Document Document Title
US11627687B2 Multiple phase multiple system architecture
A multiple phase cooling system is described for an electronic rack, a cluster of servers, and for a data centers. An inlet of a 3-way flow control valve (FCV) is coupled to a main coolant source. A first outlet of the FCV is coupled to a single-phase cooling system and a second outlet of the FCV is coupled to a two-phase cooling system. The FCV is configured to adjust an amount of coolant between the single-phase cooling system and the two-phase cooling system. Upon detecting a rise in vapor pressure in a return line of the two-phase cooling system, the FCV can be adjusted to direct more coolant to the two-phase cooling system and less coolant to the single-phase system. The FCV can continuously monitor the vapor pressure and adjust the amount of coolant to each cooling system accordingly.
US11627685B2 Immersion system
An immersion system includes an immersion tank configured to store a coolant liquid and contain an electronic device, a heat exchanger coupled to the immersion tank through first piping, a first pump provided in the first piping and configured to circulate the coolant liquid between the immersion tank and the heat exchanger, a tank coupled to the immersion tank through second piping, a second pump provided in the second piping and configured to move the coolant liquid between the immersion tank and the tank, a level sensor provided in the immersion tank and configured to detect a liquid level in the immersion tank, and a controller configured to control the second pump in accordance with a detection signal of the level sensor.
US11627684B2 Bi-directional fan
A bi-directional fan device that is field replaceable within an electronic system is provided. The bi-directional fan device includes a fan unit that cools an electronic system when connected to a power source, and an electrical connector constructed at both ends of the fan unit to electrically connect to the power source.
US11627683B2 Enclosure assembly for enhanced cooling of direct drive unit and related methods
Embodiments of an enclosure assembly to enhance cooling of a hydraulic fracturing direct drive unit (DDU) during operation are included. The enclosure assembly may include an enclosure body extending at least partially around an enclosure space to house the DDU for driving a fluid pump. The enclosure assembly may include one or more heat exchanger assemblies connected to the enclosure body for cooling a process fluid associated with one or more of the DDU and the fluid pump, and which may be configured to draw air into the enclosure space from and external environment, toward one or more radiator assemblies to cool the process fluid, and along an airflow path through the enclosure space. One or more outlet fan assemblies may be operative to discharge air from the enclosure space to the external environment to maintain a desired temperature of the enclosure space.
US11627682B2 Rack-mounted device and electronic apparatus
A rack-mounted device includes a case configured to include, in a width direction, a plurality of containment rooms each in which an electronic device is contained, a partition suspended from an upper wall of the case and configured to partition off the plurality of containment rooms adjacent to each other and guide the electronic device, and a support plate extending from a sidewall of the case into a containment room of the plurality of containment rooms and provided with a gap from a lower wall of the case to support the electronic device.
US11627677B1 Brush port assembly and method for installing same
A brush port assembly includes a bezel frame and a brush component. The bezel frame is comprised of an elongate body having first and second ends, a top surface, and an underside. The elongate body is formed as a generally enclosed shape that frames an opening, whereby the first and second ends are arranged in an end-to-end relationship with a gap therebetween. The brush component has a spine member from which a plurality of bristles extend. The spine member is secured to the underside of the elongate body such that the bristles substantially entirely cover the opening. The bezel frame is installable, without the aid of tools, along an exposed edge of a brush port opening in a surface of an electronic equipment enclosure. Additionally, the bezel frame is installable around a cable that passes through the brush port opening by maneuvering the cable through the gap.
US11627676B2 Support frame for bendable display screen, and bendable display screen
A support frame for a bendable display screen includes: a fixed part; a bendable part connected with the fixed part; and an end part arranged at an end of the support frame. The bendable part includes a first bendable part and a second bendable part. The first bendable part includes a plurality of first frame members connected with one another, and the plurality of first frame members have a gap therebetween. The second bendable part is connected with the end part. Both the end part and the fixed part are provided with a limiting member.
US11627667B2 High-resolution soldering
A method for circuit fabrication includes defining a solder bump, including a specified solder material and having a specified bump volume, to be formed at a target location on an acceptor substrate. A transparent donor substrate, having a donor film including the specified solder material, is positioned such that the donor film is in proximity to the target location on the acceptor substrate. A sequence of pulses of laser radiation is directed to pass through the first surface of the donor substrate and impinge on the donor film so as to induce ejection from the donor film onto the target location on the acceptor substrate of a number of molten droplets of the solder material such that the droplets deposited at the target location cumulatively reach the specified bump volume. The target location is heated so the deposited droplets melt and reflow to form the solder bump.
US11627666B2 Electronic device and manufacturing method thereof
An electronic device is provided, the electronic device includes a driving substrate (13), the driving substrate includes a plurality of circular grooves and a plurality of rectangular grooves, and a plurality of disc-shaped electronic components, at least one disc-shaped electronic component is disposed in at least one circular groove, an alignment element positioned on a top surface of the at least one disc-shaped electronic component, a diameter of the at least one disc-shaped electronic component is defined as R, a diameter of the alignment element is defined as r, a width of at least one rectangular groove among the rectangular grooves is defined as w, and a height of the at least one rectangular groove is defined as H, and the disc-shaped electronic component and the rectangular groove satisfy the condition of (R+r)/2>(w2+H2)1/2.
US11627664B2 Flexible circuit electrode array and method of manufacturing the same
A method for manufacturing a flexible circuit electrode array, comprising: a) depositing a metal trace layer containing a base coating layer, a conducting layer and a top coating layer on the insulator polymer base layer; b) applying a layer of photoresist on the metal trace layer and patterning the metal trace layer and forming metal traces on the insulator polymer base layer; c) activating the insulator polymer base layer and depositing a top insulator polymer layer and forming one single insulating polymer layer with the base insulator polymer layer; d) applying a thin metal layer and a layer of photoresist on the surface of the insulator polymer layer and selective etching the insulator layer and the top coating layer to obtain at least one via; and e) filling the via with electrode material. A layer of polymer is laid down. A layer of metal is applied to the polymer and patterned to create electrodes and leads for those electrodes. A second layer of polymer is applied over the metal layer and patterned to leave openings for the electrodes, or openings are created later by means such as laser ablation. Hence the array and its supply cable are formed of a single body. Alternatively, multiple alternating layers of metal and polymer may be applied to obtain more metal traces within a given width.The method provides an excellent adhesion between the polymer base layer and the polymer top layer and insulation of the trace metals and electrodes.
US11627662B2 Passive component and electronic device
In an exemplary embodiment, a passive component, which is a surface mounting component, includes: a substrate body having insulating property; an internal conductor built into the substrate body; and at least one external electrode provided on a planar mounting face of the substrate body and electrically connected to the internal conductor; wherein the external electrode has a face parallel with the planar mounting face of the substrate body, and a concaved part which is inwardly concaved relative to the parallel face toward the substrate body and is located, as viewed in a direction perpendicular to the parallel face, inside the parallel surface so as to be surrounded by the parallel surface.
US11627656B2 Slitted PCB for omni-directional like performance of off-center mounted antennas of passive access systems
A radio frequency (RF) circuit is provided and includes an antenna, a printed circuit board and a RF chip. The printed circuit board includes a stack of layers. The stack of layers includes a grounded layer. The grounded layer includes a slit, a dielectric area, a first grounded area and a second grounded area. The dielectric area includes dielectric material and is disposed between the first grounded area and the second grounded area. The antenna is edge mounted to the ground layer adjacent the dielectric area and offset from a centerline of the ground layer. The second grounded area is disposed between the dielectric area and the slit. The RF chip is mounted to the stack of layers and connected to the antenna via a transmission line and configured to transmit and receive RF signals via the antenna.
US11627653B2 Compact linear accelerator with accelerating waveguide
A linear accelerator head for use in a medical radiation therapy system can include a housing, an electron generator configured to emit electrons along a beam path, and a microwave generation assembly. The linear accelerator head may include a waveguide that is configured to contain a standing or travelling microwave. The waveguide can include a plurality of cells that are disposed adjacent one another, wherein each of the plurality of cells may define an aperture configured to receive electrons therethrough. The linear accelerator head can further include a converter and a primary collimator.
US11627652B1 Plasma generating system
Power circuitry for cold plasma generation; optionally plasma for therapeutic use. Cold plasma generation occurs at the distal end of a catheter-like device which is flexible, narrow (e.g., less than 5 mm in diameter), and longitudinally extended to reach, e.g., 50-100 cm into body cavities. A cable used for power transmission is a part of the power generating circuit, its intrinsic impedance being a major contributor to and constraint on the time constant of an entraining RC circuit whose resonant frequency entrains the frequency of power generation. In some embodiments, inductive transformer coupling to the entraining/transmission line circuit is used to generate voltage gain. In some embodiments, transformer coupling is divided into a plurality of stages. This potentially enables practically achieving high transmission frequencies with higher gain, lowered sensitivity to variability in distal portions of the entraining RC circuit, and/or longer transmission lines compared to a single-stage transformer configuration.
US11627651B2 Method and apparatus for controlling light levels to save energy
An occupancy sensor with integral light level sensors is configured to turn off or disable peripheral circuits and go into a periodic deep sleep mode to reduce phantom loading. Peripheral circuits include occupancy sensor circuits and relay drive circuits, but may include other circuits such as communication circuits. The sensor may be configured to periodically wake itself up, check ambient light conditions to see if lighting is below the set threshold. If it is not, the sensor goes back to sleep. If it is, then the sensor can power up the occupancy sensor circuit to see if the space is occupied; if not, it can go back to sleep. If the space is occupied, it can turn on other peripheral circuits necessary to control the load.
US11627649B2 LED driving device with high power efficiency and lighting apparatus including the same
A light emitting diode (LED) driving device for driving an LED array including one or more LEDs includes a rectifier configured to provide a rectified voltage obtained from an alternating current (AC) voltage to the LED array, an LED driver configured to sequentially drain an LED driving current from the LED array via a plurality of first nodes, and a first switch circuit connected to the LED array via a plurality of second nodes. The first switch circuit includes a plurality of first switches commonly connected to a first common node which is one of the plurality of first nodes, and respectively connected to the plurality of second nodes, and a first controller configured to control the plurality of first switches to be sequentially turned on and sequentially turned off.
US11627647B2 Systems and methods for providing tunable warm white light
The present disclosure provides methods for generating tunable white light. The methods include using a plurality of LED strings to generate light with color points that fall within white, red, and cyan color ranges, with each LED string being driven with a separately controllable drive current in order to tune the generated light output.
US11627645B2 Microwave heating device and method for operating a microwave heating device
A microwave heating device includes at least two radiating portions that are adapted to radiate microwaves to the heating chamber and can be operated according to a plurality of operational configurations that differ in frequency and/or in phase shift(s) between the radiated microwaves. Data of energy efficiency, as a function of operational configurations, can be obtained for a product in the heating chamber. For example, energy efficiency data are obtained through a learning procedure. The obtained data can be processed to select one or more operational configurations ranking high in energy efficiency and a heating procedure for the product inside the heating chamber can be executed by operating the at least two radiating portions according to the selected one or more operational configurations.
US11627640B2 Remote LPWAN gateway with backhaul over a high-latency communication system
A terrestrial data communication gateway device for satellite communication comprising: at least one processor; memory accessible to the at least one processor; a LPWAN wireless communication subsystem for communication with multiple remote devices; a satellite communication subsystem for communication with at least one low earth orbit satellite. The memory stores program code executable by the processor to cause the processor to: perform server functions in relation to the multiple remote devices, and configure an edge computing module to perform data processing operations on signals received by the LPWAN communication subsystem. The data processing operations comprise compression of data received by the LPWAN communication subsystem to generate a compressed payload for transmission by the satellite communication subsystem. The memory comprises a backhaul scheduling module to schedule communication of a transmission by the satellite communication subsystem to the low earth orbit satellite.
US11627635B2 Expedited release of a user equipment
In order to improve efficiency in releasing a connection with a user equipment, a method, apparatus, and computer-readable medium are presented herein. A RAN receives release assistance information from a user equipment or a User Plane Function (UPF) involved in an active session with the user equipment. The release assistance information may be received over a control plane or over a user plane. The release assistance information may be received from the user equipment or the UPF over the user plane or as Radio Resource Control (RRC) signaling. The release assistance information may be received from an application function via the UPF. The RAN determines to release the user equipment based on the release assistance information.
US11627633B2 Data transmission in inactive state
A wireless device receives a first configuration parameter indicating whether data of a logical channel is allowed to be transmitted using a configured grant of type 1 and a second configuration parameter indicating whether data of the logical channel is allowed to be transmitted using a configured grant of type 1 while in RRC inactive state. The wireless device may transmit or not transmit data of the logical channel while in RRC connected state and while in RRC inactive state using configured grants of type 1 based on the configuration parameters.
US11627627B2 Beam failure recovery procedures
Beam failure recovery (BFR) procedures are described for wireless communications. A base station may send a message to a wireless device during a BFR procedure. The message may comprise one or more BFR configuration parameters and/or reconfigure one or more BFR configuration parameters. The wireless device may stop the BFR procedure, for example, after or in response to receiving the message from the base station. The wireless device may perform a second BFR procedure using one or more of the BFR configuration parameters received in the message.
US11627621B2 Coordinated transmissions over a transient roving wireless communication channel
Apparatuses, methods, and systems for coordinating wireless communication are disclosed. One method includes generating, by a wireless radiator, a plurality of selectable directional wireless communication links capable of providing connectivity across a plurality of cells, wherein each of the cells is spatially different from other cells, and wherein each of the cells covers a cell area, wherein a plurality of hubs are located within the cell area, generating, by a controller, a cell map, wherein the cell map maps which of the directional wireless links, which of the plurality cells, and which of the hubs are active as a function of time, thereby supporting a wireless communication link between the base station and the hubs of the cell area corresponding with the active directional wireless link, and providing the cell map to the base station and the hubs of each of the cells.
US11627614B2 Terminal apparatus, base station apparatus, and method
A terminal apparatus for communicating with a base station apparatus, the terminal apparatus including: a receiver configured to receive, from the base station apparatus, a Radio Resource Control (RRC) reconfiguration message including a radio bearer configuration information element; and a processing unit configured to, in a case that a radio bearer identity included in the radio bearer configuration information element is not part of a configuration of the terminal apparatus and that the radio bearer configuration information element includes a Service Data Adaptation Protocol (SDAP) configuration information element and that a Protocol Data Unit (PDU) session information element included in the SDAP configuration information element is not part of the configuration of the terminal apparatus, indicate to upper layers that a user-plane resource is configured for a PDU session corresponding to a value of the PDU session information element.
US11627611B2 Wireless communication method and device for blind detection of downlink signals
A wireless communication method and device are disclosed. The method includes performing channel detection for a carrier in an unlicensed frequency band; and sending a preamble signal on the carrier from a first time-point, in response to the channel detection succeeding, the preamble signal being configured for indicating that the carrier has an ability to transmit a downlink signal.
US11627608B2 Indicating system timing information in high band communications
Methods, systems, and devices for wireless communications are described. The method includes receiving a random access configuration for the UE, the random access configuration indicating a subcarrier spacing for random access preambles of a random access procedure and a periodicity of slots including random access channel occasions for transmission of the random access preambles, where the periodicity of the slots is based on the subcarrier spacing for the random access preambles, determining a random access radio network temporary identifier based on the periodicity of the slots and a slot index for a slot in which the UE is to transmit a random access preamble, and transmitting, in the slot, the random access preamble indicating the determined random access radio network temporary identifier.
US11627606B2 Receiver-assisted listen before talk for new radio unlicensed spectrum
A user equipment (UE) includes a memory and a processor configured to perform directional listen before talk (LBT) to identify a set of narrow beam and sub-band combinations available for transmission; transmit, to a base station (gNB), at least one schedule request in a physical uplink control channel (PUCCH) over the identified set of narrow beam and sub-band combinations; receive, from the gNB, an uplink grant for physical uplink shared channel (PUSCH) data transmission over at least one narrow beam and sub-band combination selected by the gNB from the identified set of narrow beam and sub-band combinations; and acquire a channel occupancy time (COT) duration for the at least one narrow beam and sub-band combination selected by the gNB as part of the uplink grant.
US11627602B2 Information processing apparatus, communication system, information processing method, and program
An information processing apparatus includes a control unit. The control unit controls transmission of an inducement frame for causing another communication device to transmit a transmission suppression period reduction frame for reducing a transmission suppression period. In addition, the control unit controls transmission of the transmission suppression period reduction frame on the basis of the inducement frame in a case where the control unit receives the inducement frame. Transmission suppression periods set in other information processing apparatuses are equally reduced to eliminate inequality in using wireless resources.
US11627598B2 Mask-based configuration for discontinuous reception
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive a first configuration and a second configuration, wherein the first configuration is for a discontinuous reception (DRX) cycle and the second configuration is for a configured grant (CG), wherein the DRX cycle is associated with a set of active time durations and a set of non-active time durations, and wherein the CG is associated with a transmission in one or more non-active time durations of the set of non-active time durations; receive information identifying a mask, wherein the mask indicates a modified configuration for the transmission in the one or more non-active time durations or a modified multiplexing scheme for the CG; and selectively perform or skip the transmission in accordance with the CG and the mask. Numerous other aspects are provided.
US11627596B2 Joint shared channel frequency allocation in downlink control information
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive, from a base station, a control message that comprises scheduling information for a downlink message to be received by the UE and an uplink message to be transmitted by the UE. The UE may determine first frequency information for the downlink message and second frequency information for the uplink message based at least in part on the scheduling information, a first bitfield size associated with resource allocation for a first bandwidth part associated with the downlink message, and a second bitfield size associated with resource allocation for a second bandwidth part width associated with the uplink message. The UE may communicate the uplink message and the downlink message with the base station according to the first frequency information and the second frequency information.
US11627588B2 Base station, communication system, communication method, and non-transitory storing medium
A base station includes: a communication circuit configured to communicate with a mobile station; a prediction circuit configured to predict a period during which communication with the mobile station is blocked; and a controller configured to control the communication circuit in such a way that communication data to be transmitted to the mobile station in the period during which communication is blocked are transmitted in a period before the period during which communication is blocked.
US11627582B2 Method, network device and terminal device for semi-persistent scheduling
Methods for a network device and a terminal device for Semi-Persistent Scheduling (SPS) are disclosed. A method comprises sending, to a terminal device, a first uplink (UL) SPS configuration message via a Layer 1 signal to configure or deconfigure a UL SPS grant in a cell among one or more cells configured to the terminal device; and receiving, from the terminal device, a first Media Access Control (MAC) Control Element (CE) for confirmation of the first UL SPS configuration message, wherein the first MAC CE comprises a first indicator to confirm the first UL SPS configuration message, or wherein there is a correspondence between the first UL SPS configuration message and the first MAC CE when there are two or more first UL SPS configuration messages to be sent and two or more first MAC CEs to be received.
US11627576B2 Wireless communication system using twisted pairs and a single multi-carrier modulation scheme
An orthogonal frequency-division multiplexing (OFDM) base station operative to transmit a sequence of OFDM signals simultaneously using at least two separate twisted pairs, in which each of the OFDM signals is modulated by a plurality of sub-carriers. At least two converters are connected to the OFDM base station using the at least two twisted pairs, respectively, in which each of the converters, and simultaneously with the other converters, is configured to receive each of the OFDM signals from the OFDM base station using the respective twisted pair, up-convert the OFDM signal into a radio-frequency (RF) band, and re-transmit wirelessly the OFDM signal, in conjunction with the RF band, from at least one antenna associated with each converter.
US11627574B2 Grouping user equipment based on downlink power
Aspects of the disclosure relate to downlink (DL) transmissions using various powers and assigning frequency resources based on the powers. An example base station may transmit, to a first user equipment (UE), an indication of a first transmit (Tx) power for a first DL transmission on a first downlink (DL) resource on a carrier, the first DL resource being at a first frequency. The first DL resource may be at a first frequency. The first Tx power may have a power level configured based on a difference between the first frequency for the first DL resource and an uplink (UL) frequency region of the carrier. Then, the base station may transmit the first DL transmission using the first frequency and the first Tx power. Other aspects, embodiments, and features are also claimed and described.
US11627573B2 Method for transmitting and receiving signal by terminal in wireless communication system and apparatus therefor
The present invention relates to a method and an apparatus for transmitting and receiving a signal by a terminal in a wireless communication system supporting reconfiguration of wireless resources. Specifically, the method comprises a step of monitoring wireless resource reconfiguration control information on a number of sub-frames within a set monitoring cycle in order to reconfigure wireless resources, wherein a first uplink-downlink setting in accordance with wireless resource reconfiguration control information is valid only if equally detected on a number of sub-frames, and wherein a number of sub-frames are sub-frames set to monitor wireless resource reconfiguration control information of a terminal.
US11627571B2 Feedback window to provide early feedback for transmissions in a set of consecutive transmission time intervals
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive an indicator of a feedback window that is offset relative to a beginning transmission time interval (TTI) of a set of consecutive TTIs. The consecutive TTIs may include a set of aggregated slots or may correspond to a multi-TTI grant. The feedback window may include multiple control channel occasions interspersed within a duration of the set of consecutive TTIs. The UE may receive a transport block within a first TTI of the set of consecutive TTIs and transmit, within a control channel, feedback to indicate whether the transport block was successfully received.
US11627570B2 Method and apparatus for slot structure indication
A method and apparatus for slot structure indication is disclosed. In one embodiment, a method performed by a wireless communication node, comprising: configuring at least one first SFI entry set to a wireless communication device, wherein the at least one SFI entry set contains slot structure information of at least one transmission resource; and transmitting a physical channel to a wireless communication device, wherein the physical channel comprises at least one slot format related information (SFI) field.
US11627564B2 Methods and apparatus for control channel detection in an uplink shared channel
Methods and apparatus for channel detection in an uplink shared control channel. In an exemplary embodiment, a method includes generating soft-combined bit streams for an acknowledgement (ACK) indicator, rank indicator (RI), and channel quality indicator (CQI) received in an uplink shared channel. The method also includes decoding the ACK, RI, and CQI soft-combined bit streams to generate Top-M decoded bit streams for each indicator, and generating Top-Q symbols for each indicator from the Top-M decoded bit streams for each indicator. The method also includes calculating metrics from the Top-Q symbols and uplink control information (UCI) symbols extracted from the uplink shared channel, combining the metrics to form a search space, and searching the search space to determine transmitted ACK, RI, and CQI bits.
US11627561B2 Relay reception synchronization system and method
A method for informing a relay node when to receive data. The method includes the relay node being informed of a fixed point in a subframe of data when an access node will begin transmitting relevant data over a physical downlink shared channel. The method further includes the relay node beginning to receive data at approximately the fixed point.
US11627558B2 Supporting multi-signal source communications in a distributed communications system
Supporting multi-signal source communications in a distributed communications system (DCS) is disclosed. The DCS includes a routing circuit configured to route downlink and uplink communications signals between multiple signal sources and a number of remote units. In examples disclosed herein, the routing circuit and each of the remote units are functionally divided based on an open radio access network (O-RAN) Split 7.2 configuration. To support downlink communications from multiple signal sources, the routing circuit generates a downlink frequency-domain communications signal, which includes one or more selected logical channels associated with one or more of the multiple signal sources, for each of the remote units in the DCS. Accordingly, each remote unit converts the downlink frequency-domain communications signal into a downlink time-domain communications signal for transmission in a downlink radio frequency (RF) communications signal. As such, it may be possible to improve scalability while reducing cost and space of the DCS.
US11627550B2 Passive positioning methods in new radio
Techniques are provided for passive positioning of user equipment (UE). An example method for passive positioning of a user equipment includes receiving a first positioning reference signal from a first station at a first time, receiving a second positioning reference signal from a second station at a second time, receiving a turnaround time value associated with the first positioning reference signal and the second positioning reference signal, and a distance value based on a location of the first station and a location of the second station, and determining a time difference of arrival based at least in part on the turnaround time value, the distance value, the first time, and the second time.
US11627549B2 Associating sensing information with a user
Certain example embodiments provide systems, methods, apparatuses, and computer program products for associating sensing information with a user (e.g., a cellular user) by, for example, determining information from both a sensing node and a communication node, then associating the a sensed object and the communication node based on the information. Additionally, or alternatively, some embodiments provide systems, methods, apparatuses, and computer program products for radar and sensing-based positioning.
US11627548B1 Determining a passive geolocation of a wireless device by merging circular error probability ellipses
A method in a measuring station is described. The method includes determining a plurality of Time of Flights (TOFs) corresponding to plurality of beacons and determining an overall circular error probability ellipse (CEP) based at least in part upon a plurality of times of departure and a corresponding plurality of measuring station positions for each TOF. The method further includes determining at least one individual CEP of a plurality of individual CEPs if at least one of a predetermined time has elapsed and the measuring station has travelled a predetermined distance and determining a merged CEP, where the merged CEP includes the plurality of individual CEPs. Further, the merged CEP is determined to be a better CEP if the merged CEP is more consistent with the plurality of individual CEPs than with the overall CEP. The better CEP is usable to determine a location of a wireless device.
US11627547B1 Data-driven encampment management systems and methods
Data-driven systems and methods are described in regard to managing an encampment of at-risk individuals. In some variants a client/mobile device is configured according to one or more special-purpose protocols by which a task pertaining to the encampment is associated with a first resource, wherein the first task includes obtaining a first informational component. Recommendation data pertaining to the encampment is provided that is correlated with one or more features of the encampment and includes a task or referral pertaining to a second resource.
US11627544B2 Methods and apparatus for distributing timing information
Devices including a wireless receiver, e.g., indoor CBSDs, in a local network, e.g. a campus network, monitor for wireless signals conveying synchronization information. Different devices in the local area network may detect wireless signals conveying synchronization information from one or more different sources. A device detecting a source of synchronization information generates and sends a timing signal accuracy report to a switch, e.g. an intelligent IDF switch, included in the local network. The switch receives multiple timing signal accuracy reports, selects a “best” sync source and designates the particular device, e.g., particular CBSD, which reported the best sync source, to be the current master timing device for the local network. The switch communicates the address, e.g., IP address, of the selected master to the devices within the local network.
US11627543B2 Terminal and method for performing cell search in wireless communication system
An operating method of a terminal in a wireless communication system including a cell and the terminal includes receiving an external signal including a synchronization signal block (SSB) from the cell, the SSB including a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH), obtaining a cell identification number of the cell using the PSS and the SSS, determining a plurality of decoding priorities of a plurality of candidate indexes of the SSB, and performing decoding on the PBCH based on the plurality of decoding priorities.
US11627540B2 Method and apparatus for detecting signaling message, and storage medium
The present disclosure provides a method and apparatus for detecting signaling message, and storage medium. The method comprises: detecting synchronization signals and implementing synchronization; determining transmission resource locations of first-class signaling messages associated with the synchronization signals according to the synchronization signals; and receiving the first-class signaling messages on the transmission resource locations.
US11627539B2 Synchronization signal block grouping based on full-duplex capability
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a first wireless node (e.g., a user equipment) may receive, from a second wireless node (e.g., a base station), a downlink signaling message indicating a synchronization signal block (SSB) grouping based at least in part on a full-duplex capability and transmission directions associated with the second wireless node. The first wireless node may configure, and the second wireless node may perform, a beam search and/or a self-interference measurement to identify at least one candidate downlink and uplink beam pair suitable for full-duplex operation based at least in part on the SSB grouping. Numerous other aspects are provided.
US11627538B2 Methods and systems for providing time-sensitive services related to wireless devices
A method performed by a system of a wireless communication network is disclosed. The method relates to provisioning of a time-sensitive service related to a wireless device. The wireless communication network comprises a plurality of antenna reference points, ARPs, of one or more radio access network nodes of the wireless communication network. The method comprises obtaining information that a first ARP and a second ARP of the plurality of ARPs are to provide the time-sensitive service to the wireless device, determining, by inter-ARP radio signalling between ARPs of one or more pairs of the plurality of ARPs, one of the one or more pairs including the first ARP and one of the one or more pairs including the second ARP, a relative timing error between the first ARP and the second ARP, and taking the determined relative timing error into consideration when providing the service to the wireless device.
US11627536B2 Transmission power control of sounding reference signals in wireless communication system and device
An operating method of a wireless communication device configured to perform wireless communication with a cell. The method involves identifying, from a downlink signal received from the cell, an electromagnetic field state associated with an antenna of the wireless communication device. A power compensation mode for compensating transmission power of a sounding reference signal is selected based on the identified electromagnetic field state. The transmission power of the sounding reference signal is compensated based on the selected power compensation mode. The sounding reference signal is transmitted with the compensated transmission power through the antenna to the cell.
US11627531B2 WLAN receiver early power down based on center frequency offset detection
A wireless local area network (WLAN) station receiver has a center frequency offset (CFO) estimator and an CFO table with an association between a CFO value from a recently received access point packet for which the station is associated according to 802.11. The receiver performs a comparison between the CFO estimate of the received packet and the CFO value from the CFO database, and powers the receiver down if the comparison exceeds a threshold. The threshold may be an absolute value in parts per million, or may include a time drift compensation component.
US11627526B2 Coordinated device-to-device communications
Various aspects of the techniques, methods and devices described in this disclosure relate generally to achieving coexistence between WLAN and P2P networks, and specifically, to coordinated D2D communications. Some aspects particularly involve extending the capabilities of TWT elements transmitted by APs to support periodic reserved access windows during which D2D-enabled wireless devices are permitted to transmit direct wireless communications. Some other aspects relate to sharing time and frequency resources via CAP TDMA or CAP OFDMA techniques, and specifically, to allocating at least some of the time and frequency resources specifically for D2D communications. Some other aspects relate to periodic coordinated access windows during which APs are scheduled to contend but during which D2D devices are not permitted to contend, and specifically, to scheduling a reserved access window within a periodic coordinated access window during which D2D devices may transmit direct communications to other D2D devices despite the permissions associated with the periodic coordinated access windows.
US11627522B2 Network slice selection assistance information configuration
Apparatuses, methods, and systems are disclosed for NSSAI configuration. One method includes determining a configured network slice selection assistance information for a public land mobile network for a remote unit in response to a trigger from an access and mobility management function. The access and mobility management function, a network slice selection function, or a combination thereof determines the configured network slice selection assistance information. The method includes providing the configured network slice selection assistance information to the remote unit via the access and mobility management function.
US11627519B2 Discontinuous access to unlicensed spectrum in a new radio environment
Discontinuous access to unlicensed spectrum is facilitated in a new radio access environment. According to an embodiment, a system can comprise performing a scanning procedure that determines whether a first subband and a second subband is available for transmission. The system can further facilitate determining whether the first subband and the second subband are adjacent, wherein a first channel formed at the first subband comprising a first guard band and a second channel formed at the second subband comprising a second guard band that is adjacent to the first guard band. The system can further facilitate in response to determining that the first subband and the second subband are adjacent and available for transmission, eliminating the first guard band and the second guard band.
US11627518B2 Distributed PCI management for mobile IAB network
When moving within an area covered by an Integrated access and backhaul (IAB) network, a mobile IAB node may come into proximity with another stationary or mobile IAB node that may have a same physical cell identifier (PCI) as the mobile IAB node. PCI collision issue may occur. Aspects presented herein address the possible PCI collisions. In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be an IAB node configured to determine a configuration associated with PCI management of a PCI of the IAB node. The apparatus may be further configured to change the PCI of the IAB node based on the determined configuration.
US11627517B2 Network provisioning
Systems and methods for provisioning and managing a network are disclosed. One method can comprise determining location information of one or more access points and selecting a routing device based upon the location information. Communication can be established between the one or more access points and the select routing device to define a mobility group comprising the one or more access points.
US11627516B2 Controlling data communication quality in software-defined heterogenous multi-hop ad hoc networks
Methods, devices and systems that use a control channel to coordinate quality of data communications in software-defined heterogenous multi-hop ad hoc networks are described. In some embodiments, an example apparatus for wireless communication in a network includes performing, using a control plane, network management functions over a control channel that has a first bandwidth, implements a frequency-hopping operation, and operates at in a first frequency band, and performing, using a data plane that is physically and logically decoupled from the control plane, data forwarding functions, based on a routing decision, over at least one data channel that has a second bandwidth and operates in a second frequency band different from the first frequency band.
US11627515B2 Method for supporting lawful interception of remote ProSe UE in network
The disclosure relates to a communication technique for converging, with an IoT technology, a 5G communication system for supporting a higher data transmission rate than a 4G system, and a system therefor. The disclosure may be applied to intelligent services, such as smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, and security and safety related services, on the basis of 5G communications technologies and IoT-related technologies. A method for operating relay UE in a mobile communication system includes transmitting, to a network node connected to the relay UE, a remote UE report message including remote UE information about a remote UE accessing a network via the relay UE, wherein the remote UE information includes IP address information allocated to the remote UE; starting a timer upon transmitting the remote UE report message to the network node; receiving, from the network node, a response message in reply to the remote UE report message; and stopping the timer upon receipt of the response message from the network node. the IP address information includes an IP address and port information of the remote UE in case that IPv4 is used as an address type.
US11627510B2 Data processing method and apparatus, and computer storage medium
This application provides a data processing method and apparatus, and a computer storage medium. When a PDCP entity over a UM DRB is re-established, or when a cell handover occurs and the PDCP entity over a UM DRB uses a key used before the handover, the PDCP entity determines a first SDU, where the first SDU is an SDU that is associated with a sequence number by the PDCP entity but whose corresponding data has not been transmitted through an air interface; and delivers a PDU corresponding to the first SDU to an RLC entity. Data corresponding to the first SDU is redelivered, to avoid a data packet loss caused by preprocessing of the PDCP entity.
US11627509B2 Telecommunications system, terminal device, infrastructure equipment and methods
A wireless telecommunications system including a terminal device; first infrastructure equipment operable to communicate with the terminal device using a first radio access technology (RAT) and second infrastructure equipment operable to communicate with the terminal device using a second RAT. During a handover procedure for handover from the first infrastructure equipment as a source master infrastructure equipment to a third infrastructure equipment as a target master infrastructure equipment, the second infrastructure equipment is operable to communicate with the third infrastructure equipment using an interface associated with the second RAT so as to allow information necessary for completing the handover to be exchanged between the first infrastructure equipment and the third infrastructure equipment via the second infrastructure equipment.
US11627502B2 Measurements for multicast/broadcast service continuity
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may obtain a set of measurements related to a unicast service channel based at least in part on one or more reference signals associated with the unicast service channel and a set of measurements related to a multicast/broadcast service (MBS) channel based at least in part on one or more reference signals associated with the MBS channel. The UE may apply one or more communication parameters to ensure continuity for an MBS service. For example, in some aspects, the one or more communication parameters are based at least in part on the set of measurements related to the unicast service channel and the set of measurements related to the MBS channel. Numerous other aspects are provided.
US11627497B2 Front-haul rate reduction for use in a centralized radio access network
One embodiment is directed to a method of using variable-resolution quantization to front-haul at least some data over a front-haul network in a system configured to provide wireless service to user equipment. The method comprises, for each symbol position, determining a respective number of required resource blocks having respective actual user-equipment (UE) signal data to front-haul for each carrier and determining the number of high-resolution resource blocks that can be quantized at a higher resolution as a function of a difference between a nominal per-symbol-position front-haul link capacity and a link capacity needed to front-haul the required resource blocks for all of the carriers if quantized using a lower resolution. The method further comprises, for each symbol position, allocating the high-resolution resource blocks to each carrier and determining, for each carrier, which of the required resource blocks to quantize at the higher resolution. Other embodiments are disclosed.
US11627494B2 Base station apparatus, terminal apparatus, and QOS control method
Disclosed are a BS apparatus, a terminal apparatus, and a QoS control method for implementing the service flow-based QoS control without increasing complexity compared to the conventional bearer-based QoS control method.
US11627492B2 User plane function (UPF) load balancing based on special considerations for low latency traffic
Embodiments are directed towards systems and methods for user plane function (UPF) and network slice load balancing within a 5G network. Example embodiments include systems and methods for load balancing based on current UPF load and thresholds that depend on UPF capacity; UPF load balancing using predicted throughput of new UE on the network based on network data analytics; UPF load balancing based on special considerations for low latency traffic; UPF load balancing supporting multiple slices, maintaining several load-thresholds for each UPF and each slice depending on the UPF and network slice capacity; and UPF load balancing using predicted central processing unit (CPU) utilization and/or predicted memory utilization of new UE on the network based on network data analytics.
US11627491B2 Dictionary configuration method, buffer control method, network side device and user equipment
A dictionary configuration method, a buffer control method, a network side device and a UE are provided. The buffer control method for the network side device includes: receiving, by the network side device, first check information transmitted by the UE; determining, by the network side device, whether content in a compression buffer of the UE is identical to content in a decompression buffer of the network side device; and when the content in the compression buffer is different from the content in the decompression buffer, transmitting, by the network side device, buffer resetting information to the UE.
US11627490B2 Integrity protection at packet data convergence protocol layer
Methods, systems, and devices for wireless communications are described. A transmitting device may associate, at a first protocol layer, a first sequence number to a data packet to perform integrity protection on at least a portion of the data packet. The transmitting device may associate, at the first protocol layer, a second sequence number to the data packet for wireless transmission to a receiving device. The transmitting device may indicate an offset between the first sequence number and the second sequence number in the data packet. The transmitting device may transmit the data packet to a second protocol layer for wireless transmission to the receiving device, the second protocol layer being a lower layer than the first protocol layer.
US11627488B2 Message transmission method and apparatus
A message transmission method and a message transmission apparatus are provided. The message transmission method includes: obtaining, by a terminal, network congestion control configuration information; processing, by the terminal according to the network congestion control configuration information, a message generated by the terminal, and obtaining the processed message; and sending, by the terminal, the processed message. According to the method, a message generated by the terminal can be processed flexibly to relieve a network congestion problem in the Internet of vehicles.
US11627476B2 Determining beam tracking frequencies using signal-to-noise ratios associated with user equipments
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may detect a signal-to-noise ratio (SNR) associated with the UE. The UE may determine a beam tracking frequency based at least in part on the SNR. The UE may perform a beam tracking in accordance with the beam tracking frequency. Numerous other aspects are described.
US11627473B2 Method for determining wireless communication network layout
A method for determining a layout of a wireless communication network is provided in the present invention. Numerous realizations of user device placement in a considered geometry are measured to reflect the practical distribution of the user devices in a more accurate way than the conventional approach which emulates the randomness of placements of user devices using a tractable stochastic process. Moreover, a scenario sampling approach is used to provide a lower-complexity and higher efficient way to yield optimal base station deployment results while guaranteeing the quality of service of a specified majority of the overall user device realizations.
US11627472B2 Automated deployment of radio-based networks
Disclosed are various embodiments for automated deployment of radio-based networks. In one embodiment, a request to provision a radio-based network for a customer by a provider according to a network plan is received via an application programming interface (API) of a cloud provider network. An arrangement of a plurality of cells for the customer is determined. Respective antennas and radio units for individual ones of the plurality of cells are preconfigured to implement the radio-based network before shipping the respective antennas and the radio units to the customer.
US11627468B2 Connecting securely to a wireless display from BIOS
During the boot process, a secure wireless display connect module of the BIOS can authenticate a wireless display and determine whether the wireless display can comply with the HDCP. When the secure wireless display connect module determines that the wireless display is HDCP compliant, the secure wireless display connect module can create an ACPI secure blob in which is stored a shared session key generated as part of determining that the wireless display is HDCP compliant. A video authentication session module of the BIOS can then retrieve this shared session key from the ACPI secure blob and use it to encrypt video frames that are to be sent to the wireless display. The video authentication session module may additionally embed a session ID and a timeout into each video frame which the wireless display can employ to detect when the video frame should no longer be displayed.
US11627467B2 Methods, systems, and computer readable media for generating and using single-use OAuth 2.0 access tokens for securing specific service-based architecture (SBA) interfaces
A method for obtaining and using a single-use OAuth 2.0 access token for securing specific service-based architecture (SBA) interfaces includes generating, by a consumer network function (NF) an access token request. The method further includes inserting, in the access token request, a hash of at least a portion of a service-based interface (SBI) request message. The method further includes sending the access token request to an NF repository function (NRF). The method further includes receiving, from the NRF, an access token response, the access token response having an OAuth 2.0 access token including the hash of the at least a portion of the SBI request message. The method further includes using the OAuth 2.0 access token including the hash of the at least a portion of the SBI request message to access an SBI service.
US11627464B2 Grouping users by pre-shared key (PSK) in hospitality
Presented herein are techniques to manage a wireless local area network. A method includes defining a plurality of geographical zones corresponding to a geographical area that is serviced by a common service set identifier for a wireless local area network, assigning a pre-shared key to a mobile station based on the plurality of geographical zones, wherein the pre-shared key is associated with predetermined policies for a user of the mobile station, associating a media access control address of the mobile station with the pre-shared key, and controlling access of the mobile station to the wireless local area network based on the predetermined policies.
US11627458B2 Key derivation algorithm negotiation method and apparatus
This application provides a key derivation algorithm negotiation method and an apparatus. The method includes: checking, by a terminal, a sent first key derivation algorithm and a received second key derivation algorithm; if the checking is correct and the first key derivation algorithm is the same as the second key derivation algorithm, determining that the first key derivation algorithm sent by the terminal is not tampered with by an attacker; and then using a negotiated third key derivation algorithm as a key derivation algorithm of the terminal, to ensure confidentiality of the negotiated key derivation algorithm, thereby improving communication security.
US11627457B2 Facilitation of smart communications hub to support unmanned aircraft for 5G or other next generation network
Unmanned aircraft systems (UASs) can be supported by a smart communications hub. Network slices can be utilized to provide services to a UAS that has provided its remote identification number to a network node. After the UAS has been authenticated, by an authentication network slice, based on policies hosted at a service capabilities exposure function (SCEF), the UAS can utilize services provided by other network slices. Additionally, or alternatively, a user equipment associated with the UAS can be provided with suggested services hosted on other slices to which the UAS has not been previously subscribed.
US11627453B2 Emergency communication over non-persistent peer-2-peer network
Various embodiments comprise systems, methods, and apparatus for emergency, non-persistent peer-to-peer communications to support ad hoc use of proximate UE such as in remote areas with PE coverage gaps. Specifically, UE may configured to initiate emergency communications, and accept/support such emergency communications, such that an ad hoc mesh or message relay network is formed thereby in which (hopefully) someone near the source of the emergency communication may render assistance, or at least one UE in the ad hoc network is capable of accessing a base station, eNB, or gNB so that, for example, the mobile network provider or emergency services may be alerted to the emergency situation.
US11627451B2 Rail operating system
A system for interoperating and communicating data from a device having a communications gateway and at least one tactical device connected to an electrified rail providing electrical power. The system includes at least one processor, and at least one non-transitory computer-readable data storage device storing data instructions that, when executed by the at least one processor, cause the system to receive an event from the device, determine whether the event triggers a workflow, and execute an action on the device in response to the workflow being triggered.
US11627445B2 Resource selection method in vehicle to everything communication and apparatus therefore
Embodiments of the present disclosure provide a resource selection or reselection method by a user equipment (UE) and the UE in Vehicle to vehicle/pedestrian/infrastructure/network (V2X) communication. The method comprises the steps of: detecting physical sidelink control channel (PSCCH) transmitted by other UE(s); selecting (a) single-subframe resource(s) from single-subframe resources which do not overlap with single-subframe resources reserved by the detected PSCCH; and transmitting physical sidelink shared channel (PSSCH) on the selected single-subframe resource(s).
US11627441B2 Radio access technology (RAT) type usage differentiation for differential charging in 5G non-standalone (5G NSA) architecture deployments
A control plane function node may be used in a Fifth Generation (5G) Non-Standalone (NSA) architecture having Radio Access Network (RAN) level interworking between a Long-Term Evolution (LTE) RAN and a 5G New Radio (NR). The node obtains usage report data which are based on traffic of a user equipment (UE) via primary and secondary Radio Access Technologies (RATs). The node also obtains secondary RAT usage report data which are based on traffic of the UE via the secondary RAT. The node constructs a message which indicates a request for charging based on the usage report data and the secondary RAT usage report data. In constructing the message, the node populates, in association with a corresponding rating group and usage data of the UE, an identifier of a flow or bearer associated with secondary RAT usage, together with the secondary RAT usage report data.
US11627440B1 Method for improved audio intelligibility in a converged communication system
A method and device for improved audio intelligibility in a converged land mobile radio (LMR)/broadband (BB) communications system is provided. A converged portable radio operating as part of a talkgroup in the LMR/BB system checks for predetermined triggers during standby that could cause receive radios of the talkgroup to receive degraded audio. If such a trigger is detected then the converged portable radio switches from the LMR system to the BB system and transmits a notification including a change system message to the other converged portable radios of the talkgroup. The notification is transmitted prior to any push-to-talk audio being transmitted from the originating radio. The converged portable radio can transmit, via a push-to-talk switch, narrowband (NB) audio and wideband (WB) audio in parallel over the BB system to the talkgroup subsequent to the detection of triggers and the sending of the notification.
US11627437B2 Device searching method and electronic device
A device searching method includes: a first device obtains a relative location between a second device and the first device based on location information of the first device and the location information of the second device; if it is determined, based on the relative location, that the second device is not within a shooting range of the first device, the first device indicates to move the first device toward the second device until the second device is within the shooting range of the first device; and the first device highlights the area in which the second device is located in the shooting range of the first device.
US11627436B2 Battery management
Apparatus and methods prepare an adhesive tape platform with a battery for disposal at an end of its useful life. The adhesive tape platform determines when it is at the end of its useful life and performs an action to drain remaining battery life of the battery. When remaining life in the battery is less than a threshold level, the adhesive tape platform transmits a ready for disposal notification to an Internet of Things (IOT) system of the adhesive tape platform. The adhesive tape platform may determine its life expectancy and operational phases of the adhesive tape platform and assign battery usage for each of the operational phases such that the battery is depleted at an end of a last one of the operational phases. The adhesive tape platform may activate battery draining circuitry to drain the remaining battery life of the battery.
US11627435B2 Sending location information from within a communication application
A method in a first wireless communication device for displaying current location information representing a current location of a second wireless communication device. The method entails, from within a communication application executing on a processor of the first wireless communication device, receiving the current location information representing the current location of the second wireless communication device, performing a reverse look-up of the received current location of the second wireless communication device to determine address information, displaying a map from within the communication application, and identifying the received current location information on the displayed map with a name associated with the determined address information.
US11627434B2 Intelligent tracking system and methods and systems therefor
An intelligent tracking system generally includes one or more tracking devices, some of which may be passive tracking devices. Each passive tracking device includes one or more transceivers and is energized by an energizing signal. Some of these passive tracking devices may operate in a first communication mode or a second communication mode based on the energizing signal. Some tracking devices may include encryption modules or authentication modules. Some of these devices may incorporate a bulk acoustic wave oscillator.
US11627431B2 Methods for determining and displaying a local page for a mobile device and systems thereof
A method, according to one embodiment, includes receiving, at a device, preference information from a user; identifying a selection, by the user, of a predetermined page to be displayed by the device; in response to the identifying of the selection, retrieving content via a network connection based on the preference information, the content including one or more articles selected by a content provider based on the preference information; automatically designing a layout of one or more objects associated with the retrieved content for display on the device; and outputting the retrieved content on the predetermined page of the device.
US11627424B2 Acoustic monitoring using a sound masking emitter as a sensor
Example embodiments may include one or more of receiving sound emissions signals from channels via sound emitters, controlling the sound emission signals, via relay circuits, and one of the relay circuits is configured to interrupt one of the sound emission signals associated with one of the sound emitters while the other sound emissions signals pass to the other corresponding sound emitters, and receiving, via a sound detection circuit, an electrical ambient sound signal based on ambient sound sensed by the one of the sound emitters responsive to the interrupted one of the sound emission signals.
US11627422B2 Low-power active bone conduction devices
Presented herein are low-power active bone conduction devices that comprise an actuator that is subcutaneously implanted within a recipient so as to deliver mechanical output forces to hard tissue of the recipient. The low-power active bone conduction devices include an energy recovery circuit configured to extract non-used energy from the actuator and to store the non-used energy for subsequent use by the actuator. The low-power active bone conduction devices may also include a multi-bit sigma-delta converter that operates in accordance with a scaled sigma-delta quantization threshold value to convert received signals representative of sound into actuator drive signals.
US11627419B2 Systems and methods for suppressing sound leakage
A speaker comprises a housing, a transducer residing inside the housing, and at least one sound guiding hole located on the housing. The transducer generates vibrations. The vibrations produce a sound wave inside the housing and cause a leaked sound wave spreading outside the housing from a portion of the housing. The at least one sound guiding hole guides the sound wave inside the housing through the at least one sound guiding hole to an outside of the housing. The guided sound wave interferes with the leaked sound wave in a target region. The interference at a specific frequency relates to a distance between the at least one sound guiding hole and the portion of the housing.
US11627418B1 Multilayer membranes for haptic devices
The disclosed device may include a first layer of fluidic transducers and a second layer of fluidic transducers. Each transducer in the first layer may include a first electrode coupled to a first substrate of the first layer, a second electrode coupled to a second substrate of the first layer, and a fluid channel between the first and second electrodes of the first layer. Each transducer in the second layer may include a first electrode coupled to a first substrate of the second layer, a second electrode coupled to a second substrate of the second layer, and a fluid channel between the first and second electrodes of the second layer. The second layer of fluidic transducers may be positioned on the first layer of fluidic transducers. Various other methods, systems, and computer-readable media are also disclosed.
US11627412B2 Portable electronic device control
Electronic devices such as compact portable media players are provided. A housing for an electronic device may be relatively compact. The housing may include a door assembly with an attached spring-loaded clip. The electronic device may include a hold switch. Depending on the state of the hold switch, the electronic device may be in an off mode, a continuous playback mode, or a shuffle playback mode. The electronic device may not have integrated media playback controls such as play, pause, rewind, fast forward, etc. As one example, the electronic device may connect to an accessory that has media playback controls. Buttons and other user interfaces may be included in the accessory and user input information may be conveyed between the accessory and the electronic device using a wired path including audio connectors. The electronic device may include a printed circuit board assembly that is nested together with a battery assembly.
US11627411B2 Enclosure for diffusing sound by reverberation
AMENDMENT TO THE ABSTRACTThe invention relates to an enclosure for diffusing sound by reverberation comprising:—a loudspeaker comprising a fixed frame, a cylindrical support and a membrane connected to an upper bearing surface of the frame; and—a wave guide mounted on the upper bearing surface, the wave guide being substantially in the form of a truncated pyramid with a long wall forming a front face, a short wall and lateral uprights; the wave guide comprising at least one acoustic wall fastened to the lateral uprights, the acoustic wall extending tangentially relative to the generatrix line of the cylindrical support closest to the front face.
US11627410B2 Directional acoustic sensor
A compact directional acoustic sensor having an improved signal-to-noise ratio is disclosed. The disclosed directional acoustic sensor includes a first sensing device configured to generate different output gains based on different input directions of external energy, and configured to generate at least one first output signal having a first polarity based on external energy received from an input direction; a second sensing device configured to generate different output gains based on different input directions of external energy, and configured to generate at least one second output signal having a second polarity, that is different than the first polarity, based on the external energy received from the input direction; and at least one signal processor configured to generate at least one final output signal based on the at least one first output signal and the at least one second output signal.
US11627405B2 Loudspeaker with transmitter
A speaker device includes an electroacoustic transducer configured to convert an audio signal into a set of sound waves and a transmitter configured to transmit an electromagnetic signal that carries the audio signal for receipt at distances limited to an audibility range of the set of sound waves. The audibility range of the set of sound waves corresponds to a distance at which the set of sound waves is estimated to be below a predetermined sound level.
US11627404B2 Wireless earphone linking method and apparatus and wireless earphone
Disclosed is a wireless earphone linking method that includes the following: detecting a motion state of a wireless earphone; when the wireless earphone is moved, determining whether a working mode of the wireless earphone is a wearing mode; if so, determining whether the wireless earphone and a terminal are in a linked state; and if the wireless earphone and the terminal are not in a linked state, controlling the wireless earphone to send a linking request to the terminal.
US11627402B2 Headphone with magnetic attachment means for a corresponding ear cushion
A headphone device comprising a speaker housing and an ear-cushion, the speaker housing comprising a speaker housing side portion and the ear-cushion comprising an ear cushion side portion, where the speaker housing side portion and the ear cushion side portion respectively are configured for releasable connection, wherein said speaker housing side portion comprises a plurality of first permanent magnets provided at respective first locations on or in the speaker housing side portion; said ear cushion side portion comprises a plurality of second permanent magnets provided at respective second locations on or in the ear cushion side portion; where said first locations respectively correspond substantially to one of said second locations; where for each pair of said first and second permanent magnets, the magnetic field of a first permanent magnet, is opposite to the magnetic field of the corresponding second permanent magnet.
US11627401B2 Method and apparatus for on ear detect
A method for on ear detection for a headphone, the method comprising: receiving a first microphone signal derived from a first microphone of the headphone and determining, from the first microphone signal, a first resonance frequency associated with an acoustic port of the first microphone, the first resonance frequency dependent on a first temperature at the first microphone; receiving a second microphone signal derived from a second microphone of the headphone and determining, from the second microphone signal, a second resonance frequency associated with an acoustic port of the second microphone, the second resonance frequency dependent on a second temperature at the second microphone.
US11627394B2 Loudspeaker assembly for providing audio external to a vehicle
A loudspeaker assembly for a vehicle includes a loudspeaker mounted in the vehicle, the loudspeaker having a first side facing an interior of the vehicle and an opposed second side. The loudspeaker is configured to generate an acoustical signal having a front wave directed into the interior of the vehicle and a rear wave directed away from the interior of the vehicle. An acoustic coupler is disposed on the second side of the loudspeaker and extending toward an exterior of the vehicle, the acoustic coupler arranged to transmit the rear wave to the exterior of the vehicle such that the acoustical signal is audible in the interior of the vehicle and at the exterior of the vehicle.
US11627393B2 Side-strap structure for head-mounted device
A side-strap structure for a head-mounted device is disclosed. The side-strap structure comprises an outer strap shell, a strap, a middle strap shell, a bottom strap shell and a strap locker; the bottom strap shell is rotatably fixed to a main body of the head-mounted device through the strap locker, the middle strap shell is fixed between the outer strap shell and the bottom strap shell, and one end of the strap is fixed between the outer strap shell and the middle strap shell; and an accommodating slot for placing a loudspeaker is provided on an inner side of one end of the bottom strap shell, the middle strap shell is hermetically connected to the bottom strap shell after the loudspeaker is placed into the accommodating slot, and a sound emitting hole of the loudspeaker is provided on an outer side of the other end of the bottom strap shell. The side-strap structure according to the present disclosure does not only have the function of a strap for a head-mounted device, but also has the function of external sound playing. Moreover, it is compact in structure and small in volume.
US11627391B2 Method and apparatus for capturing digital video
A method and apparatus for capturing digital video includes displaying a preview of a field of view of the imaging device in a user interface of the imaging device. A sequence of images is captured. A main subject and a background in the sequence of images is determined, wherein the main subject is different than the background. A sequence of modified images for use in a final video is obtained, wherein each modified image is obtained by combining two or more images of the sequence of images such that the main subject in the modified image is blur free and the background is blurred. The sequence of modified images is combined to obtain the final video, which is stored in a memory of the imaging device, and displayed in the user interface.
US11627388B2 Method and a monitoring camera
The present disclosure relates to a method performed by a first monitoring camera (101) for handling startup. The first monitoring camera (101) detects that a power supply state of has changed from off to on. The first monitoring camera (101) initiates startup of a first part (103a) when the power supply state is on. When the startup is complete, the first monitoring camera (101) determines if its first startup priority is higher than, lower than or the same as a second startup priority of a second monitoring camera (110). The first monitoring camera (101) initiates startup of its second part (105a) if the first startup priority is higher or the same as the second startup priority. If the first startup priority is lower than the second startup priority, the first monitoring camera (101) delays startup of its second part (105a) until startup instructions have been received.
US11627387B2 Automated control of image acquisition via use of mobile device interface
Techniques are described for using computing devices to perform automated operations to control acquisition of images in a defined area, including obtaining and using data from one or more hardware sensors on a mobile device that is acquiring the images, analyzing the sensor data (e.g., in a real-time manner) to determine the geometric orientation of the mobile device in three-dimensional (3D) space, and using that determined orientation to control the acquisition of further images by the mobile device. In some situations, the determined orientation information may be used in part to automatically generate and display a corresponding GUI (graphical user interface) that is overlaid on and augments displayed images of the environment surrounding the mobile device during the image acquisition process, so as to control the mobile device's geometric orientation in 3D space.
US11627376B2 Broadcast receiving apparatus and portable information terminal
A portable information terminal includes a controller configured to control a communication interface to transmit a charging permission response to a broadcast receiving apparatus in response to a charging permission request data transmitted when a broadcasting program that a user of the broadcast receiving apparatus desires to view contains an asset that requires charging. The charging permission response is allowed to be transmitted when positional information indicates that the portable information terminal is positioned inside of a predetermined positional range and apparatus identification information in the charging permission request data, by which the broadcast receiving apparatus is allowed to be identified, coincides with apparatus identification information stored in a memory. The controller controls the communication interface to transmit a charging denial response to the broadcast receiving apparatus when the positional information indicates that the portable information terminal is positioned outside of the predetermined positional range.
US11627374B2 Method of monitoring usage of at least one application executed within an operating system, corresponding apparatus, computer program product and computer-readable carrier medium
The disclosure relates to a method for monitoring usage of at least one application executed within an operating system of an electronic device. The method includes at least one iteration of, while a processing condition is not satisfied, determining a video event associated with a current application and storing the video event in a data structure, delivering a set of video events. The method further includes, once the processing condition is satisfied, determining a past time slot, calling an usage statistics API provided on the operating system, delivering a set of application events representative of whether an application has been put in system foreground or system background, retrieving application events that have occurred during the past time slot, retrieving video events that have occurred during the past time slot, and chronologically ordering the retrieved application and video events, delivering a consolidated set of ordered events.
US11627373B2 Systems and methods for providing survey data from a mobile device
A method includes receiving, at a mobile device, survey data comprising real-time survey user input associated with watching a video program and survey audio from the video program, the survey audio being recorded via a microphone of the user mobile device during the real-time survey, transmitting, to a network server, the survey data as part of a data package, wherein the network server receives an audio file associated with the video program, compares the audio file with the survey audio to yield a comparison and aligns, based on the comparison, the survey audio with the audio file to yield a modified data package and receiving a confirmation of a creation of the modified data package.
US11627369B2 Video enhancement control method, device, electronic device, and storage medium
A video enhancement control method, an electronic device, and a storage medium are provided. The method includes obtaining a resolution of a video being played in response to detecting the electronic device being in a video playing state, determining whether a network state meets a playback condition corresponding to the resolution, and if the network state does not meet the playback condition, reducing the resolution of the video being played and performing a video enhancement on the video being played. The video enhancement comprises enhancing images of the video being played.
US11627362B2 Touch gesture control of video playback
A video item is provided for playback at a media player executing at a user device. The media player is logically divided into multiple sections. An indication of a touch gesture made by a user with respect to a touchscreen of the user device is received. Whether the touch gesture with respect to the touchscreen of the user device qualifies as a first predetermined touch gesture is determined. The first predetermined touch gesture is within a portion of a user interface (UI) that is includes in a first section of the media player. Responsive to determining the touch gesture with respect to the touchscreen of the user device qualifies as the first predetermined gesture, the playback of the video item is moved from a first point in time to a second point in time by a predetermined amount of time.
US11627358B2 Communication entity and a method for transmitting a video data stream
A communication entity for transmitting a video data stream at a target transmission bit rate and corresponding method are provided. The communication entity comprises: a first scheduling instance configured to determine a preliminary transmission bit rate for forwarding the video data stream towards the user equipment; and a second scheduling instance configured to determine the target transmission bit rate based on the preliminary transmission bit rate and a set of video bit rates, the set of video bit rates comprising a first video bit rate associated with a first video quality and a second video bit rate associated with a second video quality, the first video bit rate being smaller than the second video bit rate, wherein the second scheduling instance is configured to select the preliminary transmission bit rate as the target transmission bit rate if the preliminary transmission bit rate does not exceed the first video bit rate.
US11627356B2 Data translation for video-viewing activity
A computer-implemented method of using Linear, DVR, and VOD video viewing activity data as input to a data translation processor which prepares that viewing activity for more efficient downstream processing by translating detailed values to aggregated values according to analyst defined translation rules in preparation for ingestion by a MapReduce Framework with the result that the MapReduce Framework needs to process less data in order to create analytical studies of second-by-second viewing activity for program, channel, house, device, viewer, demographic, and geographic attributes. The source data may be extracted from a database defined according to the Cable Television Laboratories, Inc. Media Measurement Data Model defined in “Audience Data Measurement Specification” as “OpenCable™ Specifications, Audience Measurement, Audience Measurement Data Specification” document OC-SP-AMD-101-130502 or any similar format. An analyst can use Hadoop to run more studies in less time with less hardware thus gaining greater insights into viewing activity at lower cost.
US11627352B2 Methods and systems for efficiently downloading media assets
Methods and systems are described for downloading media assets efficiently and quickly before loss of network connectivity. The method may allow a user to download portions of a media asset in different versions to download a maximum portion of the media asset before loss of network connectivity. Certain versions of media assets may be downloaded more quickly than other versions of media assets. The method may also allow a user to view partially downloaded media assets without network connectivity. The method may also replace portions of media assets downloaded in a first version with portions of the media assets in a second version once network connectivity is restored.
US11627350B2 Advanced trick-play modes for streaming video
Enhanced trick-play modes for video content that is being streamed to a client from a server are described. In an embodiment, the enhanced trick-play modes are provided with relatively low latency and high quality using trick-play optimization techniques for a streaming environment, avoiding the need to stream the entire contents of the portions through which the viewer is fast forwarding. By employing sophisticated selection criteria of which parts of the content to download at what time, the quality of the playback experience is improved versus that which would conventionally be possible when using a simple sequential frame data download. The streaming client maintains a cache of nearby significant frames, such as nearby key frames, in forward and/or reverse directions of the current playback position, without having to download the entire portions of the video stream in which the significant frames reside. The trick-play modes utilize these frames.
US11627345B1 Buffer management for optimized processing in media pipeline
Automated processes, computing systems, computing devices, and other aspects of a data processing system improve reliability in transmitting digital media content over a network using resource constrained hardware. Media content may be received from a media source and used to generate data segments. An address may be written to a message queue, with the address referencing a first segment of the media content stored in the buffer. A computing device may check whether a number of addresses stored in a message queue is greater than or equal to a first threshold value. A second segment of the media content may be written to the message queue in response to the number of addresses stored in the message queue being greater than or equal to the first threshold value.
US11627340B2 Codec architecture for multiple layer video coding
Systems, methods, and instrumentalities are provided to implement video coding system (VCS). The VCS may be configured to receive a video signal, which may include one or more layers (e.g., a base layer (BL) and/or one or more enhancement layers (ELs)). The VCS may be configured to process a BL picture into an inter-layer reference (ILR) picture, e.g., using picture level inter-layer prediction process. The VCS may be configured to select one or both of the processed ILR picture or an enhancement layer (EL) reference picture. The selected reference picture(s) may comprise one of the EL reference picture, or the ILR picture. The VCS may be configured to predict a current EL picture using one or more of the selected ILR picture or the EL reference picture. The VCS may be configured to store the processed ILR picture in an EL decoded picture buffer (DPB).
US11627339B2 Methods and devices for encoding and reconstructing a point cloud
This method comprises: —accessing (2) a point cloud (PC) comprising a plurality of points defined by attributes, said attributes including a spatial position of a point in a 3D space and at least one feature of the point;—segmenting (2) the point cloud into one or more clusters (Ci) of points on the basis of the attributes of the points; and for at least one cluster (Ci):—constructing (4) a similarity graph having a plurality of vertices and at least one edge, the similarity graph representing a similarity among neighboring points of the cluster (Ci) in terms of the attributes, the plurality of vertices including vertices Pi and Pj corresponding to points of the cluster (Ci);—assigning one or more weights wi,j to one or more edges connecting vertices Pi and Pj of the graph;—computing (6) a transform using the one or more assigned weights, said transform being characterized by coefficients; and—quantizing (8) and encoding (10) the transform coefficients.
US11627337B2 Image decoding device
Memory required during decoding is reduced.A video image decoding device (1) is equipped with main direction deriving means (1453A) that references a prediction mode definition DEFPM(1), and from a prediction mode number, derives a main direction of a prediction direction corresponding to a prediction mode, and a gradient deriver (1453B) that references a gradient definition table DEFANG(1), and derives a gradient of the prediction direction.
US11627336B2 Image decoding device, image encoding device, image processing system, and program
An image decoding device includes a prediction unit configured to generate a prediction signal included in a prediction block based on a motion vector. The prediction unit is configured to perform refinement processing of setting a search range based on a reference position specified by the motion vector, specifying a corrected reference position having the smallest predetermined cost from the search range, and correcting the motion vector based on the corrected reference position. When a block size of the prediction block is larger than a predetermined block size, the prediction unit is configured to divide the prediction block into sub-block groups and perform the refinement processing for each sub-block.
US11627335B2 Methods and apparatuses for encoding and decoding motion vector difference using sequence MMVD information
Provided is a video decoding method including: obtaining, from a sequence parameter set, sequence merge mode with motion vector difference (sequence MMVD) information indicating whether an MMVD mode is applicable in a current sequence; when the MMVD mode is applicable according to the sequence MMVD information, obtaining, from a bitstream, first MMVD information indicating whether the MMVD mode is applied in a first inter prediction mode for a current block included in the current sequence; when the MMVD mode is applicable in the first inter prediction mode according to the first MMVD information, reconstructing a motion vector of the current block which is to be used in the first inter prediction mode, by using a distance of a motion vector difference and a direction of a motion vector difference obtained from the bitstream; and reconstructing the current block by using the motion vector of the current block.
US11627331B2 Method and device for inducing motion information between temporal points of sub prediction unit
According to the present invention, there is provided A method of encoding a three-dimensional (3D) image, the method comprising: determining a prediction mode for a current block as an inter prediction mode; determining whether a reference block corresponding to the current block in a reference picture has motion information; when the reference block has the motion information, deriving motion information on the current block for each sub prediction block in the current block; and deriving a prediction sample for the current block based on the motion information on the current block.
US11627326B2 Method and device for intra prediction
A method for decoding an image according to the present invention comprises the steps of: receiving and decoding MPM index information for indicating an MPM candidate which is to be used as an intra prediction mode of a current block; generating an MPM candidate list containing a plurality of MPM candidates for the current block; determining the MPM candidate indicated by the decoded MPM index information as the intra prediction mode of the current block, among the plurality of the MPM candidates which constitute the MPM candidate list; and generating a prediction block corresponding to the current block by performing intra prediction for the current block based on the determined intra prediction mode.
US11627325B2 Intra prediction method and apparatus
An intra prediction method according to the present invention comprises the following steps: performing a directional prediction using at least one of a neighboring pixel of a current block and a left upper corner pixel positioned at a left upper corner of the current block so as to obtain a first prediction value for the current block; obtaining a second prediction value for the current block using the reference sample positioned in the current block; and weighted summing the first prediction value and the second prediction value using a weighting matrix so as to obtain a final prediction value for the current block. According to the present invention, image encoding/decoding efficiency may be improved.
US11627322B2 Adaptive chroma intra mode coding in video compression
A method, computer program, and computer system is provided for encoding/decoding video data. Video data including (1) a chroma component having a first nominal angle and a first delta angle and (2) a luma component having a second nominal angle and a second delta angle is received. An index associated with the first delta angle is parsed by an encoder and parsed by a decoder. The video data is encoded and/or decoded using intra prediction based on the parsed index.
US11627321B2 Adaptive coding of prediction modes using probability distributions
Generating, by a processor in response to instructions stored on a non-transitory computer readable medium, a reconstructed frame, may include generating a reconstructed block of the reconstructed frame by decoding from an encoded bitstream. Decoding may include decoding a value from the encoded bitstream, identifying, in accordance with the value, a probability distribution for generating the reconstructed block, wherein the value indicates the probability distribution among a plurality of probability distributions determined independently of generating the reconstructed frame, entropy decoding an encoded prediction mode from the encoded bitstream using the probability distribution to identify a prediction mode for generating the reconstructed block, generating a prediction block in accordance with the prediction mode; combining the prediction block and a reconstructed residual block to obtain the reconstructed block, and including the reconstructed block in the reconstructed frame.
US11627318B2 Method and system for producing streams of image frames
Methods, systems and computer program products, for producing streams of image frames. Image frames in streaming video are segmented into background segments and instance segments. A background image frame containing the background segments is created. At least some of the instance segments are classified into movable objects of interest and movable objects of non-interest. During a background update time period, the background image frame is updated when a movable object of non-interest has moved to reveal a background area, to include the revealed background area in the background image frame. A foreground image containing the movable objects of interest is created. Blocks of pixels of the updated background and foreground image frames are encoded. A stream of encoded foreground image frames having a first frame rate is produced. A stream of encoded updated background image frames a second, lower frame rate is produced.
US11627316B2 Encoding and decoding apparatuses including CNN-based in-loop filter
Disclosed according to one exemplary embodiment includes not limited to: a filtering unit configured to generate filtering information by filtering a residual image corresponding to a difference between an original image and a prediction image; an inverse filtering unit configured to generate inverse filtering information by inversely filtering the filtering information; an estimator configured to generate the prediction image based on the original image and reconstruction information; a CNN-based in-loop filter configured to receive the inverse filtering information and the prediction image and to output the reconstruction information; and an encoder configured to perform encoding based on the filtering information and information of the prediction image, and wherein the CNN-based in-loop filter is trained for each of the plurality of artefact sections according to an artefact value or for each of the plurality of quantization parameter sections according to a quantization parameter.
US11627315B2 Post-filtering for weighted angular prediction
A method of partitioning a video coding block for JVET, comprising representing a JVET coding tree unit as a root node in a quadtree plus binary tree (QTBT) structure that can have a quadtree branching from the root node and binary trees branching from each of the quadtree's leaf nodes using asymmetric binary partitioning to split a coding unit represented by a quadtree leaf node into two child nodes of unequal size, representing the two child nodes as leaf nodes in a binary tree branching from the quadtree leaf node and coding the child nodes represented by leaf nodes of the binary tree with JVET, wherein weighted angular coding unit prediction is employed and wherein post-coding unit prediction filtering can be avoided or unbiased to increase coding times.
US11627311B2 Image decoding device, image decoding method, and program
An image decoding device includes: a motion vector decoding unit that decodes a motion vector from encoded data; a refinement unit that performs refinement processing to correct the decoded motion vector; and a predictive signal generation unit that generates a predictive signal on the basis of the corrected motion vector outputted from the refinement unit. The predictive signal generation unit determines whether or not to apply BDOF processing for each block, on the basis of information calculated in the course of the refinement processing.
US11627309B2 Image encoding device and method, and image decoding device and method
An image encoding device and a method, and an image decoding device and a method that are designed to improve encoding efficiency in IntraBC. A screen is divided into four slices (Slices #0 through #3). In a case where reference to a different slice is prohibited, the range that can be referred to from the current CTU in Slice #2 is only the decoded portion in Slice #2, and therefore, any block in Slice #1 cannot be referred to, for example. In the case of the present technology, on the other hand, decoded different slices (Slice #0 and Slice #1) are included in the referable range, and accordingly, a block in Slice #1 can be referred to from the current CTU in Slice #2.
US11627307B2 Transport controlled video coding
Embodiments are generally directed to transport controlled video coding. An embodiment of an apparatus includes one or more processors to process data; a memory to store data, including data for video streaming; and a video processing mechanism including an encoder and a transport mechanism, wherein the video processing mechanism is to generate a prediction of channel throughput for a network channel, encode one or more bitstreams based on the prediction, including encoding a plurality of bitstreams including a first bitstream and a second bitstream if the prediction indicates an increase or decrease in channel throughput and encoding a single bitstream if the prediction indicates a stable channel throughput; and select a bitstream of the one or more bitstreams for a current frame.
US11627305B2 Frozen image detection
Aspects of the disclosure provide for a method. In some examples, the method includes receiving a video stream comprising multiple frames, analyzing the video stream to compare data values representing an image pixel at a specified location in a first of the frames to data values representing an image pixel at the specified location in a second of the frames, determining that the video stream is frozen responsive to the data values representing the image pixel at the specified location in the first of the frames being the same as the data values representing the image pixel at the specified location in the second of the frames, and taking action responsive to determining that the video stream is frozen.
US11627304B2 Transparent display device, and three-dimensional image display apparatus comprising same
A transparent display device includes an image display bar in which a plurality of light-emitting elements are arranged, and a bar driving unit which moves the image display bar along a predetermined path and provides transparent display using afterimages resulting from the movement of the light-emitting elements, wherein the transparency of the transparent display using afterimages is determined by the equation, transparency (%)=((A−B)/A)*100, where A denotes the entire display area of the transparent display, and B denotes the area of the image display bar.
US11627303B2 System and method for corrected video-see-through for head mounted displays
A head mounted display system with video-see-through (VST) is taught. The system and method process video images captured by at least two forward facing video cameras mounted to the headset to produce generated images whose viewpoints correspond to the viewpoint of the user if the user was not wearing the display system. By generating VST images which have viewpoints corresponding to the user's viewpoint, errors in sizing, distances and positions of objects in the VST images are prevented.
US11627302B1 Stereoscopic viewer
Features for a lightweight stereoscopic viewing client are described. The client can generate accurate ground point coordinates from selections within the lightweight viewer by accumulating the transformations from original image sources to the images used to render the stereoscopic scene to accurately predict error for a point selection. The viewer may also be decoupled from a permanent image store allowing on-demand retrieval of images via a network for stereoscopic viewing.
US11627300B2 System and method of three-dimensional imaging
Systems and methods for three-dimensional imaging are disclosed. A three-dimensional imaging system may include a light source to emit a light pulse. The divergence of the light pulse may be configurable by the system. For example, the system may also include a receiving lens having a field of view and configured to receive a portion of the light pulse reflected or scattered by a scene. The system may configure the light source so that the divergence of the light pulse matches or approximates the field of view of the receiving lens.
US11627293B2 Method of controlling projector and projector
A method of controlling a projector includes detecting whether a human is present or absent between a projection surface and the projector, emitting a first sound when it is detected that the human is present, determining whether or not detecting that the human is present continues during a first period having a first time length, projecting, by the projector, a first projection image including a first image on the projection surface when it is determined that the detecting that the human is present continues, and projecting, by the projector, a second projection image not including the first image on the projection surface when it is determined that the detecting that the human is present does not continue.
US11627289B1 Activating security system alarms based on data generated by audio/video recording and communication devices
Activating security system alarms based on data generated by audio/video (A/V) recording and communication devices in accordance with various embodiments of the present disclosure are provided. In one embodiment, an network device communicatively coupled to a security system in an armed mode is provided, the network device comprising: one or more processors; a communication module; and a non-transitory machine-readable memory storing a program comprising sets of instructions for: receiving sensor data indicative of an entry/exit event at an entry point; determining, based on at least one of motion data and image data generated by an A/V recording and communication device having a field of view, whether a person was present in the field of view of the A/V recording and communication device prior to the entry/exit event; determining whether the person is authorized; and upon determining that the person is not authorized, activating an alarm action of the security system.
US11627288B2 Systems and methods of automatic surveillance and reporting
Systems and methods for surveilling. Systems and methods include generating, with a processor, a baseline associated with a subject; performing, with the processor, a scan of the subject; comparing, with the processor, the scan of the subject with the baseline; and generating, with the processor, a report comprising a result of the comparing of the scan of the subject with the baseline associated with the subject.
US11627283B2 Method for enabling synthetic autopilot video functions and for publishing a synthetic video feed as a virtual camera during a video call
One variation of a method for enabling autopilot functionality during a video call includes, during an operating period: receiving a sequence of frames from a camera in a first device; detecting a face, of a first user, in the sequence of frames; generating a sequence of facial landmark containers representing facial actions of the face of the first user; transmitting the sequence of facial landmark containers to a second device for combination with a look model to generate a first synthetic image feed depicting facial actions of the first user; and detecting a trigger event. The method also includes, during an autopilot operating period, entering autopilot mode; retrieving a prerecorded autopilot sequence of facial landmark containers from a memory; and transmitting the prerecorded autopilot sequence of facial landmark containers to the second device for combination with the look model to generate a second synthetic image feed depicting predefined facial actions.
US11627281B2 Method and apparatus for video frame interpolation, and device and storage medium
A method and apparatus for video frame interpolation, and a device and a storage medium for the same are provided. The method may include: acquiring a target video, and acquiring a (t−1)th frame of image and a tth frame of image in the target video; acquiring motion level information of pixel points of the (t−1)th frame of image and the tth frame of image; acquiring deep frame interpolation features of the (t−1)th frame of image and the tth frame of image, respectively; and performing a frame interpolation operation layer by layer based on the deep frame interpolation features and the motion level information of the (t−1)th frame of image and the tth frame of image to generate an intermediate frame between the (t−1)th frame of image and the tth frame of image, and interpolating the intermediate frame between the (t−1)th frame of image and the tth frame of image.
US11627279B2 Method and apparatus for displaying interactive information in panoramic video
A method and an apparatus for displaying interactive information in a panoramic video are disclosed. The method includes determining a first interactive information display area corresponding to a perspective of a first camera position of the panoramic video; and displaying first interactive information in the first interactive information display area corresponding to the perspective of the first camera position when playing an image associated with the perspective of the first camera position. According to the present disclosure, a display position of the first interactive information is not changed along with a head turning action of a user, etc. As such, when the user wants to see the first interactive information, the user can adjust the line of sight to a determined position for viewing, thus increasing an attraction of the first interactive information display area to the user, and helping to enhance the user experience.
US11627274B2 Image sensing pixels with lateral overflow storage
An image sensor includes sensing pixels, each comprising a photodetector in electrical communication with a floating diffusion capacitor via a transfer gate, and a lateral overflow storage capacitor coupled to the floating diffusion capacitor via a lateral overflow control gate. A first readout circuit circuitry located between the transfer gate and the lateral overflow control gate comprises a first amplifier. A second readout circuitry, located opposite the lateral overflow control gate from the first readout circuitry, comprises a second amplifier. Following image integration, charge stored on the floating diffusion capacitor is readout using the first readout circuitry and charge stored on the lateral overflow storage capacitor is readout using the second readout circuitry. In a second readout, charge stored on the photodetector is readout using the first readout circuitry with a first amplification applied and charge stored on the photodetector is readout with a second, different amplification applied.
US11627272B2 Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
A pixel includes photoelectric conversion elements for generating charges through photoelectric conversion and storing the generated charges in a storing period, transfer elements for transferring the stored charges, an output node to which the charges stored in the photoelectric conversion elements are transferred through the transfer elements, an output buffer part for converting the charges in the output node into a voltage signal at a level determined by the amount of the charges, and a comparator for performing a comparing operation of comparing the voltage signal from the output buffer part against a referential voltage and outputting a digital comparison result signal. The comparator performs, under control of a reading part, the comparing operation on read-out signals read in at least two different modes through different sequences of operations for reading performed on charges stored in the different photoelectric conversion elements.
US11627271B2 Image adjustment apparatus and image sensor for synchronous image and asynchronous image
Disclosed is an image adjustment apparatus including a receiver which is configured to receive a first input image of an object which is time-synchronously captured and a second input image in which a motion event of the object is sensed time-asynchronously, and an adjuster which is configured to adjust the first input image and the second input image.
US11627267B2 Image sensor
The disclosure relates to active pixel sensors such as CMOS sensors. A sample stage of each pixel may comprise first and second sample switches in series between a buffer amplifier and a storage node. The first sample switch is connected to a column sample line, and the second sample switch is connected to a row sample line, such that an exposure signal is only passed to the storage node at a time when both a column sample signal and a row sample signal are active.
US11627263B2 Imaging apparatus
Provided is an imaging apparatus that captures a multispectral image of four bands or more. An imaging apparatus (1) includes an imaging optical system (10), an image sensor (100), and a signal processing unit (200). The imaging optical system (10) includes a bandpass filter unit (16) of which at least one of aperture regions transmits light beams of a plurality of wavelength ranges, and a polarization filter unit (18) that polarizes the light beams transmitted through the bandpass filter unit (16) in a plurality of directions, in a vicinity of a pupil thereof. The image sensor (100) receives light beams transmitted through a plurality of types of spectral filter elements and a plurality of types of polarization filter elements. The signal processing unit (200) processes signals output from the image sensor (100) to generate a plurality of image signals. In the imaging apparatus (1), the number of transmission wavelength ranges of at least one of the aperture regions of the bandpass filter unit (16) is equal to or less than the number of transmission wavelength ranges of the spectral filter element.
US11627262B2 Handheld computing device
A handheld computing device comprises a display comprising an array of pixels illuminated by a plurality of visible light sources, and a plurality of infra-red light sources interleaved between the visible light sources, the IR light sources being actuable to emit diffuse IR light with a first intensity. A camera has an image sensor comprising an array of pixels responsive to infra-red light and a lens assembly with an optical axis extending from the image sensor through the surface of the display. A dedicated illumination source is located outside the display and is actuable to emit infra-red light with a second greater intensity. A processor is configured to switch between an iris region processing mode in which a subject is illuminated at least by the dedicated light source and a face region processing mode in which a subject is illuminated by the plurality of IR light sources.
US11627260B2 Anti-flashlight circuit assembly and image sensor
The present disclosure provides an anti-flashlight circuit assembly and an image sensor. The anti-flashlight circuit assembly includes a plurality of flashlight detection units. Each flashlight detection unit includes: a first photoelectric detection module configured to monitor an optical signal in real time and output a corresponding electric signal; a first triggering generation module configured to generate a first triggering generation signal when the electric signal exceeds a predetermined threshold, and output the first triggering generation signal to a first interface logic module; and the first interface logic module configured to output a triggering state signal upon the receipt of the first triggering generation signal.
US11627259B2 Device, method and computer program
A device comprising a circuitry configured to obtain a sequence of digital images from an image sensor; select a region of interest within a digital image of the sequence of digital images; perform motion compensation on the region of interest to obtain a motion compensated region of interest based on motion information obtained from the sequence of digital images and a predefined accumulated time interval; define a mask pattern based on the compensated region of interest; apply the mask pattern to an electronic light valve.
US11627257B2 Electronic device including image sensor having multi-crop function
An electronic device includes first and second image sensors, an image signal processor, and a main processor. The first and second image sensors photograph an object in first and second FOVs to generate first and second signals, respectively. The image signal processor generates first image data based on the first signal, generates second image data based on the second signal, and generates cropped image data based on cropping ROI from the second image data. The main processor generates a first video stream based on the first image data, generates a second video stream based on the cropped image data, and outputs the first video stream to a display device. The main processor stops outputting the first video stream to the display device and initiates outputting the second video stream to the display device in response to receiving a user input command.
US11627254B2 Method and apparatus for capturing digital video
A method and apparatus for capturing digital video includes displaying a preview of a field of view of the imaging device in a user interface of the imaging device. A sequence of images is captured. A main subject and a background in the sequence of images is determined, wherein the main subject is different than the background. A sequence of modified images for use in a final video is obtained, wherein each modified image is obtained by combining two or more images of the sequence of images such that the main subject in the modified image is blur free and the background is blurred. The sequence of modified images is combined to obtain the final video, which is stored in a memory of the imaging device, and displayed in the user interface.
US11627253B2 Camera actuator and a camera module including the same
Embodiments relate to a camera actuator and a camera module including same. The camera actuator according to an embodiment comprises a lens unit, a shaper unit, a first driver coupled to the shaper unit, and a second driver arranged to correspond to the first driver. The shaper unit may include a first protruding region having a first protrusion which protrudes from a surface of a first side and a second protrusion which protrudes from another surface of the first side and is separated from the first protrusion; and a second protruding region comprising a third protrusion which protrudes from a surface of a second side and a fourth protrusion which protrudes from another surface of the second side and is separated from the third protrusion.
US11627251B2 Image processing apparatus and control method thereof, computer-readable storage medium
An image processing apparatus comprises an image obtaining unit that obtains a plurality of images based on image capturing performed by a plurality of image capture apparatuses that perform image capturing of an imaging region from directions that are different to each other, and a panoramic image generating unit that generates a panoramic image with a specific position in the imaging region being a reference, based on a plurality of images obtained by the image obtaining unit.
US11627247B2 Imaging apparatus capable of automatically capturing image of subject, control method, and storage medium
An imaging apparatus includes an imaging unit configured to capture an image of a subject, a search unit configured to search for a subject which is an imaging target to be captured by the imaging unit, and a reception unit configured to receive a change instruction for changing the imaging target from the subject currently being captured by the imaging unit without specifying a change destination imaging target, wherein, in a case where the change instruction is received, the search unit searches for another subject.
US11627245B2 Focus adjustment device and focus adjustment method
A focus adjustment device, comprising: a processor having a main physical object position detection circuit for detecting position of a main object based on an image signal, a distance value detection circuit for detecting distance values in accordance with object distance of a plurality of AF regions based on the image signal, a candidate region setting section for setting regions exhibiting a distance value for a close-range side of greater than a specific value, with respect to a statistic for distance value of regions corresponding to position of the main physical object, to unnecessary candidate regions, and a control section for determining regions corresponding to unnecessary physical objects based on the unnecessary candidate regions, and controlling focus adjustment based on distance value corresponding to regions that have had regions corresponding to the unnecessary physical objects excluded from the main physical object regions.
US11627244B1 Synchronization of camera focus movement control with frame capture
Various embodiments include synchronization of camera focus movement control with frame capture. In some embodiments, such synchronization may comprise synchronized focus movement control that is based at least in part on integration timing and/or region of interest (ROI) timing. According to some examples, an actuator of a camera module may be controlled such that a lens group and/or an image sensor of the camera module move towards a focus position during one or more time periods (e.g., a non-integration time period in which the image sensor is not being exposed, a non-ROI time period in which a ROI of the image sensor is not being exposed for image capture, and/or a blanking interval, etc.). Additionally, or alternatively, the actuator may be controlled such that the lens group and the image sensor do not move relative to each other in a focus direction during one or more other time periods (e.g., an integration time period in which the image sensor is being exposed, a ROI time period in which the ROI of the image sensor is being exposed, etc.).
US11627239B2 Photosensitive assembly and camera module and manufacturing method thereof
A camera module and its photosensitive assembly and manufacturing method thereof are provided. The photosensitive assembly includes a photosensitive element, a window circuit board and a packaging body integrally packaged the photosensitive element and the window circuit board to form an integrated body, wherein the window circuit board has at least one window for receiving the photosensitive element therein.
US11627235B2 Image forming apparatus, application permission system, and application-code information generation method
An image forming apparatus includes an acquirer, a storage, and a controller. The acquirer acquires supplies-specific information uniquely attached to supplies used or consumed in image formation. The storage stores apparatus-specific information. The controller generates a one-time code as authentication information and also generates application code information for applying for apparatus use permission using the one-time code, the supplies-specific information, and the apparatus-specific information.
US11627231B2 Information processing device, and non- transitory computer-readable recording medium therefor
A computer of an information processing device performs selecting an image processing device of the one or more image processing devices. Further, when one or more pieces of workflow information defining various settings and various processes with respect to the image processing devices are stored in a storage area accessible by the computer, the one or more pieces of workflow information being associated with device identification information identifying a target image processing device subjected to the various settings and the various processes, the computer reads workflow information associated with the device identification information identifying the target image processing device which is different from the image processing device selected in the selecting, and imports the read workflow information in a workflow information storage area of the memory.
US11627226B2 Image processing apparatus, control method, and product for determining defect reproducibility based on defect positions on recording media calculated from phase information
This disclosure provides an image processing apparatus that is connected to a printing apparatus, sequentially receives a plurality of recording media on which printing was performed by the printing apparatus, and inspects a quality of images formed on the recording media, wherein the image processing apparatus receives a reference image, acquires a plurality of scanned images by sequentially scanning the recording media output from the printing apparatus and having the images to be inspected recorded thereon, receives phase information of an image bearing member of the printing apparatus, detects, for each of the scanned images, a defect on the scanned image by comparing a pixel value of the reference image and a pixel value of the scanned image, and determines whether a defect has reproducibility based on positions of defects on the recording media calculated from the phase information.
US11627225B2 System and method for programmatic device connectivity
A system and method for programmatically managing device connectivity to a network that includes provisioning connectivity devices with an account of a communication platform, where for a set of the connectivity devices, provisioning includes uniquely associating network operating identifiers of each of the connectivity devices with a corresponding programmatic device resource in the communication platform, setting communication metering properties in a programmatic connectivity plan resource in the communication platform and associating the connectivity plan resource to at least a subset of the device resources of the connectivity devices, and activating network communication status of the connectivity devices; servicing communications from the connectivity devices; and programmatically managing the communications from the connectivity devices through at least the device resources and the connectivity plan resources.
US11627224B1 Queue management of collaborative virtual waiting rooms
A request for a contact center agent interaction is received from a user device associated with a first user. The user device is connected to a virtual waiting room that includes waiting users of a contact center queue. The waiting users include a second user. from the second user A favorable indication of the first user is received from the second user. A position of the first user in the contact center queue is modified based on the favorable indication. Responsive to an indication to activate a private session between the user device and an agent device associated with a contact center agent, the first user is removed from the virtual waiting room.
US11627223B2 Visual interactive voice response
A method includes connecting a call from a client device to a destination having an interactive voice response service; transcribing audio from the destination during the call to identify menu options of the interactive voice response service; generating visualizations representing the menu options; and outputting the visualizations to a display associated with the client device. A system includes a telephony system, an automatic speech recognition processing tool, and a visualization output generation tool. The telephony system connects a call from a client device to a destination having an interactive voice response service. The automatic speech recognition processing tool transcribes audio from the destination during the call to identify menu options of the interactive voice response service. The visualization output generation tool generates visualizations representing the menu options. The telephony system outputs the visualizations to a display associated with the client device.
US11627221B2 Semiautomated relay method and apparatus
A call captioning system for captioning a hearing user's (HU's) voice signal during an ongoing call with an assisted user (AU) includes: an AU communication device with a display screen and a caption service activation feature, and a first processor programmed to, during an ongoing call, receive the HU's voice signal. Prior to activating the caption service via the activation feature, the processor uses an automated speech recognition (ASR) engine to generate HU voice signal captions, detect errors in the HU voice signal captions, use the errors to train the ASR software to the HU's voice signal to increase accuracy of the HU captions generated by the ASR engine; and store the trained ASR engine for subsequent use. Upon activating the caption service during the ongoing call, the processor uses the trained ASR engine to generate HU voice signal captions and present them to the AU via the display screen.
US11627217B2 Machine intelligent isolation of international calling performance degradation
The disclosed system identifies international calling performance issues of a wireless telecommunication network. The system receives network traffic data for international calls including information about call attempts to a country. The system categorizes the country into a major category and a minor category based on the call attempts information. For a subset of countries, and for each key performance indicator in a subset of selected key performance indicators, the system monitors performance using an anomaly detection model to identify an anomaly in network performance, determines an actual value of the key performance indicator for the detected anomaly, and computes a variation value of the determined actual value based on a predicted range of values. The system ranks countries using the computed variation values, to indicate problematic parts of the wireless telecommunication network.
US11627214B2 Wireless device with an aggregate user interface for controlling other devices
A computing device determines that the computing device is within wireless proximity to a secondary wireless device. Based on the computing device being within wireless proximity to the secondary wireless device, the computing device determines at least one function of the secondary wireless device, and generates an aggregate user interface for display on a display screen of the computing device. The aggregate user interface identifies the secondary wireless device and indicates the at least one function of the secondary wireless device. The computing device receives, via the aggregate user interface, a user input selecting the secondary wireless device. Responsive to the user input, the computing device presents a second user interface including one or more selectable features for operating the secondary wireless device.
US11627207B2 Systems and methods for data deduplication by generating similarity metrics using sketch computation
A method for data reduction may comprise computing (i) a first sketch of a first segment and (ii) a second sketch of a second segment. The first sketch and the second sketch may each comprise a set of features that are representative of or unique to the corresponding first and second segments. The method also comprise processing the first sketch and the second sketch to generate a similarity metric indicative of whether the second segment is similar to the first segment. The method may further comprise (1) performing a differencing operation on the second segment relative to the first segment when the similarity metric is greater than or equal to a similarity threshold, or (2) storing the first segment and the second segment in a database without performing the differencing operation when the similarity metric is less than the similarity threshold.
US11627206B2 System and methods for providing user analytics and performance feedback for web applications
A computing device may include a memory and a processor cooperating with the memory to communicate with a plurality of client devices, and determine a problem with a Web application based upon received data from the client devices. The processor may further cause at least one of the plurality of client devices to display a graphical overlay over a Web application, with the graphical overlay including content related to the determined problem.
US11627202B1 Scalable throttling of requests to web services
Systems and methods for throttling requests to web services are disclosed. A system is configured to receive, at a host, one or more requests during a first time period. Each request is for a web service hosted on a backend. The host is one of a plurality of hosts of an application programming interface (API) gateway to receive a plurality of requests for the web services. The system is further configured to: process at least a portion of the one or more requests for the one or more web services; count, by a local counter in a local cache of the host, the one or more requests received at the host during the first time period; compare a local count of the local counter to a local bucket size associated with the host; and provide an instruction to update a remote count of a remote counter based on the comparison.
US11627190B2 Timer control method, data packet processing method, and device
A timer control method includes a receiving device that performs re-establishment or data recovery on a Packet Data Convergence Protocol (PDCP) layer of the receiving device. The PDCP layer stops the running of a reordering timer of the PDCP layer when the reordering timer is in a running state, where the reordering timer enables the PDCP layer to wait to receive a lost data packet. Because the reordering timer is stopped from running rather than expires, the PDCP layer does not update a value of RX_DELIV.
US11627187B2 Vehicle network
A vehicle network comprising a processor; a network switch having a plurality of physical ports, from which two or more of the physical ports are configured as access ports and at least one of the physical ports is configured as a trunk port; a plurality of sensors connected to respective access ports of the network switch, wherein the sensors have preconfigured network addresses; and at least two virtual networks, wherein each virtual network corresponds to a group of access ports, and the sensors connected thereto are addressable within the virtual network by their preconfigured network addresses, wherein each network switch is connected via the trunk port to the processor, and the trunk port is configured to accept communications from the processor directed to the sensors connected to the access ports of the network switch.
US11627184B2 Methods and systems for dynamic data management
Methods and systems for managing data are disclosed. One method can comprise storing first data locally relative to a user device and storing second data remotely relative to the user device. The first data and the second data can relate to the same content. The method can also comprise generating a manifest comprising location information relating to the first data and the second data and receiving a request for transmission of one or more of the first data and the second data based upon the manifest.
US11627177B2 Lifetime-based device registration control
Broadly speaking, embodiments of the present technique provide methods, apparatuses and systems for operating a server in communication with a network-attachable electronic device, comprising: storing, in storage accessible by the server, a device registration and a registration lifetime value for the device; receiving at least one message from the device; analysing the message to derive a confidence modifier associated with a message type associated with that message; applying the derived confidence modifier to a calculation of a confidence score for the device; and responsive to the calculation, determining whether a stored registration lifetime value for the device is to be adjusted based upon the confidence score.
US11627176B2 Method for dynamically managing content delivery
Methods and systems are provided for bitrate adaptation of a video asset to be streamed to a client device for playback. The method includes selecting a representation from a manifest which expresses a set of representations available for each chunk of the video asset and generating a dynamic manifest for the video asset in which the representation selected for the at least one chunk is recommended for streaming to the client device. The selection of the representation recommended for the chunk may be based on at least one of historic viewing behavior of previous viewers of the chunk, content analysis information for the chunk, a level of available network bandwidth, a level of available network storage, and data rate utilization information of network resources including current, average, peak, and minimum data rate of network resources.
US11627175B2 Edge gateway system with data typing for secured process plant data delivery
An edge gateway system securely delivers and exposes data generated by and/or related to a process plant for consumption by external systems, and includes a field-facing component that sends, to an edge-facing component of the system, a collection of data types defined based on configurations of the process plant and represented using a syntax that is native to the one or more external systems. The field-facing component streams process plant-related content data indicated by one or more interest lists to the edge-facing component, where the streamed data is expressed using the collection of data types. Each interest list may include multiple types of data (e.g., control, I/O, diagnostic, device, historical, etc.) that collectively represent a particular named entity of the plant. Accordingly, the streamed data is securely delivered and exposed, via the edge-facing component, to the external systems.
US11627170B2 Enhancements for real-time text (RTT) call control over an IP multimedia subsystem (IMS) network
A first UE receives a first Session Initiation Protocol (SIP) INVITE message requesting the first UE to place the RTT call on hold, during an ongoing Real-Time Text (RTT) call with a second UE. In response to the first SIP INVITE message, the first UE sends a first SIP 200 OK message to the second UE, and the first SIP 200 OK message indicates that the first UE is not allowed to send and receive media data. After sending the first SIP 200 OK message, the first UE receives a second SIP INVITE message requesting the first UE to resume the RTT call. In response to the second SIP INVITE message, the first UE sends a third SIP INVITE message to the second UE, and the third SIP INVITE message indicates that the first UE is allowed to send and receive media data.
US11627168B2 Method, related apparatus, and system for recovering called service of terminal
A method, a related apparatus, and a system for recovering a called service of a terminal are provided. The method includes: when a called request of a user terminal is received, querying an initial proxy-call session control function (P-CSCF) entity with which the user terminal currently registers; if it is detected that the initial P-CSCF is faulty, selecting an available P-CSCF and sending, to the available P-CSCF, a notification message that carries a redundancy identifier, where the redundancy identifier is used to instruct the available P-CSCF to trigger the user terminal to re-register with the P-CSCF; and when a registration complete message sent by the P-CSCF with which the user terminal re-registers is received, delivering the called request to the re-registered P-CSCF to bear a called service of the user terminal.
US11627167B1 Network to network interface between service providers for real time communication
Systems and methods presented herein provide for real time communications between service provider subscribers. In one embodiment, a web server is operable to provide a network-to-network interface (NNI) with a plurality of service providers, to communicate with the service providers through WebRTC links, and to retrieve contact information of subscribers to the service providers over the WebRTC links. The web server also includes a database operable to store the contact information of the subscribers. The web server is also operable to process a connection request from a first of the subscribers to connect with a second of the subscribers, to retrieve the second subscriber's contact information from the database, to push a notification message to a device of the second subscriber using the second subscriber's contact information (e.g., a user identity), and to establish a WebRTC connection between first and second subscribers when the second subscriber accepts the connection.
US11627162B2 Methods and systems for processing cyber incidents in cyber incident management systems using dynamic processing hierarchies
Methods and systems are also described for an integrated cyber incident management system that may store native data corresponding to fields of cyber incident management system (or other non-integrated systems) and integration data (e.g., viewable through a user interface of the integrated cyber incident management system), which describes a relationship of the native data to the integrated cyber incident management system, at a structure node in the architecture of the integrated cyber incident management system. The structure node may correspond to the convergence of two structures in the architecture of the integrated cyber incident management system. Each structure may itself correspond to a native hierarchal relationship in a non-integrated cyber incident management system.
US11627158B2 Mitigation of route hijacking techniques in a network
Aspects of the present disclosure involve systems and methods for utilizing verified autonomous system (AS) network interconnections received via a cryptographically certified Recognized Operating Agency (ROA) object to generate an interconnect network model which may be used as a reference model to mitigate hijacking of network communications in downstream route announcements. In particular, AS networks may announce or share a cryptographically certified ROA object that includes a list of other AS networks to which the announcing network is connected. A router, server, or other networking device may receive ROA objects from multiple AS networks and generate a model or graph of the interconnectedness of the AS networks. Further, because each ROA object may be cryptographically certified or signed, the networking device may trust the information provided in the received ROA objects. The networking device may further verify announced routing information against the generated network model.
US11627156B2 System and method for detecting bots using semi-supervised deep learning techniques
A system of method of detecting bots are presented. The method includes receiving access patterns of a visitor accessing a protected web property, encoding each of the access patterns into a fixed length feature vector, determining an offline-trained model based on past data, generating an anomaly score based on the fixed length feature vector and an offline-trained model, and determining the visitor to be a bot, when the generated anomaly score associated with the visitor reaches a predetermined threshold.
US11627154B2 Forward and rearward facing attack vector visualization
Systems, methods, and computer-readable media are provided for securing cloud infrastructure, including a method comprising: establishing a trusted relationship between a source account in a cloud environment and a scanner account, using the established trust relationship, utilizing at least one cloud provider API to identify workloads in the source account, using the at least one cloud provider API to query a geographical location of at least one of the identified workloads, receiving an identification of the geographic location, using the cloud provider APIs to access block storage volumes of the at least one workload, determining a file-system of the at least one workload, mounting the block storage volumes on a scanner based on the determined file-system, activating a scanner at the geographic location, reconstructing from the block storage volumes a state of the workload, and assessing the reconstructed state of the workload to extract insights.
US11627150B2 Proxy services for the secure upload of file system tree structures
The disclosure is directed towards proxy services for the secure uploading of file-system tree structures. A method includes receiving, at a web security service, an indication that client device to upload content to a storage cloud provider. The proxy service performs a security scan of the content while the content is stored on the client device. A security and/or a privacy concern is identified in the content stored on the client device. A security and/or privacy mitigation action is performed in response to identifying the security and/or privacy concern.
US11627149B2 Security monitoring of network connections using metrics data
Various embodiments of the present invention set forth techniques for security monitoring of a network connection, including analyzing network traffic data for a network connection associated with a computing device, identifying one or more network traffic metrics for the network connection based on the network traffic data, determining that the network connection corresponds to at least one network connection profile based on the one or more network traffic metrics, detecting a potential security threat for the network connection based on the one or more network traffic metrics and the at least one network connection profile, and initiating a mitigation action with respect to the network connection in response to detecting the potential security threat. Advantageously, the techniques allow detecting potential security threats based on network traffic metrics and categorizations, without requiring monitoring of the content or the total volume of all traffic exchanged via the connection.
US11627142B2 E-code multi-imprints
Apparatus and methods for generating a unique token that can be imprinted on a document to attest to the verification of an executor's signature. The apparatus and methods may include a platform that may present a token electronically to the executor via a first electronic channel. The executor may use a registered device to capture a portion of the token, and transmit the portion from the registered device to the platform via a second channel to the platform. The platform may verify that the portion is registered to the executor. The platform may combine the portion with another portion of the token, and imprint the pair of combined portions on the document with another token.
US11627139B2 System, device, and method for transferring security access permissions between in-camera users
A process for transferring security access permissions between in-camera users includes capturing, at an electronic computing device via an image capture device, an image of two or more in-camera users. A first in-camera user and a second in-camera user are identified n the image. An input gesture identifying the first in-camera user as a source of security access permissions and the second in-camera user as a destination of security access permissions is detected. Responsively, the electronic computing device causes a first particular security access permission associated with the first in-camera user to be applied to and modify a current set of security access permissions associated with the second in-camera user.
US11627135B2 Method and system for delivering restricted-access resources using a content delivery network
A computer-implemented method for delivering restricted-access resources hosted on an origin server using a CDN comprising a plurality of CDN servers is provided. The method comprises receiving, by a CDN server from a client, a request for a restricted-access resource hosted on the origin server, wherein the request comprises a resource identifier of the restricted-access resource and an authentication token; and performing a delivery step comprising: creating, by the CDN server, a composite cache key comprising the resource identifier and at least part of the authentication token; comparing, by the CDN server, the composite cache key with one or more composite cache keys previously stored at the CDN server; if a match between the composite cache key and one of the previously stored composite cache keys is found, delivering, by the CDN server, a response associated to the composite cache key to the client; if no match between the composite cache key and one of the previously stored composite cache keys is found, performing a retrieval step comprising: forwarding, by the CDN server, the request to the origin server; checking, by the origin server, whether the authentication token allows access to the restricted-access resource; if the access is allowed: retrieving, by the origin server, the restricted-access resource; sending, by the origin server, a response comprising the restricted-access resource to the CDN server; if the access is not allowed: sending, by the origin server, a response comprising a refusal of the request to the CDN server; storing, by the CDN server, the response in association to the composite cache key; delivering, by the CDN server, the response to the client.
US11627133B2 Selectively restricting communications from third party applications/devices to electronic devices
A method for providing access to a target electronic device through a first service running on a different electronic device may include receiving in the first service a command directed to the target electronic device from a command sender and receiving in the service device operation status parameters of the target electronic device. The device operation status parameters may include properties of the target electronic device such as a battery level, a battery charging rate, an age, a planned lifespan, a recent wireless usage, an internal temperature, or any of the above in relation to an intervening electronic device over which communication to the target electronic device travels, or any combination thereof. The method may also include using the device operation status parameters to determine, using the service, whether to provide or not to provide an update signal incorporating the command or information to the target electronic device.
US11627131B2 Address validation using signatures
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating signed addresses. One of the methods includes receiving, by a component from a device, a plurality of first requests, each first request for a physical address and including a virtual address, determining, by the component, a first physical address using the virtual address, generating a first signature for the first physical address, and providing, to the device, a response that includes the first signature, receiving, from the device, a plurality of second requests, each second request for access to a second physical address and including a second signature, determining, by the component for each of the plurality of second requests, whether the second physical address is valid using the second signature, and for each second request for which the second physical address is determined to be valid, servicing the corresponding second request.
US11627124B2 Secured login management to container image registry in a virtualized computer system
An example method of logging in an automation user to a container image registry in a virtualized computing system is described, the container image registry managing container images for deploying containers in the virtualized computing system. The method includes: receiving, at a credential manager in the container image registry, a login request from a service executing in the virtualized computing system representing the automation user, the login request for image access to the container image registry and including an automation token; authenticating the automation token as credentials of a robot account in the container image registry corresponding to the automation user; and authorizing the automation user as identified in the automation token of the login request in response to the robot account having privilege for the image access.
US11627117B2 Secure search service
An encrypted search query may be received from a requesting client system at a secure enclave of a processing device. The encrypted search query may be decrypted to form a decrypted search query. One or more index entries of a metadata index that correspond to the decrypted search query may be identified, such that each identified index entry is associated with a content reference that identifies a content item located outside the secure enclave. The index entries that correspond to the decrypted search query may include one or more index entries having one or more associated index metadata items that correspond to the decrypted search query. One or more secure search results may be generated, such that each secure search result corresponds to one of the index entries and comprises the content reference associated with the corresponding index entry. The secure search results may be sent to the requesting client system.
US11627115B2 Information processing method, information processing system, and information processing apparatus
In a case where data is provided to a plurality of third parties, an embodiment of the present invention provides a method and the like for checking the consent and disclosure history of disclosure to the third parties while also reducing the disadvantages from a data leak. An information processing method according to an embodiment of the present invention includes writing, to a blockchain, a consent record indicating a consent with respect to the handling of data and a related party related to the consent or the data. In the case where executing the handling in the consent record would allow the data to be usable by a third party that is neither the executing party executing the handling nor the related party, the consent record is written such that the identifier is changed to a different identifier uniquely corresponding to the third party.
US11627113B2 Network-based authentication rule cleaning and optimization
Techniques and systems for optimizing and cleaning rules for network-based authentication transactions are provided herein. A network-based authentication system may determine a plurality of rules that were previously used to evaluate a plurality of transactions. The network-based authentication system may also generate a false positive rate for one or more of the plurality of rules, A cleaning coefficient for a first rule of the plurality of rules may be generated by the network-based authentication system. Based on the cleaning coefficient and the false positive rate, the network-based authentication system may identify one or more rules from the plurality of rules to eliminate from the plurality of rules. The network-based authentication system may eliminate the one or more rules to generate a modified set of rules. Using the modified set of rules, the network-based authentication system may authenticate a network transaction.
US11627111B2 Systems and methods for implementing universal targets in network traffic classification
The present technology discloses systems, methods, and computer-readable media to establish at least one target for a network, the target including at least one of an ingress parameter or an egress parameter and a policy for network packets; receive at least one network packet on the network; search for at least one matching target from the at least one targets, the at least matching target comprising parameters that match the at least one network packet; apply a policy in the at least one matching target to the at least one network packet; and forward the at least one network packet in accordance with the policy.
US11627110B2 Systems and methods for operating a networking device
Methods and systems are described for compressing a tree structure associating network packet signatures with network packet metadata, the tree structure comprising a plurality of non-leaf nodes of single bit test nodes and a plurality of leaf nodes comprising network packet metadata, the method comprising determining whether the sub-portion of the tree structure is to be compressed. If determination is made that the sub-portion of the tree structure is to be compressed, generating a compressed node data structure, the compressed node data structure comprising a path of the sub-portion of the tree structure, the path comprising a sequence of bits formed by a concatenation of the single bits associated with each one of the consecutive non-leaf nodes of the sub-portion of the tree structure, the number of bits of the sequence being equal or greater than the compression threshold.
US11627108B2 Network address resolution
A content delivery method including the operations of receiving a uniform resource locator resolution request at an authoritative name server for a domain where the uniform resource resolution request is received based, at least in part, on a host name of the uniform resource resolution request where the host name is uniquely related to a resource associated with the uniform resource resolution request. The method further including the operation of tracking a popularity of the resource based on the host name uniquely related to the resource and providing a location within a network capable of delivering the resource where the provided location is based on the popularity of the resource.
US11627104B2 Enhanced data sharing to and between mobile device users
A method of enhancing data sharing between mobile or other computing device users includes receiving a submission request generated by user interaction with a first user interface on a first computing device, the submission request including content and associated submission data indicative of a recipient of the content, and updating a second user interface on a second computing device associated with the recipient to make the content available for display. The method may include sending a push notification to the second computing device indicating that the content is available for display for a period of time.
US11627103B2 Internal message routing system and method
There is provided a system and method for routing messages received from any one of a plurality of external user accounts on any one of a plurality of different messaging applications within an entity. The system and method comprises one or more integration modules coupled to each of the plurality of different messaging applications for receiving messages via the messaging application. These messages are directed to a unique account identifier for the entity using additional address identifier information. A central messaging module is configured to receive from each of the one or more integration modules the messages via a common internal messaging protocol, and distribute the messages to at least one more internal user accounts within the entity using additional address identifier information.
US11627093B1 Generic layer independent fragmentation of non-internet protocol frames
A network device may receive a non-Internet protocol (non-IP) frame with a particular size and may compare the particular size to a maximum transmission unit (MTU) associated with a path between the network device and another network device. The network device may divide the non-IP frame into fragments, based on the particular size being greater than the MTU and may prepend generic fragmentation headers to the fragments to generate fragments with headers, based on the particular size being greater than the MTU. The network device may add generic fragmentation header labels and transport labels to the fragments with the headers to generate fragments with headers and labels, based on the particular size being greater than the MTU. The network device may transmit the fragments with the headers and the labels to the other network device, via the path, based on the particular size being greater than the MTU.
US11627092B2 Streaming augmented reality data in a fifth generation (5G) or other next generation network
The technologies described herein are generally directed to modeling radio wave propagation in a fifth generation (5G) network or other next generation networks. For example, a method described herein can include, for a network application, identifying, by a system comprising a processor, a characteristic value of a performance characteristic associated with an uplink connection enabled via a network of a user equipment to application server equipment hosting the network application. The method can further include, based on the characteristic value and a criterion, selecting, by the system, a first packet size for the uplink connection. The method can further include communicating, by the system, to the user equipment, the first packet size for use with the uplink connection.
US11627089B2 Method and device for determining a topology of a network of wireless access points
Determined is a topology of a communication network composed of a plurality of nodes connected or not respectively to at least one item of equipment, one of the nodes, referred to as the root node, being connected to an external network. A service class is determined for each node, from each node, information is obtained representing the quality of the link between the node and other nodes, for each link, parameters representing the quality of the link are calculated, the nodes are classified according to the service class thereof and according to the number of links making up the path that separates them from the root node, for each node and according to the classification, the possible paths connecting the node to the root node are determined, a score is calculated for each path determined, the path is selected for the node having the best score.
US11627088B2 Method for prioritizing data packets based on application scenario, user state and user role
A computer software application running on a wireless communication device determines whether an application scenario is urgent or nonurgent, and determines whether the user state is interest, uninterested or absent. The application sends the application scenario and the user state to a wireless networking device. The wireless networking device determines the user roles of different wireless communication devices. It further adjusts priorities of data packets destined to the wireless communication device based on the application scenario, the user state and the user role when downlink to the wireless communication device is congested. The priority is decreased when the application scenario is unurgent, the user role is a listener, and the user state is uninterested or absent.
US11627085B2 Non-transitory computer-readable recording medium, service management device, and service management method
Provided is a non-transitory computer-readable recording medium storing a service management program that causes a computer to execute a process, the process including acquiring a first input load indicating an amount of inputs received by a service at a first point in time, the service being implemented by containers, identifying first numbers of the containers corresponding to the first input load by referring to a storage unit that stores information where a second input load is associated with second numbers of the containers, the second input load indicating an amount of inputs received by the service when a response time of the service is reduced by increasing numbers of the containers to the second numbers of the containers in each of second points in time prior to the first point in time, and increasing the numbers of containers to the first numbers of the containers.
US11627083B1 Protocol-independent receive-side scaling
A system and method for protocol independent receive side scaling (RSS) includes storing a plurality of RSS hash M-tuple definitions, each definition corresponding to one of a set of possible protocol header combinations for routing an incoming packet, the set of possible protocol header combinations being modifiable to include later-developed protocols. Based on initial bytes of the incoming packet, a pattern of protocol headers is detected, and used to select one of the plurality of RSS hash M-tuple definitions. The selected RSS hash M-tuple definition is applied as a protocol-independent arbitrary set of bits to the headers of the incoming packet to form a RSS hash M-tuple vector, which is used to compute a RSS hash. Based on the RSS hash, a particular queue is selected from a set of destination queues identified for the packet, and the packet is delivered to the selected particular queue.
US11627082B2 Automatically establishing an address mapping table in a heterogeneous device interconnect fabric
A method for automatically establishing an address-port mapping table of a switching device in an interconnect fabric uses hardware link-up and link-down processes to build and update the lowest cost (e.g., shortest path) port entries in the mapping table. Traffic loops are precluded by comparing cost values based on the source addresses of the devices in the interconnect fabric, without blocking any particular port.
US11627081B2 Method and system segregating application traffic in a wide area network
A system and method for managing network traffic is disclosed. The method includes determining an application domain, network elements associated with the application domain, and roles the network elements in the application domain. A virtual routing and forwarding (VRF) policy is generated for each of the network elements in the application domain based on the application domain and the role of each of the network elements in the application domain.
US11627079B2 Apparatus and methods for embedding security association identifier in IP address
An electronic device includes an address generator module that generates a source address for each traffic class to be sent using a network interface. The source address includes a Unique Local Address (ULA) prefix and an interface identifier having a traffic class identifier as one or more most significant bits and a randomly generated remainder. The address generator module generates a destination address having the ULA prefix and the traffic class identifier. When a processor of the electronic device is selecting a source address for the traffic class according to rules of a network layer protocol (e.g., IPv6), including a rule that a longest matching address of possible source addresses to the given destination is selected as the source address, the generated source address is selected due to the one or more most significant bits of the interface identifier matching with the traffic class identifier of the destination address.
US11627077B2 Reliable overlay based on reliable transport layer
Various example embodiments for supporting reliability of an overlay are presented herein. Various example embodiments for supporting reliability of an overlay may support reliable delivery of overlay packets. Various example embodiments for supporting reliable delivery of overlay packets may support reliable delivery of overlay packets of a label switching protocol. Various example embodiments for supporting reliability of an overlay may support reliable delivery of overlay packets based on a reliable transport layer. The reliable transport layer may be provided using a reliable transport layer protocol. The reliable transport layer protocol may be a connection-oriented protocol, may be configured to support flow control, may be configured to support congestion control, or the like.
US11627074B1 Network device with real-time data-path optimization
A network device includes at least one port, a memory, data-path circuitry, and a processor. The at least one port is to exchange packets with a network. The data-path circuitry is to process the packets. The memory is to store signatures of traffic patterns according to a locality-sensitive signature function., and corresponding parameter settings for the data-path circuitry. The processor is to assess a current traffic pattern of the packets, to calculate a current signature over the current traffic pattern using the locality-sensitive signature function, to query the memory using the current signature, to configure the data-path circuitry, in response to finding a stored signature that is within a specified distance from the current signature, with a parameter setting that corresponds to the found signature, and take an alternative action in response to finding that no stored signature is within the specified distance from the current signature.
US11627065B2 Selective sensor polling
A selective sensor polling system for a voice activated data packet based computer network environment is provided. A system can receive audio signals detected by a microphone of a device. The system can parse the audio signal to identify trigger keyword and request. The system can select a template for an action data structure with a plurality of fields. The system can determine to poll a first sensor for data for the first field. The system can determine to obtain data in memory previously collected by the second sensor. The system can generate and transmit the action data structure with the data from the sensor and memory, and transmit the action data structure to a third party device.
US11627063B1 Systems and methods for measuring unidirectional latency of applications over asymmetric links
A user device may measure unidirectional latency of applications over asymmetric links. The user device may accurately measure application level unidirectional latency over cellular networks, without synchronizing system clocks. The user device may accurately measure the unidirectional latency in both an uplink direction and a downlink direction, without using a high-precision system clock and without synchronizing clocks between the user device and an application server.
US11627058B2 Management device, assistance device, management method, and recording medium for converting data into viewable format
Provided is a management device that makes it possible for a user of a device different from the management device to smoothly assist troubleshooting in the management device. A management device 3 is a management device that manages a network including one or more nodes, and includes: a data acquisition portion that generates first data in binary format which indicates a state of the network, and a data conversion portion 326 that converts the first data into second data in viewer format.
US11627057B2 Virtual network function response to a service interruption
In some examples, a first virtual network function (VNF) that is part of a collection of interconnected VNFs detects a service interruption in a network that includes the collection interconnected VNFs. In response to detecting the service interruption, the first VNF sends control information to a target entity, the control information specifying an action to take to change a communication flow through the collection of interconnected VNFs.
US11627053B2 Continuous data sensing of functional states of networked computing devices to determine efficiency metrics for servicing electronic messages asynchronously
Various embodiments relate generally to data science and data analysis, computer software and systems, and wired and wireless network communications to interface among repositories of disparate data and computing machine-based entities configured to access, track, and/or analyze data, and, more specifically, to a computing and data storage platform to implement computerized tools to continuously (or nearly continuously) sense data describing functional states of remote computing devices and/or user interfaces configured to service electronic messages, according to at least some examples. For example, a method may include receiving a stream of data representing states of user interfaces, analyzing the states of the user interfaces, identifying activity data, identifying a state of an application, detecting an action and classifying a subset of activity data based on the action, and generating data representing a state of an application configured to interact with a digital conversation.
US11627052B2 Communications system reconfigurable to different topologies and associated methods
A communications system may include mobile communications nodes operating according to a current topology and reconfigurable to a new topology. Each mobile communications node may include a wireless transceiver, and a controller configured to transmit spectral performance data to adjacent nodes and receive spectral performance data from the adjacent nodes. The controller may identify potential topologies for the adjacent nodes based on the spectral performance data, select a subset of potential topologies from among the potential topologies, generate a respective performance score for each potential topology of the subset of potential topologies, and switch to a new topology from among the subset of potential topologies based upon the performance scores.
US11627049B2 Failsafe firmware upgrade for cloud-managed devices
A method of authenticating a device management system of a cloud-managed network includes transmitting a first transmission signal, from an access point, to a secondary port of the device management system. The first transmission signal comprises a first request of the access point to connect to the cloud-managed network. When the access point is incompatible with the cloud-managed network, the access point receives a re-direction instruction from the device management system to redirect the access point to a predefined Internet address to provide compatibility data for the access point. The method further includes that in response to receiving the compatibility data, transmitting a second transmission signal to the secondary port that includes a second request to connect to the cloud-managed network. The method include that in response to authentication by the access point, receiving an instruction from the secondary port to connect via a primary port to the cloud-managed network.
US11627043B2 System and method for commissioning a network element
Systems, methods, and non-transitory computer-readable storage media which have instructions stored for execution on a processor, for automating the commissioning of a transport network element within a network. A system configured according to this disclosure can be an Automated Commissioning Tool which can initiate communications with a network element on the network. The Automated Commissioning Tool can then retrieve updated firmware corresponding to the network element and configure the network element to have the updated firmware. Finally, the Automated Commissioning Tool can determine, from a network plan, a first port on the network element which is to be connected via a cross-connect to a second port on the network element and establish the cross-connect on the network element. At this point the network element may be commissioned to operate as a transport network element within the network.
US11627042B2 System and method for exchanging configuration information between two nodes in a wireless network
The present disclosure relates to a method and system for managing and exchanging configuration information between two nodes in a wireless network. In one embodiment, a method implemented on a first node is disclosed. The method comprises: generating a first message that comprises first configuration information associated with the first node; and transmitting the first message to a second node for exchanging configuration information with the second node, wherein the first node and the second node cooperate to serve at least one cell in a wireless network as a base station.
US11627040B1 Processing unmodified configuration data with a network device application
A network device may receive a first configuration object associated with an application and may parse the first configuration object to identify first configuration data. The network device may calculate a first hash value based on the first configuration data and may generate a first operational object based on the first configuration data and the first hash value. The network device may receive a second configuration object associated with the application of the network device and may parse the second configuration object to identify second configuration data. The network device may calculate a second hash value based on the second configuration data and may determine whether the first hash value matches the second hash value. The network device may prevent, based on the first hash value matching the second hash value, generation of a second operational object based on the second configuration data and the second hash value.
US11627039B2 Site management in an on-demand system
Methods and systems are provided for managing environmental conditions and energy usage associated with a site. One exemplary method of regulating an environment condition at a site involves a server receiving environmental measurement data from a monitoring system at the site via a network, determining an action for an electrical appliance at the site based at least in part on the environmental measurement data and one or more monitoring rules associated with the site, and providing an indication of the action to an actuator for the electrical appliance.
US11627033B2 System and method for anomaly detection with root cause identification
A computer device may include a processor configured to obtain key performance indicator (KPI) values for KPI parameters associated with at least one device and compute a set of historical statistical values for the obtained KPI values associated with the network device. The processor may be further configured to provide the KPI values and the computed set of historical statistical values to an anomaly detection model to identify potential anomalies; filter the identified potential anomalies based on a designated desirable behavior for a particular KPI parameter to identify at least one anomaly; and send an alert that includes information identifying the at least one anomaly to a management system or a repair system associated with the device. The computer device may further determine a root cause KPI parameter for the identified at least one anomaly and include information identifying the determined root cause KPI parameter in the alert.
US11627032B2 Data-powered shipwright for network cloud maintenance
A system comprising a network cloud configured for a point of deployment containerized environment, a plurality of servers in communication with the network cloud, configured to establishing a point of deployment (POD) in one of the plurality of servers, receiving a determination that the POD is not operational, mapping the topology of the POD, and based on the mapping step, troubleshooting the POD in accordance with a set of rules.
US11627028B2 Systems and methods for phase noise tracking reference signal sequence generation using demodulation reference signals
A user equipment (910) is provided for use in a cellular network. The user equipment includes a transceiver (1010), a processor (1020), and a memory (1030). The user equipment (910) is configured to determine, for a data transmission, a mapping form a demodulation reference signal (DMRS) to a PNT-RS. A DMRS resulting signal is generated from a subset of DMRS for a first resource element in a subcarrier. The DMRS resulting signal is copied from the first resource element to a second resource element assigned to PNT-RS in the subcarrier. The data transmission is transmitted using the DMRS resulting signal and the PNT-RS.
US11627025B2 Self-adapting autonomous transmission configuration
Methods, systems, and devices for wireless communications are described. Autonomous transmissions between a user equipment (UE) and a base station may be configured that include at least one of a modulation and coding scheme (MCS) or resources for the transmissions. In some cases, a trigger may be detected that changes the MCS or resources to be used for the autonomous transmissions. The trigger may include the presence or absence of retransmissions or the value of a channel measurement falling below or exceeding a threshold value. Accordingly, the base station and UE may adjust the MCS or resources to be used for the autonomous transmissions based on detecting the trigger and then communicate using the adjusted MCS or resources. In some cases, the configuration for the autonomous transmissions may be signaled via a medium access control (MAC) control element (CE).
US11627023B2 Signal transmission apparatus
In a transmission circuit, a first pulse signal with a first frequency and a second pulse signal with a second frequency are output according to a rising edge and a falling edge of a first input signal, respectively. When a second input signal indicates an active level, the second pulse signal is output according to the falling edge of the first input signal and the second frequency is changed to a third frequency. In a reception circuit, a first level of a first output signal is changed to a second level according to a first induced signal via a transformer, the second level of the first output signal is changed to the first level according to a second induced signal via the transformer, and a second output signal is changed to an active level when a frequency of the second induced signal has changed to the third frequency.
US11627022B2 Variable gain amplifier and sampler offset calibration without clock recovery
Methods and systems are described for generating a time-varying information signal at an output of a variable gain amplifier (VGA), sampling, using a sampler having a vertical decision threshold associated with a target signal amplitude, the time-varying information signal asynchronously to generate a sequence of decisions from varying sampling instants in sequential signaling intervals, the sequence of decisions comprising (i) positive decisions indicating the time-varying information signal is above the target signal amplitude and (ii) negative decisions indicating the time-varying information signal is below the target signal amplitude, accumulating a ratio of positive decisions to negative decisions, and generating a gain feedback control signal to adjust a gain setting of the VGA responsive to a mismatch of the accumulated ratio with respect to a target ratio.
US11627017B2 VPWS signaling using segment routing
Systems and methods include obtaining a plurality of services supported at the node; determining a bitmask to represent the plurality of services supported at the node, wherein the bitmask includes a starting service and each subsequent bit representing another service of the plurality of services and with each bit in the bitmask set based on the plurality of services supported at the node; and transmitting an advertisement to nodes in the Segment Routing network with a starting Service SID value and the bitmask based on the plurality of services supported at the node. The plurality of services can include any of a Virtual Private Wire Service (VPWS) and a Flexible Cross Connect (FXC) service.
US11627016B2 Packet communications providing packet processing efficiencies in a network including using a segment routing and tunnel exchange
In one embodiment, a segment routing and tunnel exchange provides packet forwarding efficiencies in a network, including providing an exchange between a segment routing domain and a packet tunnel domain. One application includes the segment routing and tunnel exchange interfacing segment routing packet forwarding (e.g., in a Evolved Packet Core (EPC) and/or 5-G user plane) and packet tunnel forwarding in access networks (e.g., replacing a portion of a tunnel between an access node and a user plane function for accessing a corresponding data network). In one embodiment, a network provides mobility services using a segment routing data plane that spans segment routing and tunnel exchange(s) and segment routing-enabled user plane functions. One embodiment uses the segment routing data plane without any modification to a (radio) access network (R)AN (e.g., Evolved NodeB, Next Generation NodeB) nor to user equipment (e.g., any end user device).
US11627014B2 Distributed electric air data module system
A distributed air data module system includes several air data systems and a control module communicatively connected to each air data system via a data channel. Each of the air data systems includes a sensor that is configured to sense an air data parameter and to provide a sensor output signal that is indicative of the sensed air data parameter, and a sensor analog-to-digital converter that produces a digital air data parameter signal that is representative of the sensor output signal. Each air data system has an associated air data system address code. The control module is configured to generate a selected air data system address code corresponding to a selected air data systems, receive the digital air data parameter signal associated with the selected air data system via the data channel, and transmit the digital air data parameter signal via an aircraft data bus.
US11627013B2 Display apparatus, terminal apparatus, and methods of controlling at least one peripheral device using same
A display apparatus, a terminal apparatus, and controlling methods are provided. The display apparatus includes: a communicator to communicate with a terminal apparatus or a relay server in order to receive collected status information about at least one peripheral device from the terminal apparatus, a display unit to display a user interface (UI) screen; and a controller to generate a control UI for controlling the at least one peripheral device or a security UI for monitoring a peripheral space through the at least one peripheral device based on the status information about the at least one peripheral device and based on whether a communication with the terminal apparatus is possible, thereby controlling a home device t in real time according to a communication status with the terminal apparatus.
US11627012B2 Home automation management system
A management system controls smart devices in a home by speech input without need of an internet connection or wireless or wired router. The system processes audio input and generates command signals for controlling the addressed smart device(s) using an industry standard protocol. The system allows the user to remove or add any kind of smart device within a residential environment.
US11627011B1 Smart device network provisioning
Aspects of the disclosure provide for a method implemented by a computing device executing an artificial intelligence electronic assistant application. In some examples, the method includes searching a local area network for smart home devices to determine an identifier associated with a smart home device, provisioning the smart home device to an ecosystem of devices that is managed by the computing device, and automatically arbitrating communication of the smart home device based on the provisioning.
US11627007B2 Mobile information terminal
When a first user makes a video call with a second user of the other side by using the video call function, a first state is set as a state in which the enclosure is flatly placed on a first surface of an object, and in which a face of the first user is included within a range of an angle of view AV1 of the front camera C1. In the first state, the mobile information terminal 1 detects a first region including the face of the first user from a wide angle image that is captured by the front camera C1, trims a first image corresponding to the first region, creates a transmission image to be transmitted to a terminal of the other side on the basis of the first image, and transmits the transmission image to the terminal of the other side.
US11627006B1 Utilizing a virtual assistant as a meeting agenda facilitator
Technologies are disclosed for to utilizing a virtual assistant to as a meeting agenda facilitator. The virtual assistant may start the meeting, control the flow of the meeting, introduce agenda items, receive comments, display meeting materials associated with the meeting, generate/keep track of follow-up actions, create a meeting record, and the like. In some examples, virtual assistant accesses a meeting agenda to determine what agenda items are to be discussed, what content is to be presented, as well as summaries of the meeting and the agenda items. The meeting agenda may also include an expected duration of each of the agenda items that may be used to keep the meeting on time. The virtual assistant may also generate follow-up actions to be performed. Still yet, the virtual assistant may create a meeting record that can include information recorded from the meeting and is associated with the agenda items discussed.
US11627003B2 Systems and methods for a blockchain multi-chain smart contract time envelope
A system for a shared and synchronous time series identification that matches a hardware clock-generating signal of a blockchain identified node device, with a generated data event time stamp and shared by all computing nodes participating in a complete system based on a blockchain design pattern and protocol. A blockchain cybersecurity system time signature is applied to synchronize the device level ID or device chain; this time sync is matched to the client master clocking time signal governing data transactions on the data event level or event chain. The combination of these two disparate blockchain mechanisms is termed as a multi-chain application. The matched time signals now provide referenced smart contract time sequencing. This matched time sequencing is unique and customized in its application to a multi-chain block chain cyber security application.
US11626997B2 System and method for authenticating digitally signed documents
A system and method for authenticating a digitally signed document by one or more users includes a user processor to execute a user facing application to collect and transmit user data associated with the users. The system also includes a KYC Provider subsystem, including a KYC Provider database, and a KYC Provider processor to electronically receive the user data from the user processor and to automatically compare the user data and the verified user data to generate a KYC Provider report. An administrator processor electronically receives the user data from the user processor and the KYC Provider report from the KYC Provider processor to automatically: inspect the KYC Provider report to verify the identity of the one or more users; apply a digital signature of the one or more users to a document; issue an authenticity report associated with the signed document; and publish the authenticity report to a database.
US11626996B2 Distributed system web of trust provisioning
A web of trust in a distributed system is established. A root of trust for at least two components in the distributed system validates information for the distributed system. The validated information is then used to create additional information for the distributed system. Versions of the information are usable to validate subsequent versions of the information such that validation of a version of the information can be performed by using one or more previous versions to verify that the version is a valid successor of a previously validated previous version.
US11626994B2 System and method for presenting content based on articles properly presented and verifiably owned by or in possession of user
A system and method for identifying whether an article is properly presented and duly owned by or licensed to a user and releasing assigned content to the user upon confirmation of such verifiably owned or licensed article. A manipulated user device equipped with at least one camera is deployed to determine if the article is properly presented. The device captures images and the system has the ability to determine from the images and any additional spatial information the orientation and/or position parameters of the article to confirm whether a valid spatial relationship exists between the article and the user device. Due ownership or license is verified by relying on tokens (e.g., Non-Fungible Tokens) and blockchain transaction records. The assigned content released to the user can be contextual and can range from items such as images, music, videos, games, virtual content, augmented content, coupons (virtual or physical), promotions, special offers and the like.
US11626993B2 Network for improved verification speed with tamper resistant data
A method includes: a) receiving node identifiers from nodes of a plurality of nodes in a computer network; b) determining a plurality of node committees in a sampler graph comprising a plurality of nodes, wherein the node is present in a node committee in the plurality of node committees; c) and i) generating a random string; ii) performing a proof of work process using the random string and a hash function; iii) if the proof of work process yields a solution that is acceptable, then broadcasting the solution to all other nodes in the plurality of nodes, wherein the other nodes verify the solution; and iv) if the other nodes verify the solution, the node is elected to a subcommittee for the node committee, wherein the subcommittee updates the sampler graph; and d) repeating steps b) and c) until a leader committee is determined.
US11626989B2 System and method for allocating multi-access edge computing services
Systems and methods provide decentralized MEC compute services. A network device receives, from a user device associated with a user account, an access request for Multi-access Edge Computing (MEC) services. The user account includes a MEC service token that indicates parameters for the MEC services. The network device validates a user of the user device to access MEC services for the user device; removes, after the validating, the MEC service token from the first user account; and grants, based on the removing, access to a MEC cluster by the user device, wherein granting access includes granting access according to the parameters.
US11626987B2 Scrambling data for use with vehicle communication protocol
A scrambling method of data on a J1939 communication system of a vehicle involves at least moving data from one of a PGN and a PGN/SPN location to another PGN or PGN/SPN location at a first controller on the vehicle before transmitting data and then re-ordering the data at a second controller. Some embodiments further comprise encrypting data either before or after shifting, but before transmitting so as to further complicate efforts to interpret meaningful data from the transmission. The second controller may be on the vehicle or may be remotely located.
US11626982B1 Systems and methods for maintaining confidentiality, integrity, and authenticity of the last secret
Systems and methods for securely sharing and authenticating a last secret. A method includes generating a first key and a last secret. The method includes splitting the last secret into first second splits; signing the splits using a dealer signing key to attach a dealer signature to each of the splits; encrypting the first split using a first key of a first share-holder and encrypting the second split using a first key of a second share-holder; decrypting the first split using the first key of the first share-holder and encrypting the first split using a second key of the first share-holder; decrypting the second split using the first key of the second share-holder and encrypting the second split using a second key of the second share-holder. Encrypting maintains confidentiality of the last secret. The dealer signature can be verified to determine integrity and authenticity of the last secret.
US11626981B2 Facilitating hitless security key rollover using data plane feedback
A first network device may install a receiving key for decrypting traffic on protocol hardware associated with a data plane of the first network device. The first network device may receive, from the data plane, a first notification indicating that the receiving key is installed on the protocol hardware and may provide, to a second network device, a first message identifying the receiving key. The first network device may receive, from the second network device, an acknowledgment message indicating that the receiving key is installed on the second network device and may install a transmission key for encrypting traffic on the protocol hardware. The first network device may receive, from the data plane, a second notification indicating that the transmission key is installed on the protocol hardware and may provide, to the second network device, a second message identifying the transmission key.
US11626974B2 System and method for securely configuring a new device with network credentials
A system, apparatus, and method for sharing network credentials. One embodiment of a method comprises: establishing a Bluetooth connection between a first Internet of Things (IoT) device and a mobile device of a first user having an IoT app installed, the mobile device to couple the first IoT device to an IoT service; receiving a request from a user from the mobile device to configure the first IoT device using network credentials from a second IoT device, the second IoT device registered with an account of the user on the IoT service and configured to connect to a secure network of the user with the network credentials; establishing a communication channel between the first IoT device and the second IoT device through the IoT service and the mobile device to obtain the network credentials; and using the network credentials at the first IoT device to securely connect to the secure network.
US11626973B1 Post-quantum cryptography side chain
A computing entity accesses one or more blocks of a blockchain, encrypts the content of the one or more blocks using a first cryptographic technique to generate one or more first encrypted block values, and writes a first side chain block comprising the one or more first encrypted block values and a first signature to a first side chain. The computing entity accesses at least one of (a) at least one block of a particular second set of one or more second sets of the plurality of blocks or (b) one or more first side chain blocks corresponding to blocks of the second set, encrypts the content of the accessed block(s) using a second cryptographic technique to generate at least one second encrypted block value, and writes a second side chain block comprising the at least one second encrypted block value and a second signature to a second side chain.
US11626972B2 Data processing method and apparatus
Methods, system, and apparatus, including computer programs encoded on computer storage media for data processing are provided. One of the methods includes: establishing a logic contract of a blockchain and one or more data contracts corresponding to the logic contract; deploying the logic contract and the one or more data contracts in the blockchain; storing data of a target block in the blockchain into the one or more data contracts; computing a hash value of each of the one or more data contracts; and determining a hash value of the target block in the blockchain based on the hash value of each of the one or more data contracts.
US11626971B2 Method and system for processing a GNSS signal using homomorphic encryption
An apparatus and method are described for processing a global navigation satellite system (GNSS) signal, the GNSS comprising multiple satellites, wherein each satellite transmits a respective navigation signal containing a spreading code. The method comprises receiving an incoming signal at a receiver, wherein the incoming signal may contain navigation signals from one or more satellites; encrypting the incoming signal at the receiver using a homomorphic encryption scheme to form an encrypted signal; and transmitting the encrypted signal from the receiver to a remote server.
US11626965B2 User terminal and radio communication method
The present invention is designed to improve the throughput of radio communication by using partial frequency bands for DL/UL communication. A user terminal has a receiving section that receives downlink control information by using a first partial frequency band (BWP) among a plurality of BWPs configured in a carrier, and a control section that identifies, via a resource allocation field (RA field) having a size that is configured based on a given BWP among the plurality of BWPs, a resource of a second BWP, which is different from the first BWP, in the downlink control information.
US11626964B2 Data transmission method, network device, and terminal device
Embodiments of this application provide a data transmission method, a network device, and a terminal device. The method includes: A network device sends resource indication information to a terminal device, so that the terminal device determines, based on the resource indication information, a resource allocated by the network device. The resource indication information is used to indicate location information of a resource in at least one BWP in a system bandwidth and bandwidth information of the at least one BWP. Further, the network device receives, on a resource corresponding to the resource indication information, uplink data sent by the terminal device. It can be learned that, in the embodiments, the network device may indicate a system bandwidth of any size and/or a resource in any BWP in the system bandwidth to the terminal device, so that the terminal device can perform data transmission on the indicated resource.
US11626963B2 Tone plans and preambles for extremely high throughput
Methods, apparatuses, and computer readable media for tone plans and preambles for extremely high throughput (EHT) in a wireless network are disclosed. An apparatus of an EHT access point (AP) or EHT station (STA), where the apparatus includes processing circuitry configured to: encode a physical layer (PHY) protocol data unit (PPDU), the PPDU including a EHT preamble, the EHT preamble including a legacy preamble portion and a EHT preamble portion, the legacy preamble including a legacy short training field (L-SFT), a legacy long-training field (L-LTF), and a legacy signal field (L-SIG), the EHT preamble portion comprising an EHT short signal field (EHT S-SIG), the EHT S-SIG including a modulation and coding scheme (MCS) subfield indicating a MCS of a subsequent data portion. The PPDU may be transmitted on a distributed or contiguous resource unit (RU) allocation. The RU may be configured to not straddle two physical 20 MHz subchannels.
US11626959B2 Multiplexed communication for a base station and a programmable logic controller
A wireless device, such as a PLC, receives data from at least one wireless device. The wireless device transmits first feedback for the data in a downlink control channel to the at least one wireless device and transmits second feedback for the data in an uplink control channel to a base station. The base station receives the feedback in an uplink control channel and transmits a retransmission of the data to the wireless device in response to receiving the feedback.
US11626957B2 Logical channel management in a wireless communication network
A wireless transmit/receive unit (WTRU) is configured to, on a condition that a serving grant having a non-zero value is too small for transmission of a single protocol data unit (PDU) from any scheduled medium access control-d (MAC-d) flow, transmit scheduling information (SI). The WTRU is further configured to produce a trigger on the condition that the serving grant is too small and the transmission of the SI is based on the produced trigger.
US11626956B2 User equipment, base station, and communication thereof
There are provided a user equipment, a base station, and a communication thereof. The UE operative for sidelink transmission based on base station scheduling, comprising: a receiver, operative to receive first control information from a base station; determination circuitry, operative to determine whether a shortened time interval is used for a signaling interaction of the user equipment and the base station for sidelink transmission according to the received first control information; and a transmitter, operative to transmit second control information to the base station during the signaling interaction using the shortened time interval after the determination circuitry determines that the shortened time interval is used for the signaling interaction for sidelink transmission; wherein a length of the shortened time interval is less than a length of a standard time interval.
US11626953B2 Generating wireless reference signals in a different domain for transmission with a collapsed time-frequency grid
According to an embodiment, a system can comprise a processor and a memory that can store executable instructions that, when executed by the processor, facilitate performance of operations. The operations can include generating a first signal in an initial domain and transforming the first signal into a first portion of a time-frequency grid of a time-frequency domain, resulting in a transformed first signal. The operations further include combining the transformed first signal with a second signal of a second portion of the time-frequency grid, resulting in a combined signal, and transmitting the combined signal to a user equipment device for a further transformation. The operations further include receiving a response signal from the user equipment device that was configured, based on the further transformed first signal.
US11626950B2 Differential reporting of epre values for RS tones
A receiving device may be either a UE or a base station. The receiving device may receive, from a transmitting device, communication based on a current reference signal (RS) pattern. The receiving device may determine, based on the received communication, at least one updated RS pattern for at least one resource block (RB). The at least one updated RS pattern may include at least one updated energy per resource element (EPRE) value for one or more RS tones. Further, the receiving device may transmit, to the transmitting device, a report of the at least one updated RS pattern. The report may correspond to at least one of an absolute value or a relative value of the at least one updated EPRE value for the one or more RS tones.
US11626944B2 Jitter tolerance measurement apparatus and jitter tolerance measurement method
There are provided a data comparison unit that detects an FEC symbol error of a signal under test output from a DUT in accordance with an input of a jitter signal, an error counting unit that counts the number of detected FEC symbol errors for each codeword for each phase modulation amount, a codeword classification unit that classifies a plurality of codewords included in the signal under test into a plurality of groups based on the counted number of FEC symbol errors, a codeword number counting unit that counts the number of codewords in each group for each phase modulation amount, and a display control unit that controls a display of a first graph having a horizontal axis as the phase modulation amount and a vertical axis as a ratio of the number of codewords in each group, on a display screen.
US11626934B1 Probability-based capture of an eye diagram on a high-speed digital interface
An eye diagram is generated for a digital interface, such as a Serializer/Deserializer (SerDes) interface. A probability map is captured by stepping through a fixed sequence of phase and reference voltage levels and counting a number of highs or lows. The switching of phase includes merely increasing the phase difference rather than performing complex phase/data analysis. The probability map can then be used to generate an eye diagram through simple differentiation. For example, the differentiation between various pixel locations in the probability map can be used to yield the edges of the eye in an eye diagram. The standard Serdes parameters can then be extracted from the eye diagram. The parameters can then be used to determine if the serial connection is problematic.
US11626932B1 Radio signal processing network model search
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training and deploying machine-learned communication. One of the methods includes: receiving an RF signal at a signal processing system for training a machine-learning network; providing the RF signal through the machine-learning network; producing an output from the machine-learning network; measuring a distance metric between the signal processing model output and a reference model output; determining modifications to the machine-learning network to reduce the distance metric between the output and the reference model output; and in response to reducing the distance metric to a value that is less than or equal to a threshold value, determining a score of the trained machine-learning network using one or more other RF signals and one or more other corresponding reference model outputs, the score indicating an a performance metric of the trained machine-learning network to perform the desired RF function.
US11626930B2 Polarization recovery apparatus and method thereof and optical receiver
A polarization recovery apparatus, a method thereof and an optical receiver. The method includes: performing adaptive equalization processing and polarization recovery on a received signal, wherein a polarization state of the received signal, after the adaptive equalization processing and polarization recovery being performed, is aligned with a principal axis of polarization of an optical receiver.
US11626928B2 Performance estimation apparatus and method for nonlinear communication system and an electronic device
A performance estimation apparatus and method for a nonlinear communication system and an electronic device. The nonlinear communication system is equated with by an equivalent model including an equivalent linear model and an equivalent additive noise model, and the equivalent additive noise outputted by the equivalent additive noise model is mathematically uncorrelated to the signal inputted into the equivalent model. Performances of the nonlinear communication system of different modulation formats at different baud rates may be accurately estimated.
US11626925B2 Optical transfer system, optical transmitter, and optical communication method
In order to stabilize the characteristics of reception of an optical signal received via a transfer path, this optical receiver is provided with: a local beam output means 1; a light receiving means 2; a photoelectric conversion means 3; a measuring means 4; a control means 5; and a comparing means 6, the comparing means 6, when the control means 5 sweeping the wavelength of the local beam in a predetermined wavelength range with respect to the central wavelength of the optical signal, generating difference data between a spectrum based on a result of the measuring, by the measuring means 4, of the electric signal in accordance with a change in the wavelength of the local beam and a preset reference spectrum.
US11626920B2 Method for terminal to perform radio link monitoring in wireless communication system for supporting sidelink and apparatus therefor
Disclosed are a method and an apparatus for a terminal to perform a radio link monitoring in a wireless communication system for supporting a sidelink according to various embodiments. Disclosed are a method and an apparatus for a terminal to perform a radio link monitoring in a wireless communication system for supporting a sidelink, the method comprising: a step of setting a beam failure recovery (BFR) parameter for a plurality of services on the basis of service attributes, for each service; and a step of independently sensing a beam failure for at least one beam corresponding to each service on the basis of a block error ratio (BLER) threshold value included in the BFR parameter and the number of beam failure instances (BFIs).
US11626918B2 Method of performing beam failure recovery and related device
A method for a user equipment (UE) performing a beam failure recovery (BFR) procedure is disclosed. The method comprises performing a first beam failure detection (BFD) procedure on a first cell, performing a second BFD procedure on a second cell, triggering a first BFR procedure for a first cell in response to a beam failure being detected on the first cell by the first BFD procedure, triggering a second BFR procedure for a second cell in response to a beam failure being detected on the second cell by the second BFD procedure, and canceling the triggered first BFR procedure for the first cell in response to a BFR report corresponding to at least one of the first and second BFR procedures being successfully transmitted to a base station (BS), wherein the BFR report includes BFR information of the first cell.
US11626915B1 Dynamic beam pattern management of one or more antenna elements of an antenna array
Methods and systems are provided for dynamic beam pattern management of one or more antenna elements of an antenna array at a cell site. The methods can include receiving information associated with one or more user devices, where the information includes elevation information, and determining whether the user devices are positioned at an increased elevation, a decreased elevation, or an equal elevation relative to a threshold elevation value. The methods can also include shifting between broadcast footprints, where the broadcast footprints are different in at least a vertical plane or in at least an azimuthal plane.
US11626914B2 Demodulation reference signal configuration selection and reporting
Methods, systems, and devices for wireless communications are described. In some systems, a user equipment (UE) may determine a set of groups of layers relating to a set of transport blocks (TBs) or a set of code division multiplexing (CDM) groups. The UE may group the layers such that the layers in each group have a minimal difference in signal-to-interference-plus-noise ratio (SINR) between the layers. The UE may select a different demodulation reference signal (DMRS) configuration for each of the set of groups of layers based on maximizing a communication efficiency metric for each group of layers. The UE may transmit an indication of the selected DMRS configurations for each group of layers to a base station via a field in a report. The base station may accordingly determine a DMRS configuration for each group of layers based on the DMRS configurations indicated by the UE.
US11626911B2 Flexible beamforming control
A method of operating a device (101, 102) includes selecting between a first operational mode (8098) and a second operational mode (8099) for a wireless link (111) established between a terminal (102) and a base station (101) of the network; in response to selecting the first operational mode (8098): determining first values for antenna weights from a plurality of predefined candidate values; and in response to selecting the second operational mode (8099): determining second values for the antenna weights based on a calculation using a receive property of pilot signals (4021) communicated between the terminal (102) and the base station (101) as an input.
US11626910B2 Beamformed transmission towards groups of terminal devices
There is provided mechanisms for beamformed transmission towards groups of terminal devices. Each terminal device is, according to a bandwidth part (BWP) configuration, configured with a BWP set. One BWP in the BWP set is an active BWP for the terminal device. The method is performed by a network node. The method comprises configuring a new terminal device entering one of the groups with an active BWP based on frequency overlap avoidance with the active BWPs of the terminal devices already part of the group entered. The method comprises serving all terminal devices by performing beamformed transmission towards the terminal devices in accordance with the active BWPs.
US11626909B2 Method and device for enhancing power of signal in wireless communication system using IRS
A method for enhancing receiving signal power at a receiver is provided. The method includes estimating a channel gain by transmitting a pilot signal to the receiver through each antenna from a plurality of antennas of a transmitter and an IRS, determining an antenna selection metric based on the channel gain in transmitting the pilot signal to the receiver through each antenna of the transmitter and the IRS, identifying an antenna from the plurality of antennas that causes to provide the largest antenna selection metric, determining a reflection coefficient for each reflector of the IRS based on the identified antenna, configuring the reflectors of the IRS with the reflection coefficient, and transmitting the signal to the receiver through the identified antenna and the configured reflectors.
US11626907B2 Radio frequency generators, and related systems, methods, and devices
Radio frequency (RF) generators are disclosed. A RF generator may include a modulator configured to receive an arbitrary waveform and an RF carrier, and generate a pulsed radio frequency (RF). The arbitrary waveform may be generated via an analog signal generator external to the RF generator. Further, the RF generator may include an amplification stage configured to amplify the pulsed RF signal. RF generation systems and methods of generating a pulsed RF signal also disclosed.
US11626904B2 Method and device for multi-antenna transmission in user equipment (UE) and base station
A method and a device for multi-antenna transmission in a user equipment and a base station are disclosed in the present disclosure. The user equipment first receives a first signaling, receives a first wireless signal, and transmits first information. K antenna port groups are used to transmit the first wireless signal. The first signaling is used to determine the K antenna port groups. The K antenna port groups respectively correspond to K channel quality values. K1 antenna port groups of the K antenna port groups correspond to K1 channel quality values of the K channel quality values. The K1 is a positive integer less than or equal to the K. A first proportional sequence corresponds to a ratio(ratios) among the K1 channel quality values. The first information is used to determine the K1 antenna port groups and the first proportional sequence.
US11626898B2 Electronic devices having circuitry in housing attachment structures
An electronic device housing may be formed from housing members. A first housing member may form a display cover layer that overlaps pixels. During operation, the pixels may display an image that is viewable through the display cover layer. The second housing member may have a rear wall portion and a sidewall. A band may be coupled to the sidewall or other portion of the second housing member. The first and second housing members may be attached together using a housing member attachment structure. The housing member attachment structure may have layers of adhesive and printed circuit structures. The printed circuit structures may include metal traces that form an antenna and that form capacitive force sensor electrodes on opposing sides of a compressible member.
US11626890B2 Dynamically variable error correcting code (ECC) system with hybrid rateless reed-solomon ECCs
Example apparatus and methods control whether and when hybrid rateless Reed Solomon (RS) error correcting codes (ECC) for a message are produced, stored, and distributed. The control may be based on a property (e.g., reliability, error state, speed) of a message recipient. Example apparatus and methods may also control whether and when fountain codes for the message are produced, stored, and distributed. Once again, the control may be based on a property of a message or ECC recipient. Both the hybrid rateless RS ECC and the fountain codes may be produced from data stored in a modified RS matrix. The modified RS matrix may store row-centric error detection codes (EDC) instead of conventional cyclic redundancy check (CRC) characters. The modified RS matrix may store column-centric ECC that may be produced serially. Different types or numbers of ECC may be produced, stored, and provided for different messages stored at different recipients.
US11626882B1 Dual-structure acquisition circuit for frequency synthesis
A wide band frequency synthesizer may include a primary phase-locked loop (PLL) to receive a signal that include a local signal and a VCO signal mixed together and to generate the tuning voltage based on a phase comparison of the local signal and the VCO signal. The local signal may be obtained from a reference signal through frequency multiplication. If the primary PLL fails to lock onto an output frequency, a secondary PLL (acquisition circuit) may be switched in performing a phase comparison between the reference signal and the VCO signal to generate the tuning voltage. The secondary PLL may then provide the tuning voltage to an output of the primary PLL.
US11626879B2 Integrated circuit including a combined logic cell
An integrated circuit, and method of forming the same. The integrated circuit includes standard logic cells and a combined logic cell over a semiconductor substrate. Each standard logic cell includes a standard height, a width that is an integer multiple of a unit width, first and second power rails, and at least one transistor and interconnections configured to implement a logic function that produces a single logic output. The combined logic cell includes the standard height, a width that is an integer multiple of the unit width, the first and second power rails, and at least two transistors and interconnections configured to implement a first logic function and a second logic function. The first and second logic functions produce first and second logic outputs, respectively. The interconnections are configured to direct the first logic output and the second logic output to destinations outside the combined logic cell.
US11626878B2 Semiconductor device
A semiconductor device includes: a pad; a control circuit; a plurality of high-potential-side circuit regions having distances to the pad different from each other, each including a gate drive circuit, a SET-side level shifter, a RESET-side level shifter, and a circular wire; a SET-side wire electrically connects the pad with the SET-side level shifters; and a RESET-side wire electrically connects the pad with the RESET-side level shifters, wherein the circular wire located closer to the pad is electrically connected to the SET-side wire and the RESET-side wire via the circular wire 8u located further from the pad.
US11626876B2 Self-isolating output driver
Push-pull integrated circuit output drivers may interfere with communication by other entities on a bus when an integrated circuit is powered down. When there is no power and/or when the bonding pad is externally driven above the internal supply voltage, the substrate/body/well of the p-channel field effect transistor (PFET) of the output driver is biased to prevent its drain diode from becoming forward biased thereby preventing interference with communication on the bus. Also, when there is no power, driver is powered down or pull up is disabled, the gate of the driver PFET is driven to a voltage that ensures the driver PFET remains off when the bonding pad is externally driven above the internal supply voltage.
US11626873B2 Off chip driver circuit, off chip driver system, and method for operating an off chip driver circuit
An off chip driver circuit includes a pull-up circuit and a pull-down circuit. The pull-up circuit includes several first transistors and a first resistance circuit coupled between the first transistors and a input/output pad. The first transistors generate a first voltage to the first resistance circuit. The first resistance circuit transmits, in response to a first control signal, the first voltage to the input/output pad and to have a variable resistance according to the first control signal. The pull-down circuit includes several second transistors and a second resistance circuit coupled between the second transistors and the input/output pad. The second transistors generate a second voltage to the second resistance circuit. The second resistance circuit transmits, in response to a second control signal, the second voltage to the input/output pad and to have a variable resistance according to the second control signal.
US11626871B2 Control of secondary switches based on secondary winding voltage in a power converter
A resonant power converter controller comprising a control circuit configured to turn on a synchronous rectifier (SR) in response to a count of a number of times a drain voltage of the SR crosses below a turn on threshold based on a stored count and turns off the SR when the drain voltage crosses above a turn off threshold. The control circuit comprises a first comparator configured to generate a first detection signal in response to the drain voltage being less than the turn on threshold. A first turn on detection circuit generates a first turn on signal when the count reaches the stored count. A first turn off signal is generated in response to the drain voltage being greater than the turn off threshold. A drive circuit turns on and off the SR in response to the first turn on signal and the first turn off signal.
US11626866B2 Electronic persistent switch
Methods, systems, and computer readable media described herein can be operable to facilitate transitioning a device from a first state to a second state. A switch described herein allows for the use of an electronic circuit to perform the toggle and persistence functions while simultaneously giving more flexibility to the industrial design and physical switch implementation. The switch allows this preserving of the state using only a toggle on a voltage and thus allowing for a hardware only solution. The switch described herein allows for the use of smaller and less complicated mechanical switches allowing for more compact industrial designs. The switch uses a programmable voltage reference as a 1 bit non-volatile memory cell that is programmed by means of a logic pulse to the device. This allows a software independent setting of the state of the privacy switch. This state will remain through power cycles.
US11626862B2 Cyclic control of cells of an integrated circuit
An embodiment of the present disclosure relates to a circuit of cyclic activation of an electronic function comprising a hysteresis comparator controlling the charge of a capacitive element powering the function.
US11626860B2 Receiver
A receiver and associated methods are described. The receiver comprises a first oscillator 14, a second oscillator 16, a controller 18 operable to control frequencies to which the first and second oscillators are tuned, and a discrimination circuit 24 operable to receive and monitor transmitted signals; wherein the discrimination circuit is configured to receive a signal at a first transmission frequency determined based on a first tuned frequency to which the first oscillator is tuned, and to determine, in a capture time period, whether data is being transmitted at the first transmission frequency; wherein the controller is configured to tune, in a tuning time period, the second oscillator to a second tuned frequency; and wherein the tuning time period is shorter than the capture time period.
US11626859B2 Beam generator, beam generating method, and chip
A beam generator, a beam generating method, and a chip are provided. The beam generator comprises a first channel, a second channel, and a signal merging module; the first channel comprises a first-channel filter, the first-channel filter is used to filter an input signal to obtain a first filtered signal; the first filtered signal comprises a desired signal; the second channel comprises: a second-channel blocking module, used to block the desired signal in the input signal to obtain a blocked signal; a compensation filter, connected to the second-channel blocking module for compensating for the blocked signal to obtain a second filtered signal; and an adaptive filter connected to the compensation filter for adaptively filtering the second filtered signal to obtain a third filtered signal; the signal merging module is for merging the first filtered signal and the third filtered signal to obtain an output signal.
US11626858B2 System improving signal handling
The invention provides a system improving signal handling, e.g., transmission and/or processing. In an embodiment, the system may include a filter circuit, a magnitude bit truncation circuit and a utility circuit. The filter circuit may be coupled to a target signal which contains one or more desired signals at one or more interested bands, for attenuating each said interested band to form a filtered signal. The magnitude bit truncation circuit may be coupled to the filter circuit, for truncating one or more bits of each sample of the filtered signal to form a truncated signal. The utility circuit may be coupled to the magnitude bit truncation circuit, for handling the truncated signal to implement handling of the target signal, so as to reduce resource requirement and enhance error tolerance comparing with directly handling the target signal.
US11626855B2 Out-of-band rejection using SAW-based integrated balun
A front-end module may include an acoustic wave filter with a first and second interdigital transducer electrode, and a low noise amplifier (LNA) that converts a differential input to a single-ended output with respect to ground. The first interdigital transducer electrode may be single-ended with a first input bus bar configured to receive an input signal and a second input bus bar connected to ground. The second interdigital transducer electrode may be differential with a first output bus bar connected to a first output terminal and a second output bus bar connected to a second output terminal. The LNA may have a differential input connected to the acoustic wave filter, a first input transistor that receives a first signal from the first output terminal of the acoustic wave filter, and a second input transistor that receives a second signal from the second output terminal of the acoustic wave filter.
US11626854B2 Radio-frequency splitter circuits, devices and methods
Radio-frequency splitter circuits, devices and methods. In some embodiments, a power splitter can include an input port, a first output port and a second output port. The power splitter can further include a first signal path implemented between the input port and the first output port, and a second signal path implemented between the input port and the second output port. Each of the first and second signal paths can include a variable capacitance configured to provide a plurality of capacitance values that result in different frequency responses of the respective signal path.
US11626850B2 Automated tuning by measuring and equalizing speaker output in an audio environment
An example method of operation may include identifying speakers and microphones connected to a network controlled by a controller, assigning a preliminary output gain to the speakers used to apply test signals, measuring ambient noise detected from the microphones, recording chirp responses from all microphones simultaneously based on the test signals, deconvolving all chirp responses to determine a corresponding number of impulse responses, and measuring average sound pressure levels (SPLs) of each of the microphones to obtain a SPL level based on an average of the SPLs.
US11626849B2 Amplifier circuit
An amplifier circuit includes: an operational amplifier that includes two input terminals and an output terminal; a voltage-dividing resistor circuit electrically connected to the output terminal and that includes a voltage-dividing terminal that outputs a potential obtained by voltage-dividing a potential of the output terminal and a feedback resistor circuit electrically connected to the voltage-dividing terminal and one of the two input terminals. The voltage-dividing resistor circuit includes a plurality of resistors that each include terminals and a switch. The plurality of resistors includes a first resistor and a second resistor. The first resistor includes a terminal that corresponds to the voltage-dividing terminal. The switch switches, from a first terminal of the first resistor to a second terminal of the second resistor, the terminal that corresponds to the voltage-dividing terminal.
US11626848B2 Biased amplifier
In one example an amplifier includes a bias circuit, an open-loop gain stage including a first PMOS having a gate coupled to a first node, a source coupled to a second node, a drain coupled to a third node, and a bulk coupled to the bias circuit, a second PMOS having a gate coupled to a ground node, a source coupled to the second node, a drain coupled to a fourth node, and a bulk coupled to the bias circuit, a first NMOS having a drain and a gate coupled to the third node and a source coupled to a fifth node, a second NMOS having a drain coupled to the fourth node, a gate coupled to the third node, and a source coupled to the fifth node, an adjustable resistor coupleable between the third and fourth nodes, and a buffer stage coupled to the open-loop gain stage.
US11626846B2 Differential amplifier circuitry
Differential amplifier circuitry including: first and second main transistors of a given conductivity type; and first and second auxiliary transistors of an opposite conductivity type, where the first and second main transistors are connected along first and second main current paths passing between first and second main voltage reference nodes and first and second output nodes, respectively, with their source terminals connected to the first and second output nodes, respectively, and with their gate terminals controlled by component input signals of a differential input signal; and the first and second auxiliary transistors are connected along first and second auxiliary current paths passing between first and second auxiliary voltage reference nodes and the first and second output nodes, respectively, with their drain terminals connected to the first and second output nodes, respectively, and with their gate terminals controlled by the component input signals of the differential input signal.
US11626844B2 Envelope tracking radio frequency front-end circuit
An envelope tracking (ET) radio frequency (RF) front-end circuit is provided. The ET RF front-end circuit includes an ET integrated circuit(s) (ETIC(s)), a local transceiver circuit, a target voltage circuit(s), and a number of power amplifiers. The local transceiver circuit receives an input signal(s) from a coupled baseband transceiver and generates a number of RF signals. The target voltage circuit(s) generates a time-variant ET target voltage(s) based on the input signal(s). The ETIC(s) generates multiple ET voltages based on the time-variant ET target voltage(s). The power amplifiers amplify the RF signals based on the ET voltages. Given that the time-variant ET target voltage(s) is generated inside the self-contained ET RF front-end circuit, it is possible to reduce distortion in the time-variant ET target voltage(s), thus helping to improve operating efficiency of the power amplifiers, especially when the RF signals are modulated with a higher modulation bandwidth (e.g., ≥200 MHz).
US11626842B2 Tunable vector recombination amplifier
A tunable vector recombination amplifier comprises an input, an output, first and second amplifier circuit paths each including a respective phase shifter to receive a respective input signal from the input and to apply a respective phase shift to produce a respective phase-shifted signal, a respective interstage impedance matching network, and a respective amplifier connected between the respective phase shifter and interstage impedance matching network to receive and amplify the respective phase-shifted signal to produce a respective amplified signal, first and second controllable DC voltage sources each coupled to a respective amplifier and configured to provide a respective supply voltage to the respective amplifier, values of the supply voltages being independently controllable, and an output amplifier stage to receive, amplify, and vectorially combine the amplified signals to produce a combined signal having a specified phase determined by the phase shifts and supply-voltage values and a specified amplitude at the output.
US11626840B2 Subharmonic detection and cancelation
A circuit for subharmonic detection includes in-phase and quadrature mixers, first and second filters, and a processing circuit. The in-phase mixer has a first mixer input and a first mixer output. The quadrature mixer has a second mixer input and a second mixer output, the first mixer input coupled to the second mixer input. The first filter circuit has a first filter input and a first filter output, the first filter input coupled to the first mixer output. The second filter circuit has a second filter input and a second filter output, the second filter input coupled to the second mixer output. The processing circuit has a first input and a second input, the first input of the processing circuit coupled to the first filter output, the second input of the processing circuit coupled to the second filter output. The processing circuit is configured to detect a subharmonic component of a wave at the first mixer input and the second mixer input using a first direct current (DC) component at the first input of the processing circuit and a second DC component at the second input of the processing circuit.
US11626837B2 Photovoltaic system and method for locating devices in photovoltaic string
A photovoltaic system and a method for locating devices in a photovoltaic string. A communication host in the photovoltaic system acquires accumulated operation durations of MLPE apparatuses of the photovoltaic string, ranks the accumulated operation durations to obtain a ranking result, and determines a physical location of each device in the photovoltaic string according to the ranking result and a sequence of installing positions of the devices, where the devices are installed at the installing positions based on the sequence. It is not necessary to paste label codes on the MLPE apparatuses, or record serial numbers of the MLPE apparatuses by installation personnel. Operation processes are simplified, operation time is saved, and labor costs are reduced.
US11626834B2 Power backfeed control method, converter, and photovoltaic power generation system
A converter and a power backfeed control method applied to a photovoltaic power generation system are provided. The power backfeed control method includes: controlling, according to a backfeed instruction, the converter to enter a backfeed mode, where in the backfeed mode, the converter can transmit energy of the power grid to a selected photovoltaic string with a corresponding number; determining a backfeed control voltage according to the backfeed instruction, and determining a voltage limit in a process of determining the backfeed control voltage; determining an actual backfeed voltage based on the backfeed control voltage and the voltage limit, where the actual backfeed voltage is a smaller one of the backfeed control voltage and the voltage limit; and controlling the converter to output the actual backfeed voltage to the selected photovoltaic string, to enable the selected photovoltaic string to generate an electroluminescent effect.
US11626832B2 Module clip
Solar trackers that may be advantageously employed on sloped and/or variable terrain to rotate solar panels to track motion of the sun across the sky include bearing assemblies and other mechanical features configured to address mechanical challenges posed by the sloped and/or variable terrain that might otherwise prevent or complicate use of solar trackers on such terrain.
US11626828B2 Control systems for folding partitions and related methods
A motor control system for a folding partition includes a data storage device and processing circuitry. The data storage device is configured to store a normal threshold profile to serve as a threshold for a measured current supplied to a motor to detect abnormal operation of the motor. The motor is configured to drive motion of the folding partition. The processing circuitry is operably coupled to the data storage device. The processing circuitry is configured to generate an adjusted threshold profile to serve as a threshold for the measured current supplied to the motor while moving the folding partition during a transition from an abnormal operational mode to the normal operational mode. The adjusted threshold profile is used for detecting additional abnormal operation of the motor. The processing circuitry is configured to generate the adjusted threshold profile by adjusting at least a portion of the normal threshold profile.
US11626827B2 Pulsed electric machine control
A variety of methods, controllers and electric machine systems are described that facilitate pulsed control of electric machines (e.g., electric motors and generators) to improve the machine's energy conversion efficiency. Under selected operating conditions, the electric machine is intermittently driven (pulsed). The pulsed operation causes the output of the electric machine to alternate between a first output level and a second output level that is lower than the first output level. The output levels are selected such that at least one of the electric machine and a system that includes the electric machine has a higher energy conversion efficiency during the pulsed operation than the electric machine would have when operated at a third output level that would be required to drive the electric machine in a continuous manner to deliver the desired output. In some embodiments, the second output level is zero torque.
US11626823B2 Power supply system and method of controlling the power supply system
A power supply system includes a power source, a relay, a switch, and a controller. The relay is interposed between the power source and a load. The switch is configured to be coupled to the load in a state where the switch allows or disallows for power supply from the power source to the load when the relay is in a closed state. The controller is configured to control an operation of the switch. The controller is configured to execute forced driving control at a time of a closing operation of the relay. The forced driving control causes the switch to operate independently of a request for driving the load and thereby causes power to be supplied from the power source to the load.
US11626822B2 Low-speed high torque motor control and foam system
A fire suppression system includes a motor and a foam pump. The foam pump is driven by the motor to inject one or more chemical additives from an off-board additive container into a discharge conduit. A bypass valve is in fluid communication with the output of the foam pump. One or more sensors are configured to measure at least one operating condition of the foam pump. A controller is in communication with the one or more sensors and is operatively connected to the bypass valve. The controller is configured to determine, based on data received from the one or more sensors regarding the at least one operating condition of the foam pump, whether the foam pump is experiencing a loss of prime, and to open the bypass valve in response. The motor may also selectively operate in one of two modes depending on the rotational speed and torque required.
US11626820B2 Rotary impact tool and control method thereof
A rotary impact tool includes an impact assembly, a brushless motor, a transmission assembly, a drive circuitry, and a controller. The controller is configured to acquire a commutation interval of the brushless motor, output a first control signal to the drive circuitry causing the brushless motor to operate at a preset initial speed, and output a second control signal to the drive circuitry to gradually increase a rotational speed of the brushless motor to a preset final speed, when a commutation interval of the brushless motor becomes greater than or equal to a preset time threshold, where the preset initial speed is less than the preset final speed.
US11626819B2 Motor control system and method for selectively shorting motor windings
A motor control system shorts motor windings of a motor by using junction gate field-effect transistors (JFETs) controlled bipolar junction transistors (BJTs), solid state relays (SSRs) controlled BJTs, and depletion mode metal-oxide-semiconductor field-effect transistors (MOSFETs) so that the motor generates braking torque when all or some electric control units of the motor are disabled or failed. The motor control system comprises: a motor comprising a plurality of motor phase terminals; a plurality of electric control units electrically connected with the motor and configured to control the motor, wherein the electric control units are configured to output control signals, respectively; and a shorting circuit connected to between the motor and the electric control units, the shorting circuit configured to short the motor phase terminals in response to receiving none of the control signals from the electric control units. The shorting circuit is configured not to short the motor phase terminals when receiving at least one of the control signals from at least one of the electric control units.
US11626817B2 Vortex-induced vibration wind energy harvesting device
A vortex-induced vibration wind energy harvesting device, including an array consisting of a plurality of oscillators and a plurality of piezoelectric microelectromechanical systems (MEMSs), is provided. An oscillator is mounted on each of the piezoelectric MEMSs. When any one of the oscillators is oscillated by and resonant with vortex shedding due to an incoming airflow, its vortices in the wake will enhance the oscillation of the downstream oscillators, so that overall oscillation of the oscillators in the array is strengthened. The piezoelectric MEMSs are deformed by the vibration of these oscillators to generate voltage and current to output. In the present invention, the oscillators are arranged closely. When the airflow passes the array, even weak airflow can generate periodic force and cause significant oscillation due to resonance. The MEMS can convert mechanical energy into electrical energy and output it in order to achieve the purpose of wind energy harvesting.
US11626815B2 High-precision rigid-flexible coupling rotating platform and control method thereof
A novel high-precision rigid-flexible coupling rotating platform includes a foundation, a rigid bearing, a bearing sleeve, a core rotating platform, a rotating driver and a coder; the bearing sleeve is fixed on the foundation; the rigid bearing is in rotatable drive connection with the core rotating platform, and connected with the foundation through the bearing sleeve; an upper surface of the core rotating platform is provided with a plurality of groups of flexible hinges; when the rotating driver applies a driving force to rotate the core rotating platform, the driving force elastically deforms the flexible hinge rings. The flexible hinges are used and disposed on the upper surface of the core rotating platform; without disassembling the whole rotating platform, a corresponding group of flexible hinges can be changed but an assembling relationship between other groups of flexible hinges cannot be broken.
US11626813B2 Half-bridge module of a traction inverter of power electronics of an electric or hybrid vehicle
The invention relates to a half bridge module in a traction inverter for a power electronics unit in an electric or hybrid vehicle, comprising a substrate, semiconductor switching elements on a first side of the substrate, power connections, to which power lines that conduct electrical traction energy are connected, signal connections, to which signal lines are connected for switching the semiconductor switching elements, and a casting compound, which encompasses the substrate and the semiconductor switching elements on the first side of the substrate, wherein the power connections and the signal connections are accessed from the first side of the substrate, such that the power connections and the signal connections extend through the casting compound, seen from the first side of the substrate, and are located within a base area spanning the substrate, seen from the direction they pass through the casting compound.
US11626812B2 Control of modular multilevel series/parallel converters (MMSPC) by means of switching tables and continuous background optimisation thereof
A method controls switching states of a multi-level converter with multiple modules. Each module has: terminals on a first and second side; controllable switches; and an energy store in series with a first switch in a first connection between the terminals. A second switch is arranged in a connection between the terminals. The control of the switching states is divided into a real-time and offline part. In the real-time part, for each time step: a voltage level is allocated to a voltage requirement; a total switching state is determined in a first switching table for the voltage level; and the total switching state is passed on as a control signal to the switches. In the offline part: a second switching table is calculated, resulting in accordance with a minimization of a cost function.
US11626808B1 Fault tolerant power converter
A power converter provides a low-voltage output using a full-bridge fault-tolerant rectification circuit. The output circuit uses controlled switches as rectifiers. A fault detection circuit monitors circuit conditions. Upon detection of a fault, the switches are disabled decoupling the power converter from the system.A common-source dual MOSFET device includes a plurality of elements arranged in alternating patterns on a semiconductor die. A common-source dual synchronous rectifier includes control circuitry powered from the drain to source voltage of the complementary switch.A DC-to-DC transformer converts power from an input source to a load using a fixed voltage transformation ratio. A clamp phase may be used to reduce power losses in the converter at light loads, control the effective output resistance of the converter, effectively regulate the voltage transformation ratio, provide narrow band output regulation, and control the rate of change of output voltage for example during start up. One or more of the transformer windings may be clamped. The converter may use the sine amplitude converter topology. The converter may use common-source dual MOSFET devices and fault detection.The density of point of load power conversion may be increased and the associated power dissipation reduced by removing the input driver circuitry from the point of load where it is not necessary. An output circuit may be located at the point of load providing fault tolerant rectification of the AC power from the secondary winding of a power transformer which may be located nearby the output circuit. The resonant voltage and current waveforms on the primary side of the transformer are readily communicated via an AC bus between the driver circuit and the primary winding of the power transformer. The driver circuit may drive a plurality of transformer-output circuit pairs. The transformer and output circuit may be combined in a single module at the point of load. Alternatively, the output circuit may be integrated into point of load circuitry such as a processor core. The transformer may be deployed near the output circuit.
US11626805B2 Control loop for flyback power converter
An example controller for a flyback power converter includes a secondary-side circuit comprising a secondary-side controller. The secondary-side controller is configured to sense an electrical characteristic of a secondary-side output of the flyback power converter, select, based on the sensed electrical characteristic, a power mode, and transmit, over a communication channel, a control message specifying the selected power mode. A primary-side circuit of the controller includes a primary-side controller. The primary-side controller is configured to receive, over the communication channel, the control message specifying the selected power mode and control primary-side flyback drive circuitry of the primary-side circuit to drive a primary-side output of the flyback power converter according to the selected power mode so as to control a value of the electrical characteristic of the secondary-side output of the flyback power converter.
US11626803B2 Adaptive control for zero-voltage switching in a multi-switch switching power converter
A switching power converter is provided that adaptively changes the on-time period for an auxiliary switch transistor to locate a boundary between sufficient and insufficient energy.
US11626799B2 Converter circuit, corresponding device and method
A converter circuit includes first and second electronic switches coupled at an intermediate node, with an inductor coupled between the intermediate node and an output node. Switching drive control circuitry causes the first and the second electronic switch to switch between a conductive state and a non-conductive state. The drive control circuitry includes a first feedback signal path to control switching of the first and the second electronic switch as a function of the difference between a feedback signal indicative of the signal at the output node and a reference value. A second feedback signal path includes a low-pass filter coupled to the output node and configured to provide a low-pass filtered feedback signal resulting from low-pass filtering of the output signal. The second feedback signal path compensates the feedback signal as a function of the difference between the low-pass filtered feedback signal and a respective reference value.
US11626797B2 Systems and methods for output current regulation in power conversion systems
Systems and methods are provided for regulating a power conversion system. An example system controller includes: a detection component configured to receive an input voltage related to a diode connected to an inductor and output a first signal at a first logic level in response to the input voltage being larger than a predetermined threshold, a control logic component configured to receive the first signal, process information associated with the first signal, and output a modulation signal related to a modulation frequency in response to the first signal being at the first logic level, and a driving component configured to receive the modulation signal and output a drive signal to open and close a first switch at the modulation frequency.
US11626796B2 Multiphase power converter with CLC resonant circuit
Multiphase power converter with CLC resonant circuit. One example is a method of operation a power converter, the method including: charging, during a first on-time, a first output inductor by way of a first switching-tank circuit defining a first switch node coupled to a first lead of a resonant inductor; creating, during the first on-time, a first current flow into the first switching-tank circuit through the resonant inductor; and then charging, during a second on-time, a second output inductor by way of a second switching-tank circuit defining a second switch node coupled to a second lead of the resonant inductor; and creating, during the second on-time, a second current flow into the second switching-tank circuit through the resonant inductor.
US11626793B2 LED driver and method of operating an LED driver
An LED driver is described, the LED driver comprising: a back end module BE comprising a switch mode power converter SMPS configured to operate in a self-oscillating current control mode, the back end module BE further comprising: an input terminal configured to receive a DC bus voltage; an output terminal configured to output a supply current for powering an LED fixture; a control unit configured to control the back end module to operate the SMPS in a voltage control mode by: determining a switching frequency of the SMPS when operating in the self-oscillating current control mode; determining a minimal switching frequency of the SMPS and receiving an input signal representative of the supply current for powering the LED fixture; wherein the control unit is further configured to control the switch of the SMPS in the voltage control mode by: operating the switch of the SMPS at a substantially constant frequency based on the determined minimal switching frequency and modulating a duty cycle of the switch to maintain the supply current at a desired current.
US11626791B2 Multi-level hysteresis voltage controllers for voltage modulators and methods for control thereof
Systems and methods that facilitate multilevel hysteresis voltage control methods for cascaded multilevel voltage modulators having a plurality of power cells connected in series and has any positive integer number of output voltage levels to control any unipolar voltage on the load of the voltage modulator, and transfer electrical power from an electrical grid via AC/DC converters or directly from energy storage elements of the power cells to that load. A method of operational rotation of the power cells of a multilevel voltage modulator, which ensures an equal power sharing among the power cells and voltage balancing of the energy storage elements of the power cells of the modulator.
US11626788B1 Magnetic cycloidal gear assembly including mounting arrangement and adjustable counterweight
Magnetic cycloidal gear assemblies and mounting arrangements for magnetic cycloidal gear assemblies are provided that include a fixed stator and a cycloid that rotates eccentrically within the stator. The cycloid can be mounted to an offset cam on the input shaft by a rolling element bearing. A plurality of cam followers connect the cycloid to the output hub. Various features can be provided to increase operational balance or stability. For example, an adjustable counterweight can be attached to the input shaft. Also for example, a mounting arrangement including an adjustable nut, one or more bearings, and/or one or more wave springs can be provided to allow for the application, balancing, or adjustment of axial forces within the assembly.
US11626778B2 Stator of rotating electrical machine for vehicle
A first U-shaped part that is bent so as to form a pair of opposite surfaces facing each other, and a second U-shaped part that is bent so as to form a pair of opposite surfaces facing each other are provided side by side in a bus bar main body of a neutral conductor bus bar. One of the first pair of opposite surfaces and one of the second pair of opposite surfaces are located in the same plane, and the other of the first pair of opposite surfaces and the other of the second pair of opposite surfaces are located in the same plane. A temperature sensor is retained by being inserted through a gap between the first pair of opposite surfaces and a gap between the second pair of opposite surfaces.
US11626776B2 Methods and systems for oil cooled rotor laminations
Various methods and systems are provided for a system for cooling an electric motor that includes a rotor shaft rotatably mounted inside a motor housing, a lamination stack integrally connected to the rotor shaft, an encoder-end balance plate integrally connected to a first end of the lamination stack and a first end of the rotor shaft, an output-end balance plate integrally connected to a second end of the lamination stack and a second end of the rotor shaft, an oil supply coupled to the output-end balance plate and the rotor shaft. A closed-looped coolant pathway is formed between the transmission, the rotor shaft, the encoder-end balance plate, the lamination stack, and the output-end balance plate.
US11626769B2 External rotor motor with cast stator
An electric machine may be an external rotor motor with a stator and a rotor surrounding the stator. The rotor may be mounted on bearings so as to be rotatable around an axis of rotation relative to the stator, where the mechanical forces transmitted by the bearings of the rotor may be absorbed at least in part by the stator. The stator may have a coil winding for generating a magnetic field, the coil winding being surrounded at least partially by a casting compound. At the output, the mechanical forces of the rotor or the device transmitted by the bearings and taken up by the stator may be introduced into the stator largely via the casting compound. The casting compound thus reduces induced vibrations.
US11626759B2 System and method for providing inductive power at multiple power levels
A system and method for inductively providing electrical power at a plurality of power levels to electrical devices. The system may include an inductive power outlet unit conductively coupled to a power supply and an inductive power receiver unit associated with the electrical device. The inductive power outlet unit includes a driver device operable to generate power at a plurality of power levels and electrical power is transferred to the electrical device at a power level selected from the plurality of power levels, in accordance with electrical power requirements of the electrical device. The power receiver may be operable in a plurality of modes having a secondary inductor configured to operate selectively with a plurality of inductance values.
US11626754B2 Dual-mode energy harvesting wireless power receiver apparatus with self-reviving capabilities
Embodiments of the present disclosure describe systems, methods, and apparatuses for reviving a wireless power receiver client over-the-air. More specifically, dual-mode active/passive wireless power receiver clients are described that can passively harvest RF energy in order to obtain enough energy to rejoin a wireless power network where the client can actively harvest RF energy (the client receives directed or isolated wireless power from a wireless power transmission system). For example, a wireless power receiver client can harvest RF energy while idle or off, e.g., when no beacon or other communications are being sent or received, or, in some instances, asynchronously in order to compliment and/or protect one or more elements of the system such as, for example a radio transceiver.
US11626753B2 Single phase fault isolation and restoration with loop avoidance
Techniques for controlling a power distribution network are provided. An electronic processor receives, a fault indication associated with a fault from a first isolation device of a plurality of isolation devices. The processor identifies a first subset of a plurality of phases associated with the fault indication and a second subset of the plurality of phases not associated with the fault indication. The processor identifies a downstream isolation device downstream of the fault. The processor sends send a first open command to the downstream isolation device for each phase in the first subset. The processor sends a close command to a tie-in isolation device for each of the plurality of phases. The processor sends a second open command to the downstream isolation device for each phase in the second subset. Responsive to identifying a potential loop configuration, the processor sends the second open command prior to the close command.
US11626752B2 Object based robust and redundant distributed power system control
Systems and apparatuses include a first controller structured to control a first power system object located on a first route of a power system, and a second controller structured to control a second power system object located on a second route of the power system. The first controller and the second controller are both structured to perform a route level function including coordination of actions of the first power system object and the second power system object, and the first controller is a principal controller and the second controller is a participant controller.
US11626750B2 Integrated uninterruptible power supplies for appliances
A water heater can include a housing and a heating system disposed within the housing, where the heating system is configured to heat a fluid. The water heater can also include a switch coupled to the heating system, where the switch operates between a first position during normal operations and a second position during an outage. The water heater can further include a primary power source coupled to the switch, where the primary power source is configured to provide primary power to the heating system through the switch during the normal operations. The water heater can also include an uninterruptible power supply (UPS) coupled to the switch, where the UPS is configured to provide reserve power to the heating system through the switch during the outage, and where the UPS is integrated with the housing.
US11626749B2 Photovoltaic system
Provided is a photovoltaic system wherein potential induced degradation (PID) is simply and efficiently suppressed. This photovoltaic system is provided with a bypass electric path that connects an inverter and a positive electrode of a solar cell module array to each other by being connected in parallel to a first electric path between the inverter and the solar battery module array. The bypass electric path is provided with a second switching circuit, and a first switching circuit is provided to an electric path between the inverter and a negative electrode of the solar cell module array, the electric path being a part of the first electric path.
US11626748B2 Electronic device and method for wired and wireless charging in electronic device
An apparatus for wired and wireless charging of an electronic device are provided. The electronic device includes a housing, a display on a surface of the housing, a battery mounted in the housing, a circuit electrically connected with the battery, a conductive pattern positioned in the housing, electrically connected with the circuit, and configured to wirelessly transmit power to an external device, a connector on another surface of the housing and electrically connected with the circuit, a memory, and a processor electrically connected with the display, the battery, the circuit, the connector, and/or the memory. The circuit is configured to electrically connect the battery with the conductive pattern to wirelessly transmit power to the external device and electrically connect the battery with the connector to transmit power to the external device by wire, simultaneously or selectively, with wirelessly transmitting power to the external device.
US11626747B2 Battery quick charging method, device to-be-charged, charging apparatus
Provided are a battery quick charging method, a charging apparatus, and a device to-be-charged. The battery quick charging method includes the following. State parameters of a battery of a device to-be-charged are acquired, where the state parameters of the battery include a present temperature of the battery. A charging cut-off voltage corresponding to the present temperature is selected from a target parameter mapping relationship, where the charging cut-off voltage is higher than a rated voltage of the battery. Constant-current charging is performed on the battery until a voltage of the battery reaches the charging cut-off voltage and then performing of the constant-current charging on the battery is stopped.
US11626746B2 System for a vehicle
A system for a vehicle, which has a battery, a DC-DC converter, a DC-AC converter, an electric motor, and a switch. The battery is connected to the DC-DC converter and the DC-AC converter is connected to the electric motor. The switch is arranged between the DC-DC converter and the DC-AC converter, and the switch is designed, in a first switching state, to electrically connect the DC-DC converter and the DC-AC converter and to permit an exchange of electrical energy between the battery and the electric motor in order to carry out a traction process. The switch is designed, in a second switching state, to electrically isolate the DC-DC converter and the DC-AC converter, to connect the battery to an electrical charging station, and to permit an exchange of electrical energy between the battery and the electric charging station in order to carry out a charging process.
US11626740B2 Power receiver for extracting power from electric field energy in the earth
A resonant transformer connected between a ground terminal and elevated terminal draws current from the earth's electric field through a primary winding of the transformer. An impulse generator applies a high voltage impulse to the primary winding of the resonant transformer to cause current to flow from the ground terminal through the primary winding. The flow of current through the primary winding of the resonant transformer induces a current in the secondary winding, which may be converted and filtered to a usable form, e.g. 60 Hz AC or DC.
US11626739B2 Hybrid power plant and a method for controlling a hybrid power plant
The invention relates to a hybrid power plant for producing power to the electrical grid, the hybrid power plant comprising a plurality of energy assets; a first renewable power generating unit, such as wind turbine generators, and an energy storage unit, preferably a battery energy storage system. The hybrid power plant has a power plant controller arranged to communicate with the plurality of energy assets, and, when an under-frequency event occurs, the energy storage unit provides frequency support during the under-frequency event by providing additional power as a function of a state of charge of the energy storage unit at the time when the under-frequency event occurs. Thus, during an under-frequency event, it is possible to obtain a more stable power output from the hybrid power plant.
US11626737B2 Photovoltaic power plant energy harvest optimization—capacity factor, delta-P loss and ramp rate compensation
A method of controlling a renewable energy power plant is provided. The method includes retrieving output power measurement values for each inverter of a total number of inverters from a plurality of sensors provided at a location proximal to each inverter and retrieving a point of interconnection (POI) output measurement value for the renewable energy power plant based on a plurality of ON inverters of the total number of inverters. The method also includes calculating a POI measured setpoint for the renewable energy power plant based on a difference between a power reference value for the renewable energy power plant and the retrieved POI output measurement value for the renewable energy power plant, assigning a setpoint to each of the ON inverters and classifying each ON inverter as either a TRACKING ON inverter or a NON-TRACKING ON inverter based on whether each ON inverter is tracking at the setpoint.
US11626734B2 Energy management system for a recreational vehicle
An energy management system for a recreational vehicle incudes a housing; a plurality of outputs, each output having an associated electrical parameter; and a circuit assembly arranged within the housing. The circuit assembly includes a power converter configured to receive AC power and supply DC power to one or more of the outputs; a plurality of relays, each relay being associated with a corresponding output; and a controller configured to configured to perform a load shedding operation in response to a first load condition being satisfied. The first load condition requires that a total parameter is equal to or above a first predetermined load threshold, the total parameter being a total value of the associated electrical parameters of the outputs. The load shedding operation sequentially opens any closed relays according to a predetermined opening scheme until the total parameter is below the first predetermined load threshold.
US11626730B2 Method and apparatus for managing predicted power resources for an industrial gas plant complex
There is provided a method of determining and utilizing predicted available power resources from one or more renewable power sources for one or more industrial gas plants comprising one or more storage resources. The method is executed by at least one hardware processor and comprises: obtaining historical time-dependent environmental data associated with the one or more renewable power sources; obtaining historical time-dependent operational characteristic data associated with the one or more renewable power sources; training a machine learning model based on the historical time-dependent environmental data and the historical time-dependent operational characteristic data; executing the trained machine learning model to predict available power resources for the one or more industrial gas plants for a pre-determined future time period; and controlling the one or more industrial gas plants in response to the predicted available power resources for the pre-determined future time period.
US11626728B2 Condition monitoring system and storage medium storing thereon condition monitoring program
A condition monitoring system includes a power generator and a condition monitoring apparatus. The condition monitoring apparatus includes, voltage measuring circuit which measures a voltage value of power generated by the power generator, a data memory which stores a past voltage value measured by the voltage measuring circuit, a calculation circuit which calculates a difference between a current voltage value measured by the voltage measuring circuit and at least one past voltage value stored in the data memory, and a controller which determines an issue period indicating a period of time until a trigger signal is issued based on the difference calculated by the calculation circuit, and issues the trigger signal to the condition monitoring apparatus based on the issue period.
US11626720B1 Multiphase ground fault circuit interrupter
A multiphase ground fault circuit interrupter includes a first phase power line input, a second phase power line input, a third phase power line input, a neutral line input, a controller circuit having a relay control output, a first phase latching relay having a first phase switch input coupled to the first phase power line input and a first phase relay control input coupled to the relay control output of the controller circuit, a sensor having a core and a sensor pickup coupled to the controller circuit, and a first phase load wire coupled to a first phase switch output of the first phase latching relay and passed through the core.
US11626715B2 Cord protector
A cord protector detachably securable to an object includes a main body having at least one channel disposed therein that extends along a portion of a longitudinal length of the main body and the channel is capable of receiving and securing a cord, line, or tube therein. The cord protector further includes a clamping/gripping mechanism formed of a pair of oppositely disposed clamping/gripping arms that extend from opposite sides of the main body, which are biased toward one another such that the clamping/gripping arms maintain a substantially closed position at rest. The cord protector is capable of being detachably secured to the object by opening the clamping/gripping arms against the bias and allowing the clamping/gripping arms to return toward the resting position such that they close and clamp upon the object.
US11626701B2 Coaxial connector having inclined surface on tip end side of shell
The present invention provides a coaxial connector that realizes a high frequency signal flowing through a contact in a high frequency band. A coaxial connector includes a three-point contact, a housing including a first and a second connection base, and a shell including a cylindrical portion accommodating the first connection base and an extension portion covering one opening of the cylindrical portion with a bottom plate piece and accommodating the second connection base. The bottom plate piece includes an inclined surface having a higher side on the base end portion of the metal plate and a lower side on the tip end side of the metal plate. The distance between the metal plate of the contact and the bottom surface of the shell which are isolated by an insulating material of the housing is configured to become identical between the tip end side and the base end side of the contact.
US11626699B2 Fluid connector
In some examples, a connector includes a plug configured to mechanically couple with a socket to establish fluid communication from a first conduit to a second conduit. The plug is configured to mechanically engage the first conduit and the socket is configured to mechanically engage the second conduit. In examples, the plug is configured to insert into a socket well of the socket. The connector includes a clamp head configured to mechanically engage the plug when the plug mechanically couples with the socket. The clamp head is configured to mechanically engage the plug to help sustain the mechanical coupling of the plug and the socket. In some examples, the connector may include an output device configured to provide an output indicating when the plug is mechanically coupled with the socket.
US11626697B2 Cable assembly for electrical connector
A cable assembly is provided and includes a cable core including a first signal conductor and a second signal conductor separated by at least one insulator. The first and second signal conductor both include exposed segments extending forward from their respective insulator to a conductor end. The cable assembly includes a contact holder extending between a front and a rear. The cable assembly includes a first contact received in the corresponding channel of the contact holder. The first contact has a mating end and a terminating end. The cable assembly includes a first contact and a second contact received in their corresponding channel of the contact holder. The first and second contact have a mating end and a terminating end. The terminating end has a weld edge welded to the conductor end at a butt weld.
US11626694B2 Electrical shielding for a receptacle connector assembly
A receptacle connector assembly includes a receptacle cage including cage walls including a top wall and forming a module channel configured to receive a pluggable module. The top wall includes an opening open to the pluggable module. The receptacle connector assembly includes an EMI gasket coupled to the top wall at the opening. The EMI gasket provides electrical shielding at the opening. The EMI gasket has a base including a mounting surface coupled to the top wall of the receptacle cage. The EMI gasket has a plurality of mating interfaces. The receptacle connector assembly includes a heat sink coupled to the receptacle cage having a heat sink base with a thermal interface located in the module channel and configured to engage the pluggable module to dissipate heat from the pluggable module. The base engages the mating interfaces of the EMI gasket to electrically connect the heat sink to the EMI gasket.
US11626689B2 Electrical connector having latch
A first electrical connector includes a first latch that is configured to releasably engage a second latch of a second electrical connector when the first and second electrical connectors are mated to each other. The first latch can include an attachment portion that attaches to the connector housing of the first electrical connector, and an engagement portion that is movable with respect to the attachment portion between an engaged position and a disengaged position.
US11626686B2 Tablet docking station
An apparatus for mounting an object having one or more electrical contacts within a vehicle, the object. The apparatus comprises a base configured to receive the object, the base comprising a mounting surface and a docking surface. A docking connector is coupled to the docking surface and is configured to electrically connect with the one or more electrical contacts of the object. The docking connector is movable relative to the docking surface between a first position and a second position. When the docking connector is electrically connected with the one or more electrical contacts of the object, a second main surface of the object is positioned obliquely relative to the mounting surface in the first position of the docking connector and the second main surface of the object is aligned in contact with the mounting surface in the second position of the docking connector.
US11626685B1 Power activation utilizing reed switch technique for non-metallic connector applications
A supply-side non-metallic contactless electrical power connector includes a housing with a metal-free coupling interface for coupling to a non-metallic load connector. A power supply electrically connects to an external power supply. A contactless electrical power transmitter is disposed within the housing and adjacent to the coupling interface. A reed switch is disposed within the housing and enters an activated state when in proximity to a magnetic field generated by the load connector. The reed switch is in electrical communication with the power supply and the contactless electrical power transmitter such that when the reed switch is activated, the contactless electrical power transmitter is electrically connected to the power supply and is enabled to contactlessly transmit electrical power to the load connector, and when the reed switch is inactivated, the reed switch prevents electrical connection between the power supply and the contactless electrical power transmitter.
US11626680B2 Pin plunger and IC socket
According to a certain embodiment, a pin plunger includes: a first contact member; a second contact member that faces the first contact member and is apart from the first contact member; a spring arranged between the first contact member and the second contact member; and a housing that houses the first contact member, the second contact member, and the spring. The housing comprises a bimetal inside or outside the housing. The bimetal comprises a first metal and a second metal, the first metal having a thermal expansion coefficient different from a thermal expansion coefficient of the second metal. The elastic force decreased or increased by contracting or expanding of the spring due to a temperature change is compensated with a warping force due to stretching of the first metal and the second metal.
US11626679B1 Power distribution terminal
A modular power distribution terminal includes an outer housing containing a chamber and a bottom opening. The outer housing includes a top wall, a pair of spaced end walls and a pair of spaced parallel side walls having first fasteners. At least one module slice is arranged in the outer housing chamber and includes a slice housing including a pair of spaced parallel side walls having first fasteners configured for fastening with the first fasteners of one of the outer housing side walls and a current bar connected with and extending along a length of the slice housing. An input screw connection terminal and at least two output push-in connection terminals are connected with the current bar.
US11626677B2 Bonding module pins to an electronic substrate
A method includes disposing a terminal pin on an electronic substrate with a base region of the terminal pin in contact with a circuit trace on an electronic substrate, and ultrasonically coupling the base region of the terminal pin to the circuit trace.
US11626676B2 Connector and method for manufacturing same
Provided is a connector which includes: a fixed housing; a movable housing in the fixed housing which mates with a counterpart connector; and a plurality of terminals held by the fixed housing and the movable housing, the plurality of terminals being configured to contact terminals of the counterpart connector, in which each of the plurality of terminals includes: a first fixed portion buried by integral molding in the fixed housing; a second fixed portion buried by the integral molding in the movable housing; an elastic portion between the first fixed portion and the second fixed portion, the elastic portion having elasticity that allows the movable housing to be displaced relative to the fixed housing; and a contact portion at an end of the second fixed portion, the contact portion having elasticity and being configured to contact the terminal of the counterpart connector mated with the movable housing.
US11626675B2 Interface for a printed circuit board assembly adapter module
Systems for interfacing a printed circuit board assembly (PCBA) adapter module to a receiver housing are provided. The receiver housing may have a first interface mounted on the receiver housing via a first mount and the PCBA adapter module may have a second interface mounted on the adapter module via a second mount. One of the interfaces has a protruding feature that aligns the interfaces when matingly engaged, while the other interface has a centering hole opposite the protruding feature. The first centering hole is enlarged with respect to an axis of an insertion-angle plane such that the protruding feature substantially clears the centering hole without causing either interface to exceed a limit of free-play between that interface and its respective mount.
US11626674B2 Terminal and flexible board with terminal
A terminal to be connected to a front end part of a flexible board including an insulating base film and a conductive path is provided with a terminal body including a sandwiching portion for sandwiching the flexible board and a tubular shell to be disposed outside sandwiching portion. The sandwiching portion includes a conductive contact portion for contacting the conductive path of the flexible board. The shell includes a pressurizing portion for pressing the sandwiching portion toward the flexible board, the pressurizing portion projecting inwardly of the shell. The shell includes a wide portion not formed with the pressurizing portion and a narrow portion narrower inside than the wide portion by being formed with the pressurizing portion. The narrow portion is located outside the sandwiching portion, whereby the conductive contact portion of the sandwiching portion contacts the conductive path.
US11626673B2 Edge connector, circuit board, and connector component
An edge connector includes a first row of golden fingers and a second row of golden fingers. The first row of golden fingers is adjacent to a plugging end of the edge connector, and the second row of golden fingers is adjacent to the first row of golden fingers. In a plugging direction of the edge connector, each golden finger in the first row of golden fingers has a first end proximate to the plugging end and a second end opposite to the first end. A first end of a grounded golden finger in the first row of golden fingers is protruded from other golden fingers, and second ends of two or more than two golden fingers in the first row of golden fingers are not aligned with each other.
US11626671B2 Electrical male terminal
An electrical male terminal of this invention includes a clamp or crimp area, a main body, and a blade. Protruding members and support members of the main body act as overstress protection. A panel shield member protects a protruding guide member. In another embodiment of this invention, a protruding member extends from a first support member of the main body, and a cut-out portion at the lower portion of the main body accommodates therein the protruding member to prevent the tang member from inadvertently or accidentally rotating relative to the lower portion of the main body. Furthermore, in this another embodiment of the electrical male terminal of this invention, a protrusion extends from the unattached end portion of the lever member for allowing the lever member to deflect upward when the protruding member of the unattached end portion interacts with an internal protrusion of a housing or connector assembly, thereby making it more difficult to remove the electrical male terminal from the housing or connector assembly, thereby protecting the electrical male terminal from inadvertently falling out during use.
US11626666B2 Integrated polarization converter and feed horn
An integral waveguide device herein includes a polarizer component comprising a waveguide and a dielectric slab, the dielectric slab configured to change a polarization of a signal passing through the waveguide. The integral waveguide device also includes a feed horn for conveying signals between the waveguide and a parabolic antenna. The waveguide of the polarizer and the feed horn are manufactured as an integral component with the feed horn disposed at a first end of the waveguide.
US11626658B2 Multiple wideband or broadband antennas
A multiple wideband antenna or broadband antenna using the concepts of cellular clusters integrated into a dual polarity antenna panel. These panels integrate a free space optic capability to transmit and receive high-bandwidth communications and provide an option for communication transport of information from the base of the tower to the antenna. This antenna also integrates the capability to provide command and control using the cellular guard bands created between each cellular block to support Unmanned Aerial Systems or free space optics connection.
US11626655B2 Apparatus for mounting a transceiver radio unit to a component of a cellular communication system
A universal mounting apparatus suitable for use with a cellular communication system is disclosed here. The mounting apparatus can be used to mount a transceiver radio unit to an antenna structure. The mounting apparatus includes a first mounting plate compatible with the antenna structure, a second mounting plate couplable to the first mounting plate and slidably adjustable relative to the first mounting plate. Openings in the second mounting plate are arranged in a pattern compatible with different possible mounting fastener locations for transceiver radio units. At least one adjustment fastener couples the mounting plates together. When the at least one adjustment fastener is loosened, position of the second mounting plate is adjustable relative to the first mounting plate. When the at least one adjustment fastener is tightened, position of the second mounting plate is locked relative to the first mounting plate.
US11626654B2 Heat dissipating antenna structures
An antenna assembly includes an antenna and a heatsink. The antenna may be configured to support radio communications and generate heat, and may include a forward antenna surface configured to transmit or receive communications signals and a rear antenna surface that is affixed to a substrate. The heatsink structure may be positioned to be within a forward electromagnetic field that is emitted from the forward antenna surface and away from the rear antenna surface. The heatsink structure may be configured to perform a convection operation between the antenna and a fluid to perform thermal dissipation of the heat from the antenna.
US11626649B2 Wedge battery terminal
A battery terminal connector assembly includes a first post engagement portion and a second post engagement portion. The first post engagement portion has a first opening for receiving the battery terminal post therein. The second post engagement portion has a second opening for receiving the battery terminal post therein. The first post engagement portion is movable relative to the second post engagement portion and the first post engagement portion and the second post engagement portion are movable relative to the battery terminal post as the first post engagement portion and the second post engagement portion are moved between a first insertion position and a second termination position.
US11626645B2 Support member for battery pack top housing
A battery pack that is connectable to and supportable by a power tool (e.g., a hand-held power tool). The battery pack includes a top housing having a support member. The support member of the battery pack top housing is configured or operable to reinforce a support portion of the battery pack that is used to connect the battery pack to the power tool. By reinforcing the support portion of the battery pack, an interface between the battery pack and the power tool is able to withstand greater forces (e.g., from vibrations caused by the power tool).
US11626644B2 Support member for battery pack top housing
A battery pack that is connectable to and supportable by a power tool (e.g., a hand-held power tool). The battery pack includes a top housing having a support member. The support member of the battery pack top housing is configured or operable to reinforce a support portion of the battery pack that is used to connect the battery pack to the power tool. By reinforcing the support portion of the battery pack, an interface between the battery pack and the power tool is able to withstand greater forces (e.g., from vibrations caused by the power tool).
US11626642B2 Modular battery assembly for battery powered equipment
A battery assembly including a battery pack having a battery pack housing, an upper modular housing portion coupled to the battery pack housing positioned at a first end of the battery pack housing, a lower modular housing portion coupled to the battery pack housing positioned at a second end of the battery pack housing, and a handle formed as part of the upper modular housing portion. The battery assembly further includes multiple battery cells disposed within the battery pack housing, a mating feature including multiple ports electrically connected to the multiple battery cells and structured to supply power from the multiple battery cells through the ports and is structured to selectively connect the battery assembly with a receptacle of at least one of a piece of power equipment and a charging station. The mating feature is located on the first modular housing portion.
US11626640B2 Battery module including secondary battery and bus bar
A battery module includes a plurality of secondary batteries, each including an electrode assembly and an electrolyte accommodated in an inner space of an exterior case. The battery module also includes an electrode lead having a body and a plate-shaped head portion. A first end of the body is electrically connected to a positive electrode plate or a negative electrode plate of the electrode assembly, and a second end of the body protrudes outward from the exterior case. The plate-shaped head extends in both directions perpendicular to the protruding direction of the body from the second end. The battery module also includes a bus bar having a plate shape with a slit extending inwardly from one end thereof so as to receive a portion of the body. The electrode lead and the bus bar may be at least partially made of an electrically conductive material.
US11626639B2 Secondary battery
The present disclosure relates to a secondary battery, which can improve the sealing efficiency of a can (or case). The secondary battery includes an electrode assembly; a case configured to accommodate the electrode assembly, the case including a bottom portion, long side portions and short side portions, at least one of which includes a welding portion that is configured to be bent and welded, and a cap plate coupled to the case, wherein a portion of the welding portion is overlap-welded.
US11626638B2 Batteries and methods of using and making the same
A coin cell having a hermetic design withstands high performance applications including high temperature missions from a drop in replacement envelope. The coin cell can include a container having a bottom wall and a surrounding wall that form an interior volume, and the surrounding wall can include an inner, upper peripheral edge, at a top of the surrounding wall. The coin cell can include an anode assembly; a cathode assembly; and a header ring including a header ring outer surface and a header ring inner surface that defines an opening. The coin cell can include an insulator ring that includes an insulator ring outer surface that extends along and inside of the header ring inner surface, and an insulator ring inner surface that defines an opening within the insulator ring. A pin can be provided in the opening of the insulator ring. The coin cell can include an electrolyte.
US11626636B2 Immersion cooling battery array designs for electrified vehicle battery packs
This disclosure details exemplary immersion cooling battery array designs for use in electrified vehicle battery packs or other electrified components. An exemplary battery array design may include a battery subassembly including a compressible spacer assembly and a plurality of battery cells held by the compressible spacer assembly. The battery subassembly may be surrounded by an outer shell assembly. A non-conductive (i.e., dielectric) fluid may be received and communicated inside the outer shell assembly for thermally managing heat generated by the battery cells.
US11626626B2 Lithium-ion battery impending failure detection
A battery management system configured to detect impending failure of a lithium-ion battery cell includes a sensor array microchip. The microchip includes a plurality of silicon chemical-sensitive field effect transistors (CS-FETs) configured to detect multiple distinct gases vented by the lithium-ion battery cell. The battery management system also includes a cell monitoring unit (CMU) configured to receive from at least one of the CS-FETs data indicative of a detected amount of gas vented by the lithium-ion battery cell. The CMU is also configured to compare the data indicative of the detected amount of the vented gas to a predetermined threshold amount of the subject vented gas programmed into the CMU. The CMU is further configured to trigger a signal indicative of impending failure of the lithium-ion battery cell when the detected amount of the vented gas exceeds the predetermined threshold amount of the subject vented gas.
US11626625B2 Apparatus for real-time analysis of gas generated inside secondary battery
The present invention relates to a gas analysis apparatus for a secondary battery, the gas analysis apparatus being capable of effectively performing quantitative analysis and qualitative analysis of the gas generated up to the ignition or explosion of the secondary battery.
US11626623B2 Battery cell design for preventing internal short circuits from occurring and propagating using positive temperature coefficient (PTC) materials
A battery and related methods are described. The battery can include a plurality of battery cell segments. Each of the battery cell segments can include: a positive temperature coefficient (PTC) material whose resistance increases with temperature, an anode segment, a cathode segment, and one or more current limiters. The one or more current limiters of a battery cell segment are configured to conditionally electrically isolate the battery cell segment based on an occurrence of a short circuit within the battery cell segment. The battery can be used to store electrical power and/or provide electrical power to a load.
US11626622B2 Method for producing all solid state battery and all solid state battery
A method for producing an all solid state battery including a first current collector, a first active material layer, a solid electrolyte layer, a second active material layer and a second current collector stacked in this order, the method comprising: a transferring step of transferring a transfer layer onto the first current collector by using a transfer member including a transfer foil and the transfer layer, the transferring step being included in a step of forming at least one layer of the first active material layer, the solid electrolyte layer, and the second active material layer, and the transfer layer includes a binder, and in a thickness direction, a binder concentration of a surface portion on opposite side to the transfer foil is higher than a binder concentration of a surface portion on the transfer foil side.
US11626621B2 Deformable accumulator
The invention relates to a deformable accumulator comprising: a. a first and a second substrate (1,1′), b. at least one first current collector (2a, 2b, . . . ) deposited on the first substrate, along a curved line, c. at least one second current collector (2a′, 2b′, . . . ) deposited on the second substrate, along a second curved line, d. an anode consisting of a first set of columns (4) deposited on the first current collector (2a′, 2b′, . . . ), e. a cathode consisting of a second set of columns (4′) deposited on the second current collector (2a′, 2b′, . . . ), f. an electrolyte allowing the transfer of the ionic species, the faces of the first and the second substrate facing each other and defining a space (5) occupied by the electrolyte in which the columns of the anode (4) and the cathode (4′) are submerged.
US11626620B2 Ionic liquid additive for lithium-ion battery
An ionic liquid for adding to an electrolyte of a lithium-ion battery, the ionic liquid comprises a compound with a dual core structure having the general formula (I): wherein each of cationic group X1 and X2 are heterocyclic aromatic and amine.
US11626619B2 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
The present invention relates to a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery comprising same. The non-aqueous electrolyte comprises: a non-aqueous organic solvent; a lithium salt; a first additive containing at least one compound among compounds represented by chemical formulas 1 to 4; and a second additive containing at least one compound among compounds represented by chemical formula 5 or 6.
US11626618B2 Electrolyte for lithium ion secondary battery, lithium ion secondary battery, and module
An electrolyte solution for a lithium ion secondary battery, containing a compound (1) represented by the following formula (1): wherein R1 and R2 are each independently a C1-C4 alkyl group optionally containing an ether bond, and wherein chloride ion is present at a concentration of 1.0×10−6 to 1.0×103 ppm. Also disclosed is an electrolyte solution for a lithium ion secondary battery, containing an imidazolium cation (1-1) represented by the following formula (1-1), a bis(oxalato)borate anion, and a hexafluorophosphate anion, the formula (1-1) being: wherein R1 and R2 are each independently a C1-C4 alkyl group optionally containing an ether bond, and wherein chloride ion is present at a concentration of 1.0×10−6 to 1.0×103 ppm.
US11626617B2 Gel electrolytes and the manufacture thereof
Provided herein are a variety of electrolytes, electrolyte systems, and separator systems, as well as batteries comprising the same and precursors thereof. In specific embodiments are semi-solid or gel electrolytes, particularly those prepared using (i) a cross-linkable polysilsesquioxane with high ionic conductivity and (ii) a liquid electrolyte (e.g., ionic liquid).
US11626615B2 All solid battery
An all solid battery includes a multilayer chip in which each of a plurality of solid electrolyte layers including solid electrolyte and each of a plurality of internal electrodes including an electrode active material are alternately stacked, the multilayer chip having a rectangular parallelepiped shape, the plurality of internal electrodes being alternately exposed to two side faces of the multilayer chip other than two end faces of a stacking direction of the multilayer chip, and a pair of external electrodes that contacts the two side faces. At least one of the pair of external electrodes includes an electrode active material of which a pole is a same as that of an electrode active material of the internal electrode which contacts the one of the pair of external electrodes.
US11626614B2 Non-aqueous electrolyte secondary battery
A positive electrode for this non-aqueous electrolyte secondary battery is provided with: a positive electrode current collector; a positive electrode active material layer formed on the positive electrode current collector; a positive electrode tab connected to an exposed portion at which the positive electrode current collector is exposed and on which the positive electrode active material layer is not formed; and a protective layer covering the exposed portion and the positive electrode tab on the exposed portion. The protective layer is composed of a base material including a curable resin.
US11626610B2 Fuel cell stack
A fuel cell stack includes: a first stack including: first unit cells stacked; and a first outer peripheral surface around a first stacking direction of the first unit cells; a second stack that is juxtaposed to the first stack including; second unit cells stacked along the first stacking direction of the first unit cells; and a second outer peripheral surface around a second stacking direction of the second unit cells; an external gas manifold that supplies and discharges a reactant gas to and from the first and second stacks; and an external coolant manifold that supplies and discharges a coolant to and from the first and second stacks.
US11626609B2 Contacting method and arrangement for fuel cell or electrolyzer cell stack
A contacting arrangement of solid oxide cells is disclosed, each solid oxide cell having at least two flow field plates to arrange gas flows in the cell, and an active electrode structure, which has an anode side, a cathode side, and an electrolyte element between the anode side and the cathode side. The contacting arrangement includes a gasket structure to perform sealing functions in the solid oxide cell and a contact structure located between the flow field plates and the active electrode structure, the contact structure being at least partly a gas permeable structure configured and adapted according to structures of the flow field plates and according to the active electrode structure.
US11626608B2 Redox flow battery systems and methods of manufacture and operation and reduction of metallic impurities
A redox flow battery system includes an anolyte having a first ionic species in solution; a catholyte having a second ionic species in solution, where the redox flow battery system is configured to reduce the first ionic species in the anolyte and oxidize the second ionic species in the catholyte during charging; a first electrode in contact with the anolyte, where the first electrode includes channels for collection of particles of reduced metallic impurities in the anolyte; a second electrode in contact with the catholyte; and a separator separating the anolyte from the catholyte. A method of reducing metallic impurities in an anolyte of a redox flow battery system includes reducing the metallic impurities in the anolyte; collecting particles of the reduced metallic impurities; and removing the collected particles using a cleaning solution.
US11626607B2 Methods and systems for determining average oxidation state of redox flow battery systems
A method for determining an average oxidation state (AOS) of a redox flow battery system includes measuring a charge capacity for a low potential charging period starting from a discharged state of the redox flow battery system to a turning point of a charge voltage; and determining the AOS using the measured charge capacity and volumes of anolyte and catholyte of the redox flow battery system. Other methods can be used to determine the AOS for a redox flow battery system or use discharge voltage instead of charging voltage.
US11626606B2 Fuel cell vehicle and method of operating the same
An ECU of a fuel cell vehicle determines whether the vehicle travels on an uphill road or not. When determining that the vehicle travels on the uphill road, the ECU performs at least one of a temperature reduction control for reducing the temperature of a fuel cell stack and a humidification control for increasing the water content of the fuel cell stack, by the time the vehicle reaches the uphill road.
US11626603B2 Fuel cell system
A fuel cell system includes a fuel cell, a supercharger, a coolant circuit, a pump controller, and a pressure regulating mechanism. The supercharger applies pressure to cathode gas and supplies the cathode gas to the fuel cell. The coolant circuit has a coolant circulation pump and a cooler and circulates a coolant to be supplied to a coolant channel in the fuel cell. The pressure regulating mechanism regulates coolant pressure in the fuel cell. The pump controller controls a rotation speed of the pump in accordance with a heat release amount required by the fuel cell and controls the pump in a range lower than or equal to an upper limit for the rotation speed set based on one or both of inlet coolant pressure of the pump or a correlation value thereof and an inlet coolant temperature of the pump or a correlation value thereof.
US11626602B2 Warming-up system
To provide a warming-up system in which a period of time taken to warm up a fuel cell is shorter than that for conventional ones. A warming-up system according to an embodiment includes a fuel cell, a motor, a rotation shaft, a speed reducer, a measuring unit, and a control unit. The motor convert electrical power generated by the fuel cell into a rotative force. The speed reducer brake the rotation shaft that is rotating. The measuring unit measure a temperature of the fuel cell. The control unit is configured to determine whether to perform warming up for the fuel cell, based on the temperature. When the control unit determines to perform the warming up, the control unit causes the motor and the speed reducer to operate, and uses heat generated in the fuel cell and heat generated in the speed reducer to warm up the fuel cell.
US11626599B2 System to sterilize a physical space
A system for sterilizing a physical space, such as a hotel room. The system generates and distributes heated air to the physical space to elevate the temperature of the space to a level sufficient to achieve a desired sterilization effect of eradicating insects and microoganisms. The system is portable and self-contained. The system includes a hydrogen fuel cell that generates electrical power. An electrical system conditions and stores the electrical power and supplies stored electrical power to the system components and peripherals. System components include a source of hydrogen, a heater, an air distributor, and a filter. Peripherals include a UV light source and an aerosol dispenser. The combination of heat, UV light and aerosol disinfectant effectively eradicates insects, microorganisms, allergens, and odors in the physical space.
US11626597B2 Separator for fuel cell and fuel cell including the same
A fuel cell includes a separator. A constant amount of air is supplied to the fuel cell irrespective of positions within an air channel, and thus, degradation of the fuel cell is prevented. The separator includes a separator body and a porous structure which has a plurality of pores defined therein to provide a path through which a fluid flows, where the separator body includes: a fluid inlet part having a space into which the fluid is introduced; a reaction region configured to receive the fluid; and a diffusion part which is provided between the fluid inlet part and the reaction region, where the porous structure is stacked on one surface of the reaction region, and the number of pores per unit volume of the porous structure varies in an inlet region.
US11626595B2 Solid oxide fuel cell cathode materials
A cathode in a solid oxide fuel cell containing AgPrCoO3. The operating temperature range of the cathode is from about 400° C. to about 850° C.
US11626594B2 Flexible electrode, biofuel cell using same, and method for manufacturing same
The present invention relates to a flexible electrode, a biofuel cell using the same, and a method for manufacturing the same. The electrode according to the present invention comprises: a non-electrically conductive substrate (10); a base layer (20) disposed on the outer surface of the substrate (10); a nanoparticle layer (31) including metallic nanoparticles and disposed on the outer surface of the base layer (20); and a monomolecular layer (33) including a monomolecular material having an amine group and disposed on the outer surface of the nanoparticle layer (31).
US11626592B2 Lithium-carbon composite having cavities formed therein, and method for producing same
The present invention relates to a lithium-carbon composite having cavities formed therein and a method of manufacturing the same, the method including adding and mixing an organic solvent having an aromatic ring with a lithium precursor, arranging a pair of metal wires in the organic solvent, forming a lithium-carbon composite in which a carbon body is doped with lithium through plasma discharge in a solution, and annealing the lithium-carbon composite in order to remove hydrogen from the lithium-carbon composite and form cavities in the lithium-carbon composite. Accordingly, a lithium-carbon composite can be simply synthesized using plasma discharge in a solution, and the synthesized lithium-carbon composite can be annealed to thus form cavities therein, thereby increasing the lithium charge and discharge performance of a lithium secondary battery using the lithium-carbon composite.
US11626591B2 Silicon-containing electrochemical cells and methods of making the same
An electrochemical cell is provided herein as well as methods for preparing electrochemical cells. The electrochemical cell includes a negative electrode and a positive electrode. The negative electrode includes a prelithiated electroactive material including a lithium silicide. Lithium is present in the prelithiated electroactive material in an amount corresponding to greater than or equal to about 10% of a state of charge of the negative electrode. The electrochemical cell has a negative electrode capacity to positive electrode capacity for lithium (N/P) ratio of greater than or equal to about 1, and the electrochemical cell is capable of operating at an operating voltage of less than or equal to about 5 volts.
US11626583B2 3-D composite anodes for Li-ion batteries with high capacity and fast charging capability
An anode for a lithium ion battery is disclosed includes a first major face, a second major face that, together with the first major face, defines a thickness of the anode, and at least one carbonaceous electrochemically active lithium host material distributed between the first and second major faces of the anode. The at least one carbonaceous electrochemically active lithium host material is selected from the group consisting of graphite, hard carbon, or a blend of graphite and hard carbon. The anode additionally defines a plurality of vertical channels extending at least partially through the thickness of the anode. A lithium-ion batter that includes the disclosed anode and a method of charging a lithium-ion battery that includes the disclosed anode are also disclosed.
US11626578B2 Borderless display with light-bending structures
An electronic device may be provided with a display mounted in a housing. The display may have an array of display pixels that provide image light to a user. The array of display pixels may form an active display structure with a rectangular shape. The rectangular active display structure may be surrounded by an inactive border region. Optical structures such as a sheet of glass or another optical member may have portions that are configured to bend light from the display pixels along the periphery of the active display structure. The optical member may have an area that is larger than the area of the active display structure, so that the presence of the optical member may serve to enlarge the apparent size of the display. Solidified liquid polymer may be used to support the optical structures and may be interposed between the optical structures and the active display structures.
US11626576B2 Layered light-emitting structure with roughened interface
A light-emitting structure includes a substrate, a sub-pixel stack, a cover layer over the sub-pixel stack, and at least one interface between the substrate and the cover layer. The at least one interface has an interface roughness. The sub-pixel stack includes an emissive layer between a first transport layer and a second transport layer, a first electrode layer coupled to the first transport layer, and a second electrode layer coupled to the second transport layer. The sub-pixel stack is over the substrate and configured to emit light including a scattering component caused by the interface roughness and a cavity component separate from the scattering component. A ratio of a luminance of the scattering component to a luminance of the cavity component increases with a viewing angle relative to a display normal. An optical power of the scattering component is a fraction of an optical power of the cavity component.
US11626571B2 Display panel, preparation method thereof and display device
A display panel, a preparation method thereof and a display device. The display panel has a display area and anon-display area outside the display area. The non-display area includes: a first non-display area close to the display area, a second non-display area located on one side away from the display area, of the first non-display area, and a bent area between the first non-display area and the second non-display area. The bent area includes: a substrate and a first buffer layer located on the substrate. Materials of the first buffer layer include: a first doping element and a first insulation compound. The first doping element is used for improving ductility of the first buffer layer.
US11626563B2 Organic electroluminescent materials and devices
A compound having a formula (LA)mIr(LB)3−m having a structure selected from is disclosed. In the structures of formula (LA)mIr(LB)3-m, m is 1 or 2, R1, R2, R3, R4, and R5 are each independently selected from hydrogen, deuterium, C1 to C6 alkyl, C1 to C6 cycloalkyl, and partially or fully deuterated variants thereof, and partially or fully fluorinated variants thereof, and, R6 is selected from C1 to C6 alkyl, C1 to C6 cycloalkyl, and partially or fully deuterated variants thereof, and partially or fully fluorinated variants thereof.
US11626559B2 Multi terminal device stack formation methods
Embodiments of the present invention include multiple independent terminals for a plurality of devices in a stack configuration within a semiconductor. In one embodiment, a multi terminal fabrication process comprises: performing an initial pillar layer formation process to create layers of a multi terminal stack; forming a first device in the layers of the multi terminal stack; forming a second device in the layers of the multi terminal stack; and constructing a set of terminals comprising: a first terminal coupled to the first device, a second terminal coupled to the second device; and a third terminal coupled to the first device; wherein at least two terminals in the set of terminals are independent. The third terminal can be coupled to the second device.
US11626557B2 Ultra-miniature antennas
Systems and methods for operating a communication device. The methods comprise: immersing an antenna in an electric field of an incident radio wave; producing a net change in electrical charge on a surface of an electrodeformative element that acoustically vibrates when the antenna is immersed in the electric field of the incident radio wave; harvesting the electrical charge produced on the surface of the electrodeformative element to provide an antenna receive function; and providing the harvested electrical charge from the antenna to a receiver circuit of the communication device.
US11626556B2 Hard mask and preparation method thereof, preparation method of Josephson junction, and superconducting circuit
A hard mask includes a silicon oxide layer provided on a bare silicon wafer; and a silicon nitride layer provided on the silicon oxide layer, wherein the silicon nitride is provided with a first pattern, the silicon oxide layer is provided with a second pattern corresponding to the first pattern, the first pattern and the second pattern have different shapes, and the first pattern and the second pattern are configured to assist in forming a Josephson junction on the bare silicon wafer.
US11626554B2 Light emitting device having a stacked structure
A light emitting device including a first light emitting part, a second light emitting part, and a third light emitting part each including an n-type semiconductor layer, a p-type semiconductor layer, and an active layer therebetween, a first contact member electrically contacting a first surface of the n-type semiconductor layer of the second light emitting part; and a second contact member electrically contacting the n-type semiconductor layer of the third light emitting part, in which the first contact member extends to the first light emitting part to electrically contact the n-type semiconductor layer of the first light emitting part, the first contact member and the second contact member overlap one another, and the second contact member has a width that gradually decreases in a downward direction.
US11626552B2 Display device
A display device includes a substrate including a plurality of pixels; an electrode part including a first electrode in each pixel of the plurality of pixels on the substrate and a second electrode spaced apart from the first electrode on a same plane; a plurality of light emitting devices spaced apart from each other between the first electrode and the second electrode; a power line part including a first power line between the substrate and the first electrode, the first power line to receive a first driving power source, and a second power line between the substrate and the second electrode, the second power line to receive a second driving power source; and a shielding electrode line between the power line part and the first electrode, the shielding electrode line to receive the first driving power source.
US11626550B2 Micro light emitting diode with high light extraction efficiency
A micro light emitting diode (LED) having a high light extraction efficiency includes a bottom conductive layer, a light emitting layer on the bottom conductive layer, and a top conductive structure on the light emitting layer. The micro LED additionally includes a conductive side arm electrically connecting the sidewall of the light emitting layer with the bottom conductive layer, and a reflective bottom dielectric layer arranged under the light emitting layer and above the bottom conductive layer. In some embodiments, the micro LED further includes an ohmic contact between the top conductive structure and the light emitting layer that has a small area and is transparent, thereby increasing the light emergent area and improving the light extraction efficiency.
US11626545B2 Light-emitting device
A light emitting device is disclosed. In an embodiment a light-emitting device includes a pixel comprising at least three sub-pixels, wherein the at least three sub-pixel include a first sub-pixel including a first conversion element, wherein the first conversion element includes a green phosphor, a second sub-pixel including a second conversion element, wherein the second conversion element includes a red phosphor and a third sub-pixel free of a conversion element, wherein the third sub-pixel is configured to emit blue primary radiation, wherein each sub-pixels has an edge length of at most 100 μm, and wherein the pixel is a linear chain of sub-pixels and a plurality of pixels is arranged in a two dimensional ordered pattern so that a first sub-pixel is never adjacent to a third sub-pixel in a vertical direction and in a horizontal direction of the ordered pattern.
US11626542B2 LED bracket
The present disclosure discloses an LED bracket, including: a front bracket, wherein an LED lamp chip is provided in the front bracket; and a back bracket, wherein the back bracket is connected to the front bracket, and a diffusion material is provided on a side of the back bracket away from the front bracket, wherein the LED lamp chip can emit light from the front bracket and light emitted from a direction close to the back bracket passes through the diffusion material and then goes out from the back bracket. In the present disclosure, the front bracket is provided, the back bracket is additionally provided on the front bracket, the diffusion material is provided on the back bracket.
US11626541B2 Display module, display screen and display system
A display module, a display screen and a display system are disclosed. The display module comprises a frame and multiple display unit boards assembled and installed on the frame to form a display surface. The frame comprises a border and a support frame installed in the border. Each display unit board comprises a circuit board and multiple pixel points installed on a front side of the circuit board, wherein a back side of the circuit board is installed on the border and the support frame, and each pixel point includes at least one LED chip. According to the display module of the invention, multiple display unit boards are assembled on the frame to form a display surface.
US11626540B2 Semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element
A semiconductor light-emitting element includes: an n-type semiconductor layer; an active layer; a p-side contact electrode made of Rh; a p-side electrode covering layer made of Ti or TiN that covers the p-side contact electrode; a first protective layer made of SiO2 or SiON that covers an upper surface and a side surface of the p-side electrode covering layer in a portion different from that of a first p-side pad opening; a second protective layer made of Al2O3 that covers the first protective layer, a side surface of a p-side semiconductor layer, and a side surface of the active layer in a portion different from that of a second p-side pad opening; and a p-side pad electrode that is in contact with the p-side electrode covering layer in the first p-side pad opening and the second p-side pad opening.
US11626533B2 Light emitting device and projector
There is provided a light emitting device including: a substrate; a laminated structure provided on the substrate and having a plurality of first columnar portions and a plurality of second columnar portions; and a first electrode and a second electrode, in which the first columnar portion includes a first semiconductor layer, a second semiconductor layer having a conductivity type different from the first semiconductor layer, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer, light generated in the light emitting layer propagates through the plurality of first columnar portions and the plurality of second columnar portions, a height of the second columnar portion is equal to or larger than a sum of a thickness of the first semiconductor layer and a thickness of the light emitting layer, and is lower than a height of the first columnar portion, the first semiconductor layer is provided between the substrate and the light emitting layer, the first electrode is electrically coupled to the first semiconductor layer, the second electrode is electrically coupled to the second semiconductor layer, and the second columnar portion is not electrically coupled to the second electrode.
US11626532B2 Methods and apparatus for forming light emitting diodes
A method for forming a light emitting diode (LED) uses aluminum-based material layers and oxidation during the LED formation. In some embodiments, the method may include forming an n-type layer of the LED on a substrate, forming at least one sidewall restriction layer of the LED on the substrate with the sidewall restriction layer comprising an aluminum-based material, forming a quantum well layer of the LED on the substrate, forming a p-type layer of the LED on the substrate, exposing the substrate to water vapor, and heating the substrate to oxidize at least an outer portion of the electron blocking layer. The aluminum-based material may include aluminum indium nitride or aluminum gallium arsenide.
US11626525B2 Package structure and method for manufacturing the same
A package structure is provided. The package structure includes a substrate, a sensor device, an encapsulant and a signal blocking structure. The substrate has a signal passing area. The sensor device is disposed over the substrate. The sensor device has a first surface, a second surface opposite to the first surface and a sensing area located at the second surface. The second surface of the sensor device faces the substrate. The encapsulant covers the sensor device and the substrate. The signal blocking structure extends from the substrate into the encapsulant.
US11626523B2 PV device having improved overall efficiency
A photovoltaic device having a perovskite PV cell wherein the PV device operates, for example during start-up, initially in a bias-voltage operating mode, in which a bias voltage is applied to the perovskite PV cell of the PV device. The bias voltage or the energy needed for same can advantageously be drawn from the power electronics associated with the perovskite PV cell.
US11626521B2 Light-emitting device and method for manufacturing the same
An object is to improve reliability of a light-emitting device. A light-emitting device has a driver circuit portion including a transistor for a driver circuit and a pixel portion including a transistor for a pixel over one substrate. The transistor for the driver circuit and the transistor for the pixel are inverted staggered transistors each including an oxide semiconductor layer in contact with part of an oxide insulating layer. In the pixel portion, a color filter layer and a light-emitting element are provided over the oxide insulating layer. In the transistor for the driver circuit, a conductive layer overlapping with a gate electrode layer and the oxide semiconductor layer is provided over the oxide insulating layer. The gate electrode layer, a source electrode layer, and a drain electrode layer are formed using metal conductive films.
US11626517B2 Semiconductor structure including vertical channel portion and manufacturing method for the same
A semiconductor structure and a manufacturing method for the same are provided. The semiconductor structure comprises a channel element. The channel element comprises a substrate portion and a vertical channel portion. The vertical channel portion is adjoined on the substrate portion. The substrate portion and the vertical channel portion both comprise single crystal silicon.
US11626511B2 Semiconductor device
A bipolar transistor including a first collector layer, a second collector layer, a base layer, and an emitter layer is disposed on a substrate. Etching characteristics of the second collector layer are different from etching characteristics of the first collector layer and the base layer. In plan view, an edge of an interface between the first collector layer and the second collector layer is disposed inside an edge of a lower surface of the base layer, and an edge of an upper surface of the second collector layer coincides with the edge of the lower surface of the base layer or is disposed inside the edge of the lower surface of the base layer.
US11626509B2 Semiconductor device and manufacturing method thereof
A semiconductor device includes a substrate, a first dielectric fin, a semiconductor fin, a metal gate structure, an epitaxy structure, and a contact etch stop layer. The first dielectric fin is disposed over the substrate. The semiconductor fin is disposed over the substrate, in which along a lengthwise direction of the first dielectric fin and the semiconductor fin, the first dielectric fin is in contact with a first sidewall of the semiconductor fin. The metal gate structure crosses the first dielectric fin and the semiconductor fin. The epitaxy structure is over and in contact with the semiconductor fin. The contact etch stop layer is over and in contact with first dielectric fin.
US11626507B2 Method of manufacturing FinFETs having barrier layers with specified SiGe doping concentration
In a method of manufacturing a semiconductor device, a gate structure is formed over a fin structure. A source/drain region of the fin structure is recessed. A first semiconductor layer is formed over the recessed source/drain region. A second semiconductor layer is formed over the first semiconductor layer. The fin structure is made of SixGe1-x, where 0≤x≤0.3, the first semiconductor layer is made of SiyGe1-y, where 0.45≤y≤1.0, and the second semiconductor layer is made of SizGe1-z, where 0≤z≤0.3.
US11626504B2 Fin field effect transistor (FinFET) device structure
A FinFET device structure is provided. The FinFET device structure includes a fin structure formed over a substrate, and a gate structure formed over the fin structure. The FinFET device structure also includes an epitaxial source/drain (S/D) structure formed over the fin structure. A top surface and a sidewall of the fin structure are surrounded by the epitaxial S/D structure. A first distance between an outer surface of the epitaxial S/D structure and the sidewall of the fin structure is no less than a second distance between the outer surface of the epitaxial S/D structure and the top surface of the fin structure.
US11626499B2 Semiconductor device
A semiconductor device includes a substrate having an active pattern therein, a gate electrode extending across the active pattern and a source/drain region on the active pattern laterally adjacent the gate electrode. The device further includes a contact structure including a first contact on the source/drain region, a second contact on the first contact and a spacer on sidewalls of the first and second contacts.
US11626495B2 Protective liner for source/drain contact to prevent electrical bridging while minimizing resistance
One or more active region structures each protrude vertically out of a substrate in a vertical direction and each extend horizontally in a first horizontal direction. A source/drain component is disposed over the one or more active region structures in the vertical direction. A source/drain contact is disposed over the source/drain component in the vertical direction. The source/drain contact includes a bottom portion and a top portion. A protective liner is disposed on side surfaces of the top portion of the source/drain contact but not on side surfaces of the bottom portion of the source/drain contact.
US11626493B2 Semiconductor device structure
A semiconductor device structure is provided. The semiconductor device structure includes a substrate. The semiconductor device structure includes a gate stack over the substrate. The gate stack includes a gate dielectric layer, a first metal-containing layer, a silicon-containing layer, a second metal-containing layer, and a gate electrode layer sequentially stacked over the substrate. The silicon-containing layer is between the first metal-containing layer and the second metal-containing layer, and the silicon-containing layer is thinner than the second metal-containing layer.
US11626490B2 SiC semiconductor device
An SiC semiconductor device includes an SiC semiconductor layer including an SiC monocrystal and having a first main surface as an element forming surface, a second main surface at a side opposite to the first main surface, and a plurality of side surfaces connecting the first main surface and the second main surface, and a plurality of modified lines formed one layer each at the respective side surfaces of the SiC semiconductor layer and each extending in a band shape along a tangential direction to the first main surface of the SiC semiconductor layer and modified to be of a property differing from the SiC monocrystal.
US11626484B2 High efficiency room temperature infrared sensor
An infrared (IR) detection sensor for detecting IR radiation. The IR detection sensor including a plurality of nanowires positioned adjacent to each other so as to define a layer. The layer has an outer surface directable towards a source of IR radiation. First and second terminals are electrically coupled to the layer and a circuit is electrically coupled to the first and second terminals. The circuit is configured to determine a value of an electrical property, such as the resistance, of the layer in response to the IR radiation absorbed by the layer.
US11626481B2 Semiconductor constructions, memory arrays, electronic systems, and methods of forming semiconductor constructions
The invention includes semiconductor constructions having trenched isolation regions. The trenches of the trenched isolation regions can include narrow bottom portions and upper wide portions over the bottom portions. Electrically insulative material can fill the upper wide portions while leaving voids within the narrow bottom portions. The trenched isolation regions can be incorporated into a memory array, and/or can be incorporated into an electronic system. The invention also includes methods of forming semiconductor constructions.
US11626480B2 Method for manufacturing a semiconductor super-junction device
Disclosed is a method for manufacturing a semiconductor super-junction device. The method includes: a p-type column is formed through an epitaxial process, and then a gate is formed in a self-alignment manner.
US11626479B2 Semiconductor device and method of manufacturing semiconductor device
A semiconductor device includes: a semiconductor base substrate including a semiconductor layer; a first main electrode; a second main electrode; a plurality of peripheral trenches formed on a surface of the semiconductor layer and having bottom portions covered by the semiconductor layer in a peripheral region; and a plurality of in-trench electrodes each embedded in each of the plurality of peripheral trenches byway of an insulation layer formed on an inner surface of the each peripheral trench, wherein the semiconductor base substrate further includes, in the peripheral region, a plurality of second conductive type floating regions disposed in the semiconductor layer at a depth position deeper than the bottom portions of the peripheral trenches in a spaced apart manner from the peripheral trenches and having a potential in a floating state.
US11626478B2 Buried grid with shield in wide band gap material
There is disclosed a structure in a wide band gap material such as silicon carbide wherein there is a buried grid and shields covering at least one middle point between two adjacent parts of the buried grid, when viewed from above. Advantages of the invention include easy manufacture without extra lithographic steps compared with standard manufacturing process, an improved trade-off between the current conduction and voltage blocking characteristics of a JBSD comprising the structure.
US11626474B2 Thin-film resistor (TFR) with improved contacts
A thin film resistor (TFR) module is formed in an integrated circuit device. The TFR module includes a TFR element connected between first and second vertically-extending TFR side contacts. The TFR element includes a base portion extending laterally between the TFR side contacts, and first and second TFR element end flanges projecting vertically from opposing ends of the base portion. The first TFR element end flange is formed on a sidewall of the first TFR side contact, and the second TFR element end flange is formed on a sidewall of the second TFR side contact. A first TFR head contacts the first TFR side contact and a top of the first TFR element end flange, and a second TFR head contacts the second TFR side contact and a top of the second TFR element end flange, thus defining two parallel conductive paths between the TFR element and each TFR head.
US11626473B2 Organic light-emitting diode display device having a second electrode with improved electrical contact with a connection electrode in a contact area
An organic light-emitting diode display device includes a substrate in which an emission area and a non-emission area are defined, a power line provided on the substrate, at least one insulation film covering the power line, a light-emitting element provided above the at least one insulation film, a connection electrode connected to the power line, and extending onto the at least one insulation film, and a passivation film including a contact area where a portion of the connection electrode is exposed in the non-emission area, wherein the light-emitting element includes a first electrode, an emission layer, and a second electrode that are stacked in order, and the second electrode is in direct contact with the connection electrode in the contact area.
US11626471B2 Display device including transistor with separate insulating patterns and etch stoppers overlying active layer thereof, and method of manufacturing the same
A display device includes: a first active pattern on a light blocking pattern; a second active pattern at a same layer as that of the first active pattern; a first insulating pattern on the first active pattern; a second insulating pattern on the first active pattern, the second insulating pattern being spaced from the first insulating pattern, and having a first contact hole exposing the first active pattern; a first gate electrode on the first insulating pattern; a second gate electrode at a same layer as that of the first gate electrode, and overlapping with the second active pattern; a first etch stopper on the second insulating pattern, and having a second contact hole connected to the first contact hole; and a first electrode on the first etch stopper, the first electrode contacting the light blocking pattern and the first active pattern through the first and second contact holes.
US11626469B2 Display device including metal compound layer surrounding wiring layer stack for reducing light reflectance
A display device and a method of fabricating a display device are provided. A display device includes a substrate. The wiring layer includes a conductive metal layer and a metal compound layer of the conductive metal layer, The metal compound layer surrounds the conductive metal layer.
US11626468B2 Multi-panel organic light emitting display device
A multi-panel organic light emitting display device is disclosed that includes a plurality of display panels coupled to each other. Each of the plurality of display panels includes: a substrate including an active area and a non-active area; and a display unit including an organic light emitting element on the substrate. Each of the plurality of display panels also includes: a plurality of signal lines disposed on the substrate and electrically connected to the display unit; and a plurality of link lines disposed under the substrate. Each of the plurality of display panels further includes a plurality of side lines connecting the plurality of signal lines and the plurality of link lines. Each of the plurality of display panels also includes a driving circuit electrically connected to the plurality of link lines.
US11626467B2 Display panel and display device having the same
A display panel includes a first display area having a first light transmittance and a second display area having a second light transmittance that is higher than the first light transmittance. The display panel further comprises a plurality of first pixels disposed in the first display area and a plurality of second pixels disposed in the second display area. A first power line is connected to the plurality of first pixels. The first power line is configured to provide a first power voltage. A second power line is connected to the plurality of second pixels. The second power line is configured to provide a second power voltage having a voltage level that is different from a voltage level of the first power voltage.
US11626464B2 Display apparatus and manufacturing method thereof
A display apparatus includes a substrate comprising a display area and a pad area located outside the display area. A plurality of date lines is in the display area. A plurality of connection wires is in the display area. The plurality of connection wires is connected to the plurality of data lines and is configured to transfer data signals from the pad area to the plurality of data lines. An insulating film covers the plurality of connection wires. Each of the plurality of connection wires comprises a plurality of branches that diverge from a body of each connection wire the insulating film comprises a protrusion in a gap between adjacent branches of the plurality of branches.
US11626463B2 Display device and method for manufacturing the same
A display device includes a driving transistor and an organic EL element. The driving transistor includes an oxide semiconductor layer; a first gate electrode that includes a region overlapping the oxide semiconductor layer; a first insulating layer between the first gate electrode and the oxide semiconductor layer; a second gate electrode that includes a region overlapping the oxide semiconductor layer and the first gate electrode; a second insulating layer between the second gate electrode and the oxide semiconductor layer; and a first and a second transparent conductive layer that are provided between the oxide semiconductor layer and the first insulating layer and each include a region contacting the oxide semiconductor layer. The organic EL element includes a first electrode; a second electrode; a light emitting layer between the first electrode and the second electrode; and an electron transfer layer between the light emitting layer and the first electrode.
US11626461B2 Display device
A display device may include a light emitting element, a buffer layer, a gate insulation layer, and a switching element. A refractive index of the gate insulation layer may be equal to a refractive index of the buffer layer. The switching element may be electrically connected to the light emitting element and may include an active layer and a gate electrode. The active layer may be positioned between the buffer layer and the gate insulation layer and may directly contact at least one of the buffer layer and the gate insulation layer. The gate insulation layer may be positioned between the active layer and the gate electrode and may directly contact at least one of the active layer and the gate electrode.
US11626460B2 Display device including blue organic light emitting diode and blue light blocking layer
A display device includes a first inorganic layer disposed on a substrate; a thin film transistor disposed on the first inorganic layer and including a metal oxide semiconductor, a gate electrode overlapping the metal oxide semiconductor, a source electrode and a drain electrode electrically connected with the metal oxide semiconductor; a storage capacitor including a first electrode and a second electrode electrically insulated from and overlapped with the first electrode, and the first electrode is electrically connected with the gate electrode and the second electrode is electrically connected with the source electrode; a first organic layer disposed on the thin film transistor and including a contact via; a blue organic light emitting diode including an anode, a cathode and a blue organic light emitting layer disposed therebetween, and electrically connected with the cathode and the anode which is electrically connected with the source electrode through the contact via.
US11626458B2 Transparent display panel and method for manufacturing the same, display device
A transparent display panel includes a base, a first pixel defining structure and a first light-emitting devices. The first pixel defining structure is disposed on the base and includes a first opening that has a light transmission region and a light-emitting region. The first light-emitting device is disposed on the base and includes an opaque electrode and a light-emitting functional layer. At least part of the opaque electrode is exposed by the first opening, and an orthographic projection of the opaque electrode does not overlap with the light transmission region. The light-emitting functional layer is disposed in the first opening and defined by the first opening. The orthographic projection of the opaque electrode and an orthographic projection of the light-emitting functional layer have an overlapping region, and at least a portion of the overlapping region is within the light-emitting region.
US11626454B2 Display device
A display device includes a display unit. The display unit includes a light emitting unit and a light converting layer disposed on the light emitting unit. The display unit emits a green output light under an operation of a highest gray level. The green output light has an output spectrum, wherein an intensity integral of the output spectrum from 380 nm to 489 nm is defined as a first intensity integral, an intensity integral of the output spectrum from 490 nm to 780 nm is defined as a second intensity integral, a ratio of the first intensity integral over the second intensity integral is defined as a first ratio, and the first ratio is greater than 0% and less than or equal to 7.5%.
US11626452B2 Efficient fabrication of memory structures
Methods, systems, and devices for efficient fabrication of memory structures are described. A multi-deck memory device may be fabricated using a sequence of fabrication steps that include depositing a first metal layer, depositing a cell layer on the first metal layer to form memory cells of the first memory deck, and depositing a second metal layer on the cell layer. The second metal layer may be deposited using a single deposition process rather than using multiple deposition processes. A second memory deck may be formed on the second metal layer such that stacked memory cells from the first and second deck share the use of the second metal layer. Using a single deposition process for the second metal layer may decrease the quantity of fabrication steps used to fabricate the multi-deck memory array and reduce or eliminate the exposure of the cell material to metal etchants.
US11626451B2 Magnetic memory device with ruthenium diffusion barrier
A magnetic memory device comprising a plurality of memory cells is disclosed. The memory device includes an array of memory cells where each memory cell includes a first material layer having a ferromagnetic material, a second material layer having ruthenium, and a third material layer having bismuth and/or antimony. The second material layer is sandwiched between the first material layer and the third material in a stacked configuration.
US11626449B2 Display device and method for producing display device
In a display device, an inorganic insulating layer, a metal layer, a flattering film, a first electrode, an edge cover, a function layer, and a second electrode are formed, in that order, on a base substrate. The edge cover covers an edge of the first electrode and includes a first opening exposing the first electrode. The function layer is formed covering the first opening and an edge of the edge cover. The flattening film includes a first planar portion and a second planar portion having a film thickness smaller than that of the first planar portion, is configured to electrically connect the first electrode and the metal layer via a contact hole formed in the first planar portion, and overlaps the first opening of the edge cover at at least a portion of the second planar portion.
US11626442B2 Methods for forming image sensors
Various embodiments of the present disclosure are directed towards methods for forming an image sensor in which a device layer overlies and has a different semiconductor material than a substrate and in which the device layer has high crystalline quality. Some embodiments of the methods include: epitaxially growing the device layer on the substrate; patterning the device layer to form a trench dividing the device layer into mesa structures corresponding to pixels; forming an inter-pixel dielectric layer filling the trench and separating the mesa structures; and forming photodetectors in the mesa structures. Other embodiments of the methods include: depositing the inter-pixel dielectric layer over the substrate; patterning the inter-pixel dielectric layer to form cavities corresponding to the pixels; epitaxially growing the mesa structures in the cavities; and forming the photodetectors in the mesa structures.
US11626440B2 Microlens structures for semiconductor device with single-photon avalanche diode pixels
An imaging device may include a plurality of single-photon avalanche diode (SPAD) pixels. The SPAD pixels may be overlapped by microlenses to direct light incident on the pixels onto photosensitive regions of the pixels and a containment grid with openings that surround each of the microlenses. During formation of the microlenses, the containment grid may prevent microlens material for adjacent SPAD pixels from merging. To ensure separation between the microlenses, the containment grid may be formed from material phobic to microlens material, or phobic material may be added over the containment grid material. Additionally, the containment grid may be formed from material that can absorb stray or off-angle light so that it does not reach the associated SPAD pixel, thereby reducing crosstalk during operation of the SPAD pixels.
US11626439B2 Imaging device and electronic device
An imaging device having a three-dimensional integration structure is provided. A first structure including a transistor including silicon in an active layer or an active region and a second structure including an oxide semiconductor in an active layer are fabricated. After that, the first and second structures are bonded to each other so that metal layers included in the first and second structures are bonded to each other; thus, an imaging device having a three-dimensional integration structure is formed.
US11626437B2 Integration of metasurface lens on wafer level substrate
Embodiments herein describe techniques for an optical device including a substrate of a wafer. An image sensor device is formed on a front side of the substrate, while a plurality of posts of a metasurface lens are formed on a backside opposite to the front side of the substrate. A post of the plurality of posts includes a metasurface material that is transparent to light. Other embodiments may be described and/or claimed.
US11626435B2 Image sensor
An image sensor includes a substrate, a photosensitive unit in the substrate, a dielectric grid over the substrate, and a color filter over the photosensitive unit and surrounded by the dielectric grid. The dielectric grid has a first portion and a second portion over the first portion, and the second portion of the dielectric grid has a rounded top surface extending upwards from a sidewall of the first portion of the dielectric grid. The color filter has a first portion lower than a lowermost portion of the rounded top surface of the second portion of the dielectric grid and a second portion higher than the lowermost portion of the rounded top surface of the second portion of the dielectric grid.
US11626433B2 Transistors having increased effective channel width
Image sensors include a photodiode disposed in a semiconductor substrate and a transistor operatively coupled to the photodiode. At least three substrate trench structures are formed in the semiconductor substrate, defining two nonplanar structures, each having a plurality of sidewall portions. An isolation layer includes at least three isolation layer trench structures, each being disposed in a respective one of the three substrate trench structures. A gate includes three fingers, each being disposed in a respective one of the three isolation layer trench structures. An electron channel of the transistor extends along the plurality of sidewall portions of the two nonplanar structures in a channel width plane.
US11626432B2 Solid state image sensor and electronic device
The present disclosure relates to a solid-state imaging device and an electronic device that are configured to suppress the occurrence of noise and white blemishes in an amplification transistor having an element separation region which is formed by ion implantation. An amplification transistor has an element separation region formed by ion implantation. A channel region insulating film which is at least a part of a gate insulating film above a channel region of the amplification transistor is thin compared to a gate insulating film of a selection transistor, and an element separation region insulating film which is at least a part of a gate insulating film above the element separation region of the amplification transistor is thick compared to the channel region insulating film. The present disclosure can be applied to, for example, a CMOS image sensor, etc.
US11626431B2 Photoelectric conversion apparatus, solid-state image sensor and device
A photoelectric conversion apparatus comprises a first semiconductor region of a first conductivity type arranged between a first surface and a second surface, a second semiconductor region of the first conductivity type arranged between the first surface and the second surface and configured to accumulate a signal charge generated by incident light, a third semiconductor region of the first conductivity type arranged between the first surface and the second surface, a fourth semiconductor region of the first conductivity type arranged between the first surface and the second surface and in contact with the third semiconductor region, a first transfer electrode arranged on the first surface, a semiconductor region of the second conductivity type arranged between the third semiconductor region and the second surface, and a semiconductor region of the second conductivity type arranged between the fourth semiconductor region and the second surface.
US11626429B2 Display device and method of fabricating the same
A display device and method of fabricating the same are provided. The display device includes a substrate and a thin-film transistor formed on the substrate. The thin-film transistor includes a lower gate conductive layer disposed on the substrate, and a lower gate insulating film disposed on the lower gate conductive layer The lower gate insulating film includes an upper surface and sidewalls. The thin-film transistor includes an active layer disposed on the upper surface of the lower gate insulating film, the active layer including sidewalls. At least one of the sidewalls of the lower gate insulating film and at least one of the sidewalls of the active layer are aligned with each other.
US11626425B2 Display panel
A display panel includes a plurality of sub-pixel structures and a plurality of transfer elements. The sub-pixel structures include a plurality of first sub-pixel structures. A data line of each of the first sub-pixel structures is disposed adjacent to a corresponding transfer element, and a scan line of each of the first sub-pixel structures is electrically connected to the corresponding transfer element. The first sub-pixel structures include a plurality of first-type sub-pixel structures and a plurality of second-type sub-pixel structures. When the display panel displays a grayscale picture, each of the first-type sub-pixel structures has first brightness, each of the second-type sub-pixel structures has second brightness. The first brightness is less than the second brightness. A total number of the first sub-pixel structures of the display panel is A, a number of the first-type sub-pixel structures in the first sub-pixel structures is a, and 50%<(a/A)<100%.
US11626419B2 Semiconductor memory device
A semiconductor memory device, and a method of manufacturing the semiconductor memory device, includes a gate stack including interlayer insulating layers and word lines alternately stacked in a first direction, channel pillars passing through the gate stack and tapering toward the first direction, source select lines surrounding the channel pillars and extending to overlap the gate stack, and a source isolation insulating layer overlapping the gate stack between the source select lines and tapering toward a direction opposite to the first direction.
US11626417B2 Three-dimensional semiconductor memory device and method of fabricating the same
A three-dimensional semiconductor memory device includes a substrate including cell and connection regions. An electrode structure is disposed on the substrate, the electrode structure having a staircase structure on the connection region. A first vertical channel structure and a first dummy structure at least partially penetrate the electrode structure on the cell region and the connection region, respectively. Bottoms of expanded portions of the first vertical channel structure and the first dummy structure are located at first and second levels, respectively. The second level is higher than the first level.
US11626416B2 Method for forming three-dimensional memory device with backside source contact
Embodiments of 3D memory devices and methods for forming the same are disclosed. In an example, a method for forming a 3D memory device is disclosed. A sacrificial layer above a second semiconductor layer at a first side of a substrate and a dielectric stack on the sacrificial layer are subsequently formed. A channel structure extending vertically through the dielectric stack and the sacrificial layer into the second semiconductor layer is formed. The sacrificial layer is replaced with a first semiconductor layer in contact with the second semiconductor layer. The dielectric stack is replaced with a memory stack, such that the channel structure extends vertically through the memory stack and the first semiconductor layer into the second semiconductor layer. A source contact is formed at a second side opposite to the first side of the substrate to be in contact with the second semiconductor layer.
US11626415B2 Lateral transistors for selecting blocks in a three-dimensional memory array and methods for forming the same
A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers, memory opening fill structures including a respective vertical semiconductor channel and a respective vertical stack of memory elements extending through the alternating stack in a memory array region, via contact structures contacting the stepped surfaces of the electrically conductive layers at each step in a staircase region, and a vertical stack of access transistors located between the staircase region and the memory array region.
US11626413B2 Semiconductor device including gate layer and vertical structure
A semiconductor device including vertical structures on a substrate; and interlayer insulating layers and gate layers on the substrate, wherein the gate layers are sequentially stacked in a memory cell array area and extend into an extension area, the gate layers have pad regions having a staircase structure in the extension area, the first vertical structure has a surface facing the gate layers, the second vertical structure has a surface facing at least one of the gate layers, the first vertical structure includes a first core pattern, a first semiconductor layer, and a pad pattern, the second vertical structure includes a second core pattern and a second semiconductor layer, each of the core patterns includes an insulating material, and an upper surface of the second semiconductor layer and an upper surface of the second core pattern are farther from the substrate than the upper surface of the first core pattern.
US11626412B2 Memory device and hybrid spacer thereof
A method for forming a semiconductor device includes forming a metal layer and a spacer adjacent to the metal layer. The spacer includes a composite-dielectric layer including a composite-dielectric material. A composition of the composite-dielectric material is a mixture of a composition of a first dielectric material and a composition of a second dielectric material different from the first dielectric material.
US11626402B2 Semiconductor device structure
A semiconductor device structure is provided. The semiconductor device structure includes an isolation structure formed over a substrate, and a first stacked structure and a second stacked structure extending above the isolation structure. The first stacked structure includes a plurality of first nanostructures stacked in a vertical direction, and the second stacked structure includes a plurality of second nanostructures stacked in the vertical direction. The semiconductor device structure includes a first dummy fin structure formed over the isolation structure, and the first dummy fin structure is between the first stacked structure and the second stacked structure. The semiconductor device structure also includes a first capping layer formed over the first dummy fin structure, and an interface between the first dummy fin structure and the first capping layer is lower than a top surface of a topmost first nanostructure.
US11626400B2 Semiconductor device structure incorporating air gap
A semiconductor device structure includes a dielectric layer, a first source/drain feature in contact with the dielectric layer, wherein the first source/drain feature comprises a first sidewall, and a second source/drain feature in contact with the dielectric layer and adjacent to the first source/drain feature, wherein the second source/drain feature comprises a second sidewall. The structure also includes an insulating layer disposed over the dielectric layer and between the first sidewall and the second sidewall, wherein the insulating layer comprises a first surface facing the first sidewall, a second surface facing the second sidewall, a third surface connecting the first surface and the second surface, and a fourth surface opposite the third surface. The structure includes a sealing material disposed between the first sidewall and the first surface, wherein the sealing material, the first sidewall, the first surface, and the dielectric layer are exposed to an air gap.
US11626399B2 Semiconductor device
Provided is a semiconductor device which is a facedown mounting, chip-size-package-type semiconductor device and includes: a transistor element including a first electrode, a second electrode, and a control electrode which controls a conduction state between the first electrode and the second electrode; a plurality of first resistor elements each including a first electrode and a second electrode, the first electrodes of the first resistor elements being electrically connected to the second electrode of the transistor element; one or more external resistance terminals to which the second electrodes of the plurality of first resistor elements are physically connected; a first external terminal electrically connected to the first electrode of the transistor element; and an external control terminal electrically connected to the control electrode. The one or more external resistance terminals, the first external terminal, and the external control terminal are external connection terminals provided on a surface of the semiconductor device.
US11626395B2 Thermal spreading management of 3D stacked integrated circuits
An electronic device and associated methods are disclosed. In one example, the electronic device includes a plurality of dies, a logic die coupled to the plurality of dies, and a dummy die thereon. In selected examples, the dummy die is located between the logic die and the plurality of silicon dies. In selected examples, the dummy die is attached to the logic die.
US11626394B2 Semiconductor storage device
A semiconductor storage device includes a first semiconductor chip having a first bonding surface; and a second semiconductor chip having a second bonding surface, the second bonding surface being bonded to the first bonding surface. The first semiconductor chip includes a control circuit, a first power line connected to the control circuit and extending in a first direction, and a first pad electrode disposed on the first bonding surface. The second semiconductor chip includes a second power line extending in a second direction, a third power line connected to the second power line and extending in the first direction, a second pad electrode connected to the third power line, and a third pad electrode disposed on the second bonding surface.
US11626393B2 Semiconductor package and method of fabricating the same
A method of fabricating a semiconductor package includes providing a semiconductor chip, forming a redistribution substrate, and fabricating a package including the semiconductor chip disposed on the redistribution substrate. The forming of the redistribution substrate may include forming a first insulating layer on a substrate, the first insulating layer having a first opening formed therein, forming an integrally formed first redistribution pattern in the first opening and on the first insulating layer, forming a second insulating layer on the first insulating layer to cover the first redistribution pattern, and performing a planarization process on the second insulating layer to expose the first redistribution pattern.
US11626389B2 Display device
A display device includes a display element layer on a substrate. The display element layer may include first and second electrodes, and light emitting elements electrically coupled to the first and second electrodes. The first electrode may include first protrusions, a first portion located between the first protrusions, a second portion corresponding to a side of each first protrusion, and a third portion coupled between the first portion and a first end of the second portion. The second electrode may include second protrusions that protrude toward the first electrode and are spaced apart from each other in the first direction, a first portion located between the second protrusions, a second portion corresponding to a side of each of the second protrusions, and a third portion coupled between the first portion and a first end of the second portion.
US11626388B2 Interconnect structure with redundant electrical connectors and associated systems and methods
Semiconductor die assemblies having interconnect structures with redundant electrical connectors are disclosed herein. In one embodiment, a semiconductor die assembly includes a first semiconductor die, a second semiconductor die, and an interconnect structure between the first and the second semiconductor dies. The interconnect structure includes a first conductive film coupled to the first semiconductor die and a second conductive film coupled to the second semiconductor die. The interconnect structure further includes a plurality of redundant electrical connectors extending between the first and second conductive films and electrically coupled to one another via the first conductive film.
US11626386B2 Semiconductor integrated circuit device and semiconductor package structure
A semiconductor integrated circuit device includes first and second semiconductor chips stacked one on top of the other. First power supply lines in the first semiconductor chip are connected with second power supply lines in the second semiconductor chip through a plurality of first vias. The directions in which the first power supply lines and the second power supply lines extend are orthogonal to each other.
US11626381B2 Bonding head including a thermal compensator, die bonding apparatus including the same and method of manufacturing semiconductor package using the same
A bonding head for a die bonding apparatus and a die bonding apparatus including the bonding head, the bonding head including a head body; a thermal pressurizer mounted on a lower surface of the head body, the thermal pressurizer being configured to hold and heat at least one die and including a heater having a first heating surface that faces a held surface of the die; and a thermal compensator at an outer region of the die, the thermal compensator extending downwardly from the lower surface of the head body and including at least one thermal compensating block having a second heating surface that emits heat from a heating source therein and that faces a side surface of the die held on the thermal pressurizer.
US11626380B2 Semiconductor package
A semiconductor package includes a package substrate including a first substrate channel pad and a second substrate channel pad, a chip stack including a plurality of semiconductor chips stacked on the package substrate to be offset in a first direction, wherein first semiconductor chips located on odd layers from among the plurality of semiconductor chips and second semiconductor chips located on even layers from among the plurality of semiconductor chips are offset in a second direction perpendicular to the first direction, each of the first semiconductor chips includes a first chip channel pad, and each of the second semiconductor chips includes a second chip channel pad, first inter-chip connection wires configured to electrically connect the first chip channel pads of the first semiconductor chips to one another, second inter-chip connection wires configured to electrically connect the second chip channel pads of the second semiconductor chips to one another.
US11626376B2 Semiconductor device having a plurality of first structural bodies provided below a connection terminal and manufacturing method thereof
A semiconductor device of an embodiment includes a first chip having a memory cell array, and a second chip having a control circuit. The first chip includes a substrate, a pad, a first structural body, and a second structural body. The substrate is arranged on the side opposite to a joined face of the first chip joined to the second chip, and includes a first face, a second face, and an opening extending from the second face to the first face in a first region. The memory cell array is provided between the first face and the opposed joined face. The pad is provided in the opening. The first structural body is provided between the first face and the joined face, and is electrically connected to the pad. The second structural body is provided between the first face and the joined face in the first region.
US11626373B2 Semiconductor packages including antenna pattern
A semiconductor package having a thinner shape and including an antenna is provided. A semiconductor package comprises a first substrate, a second substrate on the first substrate and including a first face facing the first substrate and a second face opposite to the first face, a pillar extending from the second face of the second substrate to the first substrate, and a first semiconductor chip on the second face of the second substrate and connected to the pillar. The second substrate may include an antenna pattern, and the antenna pattern may be connected to the first semiconductor chip, and may be on the second face of the second substrate such that the antenna pattern is isolated from direct contact with the first semiconductor chip.
US11626371B2 Semiconductor structure with one or more support structures
One or more semiconductor structures and/or methods for forming support structures for semiconductor structures are provided. A first porosification layer is formed over a semiconductor substrate. A first epitaxial layer is formed over the first porosification layer. A second porosification layer is formed from a first portion of the first epitaxial layer and a support structure is formed from a second portion of the first epitaxial layer.
US11626370B2 Interconnection structure of a semiconductor chip and semiconductor package including the interconnection structure
An interconnection structure of a semiconductor chip may include an interconnection via, a lower pad, a conductive bump, and an upper pad. The interconnection via may be arranged in the semiconductor chip. The lower pad may be arranged on a lower end of the interconnection via exposed through a lower surface of the semiconductor chip. The conductive bump may be arranged on the lower pad. The upper pad may be arranged on an upper end of the interconnection via exposed through an upper surface of the semiconductor chip. The upper pad may have a width wider than a width of the interconnection via and narrower than a width of the lower pad. Thus, an electrical short between the conductive bumps may not be generated in the interconnection structure having a thin thickness.
US11626364B2 Fan-out semiconductor package and electronic device including the same
A fan-out semiconductor package includes: an interconnection member including a first insulating layer, first and second pads respectively disposed on opposite sides of the first insulating layer and a first via connecting the first and second pads to each other; a semiconductor chip disposed on the interconnection member; and an encapsulant encapsulating at least portions of the semiconductor chip. A center line of the first via is out of alignment with at least one of a center line of the first pad and a center line of the second pad.
US11626361B2 Power semiconductor module
A power semiconductor module includes an insulating substrate, conductor patterns and a power semiconductor element. The conductor patterns are formed on both surfaces of the insulating substrate. The power semiconductor element is mounted on the conductor patterns. The conductor patterns include an anode terminal connection portion and a cathode terminal connection portion. A circuit is formed such that a current that flows between the anode terminal connection portion and the cathode terminal connection portion via the power semiconductor element flows on the both surfaces of the insulating substrate.
US11626354B2 Method of manufacturing redistribution substrate
A redistribution substrate includes a first conductive pattern including a first lower pad and a second lower pad, the first and second lower pads being within a first insulating layer, a second conductive pattern including a first upper pad and a second upper pad, the first and second upper pads being on the first insulating layer, a first via connecting the first lower pad and the first upper pad to each other in the first insulating layer, a second via connecting the second lower pad and the second upper pad to each other in the first insulating layer, and a capacitor between the first lower pad and the first via.
US11626348B2 Integrated circuit having contact jumper
An integrated circuit includes first and second active regions extending in a first direction, a first gate line extending in a second direction substantially perpendicular to the first direction and crossing the first and second active regions, and a first contact jumper including a first conductive pattern intersecting the first gate line above the first active region and a second conductive pattern extending in the second direction above the first gate line and connected to the first conductive pattern.
US11626344B2 Adhesive and thermal interface material on a plurality of dies covered by a lid
Provided are a package structure and a method of forming the same. The package structure includes a first die, a second die group, an interposer, an underfill layer, a thermal interface material (TIM), and an adhesive pattern. The first die and the second die group are disposed side by side on the interposer. The underfill layer is disposed between the first die and the second die group. The adhesive pattern at least overlay the underfill layer between the first die and the second die group. The TIM has a bottom surface being in direct contact with the first die, the second die group, and the adhesive pattern. The adhesive pattern separates the underfill layer from the TIM.
US11626342B2 Apparatuses and methods for implementing a sliding thermal interface between substrates with varying coefficients of thermal expansion
Systems and methods include an integrated circuit assembly that includes a semiconductor substrate; a heat transfer element; and an ambulatory thermal interface arranged between the semiconductor substrate and the heat transfer element, the ambulatory thermal interface comprising: a thermally conductive material, and a friction reduction material, wherein: the thermally conductive material is arranged along a surface of the heat transfer element, the friction reduction material is arranged along a surface of the semiconductor substrate, opposing surfaces of the thermally conductive material and the friction reduction material define a slidable interface when placed in contact.
US11626341B2 Package structure
A package structure includes a substrate, a semiconductor device and an adhesive layer. The semiconductor device is disposed on the substrate, wherein an angle θ is formed between one sidewall of the semiconductor device and one of sides of the substrate, 0°<θ<90°. The adhesive layer surrounds the semiconductor device on the substrate and at least continuously disposed at two of the sides of the substrate, wherein the adhesive layer has a first opening misaligned with a corner of the semiconductor device closest to the first opening.
US11626337B2 Semiconductor devices and methods of manufacturing semiconductor devices
In one example, a semiconductor device comprises a main substrate comprising a first side and a main conductive structure, and a first component module over the first side of the main substrate. The first component module comprises a first electronic component and a first module encapsulant contacting a lateral side of the first electronic component. The semiconductor device further comprises a second component module over the first side of the main substrate. The second component module comprises a second electronic component and a second module encapsulant contacting a lateral side of the second electronic component. The semiconductor device further comprises a main encapsulant over a first side of the main substrate and between the first component module and the second component module. Other examples and related methods are also disclosed herein.
US11626333B2 Semiconductor device
A semiconductor device includes: a semiconductor chip; a case having a frame portion that has an inner wall portion surrounding an housing area in which the semiconductor chip is disposed; a buffer member provided on at last part of the inner wall portion of the case on a side of the housing area; a low expansion member provided on said at least part of the inner wall portion with the buffer member interposed therebetween on the side of the housing area; and a sealing member that seals the housing area, wherein the buffer member has a smaller elastic modulus than the case and the sealing member, and wherein the low expansion member has a smaller linear expansion coefficient than the case and the sealing member.
US11626331B2 Method of evaluating silicon wafer manufacturing process and method of manufacturing silicon wafer
Provided is a method of evaluating a silicon wafer manufacturing process for mass-producing multiple silicon wafers. Lifetime measurement to silicon wafers mass-produced in the silicon wafer manufacturing process is performed in different locations within a surface of each of the silicon wafers and multiple measurement values are obtained. The representative value is determined for each of the silicon wafers from the multiple measurement values. The determination threshold is obtained for each wafer group including multiple silicon wafers using the representative value for each of the silicon wafers included in the wafer group. Whether the wafer group includes a silicon wafer having a lifetime outlier determined on the basis of the determination threshold among the multiple measurement values obtained for each of the silicon wafers is determined, and whether the manufacturing process may cause a defective product to be produced is determined.
US11626328B2 Strain enhancement for FinFETs
An integrated circuit device includes a substrate having a first portion in a first device region and a second portion in a second device region. A first semiconductor strip is in the first device region. A dielectric liner has an edge contacting a sidewall of the first semiconductor strip, wherein the dielectric liner is configured to apply a compressive stress or a tensile stress to the first semiconductor strip. A Shallow Trench Isolation (STI) region is over the dielectric liner, wherein a sidewall and a bottom surface of the STI region is in contact with a sidewall and a top surface of the dielectric liner.
US11626326B2 Interconnect structures for semiconductor devices and methods of manufacturing the same
A semiconductor device includes a first source/drain structure coupled to an end of a first conduction channel that extends along a first direction. The semiconductor device includes a second source/drain structure coupled to an end of a second conduction channel that extends along the first direction. The semiconductor device includes a first interconnect structure extending through an interlayer dielectric and electrically coupled to the first source/drain structure. The semiconductor device includes a second interconnect structure extending through the interlayer dielectric and electrically coupled to the second source/drain structure. The semiconductor device includes a first isolation structure disposed between the first and second source/drain structures and extending into the interlayer dielectric.
US11626325B2 Method of making a silicon carbide integrated circuit
The method of manufacturing an integrated circuit includes obtaining a silicon carbide substrate of a first conductivity type having an epitaxial layer of a second conductivity type thereon. A dopant is implanted in the epitaxial layer to form a first region of the first conductivity type that extends the full depth of the epitaxial layer. A first transistor is formed in the first region and a second transistor is formed in the epitaxial layer.
US11626322B2 Interconnects with tight pitch and reduced resistance
Integrated chips and methods of forming conductive lines thereon include forming parallel lines from alternating first and second dummy materials. Portions of the parallel lines are etched, using respective selective etches for the first and second dummy materials, to form gaps. The gaps are filled with a dielectric material. The first and second dummy materials are etched away to form trenches. The trenches are filled with conductive material.
US11626317B2 Deep trench isolation with segmented deep trench
A semiconductor device has a first trench and a second trench of a trench structure located in a substrate. The second trench is separated from the first trench by a trench space that is less than a first trench width of the first trench and less than a second trench width of the second trench. The trench structure includes a doped sheath having a first conductivity type, contacting and laterally surrounding the first trench and the second trench. The doped sheath extends from the top surface to an isolation layer and from the first trench to the second trench across the trench space. The semiconductor device includes a first region and a second region, both located in the semiconductor layer, having a second, opposite, conductivity type. The first region and the second region are separated by the first trench, the second trench, and the doped sheath.
US11626312B2 Metal spring anchor for advanced packaging
An Fan-out packaging system, comprising dedicated frame with associated movable metallic spring feature(s) for incoming known-good-die (KGD), is invented. The movable spring anchor(s) along with the boundaries of the frame locks the KGD in its designated position during EMC implementation and subsequent processes. In this system/approach, the position accuracy of KGDs during the wafer reconstitution process will be mostly dominated by the dicing accuracy. The proposed system is a very low cost approach as it does not need the expensive software/tool set and does not have a low throughput site-to-site lithography correction during exposure after metrology is carried out for every flash field. This system is particularly useful for chiplet consisting of component chips from different technologies and from substrate made of different material. The frames can be further used as part of function component for the packaged system either as electromagnetic shield, or heat dissipation/heat sink, or even RF antenna as well as other passive devices or active components.
US11626311B2 Printing system assemblies and methods
The present teachings disclose various embodiments of a printing system for printing substrate, in which the printing system can be housed in a gas enclosure, where the environment within the enclosure can be maintained as a controlled printing environment. A controlled environment of the present teachings can include control of the type of gas environment within the gas enclosure, the size and level particulate matter within the enclosure, control of the temperature within the enclosure and control of lighting. Various embodiments of a printing system of the present teachings can include a Y-axis motion system and a Z-axis moving plate that are configured to substantially decrease excess thermal load within the enclosure by, for example, eliminating or substantially minimizing the use of conventional electric motors.
US11626309B2 Substrate treating apparatus and substrate treating method
A substrate treating method includes measuring an alignment state of a substrate placed on a hand of a transfer unit that transfers the substrate, transferring the substrate to a substrate alignment unit by the transfer unit when the alignment state of the substrate is faulty, aligning a location of the substrate by the substrate alignment unit, and temporarily correcting the location of the substrate before the substrate is loaded on the substrate alignment unit when it is measured in the measuring of the alignment state that the alignment state of the substrate exceeds a sensor reading range.
US11626303B2 Compliance components for semiconductor processing system
Exemplary substrate processing systems may include a chamber body defining a transfer region. The systems may include a first lid plate seated on the chamber body along a first surface of the first lid plate. The first lid plate may define a plurality of apertures through the first lid plate. The systems may include a plurality of lid stacks equal to a number of apertures of the plurality of apertures. The plurality of lid stacks may at least partially define a plurality of processing regions vertically offset from the transfer region. The systems may include a second lid plate coupled with the plurality of lid stacks. The plurality of lid stacks may be positioned between the first lid plate and the second lid plate. A component of each lid stack of the plurality of lid stacks may be coupled with the second lid plate.
US11626299B2 Cover for swing member of substrate processing apparatus, swing member of substrate processing apparatus, and substrate processing apparatus
A cover for a swing member of a substrate processing apparatus includes an upper surface including a first groove, and a first side edge and a second side edge located respectively at both ends of the upper surface in the short-length direction of the cover, where a bottom portion of the first groove is located lower than the first side edge and the second side edge.
US11626297B2 Apparatus and method for wet process on semiconductor substrate
An apparatus and a method for wet process on a semiconductor substrate are provided. The apparatus includes a process chamber (1005), a chuck (1002) for holding and positioning a semiconductor substrate (1001) disposed in the process chamber, a rotating driving mechanism (1004) driving the chuck to rotate, a chamber shroud (1006) disposed surrounding the process chamber, at least one vertical driving mechanism driving the chamber shroud to move up or down, a shielding cover (1007), at least one driving device (1008) driving the shielding cover to cover down or lift up, at least one dispenser module (1014) having a dispenser (1030) for spraying liquid to the surface of the semiconductor substrate. When the shielding cover covers above the process chamber, the chamber shroud is moved up to couple with the shielding cover, so as to seal the process chamber for preventing the liquid from splashing out of the process chamber.
US11626290B2 Method, device, and system for etching silicon oxide film
A method of etching silicon oxide on a surface of a substrate is provided. The method comprises alternately repeating heating the substrate to a heating temperature of 60° C. or higher, supplying hydrogen fluoride gas and ammonia gas onto the substrate to react with the silicon oxide, and modifying the silicon oxide to obtain a reaction product, and removing at least a portion of the reaction product from the substrate while stopping the supply of the above gases and continuing to heat the substrate at the heating temperature; and when a process gas that is at least one of the hydrogen fluoride gas and the ammonia gas is supplied, while continuing to supply the process gas from an upstream side of a flow path, closing a valve disposed in the flow path to pressurize the process gas in the flow path, and then opening the valve.
US11626283B2 Compound semiconductor substrate, a pellicle film, and a method for manufacturing a compound semiconductor substrate
A method for manufacturing a compound semiconductor substrate that can achieve thinning of SiC film, wherein the method includes forming a SiC film on one principal surface side of a Si substrate and forming a recessed part in which a bottom surface is Si in a central part of another principal surface of the Si substrate.
US11626276B1 Reflector for intense pulse light device
An intense pulse light (IPL) device includes a flash lamp and a light guide for guiding light from the flash lamp to an area to be treated. The flash lamp includes an anode electrode and a cathode electrode, and an envelope defining a cavity. A reflector reflects light from the flash lamp to the area to be treated. At least one electrode protector has a reflecting surface that redirects light from the electrodes toward a center of the reflector.
US11626275B2 Isotopic mass spectrometer
A method for determining an isotopic profile for a molecule is provided. The isotopic profile is indicative of an isotopic content for the molecule. The method comprises mass selecting ions of the molecule in a mass window, the mass window excluding a mass for a monoisotopic molecular ion and including a mass for at least one isotopic variant of the monoisotopic molecular ion. The method comprises fragmenting the mass selected ions into fragment ions, performing mass analysis on one or more of the fragment ions to produce a mass spectrum, and determining the isotopic profile for the molecule, the isotopic profile comprising at least one data value. Each data value is calculated for a fragment ion as a function of intensities of multiple peaks in the mass spectrum. A computer program is provided. A mass spectrometry system is provided. A method for identifying a sample is provided.
US11626267B2 Back-scatter electrons (BSE) imaging with a SEM in tilted mode using cap bias voltage
A method of evaluating a region of a sample, the method comprising: positioning a sample within a vacuum chamber; generating an electron beam with a scanning electron microscope (SEM) column that includes an electron gun at one end of the column and a column cap at an opposite end of the column; focusing the electron beam on the sample and scanning the focused electron beam across the region of the sample, while the SEM column is operated in tilted mode, thereby generating secondary electrons and backscattered electrons from within the region; and during the scanning, collecting backscattered electrons with one or more detectors while applying a negative bias voltage to the column cap to alter a trajectory of the secondary electrons preventing the secondary electrons from reaching the one or more detectors.
US11626266B2 Charged particle beam device
Provided is a charged particle beam device capable of focusing with high accuracy even when a charged particle beam has a large off-axis amount. The charged particle beam device generates an observation image of a sample by irradiating the sample with a charged particle beam, and includes: a deflection unit that inclines the charged particle beam; a focusing lens that focuses the charged particle beam; an adjustment unit that adjusts a lens strength of the focusing lens based on an evaluation value calculated from the observation image; a storage unit that stores a relationship between a visual field movement amount and the lens strength; and a filter setting unit that calculates the visual field movement amount based on an inclination angle of the charged particle beam and the relationship, and sets an image filter to be superimposed on the observation image based on the calculated visual field movement amount.
US11626261B2 Self-adjusting frame for mounting over a wall-mounted electrical device
A mounting frame may be configured as a self-adjusting mounting frame that biases itself against a surface of structure. The mounting frame may be a component, for example, of a remote control device or a faceplate assembly. The mounting frame may be configured to bias a rear surface of the mounting frame against the surface of a structure. The mounting frame may include biasing members. Each biasing member may include an attachment portion and a pair of resilient spring arms that suspend the attachment portion relative to a perimeter wall of the mounting frame such that the attachment portion is spaced further from the rear surface of the mounting frame than locations where the spring arms extend from the mounting frame. The rear surface of the mounting frame may be defined by the perimeter wall.
US11626259B1 Membrane circuit structure
A membrane circuit structure having a plurality of switch regions includes first, second and third membranes and a spacer layer. The second membrane is beneath the first membrane, and a lower surface of the second membrane is provided with a conductive pattern in at least one of the switch regions. The spacer layer is disposed between the first and second membranes. The third membrane is beneath the second membrane, and an upper surface of the third membrane is provided with first and second trigger portions separated from each other in the at least one of the switch regions, and the conductive pattern is able to be in contact with the first and second trigger portions, so that the first and second trigger portions are able to be electrically connected to each other through the conductive pattern.
US11626258B2 Solar cell
A solar cell according to the present disclosure includes a first electrode, a second electrode, a photoelectric conversion layer located between the first electrode and the second electrode, and a semiconductor layer located between the first electrode and the photoelectric conversion layer, in which at least one selected from the group consisting of the first electrode and the second electrode is translucent, and the semiconductor layer contains a compound containing Na, Zn, and O.
US11626255B2 Capacitor assembly package structure
A capacitor assembly package structure and a method of manufacturing the same are provided. The capacitor assembly package structure includes a capacitor unit, an insulative package body, a conductive connection layer and an electrode unit. The capacitor unit includes a plurality of capacitors, and each capacitor includes a positive portion and a negative portion. The insulative package body partially encloses the capacitors, and the positive portion has a positive lateral surface exposed from a first lateral surface of the insulative package body. The conductive connection layer is electrically connected to the negative portion. The electrode unit includes a first electrode structure and a second electrode structure. The first electrode structure encloses a first portion of the insulative package body and electrically connects to the positive portion, and the second electrode structure encloses a second portion of the insulative package body and electrically connects to the conductive connection layer.
US11626250B2 Method for manufacturing multilayer ceramic electronic component, and multilayer ceramic electronic component
A method for manufacturing a multilayer ceramic electronic component includes preparing a ceramic green sheet, forming a plurality of internal electrode patterns on a main surface of the ceramic green sheet, applying a ceramic paste above the main surface of the ceramic green sheet, stacking a plurality of the ceramic green sheets, pressing the plurality of stacked ceramic green sheets, and cutting the plurality of pressed ceramic green sheets. The ceramic paste at least partially overlaps end portions of the internal electrode patterns, and a stepped region is provided on the ceramic green sheet. When cutting the ceramic green sheets in a first direction, the cutting is performed at a position of the stepped region between two of the internal electrode patterns adjacent to each other in a second direction.
US11626249B2 Ceramic electronic device and manufacturing method of the same
A ceramic electronic device includes a multilayer chip in which each of a plurality of dielectric layers and each of a plurality of internal electrode layers are alternately stacked, the plurality of internal electrode layers being alternately exposed to a first end face and a second end face of the multilayer structure. A bent portion, in which the plurality of dielectric layers in a substantially same position along a stacking direction project along the stacking direction, is formed in the multilayer chip. In the bent portion, a through-hole is formed in two or more of the plurality of internal electrode layers. The through-hole is a defect portion in a first direction in which the first end face faces with the second end face and in a second direction that is vertical to the first direction in a plane of the plurality of internal electrode layers.
US11626248B2 Multilayer ceramic capacitor
A multilayer ceramic capacitor includes a ceramic multilayer body including ceramic layers and internal electrodes that are layered, main surfaces, side surfaces, and end surfaces, a conductor layer covering each of the end surfaces of the ceramic multilayer body and electrically connected to the internal electrodes, an insulating layer covering the conductor layer, and an external electrode electrically connected to the conductor layer. The conductor layer includes a portion that extends to a portion of each of the main surfaces of the ceramic multilayer body.
US11626247B2 Electronic component, circuit board arrangement, and method of manufacturing electronic component
An electronic component includes an element body and external electrodes. The element body includes a dielectric and an internal electrode. Each of the external electrodes includes a base layer formed on multiple surfaces of the element body and an electrically-conducting material layer formed on the base layer, the base layer including a metal and co-material particles dispersed in the metal and being connected to the internal electrode. The co-material particles at an interface surface between the base layer and the electrically-conducting material layer have edges covered with the metal at the interface surface. The electrically-conducting material layer is in contact with the co-material particles at the interface surface and the metal covering the edges of the co-material particles at the interface surface.
US11626244B2 Assembly for connecting to a high-voltage grid
An assembly for connecting to a high-voltage grid includes a plurality of single-phase transformers, each of which has a transformer tank that is filled with a fluid and is equipped with a core with at least one coil. The coils of the single-phase transformers are at least partly connected together, thereby forming a neutral or star point. In order to permit the assembly to be quickly assembled in situ while at the same time providing a reliable current path for compensation and grounding currents, the coils are connected together by a neutral or star point conductor or rail in order to form the neutral or star point. The neutral or star point conductor or rail is retained in an insulated manner on the transformer tank.
US11626243B2 Coil component
A coil component in which a terminal electrode includes a bottom surface electrode portion that is positioned along a bottom surface of a flange part, an end surface electrode portion that is positioned along an outer end surface of the flange part, and a plating film that covers the bottom surface electrode portion and the end surface electrode portion in a continuous manner. The bottom surface electrode portion contains Ag and Si. The end surface electrode portion is composed of a metal film.
US11626238B2 Coil component
Disclosed herein is a coil component that includes a winding core part, and first and second wires wound around the winding core part. The first and second wires constitute at least three winding layers on the winding core part. A i-th (i is an integer equal to or larger than 1) turn, a (i+1) turn, and a (i+2) turn of each of the first and second wires are positioned in mutually different winding layers.