and performs thinned read-out 2(N−1) times in which all the pixels are thinned to 1/N, so as to read electric charge in all the pixels of the pixel array unit, the electric charge being generated at the same exposure timing. The present technology can be applied to, for example, a solid-state imaging device, or the like, incorporated in an imaging device.
US11716553B2 Imaging device and imaging system
An imaging device according to an embodiment of the present disclosure includes: a plurality of current sources including first group current sources and second group current sources; and a control unit that controls driving of the first group current sources to generate a first-phase ramp voltage and controls driving of the first group current sources and at least one current source of the second group current sources to generate a second-phase ramp voltage.
US11716550B2 Imaging apparatuses, systems, and moving imaging objects
An imaging arrangement comprising: a plurality of pixels arranged in a matrix; and a signal processing arrangement. A first and a second line of the matrix each comprise a light-receiving pixel and a reference pixel, the light-receiving pixels each receive incident light and output a light signal based on the incident light, and each reference pixel outputs a pixel signal for forming an address signal. The processing arrangement provides a first address signal and a second address signal, wherein: the first address signal indicates the position of the first line and comprises a signal value based on the pixel signal from the first line; and the second address signal indicates the position of the second line and comprises a signal value based on the pixel signal from the second line; and the signal value of the first address signal is different to the signal value of the second address signal.
US11716542B2 Adaptive filter system for self-driving vehicle
An adaptive filter system and a method for controlling the adaptive filter system are described herein. The system can includes one or more filters to attenuate incoming light. The one or more filters can be moved by one or more actuators. The method can capture image data from an imaging device through the one or more filters. Information can be determined from the captured image data. The one or more filters can be moved to a position for capturing image data based on the information.
US11716539B2 Image processing device and electronic device
An image processing device includes: an input unit, first image data being a portion of an image with first and second photographic subjects being imaged being inputted therein, the second subject to be displayed after the first, and the first subject again to be displayed by repeating control to shift a portion of the image displayed upon the display unit in a first direction and to display a portion not displayed; and an image generation unit generating, from the first image data, second image data including the first and second subjects, and the second subject is arranged towards the first direction from the first subject, if a first distance by which the image displayed shifts from the first subject being displayed until the second subject is displayed is longer than a second distance by which the image displayed shifts from the second subject until the first subject is displayed.
US11716537B2 Image processing device, image processing method, and program
An image processing device performs shake information adjustment processing for adjusting shake information at the time of imaging when input image data constituting a moving image is captured and generating adjusted shake information, shake modification processing for changing a state of shake of the input image data using the adjusted shake information to obtain shake-modified image data, and association processing for associating at least one of the input image data and the shake-modified image data, the shake information at the time of imaging, and shake modification information capable of specifying a processing amount of the shake modification processing with each other.
US11716534B2 Additive coil structure for voice coil motor actuator
Some embodiments include a camera voice coil motor (VCM) actuator that includes an additive coil structure for shifting a lens along one or multiple axes. The additive coil structure may include a base portion configured to couple with a lens carrier and at least partially surround a perimeter of the lens carrier. In various examples, the additive coil structure may include folded portions that individually include a respective coil that is located proximate a respective magnet. According to various embodiments, the additive coil structure may be formed using an additive process.
US11716531B2 Quality of multimedia
A computer-implemented method, a computer system and a computer program product improve the quality of multimedia. The method includes displaying a current frame of a video. The method also includes generating dataframes for the current frame and for a reference frame of the video. The method further includes comparing the dataframes for the reference and current frames. In addition, the method includes determining a quality metric of the current frame based on the comparison of the dataframes for the reference and current frames. Finally, the method includes altering an orientation of the display of the current frame in response to determining that the quality metric of the current frame is below a threshold.
US11716530B2 Display apparatus and image pickup apparatus
A display apparatus includes an image display element, an eyepiece portion, an object window, and a reflection optical element disposed at a position between the eyepiece portion and the object window, the reflection optical element being configured to guide a picture displayed on the image display element to the eyepiece portion. The reflection optical element changes a state to a first state and a second state by changing a transmittance. In the first state, the picture displayed on the image display element is viewed via the eyepiece portion. In the second state, an image in which an image from the object window and an image displayed on the image display element are superimposed is viewed via the eyepiece portion.
US11716527B2 Photographing apparatus, method and medium using image recognition
Processing for judging whether a face is included in a frame is performed, in a predetermined interval, on each of frames included in a moving image of a subject, displayed on a monitor, until the judgment becomes positive. If it is judged that a face is included in a frame, the facial position is detected in the frame, and stored. Then, judgment is made as to whether a face is included in the next frame after predetermined time. If the judgment is positive, the facial position is detected. The previously stored facial position is replaced by the newly detected facial position, and the newly detected facial position is stored. These processes are repeated until photographing operation is performed by operating a release unit.
US11716524B2 Image pickup apparatus
An image pickup apparatus includes an image sensor unit that includes a fixed unit and a movable unit movable relative to the fixed unit, and a duct unit configured to form an air channel. The movable unit includes an image sensor and a heat exchanger. At least part of the heat exchanger is inserted inside the duct unit through an opening of the duct unit.
US11716518B2 Systems and methods for controlling display of supplementary data for video content
A processor-implemented method is disclosed. The method includes: obtaining metadata associated with a video; identifying one or more tradeable objects associated with video content of the video based on performing textual comparison between text of the metadata and a defined list of tradeable objects; determining one or more segments of the video corresponding to the one or more identified tradeable objects, the one or more video segments having respective playback start timestamps; receiving, via a client device during playback of the video, a user selection of a first one of the video segments; in response to receiving the user selection: generating supplementary display data associated with a first tradeable object corresponding to the first video segment; and sending, to the client device, the supplementary display data.
US11716517B2 Arbitrated content consumption
Some aspects may include determining whether to allow a skip over a portion of required content based on the amount of time elapsed since a portion of required content was played. The amount of time elapsed since a portion of required content was played may be measured based on the sum time of content played, or may be based on the amount of wall time elapsed. The determination of whether to allow a skip over a portion of required content may be made based on comparing the amount of time elapsed since a portion of required content was played to a threshold amount of time. Some aspects may allow free navigation within content if the amount of time elapsed is less than the threshold, and may restrict navigation or require playback of required content if the amount of time elapsed is greater than the threshold.
US11716509B2 Methods and apparatus to determine synthetic respondent level data using constrained Markov chains
Methods, apparatus, systems, and articles of manufacture are disclosed to generate synthetic respondent level data. Example apparatus disclosed herein include means for generating a synthetic panel corresponding to a duration of time, the means for generating the synthetic panel to: generate a transition matrix corresponding to a first sub-duration of the duration of time and a second sub-duration of the duration of time; generate, based on the transition matrix, a plurality of synthetic panelists and associated viewing data; remove first ones of the synthetic panelists associated with one or more weights that do not satisfy a threshold to generate the synthetic panel corresponding to the duration of time, the synthetic panel representative of audiences of media presented by a plurality of media devices during the duration of time; and generate synthetic respondent level data based on the viewing data associated with remaining second ones of the synthetic panelists.
US11716505B2 Methods and apparatus for media data processing and transmitting and reference picture specifying
Disclosed are multiple methods and multiple apparatus e media data, and multiple methods and multiple apparatus for media data transmitting, media data processing, reference picture request processing and reference picture specifying. By means of the method to produce media data, the method for media data transmitting, and the method for media data processing, the synchronization and correct processing and transmission of bitstreams are ensured on the basis of dependency relation between video layer bitstream and library layer bitstream, and correct bitstream is highly efficiently provided to a decoder. By means of the method for reference picture request processing and reference picture specifying, a current picture is provided with a library picture set in which the library picture does not belong to the random access segment to which the current picture belongs and the previously most adjacent random access segment, and correct decoding of the current picture is ensured and repeated downloading of library pictures is avoided, thus ensuring the correct decoding and highly efficient transmission of a bitstream produced by library-based video coding method, and increasing transmission efficiency and storage efficiency.
US11716504B2 Broadcast reception device and video display method
A broadcast reception device receives a digital broadcast service capable of executing an application cooperating with a broadcast program, and is provided with: a broadcast reception unit which receives broadcast waves of the digital broadcast service; a separation unit which separates video information relating to the broadcast program and application-related information from the received broadcast waves; a broadcast video decoding unit which decodes the video information relating to the broadcast program; an application acquisition unit which acquires an application on the basis of location information included in the application-related information; an application execution unit which executes the acquired application and acquires additional data from a server device; a video conversion unit which converts broadcast program video decoded by the broadcast decoding unit into high-quality video having a higher quality than the video using the acquired additional data; and a display unit which is able to display the high-quality video.
US11716497B2 Control system for playing a data stream on a receiving device
A system includes a user interface for allowing a user to select a data stream to be played, a receiver for receiving the data stream to be played and a transmitter for transmitting the received data stream to a device that is capable of playing the stream. The system includes a first and a second device, which are separate from one another. The first device, called a receiving device, integrates the receiver and the transmitter. The second device, called a control device, integrates the user interface and, following the selection, by a user, of a stream to be played and preview on the control device, transmits to the first device a command for playing the selected stream, the command containing data for locating the selected stream. The user interface allowing selection of the stream from content stored on a storage device, the user interface being accessible from the storage device.
US11716495B2 Methods and apparatus to detect spillover
Methods and apparatus to detect spillover are disclosed. An example apparatus includes at least one memory, instructions in the apparatus, and processor circuitry to execute the instructions to: identify a quantity of first durations of loudness in an audio signal of media; calculate a ratio of the quantity of the first durations of loudness to a quantity of second durations of loudness in the audio signal of the media, the quantity of the second durations of loudness including the quantity of the first durations of loudness; and in response to a detection of the audio signal being spillover, store data denoting the media as un-usable to credit a media exposure when the ratio does not satisfy a loudness ratio threshold, the storing of the data to improve an accuracy of media exposure credits by not crediting spillover media.
US11716493B2 Transmission device, transmission method, reception device, reception method, display device, and display method
A transmission device including circuitry is provided. The circuitry is configured to apply photoelectric conversion characteristics to high dynamic range video data to obtain transmission video data. The circuitry is configured to transmit a container including a video stream obtained by encoding the transmission video data. The circuitry is configured to insert type information to designate the type of conversion characteristics corresponding to the applied photoelectric conversion characteristics for photoelectric conversion of the transmission video data into a layer of the video stream and/or a layer of the container. The type of the conversion characteristics designated by the type information is determined regardless of luminance of a display.
US11716489B2 Re-sampling filters for scalable video coding
A layered video coding method is provided that selects data to upsamples from a base layer (BL) to provide to an enhancement (EL) to improved coding efficiency. The method determines a filter to determine an up-sampled value for a first layer for a video, wherein the filter has a set of coefficient values assigned to the filter. The up-sampled value is determined by applying the set of coefficient values to the plurality of sample values. The method then outputs the up-sampled value for use in coding a second enhancement layer (EL) of a higher resolution than the first layer. The up-sampled values may be for the 6/16 and − 6/16 phase offsets.
US11716488B2 Subpicture signaling in high-level syntax for video coding
An example device includes a memory and one or more processors implemented in circuitry and communicatively coupled to the memory. The one or more processors are configured to determine a value of a first syntax element indicative of a number of subpictures in a picture of video data. The one or more processors are configured to determine, for each subpicture among the subpictures in the picture, a value of a respective second syntax element indicative of an identification of a respective subpicture. The one or more processors are also configured to code the respective subpicture identified by the respective second syntax element.
US11716487B2 Encoding apparatus and encoding method, decoding apparatus and decoding method
There is provided an encoding apparatus, an encoding method, a decoding apparatus, and a decoding method that make it possible to acquire two-dimensional image data of a viewpoint corresponding to a predetermined display image generation method and depth image data without depending upon the viewpoint upon image pickup. A conversion unit generates, from three-dimensional data of an image pickup object, two-dimensional image data of a plurality of viewpoints corresponding to a predetermined display image generation method and depth image data indicative of a position of each of pixels in a depthwise direction of the image pickup object. An encoding unit encodes the two-dimensional image data and the depth image data generated by the conversion unit. A transmission unit transmits the two-dimensional image data and the depth image data encoded by the encoding unit. The present disclosure can be applied, for example, to an encoding apparatus and so forth.
US11716486B2 Video decoding apparatus using parameter decoding circuit to derive weight coefficients
A video decoding apparatus is provided. The video decoding apparatus includes a parameter decoding circuit, a prediction parameter derivation circuit, a motion compensation circuit, and a weighted prediction circuit to derive weight coefficients.
US11716485B2 Method for encoding and decoding motion information, and apparatus for encoding and decoding motion information
A method of decoding motion information according to an embodiment includes: obtaining information indicating a disparity distance for determining a prediction motion vector of a current block; scaling the disparity distance corresponding to the obtained information, based on a comparison result between a base pixel unit and a smallest pixel unit indicatable by a motion vector of the current block; determining a prediction motion vector candidate changed by the scaled disparity distance from a base motion vector of the current block from among one or more prediction motion vector candidates as the prediction motion vector of the current block; and determining the motion vector of the current block by using the prediction motion vector.
US11716484B2 Image/video coding method and apparatus based on inter prediction
A video decoding method performed by a video decoding apparatus, according to the present document, comprises the steps of: parsing a flag for weighted prediction from a bitstream; parsing a prediction weighted table syntax from the bitstream on the basis of the flag; generating prediction samples by performing weighted prediction on a current block within a current picture on the basis of the prediction weighted table syntax; and generating reconstructed samples for the current block on the basis of the prediction samples, wherein the prediction weighted table syntax may be parsed from a picture header or slice header of the bitstream on the basis of a value of the flag.
US11716483B2 Image encoding/decoding method and device using weighted prediction, and method for transmitting bitstream
An image encoding/decoding method and apparatus are provided. An image decoding method performed by an image decoding apparatus may comprise parsing weight information specifying a weight for a reference sample from a bitstream according to a weight parameter syntax structure, and decoding a current block by performing inter prediction based on the weight information. The parsing according to the weight parameter syntax structure may comprise obtaining weight number information specifying the number of weight information obtained from the bitstream according to the weight parameter syntax structure and obtaining weight information from the weight parameter syntax structure based on the weight number information.
US11716480B2 Selectable transcode engine systems and methods
An electronic device includes a video encoding pipeline configured to encode source image data. The video encoding pipeline includes a first transcode engine and a second transcode engine. The electronic device also includes processing circuitry configured to determine a target throughput for a bin stream and determine whether to encode the bin stream using only the first transcode engine or both the first and second transcode engines based on the target throughput. The processing circuitry is also configured to cause only the first transcode engine to encode the bin stream or both the first and second transcode engines to encode the bin stream based on determining whether to encode the bin stream using only the first transcode engine or both the first and second transcode engines.
US11716478B2 Adjustments to encoding and decoding when switching color spaces
Innovations in encoding or decoding when switching color spaces are presented. For example, some of the innovations relate to signaling of control information for adaptive color space transformation (“ACT”). Other innovations relate to ACT operations. These innovations can improve coding efficiency when switching between color spaces during encoding and decoding.
US11716472B2 Method and system for constraining tile processing overhead in video coding
A method for encoding a picture of a video sequence in a bit stream that constrains tile processing overhead is provided. The method includes computing a maximum tile rate for the video sequence, computing a maximum number of tiles for the picture based on the maximum tile rate, and encoding the picture wherein a number of tiles used to encode the picture is enforced to be no more than the maximum number of tiles.
US11716467B2 Method and apparatus for processing video signal
A method for decoding a video according to the present invention may comprise: determining a first prediction mode for a first sub-block in a current block and a second intra prediction mode for a second sub-block, performing a first prediction for the first sub-block based on the first intra prediction mode, performing a second prediction for the second sub-block based on the second intra prediction mode, and obtaining a prediction sample of the current block according to a result of the first prediction and the second prediction.
US11716463B2 Filtering-based image coding device and method
According to embodiments described herein, sub-pictures and/or virtual boundaries can be used for coding an image. For example, sub-pictures in the current picture can be used for predicting, reconstructing, and/or filtering the current picture. Virtual boundaries can be used for filtering reconstructed samples of the current picture. Through image coding based on the subpictures and/or virtual boundaries according to embodiments described herein, the subjective/objective quality of an image can be improved, and the consumption of hardware resources necessary for the coding can be reduced.
US11716461B2 Image coding method and device for carrying out MRL-based intra prediction
An image decoding method includes: configuring a MPM list including candidate intra prediction modes for a current block; deriving an intra prediction mode of the current block from the MPM list on the basis of MPM index information indicating an intra prediction mode, among the candidate intra prediction modes included in the MPM list, for the current block; generating prediction samples for the current block on the basis of the intra prediction mode; and generating a reconstructed picture for the current block on the basis of the prediction samples, wherein the step for configuring the MPM list comprises, on the basis of the case where the value of reference line index information, representing a reference line used for the intra prediction of the current block, is not zero, deriving a DC mode as one mode among the candidate intra prediction modes, and including same in the MPM list.
US11716460B2 Image encoding and decoding method using bidirectional prediction, and image encoding and decoding apparatus
Disclosed is an image decoding method according to an embodiment, the image decoding method including: obtaining a first reference block and a second reference block, for bi-directional prediction of a current block; obtaining, from a bitstream, weight information for combining the first reference block with the second reference block; performing entropy decoding on the weight information to obtain a weight index; combining the first reference block with the second reference block according to a candidate value indicated by the weight index among candidate values included in a weight candidate group; and reconstructing the current block based on a result of the combining, wherein a first binary value corresponding to the weight index is entropy-decoded based on a context model, and the remaining binary value corresponding to the weight index is entropy-decoded by a bypass method.
US11716458B2 Automatic testing of home entertainment automation systems for controlling connected devices
Methods, systems, and apparatuses are described for testing communication with a device. A multimedia receiver may be communicatively coupled to a media device, such as a source media device. The multimedia receiver may transmit a test command to control the source media device using a communication protocol. A video frame output by the source media device may be obtained. Based at least on the video frame, it may be determined whether the source media device received the test command. In response to a determination that the source media device received the test command, an indication may be stored that the source media device may be controlled using the communication protocol.
US11716457B2 Display method of image
A display method of an image is disclosed. A position of a vergence surface of a user is obtained through a gaze tracking device. An image is provided by a display, the image is located at a virtual image surface, and the image has an offset between different view directions. A controller is coupled to the gaze tracking device and the display. The controller receives an information of the position of the vergence surface obtained through the gaze tracking device, performs an algorithm processing according to the information to obtain the offset, and transmits a display information including the offset to the display. An eye of the user focuses on an accommodation surface when viewing the image, and a position of the accommodation surface is different from a position of the virtual image surface.
US11716456B2 Autocalibrated near-eye display
A near-eye display device comprises right and left display projectors, expansion optics, and inertial measurement units (IMUs), in addition to a plurality of angle-sensitive pixel (ASP) elements and a computer. The right and left expansion optics are configured to receive respective display images from the right and left display projectors and to release expanded forms of the display images. The right IMU is fixedly coupled to the right display projector, and the left IMU is fixedly coupled to the left display projector. Each ASP element is responsive to an angle of light of one of the respective display images as received into the right or left expansion optic. The computer is configured to receive output from the right IMU, the left IMU and the plurality of ASP elements, and render display data for the right and left display projectors based in part on the output.
US11716451B2 Color correction method and color correction system
A color correction method and a color correction system that executes the color correction method are provided. A correction image is projected on a projection screen based on a predefined value. A single frame of the correction image includes multiple regions. The multiple regions include multiple hue regions with different hues and multiple lightness regions with different lightness corresponding to the hues, or the multiple regions include multiple gray-scales regions with different gray-scales. A captured image is obtained by capturing the projection screen. Optical information of the captured image is detected. The optical information is compared with the predefined value to obtain an uneven color region that does not conform to the predefined value. The uneven color region is adjusted so that the optical information of the uneven color region conforms to the predefined value. The time for color correction can be greatly reduced accordingly.
US11716449B1 Method and apparatus for an imaging device
An embodiment of an image recording apparatus includes an eyeglass frame, at least one first optical unit disposed on the eyeglass frame for capturing a main scene image, and at least one second optical unit disposed on the eyeglass frame for capturing an auxiliary scene image. The first and the second field of view of the user at least partially overlap. The image resolution of the main scene image is lower than the image resolution of the main scene image and the field of view of the main scene image is larger than the field of view of the auxiliary scene image. The image recording apparatus further includes at least one processor for receiving the main and the auxiliary scene images, and generating a modified resolution copy of the main scene image based on the auxiliary scene image.
US11716444B2 Human-like emulation enterprise system and method
An enterprise system and method for maintaining and transitioning humans to a human-like self-reliant entity is presented. Said system including at least one a biological, biomechatronic, and mechatronic entity with a biological or artificial neural network to at least one transform or maintain. Embodiments are provided to assist in the transition of human between a biological state to a bio-mechatronic and mechatronic entity. Said entity's biological, biomechatronic, and mechatronic subsystems are configured to communicate and interact with one another in order for said enterprise system to manage, configure, maintain, and sustain said entity throughout the entity's life-cycle. Subsystem embodiments and components supported by the enterprise system are presented.
US11716443B2 LC filtering with auto tuning
A radio-frequency amplifier for a cable network includes a forward amplifier configured to amplify a high frequency range of signals that are provided downstream to a cable receiver of the cable network and a return amplifier configured to amplify a low frequency range of signals that are provided upstream to a head end of the cable network. An out-of-band forward amplifier configured to amplify a digitally protected video signal having a frequency in a range between 70 MHz and 130 MHz that are provided downstream to the cable receiver of the cable network and a notch filter configured to reject the amplified digitally protected video signal having the frequency in the range between 70 MHz and 130 MHz from being amplified by the return amplifier.
US11716441B2 Electronic apparatus allowing display control when displaying de-squeezed image, and control method of electronic apparatus
An apparatus includes a control unit configured to display a first item with a first image, which is an image that is captured by a capturing unit and is not de-squeezed, wherein the first item being an item indicating a region of the first image corresponding to a region having a predetermined aspect ratio of a second image that is an image obtained by de-squeezing the first image, wherein the region indicated by the first item does not have the predetermined aspect ratio.
US11716440B2 Portable hub with digital video recorder
A portable media content device for providing media content to remote devices external to a home network, the portable media content device may include a processor in communication with a memory configured to maintain media content, and a transceiver. The processor may be configured to recognize a home network provided at a first location, instruct the transceiver to transmit a media request to an in-home media recorder connected to the home network and at the first location, receive, in response to the media request, media content from the media recorder and to store the media content in the memory.
US11716435B2 System and method for selectively sending, delivery and receiving of faxes
Embodiment of systems and methods for the sending, delivery or receiving of faxes are disclosed herein. In particular, certain embodiments include a fax connector that may be deployed at users' sites, and a fax registration system that may be deployed remotely from these users' site. The fax connector can be accessed at a user's site over a computer based network in order to perform functions associated with faxing, including sending, receiving and obtaining status on faxes. The fax connector deployed at a sending user's site communicates with the fax registration system to obtain destination data associated with a recipient user's fax connector and transmits the fax to the destination fax connector over the computer based network based on the destination data obtained from the registration system. The fax can then be presented to the recipient at the recipient user's site.
US11716433B2 Image processing apparatus, image processing method, storage medium, and image forming apparatus
Disclosed is an image processing apparatus including: a derivation unit configured to derive a target luminance characteristic based on a viewing condition of an image and a print luminance characteristic predicted based a reflection characteristic corresponding to data thereon; a unit configured to generate print image data on an image by converting input image data by using a tone conversion characteristic that is set based on these characteristics, in which the derivation unit derives, in a case where a reproduction range of an illumination intensity in the print luminance characteristic is different, the target luminance characteristic so that a liner area of an output luminance in a case where the reproduction range is relatively large becomes large.
US11716432B2 Image reading apparatus
An image reading apparatus includes a separating roller that is capable of switching between a separation state in which an original document is separated and a non-separation state in which the original document is not separated, and determines whether or not the original document is fed in the separation state or the non-separation state based on the types of the original document set through a user interface for instructing a select of the types of the original document to be read and a start of reading the original document.
US11716431B2 Image reading device
When a device main body acquires detection information corresponding to a second original document from a rigidity detecting unit in a state where the device main body is in a first posture, a control unit of an image reading device performs a first step of stopping transporting an original document and a second step of controlling a driving source to switch the posture of the device main body from a first posture to a second posture in which a sloped angle of the device main body is smaller than that in the first posture.
US11716430B2 Image abnormality detecting device and image forming apparatus incorporating the image abnormality detecting device
An image abnormality detecting device includes an image reader, an abnormality detector, a pattern holder, and circuitry. The image reader is configured to read an image on a recording medium. The abnormality detector is configured to detect abnormality of the image based on read information of the image on the recording medium, read by the image reader. The pattern holder has a check pattern and is disposed within a reading area of the image reader. The circuitry is configured to inspect a detecting operation of the abnormality detector based on read information of the check pattern read by the image reader.
US11716428B1 Method of dynamically mapping scanner names from client to agent
A scanner redirection method for a remote desktop system that includes a client computing device and a host server includes the steps of: receiving a name of a physical scanner from a scanner core; transmitting the received name of the physical scanner to the host server; and in response to a first user selection to acquire a scanned image and a second user selection of the name of the physical scanner, the first and second user selections being made on a user interface of the host server, receiving from an application running on the host server a request for the scanned image, transmitting to the scanner core a request to acquire the scanned image from the physical scanner, and upon receiving the scanned image from the scanner core, transmitting the scanned image to the application.
US11716427B2 Microarrayer for dispensing reagent on a substrate and a method for obtaining images of the substrate during the operation of said microarrayer
A microarrayer for dispensing reagent onto a substrate, comprising a dispensing print head adapted to load reagent and provided with a plurality of nozzles to dispense said at least reagent on the substrate, wherein the print head is mounted in the microarrayer to allow the print head to move with respect to the substrate in subsequent, essentially, parallel print passes, wherein the print head moves during a first print pass between a first end of the substrate toward a second end of the substrate and during a subsequent printpass in the opposite direction, the microarrayer being characterised in that the microarrayer comprises a first camera adapted to move behind the print head during a print pass and a second camera adapted to move ahead of the print head during said print pass, the first and second camera being adapted to obtain images of the substrate.
US11716420B2 Methods for simultaneous interaction on a web page by a customer and customer service representative
A computer-implemented method and system for enhancing interaction between a customer using a client computer and a customer service representative of a company using a workstation. A Web session is commenced on a Web site for the client computer of the customer, wherein the Web session includes displaying a first Web page to the customer. A telephonic interaction is commenced between the customer and the customer service representative and a split screen is displayed on the workstation. The split screen including the first Web page and a second Web page, wherein the second Web page is only viewable by the customer service representative. An application is caused to be moved from the second Web page to the first Web page for review and interaction by the customer via the client computer.
US11716418B2 Systems and methods for facilitating communication between a user and a service provider
Systems and methods are disclosed for generating a dynamic customized script to facilitate communication between a user and a service provider. The method includes receiving, via an interactive voice response (IVR) system, a request from a mobile device associated with at least one user. The contextual information associated with at least one user is processed, in real-time, based, at least in part, on the request. A dynamic customized script specific to the request is generated, in real-time, based, at least in part, on the processing of the contextual information. The request is routed, via the IVR system, to an agent from a pool of agents of the service provider. A presentation of the dynamic customized script is generated in a user interface of a device associated with the agent, wherein the dynamic customized script is step-by-step guidance to the agent for handling the request of at least one user.
US11716417B2 System and method for identifying unwanted communications using communication fingerprinting
A method for identifying communicators as wanted or unwanted based on messages from such communicators comprising receiving, by the data processing system, an inbound message from a communicator, comparing, by the data processing system, the inbound message to fingerprints stored in a database accessible to the data processing system, determining, by the data processing system, at least one match to the fingerprints, determining, by the data processing system, an identity of the communicator by determining whether and how likely the communicator is wanted or unwanted based on the at least one match to the fingerprints, and configuring, by the data processing system, handling of calls from the communicator based on the identity.
US11716414B2 Context aware airplane mode
An example method includes, responsive to receiving user input to activate an airplane mode of a mobile computing device: disabling a first wireless protocol; determining, based on activity of a media session, whether to maintain an enabled state of a second wireless protocol of the mobile computing device, wherein the mobile computing device is configured to stream audio data associated with the media session to an audio sink device via a second wireless protocol; and selectively maintaining the enabled state of the second wireless protocol based on the determination.
US11716412B2 Head-mounted display apparatus for retaining a portable electronic device with display
Head-mounted display systems and methods of operation that allow users to couple and decouple a portable electronic device such as a handheld portable electronic device with a separate head-mounted device (e.g., temporarily integrates the separate devices into a single unit) are disclosed. The portable electronic may be physically coupled to the head-mounted device such that the portable electronic device can be worn on the user's head. The portable electronic device may be operatively coupled to the head-mounted device such that the portable electronic device and head mounted device can communicate and operate with one another. Each device may be allowed to extend its features and/or services to the other device for the purpose of enhancing, increasing and/or eliminating redundant functions between the head-mounted device and the portable electronic device.
US11716409B2 Packet transmission method and apparatus
In a packet transmission method and an apparatus for implementing the method, packets in different groups have different source port information, and a header carried in each packet carries a write address of the packet in a memory in a destination server. In this way, the to-be-sent packets are forwarded on different paths.
US11716405B1 System and method for identifying cache miss in backend application
A method for improving loading time of network results associated with cache misses at a server. The method can include requesting content associated with a webserver; receiving responses from the server; identifying a particular response that includes a cache miss indicator in a header portion of a network message; determining whether the content of the particular response is dynamically generated content or static content; and/or causing display of the cache miss indicator based on a determination that the content is dynamically generated content.
US11716402B2 Reducing redirects
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for reducing redirects. In one aspect, a method includes receiving request data indicating that a user device has requested a content item. The request data specifies other data processing apparatus to which user interactions with the content item are to be reported. The content item includes a reference to a resource that is requested in response to user interaction with the content item. Response data is provided. The response data includes data that cause presentation of the content item. Interaction data is received specifying user interaction with the content item occurred. Redirect data is provided that cause the user device to be redirected to the resource. Reporting data is provided to the other data processing apparatus, specifying user interaction with the content item occurred. The reporting data is provided asynchronously relative to the redirect data.
US11716401B2 Systems and methods for content audience analysis via encoded links
The present disclosure is directed to systems and methods for analyzing content audience by generating respective encoded links for content publishers, determining, for each content publisher, statistics related to user interactions with encoded links, and providing user-specific or aggregate information based on the statistics. The server of a content audience analysis system receives multiple interactions with encoded links generated by the content audience analysis system and linked to resources of a first content publisher. The server may identify from the multiple interactions, multiple cookies assigned to unique client devices. The server may identify second content publishers having resources that were accessed by the client devices corresponding to the multiple cookies via encoded links generated by the server. The server may provide to the first content publisher, data corresponding to the second content publishers having resources accessed by client devices that also accessed the resources of the first content publisher.
US11716399B2 NWDAF network element selection method and apparatus, electronic device, and readable storage medium
Aspects of the disclosure provide methods and apparatuses for network data analytics. In some examples, an apparatus includes processing circuitry. The processing circuitry transmits a network data analytics function (NWDAF) service discovery request to a network repository function (NRF) network element. The NWDAF service discovery request indicates a requested network data analysis service. The processing circuitry receives an NWDAF service discovery response in response to the NWDAF service discovery request. The NWDAF service discovery response includes performance parameter information of one or more NWDAF network elements for the requested network data analysis service. Further, the processing circuitry selects, according to the performance parameter information of the one or more NWDAF network elements for the requested network data analysis service, a target NWDAF network element used for providing the requested network data analysis service, and transmits an NWDAF service request to the target NWDAF network element.
US11716397B1 Apparatuses, computer-implemented methods, and computer program products for improved multiuser channel management
Embodiments of the present disclosure provide for improvements in managing connection channels for multiple associated users. As connection channel changes occur for one or more users, various connection channels are updated such that appropriate functionality is accessible as determined based on aspects of the connection channel change. Example embodiments provide for establishing, with an electronic data management system, a connection channel associated with processing a shared electronic data object, where the connection channel is established associated with a first user data object; and causing rendering of a user interface that provides access to first functionality via the electronic data management system, and receiving an indication of a connection channel change, and causing updated rendering, based on the connection channel change and in response to receiving the indication of the connection channel change, of the user interface to provide access to updated functionality via the electronic data management system.
US11716396B1 System and method for providing unique identifiers for use with enterprise application environments
In accordance with an embodiment, described herein is a system and method for providing unique identifiers for use with enterprise software application environments. A unique ID server (service) operates to provide calling applications with unique identifiers, for use by the applications in storing, accessing, or using data stored at a database or data warehouse. A database sequence provided by the database can be leveraged for issuing unique ID sequences for use by the applications. A calling application can reserve and/or request, via the unique ID service, sequences of unique IDs, ahead of time, either as a single sequence or bulk sequence. The unique ID can be subsequently used within the enterprise application environment for various purposes.
US11716395B2 Minimizing connection delay for a data session
One example process may include identifying a paused active communication session between a client device and a server, releasing communication session resources dedicated to the communication session to a session resource pool, and re-establishing the active data session responsive to receiving a message from the client device including one or more session re-establishment parameters.
US11716390B2 Systems and methods for remote management of appliances
The present disclosure describes systems and methods for remote management of appliances. The appliance may be configured to periodically check in a predetermined online location for the presence of a trigger file identifying one or more appliances directed to contact a management server for maintenance. If the file is present at the predetermined location and the file includes the identifier of the appliance, the appliance may initiate a connection to the management server. If the file is not found, then the appliance may reset a call timer and attempt to retrieve the file at a later time. To avoid having to configure addresses on the appliance, link local IPv6 addresses may be configured for use over a virtual private network, allowing administration, regardless of the network configuration or local IP address of the appliance.
US11716389B1 Visualization of wireless signal propagation in a networked lighting control system
A networked lighting control system having the capability to identify problems within its own wireless network. The system includes a plurality of luminaire nodes. Each luminaire receives, via a wireless mesh network, a series of messages containing an output control indication. The indication represents a “delta” value, which the luminaire uses, for each received message, to generate a control signal to increase the light output of its lamp by a known amount. The luminaire transmits a series of messages containing the output control indication, wherein each transmitted message corresponds to each message that had been received by the luminaire. After a series of such “delta” messages have been originated and broadcast over the mesh network, the luminaires that failed to receive some of the messages will appear dimmer than the luminaires that received all, or more of, the messages, providing a visualization of signal propagation problems.
US11716387B2 Bluetooth-based IPv6 low power networking
A wireless device (S) includes a radio (R) for communicating via a wireless communication protocol which employs messages constructed as layer 2 MAC frames each including a layer 2 MAC header and a payload. The wireless device is configured to operate in (i) a first mode in which the wireless device transmits messages (N0, . . . , Nn) via the radio each including an IPv6 packet header and an upper layer protocol data unit encapsulated within the payload of a layer 2 MAC frame, and (ii) a second mode in which the wireless device transmits messages (M0, . . . , Mn) via the radio each including an upper layer protocol data unit encapsulated within the payload of a layer 2 MAC frame without including the IPv6 header. A relay device (T) comprises a radio for communicating via the wireless communication protocol which employs messages constructed as layer 2 MAC frames each including a layer 2 MAC header and a payload. In one power-saving aspect, the relay device is configured to perform a header insertion service (I) in which the relay device receives messages (M0, . . . , Mn) via its radio from the wireless device (S), each including an upper layer protocol data unit encapsulated within the payload of a layer 2 MAC frame without including the IPv6 header. The header insertion service inserts header information (A′) into the messages (M0, Mn) received from the wireless device (S) and retransmits the messages with complete headers as messages (M0′, . . . , Mn′). In another power-saving aspect, the relay device additionally or alternatively applies an acknowledgement detection criterion to filter out acknowledgements received from the server, and forwards the filtered out acknowledgements to the wireless device (S) via the radio at a reduced rate.
US11716385B2 Utilizing cloud-based storage systems to support synchronous replication of a dataset
Synchronously replicating a dataset across cloud-based storage systems, including adding a cloud-based storage system to a set of storage systems that the dataset is synchronously replicated across, where access operations are applied to the dataset equivalently through all storage systems in the set, all storage systems in the set store a separate copy of the dataset, and operations to modify the dataset performed and completed through any of the storage systems in the set are reflected in access operations to read the dataset, the cloud-based storage system including one or more cloud computing instances executing a storage controller application, a virtual drive layer that includes one or more cloud computing instances with local storage for storing at least a portion of the dataset as block data, and an object storage layer for storing at least a portion of the dataset as object data.
US11716382B2 System and method for replication of storage presentation in application orchestration
An embodiment method creates, at a first data center, a first storage volume for an application that is started at the first data center, communicates with a second data center for creating a second storage volume for the application at the second data center to replicate the first storage volume, and sends information identifying the application to the second data center. The second data center creates the second storage volume, and establishes a mapping between the application and the second storage volume using the information identifying the application, where the second data center identifies the second storage volume for the application using the mapping when the application is migrated from the first data center to the second data center.
US11716380B2 Secure self-contained mechanism for managing interactions between distributed computing components
Methods, computer readable media, and devices for securely managing interactions between distributed components are provided. One method may include generating a first interaction identifier based on a first component identifier and data to be shared with a second component, storing the first interaction identifier in an interaction data store of the first component, sending a request to the second component including the first component identifier, the first interaction identifier, and the data to be shared with the second component, creating a graph node in an interaction relationship data store based on the first interaction identifier, receiving a response from the second component including a second component identifier, a second interaction identifier, and response data, and adding a relationship edge in the interaction relationship data store connecting the graph node based on the first interaction identifier with a graph node based on the second interaction identifier.
US11716377B2 Fast provisioning of machines using network cloning
Some embodiments of the invention provide a method for cloning a set of one or more applications implemented by a first set of machines connected through a first logical network that defines a virtual private cloud in a set of one or more datacenters. The method instantiates a cloned, second set of machines that is a replicated copy of the first set of machines. The method identifies a set of network configuration data that configures a set of logical forwarding elements (LFEs) of the first logical network. The method uses the identified set of network configuration data to define a cloned, second logical network to connect the cloned, second set of machines.
US11716370B2 Method and apparatus for encapsulation of Motion Picture Experts Group Media Transport assets in International Organization for Standardization Base Media Files
An apparatus includes receive path circuitry configured to receive a Motion Picture Experts Group (MPEG) Media Transport (MMT) container and a processing device configured to identify locations of one or more media fragment units (MFUs) in the MMT container using a hint track within the MMT container. Another apparatus includes transmit path circuitry configured to transmit an MMT container and a processing device configured to identify locations of one or more MFUs in the MMT container using a hint track within the MMT container.
US11716369B2 System and method of web streaming media content
A system and method are provided for dynamic web streaming of media content without restore and batch processing. The system and method provides for a partial restore of media content, where a small sub-section of the archived media is requested by a user, for inclusion in an edit. The exemplary system and method provides a web server that offers grains for any part of an archived monolithic file to be made available just-in-time, instead of the batch processing. Because grains are available over HTTP, any part of the customer's archive is available to them instantly and dynamically with no restore process being required at all.
US11716365B2 Method computer program and driver unit for streaming gaze data packets
Data packets containing gaze data are streamed from an eyetracker to a client via a driver unit by receiving, repeatedly, gaze data packets in a first interface; and, providing, repeatedly, via a second interface, gaze data packets. The client sends a request message to the driver unit. The request message defines a delivery point in time in a first time frame structure at which delivery point in time in each frame of the first time frame structure the gaze data packet shall be provided to the client via the second interface. An offset is calculated between a reception point in time and the delivery point in time. The reception point in time indicates when a gaze data packet is received from the eyetracker relative to the first time structure. An adjusted data acquisition instance is assigned based on the offset. The adjusted data acquisition instance represents a modified point in time in a second time frame structure when at least one future gaze data packet shall be produced by the eyetracker. The driver unit sends a control message to the eyetracker. The control message is adapted to cause the eyetracker to produce the at least one future gaze data packet at such an adjusted acquisition instance in the second time structure that the reception point in time for the at least one future gaze data packet is expected to lie within a margin prior to the delivery point in time.
US11716363B2 Messaging resource function
A method of exchanging content between a User Equipment, UE, and an Application Server, AS, of an IP Multimedia Subsystem, IMS, or between the UE and a peer UE. The method comprises establishing a Session Initiation Protocol, SIP, session between said messaging resource function and the AS; establishing a Message Session Relay Protocol, MSRP, session between the UE and a messaging resource function of the IMS; and exchanging content between the first mentioned UE and the messaging resource function in messages sent over the established MSRP session.
US11716361B2 Network call method, server, call terminal, network call system, and storage medium
A network call method, a server, a call terminal, a network call system, and a storage medium are provided. The network call method includes: receiving a reservation request transmitted by a call reservation terminal, the reservation request including a first communication identifier of a first call terminal; generating a chat room identifier of a chat room in a social network application; generating a call reservation notification, the call reservation notification including an access link generated according to the chat room identifier; and transmitting the call reservation notification to a communication client of the first call terminal according to the first communication identifier of the first call terminal.
US11716360B2 Initiation of real-time media processing in response to a trigger event
Calls between a customer and an agent often require additional processing of the media in real time. Processing every call in such a manner is often unnecessary and the results deleted or ignored, or prohibited due to a policy for certain calls. Knowing if a call should be processed may be determined too late for the media to be forked. While the customer and agent may engage in the call as a peer-to-peer connection, additional processing requires holding the initial invite long enough, such as with a preservation message, that a session boarder controller may fork the call for subsequent processing without timing out.
US11716357B2 Data access policies
To verify compliance with a data access policy, a query result including data specified by a requesting entity and a representation of a data access policy is received from a database. Based on the representation of the data access policy included in the query result, it is verified whether the requesting entity is permitted to access the data included in the query result. Transmission of the data included in the query result to the requesting entity is controlled responsive to the verification. Related methods, systems, and computer program products are also discussed.
US11716356B2 Application gateway architecture with multi-level security policy and rule promulgations
Embodiments of an application gateway architecture may include an application gateway server computer communicatively connected to backend systems and client devices operating on different platforms. The application gateway server computer may include application programming interfaces and services configured for communicating with the backend systems and managed containers operating on the client devices. The application gateway server computer may provide applications that can be centrally managed and may extend the capabilities of the client devices, including the ability to authenticate across backend systems. A managed container may include a managed cache and may provide a secure shell for applications received from the application gateway server computer. The managed container may store the applications in the managed cache and control access to the managed cache according to rules propagated from at least one of the backend systems via the application gateway server computer.
US11716354B2 Determination of compliance with security technical implementation guide standards
A technology is described for determining compliance with security technical implementation guide (STIG) standards. An example of the technology can include identifying a STIG standard that may be applicable to a system component included in a computer system. The STIG standard can be obtained from a security technical implementation guide which specifies security standards for securing computer systems against unauthorized access. A configuration compliance package can be generated to evaluate a configuration setting of the system component for compliance to the STIG standard, and the configuration compliance package can be output to enable a determination of compliance of the configuration setting with the STIG standard.
US11716351B2 Intrusion detection with honeypot keys
A honeypot file is cryptographically secured with a cryptographic key. The key, or related key material, is then placed on a central keystore and the file is placed on a data store within the enterprise network. Unauthorized access to the honeypot file can then be detecting by monitoring use of the associated key material, which usefully facilitates detection of file access at any time when, and from any location where, cryptographic access to the file is initiated.
US11716348B2 Malicious script detection
Systems and methods for detecting malicious or potenitally malicious script data are provided. Script data is extracted from a data stream at the network level and emulated in a controlled environment. Based upon a comparison of features extracted from emulation of the script to a set of heuristics, malicious script data can be identified for further analysis or processing.
US11716346B1 Prioritization and remediation of computer security attacks
Techniques for categorizing and prioritizing security issues is disclosed. A security management system is implemented to receive security events describing potential security issues from clients. The security events contain attributes describing the security issue, affected resources, and a risk score defining a level of security risk associated with the event. The security events may be aggregated into a set of recommendation categories based on the type of security issue to be remedied. Aggregated risk scores may be computed for each of the recommendation categories. The security management system causes displaying of a graphical user interface to display information representing the set of recommendation categories. User input may be received selecting a particular recommendation category. In response to selecting the particular recommendation category, recommendation instruction options are displayed for remedying the events within the particular recommendation category.
US11716341B2 Methods, systems, and devices for dynamically modeling and grouping endpoints for edge networking
Various embodiments described herein disclose an endpoint modeling and grouping management system that can collect data from endpoint computer devices in a network. In some embodiments, agents installed on the endpoints can collect real-time information at the kernel level providing the system with deep visibility. In some embodiments, the endpoint modeling and grouping management system can identify similarities in behavior in response to assessing the data collected by the agents. In some embodiments, the endpoint modeling and grouping management system can dynamically model groups such as logical groups, and cluster endpoints based on the similarities and/or differences in behavior of the endpoints. In some embodiments, the endpoint modeling and grouping management system transmits the behavioral models to the agents to allow the agents to identify anomalies and/or security threats autonomously.
US11716340B2 Threat detection using cloud resource management logs
Generally discussed herein are devices, systems, and methods for improving cloud resource security. A method can include obtaining a cloud resource management log that details actions performed by users of cloud resources in a cloud portal, the actions including entries comprising at least two of a user identification (ID) of a user of the users, an operation of operations performed on the cloud resource, a uniform resource identifier (URI) of a cloud resource of the cloud resources that is a target of the operation, or a time the operation was performed. The method can include determining a respective score for each action in the cloud resource management log, comparing the respective score to a specified criterion, and providing an indication of anomalous action in response to determining the respective score satisfies the specified criterion.
US11716336B2 Data comprising encryption key
Systems and methods for end to end encryption are provided. In example embodiments, a computer accesses an image including a geometric shape. The computer determines that the accessed image includes a candidate shape inside the geometric shape. The computer determines, using the candidate shape, an orientation of the geometric shape. The computer determines a public key of a communication partner device by decoding, based on the determined orientation, data encoded within the geometric shape. The computer receives a message. The computer verifies, based on the public key of the communication partner device, whether the message is from the communication partner device. The computer provides an output including the message and an indication of the communication partner device if the message is verified to be from the communication partner device. The computer provides an output indicating an error if the message is not verified to be from the communication partner device.
US11716335B2 Detection and restriction of unwanted messages through time interval cluster analysis
Detecting and restricting floods of unwanted messages is implemented by cluster analysis over time intervals. Application of streaming machine learning clustering algorithms enables finding clusters of messages (P2P text messages, WHATSAPP, tweets) sharing the same content. Such clusters may be analyzed for finding out offensive messages, unwanted or spam messages, and rumors and take corrective actions as needed. The solution enables visualization of data and/or messages and identification of clusters as the solution works on the data and aggregates data into clusters over time intervals. Corrective actions may be applied on selected clusters based on visualized data clusters or by automated application of defined rules.
US11716333B2 System and method for single use, fixed process privilege elevation
A system and method for assigning a single use real-time privilege are disclosed. A processor validates credentials of a user based on comparing credentials data of the user with pre-stored reference data in response to receiving a request to access a target computer to execute a single process; creates a single use blockchain private key for the single process and generates the passcode in response to a successful validation of the credentials. The processor also writes request data corresponding to the private key and the passcode onto a blockchain. In response to receiving user login data and the passcode to access the target computer, the processor validates passcode by confirming that the passcode matches the request data wrote in the blockchain; and assigns a single use real-time privilege to the user for executing the single process in response to successful validation of both the passcode and the received request.
US11716327B1 Toggling biometric authentication
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for receiving user input indicating a first user selection of a first form of biometric authentication from a plurality of forms of biometric authentication, providing a first interface for display on a user device, the first interface corresponding to the first form, receiving first biometric data, the first biometric data being provided using the first interface, and selectively enabling communication between the user device and a back-end system based on the first biometric data.
US11716322B1 Method and apparatus for generating and providing a temporary password to control access to a record created in response to an electronic message
A method, computing device and computer program product generate a temporary password to control access to a record created in response to an electronic message. An electronic message is parsed to separately identify a plurality of fields that provide different types of information. Record(s) are accessed from a database that are associated with the information provided by at least one field. An action to be initiated by the electronic message is determined to either be taken or to be rejected based upon information provided by the field(s) of the electronic message and also based upon information from the record(s) accessed from the database. If the action is rejected, a record of the electronic message is created for transmission along with information regarding the rejection. A temporary password is also generated to control access to the record created regarding the electronic message and its rejection. The response includes the temporary password.
US11716321B2 Communication network employing a method and system for establishing trusted communication using a security device
A communication network employing a method and system for secure access from a security device at a local network location to a remote network location are disclosed. At the security device having a unique identifier (UID), processor, and memory, a security software is obtained from a remote network location, the security software obtaining a personal identification number (PIN) of a user, and the UID of the security device. The PIN, the UID and the private security software are forwarded to the remote network location for generating a credential code, including encrypting the credential code. At the security device, the credential code is obtained from the remote network location, and authenticity of the PIN and the UID is verified, without communicating over a network, including decrypting the credential code. Upon verifying the authenticity of the PIN and the UID, access credentials to the remote network location are retrieved.
US11716319B2 Software deployment certification
The present disclosure pertains to validation of runtime objects for a software deployment using a certificate. After creating the runtime objects during a build process, a certificate may be generated based on the runtime objects. The certificate may include a fingerprint of the runtime objects that may be used before deployment to determine whether the runtime objects have been changed. Before deployment, the runtime objects and the certificate may be obtained and the certificate may be validated. In addition, the runtime objects may be validated using the fingerprint included in the certificate. For instance, the fingerprint may be re-generating based on the runtime objects for deployment. The runtime objects may be validated by comparing the re-generated fingerprint to the fingerprint in the certificate. The runtime objects may be deployed if the certificate and the runtime objects are valid.
US11716318B2 Dynamic certificate generation on a certificate authority cloud
Techniques are disclosed for dynamically generating a digital certificate for a customer server. A customer server creates a certificate profile and receives an associated profile identifier from a certificate authority (CA). The customer server installs an agent application received from the CA. The agent application generates a public/private key pair and an identifier associated with the customer server. The agent application sends a signed request to the CA that includes the profile identifier, server identifier, and the public key corresponding to the key pair. Upon receiving the credentials, the CA generates a dynamically updatable certificate. Thereafter, if the customer changes information associated with the certificate (or if external conditions require a change to the certificate, such as a key compromise or change in security standards), the CA may generate an updated certificate based on the certificate profile changes and the public key.
US11716317B2 Method to prevent cloning of electronic components using public key infrastructure secure hardware device
An electronic component includes a processor and a memory. The electronic component has a secure platform capable of storing at least one dual key pair and a corresponding digital signature. There is also a system including a host machine and an electronic component capable of being operated by the host machine. The electronic component has a processor, a memory, and a secure platform capable of storing at least one dual key pair and a corresponding digital signature. Another aspect describes a method, which includes reading a public key from an electronic component by a host machine, verifying the public key against a stored key in the host machine, digitally signing data using a private key from the electronic component, verifying the signed data against the stored key, and using the electronic component by the host machine only if the signed data and the public key are verified.
US11716315B2 Disposable browsers and authentication techniques for a secure online user environment
Disclosed herein are systems and methods that allow for secure access to websites and web-based applications and other resources available through the browser. Also described are systems and methods for secure use and retention of user credentials, as well as methods for dynamic authentication of users and integrity checking of service providers in online environments. Thus, described in the present specification are systems and methods for constructing and destroying private, secure, browsing environments (a secure disposable browser), insulating the user from the threats associated with being online for the purposes of providing secure, policy-based interaction with online services.
US11716312B1 Platform for optimizing secure communications
The present invention is a system and method for machine-to-machine communication in a Zero Trust environment, through the use of repeated, dynamic, and automated transformation and manipulation of strings of printable or typeable characters that are commonly used for passwords, PINs, keys, tokens, keys, encryption, and filenames forming a class of printable strings. The system and method described makes use of secured password “Hopping” to maximize data security and user's ease of implementation. “Hopping” refers to a method of automated random-password construction and serial substitution. The instant invention uses a protocol to create an immutable interdependence between a machine identity credential and a key credential as each is rotated from session to session.
US11716311B2 Inferring firewall rules from network traffic
Aspects of the disclosed technology comprise generating firewall rules based on traffic, outputting the generated firewall rules to an output file, and using the output file to set firewall rules in a network. The firewall rules may be generated without a priori knowledge of the network; alternatively no firewall rules are required. Generated rules may be tuned for user preferences to adjust for the number of generated firewall rules, and their over or under inclusiveness to non-historic traffic data.
US11716307B1 Domain name system configuration during virtual private network connection
Domain name system (DNS) configuration during virtual private network (VPN) connection includes, by a VPN entry server, receiving from a client device, via a VPN tunnel between the entry server and the client device, a first request for first content that identifies a first external source for the first content, receiving, from an operative DNS server configured for the tunnel, an Internet Protocol (IP) address of a first VPN system exit server, in response to determining that the first content is unavailable via the first system exit server, identifying a second DNS server, such that a second VPN system exit server for obtaining the first content is available using the second DNS server, obtaining, from the second system exit server, the first content, wherein the second system exit server obtained the first content from the first external source, and transmitting, to the client device, via the tunnel, the first content.
US11716304B2 Combined read and reaction message
Systems and methods are provided for sending a combined read and reaction message. The systems and methods perform operations comprising: receiving, from a server, a set of messages and one or more reactions exchanged between a plurality of users; determining that a given message has been presented on the client device to a first user of the plurality of users; determining that a given reaction of the one or more reactions has been presented on the client device to the first user; and transmitting, to the server by the one or more processors of the client device, a communication indicating that both the given message and the given reaction have been presented by the client device to the first user.
US11716303B1 Selecting an optimal combination of portions of a content item to be presented within a user interface of an online messaging application in association with information identifying a set of message threads
A different combination of multiple portions of a content item is selected for display to each of multiple sets of users of an online messaging application. The different combination of portions of the content item is sent for display to the corresponding set of users within a user interface of the online messaging application in association with information identifying a set of message threads in which each user is participating. A request to view the entire content of the content item is then received from a subset of each of the sets of users and a performance metric associated with each combination of portions of the content item is tracked based on the received request. Based on the performance metric, a performance of each portion of the content item is evaluated and used to select an optimal combination of the portions of the content item.
US11716301B2 Generating interactive messages with asynchronous media content
Systems and methods are provided for sending serialized data for an interactive message comprising a first session data item to a second computing device to render the interactive message using the first session data item and display the rendered interactive message comprising a first media content item associated with a first interactive object and receiving, from the second computing device, a second media content item associated with a second interactive object of the interactive message. The systems and methods further provided for generating a second session data item for the second interactive object of the interactive message, adding the second session data item to the serialized data, and sending the serialized data to a third computing device to render the interactive message using the serialized data and display the rendered interactive message comprising the first media content item and the second media content item.
US11716296B2 Systems and methods for transferring messaging to automation
The present disclosure relates generally to facilitating routing of communications. More specifically, techniques are provided to dynamically transfer messaging between a network device and a terminal device to a type of bot based on intents identified from the messaging. Further, techniques are provided to track performance of the selected type of bot during automation.
US11716295B2 System and method of automated communications via verticalization
A system and method are disclosed to generate, transmit, and automate communications with end user systems. Embodiments comprise an automation platform comprising a processor and memory. Embodiments generate a communication based, at least in part, on input from a rules engine and one or more communication templates. Embodiments modify the content of the generated communication and revise the one or more communication templates to include the modifications made to the communication content. Embodiments transmit, using one or more communication channels, the modified communication to one or more end user systems, and automate the generation and transmission of one or more subsequent communications to the one or more end user systems based, at least in part, on the revised one or more communication templates.
US11716291B1 Link aggregation group failover for multicast
A method of multicasting packets by a forwarding element that includes several packet replicators and several egress pipelines. Each packet replicator receives a data structure associated with a multicast packet that identifies a multicast group. Each packet replicator identifies a first physical egress port of a first egress pipeline for sending the multicast packet to a member of the multicast group. The first physical egress port is a member of LAG. Each packet replicator determines that the first physical egress port is not operational and identifies a second physical port in the LAG for sending the multicast packet to the member of the multicast group. When a packet replicator is connected to the same egress pipeline as the second physical egress, the packet replicator provides the identification of the second physical egress port to the egress pipeline to send the packet to the multicast member. Otherwise the packet replicator drops the packet.
US11716289B2 Authorizations associated with externally shared communication resources
Various embodiments of the present disclosure are directed to a group-based communication apparatus that is configured to enable end-users (e.g., non-admin users) to initiate, by way of client devices, generation of a shareable resource associated with a group-based communication resource identifier to efficiently authorize communication between client devices associated with different organization identifiers in group-based communication interfaces associated with a shared group-based communication resource identifier.
US11716286B2 Collecting and analyzing data regarding flows associated with DPI parameters
Some embodiments provide a method for performing deep packet inspection (DPI) for an SD-WAN (software defined, wide area network) established for an entity by a plurality of edge nodes and a set of one or more cloud gateways. At a particular edge node, the method uses local and remote deep packet inspectors to perform DPI for a packet flow. Specifically, the method initially uses the local deep packet inspector to perform a first DPI operation on a set of packets of a first packet flow to generate a set of DPI parameters for the first packet flow. The method then forwards a copy of the set of packets to the remote deep packet inspector to perform a second DPI operation to generate a second set of DPI parameters. In some embodiments, the remote deep packet inspector is accessible by a controller cluster that configures the edge nodes and the gateways. In some such embodiments, the method forwards the copy of the set of packets to the controller cluster, which then uses the remote deep packet inspector to perform the remote DPI operation. The method receives the result of the second DPI operation, and when the generated first and second DPI parameters are different, generates a record regarding the difference.
US11716284B2 Group based classification and policy enforcement for external network traffic
Techniques for group-based classification and policy enforcement at a network fabric edge for traffic that is being sent to external network destinations are disclosed herein. The techniques may include receiving, at a control plane of a network and from an edge node of the network, a request to provide mapping data associated with sending a packet to a destination. Based at least in part on an address prefix value associated with the destination, the control plane may determine that the destination is located in an external network. Additionally, a group identifier that is associated with the destination may be determined. In this way, an indication of the group identifier may be sent to the edge node such that the edge node may determine, based at least in part on the group identifier, a policy decision for routing the packet to the external network.
US11716280B2 Interoperability between symmetric and asymmetric EVPN IRB modes
A system and method are disclosed for enabling interoperability between asymmetric and symmetric Integrated Routing and Bridging (IRB) modes. A system is configured to receive a route advertisement, examine the label fields of the route advertisement, and determine whether Layer 2 or Layer 3 information is conveyed. The system is further configured to build a route advertisement to advertise to a second device based on whether Layer 2 or Layer 3 information is conveyed in the first route advertisement.
US11716279B2 Systems and methods for determining FHRP switchover
In one embodiment, a method includes determining, by a first router, service level agreement (SLA) requirements for an application and generating, by the first router, first SLA characteristics for the first router. The first router is in an active mode within a network. The method also includes comparing, by the first router, the first SLA characteristics for the first router to the SLA requirements and determining, by the first router, second SLA characteristics for a second router. The second router is in a standby mode within the network. The method further includes comparing, by the first router, the second SLA characteristics for the second router to the SLA requirements and determining, by the first router, whether to lower a first hop redundancy protocol (FHRP) priority of the first router.
US11716278B1 System and method for determining the shortest data transfer path in data communication
A system accesses a set of devices transferring a data element from a source device to a destination device. The system determines a transformation type implemented on the data element at each device. The system generates an array that uniquely defines the data element at each device. The array comprises the transformation type and an identifier of the device. The system generates a transformation dependency map that represents a set of transformation types implemented on the data element at different devices. The system determines a set of data transfer paths for the data element from the source device to the destination device based on the transformation dependency map. The system selects the shortest data transfer path for the data element that corresponds to the least number of hops between devices. The system communicates the data element from the source device to the destination device using the shortest data transfer path.
US11716276B2 Detecting miswirings in a spine and leaf topology of network devices
A network device may receive topology data identifying a spine and leaf topology of network devices, and may set link metrics to a common value to generate modified topology data. The network device may remove data identifying connections from leaf network devices to any devices outside the topology from the modified topology data to generate further modified topology data, and may process the further modified topology data, with a model, to determine path data identifying paths to destinations. The network device may determine particular path data identifying shorter paths and longer paths to corresponding destinations, and may determine hop counts associated with the paths. The network device may determine whether the hop counts are all odd values, all even values, or odd and even values, and may perform actions based on whether the hop counts are all odd values, all even values, or odd and even values.
US11716274B2 Determining node behavior in deterministic networks
This disclosure describes techniques for monitoring expected behavior of devices in a computing network. Behavior of network devices may include performing various functions associated with transferring data packets through the computing network. Monitoring expected behavior may include sending a probe packet into the computing network, and determining whether network devices behave as expected with respect to the probe packet. In some examples, behaviors such as replicating, forwarding, eliminating, ordering, and/or other functions regarding data packets may be validated using the present techniques. As computing networks and/or operations become more complex, assuring the expected behavior of network devices may become more important for the continued efficient, smooth, successful, and/or timely flow of data traffic.
US11716273B2 On-path telemetry for multicast traffic
A per-hop postcard technique is disclosed. The per-hop postcard technique is implemented to improve Postcard-based Telemetry (PBT). A per-section postcard technique is also disclosed. The per-section postcard technique is implemented to improve In-situ OAM (IOAM). By utilizing these techniques, suitable on-path telemetry may be obtained for multicast traffic. In addition, these techniques may be used to reconstruct and visualize a multicast tree, to conduct performance monitoring, and to perform trouble shooting.
US11716265B2 Anomaly detection and reporting in a network assurance appliance
Systems, methods, and computer-readable media for detecting and reporting anomalies in a network environment for providing network assurance. In some embodiments, a system can determine confidence scores for at least one value of parameters of a network environment defining network events occurring in the network environment. The confidences scores can indicate a frequency that the defined network events have a specific event state. The confidence scores can be monitored to detect an anomaly in the network environment. In response to detecting the anomaly in the network environment, the system can determine a relevant network state of the network environment. The relevant network state of the network environment and the anomaly in the network environment can be presented to a user.
US11716259B2 On-demand instance
A method, a system, and a computer program product for generating and/or configuring a computing instance. A request to configure a computing instance for integration with at least one first computing system is received. At least one first computing component associated with the first computing system required for integration of the configured computing instance with the first computing system is identified. At least one second computing component for inclusion into the computing instance is identified. The second computing component is not required for integration of the configured computing instance with the first computing system. A configuration of the computing instance is generated using the identified first and second computing components. The configuration of the computing instance is applied in the first computing system. The configuration of the computing instance is executed by the first computing system and stored.
US11716258B2 Early warning system of handset-caused mobile network performance degredation
A network performance degradation detection system is provided. The system receives Key Performance Indicator (KPI) values for devices of different device types running different software versions. The system determines baseline values of a first device type by averaging the KPI values of the different software versions running on devices of the first device type. The system compares KPI values for a first software version running on devices of the first device type with the determined baseline values to produce a set of comparison results. The system applies the set of comparison results to a classification model to determine whether the first software version running on devices of the first device type causes network performance degradation.
US11716257B1 Batching of artificial intelligence jobs
A method and server for batching execution of artificial inelegance (AI) jobs are provided. The method includes receiving, by an AI server, a plurality of AI jobs from a plurality of clients connected to an AI appliance over a network; for each AI job of the plurality of AI jobs: deriving at least one attribute of the received AI job; determining based on the at least one AI job attribute and at least one batching parameter if the received AI job is a candidate for batching; aggregating the received AI job into a created batch when the received AI job is determined to be a candidate for batching; continuing aggregating newly received AI jobs determined to be candidates for batching in the created batch until at least one service parameter is met; and sending the batch of AI jobs to a compute engine dedicated to executing the batch.
US11716253B2 Method, location device and system for managing network devices
A method for managing network devices is provided. The method comprises collecting position data of at least one network device with a location device for determining the position of the at least one network device relative to at least one positioning base, collecting device information data from the at least one network device with the location device, the device information data representing individual properties of the at least one network device, determining the position of the at least one network device according to the position data, providing a model of the physical environment based on environment data, and mapping the at least one network device to the model of the physical environment such that the device information data of the at least one network device is assigned to at least one location in the model of the physical environment, according to the position of the at least one network device.
US11716246B2 Device and method for providing edge computing service in wireless communication system
The present disclosure relates to a communication technique which combines a 5G communication system, for supporting a higher data transmission rate than 4G systems, with IoT technology, and a system for same. The present disclosure relates to a wireless communication system, and more specifically, the present disclosure relates to: an application layer network structure which provides an edge computing service in a cellular wireless communication system (5G system); and a method for same. A method according to an embodiment of the present disclosure is a method for a terminal to acquire edge data network setting information in order to receive an edge computing service in a wireless communication system, and includes: a step for transmitting an initial provisioning request message to an edge data network configuration server; and a step for receiving, from the edge data network configuration server, an initial provisioning response message including information about an edge data network, wherein the initial provisioning request message may include a URI address of the edge data network configuration server.
US11716242B2 Method and system for network function recovery notification
Systems and methods described herein include receiving, from a first network function, a request to receive a notification when a second network function becomes available after a failure. A status update may be received from the second network function indicating that the second network function is available. It may be determined that the second network function is in a stable state. A notification may be sent, to the first network function, that the second network function is available along with an indication of a time period in which to switch from accessing a third network function to accessing the second network function.
US11716239B2 Enhanced constellation shaping
This disclosure describes systems, methods, and devices related to enhanced constellation shaping. A device may generate payload bits associated with a frame to be sent to a first station device. The device may generate a first output bits having a first length based on the application of a first mask of one or more masks to the payload bits. The device may generate a second output bits having a second length based on the application of a second mask of the one or more masks. The device may compare the first length of the first output bits to the second length of the second output bits. The device may select the first mask or the second mask based on the comparison. The device may convert the payload bits using the selected mask before passing through a shaping encoder to generate shaped bits. The device may cause to send the frame bits and an indication of the selected mask to the first station device.
US11716238B2 Coding and modulation apparatus using non-uniform constellation
A coding and modulation apparatus and method are presented. The apparatus comprises an encoder that encodes input data into cell words, and a modulator that modulates said cell words into constellation values of a non-uniform constellation. The modulator is configured to use, based on the total number M of constellation points of the constellation and the code rate, a non-uniform constellation from one or several groups of constellations each comprising one or more constellations.
US11716235B2 Real time OFDM transmission system
An OFDM (orthogonal frequency division multiplexing) transmitter includes an inverse fast Fourier transform circuit, which, in operation, generates, based on digital input data, a complex time-varying digital signal having real and imaginary components; and a multiplexer adapted to generate a time-multiplexed digital signal by time-multiplexing one or more of the real components with one or more of the imaginary components.
US11716232B2 Transmission apparatus and transmission method of control signaling in a wireless communications system
A transmission apparatus of the present disclosure comprises a transmission signal generator which generates a transmission signal that includes a legacy preamble, a non-legacy preamble and a data field, wherein the non-legacy preamble comprises a first signal field and a second signal field, the second signal field comprising a first channel field and a second channel field, each of the first channel field and the second channel field comprising a common field that carries resource assignment information for one or more terminal stations and a user-specific field that carries per-user allocation information for the one or more terminal stations, and wherein a part of the user-specific field of one of the first channel field and the second channel field whichever is longer than the other channel field in length before appending padding bits is relocated to the other channel field; and a transmitter which transmits the generated transmission signal.
US11716230B2 Method and apparatus for multistream transmission
Multistream transmissions are provided for user equipment (UE) including a transceiver configured to receive an L-layer data transmission that includes at least one codeblock (CB). The CB includes a length-N cyclic redundancy code (CRC). The transceiver is also configured to receive a downlink control information (DCI) associated with the data transmission. The UE further includes a processor operably connected to the transceiver. The processor is configured to decode the data transmission, the CRC, and the DCI. The data transmission includes one codeword (CW) when L is less than or equal to a threshold and two CWs when L is greater than the threshold.
US11716224B2 Networking module for instrumentation and control devices
A module for managing communication among instrumentation and control devices associated with a system, and a method for using the module, enable interconnection of various devices across multiple network buses, and filtering of messages travelling between devices on disparate buses. Buses may be established wirelessly in addition to via wired connections. Additional devices may connect to a pluggable terminal interface integrated with the module. The terminal interface may connect to a configurable variety of interconnecting circuits appropriate for various types of terminal devices. An associated user interface may enable a user to configure various parameters pertaining to connected devices, including alerts to be issued when certain parameters exceed thresholds, and actions to be taken upon issuance of such alerts.
US11716223B2 Virtual converged cable access platform (CCAP)
Approaches for a virtualized Cable Modem Termination System (CMTS) for providing high speed data services to a remote physical device (RPD). The virtualized Cable Modem Termination System (CMTS) comprises a core routing engine (CRE) for performing packet switching and routing and one or more physical or virtual compute servers (CS) that each perform CMTS functions for the one or more remote physical devices (RPDs). Each physical or virtual compute server (CS) connects to the core routing engine (CRE) with a Link Aggregation Group (LAG) of two or more Ethernet links.
US11716220B2 Ethernet transceiver device and ethernet physical-layer circuit
An Ethernet physical-layer circuit corresponding to a first port is connected to a first link partner device through the first port and a first Ethernet cable. The Ethernet physical-layer circuit and other physical-layer circuits all employ an output oscillation signal of a crystal oscillator to respectively generate clock waveforms, and they are configured in a master mode when the crosstalk noise is converged and compensated.
US11716217B2 Method for streaming real-time data from a user device to a dispatch unit terminal
A system and method for streaming real-time data from a user device to a dispatch unit terminal, where the method includes: identifying a connection between a user device and a call center; sending a link to the user device, wherein the link includes instructions to initiate streaming of real-time data from the user device, and further includes a unique identifier associated with the user device; and sending the real-time data to a dispatch unit terminal, where the unique identifier is used to match the real-time data with the dispatch terminal used in the first connection.
US11716211B2 3D-printed packaging with blockchain integration
A distributed manufacturing platform and related techniques connect designers, manufacturers (e.g., 3D printer owners and other traditional manufacturers), shippers, and other entities and simplifies the process of manufacturing and supplying new and existing products. A distributed ledger or blockchain may be used to record transactions, execute smart contracts, and perform other operations to increase transparency and integrity of supply chain. Blockchain enabled packaging can be used to track movement and conditions of packages from manufacture, through transit, to delivery.
US11716210B2 Signal integration circuit and electronic device
An electronic device includes a communication module, an external module and a signal integration circuit. The signal integration circuit includes a first input port, a second input port, a third input port and an output port. The first input port is for inputting an input signal. The second input port is for selectively inputting a first L1 band signal. The third input port is for selectively inputting a second L1 band signal. The output port selectively outputs a first output signal or a second output signal. When the third input port is coupled to an external module, the third input port is for inputting the second L1 band signal, and the output port outputs the second output signal. When the third input port is not coupled to the external module, the second input port is for inputting the first L1 band signal, and the output port outputs the first output signal.
US11716209B2 Systems and methods for azimuthal multiplexing three-dimensional diffractive optics
Systems and methods for azimuthal multiplexing using three-dimensional diffractive optics An azimuthal optical multiplexing system includes a light source. The system includes two or more at least partially transparent plates. Each plate of the two or more plates has a structured or patterned surface positioned in an optical path of the light source. The system includes means for rotating at least one plate of the two or more plates axially with respect to at least one other plate of the two or more plates. The means for rotating is operatively coupled to the at least one plate. The structured or patterned surface is configured to modulate light directed along the optical path and through the two or more plates.
US11716202B2 Techniques for secure blockchain routing
Described herein are systems and methods for providing secure blockchain routing utilizing an extended blockchain protocol. In some embodiments, a blockchain routing node may join an overlay network including a plurality of blockchain routing nodes. The blockchain routing node may receive a plurality of forwarding tables from the plurality of blockchain routing nodes in accordance with an extended blockchain protocol. The blockchain routing node may determine a routing table for the overlay network based at least on part on the plurality of forwarding tables. In some embodiments, the blockchain routing node may route a payload message to a destination blockchain routing node in the overlay network in accordance with the determined routing table.
US11716197B2 System and method for generating a cryptographic key
A system and method for generating a cryptographic key using a sequence of data segments selected by a user from one or more data resources. Raw data from the one or more data resources corresponding to each of the selected data segments, and the sequence in which such data segments are selected, is extracted and processed to generate a key. The key can be used for any cryptographic and authentication purpose. By enabling a user to select the sequence of data segments from the one or more data resources in any manner the user desires, the user can create a strong key, but also easily remember the underlying data resource and chosen sequence. This technique provides enhanced security while maintaining ease of creation and use of such security.
US11716196B2 Arithmetic for secure multi-party computation with modular integers
A secure multi-party computation implements real number arithmetic using modular integer representation on the backend. As part of the implementation, a secret shared value jointly stored by multiple parties in a first modular representation is cast into a second modular representation having a larger most significant bit. The parties use a secret shared masking value in the first representation, the range of which is divided into two halves, to mask and reveal a sum of the secret shared value and the secret shared masking value. The parties use a secret shared bit that identifies the half of the range that contains the masking value, along with the sum to collaboratively construct a set of secret shares representing the secret shared value in the second modular format. In contrast with previous work, the disclosed solution eliminates a non-zero probability of error without sacrificing efficiency or security.
US11716188B2 Method for transmitting and receiving data in wireless communication system and apparatus for the same
A method for receiving downlink data by the terminal in a wireless communication system, includes receiving, from a base station, downlink control information for scheduling a short physical downlink shared channel (sPDSCH) on a short physical downlink control channel (sPDCCH), and receiving, from the base station, downlink data on the sPDSCH based on the downlink control information. Here, the sPDCCH and the sPDSCH are based on a first transmission time interval (TTI)-based radio frame structure, wherein the first TTI-based radio frame structure is shorter in time than a second TTI-based radio frame structure related to (i) a physical downlink shared channel (PDSCH) and (ii) a physical downlink control channel (PDCCH). Further, a number of resource element groups (REGs) consisting of a control channel element (CCE) related to the sPDCCH is smaller than a number of resource element groups (REGs) composed of a CCE related to the PDCCH.
US11716187B2 Methods for CQI feedback and RRM measurements with dynamic power sharing among multiple LAA SCells for DL-only transmission
Described are mechanisms and methods for supporting Channel State Information (CSI) measurement and reporting, and for supporting Radio Resource Management (RRM) measurement and reporting, under License Assisted Access (LAA) with dynamic power sharing. An eNB may comprise one or more processors to generate a maximum number of Component Carriers (CCs) and a number of active CCs to a UE. The eNB may then be operable to process a reported quality rating from the UE and generate a scaled quality rating based upon the reported quality rating, the maximum number of CCs, and the number of active CCs. A UE may comprise one or more processors to process a reference signal transmission from an eNB, to generate an unfiltered reference signal transmission based upon the reference signal transmission, and to calculate a quality rating based upon the unfiltered reference signal transmission.
US11716186B2 Validation for control information for semi-persistent scheduling cancellation
Control information such as downlink control information (DCI) may be used to indicate whether the DCI is for semi-persistent scheduling (SPS) cancellation. For example, the base station may transmit, to a user equipment (UE), first DCI to trigger an SPS configuration of a plurality of SPS occasions. The base station may further determine to cancel one or more SPS occasions of the plurality of SPS occasions, and transmit second DCI to trigger an SPS cancellation that cancels the one or more SPS occasions, the second DCI including at least a redundancy version field including one or more redundancy version values to indicate the SPS cancellation.
US11716184B2 Transmitting channel state information reference signals in new radio
Certain aspects of the present disclosure provide techniques for transmitting and processing channel state information (CSI) reference signals (CSI-RS). An exemplary method includes determining a configuration of channel state information reference signals (CSI-RSs), wherein the configuration indicates a set of resource elements (REs) to be used for CSI-RSs and a first mapping of CSI-RS ports to the set of REs; sending an indication of the configuration of the CSI-RSs; and transmitting the CSI-RSs according to the determined configuration.
US11716182B2 Transmission device and transmission method
A transmission device that improves data reception quality includes: a first pilot inserter that inserts a pilot signal into a first precoded signal; a phase changer that applies a phase change of i×Δλ to the second precoded signal, where i is a symbol number and an integer that is greater than or equal to 0; an inserter that inserts a pilot signal into the second precoded signal applied with the phase change; and a phase changer that applies a phase change to the second precoded signal applied with the phase change and inserted with the pilot signal. Δλ satisfies π/2 radians<Δλ<π radians or π radians<Δλ<3π/2 radians. When the communications scheme is an OFDM scheme, the phase changer and the phase changer apply a phase change, and when the communications scheme is a single-carrier scheme, do not apply a phase change.
US11716181B1 Systems and methods for packet segmentation in standalone small cell
A radio head includes a standalone small cell configured to receive a plurality of IP packets over a series of sequential sub-frames, and generate a bandwidth report for each of the plurality of received IP packets. The radio head further includes a radio link control unit configured to sum a received bandwidth report with segmentation induced noise for each of the plurality of received IP packets, and an adaptive filter configured to apply a filter weight to each of the series of sequential sub-frames. The applied filter weight is based on (i) an output of the radio link control unit for a previous sub-frame, and (ii) an output of the adaptive filter for the previous sub-frame.
US11716179B2 Joint transmissions of data in a wireless communication system using a non-orthogonal multiple access transmission scheme
A wireless communication system includes a first transmitter and a second transmitter. For a transmission or reception of data of a first user equipment and data of a second user equipment on resources shared by the first user equipment and the second user equipment, the first transmitter is configured for a superimposed non-orthogonal multiple access, NOMA, transmission or reception of a first data signal of the first user equipment and a second data signal of the second user equipment, and the second transmitter is configured for a superimposed non-orthogonal multiple access, NOMA, transmission or reception of a third data signal of the first user equipment and a fourth data signal of the second user equipment.
US11716175B2 Procedures for configured grants
Techniques are described herein for improved methods, systems, devices, and apparatuses that support procedures for configured grants. Generally, the described techniques may relate to restricting a number of retransmissions used during a hybrid automatic repeat request (HARQ) process or managing potential scheduling conflicts for the HARQ process from dynamic grants and configured grants. A device (e.g., a user equipment) may initiate a timer or a counter associated with a HARQ process for indicating that transmission attempts for the HARQ process are permitted. The device may identify a transmission occasion of a configured grant in an unlicensed frequency spectrum band that is associated with the HARQ process and may determine that the timer associated with the HARQ process is active. The device may perform a transmission attempt over the transmission occasion of the configured grant based on determining that the timer is active.
US11716174B2 HARQ acknowledgement codebook transmission in unlicensed band
A wireless device receives configuration parameters of a bandwidth part comprising resource block (RB) sets, each RB set having an RB index. The wireless device receives, during a downlink control channel monitoring occasion, a plurality of downlink control information (DCI)s and each DCI of the plurality of DCIs is received via a respective RB set of the RB sets. The wireless device transmits a hybrid automatic repeat request acknowledgement (HARQ-ACK) codebook comprising HARQ-ACK information bits corresponding to the plurality of DCIs, wherein the HARQ-ACK information bits are in order of indexes of RB sets corresponding to the DCIs.
US11716171B2 Wireless communication terminal and wireless communication method for multi-user concurrent transmission
The present invention relates to a wireless communication terminal and a wireless communication method for efficiently managing simultaneous data transmissions of a plurality of terminals.To this end, provided are a base wireless communication terminal including: a transceiver configured to transmit and receive a wireless signal; and a processor configured to control an operation of the base wireless communication terminal, wherein the processor is configured to: transmit a trigger frame triggering a multi-user uplink transmission of a plurality of terminals, receive multi-user uplink data through resources allocated to the plurality of terminals, and transmit a block ACK through the resources in response to the received multi-user uplink data, wherein the transmission of the block ACK in each resource is terminated at the same time, and a wireless communication method using the same.
US11716167B2 Downlink control information transmission method and receiving method, and related device
The application provides methods for transmitting and receiving Downlink Control Information (DCI), and a related device. The receiving method includes: determining configuration information of to-be-transmitted DCI, based on a corresponding relationship between a DCI Aggregation Level (AL), and/or, a number of blind detections corresponding to the AL, and a payload size of the DCI; configuring the to-be-transmitted DCI, by using the configuration information; and, transmitting the to-be-transmitted DCI to a mobile communication terminal.
US11716166B2 Handheld portable countermeasure device against unmanned systems
A handheld countermeasure device is disclosed herein. The device can include a hand-held form factor body. The device can include disruption components, a directional antenna, and a processor. The disruption components can be configured to generate a disruptive signal. The directional antenna can be configured to emit the disruptive signal. The processor can be configured to determine a position of the handheld countermeasure device based on a global navigation satellite system (GNSS) signal. The processor can be configured to load a device profile for the handheld countermeasure device based on the position of the handheld countermeasure device.
US11716165B2 Methods and devices for the concealment of radio identifiers and transmitter positions
Systems, devices and methods for concealing radio communications and the spatial position of radio transmitters involved therein include the use of electrotechnical signal variation and dynamic, pseudo-random radio identifier. Transmitted radio signals contain radio identifiers identifying the transmitting mobile radio device. Each radio identifier is dynamically selected for each radio signal from a sequence of radio identifiers selected from a set of predefined pseudo-random sequences. The sequence is selected based on a predetermined selection rule. The radio identifier is selected from the thus selected sequence according to a predetermined deterministic update pattern associated with the selected sequence. The associated transmission power and/or transmission frequency is dynamically varied on the transmitter side according to a predetermined deterministic variation scheme.
US11716162B2 Method and system for controlling network timing precision of a seismic collector, and terminal device
There is disclosed a method and system for controlling network timing precision of a seismic collector, and a terminal device. The method includes: using an interrupt mode to transmit a data packet; calculating an optimal network delay; and correcting a transmission error in a network timing process according to the optimal network delay, after which the physical layer of a server receives the data packet and sends the data from the physical layer of the server to the application layer of the server using the interrupt mode thereby timing the data packet.
US11716158B2 Mobile station and reception quality measurement method
Received Signal Strength Indicator (RSSI) is measured accurately even in a case where a discovery signal is transmitted. A receiver receives a plurality of subframes, at least one of which includes a discovery signal, and a measurer measures Reference Signal Reception Power (RSRP) using a first resource in which the discovery signal is mapped, measures RSSI using a second resource different from the first resource for which the discovery signal is mapped, and calculates Reference Signal Reception Quality (RSRQ) using RSRP and RSSI.
US11716156B2 Method and apparatus for determining pathloss in wireless communication system
The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security or safety services.
US11716150B2 Field reconstruction for an optical receiver
An optical receiver capable of substantially measuring the phase and amplitude of a received intensity- or amplitude-modulated optical signal by performing digital-signal processing. In an example embodiment, a DSP of the receiver operates to reduce the detrimental effects of relative phase noise between the optical reference oscillator and optical carrier based on an optical pilot present in the received optical signal. The DSP may employ a sequence of digital filters configured to select a signal component that represents a non-vestigial modulation sideband and then perform signal equalization thereon. The signal equalization may include but is not limited to dispersion compensation. In some embodiments, the optical receiver can be a direct-detection optical receiver. In an example embodiment, the optical reference oscillator and optical carrier are generated using two respective independently running lasers that may or may not be co-located.
US11716146B2 Optical communication apparatus, optical communication method, and optical communication system
To relax the accuracy with respect to a positional deviation, and thus to reduce costs.An optical waveguide is included that performs propagation only in a reference mode at a first wavelength. Communication is performed using light that has a second wavelength and includes a component of at least a first order mode in addition to a component of the reference mode. Here, the second wavelength is a wavelength that enables the optical waveguide to perform propagation in at least the first order mode in addition to the reference mode. For example, a light path adjuster that adjusts a light path such that input light is guided to a core of the optical waveguide, is further included.
US11716143B2 Communication apparatus and communication method
Useful data is transmitted to a terminal existing in a transportation vehicle. A communication apparatus installed in the transportation vehicle and configured to transmit the data to the terminal existing in the transportation vehicle includes a data selection unit and an illumination unit. The data selection unit acquires location information indicating a location of the transportation vehicle in which the terminal exists and which is traveling. Based on the acquired location information, the data selection unit selects approaching-location data related to a location ahead of a current location of the transportation vehicle in a traveling direction from a plurality of pieces of data related to the location. The illumination unit transmits, as a modulated light signal, a signal comprising the approaching-location data.
US11716142B2 Street lamps with wireless communication modules
A robust wireless communications network is deployed by retrofitting spatially distributed light sockets with integrated light/communicator modules. Each light/communicator module comprises an electric lamp and a communicator unit, the communicator unit having an RF transceiver, an antenna, and a Broadband processor for communicating with other nodes in the wireless communication network, using a suitable mesh network protocol. A power conversion unit is optionally provided in each integrated light/communicator module so that the individual components of the module may operate on the standard light socket power or selectably from other power sources.
US11716141B1 Photonic integrated circuit-based optical communication optimized for receive aperture amplitude and phase modulations
An apparatus includes a photonic integrated circuit having an optical phased array, where the optical phased array includes multiple unit cells. Each unit cell includes (i) an antenna element configured to receive optical signals and (ii) a modulator configured to phase-shift the optical signals received by the antenna element. Multiple subgroups of the unit cells in the optical phased array are configured to generate multiple combined optical signals based on the received optical signals. The apparatus also includes at least one of: (i) amplitude adjusters configured to modify amplitudes of the combined optical signals in order to compensate for amplitude modulations across a receive aperture of the optical phased array and (ii) phase modulators configured to modify phases of the combined optical signals in order to compensate for phase modulations across the receive aperture of the optical phased array.
US11716138B2 Systems and methods for monitoring generalized optical signal-to-noise ratio
The disclosed systems and methods for monitoring, by a coherent optical monitor (OPM), generalized optical signal-to-noise ratio (gOSNR) of an optical channel, the method comprising: i) receiving, by an input port of the coherent OPM, a first signal and a second signal, wherein: the first signal and the second signal include same data, the first signal is an optical signal received from the optical channel, and the first signal is affected by a noise; ii) processing, by a digital signal processor (DSP) of the coherent OPM, the first signal and the second signal and extract the data from the first signal and the second signal; iii) computing, by the DSP, a first correlation between the data from the first signal and the data from the second digital signal; and iv) computing, by the DSP, a first gOSNR based on the first correlation.
US11716136B2 Multipoint wireless network
Disclosed systems and methods configure a plurality of wireless access points to perform probe request handling operations including, responsive to receiving a probe request from a mobile device, relaying the probe request to a network controller, and responsive to receiving a probe response from the network controller, relaying the probe response to the mobile device. The network controller is configured to provide the mobile device with a multipoint wireless network by identifying two or more of the plurality of wireless access points as selected access points for multipoint transmission with the mobile device, coordinating the selected access points to allow simultaneous transmissions to the mobile device from each of the selected access points, and forwarding a probe response indicative of the selected access points to the selected access points.
US11716135B2 Systems and methods for granular user equipment location determination using quantum computing
Embodiments described herein provide for the granular network-based detection of UE location in a RAN that includes one or more mobile base stations using quantum computing. Mobile base stations may be, for example, affixed on vehicles (e.g., cars, trucks, drones, etc.), may be implemented by other UEs, and/or may otherwise be non-stationary. In contrast, fixed base stations may be mounted to towers, buildings, or other types of permanent or semi-permanent installations. Quantum computing techniques, as described herein, may aid in the precise determination of UE location using triangulation techniques and/or other network-based location techniques. Further, in RANs that include mobile base stations, the locations of both the UE and a reference point may change relatively rapidly. The use of quantum computing, as described herein, may aid in the fast and precise determination of UE location in situations where mobile base stations and/or UEs are moving rapidly.
US11716134B2 Phase noise suppression method for a multiple-input multiple-output (MIMO) system with a plurality of co-reference channels
A phase noise suppression method for a multiple-input multiple-output (MIMO) system with a plurality of co-reference channels includes: dividing the phase noise of each channel in the MIMO system into common phase noise and independent phase noise, and constructing a certain number of joint phase states for the independent phase noise; inserting a pilot sequence into the sent signal based on a preset cycle, obtaining the common phase noise based on the pilot at receiver, and performing compensation; and performing signal demodulation on each joint state of the independent phase noise, and comparing the posterior log likelihood values to select the optimal result to output. The above method can significantly improve the phase noise suppression performance of the MIMO system with a plurality of co-reference channels, thereby providing support for improving the system capacity by using MIMO technology.
US11716131B2 Single input single output (SISO) physical layer key exchange
A processor coupled to a first communication device produces and transmits a first encoded vector and a second encoded vector to a second communication device via a communication channel that applies a channel transformation to the encoded vectors during transmission. A processor coupled to the second communication device receives the transformed signals, constructs a matrix based on the transformed signals, detects an effective channel thereof, and identifies left and right singular vectors of the effective channel. A precoding matrix is selected from a codebook of unitary matrices based on a message, and a second encoded vector is produced based on a second known vector, the precoding matrix, a complex conjugate of the left singular vectors, and the right singular vectors. A first symbol of the second encoded vector and a second symbol of the second encoded vector are sent to the first communication device for identification of the message.
US11716130B2 Methods and systems for dynamic interference mitigation
Systems and methods provide for determining whether a user device is experiencing interference; attempting to identify a source of the interference based on determining that the user device is experiencing interference; initiating a timer in response to determining that the user device is experiencing interference; determining whether the source of the interference was identified before the timer expires; and dynamically mitigating the interference based on identifying the source of the interference before the timer expires.
US11716127B2 Transmission method, transmission apparatus, reception method and reception apparatus
All data symbols used in data transmission of a modulated signal are precoded by hopping between precoding matrices so that the precoding matrix used to precode each data symbol and the precoding matrices used to precode data symbols that are adjacent to the data symbol in the frequency domain and the time domain all differ. A modulated signal with such data symbols arranged therein is transmitted.
US11716126B2 Beam-based detection for interference mitigation
Methods, systems, and devices for wireless communications are described. The method includes receiving a transmission parameter of a second wireless network, scanning, based on the transmission parameter, for transmission activity of the second wireless network using a set of beams generated in accordance with a beamforming codebook, and opportunistically communicating with a second wireless device of the first wireless network using the beamforming codebook based on the scanning.
US11716122B2 Beam management enhancement for FR2 with V-Pol/H-Pol virtualization
Various systems and methods disclosed herein describe improvements for beam management that leverage virtualization across a vertical polarization (V-Pol) and horizontal polarization (H-Pol). One or more of a user equipment (UE) and a base station may include an antenna array comprising V-Pol antenna elements and H-Pol antenna elements. The UE may determine a number of receive (Rx) beam of an Rx beam sweep are needed, signal this number to the base station, and perform the beam sweep according to one or both of the V-Pol and H-Pol. A UE may use group based beam reporting to indicate to the base station a transmit (Tx) beam upon which downlink MIMO using V-Pol and H-Pol may be supported by reporting a same transmission configuration indication (TCI) corresponding to the Tx beam for both a first Rx beam and a second Rx beam in a group based beam reporting message.
US11716120B2 Method and apparatus for allocating and processing sequences in communication system
A method and apparatus for allocating and processing sequences in a communication system is disclosed. The method includes: dividing sequences in a sequence group into multiple sub-groups, each sub-group corresponding to its own mode of occupying time frequency resources; selecting sequences from a candidate sequence collection corresponding to each sub-group to form the sequences in the sub-group by: the sequences in a sub-group i in a sequence group k being composed of n sequences in the candidate sequence collection, the n sequences making a |ri/Ni−ck/Np1| or |(ri/Ni−ck/Np1) modu mk,i| function value the smallest, second smallest, till the nth smallest respectively; allocating the sequence group to cells, users or channels. It prevents the sequences highly correlated with the sequences of a specific length from appearing in other sequence groups, thus reducing interference, avoiding the trouble of storing the lists of massive sequence groups.
US11716119B2 Method of interworking between spectrum sharing system and distributed antenna system
The disclosure provides a method of operating a distributed antenna system (DAS) interworking with a spectrum sharing system (SSS) including: transmitting, by a node unit of the DAS, DAS information to a management system entity (MSE); generating, by the MSE, linkage information based on the DAS information and radio service device (RSD) information received from at least one RSD of the SSS; transmitting, by the MSE, the interworking information to a system controller of the SSS; receiving, by the MSE, allocation information including a result of allocating shared radio resources to the DAS and the at least one RSD, respectively, according to the interworking information from the system controller; transmitting, by the MSE, the allocation information to the node unit; and operating, by the node unit, according to the allocation information.
US11716118B2 Systems and methods for programming pluggable transceivers
A method for programming a network transceiver is provided. The method includes: providing a network transceiver having a programming interface; obtaining transceiver identification information via a radio-frequency transceiver programming system (RTPS); obtaining, via the RTPS, configuration data for the network transceiver based on the transceiver identification information; transmitting, via the RTPS, at least some of the configuration data via a radio-frequency (RF) interface; and programming the network transceiver via the programming interface using the at least some of the configuration data received via the RF interface. Corresponding systems, apparatuses (including smart labels, host devices, and transceivers) are also provided.
US11716117B2 Circuit support structure with integrated isolation circuitry
A circuit support structure includes a first metal layer, a second metal layer, isolation material containing the first and second metal layers, an isolation circuit, a first plurality of contact pads, and a second plurality of contact pads. The isolation circuit includes a first circuit element in the first metal layer and a second circuit element in the second metal layer and electrically isolated from the first circuit element by the isolation material. The first plurality of contact pads is adapted to be coupled to a first integrated circuit on the circuit support structure and includes a first contact pad electrically coupled to the first circuit element. The second plurality of contact pads is adapted to be coupled to a second integrated circuit on the circuit support structure and includes a second contact pad electrically coupled to the second circuit element.
US11716115B2 Signal processing system and method for identifying and pairing a signal transmitting device
A signal processing system includes a signal processing device including a processor and a memory device storing first information and a signal transmitting device including a memory device storing second information. The processor reads the memory devices to obtain the first information and the second information, determines a threshold date according to a first date indicated by the first information and a margin, and determines whether a second date indicated by the second information is earlier than the threshold date. When the second date is earlier than the threshold date, the processor controls the signal processing device to operate in a limited mode. In the limited mode, the signal processing device does not output any signal to the signal transmitting device or ignores any signal from the signal transmitting device, or the signal processing device only outputs a limited signal to the signal transmitting device.
US11716110B2 Compact radio frequency combiner
Technologies for provided for a radio frequency input/output (RFIO) combiner/splitter. An example combiner/splitter can include an RFIO circuit including a receive path including first and second low noise amplifiers (LNAs), first switches, resistors, and capacitors, each of the first switches being in series with a respective one of the first capacitors and first resistors; a transmit path including a first power amplifier (PA) including second switches coupled to second resistors and third switches coupled to third resistors, and a second PA including fourth switches coupled to fourth resistors and fifth switches coupled to fifth resistors, each of the second switches, the third switches, the fourth switches, and the fifth switches being in series with one or more respective ones of the second resistors, the third resistors, the fourth resistors, and the fifth resistors; and a balun that couples the Rx and Tx path to an RFIO terminal.
US11716109B2 Frequency converting cable network signal transmission devices
A network communication device includes a first output port, a second output port, and a converting circuit. The first output port may be in communication with an input port and may be configured to receive a first reduced-power version of the signal received at an input port. The converting circuit may be configured to receive a second reduced-power version of the signal, down-convert a high-frequency portion thereof, and produce a down-converted signal. The first and the second reduced-power versions of the signals are in the same frequency band. The second output port receives at least a portion of the down-converted signal such that the high frequency portion of the second reduced power version of the signal is attenuated before the signal is transmitted to a subscriber device.
US11716107B2 Circuits with filters and acoustic resonators
Circuits with filters and acoustic resonators. In some embodiments, a radio-frequency circuit can include a plurality of nodes and a common node. The radio-frequency circuit can further include a signal path implemented between each of the plurality of nodes and the common node. Each corresponding signal path can include a filter having a first Q-factor value and a respective resonator having a second Q-factor value higher than the first Q-factor value.
US11716102B2 Multi-purpose receiver chain for wifi applications
An energy-efficient implementation of a WiFi transceiver is proposed in this disclosure. The WiFi transceiver comprises a receive chain comprising a variable receive (Rx) filter circuit and a variable Rx analog-to-digital converter (ADC) circuit. The receive chain is configured to receive a receive signal during a receive mode of operation, having a receive bandwidth associated therewith and receive a transmit signal associated with a transmit chain of the transceiver during a transmit mode of operation, having a transmit bandwidth associated therewith. The WiFi transceiver further comprises a control circuit configured to dynamically adapt a bandwidth of the variable Rx filter and the variable Rx ADC in the receive chain to the receive bandwidth or to the transmit bandwidth, based on the mode of operation.
US11716101B2 Multi-radio device
One example discloses a multi-radio device, including: a controller configured to be coupled to a first radio that is configured to transmit a first signal, and a second radio that is configured to transmit a second signal; wherein the controller includes a detection element configured to detect a third signal generated in response to simultaneous transmission of the first and second signals; wherein the controller includes a decision element configured to modulate one or more information packets in the first and second signals in response to the third signal.
US11716100B2 Mobile device front end architecture for antenna plexing for multiple frequency bands
A switching circuit comprises a first filter, a second filter and a plurality of switches. The first filter is configured to filter a first frequency band, a second frequency band that is adjacent to the first frequency band and a gap band between the first frequency band and the second frequency band. The second filter is configured to filter the second frequency band. The plurality of switches is configured to route signals from an antenna through one of the first filter and second filter.
US11716097B2 Signal correction using soft information in a data channel
Example systems, read channel circuits, data storage devices, and methods to provide signal correction based on soft information in a read channel are described. The read channel circuit includes a soft output detector, such as a soft output Viterbi algorithm (SOVA) detector, and a signal correction circuit. The soft output detector passes detected data bits and corresponding soft information to the signal correction circuit. The signal correction circuit uses the soft information to determine a signal correction value, which is combined with input signal to return a corrected signal to the soft output detector for a next iteration. In some configurations, the signal correction value may compensate for DC offset, AC coupling poles, and/or signal asymmetries to reduce baseline wander in the read channel.
US11716092B2 Optimizable analog-to-digital converter for unipolar or bipolar pulse signals based on multi-bit sigma-delta modulation
A delta sigma modulator includes a summation circuit, at least one integrator, a multi-bit quantizer and a negative feedback circuit. The summation circuit is configured to produce a difference signal between a unipolar or bipolar analog input signal and an analog feedback signal. The integrator is operatively coupled to the summation circuit to integrate the difference signal. The multi-bit quantizer is operatively coupled to the integrator to digitize the integrated signal to generate an N-bit digital output signal, N being an integer greater than 1. The negative feedback circuit operatively couples the multi-bit quantizer to the summation circuit. The negative feedback circuit includes a digital-to-analog converter arrangement for receiving the N-bit digital output signal and providing the analog feedback signal such that digital values of the N-bit digital output signal and values of the analog feedback encoded by the digital values have a non-linear relationship to one another.
US11716084B1 Pull-up and pull-down networks controlled asynchronously by majority gate or minority gate logic
Asynchronous circuits implemented using threshold gate(s) and/or majority gate(s) (or minority gate(s)) are described. The new class of asynchronous circuits can operate at lower power supply levels (e.g., less than 1V on advanced technology nodes) because stack of devices between a supply node and ground are significantly reduced compared to traditional asynchronous circuits. The asynchronous circuits here result in area reduction (e.g., 3× reduction compared to traditional asynchronous circuits) and provide higher throughput/mm2 (e.g., 2× higher throughput compared to traditional asynchronous circuits). The threshold gate(s), majority/minority gate(s) can be implemented using capacitive input circuits. The capacitors can have linear dielectric or non-linear polar material as dielectric.
US11716082B2 Capacitive touch sensor and method
A capacitive touch sensor is disclosed for use with input signal. The capacitive touch sensor includes a number n of input/output lines. Each of the number n of input/output lines is electrically disconnected from every other of the number n of input/output lines. Each of the number n of input/output lines is arranged to cross every other of the number n of input/output lines. Each of a number β of positions includes one of the number n of input/output lines crossing another of the number n of input/output lines.
US11716069B2 Slanted apodization for acoustic wave devices
A device includes a die and an interdigital transducer on the die. The interdigital transducer includes a first bus bar, a second bus bar, and a number of electrode fingers. The first bus bar is parallel to the second bus bar. The electrode fingers are divided into a first set of electrode fingers and a second set of electrode fingers. The first set of electrode fingers extend obliquely from the first bus bar towards the second bus bar. The second set of electrode fingers extend obliquely from the second bus bar towards the first bus bar, and are parallel to and interleaved with the first set of electrode fingers. By providing the electrode fingers oblique to the bus bars, spurious transverse modes may be suppressed while maintaining the quality factor, electromechanical coupling coefficient, and capacitance of the device.
US11716068B1 Very low frequency impedance tuner
A low radio frequency electro-mechanical load pull impedance tuner uses four rotary, remotely controlled variable shunt capacitors and three fixed series transmission lines to create up to 108 independently controllable impedance states at each frequency covering the entire Smith chart in the frequency range between 1 and 10 MHz; the capacitors and control motors and gear are immersed in high epsilon dielectric fluid inside individual sealed containers. Appropriate Error Function-based optimization algorithms, allow fast impedance tuning at the fundamental frequency at the output of DUT's operated in high gain compression. Stepper motors, drivers and control software are used to remotely control the variable shunt capacitors of the tuner and allow it to be automated, pre-calibrated and used in an automated load pull measuring setup.
US11716051B2 Flexure bearing assembly
Solar trackers that may be advantageously employed on sloped and/or variable terrain to rotate solar panels to track motion of the sun across the sky include bearing assemblies and other mechanical features configured to address mechanical challenges posed by the sloped and/or variable terrain that might otherwise prevent or complicate use of solar trackers on such terrain.
US11716050B2 Modular power array
This system is directed to a mobile platform having a power array carried by the mobile platform, connected to a distribution hub adapted to provide power to a base power source; an input controller having input computer readable instructions adapted to deliver power to a set of storage units from the base power source, the set of storage power units carried by the mobile platform; an output controller connected to the set of storage units having output computer readable instructions adapted to receive charge requirements from a load connected to the output controller, retrieving from a device lookup table included in the output controller a load type having charge specifications and delivering power to the load according to the charge specifications; and, an external power source connected to the distribution bus for proving power to the base power source from the external power source.
US11716049B2 Rotating machine power conversion device
A rotating machine power conversion device is obtained which achieves operational continuation in a rotational speed range in which the operational continuation is enabled, even when a single phase of an electrical power conversion device made of switching devices causes a disconnection or turn-off failure. The rotating machine power conversion device comprises: a normality-case/abnormality-case current control device selection device for transferring between a normality-case current control device and an abnormality-case current control device in accordance with a determination result of an abnormality determination device; and an abnormality-case current control device/power conversion halt device selection device, using a rotational speed calculation device, for transferring between the abnormality-case current control device used when a rotational speed is lower than that being prespecified, and the power conversion halt device used when a rotational speed is higher than that being prespecified.
US11716048B2 Rotary electric machine control device
A current detection unit includes current detection elements provided to phases on a high potential side of an upper arm element or on a low potential side of a lower arm element. A detection target element is the upper arm element or the lower arm element to which the current detection elements are provided. A target duty is a duty ratio of the detection target element. The control unit includes a current acquisition unit, an energization control unit, and an abnormality determination unit. The current acquisition unit acquires a current detection value from the current detection unit. The abnormality determination unit performs an abnormality determination based on the current detection value. The abnormality determination unit varies a determination threshold, which is used for the abnormality determination based on the current detection value, according to the target duty.
US11716044B2 Power conversion device and electric motor drive system
A power conversion device includes an inverter, a current detector, a frequency analysis processor, a storage, a determination unit, a reference rotational rate change unit, and a rate controller. The determination unit determines a frequency at which a signal component having a magnitude exceeding a prescribed value has been detected among frequency components of a load current, generates restriction information for excluding a reference rotational rate for a rotational rate corresponding to the detected frequency based on a determination result after the determination, and causes the storage to store the generated restriction information. The reference rotational rate change unit changes a reference rotational rate of an electric motor so that mechanical resonance of the detected frequency is avoided based on the stored restriction information. The rate controller controls a rotational rate of the inverter using the changed reference rotational rate. The electric motor is driven at the controlled rotational rate.
US11716042B2 Method, system and apparatus for discharging DC link capacitors in power-distribution-units
The present subject matter refers a discharge circuit for a smoothing capacitor within a power-distribution-unit. The discharge circuit comprises a first sub-circuit connected in parallel to a DC-Link capacitor, said first sub-circuit in turn comprises a series connection of a first switching element (SE) and a first discharge resistor, wherein the DC-link capacitor is connected in parallel to a power supply. A second sub-circuit is connected in parallel to the DC-Link capacitor and comprises a series connection of a second switching element (SE) and a second discharge resistor. A control device is configured to control the plurality of SEs within the sub-circuits by scheduling switching of the plurality of SEs. Such scheduling comprises switching ON of the second SE after a switching ON of the first SE for enabling a discharging of the DC link capacitor within a predetermined duration.
US11716037B2 Determination method and apparatus for BLDC counter-electromotive force zero crossing point threshold, and storage medium
A determination method and apparatus for a brushless direct current counter-electromotive force zero crossing point threshold and a storage medium, the method includes detecting counter-electromotive force zero crossing point time intervals of two adjacent sectors of a brushless direct current electric motor to obtain at least two first time intervals; utilizing the obtained at least two first time intervals to determine errors of a counter-electromotive force zero crossing point; converging the determined errors of the counter-electromotive force zero crossing point to obtain a counter-electromotive force zero crossing point threshold correction increment; and utilizing the obtained counter-electromotive force zero crossing point threshold correction increment to determine a counter-electromotive force zero crossing point threshold.
US11716033B2 Vibration-driven energy harvesting element and vibration-driven energy harvesting device
A vibration-driven energy harvesting element that outputs an alternating current power from an output line, due to vibration from outside includes: an intermediate electrode that is not connected to the output line; a plurality of electret electrodes, each electret electrode being arranged to face the intermediate electrode and having an electret on at least a part of a surface of the electret electrode on a side facing the intermediate electrode; a holding unit that holds the intermediate electrode and the plurality of electret electrodes such that the intermediate electrode and the plurality of electret electrodes can vibrate with respect to each other; and a charge injector that injects a charge having characteristics opposite to a charge of the electrets formed in the surfaces of the plurality of electret electrodes, to the intermediate electrode.
US11716031B2 Circuit assembly for neutral point clamped inverters that are protected from incorrect commutations
A neutral point clamped inverter with an upper half-bridge and a lower half-bridge, wherein each half-bridge has an inner transistor and an outer transistor, where the inner transistor of the upper half-bridge is configured to interact with the outer transistor of the upper half-bridge such that a signal that reproduces the switch state of the inner transistor is coupled into an actuation circuit for switching the outer transistor and influences the switch state of the outer transistor.
US11716030B2 Variable inverter-rectifier-transformer
Described is a hybrid electronic and magnetic structure that enables a transformer with fractional and reconfigurable effective turns ratios (e.g. 12:0.5, 12:⅔, 12:1, and 12:2) and hereinafter referred to as a Variable-Inverter-Rectifier-Transformer (VIRT). A VIRT is valuable in converters having wide operating voltage ranges and high step-up/down, as it offers a means to reduce turns count and copper loss within a transformer while facilitating voltage doubling and quadrupling. Such characteristics are beneficial for reducing the size of a transformer stage in many power electronics applications, such as USB wall chargers. In embodiments, a VIRT comprises a plurality of switching cells distributed around a magnetic core and coupled to half-turns wound through that core. By controlling operating modes of the switching cells, it is possible to gain control over flux paths and current paths in the transformer.
US11716029B2 Power supply circuit for switching mode power supply and control method thereof
A power supply circuit for a switching mode power supply, having: a charging capacitor coupled to an auxiliary winding; a power supply diode coupled to a power supply capacitor, wherein the charging capacitor has a connecting terminal coupled to the power supply diode, and the charging capacitor and the power supply diode are serially coupled between the auxiliary winding of the switching mode power supply and the power supply capacitor; and a power supply switch coupled between the connecting terminal and a primary ground of the switching mode power supply.
US11716028B2 Drain-to-source monitoring of power switches in a half-bridge during runtime
A driver circuit controls a half-bridge that includes a high-side power switch and a low-side power switch. The driver circuit may comprise a high-side compare unit configured to determine a first drain-to-source voltage, wherein the first drain-to-source voltage is associated with the high-side power switch when the high-side power switch is ON, and a low-side compare unit configured to determine a second drain-to-source voltage, wherein the second drain-to-source voltage is associated with the low-side power switch when the low-side power switch is ON. The high-side compare unit may be further configured to determine a third drain-to-source voltage, wherein the third drain-to-source voltage is associated with the high-side power switch when the high-side power switch is OFF, and the low-side compare unit may be further configured to determine a fourth drain-to-source voltage, wherein the fourth drain-to-source voltage is associated with the low-side power switch when the low-side power switch is OFF.
US11716025B2 In-vehicle power supply device
The present disclosure aims to avoid a situation where a drive unit to be used for precharge does not drive due to a drop in power supply voltage. The power supply device is provided with the first voltage conversion unit and the control unit. The first voltage conversion unit performs a third voltage conversion operation in which a voltage applied to a second conductive path is boosted and an output voltage is output to a first conductive path to which a capacitive component is electrically connected. The control unit supplies the third control signal to only some of the plurality of first voltage conversion units, thereby causing the some of the first voltage conversion units to perform the third voltage conversion operation.
US11716024B2 Deadtime control scheme for improving buck converter light load efficiency
A deadtime control scheme for improving buck converter light load efficiency.
US11716022B2 Hybrid buck-boost power converter with embedded charge pump
A power converter is disclosed. The power converter includes a switching circuit coupled to a capacitor and further coupled to a regulated power supply node via an inductor. The switching circuit is configured to magnetize the inductor, using the capacitor, in response to activation of a first control signal, and further configured to charge the capacitor, using an input power supply, in response to activation of a second control signal. A control circuit is configured to activate the first control signal based on a comparison of a first threshold value and a current flowing in the inductor. The control circuit is further configured to activate the second control signal based on a comparison of a second threshold value and the current flowing in the inductor.
US11716021B1 Power converter for providing negative voltage
A power converter for providing a negative voltage is provided. A coupling controller circuit receives a digital control signal and provides a control signal. A reverse voltage converter circuit receives the control signal and provides a reverse voltage. The reverse voltage converter circuit includes a first switch, a second switch, a third switch, a fourth switch, a fifth switch, a seventh switch, an eighth switch, a coupling control signal triggering circuit and a pulse width modulation circuit. A first reverse logic circuit is connected to a second reverse logic circuit. The second reverse logic circuit is connected to the pulse width modulation circuit and is configured to provide a trigger signal to the pulse width modulation circuit. The pulse width modulation circuit turns on or off the reverse voltage converter circuit according to the trigger signal.
US11716020B2 SCC-based DC-DC power conversion system capable of receiving switching control adjustable by output voltage thereof, and power conversion method thereof
A DC-DC power conversion system includes a resonant switched-capacitor converter and a controller. The resonant switched-capacitor converter is switched between a first state and a second state to generate an output voltage, and includes an input terminal, a resonant tank, an output capacitor, a first set of switches and a second set of switches. The input terminal is used to receive an input voltage. The output capacitor is used to generate the output voltage. The first set of switches is turned on in the first state and turned off in the second state according to a first control signal. The second set of switches is turned on in the second state and turned off in the first state according to a second control signal. The controller adjusts the first control signal and the second control signal according to the output voltage.
US11716013B2 Active inrush current limitation and hold-up time extension circuit
A Buck-Boost converter includes an input node to receive a supply voltage and a supply current, an output node, an inductor, capacitors including a load capacitor and a helper capacitor, and transistors to configure the Buck-Boost converter to: when the supply voltage is turning ON, operate in a Buck mode to (a) in a first cycle, use the supply current to charge the capacitors and an inductor magnetic field, and (b) in a second cycle, without using the supply current, discharge the inductor and the capacitors through the output node, to limit an inrush current; and when the supply voltage is turning OFF, operate in a Boost mode to (c) in a third cycle, cause the helper capacitor, but not the load capacitor, to charge the magnetic field, and (d) in a fourth cycle, discharge the inductor, and the capacitors, through the output node, to extend a voltage hold-up time.
US11716011B2 Communication control circuit for power supply chip
A communication control circuit for a power supply chip, can include: a main control die having a main control circuit; a plurality of sub-control dice configured to respectively receive a control signal sent by the main control die, where each sub-control die comprises a sub-control circuit; and where a reference ground of each sub-control die is different from a reference ground of the main control die, the reference grounds of the plurality of sub-control dice are different with each other, and communication between the main control die and each sub-control die is achieved by a corresponding level conversion circuit.
US11716010B2 Driving control circuit, method and device for gallium nitride (GaN) transistor, and medium
The present disclosure relates to a driving control circuit, method and device for a gallium nitride (GaN) transistor, and a medium. An ADriver pin and an electronic switch are added to an existing flyback power supply circuit. The electronic switch includes a first terminal connected to the ADriver pin, a second terminal connected between a driving resistor and a GaN transistor, and a third terminal connected between a current detection resistor and a current sense pin. By improving the driving control circuit and the driving control method for the GaN transistor, the present disclosure can effectively prevent the false turn-on problem due to high-frequency oscillation between the leakage inductance of the transformer and the parasitic capacitance after the GaN transistor is turned off, and drives the GaN transistor more reliably.
US11716007B2 System of one or multiple contactless eddy current generators on conductive counter elements in a performance-optimised arrangement relative to one another, and uses thereof in
By means of the system described, the use of eddy current generators on vehicles, especially bicycles, can be simplified by easier integration into standardized components such as brake pads, making them more suitable for everyday use. The problem of overcoming the magnetic holding forces at low speeds is essential for cyclists, as these would otherwise rule out the use of such systems in everyday traffic due to the lack of power generation when starting off at low speed. The integration into brake pads provides a significant advantage, as a new functionality is achieved without the need for additional components. The claimed additional functions for signalling contribute to increased traffic safety, especially for two-wheel traffic.
US11716002B2 Switched reluctance motor
A stator assembly has coils in a distributed winding configuration. A poly-phase switched reluctance motor assembly may include a stator assembly with multiple coils in a distributed winding configuration. The stator assembly may have a central bore into which a rotor assembly having multiple poles is received and configured to rotate. A method of controlling a switched reluctance motor may include at least three phases wherein during each conduction period a first phase is energized with negative direction current, a second phase is energized with positive current and there is at least one non-energized phase. During each commutation period either the first phase or second phase switches off to a non-energized state and one of the non-energized phases switches on to an energized state with the same direction current as the first or second phase that was switched off. The switched reluctance motor may include a distributed winding configuration.
US11716000B2 Method for manufacturing rotor for rotor electric machine
A method of manufacturing a rotor for a rotating electric machine. The rotor includes a rotor core and at least one magnet fixed in at least one magnet fixing portion provided in the rotor core. The method includes: (a) placing the at least one magnet and at least one fixing member in the at least one magnet fixing portion such that each of the at least one fixing member is positioned between a corresponding one of the at least one magnet fixing portion and a corresponding one of the at least one magnet; and (b) applying an electric current to the at least one magnet to heat the at least one fixing member by heat generated by an electrical resistance of the at least one magnet, and fixing the at least one magnet to the at least one magnet fixing portion through the heated at least one fixing member.
US11715999B2 Method of making a laminated stator of an axial flux motor
A method to make a stator lamination of an axial flux motor for an automobile vehicle includes: constructing a stator having multiple stator stack members, including: providing a stator lamination with individual ones of the stator stack members; forming the stator lamination from a single lamination sheet of steel defining a sinuous-shaped assembly having multiple bends; compressing the stator lamination; and machining the stator lamination to create a first edge by removing a first portion of the multiple bends and to create a second edge opposite to the first edge by removing a second portion of the multiple bends.
US11715996B2 Fan motor with heatsink and opposed guide for cooling airflow
A circuit board includes a board body disposed on the opposite side of a plate-shaped portion of a center piece to a stator, and a heat generating element mounted to a surface on the plate-shaped portion side of the board body and disposed inside a radial direction range of a rotor housing. A heat-dissipation portion of a heatsink is on the plate-shaped portion side of the circuit board such that the heat-dissipation portion contacts the heat generating element either directly or through a thermally conductive material. A guide that opposes the heat-dissipation portion in an axial direction of a motor unit is formed at the plate-shaped portion. The guide forms an airflow guiding path between itself and the heat-dissipation portion, the airflow guiding path being shaped so as to guide air taken in through an air intake port from the radial direction outside toward a center of the motor unit.
US11715992B2 Air outlet sound absorber for a rotating electrical machine
A rotating electrical machine such as a generator has a rotor disposed within a rotor housing and an air flow path passing from the rotor housing to and through a silencer to an exhaust. The silencer comprises at least one air flow path disposed adjacent at least one sound absorbing column, the column comprising a first portion having a first sound absorbing material therein and a second portion having a microperforated panel (MPP) and a resonator cavity. The second portion comprises a reactive sound absorbing unit which can be specifically tuned to suppress aero-acoustic noise generated by ventilation slots in the rotor, typically peaks at 100 Hz or 120 Hz.
US11715991B2 Brushless motor
To provide a brushless motor with a simple configuration, which has accomplished size reduction.An inner rotor brushless motor having a rotor in a center of a cylindrical stator includes: three bus bars on one end side of the stator in an axial direction thereof, the bus bars connecting three phase coils provided to the stator on a phase-by-phase basis; a bottomed tubular connector portion adjacent to a housing that houses the stator and the rotor; a plurality of connector terminals fixed, penetrating a bottom portion of the connector portion, the plurality of connector terminals being exposed to an internal space of the connector portion; and a board stretching from the one end side of the stator in the axial direction to the bottom portion side of the connector portion, the board being configured to electrically connect an end of each of the bus bars and the penetrating connector terminal.
US11715990B2 Electric compressor
There is provided an electric compressor in which the connection strength between an inverter circuit section and an electrical circuit section connected thereto by a connection terminal is improved. An inverter circuit section (3) includes an inverter control board (17) and a resin-molded sleeve assembly (18). In the sleeve assembly, a sleeve (32) and a terminal connection portion (23) are integrally resin-molded in a state in which a screw groove portion is protruded. The inverter control board (17) and a filter side connection terminal (71) of a filter circuit section (4) are fastened together to the terminal connection portion with a nut (92) screwed into the screw groove portion, whereby the inverter control board 17 and the filter circuit section 4 are electrically connected.
US11715989B2 Electronic control device and electric drive device
An element-side connection terminal (40) extending from a power conversion circuit unit (16) includes a first connection terminal portion (40A) that extends in a direction intersecting a direction of extension of a counterpart-side connection terminal (38); and a second connection terminal portion (40B) that is bent at a point before the first connection terminal portion (40A) reaches the counterpart-side connection terminal (38) in a direction to intersect the direction of extension of the counterpart-side connection terminal (38) such that the second connection terminal portion (40B) is provided with elasticity and is in an elastic contact with the counterpart-side connection terminal (38) at an angle. A tip end side (38T) of the counterpart-side connection terminal (38) and a tip end side (40T) of the second connection terminal portion (40B) are electrically joined.
US11715987B2 Motor with stator and motor housings having at least two seal members
In a motor, a motor housing includes a motor housing main body having a cylindrical portion and a lid portion holding a first bearing, a cover holding a second bearing, a stator housing forming a radial flow path, first and second seal members, and a positioning portion for radially positioning the motor housing main body and the cover. The stator housing includes a stator housing main body and a flange portion positioned between the motor housing main body and the cover in the axial direction. The first seal member seals a gap in the radial direction between the cylindrical portion and the stator housing main body. The second seal member seals a gap in the axial direction between the motor housing main body and the flange portion. The positioning portion positions the stator housing in the radial direction with respect to the motor housing main body and the cover.
US11715983B2 Magnetic alignment systems for electronic devices
A magnetic alignment system can include a primary annular magnetic alignment component and a secondary annular magnetic alignment component. The primary alignment component can include an inner annular region having a first magnetic orientation, an outer annular region having a second magnetic orientation opposite to the first magnetic orientation, and a non-magnetized central annular region disposed between the primary inner annular region and the primary outer annular region. The secondary alignment component can have a magnetic orientation with a radial component.
US11715981B2 Electronic device for wirelessly transmitting or receiving power and method for operating the same
An electronic device includes a power transmitting circuit configured to transmit power to a wireless power receiver, a communication circuit configured to perform communication with the wireless power receiver, and a control circuit configured to control the power transmitting circuit to apply first power to a coil of the power transmitting circuit, control the power transmitting circuit to stop applying the first power and to prevent power from being applied to the coil during a first period, identify a first Q-factor during the first period, control the power transmitting circuit to apply, to the coil, a second power based on a calibration operation for identifying at least one parameter used for identifying a power loss during power transmission, control the power transmitting circuit to stop applying the second power and to prevent power from being applied to the coil during a second period, identify a second Q-factor during the second period, and identify a validity of the at least one parameter based on the first Q-factor or the second Q-factor.
US11715975B2 Method for remotely monitoring failed surge arrester disconnectors and energy harvester for autonomous power supply of monitoring devices installed on surge arresters
A method of remotely monitoring a status of a surge arrester disconnector includes providing a long-range wireless mesh communication system including a plurality of disconnectors organized in a plurality of clusters. Each cluster includes a plurality of disconnectors that are physically located within a same cluster area. At least one of the disconnectors in each cluster is coupled to a communication device of a predetermined communication range. The method includes transmitting, from a first cluster, a status signal indicative of a status of a first disconnector in the first cluster to a second cluster located within the predetermined communication range, and consecutively transmitting the status signal from the second cluster to a third cluster within the predetermined communication range, until reaching an end cluster. The method includes transmitting, from the end cluster, the status signal to a monitoring station, and monitoring the status of the first disconnector at the monitoring station based on a result of transmission of the status signal.
US11715974B2 Versatile uninterruptable power supply
Systems, apparatuses, and methods are described for a versatile UPS. The versatile UPS is operative to provide power to a load and to an interconnected network for delivering electricity from producers to consumers (i.e., an electricity grid, or simply, “a grid”). The versatile UPS has a plurality of switches providing for a multiplicity of switching states. The output to the load, the grid, or both is dependent, at least in part, on the switching states. Related systems, methods and apparatus is also described.
US11715973B2 Dual output uninterruptible power supply
An uninterruptible power supply (UPS) includes a rectifier configured to receive alternating current (AC) power. The UPS further includes a first output connected to the rectifier through an inverter. The first output is configured to output an AC power supply. The UPS also includes a second output connected to the rectifier through a battery backup and a stepdown converter. The second output is configured to output a direct current (DC) power supply in response to a detected power anomaly condition, thereby providing extra redundancy that allows for increased power availability and uptime.
US11715972B2 External and internal power management for embedded electronic devices
A power management system is provided to manage internal and external power sources for an embedded electronic device. The power management system includes an internal power source and an external power source. The power management system determines when to power the internal embedded electronic device or devices from either the internal or external power source, when to recharge the internal power source, when to shut down the internal embedded electronic device so as not to over discharge and damage the internal power source when external power is not available.
US11715967B2 Surface cleaning apparatus, and a charging unit therefor
A surface cleaning apparatus, such as a portable surface cleaning apparatus is powered by one or more ultracapacitors and a charging unit for same is provided.
US11715966B1 Battery harvesting adapter
The present invention includes a battery harvesting adapter configured to connect to a plurality of batteries operable to power a plurality of radios. The plurality of radios includes a PRC-148, a PRC-152, and a PRC-163 radio. The battery harvesting adapter is further configured to capture power from a battery and transfer the power to a radio, a battery, a portable power case, a DC-DC converter, and other equipment.
US11715965B2 Charging device and charging system
A charging device and a charging system are provided. The charging device includes a charging portion and a plurality of magnetic attracting portions. The plurality of magnetic attracting portions are arranged symmetrically with respect to the charging portion. Each of the plurality of magnetic attracting portions includes an N pole and an S pole. At least one of the N poles and/or at least one of the S poles serves as an attracting function pole of the magnetic attracting portion, and a pair of attracting function poles symmetrical with respect to the charging portion are different in polarity.
US11715963B1 Battery storage container and wellness system
A battery storage container and wellness system designed for transporting, charging and storing batteries. The container having a plurality of compartments for storing and charging batteries, the compartments arranged in stacked vertical columns that are separated from each other by air-gaps. The battery storage container and wellness system also includes automatic fire suppression capabilities to prevent the propagation of cell-to-cell fires and other heat and energy related destructive events. The fire suppression capabilities include the air-gaps to prevent column-to-column spreading of fires. The storage container and wellness system also includes sensors for sensing fires, and a system for the application of fire mitigation fluids, for the exhausting of combustion gasses, and power shut-off means, in the event of a fire.
US11715962B2 Charging device, charging method, and charging system
To reliably connect a device to be charged such as a robot and a charging device. There is provided a charging device including a charging stand having a charging terminal to be connected to a device to be charged and an engaging portion that performs positioning with the device to be charged, and a support member that supports the charging stand movably in the horizontal direction. With this configuration, the charging stand can be moved in the horizontal direction. Therefore, it is possible to reliably connect the device to be charged such as a robot and the charging device.
US11715961B2 Hybrid battery system and method
A switching-mode power system and method utilizing a rechargeable primary higher-current density energy cell and a rechargeable secondary lower-current density cell are disclosed. The system and method employ a collection of switches that are dynamically actuated so as to selectively interconnect and repurpose a minimal arrangement of components. This facilitates the selective provision of power to a portable device or system from a rechargeable primary high-current density energy cell or a rechargeable secondary lower-current density cell. In addition, by selectively actuating the switches, the switching-mode power supply is enabled to a) permit the secondary lower-current density cell to quickly attain a charge level suitable for device/system operation when connected to a charging station/power source, b) charge the primary high-current density energy cell, and c) employ the charged secondary lower-current density cell to charge the primary high-current density energy cell when disconnected from the charging station/power source.
US11715958B2 System and method for power control of an inverter-based resource with a grid-forming converter
A method for controlling an inverter-based resource (IBR) having a power converter connected to an electrical grid includes receiving a first power limit signal for the IBR from an external controller, receiving a second power limit signal for the IBR, and determining a constrained power limit signal based on the first and second power limit signals. The method also includes applying a first frequency droop function to the constrained power limit signal and determining at least one of a power reference signal or a pitch reference signal for the IBR as a function of an output of the first frequency droop function and the constrained power limit signal. Further, the method includes determining one or more control commands for the IBR based on at least one of the power reference signal or the pitch reference signal and controlling the IBR based on the control command(s) so as to support a grid frequency of the electrical grid within power available at the IBR.
US11715955B2 Virtual synchronous generator with active damping
The invention relates to a method for controlling a power generating unit such as a wind turbine which is configured as a virtual synchronous machine. Capacitor voltage signals obtained from voltage measurements of output capacitors are filtered in order to reduce a magnitude of an impedance peak and/or shift the impedance peak where the impedance peak is present in an impedance characteristic of the output of the power generating unit. Filter compensated voltage signals obtained from the output capacitors are combined with a voltage magnitude reference to obtain filtered capacitor voltage signals used for controlling the line side converter and thereby affect the impedance peak in a desired way.
US11715952B2 System and method of managing energy distribution using a distributed ledger
An electricity distribution system includes a peer-to-peer decentralized ledger network and a plurality of distributed ledger nodes in communication within the peer-to-peer decentralized ledger network. At least one distributed ledger node of the plurality of distributed ledger nodes includes a processor that aids in executing peer-to-peer energy and financial transactions between energy suppliers and energy buyers. The processor is programmed to schedule at least one of supply of electricity from one of a plurality of available energy sources to an on-site load based on predetermined demand parameters set by an energy buyer and delivery of electricity generated by a distributed energy resource to an external load based on predetermined supply parameters set by an energy supplier.
US11715950B2 Sustainable energy physical delivery tracking and verification of actual environmental impact
Apparatus and associated methods relate to automatically load matching, in time, energy physically generated and transmitted to a consumption location across at least one tracking and processing infrastructure. In an illustrative example, a load pool (LP) may be created based on energy consumed at a physical location at one or more selected time periods. A generation pool (GP) may, for example, be created based on energy generated and physically available for consumption at the physical location during the time periods. Associations may be created, for example, between measurements in the GP of energy generated and transmitted and measurements in the LP of energy consumed. The associations may be created as a function of predetermined privileges associated with the consumption location and generation locations and/or physical transmission links corresponding to the GP during the time periods. Various embodiments may advantageously determine environmental impact based on location and time-based load matching.
US11715949B2 Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
Power distribution modules are configured to distribute power to a power-consuming component(s), such as a remote antenna unit(s) (RAU(s)). By “hot” connection and/or disconnection, the power distribution modules can be connected and/or disconnected from a power unit and/or a power-consuming component(s) while power is being provided to the power distribution modules. Power is not required to be disabled in the power unit before connection and/or disconnection of power distribution modules. The power distribution modules may be configured to protect against or reduce electrical arcing or electrical contact erosion that may otherwise result from “hot” connection and/or connection of the power distribution modules.
US11715945B2 Hybrid arc flash mitigation system
A system including an arc flash sensor that detects an arc flash event and an arc flash mitigation device in communication with the sensor. The mitigation device includes a path of least resistance having a path input and a path output. The arc flash sensor is located downstream the output. The mitigation device includes an electro-mechanical switch between the input and the output and an actuator. The mitigation device also includes a bypass power switch device that includes a solid-state circuit interrupter and that conduct current between the input and the output in response to an open-circuit condition of the switch. A system controller is provided to generate a trigger to activate the actuator to generate the open-circuit condition of the switch, which causes the power switch device to interrupt a fault current associated with a fault event in response to detection of the arc flash event.
US11715944B1 Expandable cord protector
A cord protector with an elongated body and a coupler that joins the elongated body to an adjacent elongated body to form an elongated cord protector system. The elongated body has a base and a lid. The base has a channel extending between a first end and a second end. The base also has ridges that extend into the channel, a cavity configured to mate with the coupler, and a central pillar that extends from the floor into the channel along a majority of the channel. The lid is configured to be inserted into the channel. The lid has two grooves that are sized and shaped to receive one of the ridges. The lid also has a slot configured to receive the top of the central pillar when the lid is inserted into the channel. The central pillar supports the lid when the lid is inserted into the channel.
US11715942B2 Edge adapter for electrical box extension rings
An edge adapter for electrical box extension rings or extenders operably configured to prevent injury or damage to electrical circuit wires and individuals manipulating the same, and comprising an adapter body of a polymeric material, with a front edge, a rear edge, a sidewall, and enclosing and defining an adapter channel, and with a first plurality of retention flanges radially projecting from, and disposed in a tightly-spaced configuration on, an outer wall surface on a first side of the adapter body, the first plurality of retention flanges defining a first retention slot; and a second plurality of retention flanges radially projecting from, and disposed in a tightly-spaced configuration on, an outer wall surface on a second side of the adapter body opposing the first side of the adapter body, the first and second plurality of retention flanges selectively removably coupled to the electrical box extension ring in a retained configuration.
US11715940B2 Circular cutting unit and drive for multilayer wire
A circular cutting unit for partially cutting one or more layers of a cable or wire along a cutting plane. The circular cutting unit include a knife head including a drive disc and an adjustment disc that are each rotatable about a disc axis. A pair of knife holders that each include a knife blade are pivotally mounted to the drive disc. Relative rotation of the adjustment disc relative to the drive disc causes the knife holders to pivot causing movement of the knife blades toward or away from each other. The circular cutting unit includes a primary drive assembly and an adjustment drive assembly that are each separately operable. The primary drive assembly rotates the knife head at the cutting speed and the adjustment drive assembly rotates the adjustment disc relative to the drive disc.
US11715937B2 Switchgear or control gear
A switchgear or control gear includes: at least one first compartment; at least one second compartment; a plurality of main switchgear or control gear components including a main busbar system, a three position linear or rotational movement disconnector, a circuit breaker, and at least a first part of an insulated cable connection; and a plurality of auxiliary switchgear or control gear components including a disconnector drive and a circuit breaker drive. The plurality of main switchgear or control gear components are housed in the at least one first compartment. The plurality of auxiliary switchgear or control gear components are housed in the at least one second compartment. When one or more of the plurality of main switchgear or control gear components is energized, the at least one first compartment is hermetically sealable or maintainable at an internal air pressure greater than ambient air pressure.
US11715930B2 Multi-pulse generation for pulsed laser diodes using low-side drivers
A system for controlling a pulsed laser diode includes a power source configured to supply power to the pulsed laser diode and at least one driving branch between the power source and the pulsed laser diode. The at least one driving branch is configured to control power delivery from the power source to the pulsed laser diode. The at least one driving branch is connected to a cathode of the pulsed laser diode.
US11715926B2 Bidirectional mode-locked fiber laser and associated methods
A bidirectional mode-locked fiber laser includes first and second passive optical fibers, a doped optical fiber, first and second polarization controllers, and first and second polarized beamsplitters that are arranged as a ring cavity with clockwise (CW) and counter-clockwise (CCW) directions. The laser imparts different nonlinear phase shifts in the CW and CCW directions, corresponding to CW and CCW repetition rates that are slightly different. When the normalized difference in repetition rates is less than approximately 10−5, both directions can be mode-locked simultaneously, thereby preventing one direction from inhibiting mode-locking of the other direction. Optical-fiber nonlinearity implements an intra-cavity bidirectional artificial saturable absorber based on nonlinear polarization rotation. The laser uses only components with normal group-velocity dispersion (GVD), thereby achieving higher pulse energies than mode-locked lasers utilizing negative GVD. The combination of artificial saturable absorber and normal GVD components increases pulse energy, which improves the efficiency of spectral broadening.
US11715917B1 Powered wall plate
A powered wall plate with a plug-in module having an electrical plug and an module cover. The electrical plug has at least two electrical prongs that are configured to removably mate with an electrical receptacle. The module cover is located adjacent to the electrical plug and has a surround configured to extend around a portion of the perimeter of the wall plate, an LED light located along a bottom edge of the module cover, a USB port exposed on a surface of the module cover, and a circuit contained within the module cover and configured to supply power to the USB port and the LED light when power is supplied to the electrical prongs. The wall plate has a first mounting screw aperture and the plug-in module has a second mounting screw aperture that receive a mounting screw, attaching the plug-in module to the wall plate and the electrical device.
US11715914B2 High speed, high density electrical connector with shielded signal paths
A modular electrical connector with separately shielded signal conductor pairs. The connector may be assembled from modules, each containing a pair of signal conductors with surrounding partially or fully conductive material. Modules of different sizes may be assembled into wafers, which are then assembled into a connector. Wafers may include lossy material. In some embodiments, shielding members of two mating connectors may each have compliant members along their distal portions, such that, the shielding members engage at points of contact at multiple locations, some of which are adjacent the mating edge of each of the mating shielding members.
US11715913B2 Adapter electrical connector connecting two circuit board connectors
An adapter connector includes a terminal assembly, a first adapter housing and a second adapter housing. The terminal assembly includes a first terminal clamping portion at a first end and a second terminal clamping portion at a second end. The first adapter housing includes a number of first receiving grooves for receiving the first terminal clamping portion. The second adapter housing includes a number of second receiving grooves for receiving the second terminal clamping portion. The terminal assembly is provided with a first lock assembly locked with the first adapter housing and a second lock assembly locked with the second adapter housing. This arrangement facilitates the assembly of the adapter connector.
US11715910B2 Connector having paired signal contacts surrounded by conjoined grounding contacts
An electrical connector includes an insulative housing with plural passageways arranged in a hexagonal dense manner. Plural signal contacts and grounding contacts are disposed in the corresponding passageways, respectively, in a mixed manner wherein each pair of signal contacts are surrounded by eight grounding contacts. Some grounding contacts are aligned with one another along a row direction and linked together via a transverse bar, and a pair of extensions extend from the two opposite ends of the transverse bar in a column direction perpendicular to the row direction so as to have the pair of signal contacts essentially fully enclosed and shielded within a region with the boundary defined by a combination of the grounding contacts and the transverse bars.
US11715908B2 Electrical connector for a photovoltaic module
An electrical connector includes an electrical connector body and a collar circumferentially surrounding an external surface of the electrical connector. The collar includes a hollow collar body that receives at least a portion of the electrical connector body, the collar body having a cable end and a free end. One or more fingers extend from the free end of the collar body to physically prevent incorrect mating with another corresponding component.
US11715907B2 Electrical connector with fool-proof function
The present disclosure discloses an electrical connector including an insulating body, a number of conductive terminals and a shielding shell. The insulating body includes a mating surface and a slot. Each conductive terminal includes a contact portion extending into the slot. A receiving groove for receiving a part of a mating connector is formed between the shielding shell and the insulating body. The receiving groove is located outside the slot. The electrical connector further includes a first outer surface and a fool-proof protrusion protruding beyond the first outer surface in a direction perpendicular to an insertion direction of the mating connector. The first outer surface and the receiving groove are located on two opposite sides of the slot, respectively. The fool-proof protrusion is adapted to prevent the mating connector from being inserted into the electrical connector at a wrong angle.
US11715906B2 Connector
A connector 10 includes a board-side housing 21 to be installed on a circuit board 100, and mating housings 61A, 61B to be connected to the board-side housing 21. The board-side housing 21 includes front and back walls 26, 27, left and right walls 28, 29 and accommodation chambers 32A, 32B arranged between the front and back walls 26, 27 and between the left and right walls 28, 29 and open upward. The mating housings 61A, 61B include protruding portions 78 exposed above the board-side housing 21 and protruding toward both front and back sides beyond the front and back walls 26, 27 with the mating housings 61A, 61B accommodated in the accommodation chambers 32A, 32B.
US11715899B2 Electrical connector assembly with internal spring component
An electrical connector assembly for electrically and mechanically connecting a component to a power source is disclosed. The connector assembly includes a male terminal with side walls defining a receiver. The side wall includes a contact arm that extends across an aperture in the side wall. The assembly also includes an internal spring member dimensioned to reside within the receiver of the male terminal. The spring member has at least one spring arm that extends from a base portion. The assembly further includes a female terminal with a receptacle dimensioned to receive both the male terminal and the spring member residing within the receiver of the male connector to define a connected position. In the connected position, the spring arm exerts an outwardly directed biasing force on the contact arm of the male terminal to outwardly displace it into engagement with an inner surface of the receptacle to ensure connectivity.
US11715896B2 Printed circuit board coaxial connector
A coaxial connecting member (1) for transmitting radio-frequency signals between a first and a second circuit board (2, 3) includes an inner conductor (4), an outer conductor (5) and an insulating member (6) arranged between the inner conductor (4) and the outer conductor (5). The inner conductor (4) and/or the outer conductor (5) comprise a first and a second end section (7, 8) to interconnect the inner conductor (4) to the first and the second circuit board (2, 3). The first and the second end section (7, 8) are interconnected to each other by at least one elastically deformable transversal section (9) to compensate axial and/or lateral misalignment of the first and the second circuit board (2, 3) with respect to each other.
US11715895B2 Methods for making electrical connectors with an electrical interposer
A method for manufacturing electrical connector assemblies is disclosed. The electrical connector assemblies include an electrical interposer and a first electrical receptacle. The method includes positioning a fixture coupled to or including an array of the first electrical receptacles such that each of the first electrical receptacles aligns with one of the electrical interposers on an assembly with an array of the electrical interposers. The method further includes reflowing solder to mechanically and electrically couple the array of the first electrical receptacles to the array of the electrical interposers.
US11715892B2 High frequency electrical connector assembly
A connector assembly that includes a receptacle with inner and outer shells which have a front end for mating with a mating connector and a back end configured to connect to a printed circuit board. Receptacle primary and secondary ground connections are located on one of the shells. A plug with an outer shell that supports a pin contact to mate with the socket contact. The outer shell of the plug has a front end for mating with the front end of the receptacle and a back end that is configured to connect to a coaxial cable. Plug primary and secondary ground connections are located on the outer shell. When the receptacle and plug are mated, the primary ground connections form a primary grounding path through the assembly and the secondary ground connections form a secondary grounding path through the assembly, thereby electrically connecting the plug with the board.
US11715890B2 Wireless transceiver having receive antennas and transmit antennas with orthogonal polarizations in a phased array antenna panel
A wireless communications system includes a first transceiver with a first phased array antenna panel having horizontal-polarization receive antennas and vertical-polarization transmit antennas, where the horizontal-polarization receive antennas form a first receive beam based on receive phase and receive amplitude information provided by a first master chip, the vertical-polarization transmit antennas form a first transmit beam based on transmit phase and transmit amplitude information provided by the first master chip. The wireless communications system may include a second transceiver having vertical-polarization receive antennas and horizontal-polarization transmit antennas in a second phased array antenna panel, where the vertical-polarization receive antennas form a second receive beam based on receive phase and receive amplitude information provided by a second master chip, the horizontal-polarization transmit antennas form a second transmit beam based on transmit phase and transmit amplitude information provided by the second master chip.
US11715889B2 Slow wave structure for millimeter wave antennas
Length matching and phase matching between circuit paths of differing lengths is disclosed. Two signals are specified to arrive at respective path destinations at a predetermined time and with a predetermined phase. An IC provides a first electronic signal over a first conductive path to a first destination and a second electronic signal over a second conductive path to a second destination. A first slow wave structure comprises the first conductive path and a second slow wave structure comprises the second conductive path. The effective relative permittivity of the first slow wave structure is tuned such that the first electronic signal arrives at its destination at a first time and at a first phase, and the effective relative permittivity of the second slow wave structure is tuned such that the second electronic signal arrives at its destination at a second time and at a second phase.
US11715875B2 Individual rotating radiating element and array antenna using the same
Disclosed is an individual rotating radiating element which causes an electrical phase change with the mechanical rotary motion of a rotating radiating element and an array antenna using the same. The individual rotating radiating element comprises an auxiliary structure formed of a dielectric, a helix element inserted into a spiral groove on a side surface of the auxiliary structure, a ground plate coupled to a lower surface of the auxiliary structure; a driving unit including an opening in which the ground plate is placed and rotating the auxiliary structure, and a spatial electromagnetic coupling structure having a first feed pin and a second feed pin electromagnetically coupled each other during power feeding is inserted through a lower surface spaced apart from the upper surface with an inner space therebetween.
US11715871B2 Iris heater structure for uniform heating
An antenna has radio-frequency (RF) antenna elements and two substrates. A heater structure is connected to at least one of the two substrates, for heating the RF antenna elements. In one embodiment, the antenna comprises: a physical antenna aperture having an array of radio frequency (RF) antenna elements formed with patch and iris substrates, the iris substrate having a plurality of layers including an iris metal layer; and a heater structure coupled to one or more of the plurality of layers of the iris substrate for heating the RF antenna elements.
US11715867B2 End cover assembly, battery cell, battery module and device
The embodiments of the application provides an end cover assembly, a battery cell, a battery module and a device, the end cover assembly is used for the battery cell, the end cover assembly includes an end cover; an electrode terminal disposed on the end cover; an insulating member for insulating the electrode terminal and the end cover and disposed to surround the electrode terminal; wherein the insulating member abuts the electrode terminal, at least one of the insulating member and the electrode terminal is provided with a stress relief groove, the stress relief groove is configured to absorb stress generated by the electrode terminal's abutting the insulating member.
US11715863B2 Solid polymer matrix electrolytes (PME) and methods and uses thereof
The present disclosure provides methods of preparing a solid-state polymer matrix electrolyte (PME) and methods for preparing a PME precursor solution for forming the PME for use in battery technologies.
US11715858B1 Mobile swappable battery for a powered workstation
Mobile swappable battery for a powered workstation. In an embodiment of a mobile swappable battery sized for detachable coupling with a base of a powered workstation of the present disclosure, the battery comprises a wheeled housing enclosing a portion of the battery, wherein the wheeled housing comprises at least two wheels attached to a bottom side of the housing, and a collapsible handle for pushing and guiding the wheeled housing into detachable alignment with a battery guide in the base of the powered workstation.
US11715854B2 Fastener-free battery modules
A battery system includes battery cells arranged and adhered to a carrier. One or more side walls are bonded with adhesive to the battery cells to provide support, and a current collector assembly is also adhered on one axial side of the battery cells. One or more dividers may be included to maintain electrically isolation between the parallel connected battery cell groups. The other axial side of the battery cells is adhered to a cooling plate. A similar structure is bonded with adhesive to the other side of the cooling plate to form a compact battery system. Shear walls, busbars, terminal busbars, and an isolation bracket with a mounted Electronic Control Unit are bonded with adhesive to the assembly to form the battery system. Each adhesive, or type of adhesive, may exhibit specified criteria and requirements such as strength, thermal conductivity, electronic conductivity, curing requirements, or a combination thereof.
US11715851B2 Battery module and vehicle including the same
A battery module, a vehicle, and a method of manufacturing a battery module, the battery module including a housing accommodating a plurality of secondary batteries; and a thermoelectric element assembly on the housing and in contact with the plurality of secondary batteries through at least one contact opening in the housing, the thermoelectric element assembly being configured to heat or cool the plurality of secondary batteries.
US11715850B2 Battery thermal management system
A battery cell thermal management assembly includes: a body structure including a plurality of cell-shaped recesses configured to receive a plurality of battery cells; and a thermal management passage positioned within the body structure and configured to circulate a thermal management fluid to extract internally-generated thermal energy from the plurality of battery cells.
US11715847B2 Connection assembly for use in battery module and battery module
Disclosed are a connection assembly for a battery module and a battery module. The connection assembly for a battery module has a housing body, a cover plate and an openable and closable door, wherein the housing body is used for supporting a plurality of components; the cover plate covers the housing body and used for covering the plurality of components on the housing body; the cover plate is provided with a second through-hole, and the second through-hole positionally corresponds to at least one of the plurality of components; the openable and closable door is movably mounted on the cover plate, and is positionally changeable between an open position and a closed position; wherein in the open position, the openable and closable door opens the second through-hole to expose the at least one of the plurality of components; and in the closed position, the openable and closable door shields at least part of the second through-hole to cover the at least one of the plurality of components on the body. A contact state between a temperature sensor and a cell can be examined by means of the second through-hole.
US11715846B2 Method of manufacturing square secondary battery
A method of manufacturing a secondary battery including an electrode body element fabricating step in which a first electrode body element including a positive electrode plate and a negative electrode plate, and a second electrode body element including a positive electrode plate and a negative electrode plate are fabricated, a tab-connecting step in which a first positive electrode tab group of the first electrode body element and a second positive electrode tab group of the second electrode body element are connected to a second positive electrode collector, and a first negative electrode tab group of the first electrode body element and a second negative electrode tab group of the second electrode body element are connected to a second negative electrode collector, and an electrode body fabricating step in which, after the tab-connecting step, the first electrode body element and the second electrode body element are unified.
US11715841B2 Fuel cell stack combining method
A fuel cell system includes fuel cell modules connected in parallel and each including fuel cell stacks connected in series. A tester includes: an output power acquirer that acquires an output power value for each fuel cell stack; a deterioration estimator that estimates a degree of future deterioration for each fuel cell stack; and a future output power estimator that estimates, for each fuel cell stack, a future output power value, which is a value of power that is likely to be outputted after a specific period of time has passed, based on the degree of future deterioration estimated by the deterioration estimator. The fuel cell stack combining method includes determining combinations of the fuel cell stacks based on differences in the output power value between the fuel cell stacks and differences in the future output power value between the fuel cell stacks.
US11715840B2 Internally manifolded flow cell for an all-iron hybrid flow battery
In one example, a system for a flow cell for a flow battery, comprising: a first flow field; and a polymeric frame, comprising: a top face; a bottom face, opposite the top face; a first side; a second side, opposite the first side; a first electrolyte inlet located on the top face and the first side of the polymeric frame; a first electrolyte outlet located on the top face and the second side of the polymeric frame; a first electrolyte inlet flow path located within the polymeric frame and coupled to the first electrolyte inlet; and a first electrolyte outlet flow path located within the polymeric frame and coupled to the first electrolyte outlet. In this way, shunt currents may be minimized by increasing the length and/or reducing the cross-sectional area of the electrolyte inlet and electrolyte outlet flow paths.
US11715838B2 Fuel cell startup/shutdown degradation mitigation by removal of oxygen ad/absorption media
Aspects of methods and systems to reduce degradation of a fuel cell (110) during start-up and shut-down cycles are disclosed. An anode exhaust stream (201′) is periodically directed via fluid communication through an oxygen capture media (86). After shut-down of the fuel cell and before or during start-up said media (86) removes oxygen in the anode exhaust stream. Periodically, heating the oxygen capture media (86) is employed to purge the oxygen collected and regenerate the media.
US11715834B2 Fuel cell cathode catalyst
A fuel cell catalyst for oxygen reduction reactions including Pt—Ni—Cu nanoparticles supported on nitrogen-doped mesoporous carbon (MPC) having enhanced activity and durability, and method of making said catalyst. The catalyst is synthesized by employing a solid state chemistry method, which involves thermally pretreating a N-doped MPC to remove moisture from the surface; impregnation of metal precursors on the N-doped MPC under vacuum condition; and reducing the metal precursors in a stream of CO and H2 gas mixture.
US11715833B2 Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same
A fuel cell electrode catalyst includes catalyst metal particles and electrically conductive support particles supporting the catalyst metal particles. In the fuel cell electrode catalyst, a proportion of a surface area occupied by the catalyst metal particles with particle sizes of 4.5 nm or less to a surface area of the catalyst metal particles calculated from a transmission electron microscope image is 5% or less.
US11715832B2 Electrochemically stable anode active material for lithium-ion batteries and production method
Provided is anode active material for use in a lithium ion battery, wherein the anode active material is capable of reversibly storing lithium ions therein up to a maximum lithium storage capacity Cmax during a charge or discharge of the battery and the anode active material comprises an amount of solid-electrolyte interphase (SEI) on a surface or in an internal structure of the anode active material wherein the SEI is pre-formed prior to incorporating the anode active material in an anode electrode of the battery. Also provided is a method of producing the pre-formed SEI substances in the anode material; e.g. through repeated lithiation/delithiation procedures.
US11715829B2 ϵ-VOPO4 cathode for lithium ion batteries
The epsilon polymorph of vanadyl phosphate, ε-VOPO4, made from the solvothermally synthesized H2VOPO4, is a high density cathode material for lithium-ion batteries optimized to reversibly intercalate two Li-ions to reach the full theoretical capacity at least 50 cycles with a coulombic efficiency of 98%. This material adopts a stable 3D tunnel structure and can extract two Li-ions per vanadium ion, giving a theoretical capacity of 305 mAh/g, with an upper charge/discharge plateau at around 4.0 V, and one lower at around 2.5 V.
US11715827B2 Anode interlayer for lithium batteries
An all-solid-state battery comprises a lithium anode, a cathode, solid electrolyte and a protective layer between the solid electrolyte and the lithium anode. The protective layer comprises an ion-conducting material having an electrochemical stability window against lithium of at least 1.0 V, a lowest electrochemical stability being 0.0 V and a highest electrochemical stability being greater than 1.0 V. More particularly, when the solid electrolyte is LiSiCON, the electrochemical stability window is at least 1.5 V, the lowest electrochemical stability is 0.0 V and the highest electrochemical stability is greater than 1.5 V. When the solid electrolyte is sulfide-based, the electrochemical stability window is at least 2.0 V, the lowest electrochemical stability is 0.0 V and the highest electrochemical stability is greater than 2.0 V.
US11715825B2 Electrodes, lithium-ion batteries, and methods of making and using same
Described herein are improved composite anodes and lithium-ion batteries made therefrom. Further described are methods of making and using the improved anodes and batteries. In general, the anodes include a porous composite having a plurality of agglomerated nanocomposites. At least one of the plurality of agglomerated nanocomposites is formed from a dendritic particle, which is a three-dimensional, randomly-ordered assembly of nanoparticles of an electrically conducting material and a plurality of discrete non-porous nanoparticles of a non-carbon Group 4A element or mixture thereof disposed on a surface of the dendritic particle. At least one nanocomposite of the plurality of agglomerated nanocomposites has at least a portion of its dendritic particle in electrical communication with at least a portion of a dendritic particle of an adjacent nanocomposite in the plurality of agglomerated nanocomposites.
US11715824B2 Electroactive materials for metal-ion batteries
The invention relates to a particulate material comprising a plurality of composite particles, wherein the composite particles comprise: (a) a porous carbon framework comprising micropores and mesopores having a total pore volume of at least 0.6 cm3/g and no more than 2 cm3/g, where the volume fraction of micropores is in the range from 0.5 to 0.9 and the volume fraction of pores having a pore diameter no more than 10 nm is at least 0.75, and the porous carbon framework has a D50 particle size of less than 20 μm; (b) silicon located within the micropores and/or mesopores of the porous carbon framework in a defined amount relative to the volume of the micropores and/or mesopores.
US11715823B2 Electrode structure and method of manufacturing the same, and secondary battery including the electrode structure
An electrode structure includes a base layer including a first active material, and a plurality of active material plates on a first surface of the base layer and spaced apart from one another, the plurality of active material plates including a second active material. An active material density of the base layer is less than an active material density of an active material plate of the plurality of active material plates.
US11715822B2 Negative electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
Negative electrode active material particles comprise base particles having: a silicate phase containing Li2O, SiO2, at least one oxide selected from M12O3, M2O2, M32O5, and M4O3 (where M1, M2, M3, and M4 are elements other than alkali metals, alkali earth metals, and Si), and a discretionary component MO (where M is an alkali earth metal); and silicon particles dispersed in the silicate phase. The element contents for the elements contained in the silicate phase are: 3-33 mol % of Li; 40-78 mol % of S; and 1-40 mol % of M1, M2, M3, and M4. If MO is contained, the M content in the silicate phase is 1-10 mol %.
US11715821B2 Electronic element module and printed circuit board for the same
The present disclosure relates to an electronic element module including a printed circuit board including a first insulating layer having a plurality of first openings, and a build-up structure disposed on one surface of the first insulating layer and having a first through-portion, wherein the plurality of first openings are disposed in the first through-portion on a plane; a conductive adhesive disposed in at least a portion of each of the plurality of first openings; and a first electronic element disposed in the first through-portion, and having a plurality of first electrode pads disposed. At least a portion of each of the plurality of first electrode pads is disposed in the plurality of first openings.
US11715820B2 Optoelectronic component and method for producing an optoelectronic component
In at least one embodiment, the optoelectronic component comprises an optoelectronic semiconductor chip with an emission side and a rear side opposite the emission side. Furthermore, the component comprises a housing body with a top side and an underside opposite the top side, and a metal layer on the top side of the housing body. During proper operation, the semiconductor chip emits primary electromagnetic radiation via the emission side. The semiconductor chip is embedded in the housing body and laterally surrounded by the housing body. The emission side is on the rear side and the top side is downstream of the underside along a main emission direction of the semiconductor chip. The metal layer is at least partially reflecting or absorbing radiation generated by the optoelectronic component.
US11715816B2 Display apparatus and manufacturing method thereof
A display apparatus is provided. The display apparatus includes a substrate, a transistor, a metal layer, and a light-emitting diode. The transistor is disposed on the substrate. The metal layer is disposed on the transistor and electrically connected to the transistor, wherein a first distance is between the upper surface of the metal layer and the substrate in a direction perpendicular to the substrate. The light-emitting diode is disposed on the metal layer, wherein the light-emitting diode includes a light-emitting diode body and an electrode, the light-emitting diode body is electrically connected to the metal layer via the electrode, the light-emitting diode body has a first surface and a second surface opposite to the first surface, the first surface and the second surface are parallel to the substrate, and in the direction above, a second distance is between the first surface and the second surface, wherein the ratio of the second distance to the first distance is greater than or equal to 0.25 and less than or equal to 6.
US11715813B2 Quantum well-based LED structure enhanced with sidewall hole injection
A light emitting diode (LED) structure includes a semiconductor template having a template top-surface, an active quantum well (QW) structure formed over the semiconductor template, and a p-type layer. The p-type layer has a bottom-surface that faces the active QW and the template top-surface. The bottom-surface includes a recess sidewall. The recess sidewall of the p-type layer is configured for promoting injection of holes into the active QW structure through a QW sidewall of the active QW structure.
US11715810B2 Displays with camera window openings
A display may include a color filter layer, a liquid crystal layer, and a thin-film transistor layer. A camera window may be formed in the display to accommodate a camera. The camera window may be formed by creating a notch in the thin-film transistor layer that extends inwardly from the edge of the thin-film transistor layer. The notch may be formed by scribing the thin-film transistor layer around the notch location and breaking away a portion of the thin-film transistor layer. A camera window may also be formed by grinding a hole in the display. The hole may penetrate partway into the thin-film transistor layer, may penetrate through the transistor layer but not into the color filter layer, or may pass through the thin-film transistor layer and partly into the color filter layer.
US11715804B2 Schottky rectifier with surge-current ruggedness
A SiC Schottky rectifier with surge current ruggedness is described. The Schottky rectifier includes one or more multi-layer bodies that provide multiple types of surge current protection.
US11715802B2 Nanowire stack GAA device with inner spacer and methods for producing the same
A nanowire FET device includes a vertical stack of nanowire strips configured as the semiconductor body. One or more of the top nanowire strips are receded and are shorter than the rest of the nanowire strips stacked lower. Inner spacers are uniformly formed adjacent to the receded nanowire strips and the rest of the nanowire strips. Source/drain structures are formed outside the inner spacers and a gate structure is formed inside the inner spacers, which wraps around the nanowire strips.
US11715801B2 Semiconductor device and method for manufacturing the same
It is an object to provide a highly reliable semiconductor device including a thin film transistor with stable electric characteristics. In a semiconductor device including an inverted staggered thin film transistor whose semiconductor layer is an oxide semiconductor layer, a buffer layer is provided over the oxide semiconductor layer. The buffer layer is in contact with a channel formation region of the semiconductor layer and source and drain electrode layers. A film of the buffer layer has resistance distribution. A region provided over the channel formation region of the semiconductor layer has lower electrical conductivity than the channel formation region of the semiconductor layer, and a region in contact with the source and drain electrode layers has higher electrical conductivity than the channel formation region of the semiconductor layer.
US11715800B2 Semiconductor device, power diode, and rectifier
An object is to provide a semiconductor device having electrical characteristics such as high withstand voltage, low reverse saturation current, and high on-state current. In particular, an object is to provide a power diode and a rectifier which include non-linear elements. An embodiment of the present invention is a semiconductor device including a first electrode, a gate insulating layer covering the first electrode, an oxide semiconductor layer in contact with the gate insulating layer and overlapping with the first electrode, a pair of second electrodes covering end portions of the oxide semiconductor layer, an insulating layer covering the pair of second electrodes and the oxide semiconductor layer, and a third electrode in contact with the insulating layer and between the pair of second electrodes. The pair of second electrodes are in contact with end surfaces of the oxide semiconductor layer.
US11715799B2 Methods and apparatus to form silicon-based transistors on group III-nitride materials using aspect ratio trapping
Methods and apparatus to form silicon-based transistors on group III-nitride materials using aspect ratio trapping are disclosed. An example integrated circuit includes a group III-nitride substrate and a fin of silicon formed on the group III-nitride substrate. The integrated circuit further includes a first transistor formed on the fin of silicon and a second transistor formed on the group III-nitride substrate.
US11715798B2 FeFET of 3D structure for capacitance matching
An MFMIS-FET includes a MOSFET having a three-dimensional structure that allows the MOSFET to have an effective area that is greater than the footprint of the MFM or the MOSFET. In some embodiment, the gate electrode of the MOSFET and the bottom electrode of the MFM are united. In some, they have equal areas. In some embodiments, the MFM and the MOSFET have nearly equal footprints. In some embodiments, the effective area of the MOSFET is much greater than the effective area of the MFM. These structures reduce the capacitance ratio between the MFM structure and the MOSFET without reducing the area of the MFM structure in a way that would decrease drain current.
US11715794B2 VTFET with cell height constraints
Semiconductor devices include a channel fin having a top surface. A top semiconductor structure, in contact with the entire top surface of the channel fin and having a top portion and a bottom portion, with the top portion of the top semiconductor structure being narrower than the bottom portion. A restraint structure being formed over the bottom portion of the semiconductor structure.
US11715792B2 Barrier structure configured to increase performance of III-V devices
Various embodiments of the present disclosure are directed toward an integrated chip including an undoped layer overlying a substrate. A first barrier layer overlies the undoped layer. A doped layer overlies the first barrier layer. Further, a second barrier layer overlies the first barrier layer, where the second barrier layer is laterally offset from a perimeter of the doped layer by a non-zero distance. The first and second barrier layers comprise a same III-V semiconductor material. A first atomic percentage of a first element within the first barrier layer is less than a second atomic percentage of the first element within the second barrier layer.
US11715783B2 Uniform horizontal spacer
In accordance with an embodiment of the present invention, a method and semiconductor device is described, including forming a plurality of gaps of variable size between device features, each of the gaps including vertical sidewalls perpendicular to a substrate surface and a horizontal surface parallel to the substrate surface. Spacer material is directionally deposited concurrently on the horizontal surface in each gap and in a flat area using a total flow rate of gaseous precursors that minimizes gap-loading in a smallest gap compared to the flat area such that the spacer material is deposited on the substrate surface in each gap and in the flat area to a uniform thickness.
US11715780B2 High performance and low power semiconductor device
Processing methods may be performed to form an airgap in a semiconductor structure. The methods may include forming a high-k material on a floor of a trench. The trench may be defined on a semiconductor substrate between sidewalls of a first material and a spacer material. The methods may include forming a gate structure on the high-k material. The gate structure may contact the first material along each sidewall of the trench. The methods may also include etching the first material. The etching may form an airgap adjacent the gate structure.
US11715772B1 Field-controlled sensor architecture and related methods
A nanoelectric field effect sensor uses the field created by the surface charge profile of biomolecular binding to modulate the current flowing between a source and a drain. We have shown that a patterned side or top gate can be used to calibrate the biomolecular field modulation. This approach provides an electrical sensitivity characterization of the sensor before exposing it to sample fluid. Furthermore, a side gate or a top gate voltage with the right sign can be used to control the binding event during functionalization or sensing. For instance, a negative gate voltage can prevent binding of negatively charged proteins on a sensor. This approach of electric-field control of binding can be used in a differential sensor configuration as well. For instance, in a two-sensor single-bridge technique, one of the sensors can be exposed to a local electric field to prevent binding events, which can then be used for background cancellation in a second sensor, not exposed to the electric field. Furthermore, this approach can be used to prepare a sensor chip for multiplexing, where different chip areas can be turned on or off by applying local electric fields.
US11715769B2 Silicon carbide diode with reduced voltage drop, and manufacturing method thereof
An electronic device includes a solid body of SiC having a surface and having a first conductivity type. A first implanted region and a second implanted region have a second conductivity type and extend into the solid body in a direction starting from the surface and delimit between them a surface portion of the solid body. A Schottky contact is on the surface and in direct contact with the surface portion. Ohmic contacts are on the surface and in direct contact with the first and second implanted regions. The solid body includes an epitaxial layer including the surface portion and a bulk portion. The surface portion houses a plurality of doped sub-regions which extend in succession one after another in the direction, are of the first conductivity type, and have a respective conductivity level higher than that of the bulk portion.
US11715767B2 Silicon carbide semiconductor device
A silicon carbide semiconductor device includes a metal plate having a first main surface and a second main surface, the second main surface being opposite to the first main surface, an insulating film provided on a portion of the first main surface of the metal plate, a first conductive layer provided on the insulating film, and a silicon carbide semiconductor chip. The silicon carbide semiconductor chip includes a first electrode and a second electrode on a first surface and a third electrode on a second surface, the second surface being opposite to the first surface. The first surface of the silicon carbide semiconductor chip faces the first main surface of the metal plate, the first electrode is bonded to the first conductive layer with a first bonding material, and the second electrode is bonded to the first main surface of the metal plate with a second bonding material.
US11715766B2 Stacked high barrier III-V power semiconductor diode
A stacked high barrier III-V power semiconductor diode having an at least regionally formed first metallic terminal contact layer and a heavily doped semiconductor contact region of a first conductivity type with a first lattice constant, a drift layer of a second conductivity type, a heavily doped metamorphic buffer layer sequence of the second conductivity type is formed. The metamorphic buffer layer sequence has an upper side with the first lattice constant and a lower side with a second lattice constant. The first lattice constant is greater than the second lattice constant. The upper side of the metamorphic buffer layer sequence is arranged in the direction of the drift layer. A second metallic terminal contact layer is arranged below the lower side of the metamorphic buffer layer sequence. The second metallic terminal contact layer is integrally bonded with a semiconductor contact layer.
US11715761B2 Semiconductor device with air gap on gate structure and method for forming the same
A semiconductor device structure is provided. The semiconductor device structure includes a pair of source/drain features formed in a semiconductor substrate and a gate stack formed over a portion of the semiconductor substrate that is between the pair of source/drain features. The semiconductor device structure also includes gate spacers extend along opposing sidewalls of the gate stack and protrude above an upper surface of the gate stack. Additionally, the semiconductor device structure includes a first capping layer formed over the gate stack and spaced apart from the upper surface of the gate stack by a gap. Opposing sidewalls of the first capping layer are covered by portions of the gate spacers that protrude above the upper surface of the gate stack.
US11715759B2 Semiconductor device with a single diffusion break structure having a sidewall aligned with a gate sidewall
A method for fabricating minimal fin length includes the steps of first forming a fin-shaped structure extending along a first direction on a substrate, forming a first single-diffusion break (SDB) trench and a second SDB trench extending along a second direction to divide the fin-shaped structure into a first portion, a second portion, and a third portion, and then performing a fin-cut process to remove the first portion and the third portion.
US11715756B2 Device structure and methods of forming the same
A device structure, along with methods of forming such, are described. The device structure includes a structure, a first passivation layer disposed on the structure, a buffer layer disposed on the first passivation layer, a barrier layer disposed on a first portion of the buffer layer, a redistribution layer disposed over the barrier layer, an adhesion layer disposed on the barrier layer and on side surfaces of the redistribution layer, and a second passivation layer disposed on a second portion of the buffer layer. The second passivation layer is in contact with the barrier layer, the adhesion layer, and the redistribution layer.
US11715754B2 Semiconductor package with TSV inductor
A semiconductor package includes a first die comprising an upper surface and a lower surface opposite to the upper surface. The first die includes a plurality of through-silicon vias (TSVs) penetrating through the first die. A second die is stacked on the upper surface of the first die. An interposer layer is disposed on the lower surface of the first die. An inductor is disposed in the interposer layer. The inductor comprises terminals directly coupled to the TSVs.
US11715751B2 Solid-state imaging element, electronic apparatus, and semiconductor device
The present technology relates a solid-state imaging element, an electronic apparatus, and a semiconductor device each of which enables deterioration of electrical characteristics in a well region of a semiconductor element formed in a thinned semiconductor substrate to be restrained. A solid-state imaging element as a first aspect of the present technology is a solid-state imaging element constituted by laminating semiconductor substrates in three or more layers, in which of the laminated semiconductor substrates, at least one sheet of the semiconductor substrate is thinned, and an impurity region whose carrier type is the same as that of the thinned semiconductor substrate is formed between a well region and a thinned surface portion in the thinned semiconductor substrate. The present technology can, for example, be applied to a CMOS image sensor.
US11715750B2 Optical crosstalk mitigation for a detector array in an optical receiver
A method of manufacturing a photodetector device is provided. The method includes providing a photodetector array comprising an array of photodetectors and a plurality of metal structures arranged laterally between photodetectors of the array of photodetectors, wherein the photodetectors are co-planar with the plurality of metal structures, and wherein the plurality of metal structures are arranged in a first pattern; applying an antireflective coating to a surface of a transparent substrate, the antireflective coating being patterned according to a second pattern that matches the first pattern; aligning the transparent substrate over the photodetector array such that the first pattern is aligned with the second pattern; and coupling the transparent substrate to the photodetector array such that the antireflective coating covers the plurality of metal structures.
US11715746B2 Detection element, manufacturing method thereof, flat panel detector
A detection element, a manufacturing method thereof and a flat panel detector are disclosed. The detection element includes: a base substrate; a first electrode on the base substrate; a photoelectric conversion layer; a transparent electrode and a second electrode electrically connected with the transparent electrode on a side of the photoelectric conversion layer away from the first electrode. An orthographic projection of the photoelectric conversion layer on the base substrate completely falls within an orthographic projection of the first electrode on the base substrate, in a plane parallel to the base substrate, the transparent electrode is located at a middle portion of the photoelectric conversion, an orthographic projection of a portion of the photoelectric conversion layer not covered by the transparent electrode on the base substrate at least partially falls within an orthographic projection of the second electrode on the base substrate.
US11715744B2 Array substrate, preparation method thereof, and display panel
This disclosure provides an array substrate, a method for preparing the array substrate, and a display panel. The method includes: forming a first thin film transistor and a second thin film transistor on a base substrate. In the formation of an active layer of the first thin film transistor, by using an eutectic point of the catalyst particle and silicon, and a driving factor that the Gibbs free energy of amorphous silicon is greater than that of crystalline silicon (silicon-based nanowire), and due to absorption of the amorphous silicon by the molten catalyst particle to form a supersaturated silicon eutectoid, the silicon nucleates and grows into a silicon-based nanowire. Moreover, during the growth of the silicon-based nanowire, the amorphous silicon film grows linearly along guide structure under the action of the catalyst particle, thus obtaining a silicon-based nanowire with a high density and high uniformity.
US11715736B2 Semiconductor devices with gate isolation structures and methods of manufacturing thereof
A semiconductor device includes a first semiconductor fin and a second semiconductor fin extending along a first direction. The semiconductor device includes a dielectric fin, extending along the first direction, that is disposed between the first and second semiconductor fins. The semiconductor device includes a gate isolation structure vertically disposed above the dielectric fin. The semiconductor device includes a metal gate layer extending along a second direction perpendicular to the first direction, wherein the metal gate layer includes a first portion straddling the first semiconductor fin and a second portion straddling the second semiconductor fin. The gate isolation structure has a central portion and one or more side portions, the central portion extends toward the dielectric fin a further distance than at least one of the one or more side portions.
US11715723B2 Wafer on wafer bonding structure
A package structure and method of manufacturing is provided, whereby a bonding dielectric material layer is provided at a back side of a wafer, a bonding dielectric material layer is provided at a front side of an adjoining wafer, and wherein the bonding dielectric material layers are fusion bonded to each other.
US11715722B2 Wirebond-constructed inductors
Fabrication of a bondwire inductor between connection pads of a semiconductor package using a wire bonding process is disclosed herein. To that end, the bondwire inductor is fabricated by extending a bondwire connecting two connection pads of the semiconductor package around a dielectric structure, e.g., a dielectric post or posts, disposed between the connection pads a defined amount. In so doing, the bondwire inductor adds inductance between the connection pads, where the added inductance is defined by factors which at least include the amount the bondwire extends around the dielectric structure. Such additional inductance may be particularly beneficial for certain semiconductor devices and/or circuits, e.g., monolithic microwave integrated circuits (MMICs) to control or supplement impedance matching, harmonic termination, matching biasing, etc.
US11715721B2 Electrical connecting structure having nano-twins copper
Disclosed herein is an electrical connecting structure having nano-twins copper, including a first substrate having a first nano-twins copper layer and a second substrate having a second nano-twins copper layer. The first nano-twins copper layer includes a plurality of first nano-twins copper grains. The second nano-twins copper layer includes a plurality of second nano-twins copper grains. The first nano-twins copper layer is joined with the second nano-twins copper layer. At least a portion of the first nano-twins copper grains extend into the second nano-twins copper layer, or at least a portion of the second nano-twins copper grains extend into the first nano-twins copper layer.
US11715716B2 Electronic device, package structure and electronic manufacturing method
An electronic device, a package structure and an electronic manufacturing method are provided. The electronic device includes a substrate, a first bump, a second bump and a first reflowable material. The first bump is disposed over the substrate, and has a first width. An end portion of the first bump defines a first recess portion. The second bump is disposed over the substrate, and has a second width less than the first width. The first reflowable material is disposed on the first bump and extends in the first recess portion.
US11715710B2 Method of treatment of an electronic circuit for a hybrid molecular bonding
A method of treatment of an electronic circuit including at a location at least one electrically-conductive test pad having a first exposed surface. The method includes the at least partial etching of the test pad from the first surface, and the forming on the electronic circuit of an interconnection level covering said location and including, on the side opposite to said location, a second planar surface adapted for the performing of a hybrid molecular bonding.
US11715707B2 Apparatus including an isolation assembly
Described examples include an apparatus including a package substrate having a die attach pad and a first semiconductor die on the die attach pad, the first semiconductor die including a transmitter. The apparatus also includes an assembly having a first plate coupled to the transmitter, a second plate separated from the first plate by a dielectric and a second semiconductor die on the die attach pad, the second semiconductor die including a receiver coupled to the second plate.
US11715706B2 Semiconductor chip, semiconductor device and electrostatic discharge protection method for semiconductor device thereof
The present application discloses a semiconductor chip, a semiconductor device and an electrostatic discharge (ESD) protection method for a semiconductor device. The semiconductor chip includes an electrical contact, an application circuit, and an ESD protection unit. The application circuit performs operations according to a one signal received by the electrical contact. The ESD protection unit is coupled to the electrical contact. The capacitance of the ESD protection unit is adjustable.
US11715705B2 Method for protecting data stored in a memory, and corresponding integrated circuit
An integrated circuit memory includes a state transistor having a floating gate which stores a respective data value. A device for protecting the data stored in the memory includes a capacitive structure having a first electrically-conducting body coupled to the floating gate of the state transistor, a dielectric body, and a second electrically-conducting body coupled to a ground terminal. The dielectric body is configured, if an aqueous solution is brought into contact with the dielectric body, to electrically couple the floating gate and the ground terminal so as to modify the charge on the floating gate and to lose the corresponding data. Otherwise, the dielectric body is configured to electrically isolate the floating gate and the ground terminal.
US11715704B2 Scribe structure for memory device
Apparatuses and methods for manufacturing chips are described. An example method includes: forming at least one first dielectric layer above a substrate; forming at least one second dielectric layer above the first dielectric layer; forming a cover layer above the at least one second dielectric layer; forming a groove above the substrate by etching; covering at least an edge surface of the at least one first dielectric layer in the groove with a liner; forming a hole through the cover layer and a portion of the at least one second dielectric layer; depositing a conductive layer in the hole, on the cover layer and the liner; and forming a conductive pillar on the conductive layer in the hole by electroplating.
US11715698B2 Wiring substrate
A wiring substrate includes a core substrate, and a build-up part formed on the core substrate and including insulating layers and conductor layers. The conductor layers include one or more conductor layers each having a first wiring and a second wiring such that the second wiring has a conductor thickness smaller than a conductor thickness of the first wiring and that a minimum value of a line width of a wiring pattern of the second wiring is smaller than a minimum value of a line width of a wiring pattern of the first wiring.
US11715692B2 Microelectronic devices including conductive rails, and related methods
A microelectronic device comprises a stack structure comprising alternating conductive structures and insulative structures arranged in tiers, each of the tiers individually comprising a conductive structure and an insulative structure, strings of memory cells vertically extending through the stack structure, the strings of memory cells comprising a channel material vertically extending through the stack structure, and conductive rails laterally adjacent to the conductive structures of the stack structure. The conductive rails comprise a material composition that is different than a material composition of the conductive structures of the stack structure. Related memory devices, electronic systems, and methods are also described.
US11715687B2 Contact structures for reducing electrical shorts and methods of forming the same
A planarization dielectric layer is formed over the semiconductor device on a semiconductor substrate. A device contact via structure is formed through the planarization dielectric layer. A planar dielectric spacer liner is formed over the planarization dielectric layer, and is patterned to provide an opening over the device contact via structure. An etch stop dielectric liner and a via-level dielectric layer are formed over the planar dielectric spacer liner. An interconnect via cavity may be formed through the via-level dielectric layer by a first anisotropic etch process that may be selective to the etch stop dielectric liner, and may be subsequently extended by a second anisotropic etch process that etches the etch stop dielectric liner. An interconnect via structure may be formed in the interconnect via cavity. A bottom periphery of the interconnect via structure may be self-aligned to the opening in the planar dielectric spacer liner.
US11715681B2 Fan-out package structure and method
A method comprises embedding a semiconductor structure in a molding compound layer, depositing a plurality of photo-sensitive material layers over the molding compound layer, developing the plurality of photo-sensitive material layers to form a plurality of openings, wherein a first portion and a second portion of an opening of the plurality of openings are formed in different photo-sensitive material layers and filling the first portion and the second portion of the opening with a conductive material to form a first via in the first portion and a first redistribution layer in the second portion.
US11715680B2 Printed circuit board
A printed circuit board includes a first insulating layer; a first wiring layer buried in the first insulating layer, exposed to one surface of the first insulating layer, and including a plurality of first wiring patterns; a second wiring layer including a plurality of second wiring patterns spaced apart from the plurality of first wiring patterns on the one surface of the first insulating layer; and a second insulating layer disposed on the one surface of the first insulating layer and covering the plurality of second wiring layers. At least a portion of the plurality of second wiring patterns on the one surface of the first insulating layer is disposed in regions between adjacent first wiring patterns among the plurality of first wiring patterns.
US11715678B2 Roughened conductive components
In some examples, a semiconductor package comprises a die pad, a semiconductor die on the die pad, and a mold compound covering the die pad and the semiconductor die. The semiconductor package includes a conductive component including a roughened surface, the roughened surface having a roughness ranging from an arithmetic mean surface height (SA) of 1.4 to 3.2. The mold compound is coupled to the roughened surface. The semiconductor package includes a bond wire coupling the semiconductor die to the roughened surface. The bond wire is directly coupled to the roughened surface without a precious metal positioned therebetween.
US11715677B2 Semiconductor device with frame having arms
A semiconductor device includes a substrate that includes an opening extending through a thickness of the substrate, a frame that includes an integrated circuit (IC) die pad in the opening and a plurality of arms extending outwardly from the IC die pad, an IC mounted on the IC die pad, a plurality of bonding elements electrically coupling the substrate with the IC without the frame being an intermediary coupling element, and an encapsulant surrounding the IC, the plurality of bonding elements, and the plurality of arms. The substrate has a first major surface and a second major surface. Each arm is devoid of a contact pad. Each arm has a distal end coupled to the first major surface of the substrate, and each arm has a proximal end disposed over the first major surface of the substrate.
US11715672B2 Endpoint detection for chemical mechanical polishing based on spectrometry
A method of detecting a polishing endpoint includes storing a plurality of library spectra, measuring a sequence of spectra from the substrate in-situ during polishing, and for each measured spectrum of the sequence of spectra, finding a best matching library spectrum from the plurality of library spectra to generate a sequence of best matching library spectra. Each library spectrum has a stored associated value representing a degree of progress through a polishing process, and the stored associated value for the best matching library spectrum is determined for each best matching library spectrum to generate a sequence of values representing a progression of polishing of the substrate. The sequence of values is compared to a target value, and a polishing endpoint is triggered when the sequence of values reaches the target value.
US11715659B2 Equipment front end module
Proposed is an EFEM configured to perform wafer transfer between a wafer storage device and process equipment. More particularly, proposed is an EFEM that prevents harmful gases inside a transfer chamber in which wafer transfer is performed from escaping out of the EFEM.
US11715656B2 Chemical liquid supplying system and method of supplying chemical liquid
In accordance with some embodiments, a method for processing semiconductor wafer is provided. The method includes connecting a drum which stores the chemical liquid with a testing pipe. The method also includes guiding the chemical liquid in the drum into the testing pipe. In addition, the method includes detecting a condition of the chemical liquid in the testing pipe. The method further includes determining if the condition of the chemical liquid is acceptable. When the condition of the chemical liquid is acceptable, supplying the chemical liquid to a processing tool at which the semiconductor wafer is processed.
US11715650B2 Substrate processing apparatus and manufacturing method therefor
A substrate processing apparatus includes a nozzle unit. The nozzle unit includes a line and a nozzle tip provided on a tip end of the line. The line includes a first layer, a second layer and a third layer. The nozzle tip is formed of a corrosion resistant resin having conductivity. The third layer is configured to cover the first layer and the second layer from outside and cover a part of the nozzle tip from outside.
US11715647B2 Method for producing a substrate
A method includes forming a first electrically conductive layer on a first side of a dielectric insulation layer, forming a structured mask layer on a side of the first electrically conductive layer that faces away from the dielectric insulation layer, forming at least one trench in the first electrically conductive layer, said at least one trench extending through the entire first electrically conductive layer to the dielectric insulation layer, forming a coating which covers at least the bottom and the side walls of the at least one trench, and removing the mask layer after the coating has been formed.
US11715639B2 Semiconductor device and fabrication method therefor
A method of manufacturing a semiconductor structure includes depositing a silicon layer over a substrate, removing a portion of the silicon layer to form a gate stack, and performing a hydrogen treatment on the gate stack to repair a plurality of voids in the stack structure.
US11715637B2 Varying temperature anneal for film and structures formed thereby
Semiconductor device structures having dielectric features and methods of forming dielectric features are described herein. In some examples, the dielectric features are formed by an ALD process followed by a varying temperature anneal process. The dielectric features can have high density, low carbon concentration, and lower k-value. The dielectric features formed according to the present disclosure has improved resistance against etching chemistry, plasma damage, and physical bombardment in subsequent processes while maintaining a lower k-value for target capacitance efficiency.
US11715633B2 Multiplexed inductive ionization systems and methods
The invention generally relates to systems including nanoelectrospray ionization emitters in a movable array format in which the emitters can be loaded, singly or simultaneously, through their narrow ends using a novel dip and go method based on capillary action, taking up sample from an array. The sample solutions in each emitter can be electrophoretically cleaned, singly or simultaneously, by creating an inductive electric field that moves interfering ions away from the narrow end of the capillary. Subsequent to cleaning, the emitters are supplied with an inductive electric field that causes electrospray into a mass spectrometer allowing mass analysis of the contents of the emitter.
US11715632B2 Reaction chamber and semiconductor processing apparatus
A reaction chamber includes an upper electrode device and a lower electrode device. The lower electrode device is disposed in the reaction chamber for carrying a workpiece to-be-processed. The upper electrode device includes a dielectric cylinder, a coil, an upper power source, an upper electrode plate, a first switch, and a second switch. The dielectric cylinder has a hollow cylindrical structure and is disposed at an upper portion of a chamber wall of the reaction chamber. The coil is arranged around the dielectric cylinder. The upper electrode plate is located above the lower electrode device. The first switch can selectively electively connect the upper power source to a first terminal of the coil or to the upper electrode plate. The second switch can selectively electrically connect a second terminal of the coil to the ground or to the upper electrode plate.
US11715628B2 Method of forming plasma processing apparatus, related apparatus, and method of forming semiconductor device using the same
A method of forming a plasma processing apparatus comprises providing a chamber, the chamber including a wall defining an interior, and a viewport extending through the wall. An analysis apparatus connected to the viewport may be formed. The analysis apparatus includes an analyzer adjacent to the chamber, a probe connected to the analyzer and aligned with the viewport, and a first window aligned with the probe, the first window having a first surface, and a second surface at an opposite side relative to the first surface, the second surface being exposed to the interior of the chamber, and the second surface of the first window has a scattering surface.
US11715623B2 DC plasma control for electron enhanced material processing
Systems and methods for material processing using wafer scale waves of precisely controlled electrons in a DC plasma is presented. The anode and cathode of a DC plasma chamber are respectively connected to an adjustable DC voltage source and a DC current source. The anode potential is adjusted to shift a surface floating potential of a stage in a positive column of the DC plasma to a reference ground potential of the DC voltage/current sources. A conductive plate in a same region of the positive column opposite the stage is used to measure the surface floating potential of the stage. A control loop can be activated throughout various processing steps to maintain the surface floating potential of the stage to the reference ground potential. A signal generator referenced to the ground potential is capacitively coupled to the stage to control a surface potential at the stage for provision of kinetic energy to free electrons in the DC plasma.
US11715620B2 Tuning gas cluster ion beam systems
A method for processing a substrate that includes: applying, at an ionizer, a drive pulse train to an ion source to ionize a gas cluster beam and transfer the drive pulse train to the gas cluster beam; measuring, at a detector exposed to the gas cluster beam, a beam current synchronously with the drive pulse train; obtaining time-of-flight information of the clusters and the monomers in the gas cluster beam based on the beam current and the drive pulse train; determining size information relating to a size distribution of clusters and monomers in the gas cluster ion beam based on the time-of-flight information; adjusting a process parameter of the gas cluster beam based on the size information; and exposing the substrate to the gas cluster beam with the adjusted process parameter.
US11715615B2 Light modulated electron source
A light modulated electron source utilizes a photon-beam source to modulate the emission current of an electron beam emitted from a silicon-based field emitter. The field emitter's cathode includes a protrusion fabricated on a silicon substrate and having an emission tip covered by a coating layer. An extractor generates an electric field that attracts free electrons toward the emission tip for emission as part of the electron beam. The photon-beam source generates a photon beam including photons having an energy greater than the bandgap of silicon, and includes optics that direct the photon beam onto the emission tip, whereby each absorbed photon creates a photo-electron that combines with the free electrons to enhance the electron beam's emission current. A controller modulates the emission current by controlling the intensity of the photon beam applied to the emission tip. A monitor measures the electron beam and provides feedback to the controller.
US11715607B2 Graphene macro-assembly-fullerene composite for electrical energy storage
Disclosed here is a method for producing a graphene macro-assembly (GMA)-fullerene composite, comprising providing a mixture of graphene oxide and water, adding a hydroxylated fullerene to the mixture, and forming a gel of the hydroxylated fullerene and the mixture. Also described are a GMA-fullerene composite produced, an electrode comprising the GMA-fullerene composite, and a supercapacitor comprising the electrode.
US11715605B2 Electrolytic capacitor
An electrolytic capacitor includes a capacitor element and electrolytic solution. The capacitor element includes an anode body with an oxide film, and a solid electrolyte contacting the oxide film. The electrolytic solution contains a solvent and a solute. The solvent contains at least one selected from the group consisting of a lactone compound, a glycol compound, and a sulfone compound. The solute includes a first acid component and a base component. The first acid component includes at least one of a benzenedicarboxylic acid and a derivative of the benzenedicarboxylic acid. The base component includes at least one of an amine and an amidine. A concentration of the solute in the electrolytic solution ranges from 15% by mass to 40% by mass, inclusive. A ratio (V/Vw) of a formation voltage V of the oxide film to a rated voltage Vw of the electrolytic capacitor is less than or equal to 1.7.
US11715604B2 Method of producing a multi-layer ceramic electronic component, multi-layer ceramic electronic component, and circuit board
A method of producing a multi-layer ceramic electronic component includes: forming a base film formed from an electrically conductive material on a surface of a ceramic body including internal electrodes laminated and drawn to the surface in such a manner that the base film is connected to the internal electrodes; forming a first nickel film on the base film by an electrolytic plating method; performing, after forming the first nickel film, heat treatment in a weakly reducing atmosphere at a temperature equal to or higher than a temperature at which the first nickel film is recrystallized; and forming a second nickel film on the first nickel film, on which the heat treatment is performed, by an electrolytic plating method.
US11715602B2 Multilayer electronic component
A multilayer electronic component includes a body including a dielectric layer and an internal electrode alternately stacked therein in a stacking direction; and an external electrode disposed on the body and connected to the internal electrode. The internal electrode includes 94.0 to 99.6 wt % of Ni and 0.4 to 6.0 wt % of Cu.
US11715599B2 Polymeric monolithic capacitor
Prismatic polymer monolithic capacitor structure that includes multiple interleaving radiation-cured polymer dielectric layers and metal layers. Method for fabrication of same. The chemical composition of polymer dielectric and the electrode resistivity parameters are chosen to maximize the capacitor self-healing properties and energy density, and to assure the stability of the capacitance and dissipation factor over the operating temperature range. The termination electrode that extends beyond the active capacitor area and beyond the polymer dielectric layers has a thickness larger than that used industrially to provide resistance to thermomechanical stress. The glass transition temperature of the polymer dielectric is specifically chosen to avoid mechanical relaxation from occurring in the operating temperature range, which prevents high moisture permeation (otherwise increasing a dissipation factor and electrode corrosion) into the structure. The geometry and shape of the capacitor are appropriately controlled to minimize losses when the capacitor is exposed to pulse and alternating currents.
US11715593B2 Multi-layer ceramic capacitor
A multi-layer ceramic capacitor includes a multi-layer unit and a side margin. The multi-layer unit includes ceramic layers laminated in a first direction, internal electrodes disposed between the ceramic layers, a main surface oriented in the first direction, a surface layer portion in a range from the main surface to a predetermined depth, and a center portion adjacent to the surface layer portion in the first direction. The side margin covers the multi-layer unit from a second direction orthogonal to the first direction. The ceramic layers have an average dimension in the first direction that is 0.4 μm or less. Each of the internal electrodes includes an oxidized region adjacent to the side margin. The oxidized region in the surface layer portion has a dimension in the second direction that is equal to or more than two times the average dimension of the ceramic layers in the first direction.
US11715591B2 Method for manufacturing a wound magnetic core
[PROBLEM] To provide a wound magnetic core and a method for manufacturing a wound magnetic core permitting improvement of insulation between ribbon layers in a wound magnetic core at which soft magnetic metal ribbon has been wound to form an annular wound body.[SOLUTION MEANS] A nonmagnetic insulating metal oxide powder is made to adhere to a surface of a soft magnetic metal ribbon having an amorphous structure; this is wound in annular fashion and made into a wound body at which the metal oxide powder intervenes between ribbon layers; the wound body is made to undergo heat treatment in a nonoxidizing atmosphere; the wound body is thereafter subjected to treatment for formation of an oxide film in an oxidizing atmosphere adjusted to be at a temperature lower than that at the heat treatment to cause oxidation of the surface of the soft magnetic metal ribbon; and spaces between ribbon layers at the wound body are moreover impregnated with resin and curing is carried out to fuse the metal oxide powder thereto.
US11715589B2 Inductive filtering device and electrical architecture implementing the inductive filtering device
An inductive filtering device includes a plurality of grouped electrical conductors and at least two toric magnetic cores, each formed around a central void, the two magnetic cores having different magnetic lengths, the electrical conductor being wound together around both magnetic cores by passing through the central voids of both magnetic cores.
US11715587B2 Rotary variable differential transformer
A rotary variable differential transformer for measuring angular displacement and method of manufacturing the same are provided herein. The rotary variable differential transformer includes a stator configured to house a primary coil configured to receive an alternating current, a first secondary coil electromagnetically coupled to the primary coil, and a second secondary coil electromagnetically coupled to the primary coil. The rotary variable differential transformer also includes a rotor positioned concentrically within the stator. The rotor is configured to receive a shaft and rotate with the shaft while the stator remains stationary. The primary coil is positioned at a first radial position within the stator spaced between about 90 to 150 degrees from each of the first secondary coil and the second secondary coil.
US11715586B2 Superconducting wire, superconducting coil, superconducting magnet, and superconducting device
In a superconducting wire, a superconducting material joining layer joins a first end portion of a first superconducting material layer of a first wire and a second end portion of a second superconducting material layer of a second wire. The first wire and the second wire are disposed such that a first end face and a second end face are positioned to face in the same direction. The first wire further includes a first conductor layer disposed on the first main surface so as to be located adjacent to the first end portion. The second wire further includes a second conductor layer disposed on the second main surface so as to be located adjacent to the second end portion. The first conductor layer and the second conductor layer are connected to each other.
US11715583B2 MC cable with tearable assembly tape
Disclosed is an armored cable assembly including a core having a notched assembly tape about a plurality of conductors. A metal sheath surrounds the core.
US11715582B2 Shielded flat cable
A shielded flat cable includes multiple flat conductors arranged in parallel, a lower insulating layer provided on lower surfaces of the multiple conductors, a lower shield layer provided on a lower surface of the lower insulating layer, a lower protective layer provided on a lower surface of the lower shield layer, a lower contact portion that is exposed from the lower protective layer and provided to contact a second contact member of the connector, and that is electrically coupled to the lower shield layer, a terminal in which the multiple conductors are exposed at an end, and a reinforcing plate provided on the lower surface of the lower insulating layer and the lower surfaces of the multiple conductors at the terminal. The multiple conductors extend along the lower insulating layer and the reinforcing plate, and the lower contact portion and the terminal overlap in a side view.
US11715579B2 Electronic device
An electronic device is provided. The device comprises a singulated carrier portion, a substrate molded onto the singulated carrier portion, and conductive traces disposed on the substrate. The substrate comprises a polymer composition that includes an aromatic polymer and an electrically conductive filler, wherein the polymer composition exhibits a surface resistivity of from about 1×1012 ohms to about 1×1018 ohms as determined in accordance with ASTM D257-14.
US11715575B2 Nuclear materials apparatus and implementing the same
An apparatus for supporting spent nuclear fuel including a plurality of wall plates arranged in an intersecting manner to define a basket apparatus extending along a longitudinal axis. The basket apparatus may include a plurality of fuel cells and a plurality of flux traps between adjacent fuel cells. A plurality of reinforcement members may be positioned in the flux traps and may extend between opposing ones of the wall plates that form the flux traps. Each of the wall plates may be a slotted wall plate. The slotted wall plates may be interlocked with one another to form the basket apparatus. Each of the slotted wall plates may include an upper edge, a lower edge, and a plurality of plate slots formed in each of the upper and lower edges. The plate slots of the slotted wall plates may receive intersecting slotted wall plates.
US11715574B2 System and methods for mitigating effects of radiation on composite structures
Systems (100) and methods (600) for providing a product with a radiation mitigation feature. The methods comprise: obtaining a composite base layer formed of a fiber-reinforced material; and performing a deposition process to dispose a first coating layer on the composite base layer so as to form the product with a radiation barrier, the first coating layer comprising 35% by mass or less of a metal constituent, at least 65% by mass of a germanium constituent, a zero or substantially zero coating stress, and/or an overall thickness between 2 microns and 8 microns.
US11715568B2 Systems and methods for contagious illness surveillance and outbreak detection
Systems and methods for population health surveillance utilizing a network of smart thermometers is provided. Based on the geolocated user data provided by the smart thermometers, contagious illness can be forecasted for various population nodes. Population nodes can be provided at various levels of granularity. Geographic or population specific early warning signals can be generated based on detected outbreaks of contagious illness.
US11715567B2 Storage medium, information processing apparatus, information processing system, and information processing method
A storage medium stores a program. The program causes a first terminal apparatus to execute processing including: obtaining biological information on a subject from a first sensor provided in a mobile object, obtaining identification information for the subject, obtaining a detection time, and sending the biological information in association with the identification information for the subject and the detection time to an information processing apparatus.
US11715565B2 Evaluating effect of event on condition using propensity scoring
Systems and methods are provided for implementing a tool for evaluating an effect on an event, such as a medication or treatment, on a subject's condition, using a propensity model that identifies matched treatment and control cohorts within a base population of subjects. A propensity value threshold, which can be obtained based on user input, can be used to adjust the selection of subjects for treatment and control cohorts. The tool allows analyzing features of the subjects in the treatment and control groups, and further allows for evaluation and comparison of survival objectives of subjects in the treatment and control groups.
US11715561B2 Smartphone-controlled active configuration of footwear, including with concavely rounded soles
A smartphone or other mobile computer device, general purpose or specialized, wherein the smartphone device is configured to actively control the configuration of one or more bladders, compartments, chambers or internal sipes and one or more sensors located in either one or both of a sole or a removable inner sole insert of the footwear of the user and/or located in an apparatus worn or carried by the user, glued unto the user, or implanted in the user. The one or more bladders, compartments, chambers, or sipes, and one or more sensors are configured for computer control. A sole and/or a removable inner sole insert for footwear, including one or more bladders, compartments, chambers, internal sipes and sensors in the sole and/or in a removable insert; or on an insole; all being configured for control by a smartphone or other mobile computer device, general purpose or specialized.
US11715557B2 Automatic assay assessment and normalization for image processing
Disclosed herein are systems and methods for of assessing stain titer levels. An exemplary method includes generating a set of field of views for the image or the region of the image, selecting field of views from the set of field of views that meet predefined criteria, creating a series of patches within each of the selected field of views, retaining patches from the series of patches that meet predefined criteria indicative of a presence of the stain for which the titer is to be estimated, deriving stain color features and stain intensity features pertaining to the stain from the retained patches, estimating a titer score for each of the retained patches based on the stain color features and the stain intensity features, and calculating a weighted average score for the titer of the stain based on the estimated titer score for each of the retained patches.
US11715556B2 Handheld arthropod detection device
Various embodiments include systems and methods of arthropod detection using an electronic arthropod detection device. The electronic arthropod detection device may scan a surface or a subject using one or both of a hyperspectral image sensor or a multispectral image sensor that is sensitive to multiple bands of electromagnetic radiation to detect the presence or likely presence of an arthropod in a region of interest (ROI). A camera sensitive to a visible band of electromagnetic radiation may be used to capture at least one image and provides the image(s) to an object detection model in response to determining that an arthropod is or is likely present in the ROI. Hyperspectral and/or multispectral images may be provided to the object detection model alone or in combination with visible light image(s). A processor may initiate an arthropod detected procedure in response to detecting an arthropod in the ROI.
US11715553B2 Methods, devices and systems for estimating nutritional element content in foods
Systems and methods are provided for improving nutritional element content estimates from one or more individuals and/or determining a therapy or treatment based on a nutritional element content estimate and improving diabetes management. The systems and methods include a therapy or treatment display based on at least one nutritional element content estimate and at least one proficiency index respectively assigned to an individual to improve accuracy and reliability when estimating nutritional element content in foods and/or therapy or treatment based therefrom.
US11715550B1 Business to customer communication portal
A multi-format communications system provides a way for a company to control information, some of which may be confidential information, such as PHI, exchanged with existing and potential customers, through individuals associated with the company in a manner preferred by the customers, particularly for non-confidential information, while maintaining a permanent record of communications. With the company maintaining control, if an employee leaves, the employee can be blocked from access to customer information, including communications. Additionally, a time-line view of all events related to a customer can be displayed including communications.
US11715546B2 Memory array test method and system
A method of testing a non-volatile memory (NVM) array includes obtaining a current distribution of a subset of NVM cells of the NVM array, the current distribution including first and second portions corresponding to respective logically high and low states of the subset of NVM cells, programming an entirety of the NVM cells of the NVM array to one of the logically high or low states, determining an initial bit error rate (BER) by performing first and second pass/fail (P/F) tests on each NVM cell of the NVM array, and using the current distribution to adjust the initial BER rate. Each of obtaining the current distribution, programming the entirety of the NVM cells, and performing the first and second P/F tests is performed while the NVM array is heated to a target temperature.
US11715543B2 Memory test circuit apparatus and test method
A memory test circuit apparatus and a method are provided. The method may include: compressing first test data output by a first storage array in a memory to generate first compressed data, compressing second test data output by a second storage array in the memory to generate second compressed data, compressing the first compressed data and the second compressed data to generate third compressed data, and outputting one of the first compressed data, the second compressed data and the third compressed data to determine a working condition of each of the first storage array and the second storage array. This method can provide not only a test result on a memory, but also a test result for individual storage array within the memory, which improves the efficiency of a circuit test.
US11715539B2 Safety and correctness data reading and programming in a non-volatile memory device
The present disclosure relates to a method for improving the safety of the reading phase of a non-volatile memory device including at least an array of memory cells and with associated decoding and sensing circuitry and a memory controller, the method comprising:storing in a dummy row of said memory block at least a known pattern;performing some reading cycles changing the read trimming parameters up to the moment wherein said known value is read correctly;adopting the trimming parameters of the correct reading for the subsequent reading phases.The disclosure further relates to a memory device structured for implementing the above method.
US11715534B2 Semiconductor storage device capable of selectively erasing data
A semiconductor storage device includes a memory cell array including a plurality of memory strings, each connected between one of a plurality of bit lines and a source line and includes a first select transistor, a second select transistor, and memory cell transistors that are connected in series between the first select transistor and the second select transistor, and a plurality of word lines respectively connected to gates of the memory cell transistors in each memory string. A threshold voltage of the memory cell transistor is increased when a voltage that is applied to the word line connected to the gate thereof is lower than a voltage of a channel thereof. In the erase operation, data stored in the memory cell transistors connected to a selected one of the word lines are erased while data stored in the memory cell transistors not connected to the selected word line are not erased.
US11715533B2 Memory device to execute read operation using read target voltage
A memory device includes first and second memory strings, first and second word lines and a controller. The first memory string includes first and second memory cells, a first select transistor, a second select transistor, and a third select transistor between the first and second memory cells. The second memory string includes third and fourth memory cells, a fourth select transistor above the third memory cell, a fifth select transistor below the fourth memory cell, and a sixth select transistor between the third and fourth memory cells. The first word line is electrically connected to gates of the first and third memory cells. The second word line is electrically connected to gates of the second and fourth memory cells. The controller is configured to execute a read operation on one of the memory cells, the read operation including a first phase and a second phase after the first phase.
US11715524B2 Memory device and operating method thereof
There are provided a memory device and an operating method thereof. The memory device includes: a memory block including a plurality of memory cells; and a peripheral circuit for performing a program operation and an erase operation on the memory block. The program operation is performed by using a hole injection method, and the erase operation is performed by using an electron charging method. The plurality of memory cells are programmed when a threshold voltage of each of at least some of the plurality of memory cells is decreased to be less than a set level in the program operation, and are erased when the threshold voltage of each of the plurality of memory cells is increased to be the set level or higher in the erase operation.
US11715523B2 Memory device and program operation thereof
In certain aspects, a memory device includes a memory cell array having rows of memory cells, word lines respectively coupled to the rows of memory cells, and a peripheral circuit coupled to the memory cell array through the word lines. The peripheral circuit is configured to program a row of memory cells using a first program voltage and verify the programmed row of memory cells using a verify voltage and a sample voltage smaller than the verify voltage. The peripheral circuit is also configured to obtain a first number of memory cells of the programmed row of memory cells based on the sample voltage. The peripheral circuit is further configured to predict, based on the first number of memory cells and the sample voltage, a second number of memory cells of the programmed row of memory cells that fail to pass the verification.
US11715521B2 Quantum memory systems and quantum repeater systems comprising doped polycrystalline ceramic optical devices and methods of manufacturing the same
A method of manufacturing a doped polycrystalline ceramic optical device includes mixing a plurality of transition metal complexes and a plurality of rare-earth metal complexes to form a metal salt solution, heating the metal salt solution to form a heated metal salt solution, mixing the heated metal salt solution and an organic precursor to induce a chemical reaction between the heated metal salt solution and the organic precursor to produce a plurality of rare-earth doped crystalline nanoparticles, and sintering the plurality of rare-earth doped nanoparticles to form a doped polycrystalline ceramic optical device having a rare-earth element dopant that is uniformly distributed within a crystal lattice of the doped polycrystalline ceramic optical device.
US11715511B2 Trim level adjustments for memory based on data use
A method includes determining a quantity of refresh operations performed on a block of a memory device of a memory sub-system and determining a quantity of write operations and a quantity of read operations performed to the block. The method also includes determining the block is read dominant using the quantity of write operations and the quantity of read operations and determining whether the quantity of refresh operations has met a criteria. The method further includes, responsive to determining that the block is read dominant and that the quantity of refresh operations has met the criteria, modifying trim settings used to operate the block of the memory device.
US11715504B2 Memory device for supporting command bus training mode and method of operating the same
There are provided a memory device for supporting a command bus training (CBT) mode and a method of operating the same. The memory device is configured to enter a CBT mode or exit from the CBT mode in response to a logic level of a first data signal, which is not included in second data signals, which are in one-to-one correspondence with command/address signals, which are used to output a CBT pattern in the CBT mode. The memory device is further configured to change a reference voltage value in accordance with a second reference voltage setting code received by terminals associated with the second data signals, to terminate the command/address signals or a pair of data clock signals to a resistance value corresponding to an on-die termination (ODT) code setting stored in a mode register, and to turn off ODT of data signals in the CBT mode.
US11715500B2 Interconnection for memory electrodes
Row and/or column electrode lines for a memory device are staggered such that gaps are formed between terminated lines. Vertical interconnection to central points along adjacent lines that are not terminated are made in the gap, and vertical interconnection through can additionally be made through the gap without contacting the lines of that level.
US11715499B2 MRAM structure with source lines having alternating branches at opposite sides and storage units in staggered arrangement
A MRAM structure, which is provided with multiple source lines between active areas, each source line has multiple branches electrically connecting with the active areas at opposite sides in alternating arrangement. Multiple word lines traverse through the active areas to form transistors. Multiple storage units are disposed between the word lines on the active areas in staggered array arrangement, and multiple bit lines electrically connect with storage units on corresponding active areas, wherein each storage cell includes one of the storage unit, two of the transistors respectively at both sides of the storage unit, and two branches of the source line.
US11715497B2 Video editing method, apparatus, and device, and storage medium
A video editing method, apparatus and storage medium are provided. The method includes obtaining an object, the object including one or more images; determining a content element of the object for video editing, the content element having a content type identifier; determining a material set identifier corresponding to the content type identifier according to a first behavior tree logic; determining a video editing material set corresponding to the material set identifier; and obtaining an edited video according to the content element and the video editing material set.
US11715495B2 Modification of objects in film
A computer-implemented method of processing video data comprising a sequence of image frames. The method includes isolating an instance of an object within the sequence of image frames, generating a modified instance of the object using a machine learning model, and modifying the video data to smoothly transition between at least part of the isolated instance of the object and a corresponding at least part of the modified instance of the object over a subsequence of the sequence of image frames.
US11715492B2 Cartridge including cartridge case housing magnetic tape and memory storing information for adjusting tape width, data recording apparatus, and data reproduction apparatus
A cartridge according to the present technology includes: a cartridge case; and a memory. The cartridge case houses a magnetic tape. The memory is provided in the cartridge case, the memory storing information during data recording by the magnetic tape, the information being for adjusting a width of the magnetic tape during data reproduction by the magnetic tape.
US11715491B2 Method of ultra-fine critical dimension patterning for magnetic head devices
Methods of critical dimension (CD) uniformity control for magnetic head devices are disclosed. In some embodiments, a method can include providing a film stack, the film stack including a substrate, a magnetoresistive (MR) sensor layer, and a hard mask layer, patterning the hard mask layer using a first mask that defines critical shape patterns other than the CD, forming a mandrel pattern using a second mask that defines the CD, and forming a sidewall spacer pattern on sidewalls of the mandrel pattern, and removing the mandrel pattern.
US11715489B2 Linear filtering for noise-suppressed speech detection
Systems and methods for suppressing noise and detecting voice input in a multi-channel audio signal captured by a plurality of microphones include (i) capturing a first audio signal via a first microphone and a second audio signal via a second microphone, wherein the first and second audio signals respectively comprises first and second noise content from a noise source; (ii) identifying the first noise content in the first audio signal; (iii) using the identified first noise content to determine an estimated noise content captured by the plurality of microphones; (iv) using the estimated noise content to suppress the first and second noise content in the first and second audio signals; (v) combining the suppressed first and second audio signals into a third audio signal; and (vi) determining that the third audio signal includes a voice input comprising a wake word.
US11715486B2 Convolutional, long short-term memory, fully connected deep neural networks
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for identifying the language of a spoken utterance. One of the methods includes receiving input features of an utterance; and processing the input features using an acoustic model that comprises one or more convolutional neural network (CNN) layers, one or more long short-term memory network (LSTM) layers, and one or more fully connected neural network layers to generate a transcription for the utterance.
US11715485B2 Artificial intelligence apparatus for converting text and speech in consideration of style and method for the same
According to an embodiment of the present invention, there is provided an artificial intelligence (AI) apparatus for mutually converting a text and a speech, including: a memory configured to store a plurality of Text-To-Speech (TTS) engines; and a processor configured to: obtain image data containing a text, determine a speech style corresponding to the text, generate a speech corresponding to the text by using a TTS engine corresponding to the determined speech style among the plurality of TTS engines, and output the generated speech.
US11715483B2 Self-voice adaptation
Aspects of the subject technology relate to a device including a microphone, a filter and a processor. The filter receives an audio signal including ambient noise and a voice of a user of the device from the microphone. At least a portion of ambient noise is filtered from the audio signal. The processor determines a level of the ambient noise in the received audio signal and dynamically adjusts a gain applied to the filtered audio signal based on the level of the ambient noise.
US11715481B2 Encoding parameter adjustment method and apparatus, device, and storage medium
An encoding parameter adjustment method is performed at a computer device. The method includes: obtaining a first audio signal, and determining a psychoacoustic masking threshold within a service frequency band in the first audio signal; obtaining a second audio signal, and determining a background environmental noise estimation value of the frequency within the service frequency band in the second audio signal; determining a masking tag corresponding to the service frequency band according to the psychoacoustic masking threshold of the first audio signal and the background environmental noise estimation value of the second audio signal; determining a masking rate of the service frequency band according to the masking tag corresponding to the frequency within the service frequency band; determining a first reference bit rate according to the masking rate of the service frequency band; and configuring an encoding bit rate of an audio encoder based on the first reference bit rate.
US11715480B2 Context-based speech enhancement
A device to perform speech enhancement includes one or more processors configured to obtain input spectral data based on an input signal. The input signal represents sound that includes speech. The one or more processors are also configured to process, using a multi-encoder transformer, the input spectral data and context data to generate output spectral data that represents a speech enhanced version of the input signal.
US11715479B1 Signal enhancement and noise reduction with binaural cue preservation control based on interaural coherence
An audio signal is enhanced using interaural coherence to control noise reduction and binaural cue preservation. Sounds from a local area are detected via an acoustic array. An interaural coherence is determined using the detected sounds. Sound filters for an audio signal are generated based on the interaural coherence. The sound filters implement a tradeoff between increasing signal-to-noise ratio (SNR) between a target source and an interfering source and preserving of binaural information of the interfering source. The tradeoff is controlled based on the interaural coherence. The sound filters are applied to the audio signal to generate audio content. The audio content is presented via a speaker array.
US11715474B1 Systems and methods for pervasive advisor for major expenditures
A pervasive advisor for major purchases and other expenditures may detect that a customer is contemplating a major purchase (e.g., through active listening). The advisor may assist the customer with the timing and manner of making the purchase in a way that is financially sensible in view of the customer's financial situation. A customer may be provided with dynamically-updated information in response to recent actions that may affect an approved loan amount and/or interest rate. Underwriting of a loan may be triggered based on the geo-location of the user. Financial advice may be provided to customers to help them meet their goals using information obtained from third party sources, such as purchase options based on particular goals. The pervasive advisor may thus intervene to assist with budgeting, financing, and timing of major expenditures based on the customer's location and on the customer's unique and changing circumstances.
US11715471B2 Systems, methods, and storage media for performing actions based on utterance of a command
Systems and methods for recognizing and executing spoken commands using speech recognition. Exemplary implementations may: store actionable phrases; obtain audio information representing sound captured by a mobile client computing platform associated with a user; detect any spoken instances of a predetermined keyword present in the sound represented by the audio information; perform speech recognition on the sound represented by the audio information; identify an utterance of an individual actionable phrase in speech temporally adjacent to the spoken instance of the predetermined keyword that is present in the sound represented by the audio information; perform natural language processing to identify an individual command uttered temporally adjacent to the spoken instance of the predetermined keyword that is present in the sound represented by the audio information; and effectuate performance of instructions corresponding to the command.
US11715469B2 Methods and apparatus for improving search retrieval using inter-utterance context
A system and method of improving the Natural Language Understanding of a voice assistant. A first utterance is converted to text and parsed by a Bi-LSTM neural network to create a vector representing the utterance. A subsequent utterance is similarly converted into a representative vector and the two vector are combined to predict the true intent of a user's subsequent utterance in context with the initial utterance.
US11715468B2 Electronic device and operation method thereof
Provided are an electronic device and an operation method thereof. The electronic device includes: a first sound receiver configured to receive a sound input while power is supplied to the first sound receiver in a standby state; a trigger word/phrase recognizer configured to recognize whether the sound input received by the first sound receiver corresponds to a trigger word or phrase; a second sound receiver configured to receive a sound input by receiving supply of power based on the trigger word or phrase being recognized by the trigger word/phrase recognizer; and a data transceiver configured to output a first sound input signal supplied from the first sound receiver and a second sound input signal supplied from the second sound receiver.
US11715466B2 Systems and methods for local interpretation of voice queries
Systems and methods are described herein for locally interpreting a voice query and for managing a storage size of data stored locally to support such local interpretation of voice queries. A voice query is received and compared with a plurality of stored voice queries having similar audio characteristics. If a match is identified, text corresponding to the matching stored voice query is retrieved, and an action corresponding to the retrieved text is performed. If the locally stored table does not contain a stored voice query that matches the voice query, the voice query is transmitted to a remote server for transcription. Once the transcription is received from the remote server, the voice query and the transcription are stored in the table in association with one another.