Document Document Title
US11617290B2 Organic light-emitting device
An organic light-emitting device includes: a first electrode; a second electrode facing the first electrode; an emission layer between the first electrode and the second electrode; a hole transport region between the first electrode and the emission layer; and an electron transport region between the emission layer and the second electrode, wherein the electron transport region includes a first compound, at least one selected from the hole transport region and the electron transport region includes a second compound, the first compound is represented by one selected from Formulae 1A to 1D, and the second compound is represented by Formula 2A or Formula 2B:
US11617287B2 Display assembly with loopback cooling
Systems and methods for thermally managing display assemblies are provided. An airflow pathway extends within a housing for an electronic display and includes a storage area at least partially defined by a partition. A loopback channel forms a pathway about an equipment storage device for accepting electronic equipment located within the storage area. The loopback channel accepts a flow of air in the airflow pathway when a fan unit for moving the air through the airflow pathway is activated.
US11617286B2 Heat dissipation module, display assembly and display device
A heat dissipation module includes: a heat dissipation base material layer, provided with a first accommodating slot for accommodating a fingerprint sensor and a second accommodating slot for accommodating a flexible printed circuit, the fingerprint sensor being electrically connected to the flexible printed circuit, the first accommodating slot penetrating through the heat dissipation base material layer; and a light shielding buffer layer, on a side of the heat dissipation base material layer away from an opening of the second accommodating slot and provided with a hollowed-out area, an orthographic projection of the hollowed-out area on the heat dissipation base material layer being in the first accommodating slot, the hollowed-out area being configured to expose a photosensitive area of the fingerprint sensor, and the impedance of a surface of a side of the light shielding buffer layer away from the heat dissipation base material layer being 106Ω-1010Ω.
US11617278B2 Household appliance
A household appliance includes a housing having an accommodating cavity. The accommodating cavity has an installation opening. An electrical appliance is adapted to enter the accommodating cavity through the installation opening. A cover is configured to seal the accommodating cavity. The housing has a disassembling hole adapted to receive an insertion of a tool configured to disassemble the cover from the housing. The disassembling hole is in communication with the accommodating cavity and an entrance of the disassembling hole is located outside the installation opening.
US11617276B2 Display device for vehicle
A display device is configured to be mounted in an indoor space of a vehicle and to change a display area. The display device includes a first frame having a first end configured to be coupled to an interior member of the vehicle, a second frame having a first end coupled to a second end of the first frame, and a flexible display disposed at a first surface of the first frame and a first surface of the second frame. The second frame is configured to rotate about the second end of the first frame, and the flexible display is configured to fold to allow the first surface of the first frame to face the first surface of the second frame.
US11617272B2 Superconducting printed circuit board related systems, methods, and apparatus
A multilayer circuit board structure includes superconducting connections to internal layers thereof, for example by inclusion of superconducting vias. Two or more panels can each comprise respective electrically insulative substrates, each have one or more through-holes, and also include a respective bimetal foil on at least a portion of a respective surface thereof, which is patterned to form traces. The bimetal foil includes a first metal that is non-superconductive in a first temperature range and a second metal that is superconductive in the first temperature range. The panels are plated to deposit a third metal on exposed traces of the second metal, the third metal superconductive in the first temperature range. Panels are join (e.g., laminated) to form at least a three-layer superconducting printed circuit board with an inner layer, two outer layers, and superconducting vias between the inner layer and at least one of the two outer layers.
US11617270B2 Method of manufacturing a double-sided laminate including dry milling a conductive trace pattern and providing a cover layer with precut access holes that expose the trace pattern
A method for manufacturing a double-sided, single conductor laminate includes providing a laminated substrate that includes a conductive layer, an adhesive layer and a support layer; dry milling a trace pattern in the laminated substrate by removing selected areas of the conductive layer and the adhesive layer; and attaching a first cover layer using a first adhesive layer to the conductive layer. The first cover layer includes one or more precut access holes that align with one or more traces of the trace pattern.
US11617266B1 Apparatus and methods for reducing unintended transport of data from power distribution systems using layered power filters
In some embodiments, a method includes receiving, at a circuit board, a power from a power supply. The method further includes filtering, at the circuit board and via a power filter having at least three choke filters, the power to produce a filtered power. The method further includes dividing, at a first portion of a circuit on the circuit board, a power associated with the filtered power into a first power and a second power, a characteristic of the first power differing from a characteristic of the second power by a factor of at least 1.5 or at most one half.
US11617265B1 Electronic device
A width of each of a first signal terminal and a reference potential terminal formed in a first connection region of a core insulating layer constituting a flexible substrate is larger than a width of each of a first backside signal terminal and a backside reference potential terminal formed in a second connection region of the core insulating layer. In addition, a first separation distance between the first signal terminal and the reference potential terminal arranged adjacent to the first signal terminal is smaller than a second separation distance between the first backside signal terminal and the backside reference potential terminal arranged adjacent to the first backside signal terminal. An insulating film formed on a first surface of the core insulating layer at a position overlapping each of the first connection region and the second connection region covers the first connection region such that the second connection region is exposed.
US11617261B2 Resin composition, resin film, metal foil with resin, prepreg, metal-clad laminate, and printed wiring board
A resin composition includes: a resin as Component (A); and an inorganic filler as Component (B). The Component (B) includes anhydrous magnesium carbonate as Component (b1) and aluminum oxide as Component (b2). Content of the Component (b1) falls within a range from 35% by volume to 65% by volume relative to 100% by volume of the Components (b1) and (b2) combined. Content of the Component (B) falls within a range from 60% by volume to 75% by volume relative to 100% by volume of the resin composition.
US11617258B2 Welding quality processing method and device, and circuit board
A welding quality processing method and device, and a circuit board. The method includes: obtaining warpage data of each circuit board layer in a multi-layer circuit board under a preset welding temperature change curve; performing simulation according to a stacked state of the multi-layer circuit board and the warpage data to generate a warpage level of each region in the multi-layer circuit board in the stacked state; and processing the multi-layer circuit board according to the warpage level.
US11617256B2 Laser and drum control for continuous generation of broadband light
A broadband light source includes a rotatable drum coated with plasma-forming target material, a rotational actuator configured to rotate the rotatable drum, and a rotary encoder connected to the rotatable drum. The broadband light source may include a linear actuator configured to axially translate the rotatable drum and linear encoder connected to the rotatable drum. The broadband light source includes a pulsed laser source configured to direct pulsed illumination to a set of spots on the material-coated portion of the rotatable drum for exciting the plasma-forming target material and emitting broadband light as the drum is actuated. The broadband light source includes a control system. The control system is configured to receive one or more rotational position indicators from the rotary indicator and control triggering of the laser source based on the one or more rotational position indicators from rotary encoder.
US11617254B2 Solid state lighting fixtures
A solid state lighting fixture that can be used in outdoor and indoor recessed lighting applications. The solid state lighting fixture has a recessed housing configured to be installed in a recess, and a solid state light assembly capable of being secured to the housing outside the recess. The solid state light assembly is at least partially made of a heat dissipating material capable transferring heat generated by the solid state light assembly to ambient air.
US11617251B2 Digital messages in a load control system
A load control system may comprise load control devices for controlling respective electrical loads, and a system controller operable to transmit digital messages including different commands to the load control devices in response to a selection of a preset. The different commands may include a preset command configured to identify preset data in a device database stored at the load control device and/or a multi-output command configured to define the preset data for being stored in the device database. The system controller may decide which of the commands to transmit to the load control devices in response to the selection of the preset.
US11617249B2 Lighting apparatus
A lighting apparatus includes a power circuit, multiple light sources, a power failure detection circuit, a wall switch decoder and a controller. The power circuit converts an external power source to multiple driving currents. The multiple light sources respectively receive the multiple driving currents to generate a required mixed light. The power failure detection circuit is coupled to the power circuit for detecting a predetermined power failure pattern. When the predetermined power failure pattern is detected, the power failure detection circuit generates a failure signal. The wall switch decoder is coupled to a wall switch via a signal wire for converting a manual operation to a corresponding switch parameter. The failure signal activates a mode switch in the controller to select a working mode. The switch parameter is interpreted with different setting instructions under different working modes.
US11617248B2 Dimming circuit
A dimming control method and a dimming circuit are used to control the brightness of a LED. The dimming circuit includes a power conversion unit having an input end, an output end, an inductor, and a switch. When the dimming current signal is higher than or equal to a first current threshold, the switch is controlled such that the power conversion unit operates in a continuous Conduction mode or a boundary Conduction mode; when the dimming current signal is lower than the first current threshold, the switch is controlled such that the power conversion unit operates in a discontinuous Conduction mode; and when the dimming current signal is lower than a second current threshold, the switch is controlled such that the power conversion unit operates in a chopping control mode.
US11617246B1 Multi-channel constant current circuit and lighting device
A multi-channel constant current circuit and a lighting device are provided. The multi-channel constant current circuit is used to drive UVC LED to emit light, and includes a constant voltage circuit and a first number of linear constant current diodes. The constant voltage circuit includes a power input terminal, a power output terminal and a voltage regulation sub-circuit. The power input terminal is connected to the power output terminal through the voltage regulation sub-circuit, each of the linear constant current diodes is connected to the power output terminal, the linear constant current diode is used to connect a second number of UVC LEDs and keeps a working current of each UVC LED, and the voltage regulation sub-circuit is used for a constant output voltage.
US11617242B2 Lighting apparatus
A lighting apparatus includes a light source, a rectifier circuit, a DC-DC converter, an adjustment circuit and a controller. The rectifier circuit converts an AC power to a raw direct current. The adjustment circuit provides an adjustment signal corresponding a light intensity setting of the light source. The controller is coupled to the DC-DC converter and the adjustment circuit. The controller receives the adjustment signal for generating a first PWM signal. The DC-DC converter receives the first PWM signal. The DC-DC converter converts the raw direct current to an output current according to a first duty ratio of the first PWM signal. The output current is supplied to the light source corresponding to the light intensity setting.
US11617238B2 Systems and methods for interchangeable induction heating systems
An induction heating system includes interchangeable secondary induction heating assemblies and/or secondary induction heating coil flux concentrators that are specifically configured for the particular type of weld being created and/or the particular weld joint where the weld is created. For example, the secondary induction heating assemblies and/or secondary induction heating coil flux concentrators may have specific physical configurations (e.g., shapes, contours, etc.) and/or include specific materials (e.g., ferrites) that are well suited for the particular type of weld being created and/or the particular weld joint where the weld is created. In certain embodiments, a robotic positioning system may be configured to move the secondary induction heating coil to an induction heating coil changing station to, for example, detach the secondary induction heating coil, and attach another secondary induction heating coil, thereby facilitating different secondary induction heating coils to be used for induction heating of different types of welds, for example. In addition, in certain embodiments, the robotic positioning system may be configured to move the secondary induction heating coil to the induction heating coil changing station to, for example, detach the secondary induction heating coil flux concentrator, and attach another secondary induction heating coil flux concentrator.
US11617233B2 Thermal insulation structure for vehicle window device
A thermal insulation structure for a vehicle window device is provided with a heater is disposed on a vehicle interior side, a heat-receiving component that is provided between the window and the heater, and that, by receiving heat from the heater, imparts radiant heat to the window, and a thermal insulation layer that is provided at a surface of the heater on an opposite side from the heat-receiving component, wherein the thermal insulation layer is formed by mutually superimposing a plurality of thermal insulation materials, and of the plurality of thermal insulation materials, a thermal insulation material on a closest side to the heater has greater heat resistance than a thermal insulation material on a furthest side from the heater, and the thermal insulation material on the furthest side from the heater has a lower thermal conductivity than the thermal insulation material on the closest side to the heater.
US11617231B2 Device for selectively heating a target with IR radiation
A device for heating a target with IR radiation, a process for heat treating a target, a process for making a composite, a use of an IR source, a use of an array of IR sources and a use of the device. Also disclosed is a device for treating a target, comprising an IR source that emits IR radiation from an emitter surface having a first surface area; and a set of elongate bodies consisting of one or more elongate bodies, each elongate body having an inlet, collectively called the inlets, and each elongate body having an outlet, collectively called the outlets; wherein the emitted IR radiation is coupled into the set of elongate bodies via the inlets and decoupled from the elongate body via the outlets over an outlet surface having a second surface area; and wherein the first surface area is greater than the second surface area.
US11617229B2 Cartridge with mount for an aerosol-generating element in an aerosol-generating system
The cartridge for the aerosol-generating system includes a housing defining an air inlet and an air outlet and an airflow path defined within the housing. The cartridge includes an atomizer assembly with an aerosol-generating element that is fluid permeable, and two electrical contact portions connected to the aerosol-generating element. The aerosol-generating element has a first side and a second side opposite the first side, wherein the first side of the aerosol-generating element is exposed to the airflow path and the second side of the aerosol-generating element is in contact with a liquid. The cartridge includes the mount that contains the atomizer assembly, where the mount covers a first portion of the first side of the aerosol-generating element to isolate the electrical contact portions from the airflow path, and covers at least a portion of the second side of the aerosol-generating element to isolate the electrical contact portions from the liquid.
US11617228B2 Aerosol-generating system and a cartridge for an aerosol-generating system having a two-part liquid storage compartment
The cartridge includes a storage compartment configured to contain a liquid, the storage compartment having a first portion and a second portion connected to one another by a liquid channel. The cartridge includes an airflow passage passing between the first portion and the second portion of the storage compartment, and an aerosol-generating element that is fluid permeable and is positioned between the first portion and the second portion of the storage compartment, the aerosol-generating element having a first side and a second side that oppose each other, the first side of the aerosol-generating element forming part of the airflow passage and the second side of the aerosol-generating element being in contact with the liquid from the second portion of the storage compartment.
US11617224B2 Gateway, a frontend device, a method and a computer readable storage medium for providing cloud connectivity to a network of communicatively interconnected network nodes
A gateway (1), arranged for providing cloud connectivity to a network of communicatively interconnected network nodes. The gateway (1) comprises a backend function (2)and a plurality of physical frontend devices (3), for deployment in the network. The frontend devices (3) communicatively connect(4)to the backend function (2) for exchanging messages between a network node and the backend function (2). The backend function (2) is common to the plurality of frontend devices (3) and arranged in a at least one server of a plurality of operatively connected servers, that may form part of the cloud, thereby providing for ‘cloud processing’ or ‘virtual processing’ of the messages for exchange thereof with the cloud. The physical frontend devices (3) may be designed to comprise transceiver functionality.
US11617221B2 Communication device, base station, and communication system
According to an aspect, a communication device includes a communicator configured to perform communication with a base station and a plurality of access points having narrower communication ranges than the base station, a first acquirer configured to acquire vehicle information from in-vehicle equipment, a second acquirer configured to acquire information about communication quality for each of the plurality of access points, and a connection adjuster configured to release a connected state associated with a determined access point when the access point whose connected state is released is determined on the basis of the information about the communication quality acquired by the second acquirer if communication with the plurality of access points by the communicator is in the connected state.
US11617219B2 Bearer configuration method for RRC connection reestablishment, terminal, and network device
This disclosure provides a bearer configuration method for RRC connection reestablishment, a terminal, and a network device. The method in this disclosure includes: when receiving an RRC reestablishment complete message sent by a terminal, determining a Packet Data Convergence Protocol PDCP type supported by a target network to be accessed by the terminal, where the PDCP type includes type-1 PDCP supporting a first network or type-2 PDCP supporting a second network; and reconfiguring bearers in a subsequent RRC process based on the determined PDCP type.
US11617218B2 Communication in a denied environment
Cellular communications, such as 5G cellular, may be a primary link between cell phones and a base station. Such cellular communications may be desirable, due to a high link rate. When the cellular communications are denied, a tactical waveform may be used to bridge communications between the cell phones and the base station. The tactical waveform may be transmitted between tactical radios coupled with the cell phones. The tactical radios may include an application layer coupled with an application layer of the cell phone, such that an application-specific integrated circuit (ASIC) of the cell phone may remain unchanged.
US11617215B2 Initiating random access in a target cell in a non-terrestrial network
Various aspects described herein relate to dynamically controlling a time when random access initiated in a target cell of a non-terrestrial network. For example, when a user equipment (UE) detects an event that triggers a random access procedure in the target cell, the UE may monitor a control channel from the target cell for a control signal during a target cell monitoring window prior to initiating random access in the target cell. For example, the control signal may include a dynamic indication to identify UEs allowed to initiate random access, whereby a UE is not permitted to autonomously start contention-based random access in the target cell during the target cell monitoring window unless the UE has received the control signal. In this way, the target cell may regulate a rate at which UEs initiate the RACH procedure in order to manage congestion in the target cell.
US11617210B2 Physical random access channel preamble transmission and detection for large subcarrier spacing
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a physical random access channel (PRACH) preamble configuration that indicates a first preamble format for a first PRACH preamble and a second preamble format for a second PRACH preamble, wherein the first preamble format is different from the second preamble format. The UE may transmit the first PRACH preamble as part of a random access procedure based at least in part on the PRACH preamble configuration, wherein transmitting the first PRACH preamble enables a determination of a symbol boundary offset. The UE may transmit the second PRACH preamble as part of the random access procedure based at least in part on the PRACH preamble configuration, wherein transmitting the second PRACH preamble enables a determination of a symbol timing offset. Numerous other aspects are described.
US11617207B2 Method for transmitting and receiving random access preamble in wireless communication system and device therefor
Provided is a method for transmitting a random access preamble by a user equipment (UE) in a wireless communication system supporting a narrow band-Internet of things (NB-IoT). Specifically, the UE transmits the random access preamble to an eNB in a subcarrier allocated by the eNB according to a specific preamble structure and receives a random access response message from the eNB in response to the random access preamble. In this case, the random access preamble is repeatedly transmitted 16 times during a predetermined duration and then, a gap is inserted for a predetermined time and the predetermined duration is determined by multiplying a transmission duration in which the random access preamble is transmitted by the number of repeated transmission times.
US11617198B2 Physical uplink shared channel repetition across slot boundary
This disclosure provides methods, devices, and systems for physical uplink shared channel (PUSCH) repetition based on support signaling, such as an uplink grant that includes a time domain resource assignment for transmitting one or more data repetitions that may cross a slot boundary. The UE may identify directions (for example, uplink, downlink, flexible) for one or more symbols spanning a transmission duration of the time domain resource assignment. The directions may be determined using a dynamic slot format indication (SFI), or semi-static SFIs may be used as a fallback (when dynamic slot format indications do not meet a target reliability). The uplink grant may include an indication of which symbol directions can be used for the one or more data repetitions. A subset of the one or more symbols for scheduling the one or more data repetitions may be determined based on the identified directions.
US11617195B2 Method and apparatus for downlink control information (DCI) content processing considering active downlink (DL) bandwidth part (BWP) change in a wireless communication system
A method and apparatus are disclosed from the perspective of a User Equipment (UE). In one embodiment, the method includes the UE being configured with a first DL (Downlink) BWP (Bandwidth Part) and a second DL BWP. The method also includes the UE receiving and/or monitoring a DCI (Downlink Control Information) in a scheduling CORESET (Control Resource Set) in the first DL BWP, and for determining size of the DCI for decoding, the UE determines whether a TCI (Transmission Configuration Indication) field is present in the DCI or not based on a parameter of the scheduling CORESET before the UE decodes the DCI successfully. The method further includes the UE truncates or pads zero-bits to at least one field (other than the TCI field) in the DCI based on configuration of the second DL BWP after the UE decodes successfully the DCI, wherein a BWP indicator field in the DCI indicates the second DL BWP different from the first DL BWP. In addition, the method includes the UE determines whether the TCI field is present in the DCI or not based on the parameter of the scheduling CORESET in the first DL BWP after the UE decodes successfully the DCI, wherein a BWP indicator field in the DCI indicates the second DL BWP different from the first DL BWP.
US11617191B2 Terminal apparatus, base station apparatus, and communication method for PUCCH resource selection
Included are a receiver receiving a PDCCH and a PDSCH scheduled by the PDCCH, and a transmitter transmitting, on a PUCCH, one or multiple HARQ-ACKs including at least a HARQ-ACK corresponding to a TB included in the PDSCH and an SR.For the HARQ-ACK of two or less bits, a resource of the PUCCH is, from one or multiple PUCCH resources in a PUCCH resource set, based at least on a first value based at least on the number of bits of the one or multiple HARQ-ACKs transmitted in the PUCCH, regardless of the number of resources of the SR overlapping with the PUCCH.For the HARQ-ACK of more than two bits, the resource of the PUCCH is, from the one or multiple PUCCH resources in the PUCCH resource set, based at least on a sum of the number of bits of the one or multiple HARQ-ACKs and the SR.
US11617190B2 Two-stage trigger procedure
The invention relates to a user equipment for being scheduled with uplink radio resources. The user equipment receives from a radio base station a first-stage uplink resource scheduling message, indicating uplink radio resources usable by the UE to perform an uplink transmission via an unlicensed cell. The receiver further receives a second-stage uplink resource scheduling message, which is related to the first-stage uplink resource scheduling message. Upon reception of the second-stage uplink resource scheduling message, a processor of the UE determines that an uplink transmission is scheduled in case the first-stage uplink resource scheduling message is valid. The first-stage uplink resource scheduling message is determined valid based on a determination as to whether an uplink transmission has been triggered by another second-stage uplink resource scheduling message within a predetermined time period prior to reception of the second-stage uplink resource scheduling message. The UE then performs an uplink transmission.
US11617189B2 Power optimized uplink grant skipping
A method of wireless communication by a user equipment (UE) includes receiving a number of uplink grants from a base station. The method further includes estimating a payload size for data to be transmitted from a UE buffer for a number of logical channels. The payload size corresponds to a sum of a number of data bytes to be transmitted and an amount of overhead bytes to be transmitted. The method still further includes determining a subset of the number of uplink grants to use for uplink transmission based on reducing a total padding size associated with transmitting the payload size, for each combination of the number of uplink grants. The method also includes transmitting the data from the UE buffer within a number of transport blocks, to the base station. The number of transport blocks corresponds to the subset of the number of uplink grants.
US11617186B2 Quality of service based or subscriber profile ID data traffic steering for 5G or other next generation wireless network
Various embodiments disclosed herein provide for data traffic steering based on quality of service. According to some embodiments, a system can comprise receiving data packets associated with a quality of service value, wherein the data packets are stored in a buffer and transmitted utilizing a first link, determining whether a condition that indicates a modification to a data routing schedule is satisfied and whether a second link is available, and in response to the determining indicating that the condition is satisfied and that the second link is available, performing the modification of the data routing schedule comprising utilizing the second link and the first link to transmit the data packets associated with the quality of service value.
US11617184B2 Allocation of frequency resources based on narrowband isolated frequencies
A configuration to avoid compromised frequencies to enhance frequency resource allocation. The apparatus determines one or more narrowband isolated frequencies from a set of frequencies, wherein the one or more narrowband isolated frequencies have a degraded quality. The apparatus allocates frequency resources based on a determination of the one or more narrowband isolated frequencies from the set of frequencies. The apparatus provides, to a UE, the frequency resources for communication with the base station.
US11617178B2 Sib PDSCH beam clustering for initial access information
A base station may determine one or more parameters of a PDSCH group including multiple PDSCHs for each beam in a plurality of beams, configure a plurality of resources for communication via the PDSCH group based on the determined one or more parameters of the PDSCH group, and transmit, to a UE, an indication of at least one parameter of the one or more parameters of the PDSCH group via the plurality of resources. The base station may also transmit, via the plurality of resources, one or more PDSCHs based on the at least one parameter of the one or more parameters of the PDSCH group. The UE may receive the indication of at least one parameter of the PDSCH group including multiple PDSCHs for each beam in a plurality of beams, and receive, from the base station, one or more PDSCHs based on the indication.
US11617175B2 Intelligent band selection for wireless access point
An access system for a wireless local area network is provided. The access system initiates operation in a first frequency band of a plurality of frequency bands of the wireless local area network to provide one or more wireless client devices of the wireless local area network with access to a wireless wide area network. The access system also processes one or more association requests received in the first frequency band to identify one or more associated wireless client device. The access system also determines whether each of the one or more associated wireless client devices supports a second frequency band. The access system also sends a request to the one or more associated wireless client devices to transition from the first frequency band to the second frequency band based on determining that each of the one or more associated wireless client devices supports the second frequency band.
US11617174B2 Dynamic control system for cellular camping and passive monitoring of LTE activity
A system for monitoring cellular communications including a passive sensor device, processors, and memory devices. The memory devices having instructions that cause the processors to identify active downlink channels using a first radio to monitor each channel in a cellular spectrum and store downlink channel information, including configuration data, for each of the identified active downlink channels. The processors identify active uplink channels using a second radio to monitor each channel in the cellular spectrum and store uplink channel information for each of the identified active uplink channels. The processors correlate one of the active uplink channels with a corresponding active downlink channel and tune a third radio to the active uplink channel using the configuration data for the corresponding active downlink channel. The processors also tune a fourth radio to the active downlink channel corresponding to the at least one active uplink channel using the corresponding configuration data.
US11617171B2 Time gap with tail samples for high frequency bands
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a wireless communication device may receive, in a first time slot, a cyclic prefix (CP) at a start end of the first time slot, data content, and tail samples at a tail end of the first time slot. The wireless communication device may initiate a gap action, such as switching beams, during receipt of the tail samples, the gap action taking place within a time gap formed by at least the tail samples. The time gap may also include a CP of a second time slot that is subsequent to the first time slot. The wireless communication device may complete the gap action within the time gap. Numerous other aspects are described.
US11617163B2 Avoiding collisions with reference signals
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a configuration for a semi-persistent scheduling (SPS) of a data transmission that rate matches the data transmission around one or more resource elements that are to be used for a cell-specific reference signal pattern. The UE may receive an SPS communication based at least in part on the configuration. Numerous other aspects are provided.
US11617162B2 V2X operation method based on TTI bundling in wireless communication system, and terminal using method
The present disclosure provides a method by which a terminal for supporting bundling of a plurality of transmission time intervals (TTIs) performs a vehicle-to-everything (V2X) operation in a wireless communication system, wherein the V2X operation is performed on a specific resource on the basis of multiplexing when sensing is performed in a sensing section and the result thereof shows no available resources.
US11617161B2 Randomized search space for downlink control channel
In order to improve the selection of search space candidates for a downlink control channel, an apparatus determines a set of decoding candidates of a lower aggregation level for a downlink control channel based on a random selection from a plurality of potential decoding candidates, wherein the plurality of potential decoding candidates are defined from a second set of decoding candidates of a higher aggregation level. The apparatus then attempts to decode the downlink control channel based on determined sets of decoding candidates of different aggregation levels. The downlink control channel may comprise a PDCCH.
US11617160B2 Reclaiming resources based on sidelink feedback
Methods, systems, and devices for wireless communications are described. The described techniques relate to the categorization of resources in a system to enable a user equipment (UE) to determine whether resources may be reclaimed. At least two categories may be defined for the resources, and the UE may use various criteria for categorizing the resources in a system. For example, the UE may include a first set of resources in an “available” category and a second set of resources in an “occupied” category. Resources in the “occupied” category may be indicated as occupied by another UE's sidelink channel information. In cases where resources are indicated as reserved for retransmission by another UE, but no feedback is detected, then the UE may use additional parameters to determine whether those resources may be reclaimed for its own transmission and may categorize the resources accordingly.
US11617159B2 Downlink control channel monitoring for multicast/broadcast services
Methods, systems, and devices for wireless communications are described. A base station may configure a user equipment (UE) with a frequency resource for a multicast/broadcast service (MBS) for the UE to monitor for one or more group-common downlink control channels. The base station may transmit an indication, such as an explicit indication, of a monitoring condition for the group-common downlink control channels within the frequency resource. The UE may apply the monitoring condition by enabling or disabling the group-common downlink control channel monitoring within the frequency resource. The UE may monitor one or more downlink control channels for scheduling information from the base station according to the monitoring condition.
US11617154B2 Mitigating of rogue responders when geo-locating wireless devices
A method and measuring station to determine the geo-location of a wanted target station in the presence of rogue responder stations are disclosed. One method includes: transmitting a packet with a fictitious address not corresponding to the wanted target station address; transmitting a packet with the wanted target station address; determining at least one of: a first difference between a round trip time (RTT) associated with a response packet from a responder station and an RTT associated with a response packet from the wanted target station; and a second difference between a time of arrival (TOA) associated with the responder station's response packet and a TOA associated with the wanted target station's response packet; and distinguishing between the response from the responder station and the response from the wanted target station based on at least at least one of the first difference and the second difference.
US11617153B1 Geolocation prediction for user equipment of a communication network
A method includes receiving call records from a control plane, each call record including a cell list identifying the server cell for the UE call session at the time the call record was generated and an ordered set of neighbor cells, ordered based on a characteristic of signals from the neighbor cells. Call records having truth data are selected, wherein the truth data includes geolocation (GL) data reported to be a GL associated with the call record. GL data of the selected call records is stored in association with the cell list for the selected call records. A centroid is determined as a function of the GL data associated with each of the selected call records that includes the associated cell list. The centroids are stored in association with the corresponding cell list, and can be retrieved as a prediction for a GL based on submission of a cell list.
US11617145B2 Method and apparatus for timing control in wireless communication system
A timing control method, performed by a first DU including a processor and a modem in a base station supporting function-splitting, includes obtaining, by the processor, first time information from a CU included in the base station; obtaining, by the processor, synchronization information with a first system based on the first time information; identifying, by the processor, a change time point of an SFN based on the synchronization information; generating, by the processor, a first timing control signal including a signal indicating a changed SFN and a first tick signal having a same periodicity as a change periodicity of the SFN when the SFN is changed; and providing, by the processor, the first timing control signal to the modem.
US11617141B2 Identifying synchronization signal/physical broadcast channel block occasions
Apparatuses, methods, and systems are disclosed for identifying synchronization signal/physical broadcast channel block occasions. One method includes identifying a plurality of synchronization signal/physical broadcast channel block occasions configured to enable reception of a plurality of synchronization signal/physical broadcast channel blocks. A first number of synchronization signal/physical broadcast channel block occasions of the plurality of synchronization signal/physical broadcast channel block occasions is greater than a maximum allowed number of synchronization signal/physical broadcast channel blocks of the plurality of synchronization signal/physical broadcast channel blocks. The method includes receiving the plurality of synchronization signal/physical broadcast channel blocks on a portion of the plurality of synchronization signal/physical broadcast channel block occasions.
US11617140B2 Techniques for managing a shared low noise amplifier automatic gain control in dual sim dual active deployments
Methods, systems, and devices for wireless communications are described. In some systems, a user equipment (UE) may support multi-subscriber identity module (SIM) operation in dual SIM dual active (DSDA) deployments. In some aspects, the UE may receive, via an antenna of the UE, a first signal associated with a first network subscription on a first receive path of the antenna and a second signal associated with a second network subscription on a second receive path of the antenna. The UE may determine a signal strength for each of the first signal and the second signal, determine a first gain for the first receive path and a gain for a low noise amplifier (LNA) coupled with the antenna based on the signal strength of the first signal, and determine a gain for the second receive path based on the signal strength of the second signal and the gain of the LNA.
US11617136B2 Non-terrestrial network power control based on HARQ retransmission on or off
A configuration to enable a UE to utilize uplink power control parameters for when HARQ retransmission or HARQ feedback is enabled or disabled. The apparatus may receive DCI from a base station. The DCI may indicate a HARQ process number and at least one of a first set of power control parameters for a first power control mode or a second set of power control parameters for a second power control mode. The apparatus may determine whether the first or the second power control mode is to be used. The apparatus may transmit information on a PUSCH based on the first set of power control parameters or the second set of power control parameters based on the determination whether the first or second power control mode is to be used.
US11617135B1 Destination-based sidelink wake-up signaling
Methods, systems, and devices for wireless communications between a first device and a second device using a sidelink network are described. The second device may generate a wake-up signal (WUS) including a destination identifier indicating a destination node of the sidelink channel configured to receive the WUS. The first device may receive, from the second device, the WUS including the destination identifier. The first device may identify that the destination identifier indicated by the WUS is associated with the first device based on receiving the WUS. The first device may monitor resources of the sidelink channel based on identifying that the destination identifier is associated with the first device. The destination identifier may be indicated by an information element. Additionally or alternatively, the second device may generate the destination identifier using a gold sequence or a low peak-to-average-power ratio sequence.
US11617131B2 Systems/methods of an auxiliary device functioning in cooperation with a destination device
Inventive concepts and embodiments associated therewith are provided wherein an auxiliary device, that is attached to a person, is configured to function in cooperation with a destination device that is on the person. In some embodiments, the auxiliary device is uniquely associated with specific information that is to be conveyed to the destination device following reception of a signal by the auxiliary device. Embodiments are disclosed wherein, following reception of the signal by the auxiliary device, the auxiliary device processes the signal and then conveys the specific information that is uniquely associated therewith to the destination device without direct human interaction with the auxiliary device. In some embodiments, the auxiliary device comprises a personal wearable device and the destination device comprises a smartphone.
US11617123B2 RU (resource unit)—based medium access control for suppressing airtime of quarantined stations on Wi-Fi communication networks
Airtime network policies for quarantined station network policies are stored in a database for application to quarantined stations. Quarantined stations are moved from a first VLAN to a quarantine VLAN with a dedicated BSSID on the Wi-Fi communication network. An RU airtime allocation module of the access point allocates airtime RUs for suppression of some or all transmissions from the quarantined stations. The airtime RU allocation module determines an amount of RUs for access to airtime on a Wi-Fi communications network, based on a network policy that limits an amount of airtime allowed by quarantined stations.
US11617121B2 Distributed traffic control in flooding mesh networks
A method and apparatus for relaying messages in a mesh network.
US11617120B2 Communication system, node, communication method, and computer program product
According to an embodiment, a communication system includes a plurality of nodes that forms a wireless multi-hop network. One of the nodes includes a processor and a wireless communication controller. When receiving a packet including path information that indicates a parent-child relationship of transfer nodes included on a network topology from a source node to a destination node, the processor is configured to determine whether or not at least one of its own node and a neighboring node existing near the own node is included in the path information as the transfer node. When at least one of the own node and the neighboring node is included in the path information, the wireless communication controller is configured to transfer the packet.
US11617118B2 Apparatus, system and method to support 5G mobility robustness optimization
An apparatus, a system, a computer-readable media, and a method. The method is to be performed at an apparatus of a gNB configured to host a management service (MnS) producer of provisioning function and a mobility robustness optimization (MRO) function in a distributed self-organizing network (D-SON). The method includes: decoding one or more requests from a MRO management function sent on a service-based layer of the D-SON, the one or more requests indicating attributes to be set by the gNB, the attributes including MRO targets, ranges of handover parameters, and a control parameter to enable or disable the MRO function; based on the one or more requests, setting the targets and the ranges of handover parameters for the MRO function, and enabling the MRO function; and in response to a determination that a MRO performance does not meet the targets, performing updates on the attributes to optimize the MRO performance.
US11617117B2 Methods and apparatuses for performing cell (re)selection in non-public network
An Integrated Access and Backhaul (IAB) node that communicates over a radio interface is provided. The IAB node includes: processing circuity configured to perform cell selection or cell reselection based on whether a corresponding cell is associated with an IAB donor or the IAB node. A hop number is defined for each of the IAB donor and the IAB node, where the hop number of the IAB donor is “0”.
US11617115B2 Method and eNB equipment for supporting seamless handover
The present application discloses a method and eNB equipment for supporting seamless handover. The method comprises the following steps of: receiving, by a target eNB, random access information or an RRC connection reconfiguration completion message from a UE; transmitting, by the target eNB, a data transmission stopping indication message to a source eNB; and, stopping, by the source eNB, transmitting downlink data to the UE, and/or stopping, by the source eNB, receiving uplink data from the UE. The present invention further provides several other methods and eNB equipments for supporting seamless handover. By the methods for supporting seamless handover provided by the present invention, the delay of data transmission and the unnecessary data transmission or unnecessary data monitoring of a source eNB can be avoided, the waste of resources and the power consumption can be reduced, and the missing and duplication transmission of data can be avoided.
US11617114B2 Method of cell reselection in non-public network and related device
A method of cell reselection in a non-public network (NPN) for a user equipment (UE) is provided. The method includes receiving, from a first cell via a first System Information Block 1 (SIB1), a first network identity associated with a first indication, receiving, from a second cell via a second SIB1, a second network identity associated with a second indication, selecting one of the first network identity and the second network identity, determining whether the first indication is present and whether the first network identity is selected by the UE, determining the first cell as barred for the cell reselection when the first indication is present, but the first network identity is not selected by the UE, and determining the first cell as a candidate cell for the cell reselection when the first indication is present and the first network identity is selected by the UE.
US11617113B2 Method and apparatus for managing handovers in wireless communication system
A method for controlling and managing handovers between base stations in adjoining cells in wireless communications enables a user equipment (UE) to report a bit error rate (BER) to a base station having current conduct of communication with the UE. If the BER is greater than a predetermined value, the base station having conduct further determines whether the UE satisfies a handover condition over a period of time and hands conduct over to another base station if the UE satisfies the handover condition for the period of time and if the other base station is not already operating at capacity. An apparatus for controlling and managing handovers is also disclosed.
US11617109B2 Radio access network handover method, base station, and communication method of the base station
A radio access network handover method of a base station in a 5G radio access network (5G-RAN) is are disclosed. The method comprising: determining handing over a user equipment (UE) to an Evolved Universal Terrestrial Radio Access Network (E-UTRAN); transmitting a handover requirement message to an Access and Mobility Management Function (AMF); receiving a handover command message from the AMF and transmitting the handover command message to the UE, the handover message such that the UE is handed over from the 5G-RAN to the E-UTRAN; and performing indirect data forwarding to a base station in the E-UTRAN.
US11617105B2 Method and device for transmitting data packet in wireless communication system
The present disclosure relates to a communication technique for converging IoT technology with a 5G communication system for supporting a higher data transmission rate beyond a 4G system, and a system therefor. The present disclosure may be applied to an intelligent service (for example, a smart home, a smart building, a smart city, a smart car or connected car, health care, digital education, retail business, a security and safety-related service, etc.) on the basis of 5G communication technology and IoT-related technology. According to one embodiment of the present invention, provided is a method for a terminal transmitting a data packet in a wireless communication system. The method comprises the steps of: generating a data packet; determining whether to perform duplicate transmission for the data packet; and if it is determined to perform duplicate transmission for the data packet, generating at least two duplicate packets by duplicating the data packet, and transmitting the respective at least two duplicate packets to at least two base stations.
US11617101B2 Communication data processing method and apparatus, electronic device and storage medium
A method for processing communication data, applied to an electronic device, includes: monitoring power consumption of the electronic device; determining a speed limit parameter corresponding to the power consumption; and controlling a data transmission rate of the electronic device according to the speed limit parameter.
US11617100B2 Systems and methods for Wi-Fi sensing
Systems and methods for Wi-Fi sensing are provided. Wi-Fi sensing systems include sensing devices and remote devices configured to communicate through radio-frequency signals. Sensing devices and remote devices are configured to communicate with one another to establish sensing transmission configurations through established protocols. Sensing devices described herein are configured to provide Wi-Fi sensing measurements based on the reception of messages transmitted from remote devices according to established configurations.
US11617099B2 Method by which terminal reports logged information about quality of sidelink in wireless communication system supporting sidelink, and device therefor
Methods for reporting logged information by a user equipment (UE) and a UE reporting logged information for sidelink communications. The measurement information includes a reference signal received power (RSRP) and a reference signal received quality (RSRQ) independently measured and logged for each Proximity Service Per-Packet Priority (PPPP). Reporting the logged information is based on a transmission delay higher than a threshold configured for the each PPPP.
US11617094B2 Machine learning in radio access networks
According to an example aspect of the present invention, there is provided a method comprising, receiving, from a first data endpoint of a radio access network, a representation of a local model of the first data endpoint of the radio access network, determining multiple common models for endpoints of the radio access network, selecting, based on the representation of the local model of the first data endpoint, one of said multiple common models for the first data endpoint and transmitting the selected common model to the first data endpoint, any other data endpoint or any other external system which utilizes the selected common model.
US11617092B2 Data analytics method and apparatus
Embodiments of this application provide a data analytics method and data analytics apparatus. The method includes obtaining, by a user plane data processing network element, at least one matching condition that is from a data analytics network element, where each of the at least one matching condition corresponds to at least one service type or at least one execution rule. The method further includes obtaining, by the user plane data processing network element based on the at least one matching condition, a service type associated with user plane data or an execution rule associated with the user plane data. Embodiments of this application implement data analytics by using the data analytics network element in a communications network.
US11617091B1 Distributed antenna system
A distributed antenna system comprises: a plurality of ports configured to receive downstream signals or transmit upstream signals; a plurality of first antennas configured to transmit the downstream signals or receive the upstream signals; a power regulating unit coupled between the plurality of ports and the plurality of first antennas and configured to transfer and regulate the downstream signals or the upstream signals, wherein the power regulating unit comprises: a plurality of first links respectively corresponding to different frequency bands, and a first power regulating section configured to regulate power of link signals transferred over each first link, such that link signals of different frequency bands transferred over the plurality of first links have substantially the same power. The solution of the present disclosure can support input of signals at multiple frequency bands, achieve power balance and improve system performance and wireless coverage effects.
US11617089B2 Systems, methods, and devices for electronic spectrum management
Devices and methods enable optimizing a signal of interest based on identifying and analyzing the signal of interest based on radio frequency energy measurements. Signal data is compared with stored data to identify the signal of interest. Signal degradation data is calculated based on noise figure parameters, hardware parameters and environment parameters. The signal of interest is optimized based on the signal degradation data. Terrain data may also be used for optimizing the signal of interest.
US11617088B2 Real-time RF spectrum allocation and optimization in multi-function, co-located, interacting heterogeneous networks
A real-time spectrum optimization and allocation is provided within multifunction, co-located, interacting heterogeneous networks. Quantum statistical allocation techniques may be adapted to networks with nodes that behave indistinguishably and distinguishably, within a common geographic locational area. If the network nodes are indistinguishable, their statistical behavior may be Fermionic or Bosonic. Fermionic nodes occupy a single or the same state with some form of degeneracy. Bosonic nodes may occupy a single or the same state, with or without degeneracy. If the nodes are distinguishable, then their statistical behavior is Boltzmann-like, and they may occupy the same state provided there is degeneracy to the overall bandwidth allowing information to be transferred.
US11617085B2 Context-based pairing apparatus, and method thereof
A pairing apparatus according to exemplary embodiments of the present invention comprises a position measurer for measuring position changes of a first direction and a second direction; and a processor for generating a secret key using the measured position change of the first direction and the measured position change of the second direction and performing a pairing with a pairing target apparatus using the secret key.
US11617078B2 P25 radio that functions as a key management facility or a key fill device
A P25 radio can be configured to implement a key management facility to thereby manage keysets for and provision the keysets on other P25 radios in a communications system. The P25 radio, as a radio, can directly communicate with the other P25 radios to provision keysets in accordance with the OTAR protocol. The P25 radio may also be configured to function as a key fill device to thereby provision keysets manually on any of the other P25 radios to which it may be physically or wirelessly connected. The P25 radio may also be configured to use the keysets to communicate securely with any of the other P25 radios.
US11617072B2 Reliable data delivery over non-access stratum
The present disclosure is directed to method in a mobility management node and such a node for delivering data to a wireless communication device (WCD) served by the mobility management node, operating in a communication network comprising a network entity (NE) and a radio access network (RAN) node serving the WCD, the method comprises: obtaining capability information indicating whether the RAN node supports acknowledgement of a successful delivery of data to the WCD; receiving a data message sent by the NE comprising user data intended for the WCD; sending a control plane message comprising the user data to the RAN node for further delivery to the WCD; sending a response to the NE indicating the outcome of the data delivery.
US11617067B2 Method to authenticate with a mobile communication network
Apparatuses, methods, and systems are disclosed for authenticating with a mobile communication network. One apparatus includes a processor, a first transceiver that communicates with a mobile communication network via a first access network, and a second transceiver that communicates with the mobile communication network via a second access network. The processor sends a request to start authentication via the second access network and receives an extensible authentication protocol (“EAP”) request with a first expanded type via the second access network. The processor sends an EAP response via the second access network, the EAP response comprising the first expanded type, a first set of parameters, and a first message. Here, the first message is a same type of message usable to establish a connection with the mobile communication network over the first access network.
US11617059B1 Mobile device geographic location determination for emergency services
Systems and methods for providing timely location estimates when a user equipment initiates a call to an emergency number are disclosed. The system enables a user equipment and network nodes (e.g., eSMLC/LMF) to send multiple location responses instead of just one so that the PSAP can benefit from accurate location techniques in a timely manner. For example, when a user equipment is located in an outdoor environment, it can immediately send its A-GNSS location after meeting quality-of-service (QoS) criteria, and the eSMLC/LMF can forward the location estimate to the PSAP immediately without first waiting for all of the other location estimates. When location estimates become available from other technologies (e.g., E-CID, or DBH, or both), the eSMLC/LMF can send to the PSAP another location response for that technology. As a result, the PSAP can always have the most accurate and up-to-date location information available to timely and accurately respond to emergency calls.
US11617058B2 Labor notification system and method
A system for facilitating communication in regard to a user in labor may include a first electronic device associated with the user, a set of second electronic devices associated with emergency contacts, and a server. The server may be configured to retrieve coordinates of a predetermined location, a current position of the user, and vehicle information corresponding to a vehicle in which the user is traveling to the predetermined location. The server may transmit a command to activate an electronic sign associated with the vehicle to indicate the labor status. The server may transmit a first notification including the vehicle information and an estimated time of arrival to the one or more second electronic devices. The server may determine whether the user is in an emergency state and output a second notification including information related to the emergency state to the one or more second electronic devices.
US11617049B2 Receiver
A receiver is provided in the present invention. The receiver includes: a housing having a hollow inner cavity; a diaphragm mechanism disposed in the hollow inner cavity and configured for partitioning the hollow inner cavity into a first cavity and a second cavity, the diaphragm mechanism including a vibration plate, a fixed end of the vibration plate being fixed to an inner wall of the housing, and a free end of the vibration plate being suspended in the hollow inner cavity; an electromagnetic driving mechanism disposed in the hollow inner cavity and including at least one coil assembly and at least one magnetic field assembly, each magnetic field assembly being disposed in the first cavity or the second cavity and being close to the free end of the vibration plate, and each coil assembly being disposed in the first cavity or the second cavity and being close to the fixed end of the vibration plate. Compared with the prior art, the receiver in the present invention reduces connection between movable parts, thereby simplifying the assembly process and reducing the manufacturing cost.
US11617048B2 Microphone having a digital output determined at different power consumption levels
An acoustic device is described and includes an acoustic sensor element configured to sense acoustic energy and produce an output signal and a threshold detector circuit including a switch having an input coupled to the output of the acoustic sensor element to receive the output signal, a control port that receives a control signal, and first and second output ports, a first channel including an analog-to-digital converter that operates at a first power level a second analog-to-digital converter that operates at a second higher power level, relative to the first power level and a threshold level detector that receives an output from the first analog-to-digital converter to produce the control signal having a first state that causes the switch feed the output signal from the acoustic sensor element to the second analog-to-digital converter when the first digitized output signal meets a threshold criteria.
US11617044B2 Ear-mount able listening device with voice direction discovery for rotational correction of microphone array outputs
Techniques described herein include generating first audio signals representative of sounds emanating from an environment and captured with an array of microphones disposed within an ear-mountable listing device. A rotational position of the array of microphones is determined. A rotational correction is applied to the first audio signals to generate a second audio signal. The rotational correction is based at least in part upon the determined rotational position. A speaker of the ear-mountable listening device is driven with the second audio signal to output audio into an ear.
US11617039B2 Planar magnetic driver having trace-free radiant region
A planar magnetic driver including a radiating surface having a trace-free central region is described. The driver has a magnet defining an acoustic opening on a central axis. A diaphragm of the planar magnetic driver is held by mounts having a mounting profile around the central axis, and the diaphragm includes a radiating surface facing the acoustic opening. An innermost conductive trace on the diaphragm extends around a central region of the radiating surface within a magnetic flux of the magnet such that no conductive traces are on the central region. A radial distance between the innermost conductive trace and the mounting profile is less than another radial distance between the innermost conductive trace and the central axis. Accordingly, an excursion range of the diaphragm along the central axis is greater than a gap distance between the conductive trace and the magnet. Other aspects are also described and claimed.
US11617037B2 Hearing device with omnidirectional sensitivity
A method performed by a first hearing device comprising microphone(s) configured to generate a first input signal, a communication unit configured to receive a second input signal from a second hearing device, an output unit, and a processor, the method comprising: generating a first intermediate signal including or based on a first weighted combination of the first input signal and the second input signal, wherein the first weighted combination is based on a first gain value and/or a second gain value; and generating an output signal for the output unit based on the first intermediate signal; wherein one or both of the first gain value and the second gain value are determined in accordance with an objective of making a power of the first input signal and a power of the second input signal differ by a preset power level difference greater than 2 dB in the weighted combination.
US11617035B2 Intelligent audio system using multiple sensor modalities
Embodiments include an audio system comprising an audio device, a speaker, and a processor. The audio system is configured to receive data from one or more sensors corresponding to persons in a room and/or characteristics of a room, and responsively take action to modify one or more characteristics of the audio system, share the information with other systems or devices, and track data over time to determine patterns and trends in the data.
US11617032B2 Speaker device
A speaker includes: a diaphragm; a coil directly or indirectly attached to the diaphragm; a pair of conducting lines connecting electrically with the coil; a yoke having one pair of longer side portions, and another pair of shorter side portions; a frame disposed between the coil and the yoke; and an inner terminal provided on an area on a straight line extended from the longer side portion of the yoke, and electrically connected to the coil.
US11617030B2 Methods and apparatus for consistency check in disaggregated dense wavelength-division multiplexing (DWDM) systems
An apparatus includes a first communication interface configured to be communicatively coupled, via an optical line, to a network device that is disposed in an optical network using wavelength division multiplexing (WDM). The apparatus also includes a second communication interface configured to be communicatively coupled to a router via an Ethernet connection. The apparatus also includes a signal generator operatively coupled to the first communication interface and the second communication interface. The signal generator is configured to generate an Ethernet signal representing at least one attribute of the optical line between the first communication interface and the network device. The second communication interface is configured to transmit the Ethernet signal to the router.
US11617027B2 Demand/response mechanism in a wireless sensor network
A wireless sensor network at a monitored location can be configured to generate sensor channel(s) of data to assess operational conditions at the monitored location. Inputs based on the sensor channel(s) of data are provided to a host system for analysis of a demand to one or more resources at the monitored location. Response messages can be generated based on the demand analysis and transmitted to actuator(s) at the monitored location to effect an adjustment to the operational conditions.
US11617020B2 Systems and methods for enabling and monitoring content creation while consuming a live video
Systems and methods for enabling and rewarding collaborative content creation are described. The method comprises, playing back live video provided by an over-the-top (OTT) provider to a user, receiving, from the user, a command to crop and modify a portion of the video comprising a subject, generating user-generated content based on the command, publishing the user-generated content to a plurality of users, determining whether the user-generated content is republished a threshold number of times during a republication period, and in response to determining that the user-generated content is republished the threshold number of times during the republication period, unlocking access to content from the OTT provider for the user that relates to the subject.
US11617010B1 High dynamic range video content stitching
Methods and apparatus are described that relate to stitching different streams of high dynamic range (HDR) content together and handling HDR metadata mismatches between the differently produced content streams.
US11617009B2 Media channel identification and action with multi-match detection and disambiguation based on matching with differential reference-fingerprint feature
A computing system compares various reference fingerprints each representing a reference media stream broadcast on a different respective known channel, and the computing system determines that a plurality of the reference fingerprints match each other, thus defining a multi-match group of the matching reference fingerprints. In response, the computing system identifies a fingerprint feature that could define a distinction between the reference fingerprints, and the computing system resolves the multi-match based on the identified feature, thereby determining the channel carrying the media stream being rendered by the media presentation device. And the computing system could then take channel-specific action based on the determined channel.
US11617005B2 Intelligent content priority assignment
Systems, methods and devices are provided for managing media content storage priority and retention in a single- or multi-user environment. Indications of previous user activity are received regarding multiple portions of content stored via one or more storage devices. The previous user activity may include previous user deletion selections and/or previous user viewing selections of one or more of the multiple portions of content. A retention priority may be assigned to portions of media content based on the previous user activity. Responsive to receiving an indication of low available storage space on the one or more storage devices, a quantity of storage space on the one or more storage devices to make available is determined based on the previous user activity. Deletion of one or more portions of currently stored content is initiated based on the determined quantity of storage space to make available.
US11616997B2 Methods and systems for trick play using partial video file chunks
A method, system, and computer program product for trick play using partial video file chunks includes a processor to retrieve the selected video file from an HLS server, the video file having a plurality of video chunks, and each one of the video chunks beginning with an I-frame. The processor may determine an average size of the plurality of I-frames. The average I-frame size may be based on a bitrate speed of the video file. The processor may retrieve a portion equal to the average I-frame size of from the beginning of each one of the plurality of chunks of the video. The processor may receive a begin trick play request of the selected video and initiate trick play of the selected video. The trick play of the video includes displaying each portion of each one of the plurality of chunks of the video.
US11616995B2 Wireless data communication system and method
A data communication system including a least one encoder and one decoder. The encoder encodes a received input signal into encoded output data. The data communication system includes a data communication network coupled to at least one encoder, wherein the data communication network communicates the encoded output data from the encoder to the decoder. The decoder decodes the encoded output data to generate a rendition of the input signal. The system is characterized in that the data communication network is configured to function according to joint source channel coding (JSCC). Moreover, the encoder and the decoder are configured to employ an hierarchical data structure for representing data to be communicated from the encoder to the decoder.
US11616993B1 Dyanamic parameter adjustment for adaptive bitrate algorithm
In some embodiments, during playback of a video, using a parameter value of an adaptive bitrate algorithm to analyze playback of the video. The adaptive bitrate algorithm uses the parameter value to select a profile from a plurality of profiles to use to request segments of the video. A method selects a scenario in a plurality of scenarios when a playback condition meets a characteristic value of the scenario. The plurality of scenarios are associated with a different characteristic value. The method adjusts the parameter value of the adaptive bitrate algorithm based on the scenario to generate an adjusted parameter value. The plurality of scenarios have at least one different parameter value. The adjusted parameter value of the adaptive bitrate algorithm is used to analyze the playback of the video.
US11616989B2 Entropy decoding method, and decoding apparatus using same
The present invention relates to an entropy encoding method, an entropy decoding method and to an apparatus using same. The entropy decoding method includes: a step of decoding a bin of a syntax element; and a step of acquiring information on the syntax element based on the decoded bin. In the step of decoding the bin, context-based decoding or bypass decoding is performed for each bin of the syntax element.
US11616986B2 System and method for correcting network loss of data
A reference-order AL-FEC system for recovering network video data packet loss during real-time video communication includes a packetizer, a reference-order AL-FEC encoder, a reference-order AL-FEC decoder and a depacketizer. The packetizer constructs source symbols from source packets of a current frame. The encoder generates a repair symbol from the source symbols of the current frame and other reference frames based on the reference-order, not time-order, between the frames within an encoding window. The encoder also generates a repair packet based on the repair symbol. The decoder recovers a lost source symbol based on the source symbols of the frames of the encoding window and the repair symbol by decoding the repair packet. The decoding is achieved by solving a linear system of the repair symbol.
US11616983B2 Joint component secondary transform
A Method of decoding an encoded video bitstream using at least one processor includes: obtaining an encoded video bitstream, the encoded video bitstream including encoded color components; entropy parsing the encoded color components; dequantizing the color components and obtaining transform coefficients of the color components; applying a joint components secondary transform (JCST) on the transform coefficients of the color components, thereby generating JCST outputs; performing a backward transform on the JCST outputs, thereby obtaining residual components of the color components; and decoding the encoded video bitstream based on the residual components of the color components.
US11616979B2 Picture/video coding supporting varying resolution and/or efficiently handling region-wise packing
Video/picture coding of improved coding efficiency with supporting varying resolution and/or efficiently handling region-wise packing.
US11616978B2 Simplification of hash-based motion searching
Methods, systems and device for hash-based motion estimation in video coding are described. An exemplary method of video processing includes determining, for a conversion between a current block of a video and a bitstream representation of the video, motion information associated with the current block using a hash-based motion search, a size of the current block being M×N, M and N being positive integers and M being not equal to N, applying, based on the motion information and a video picture comprising the current block, a prediction for the current block, and performing, based on the prediction, the conversion.
US11616976B2 Video encoding/decoding method and device, and recording medium storing bit stream
Disclosed is an image encoding method. The method includes deriving a motion refinement candidate from among motion information of spatial neighboring blocks, motion information of a temporal neighboring blocks, predefined motion information, and motion information that most frequently occurs in a reference picture, performing a motion information refinement on the derived motion refinement candidate, and generating a prediction block of a current block by using the motion refinement candidate having undergone the motion information refinement.
US11616974B2 Simplification of history-based motion vector prediction
A method of coding video data, including constructing a history-based motion vector prediction (HMVP) candidate history table that includes motion vector information of previously coded blocks that extend beyond adjacent neighboring blocks of a current block, constructing a motion vector predictor list, and adding one or more HMVP candidates from the HMVP candidate history table to the motion vector predictor list. Adding the one or more HMVP candidates from the HMVP candidate history table comprises comparing a first HMVP candidate in the HMVP candidate history table to two entries in the motion vector predictor list and no other entries, and adding the first HMVP candidate to the motion vector predictor list when the first HMVP candidate is different than both of the two entries in the motion vector predictor list. The method also includes coding the current block of video data using the motion vector predictor list.
US11616971B2 Encoding and decoding method and device for determining a decoding order between a left and a right lower blocks
A video decoding method includes obtaining split information indicating whether to split a current block, splitting the current block into two or more lower blocks when the split information indicates to split the current block, obtaining encoding order information indicating an encoding order of the lower blocks of the current block, determining a decoding order of the lower blocks according to the encoding order information, and decoding the lower blocks according to the decoding order.
US11616967B2 Coding tool setting method and video decoding apparatus
A coding tool setting method and a video decoding apparatus using the same are disclosed. An embodiment of the present invention relates to a method for setting whether or not to use a coding tool, and provides a coding tool setting method comprising the steps of: decoding, from a bitstream, a profile syntax element indicating a target profile among available profiles and a coding tool syntax element for configurable coding tools, the coding tool syntax element indicating whether or not to apply the coding tool; and setting, on the basis of the coding tool syntax element, target coding tools that are coding tools included in the target profile to be on or off.
US11616965B2 Restriction on applicability of cross component mode
A method for visual media processing, including performing a conversion between a current chroma chroma block of visual media data and a bitstream representation of the current chroma chroma block, wherein, during the conversion, a chroma residual of the current chroma chroma block is scaled based on a scaling coefficient, wherein the scaling coefficient is derived at least based on luma samples located in predefined positions.
US11616964B2 Layer ID signaling using extension mechanism
A signaling of the layer ID is described which each of the packets of a multi-layered video signal is associated with. In particular, an efficient way of signaling this layer association is achieved, with nevertheless maintaining the backward compatibility with codecs according to which a certain value of the base layer-ID field is restricted to be non-extendable such as base layer-ID value 0 in the base layer-ID field. Instead of circumventing this restriction specifically with respect to this non-extendable base layer-ID value, the layer-ID of portions of the multi-layer data stream is signaled in an extendable manner by sub-dividing the base layer-ID field into a first sub-field and a second sub-field: whenever the first sub-field of the base layer-ID field fulfills a predetermined criterion, an extension layer-ID field is provided, and if the first sub-field of the base layer-ID field does not fulfill the predetermined criterion, the extension layer-ID field is omitted.
US11616962B2 Method and apparatus for video coding
An apparatus includes processing circuitry configured to decode coding information of a current block from a coded video bitstream. The coding information can indicate that a first prediction mode of the current block is one of a plurality screen content coding (SCC) tools. The processing circuitry can determine whether at least one loop filter associated with the current block is disabled based on at least one of the first prediction mode of the current block and a first quantization parameter (QP) of the current block. In response to the at least one loop filter being determined as disabled, the processing circuitry can reconstruct the current block without the at least one loop filter.
US11616961B2 Flexible tile signaling in video coding
A video coding mechanism is disclosed. The mechanism includes partitioning a picture into a plurality of first level tiles. A subset of the first level tiles is partitioned into a plurality of second level tiles. The first level tiles and the second level tiles are encoded into a bitstream. A split indication is encoded into the bitstream. The split indication indicates that at least one of the first level tiles is split into the second level tiles. The bitstream is stored for communication toward a decoder.
US11616958B2 Methods and devices for coding and decoding a data stream representing at least one image
A method for decoding a data stream representative of an image split into blocks. The method includes: for a current block, determining whether the size of the current block is less than or equal to a threshold, and if so, decoding information indicating a coding mode of the block among first and second coding modes, and reconstructing the current block according to the indicated coding mode, and otherwise reconstructing according to the first coding mode. According to the first coding mode, the current block is reconstructed using an inverse transform of a transformed prediction residue decoded for the current block, and according to the second coding mode the current block is reconstructed, for each pixel, by obtaining a prediction of the pixel from another previously decoded pixel belonging to the current block or to a previously decoded block, and reconstructing the pixel from the prediction and a decoded prediction residue.
US11616956B2 Encoder and decoder
An encoder includes circuitry and memory coupled to the circuitry. The circuitry, in operation, determines whether a first block is available and whether a second block is available, the first block and the second block being defined relative to a current block to be processed; selects a context model based on whether the first block is available, whether the second block is available, which of inter prediction and intra prediction is to be applied to the first block, and which of inter prediction and intra prediction is to be applied to the second block; and encodes, using the context model selected, a parameter indicating which of intra prediction and inter prediction is to be applied to the current block.
US11616954B2 Signal encoding method and apparatus and signal decoding method and apparatus
A spectrum coding method includes quantizing spectral data of a current band based on a first quantization scheme, generating a lower bit of the current band using the spectral data and the quantized spectral data, quantizing a sequence of lower bits including the lower bit of the current band based on a second quantization scheme, and generating a bitstream based on a upper bit excluding N bits, where N is 1 or greater, from the quantized spectral data and the quantized sequence of lower bits.
US11616952B2 Image coding apparatus and image decoding apparatus
An image decoding apparatus includes: a first filter unit configured to apply a first filter to an image (a luminance image and a chrominance image); a second filter unit configured to apply a second filter to an output image of the first filter; a filter set derivation unit configured to decode a filter coefficient from coded data; and a third filter unit configured to apply a third filter to an output image of the second filter by using the filter coefficient. In a case that the third filter unit performs filter processing for the luminance image by using a luminance output image of the second filter, the third filter unit performs processing of clipping an amount of change of a pixel value through the filter processing within a prescribed range of value.
US11616947B2 Intra prediction-based image coding method using MPM list and apparatus therefor
An image decoding method according to the present disclosure comprises deriving a first candidate intra prediction mode based on a first neighboring block of a current block; deriving a second candidate intra prediction mode based on a second neighboring block of the current block; constructing MPM (Most Probable Mode) list of the current block based on the first candidate intra prediction mode and the second candidate intra prediction mode; deriving an intra prediction mode for the current block based on the MPM list; and generating a prediction sample for the current block based on the intra prediction mode, wherein the first neighboring block is a left neighboring block located at the lowermost side among neighboring blocks adjacent to a left boundary of the current block, and wherein the second neighboring block is an upper neighboring block located at the rightmost side among neighboring blocks adjacent to an upper boundary of the current block.
US11616944B2 Image encoding/decoding method and device
Image encoding/decoding method and device according to the present invention enable deciding of an intra-screen prediction mode of a target block, generation of a prediction block of the target block on the basis of the intra-screen prediction mode, and correction of the generated prediction block.
US11616941B2 Direct camera-to-display system
In one embodiment, an electronic display assembly includes a sensor array located on one side of a circuit board and an electronic display array located on an opposite side of the circuit board from the sensor array. The sensor array includes a plurality of sensor pixel units. Each sensor pixel unit includes a plurality of sensor pixels. The electronic display array includes a plurality of display pixel units. Each display pixel unit includes a plurality of display pixels. Each particular one of the plurality of sensor pixel units is mapped to a corresponding one of the plurality of display pixel units such that display pixels of each particular one of the plurality of display pixel units display light corresponding to light captured by sensor pixels of its mapped sensor pixel unit.
US11616939B2 Inspection system
An inspection system for mounting on a user's hand. The inspection system comprising: an imaging unit comprising two sub-units, the first sub-unit being configured to provide images from a first point of view and the second sub-unit being configured to provide images from a second point of view; and a measuring unit configured to provide data relating to a physical property measured at a measurement location on the user's hand. The imaging unit has a separation sensor configured to measure the separation between the two sub-units of the imaging unit. A method of inspecting and/or servicing a machine is also disclosed.
US11616933B1 System and method for managing service and non-service related activities associated with a waste collection, disposal and/or recycling vehicle
Systems and methods are provided for using video/still images captured by continuously recording optical sensors mounted on waste collection vehicles used in in the waste collection, disposal and recycling industry for operational and customer service related purposes. Optical sensors are integrated into the in-cab monitor as well as the onboard computer, digital video recorder and other external devices.
US11616931B2 Medical image processing device, medical image processing method, and endoscope system
Provided are a medical image processing device, a medical image processing method, and an endoscope system that make it easy to compare a region of interest and its peripheral region with each other and make it unlikely to miss the region of interest if the region of interest in a time-series image is reported by using figures. A coordinates calculating unit (43) that calculates, on the basis of region-of-interest information indicating a region of interest in a time-series image, a plurality of sets of coordinates of interest on an outline of a polygon or circle having a symmetric shape that surrounds the region of interest. A reporting information display control unit (45B) that superposes figures on the basis of the calculated plurality of sets of coordinates of interest when superposing the figures for reporting the region of interest on the time-series image. Herein, the figures have a size that does not change with respect to a size of the region of interest.
US11616930B2 Signal processing device and video display device comprising same
Disclosed are a signal processing device and an image display apparatus including the same. The signal processing device of an embodiment of the present disclosure includes: a quality calculator configured to calculate an source quality of an image signal received from an external settop box or a network; an image quality setter configured to set an image quality of the image signal based on the calculated source quality; and an image quality processor configured to perform image quality processing on the image signal based on the set image quality, wherein in response to the source quality of the received image signal being changed at a first time point, the image quality setter changes an image quality setting sequentially from a first setting to a second setting; and based on the image quality setting, the image quality processor performs image quality processing. Accordingly, flicker may be reduced when an image quality is changed due to a change in the source quality of the received image signal.
US11616924B2 CMOS image sensor with image black level compensation and method
An image sensor has an image sensor array and circuit design employing a method of black level compensation to address image shading related to global exposure image capture and rolling row by row readout schemes. An image sensor including the invented black level compensation pixel array and method may be incorporated within a digital camera.
US11616922B2 Intensity-normalized image sensor
An image sensor has a plurality of rows and columns of pixels, including RGB and bandpass I filters in a predetermined pattern shifted between adjacent columns so that none of the RGBI filters is adjacent the same type of filter. Each pixel includes a photodiode, a transfer gate and a floating diffusion. The transfer gate for all pixels in a pattern is controlled by the same signal, which can be a separate synchronous control signal controlled based on a predefined integration period or an asynchronous signal generated internally by the bandpass filter I and that is compared to a predefined voltage level indicative of a predetermined intensity at filter I. Upon activation of either signal, the integration period for the pixels ends and the charge on the floating diffusion for the R, G and B pixels is digitized in relation to the bandpass pixel I using a ratio-to-digital converter.
US11616920B2 Generating sparse sample histograms in image processing
Apparatus for binning an input value into an array of bins, each bin representing a range of input values and the bins collectively representing a histogram of input values, the apparatus comprising: an input for receiving the input value; a memory for storing the array; and a binning controller configured to: derive a plurality of bin values from the input value according to a binning distribution located about the input value, the binning distribution spanning a range of input values and each bin value having a respective input value dependent on the position of the bin value in the binning distribution; and allocate the plurality of bin values to a plurality of bins in the array, each bin value being allocated to a bin selected according to the respective input value of the bin value.
US11616917B1 Dynamic activity-based image generation for online social networks
Among other things, embodiments of the present disclosure can help to automatically generate images displaying activity-based information and distribute such images to other users, such as members of a social network. The image may be modified based on activity data associated with other users and/or from other activity sensors.
US11616914B2 Tracking objects using sensor rotation
An example apparatus for tracking objects includes a controller to receive a depth map, a focus distance, and an image frame of an object to be tracked. The controller is to detect the object to be tracked in the image frame and generate an object position for the object in the image frame. The controller is to calculate a deflection angle for the object based on the depth map, the focus distance, and the object position. The controller is to further rotate an imaging sensor based on the deflection angle.
US11616911B2 Virtual and augmented reality systems and methods
A virtual or augmented reality display system that controls power inputs to the display system as a function of image data. Image data itself is made of a plurality of image data frames, each with constituent color components of, and depth planes for displaying on, rendered content. Light sources or spatial light modulators to relay illumination from the light sources may receive signals from a display controlled to adjust a power setting to the light source or spatial light modulator based on control information embedded in an image data frame.
US11616909B2 Method of compensating for color differences between adjacent lens images in a panoramic image
A method of compensating for color differences between adjacent lens images in a panoramic image is disclosed. The method comprises: calculating color differences of each pair of character regions between any two adjacent lens images out of multiple lens images from a multiple-lens camera according to average color values of the character regions, each character region having a character point; determining color adjustment amounts of character points in each lens image according to the color differences of each pair of character regions; calculating a color adjustment amount of an element according to positions of the element and its two adjacent character points and the color adjustment amounts of the two adjacent character points.
US11616903B2 Method and system for assisting a user who is looking at a screen of a user device
A method for assisting a user, who is looking at a screen of a user device, to focus on a camera region of the screen includes receiving image data of the user, the image data being captured by a camera of the user device arranged to the screen close to the camera region; determining user input data indicative of that the user wants assistance to focus on the camera region; determining, based on the user input, gaze tracking data of the user looking at the screen, wherein the gaze tracking data are representative for a gaze area on the screen, at which the user is looking at a time of the user input or shortly before the user input; and displaying a screen content in the gaze area of the screen in the camera region.
US11616901B2 Adaptive lens step control with multiple filters for camera fast auto focus
An apparatus and method for efficiently determining a final camera lens position that captures a focused input image are described. An image signal processing system of a camera capable of performing automatic focus includes a camera lens, an image sensor, a focus engine, and a lens controller. Rather than generate a single contrast value based on digital signals corresponding to a single image, the focus engine uses at least two value generators to generate multiple contrast values. The value generators are bandpass filters with different bandwidths from one another. The focus engine uses the multiple contrast values, rather than from a single contrast value, to determine a search direction for finding a final lens position of the camera lens, when to use relatively large or coarse step sizes for updating the lens position, and when to use relatively small or fine step sizes for updating the lens position.
US11616898B2 Oral hygiene device with wireless connectivity
System and method for improving the shaving experience by providing improved visibility of the skin shaving area. A digital camera is integrated with the electric shaver for close image capturing of shaving area, and displaying it on a display unit. The display unit can be integral part of the electric shaver casing, or housed in a separated device which receives the image via a communication channel. The communication channel can be wireless (using radio, audio or light) or wired, such as dedicated cabling or using powerline communication. A light source is used to better illuminate the shaving area. Video compression and digital image processing techniques are used for providing for improved shaving results. The wired communication medium can simultaneously be used also for carrying power from the electric shaver assembly to the display unit, or from the display unit to the electric shaver.
US11616890B2 Information processing apparatus, non-transitory computer readable medium storing program, and information processing method for setting value of restarting
An information processing apparatus includes a processor configured to control an operation of an apparatus by executing a control program, in a case where an instruction to shift to a power-off state is received, perform shift from a normal operation state to any one of a first power-off state or a second power-off state, the first power-off state being a state where the operation is stopped without restarting the control program, the second power-off state being a state where the control program is restarted and then the operation is stopped, and in a case where the shift to the first power-off state is made, set at least a part of information regarding an operation of the information processing apparatus to a value that is set in a case where the control program is restarted.
US11616887B2 Image processing device and image forming device
An image processing device includes: a processor configured to obtain a positional deviation amount of an actual folding line from an expected folding line on a test sheet, and generate, based on the positional deviation amount, sheet image information including image data representing an image to be formed on a sheet, so as to change a position of the image.
US11616886B2 Image formation apparatus
An image formation apparatus to form an image on a sheet having a width direction includes a separation and feed roller pair having a feed roller, a conveyance roller pair having a driving roller, and a pair of conveyance guides having inner and outer guides. A part of the inner guide overhangs toward an outer guide side from an external common tangent of the feed roller and the driving roller. Points of intersection with the feed roller on the external common tangent are designated as first intersection points and points of intersection with the driving roller on the external common tangent are designated as second intersection points. When ends of the feed and driving rollers serve as vertexes, a guide surface of the inner guide is linearly continuous in the width direction in an inner region on the guide surface of the inner guide formed by connecting the vertexes.
US11616882B2 Accelerating pre-production feature usage
Traditionally, when a feature is updated or a new feature is released, the feature undergoes internal testing and validation before external distribution. However, some features may receive proportionately less internal usage than customer usage reflected externally. Low internal usage of features can lead to weak telemetry data, which can allow code regressions (e.g., bugs) to go undetected until the features are released to customers. Accordingly, accelerated internal feature usage is provided to mirror external customer usage. Highly used features are dynamically identified and, any deficiencies in internal feature usage are identified. Tenant sites estimated to generate at least a portion of the deficiency in feature usage are identified. These sites may be migrated or replicated to internal validation rings to generate additional internal feature usage. By increasing internal testing and validation, the stability and reliability of feature releases are increased, thereby improving customer experience and satisfaction with the software product.
US11616872B1 Voice application network platform
A distributed voice applications system includes a voice applications rendering agent and at least one voice applications agent that is configured to provide voice applications to an individual user. A management system may control and direct the voice applications rendering agent to create voice applications that are personalized for individual users based on user characteristics, information about the environment in which the voice applications will be performed, prior user interactions and other information. The voice applications agent and components of customized voice applications may be resident on a local user device which includes a voice browser and speech recognition capabilities. The local device, voice applications rendering agent and management system may be interconnected via a communications network.
US11616863B2 Methods and systems for fast upgrade or reboot for network device
Embodiments of the present disclosure are directed to protocol state transition and/or resource state transition tracker configured to monitor, e.g., via filters, for certain protocol state transitions/changes or host hardware resource transitions/changes when a host processor in the control plane that performs such monitoring functions is unavailable or overloaded. The filters, in some embodiments, are pre-computed/computed by the host processor and transmitted to the protocol state transition and/or resource state transition tracker. The protocol state transition and/or resource state transition tracker may be used to implement a fast upgrade operation as well as load sharing and or load balancing operation with control plane associated components.
US11616862B2 System and method for compressing controller area network (CAN) messages
A system for compressing Controller Area Network (CAN) messages, the system comprising a processing resource configured to: obtain a CAN messages sequence including a plurality of CAN messages intercepted at a given order by at least one device adapted to monitor messages transmitted via communication channel(s) of a vehicle; group the CAN messages of the CAN messages sequence into MID groups, by a CAN MID field of the CAN messages; for each given MID group of the MID groups split the CAN messages of the MID group into field groups, wherein each field group comprises a respective field of a plurality of fields of the CAN messages of the MID group; employ at least one compression scheme on at least one of the field groups; generate a data structure comprising the field groups; and compress the data structure using a lossless compression algorithm, giving rise to a compressed data structure.
US11616861B1 Symmetry receiving differential manchester encoding
A 10BASE-T1S PHY method and apparatus are provided for receiving an analog MDI signal conveying DME-encoded data at a receiver comparator to generate a digital output signal, processing the digital output signal using a pulse encoder to generate a pulse-coded output signal with pulses generated at each rising or falling transition in the digital output signal, processing the pulse-coded output signal with an output driver to generate a pulse-coded driver output signal that is transmitted to a receiver interface pin RX, processing the pulse-coded driver output signal with an input comparator to generate a pulse-coded comparator output signal, processing the pulse-coded comparator output signal using a pulse decoder to generate a DME-encoded PMA input signal in which timing asymmetries caused by processing at the receiver comparator and/or output driver have been eliminated, and then processing DME-encoded PMA input signal at a digital PHY circuit in the Ethernet PHY.
US11616860B2 Information display method, terminal, and server
An information display method, terminal, and server, where the method includes obtaining, by a terminal, content information of at least one content source, where the at least one content source corresponds to at least two pieces of account information stored in the terminal, integrating, by the terminal, the content information into content display information, and displaying, by the terminal, the content display information. Content information of a content source is obtained, integrated, and then displayed to a user by classification, so that it is concise and intuitive for the user to query information without cumbersomeness.
US11616855B2 Fragmenting media content
Systems and methods relating to fragmenting content based on metadata are disclosed. In one embodiment, metadata is obtained from data that is accessible from an interface. A content descriptor, based on at least a portion of the metadata, may be utilized to determine fragment size. The content descriptor value may be derived from multiple forms of metadata, such as for example, genre, sub-genre, presence of live media, and combinations thereof. The fragments may be either virtual or physically discrete segments or files. In one aspect, the value may be the sole basis for determining the fragment lengths. In another aspect of the embodiment, the division of the content is conducted such that each resultant fragment comprises a single frame type.
US11616849B2 Distributed split edge application architecture
In an embodiment, application delivery to end-user devices may be handled by a combination of an application device and a distributed set of split edge devices located closer to the end-user device within a network. The split edge devices are instructed by the application device about how to manage traffic to and from the end-user devices. The application device determines whether content is stored to content cache of a split edge device. The application device, when the content is stored to the split edge device, refrains from sending the content and instead sends instructions to the split edge device that include reference to a location of the content, and instruct the split edge device to send the content to an application and/or device. The application device, when the content is not stored to the split edge device, sends the content with instructions to store the content locally.
US11616848B2 Curating proxy server pools
A system and method of forming proxy server pools is provided. The method comprises several steps, such as requesting a pool to execute the user's request and retrieving an initial group. The system checks the service history of an initial group, including whether any of the proxy servers in an initial group are exclusive to existing pools. The exclusive proxy servers in an initial group with eligible proxy servers are replaced when needed and new proxy server pools are formed. The system also records the service history of proxy servers and pools before and after the pools are created. The method can also involve predicting the pool health in relation with the thresholds foreseen and replacing the proxy servers below the threshold.
US11616847B2 Leveraging web cookies for carrying messages across cloud application communications
Embodiments described herein leverage web cookies to carry messages across cloud application communications, wherein the messages are between entities that are not part of the cloud application itself. For example, in embodiments, a proxy server is interconnected between a client computer that is executing a front-end component of an application and an application server that is executing a back-end component of the application. The proxy server intercepts a request from the front-end component that is intended for the back-end component and generates a response thereto that includes a command to create a web cookie at the client computer, wherein the web cookie includes data to be utilized by a custom code component of the client computer. The proxy server may further cause the custom code component to be injected into the front-end component of the application for execution by the client computer.
US11616846B2 Activation of an application session based on authentication of a user device and a characteristic of the user device
In some implementations, a system may receive, from a user device, a user-side request associated with establishing an application session, wherein the user-side request includes an optical code. The system may receive, from an agent device, an agent-side request associated with the agent device joining the application session, wherein the agent-side request includes authentication information that indicates that the agent device scanned the optical code from an output component of the user device. The system may send, to the user device, a notification to permit the user device to join the application session. The system may activate the application session to permit the user device and the agent device to communicate via the application session.
US11616840B2 Method, apparatus and system for processing unmanned vehicle data, and storage medium
The present disclosure provides a method, an apparatus and a system for processing unmanned vehicle data, and a storage medium, where the method includes: receiving data acquisition indication information sent by a cloud server; obtaining, according to the data acquisition indication information, target data from a data set; and storing the target data, and/or sending the target data to the cloud server, which can thereby achieve acquisition and storage of data meets a preset condition, reduce amount of data storage of the unmanned vehicle and amount of data sent to the cloud server, save network resources, and improve data transmission efficiency.
US11616839B2 Intelligent edge computing platform with machine learning capability
An edge computing platform with machine learning capability is provided between a local network with a plurality of sensors and a remote network. A machine learning model is created and trained in the remote network using aggregated sensor data and deployed to the edge platform. Before being deployed, the model is edge-converted (“edge-ified”) to run optimally with the constrained resources of the edge device and with the same or better level of accuracy. The “edge-ified” model is adapted to operate on continuous streams of sensor data in real-time and produce inferences. The inferences can be used to determine actions to take in the local network without communication to the remote network. A closed-loop arrangement between the edge platform and remote network provides for periodically evaluating and iteratively updating the edge-based model.
US11616837B2 Distributed processing network system, integrated response systems and methods providing situational awareness information for emergency response
A distributed processing network system (10), an integrated response system (50) comprising multiple distributed processing network systems and related methods providing situational awareness information for emergency responses. In one embodiment there is disclosed a response system (50) comprising first and second server based systems (10, 11) each providing real time awareness of personnel (18, 19) for different organizations, the first system receiving information for a first organization and the second system receiving information for a second organization, the first system coupled to the second system to communicate information generated in the first system to personnel in the second organization via the second system to facilitate timely and appropriate response by personnel in the second organization to an emergency situation in the first organization.
US11616833B2 Information processing apparatus and non-transitory computer readable medium storing program for service invitation
An information processing apparatus includes an extracting unit that extracts, based on attribute information of an object necessary for using a service provided by a service system and information related to a user of the service system, a candidate for the user to be invited to the service, out of users who are yet to use the service.
US11616828B2 System and method for remote support, and web application server for executing the same
A system for a remote support according an embodiment includes a web viewer configured to receive a request for execution of a remote support service from a logged-in administrator, a web application server configured to receive a request for generation of a connection space for the remote support service from the web viewer and generate a first connection space and a first connection code for identifying the first connection space based on the request for generation, a relay server configured to receive the first connection code, generate a second connection space in which the first connection code is stored, and receive a request for provision of the remote support service from a mobile terminal, and a message broker configured to mediate a plurality of message queues between the first connection space and the second connection space for the remote support service between the web viewer and the mobile terminal.
US11616827B2 Webtier as a service
A method for automated web resource deployment is provided. The method comprises creating web resource publication requests, wherein each web resource publication request comprises a number of configuration changes necessary to publish a web resource, on a network, at a particular uniform resource location. A standard format, validation workflow, and an approval workflow are provided for automation of the web resource publication requests. Once validated and approved, web resource publication requests are automatically converted to API calls which are executed on backend servers to implement the configuration changes required in the environment without further human intervention.
US11616825B2 System and method of aggregating and interpreting data from connected devices
Embodiments of the disclosure provide a method for aggregating and providing health data records to an electronic device. The method is performed by a server that includes a processor and a non-transitory computer readable medium with processor-executable instructions stored thereon. When the instructions are executed by the processor, the server performs the method including: (a) receiving collected data from one or more client devices, the collected data comprising health related data including at least one of step count data, heart rate data, sleep sensor data; (b) extracting metadata from the collected data; (c) pseudonymizing the collected data; (d) categorizing the collected data using the extracted metadata and enterprise ontology of the server; and (e) storing the collected data.
US11616824B2 Transparent intercept for adaptive bitrate splicer
Methods, systems, and computer readable media can be operable to facilitate the intercept and manipulation of content requested by a client device. The methods, systems, and apparatuses described herein enable the interception and redirection of packets based upon a set of rules. Intercepted packets may be redirected away from an origin server and may be forwarded to a splicing device. The splicing device may establish a session with a corresponding origin server, and retrieve content that is requested by the intercepted packet. In embodiments, the splicing device may identify alternate content that is associated with the intercepted packet and/or content that is further associated with a device or subscriber associated with the packet. One or more segments of the requested content, or the entirety of the requested content may be replaced with the alternate content, and the modified content may be output to the client device requesting the content.
US11616820B2 Processing files from a mobile device
The presently described subject matter allows the user to interactively browse a collection of electronic files, such as a digital photo collection, remotely using a mobile telephone. Files from the collection of electronic files can be directed from the mobile telephone to be sent to a remote display device, where the file can be displayed. Also, a user can record voice and text annotations from the mobile phone to preserve with an electronic file, and which is transported along with the file when it is displayed on a remote display device.
US11616818B2 Distributed control of media content item during webcast
Disclosed embodiments include systems and methods for distributed control of media-playback components of a webcast. In an example, a webcast presenter's device can include a webcast compositing engine for creating a webcast from a variety of data sources, a media-playback engine for playing media content items, and a message processing engine for processing messages sent from audience members to the presenter. The message processing engine can obtain the messages and parse the messages for tokens indicative of a requested media content item. The message processing engine, having identified the requested media content item, can then cause the media-playback engine to play the requested content or add it to a queue.
US11616815B2 Chatbot interface for network security software application
A chatbot interface is provided for a network security software application. The chatbot interface can receive and act upon text utterances from a user or from a speech-to-text engine in instances where the user provided a voice utterance. The chatbot interface also can automatically perform tasks relating to network security. In one embodiment, the chatbot interface receives a text utterance, performs named entity recognition on the text utterance, performs intent classification to determine the intent of the text utterance, and performs an action based on the determined intent.
US11616813B2 Secure exploration for reinforcement learning
A secured exploration agent for reinforcement learning (RL) is provided. Securitizing an exploration agent includes training the exploration agent to avoid dead-end states and dead-end trajectories. During training, the exploration agent “learns” to identify and avoid dead-end states of a Markov Decision Process (MDP). The secured exploration agent is utilized to safely and efficiently explore the environment, while significantly reducing the training time, as well as the cost and safety concerns associated with conventional RL. The secured exploration agent is employed to guide the behavior of a corresponding exploitation agent. During training, a policy of the exploration agent is iteratively updated to reflect an estimated probability that a state is a dead-end state. The probability, via the exploration policy, that the exploration agent chooses an action that results in a transition to a dead-end state is reduced to reflect the estimated probability that the state is a dead-end state.
US11616811B2 Tracking usage of corporate credentials
Phishing attacks attempt to solicit valuable information such as personal information, account credentials, and the like from human users by disguising a malicious request for information as a legitimate inquiry, typically in the form of an electronic mail or similar communication. By tracking a combination of outbound web traffic from an endpoint and inbound electronic mail traffic to the endpoint, improved detection of phishing attacks or similar efforts to wrongly obtain sensitive information can be achieved.
US11616806B1 Methods for protecting web based resources from D/DoS attacks and devices thereof
A method, non-transitory computer readable medium and device that assists with preventing distributed denial of service attack includes receiving a request for a web resource from a client computing device. The received requested for the web resource is determined for presence of referrer header information. When the received request is determined to include the referrer header information, then the referrer header information is checked whether it includes a known domain and a valid cookie associated with the known domain. A distributed denial of service attack is prevented by providing a proactive challenge to the requesting client computing device when received request for the web resource does not include the referrer header information or when the referrer header information comprises the known domain and does not include the valid cookie.
US11616799B1 Training a model to detect malicious command and control cloud
The technology disclosed relates to a method, system, and non-transitory computer-readable media that trains a cloud traffic classifier to classify cross-application communications as malicious command and control (C2) traffic or benign cloud traffic. The training uses blocks of malicious Hypertext Transfer Protocol (HTTP) transactions targeted at a plurality of cloud applications by a plurality of clients prequalified as malicious command and control (C2) cloud traffic, and also blocks of benign HTTP transactions targeted at the plurality of cloud applications by the plurality of clients prequalified as benign cloud traffic. A cloud traffic classifier is trained on the cross-application malicious training example set and on the cross-application benign training example set by processing the blocks of the malicious and benign HTTP transactions as inputs, and generating outputs that classify the training examples as respectively malicious C2 cloud traffic or benign cloud traffic.
US11616797B2 Large scale malware sample identification
A method including receiving a feature vector of an unknown sample, computing a MinHash of the unknown sample based on Jaccard-compatible features, querying a Locality Sensitive Hashing forest of known samples with the MinHash of the unknown sample to identify a first subset of known samples that are similar to the unknown sample, receiving for each individual known sample in the first subset, a feature vector including non-Jaccard distance-compatible features, computing a first sub-distance and a second sub-distance between the unknown sample and the known samples in the first subset, calculating a total distance for each known sample in the first subset by combining the first and the second sub-distances, identifying, based on the calculated total distances, a second subset of known samples that are most similar to the unknown sample, and classifying the unknown sample based on the second subset.
US11616794B2 Data management system
Methods, systems, and computing platforms for data communication are disclosed. Exemplary implementations may: electronically process with a machine learning controller; electronically process the data payloads in the network with deep machine learning; and real-time adjusting of a plurality of network infosec controls associated with the originating node attribute based on the infosec control attribute.
US11616788B2 Strengthening integrity assurances for DNS data
One or more DNS services are provided that are configured to not only tolerate some commonly observed DNSSEC misconfigurations (while still providing DNSSEC's security guarantees), but also provide a more intelligent DNS resolution process informed by DNSSEC.
US11616781B2 Air gap-based network isolation device
A network isolation device includes an internal network interface to connect the network isolation device to an internal network and an external network interface to connect the network isolation device to an external network. The network isolation device further includes an airgap device that operates to (i) close an air gap to connect the internal network to the external network, (ii) open the air gap to disconnect the internal network from the external network. The device further includes a signal receiver that receives a signal from a signal source, and based on the signal, performs an authentication process to determine whether the signal or the signal source are authorized. In response to determining that the signal or the signal source is authorized, the receiver operates the airgap device to close the air gap and connect the internal network to the external network.
US11616775B2 Network access authentication method, apparatus, and system
Embodiments of the present application provide a network access authentication method, apparatus, and system. The network access authentication method mainly comprises: obtaining a user name by a network access management client through encryption using a device ID of a terminal device, and obtaining a dynamic password through encryption using the device ID and a time value within a time step, so that the terminal device performs network access authentication using the user name and the dynamic password. The device ID is uniquely assigned by an authentication server to the terminal device, and thus functions to identify the identity of the terminal device, so that network access authentication can be independent of digital certificates, thereby solving the problem that the terminal device cannot accomplish network access authentication for unsupported use of or unavailability of a digital certificate, while meeting network access security requirements.
US11616767B2 Storage system with encrypted data storage device telemetry data
Systems and methods for encrypted storage device telemetry data are described. Storage device telemetry data may be collected for a telemetry message, such as a non-volatile memory express (NVMe) telemetry command, and encrypted using a first encryption key. The first encryption key may be encrypted using one or multiple second encryption keys and the encrypted first encryption key may be added to the telemetry message. A client system may receive the telemetry message, decrypt the encrypted first encryption key, and use the first encryption key to decrypt the encrypted storage device telemetry data.
US11616765B2 Practical private algorithms for robust statistics
Embodiments described herein provide a privacy mechanism to protect user data when transmitting the data to a server that estimates a p-th frequency moment, Fp for p∈[1, 2] and p low-rank approximation for p∈[1, 2). The privacy mechanism uses an encode-shuffle then analyze (ESA) framework that provides a compromise between the central and local model of privacy.
US11616764B1 In-band DSP management interface
In an optical communication system, a high-speed data interface to an optical module can be configured from the module's host-side interface and line-side interface. These module interfaces can be configured with an integrated digital signal processor (DSP) having a DSP microcontroller unit (MCU) as a high-speed in-band DSP management interface. The DSP MCU can communicate to either a host MCU in a host switch/router via the host-side interface or to an external device through the optics hardware via the line-side interface. The present invention provides for systems, devices, and methods using this interface for numerous module DSP-related applications, such as firmware upgrades, management data, diagnostic/telemetry streaming, encryption key programming, and the like.
US11616763B2 Secure anonymous communications methods and apparatus
Methods and apparatus for supporting secure anonymous communications are described. A first communications device, e.g., a virtual desktop device, in a communications network, e.g., a private ISP network, serves on behalf of a first user device as an endpoint for a communications session with a second device. The first communications device includes a fabricated set of device attribute information which is different from an actual set of device attribute information corresponding to the first user device. The communications network includes a set of onion routers and onion routing is used within the network.
US11616762B2 Method and system for voice based application blocker
A method, a system, and a non-transitory computer readable medium are disclosed for a voice based application blocker. The method includes receiving, on a gateway, a text message from a mobile device; tokenizing, on a processor of the gateway, the text message into at least a user and a purpose, the purpose being denying or granting access of the user to one or more applications from the gateway; and creating, on a firewall of the gateway, blocking rules for the user to the one or more applications from the gateway.
US11616760B1 Model thresholds for digital content management and selection
According to examples, a system for automatically optimizing thresholds of content processing models that select content for presentation to users may include a processor and a memory storing instructions. The processor, when executing the instructions, may cause the system to select a subset of the content processing models for a content policy grouping. The subset of content processing models comprises models selected from a plurality of content processing models based on content rejection rates and models that are selected based on corresponding model probabilities. The system may further obtain an optimized threshold for each model of the subset of content processing models based on an iterative global optimization technique. The system may thereby facilitate automatic selection or rejection of the content pieces for presentation to users on an online system based on the policies associated with corresponding content policy grouping by employing the subset of content processing models with the optimized thresholds.
US11616759B2 Increased coverage of application-based traffic classification with local and cloud classification services
A cloud-based traffic classification engine maintains a catalog of application-based traffic classes which have been developed based on known applications, and a local traffic classification engine maintains a subset of these classes. Network traffic intercepted by the firewall which cannot be classified by the local engine is forwarded to the cloud-based engine for classification. Upon determination of a class of the traffic, the cloud-based engine forwards the determined class and corresponding signature to the local engine. The firewall maintains a cache which is updated with the signatures corresponding to the class communicated by the cloud-based engine. Subsequent network traffic sent from the application can be determined to correspond to the application and classified according locally at the firewall based on the cached signatures. Localization of the cache to the firewall reduces latency of traffic classification operations as the catalog of classification information stored in the cloud scales.
US11616744B2 Context-dependent message extraction and transformation
Systems and methods for parsing and publishing messages corresponding to changes in a database are disclosed. An example method includes receiving a first plurality of messages from the database, parsing the messages in the first plurality of messages into at least a first group and a second group of messages, each message in a group sharing a common identifier, and forwarding the first group of messages and the second group of messages to an event streaming platform.
US11616743B2 Information sharing system and information sharing method
An information sharing system includes a processor that receives and stores a post from a user group, outputs content of the post to a terminal device of a user, receives a joining request regarding synchronous output of the content, from the user, and acquires specification of a joining mode of the terminal device in the synchronous output, the processor makes, based on a reproduction operation in the terminal device of the user from whom the joining request is received, the terminal devices of all the users from whom the joining request is received synchronously output the content, establishes communication between the terminal device and equipment of a vehicle when the specification of a driver mode is acquired as the joining mode, and outputs the content to the equipment.
US11616742B2 Methods and systems for end-to-end encrypted message history exchange
Exemplary embodiments relate to methods and systems for transferring a user's messaging history from one device to another. A user's primary device, storing the official truth of the user's messaging history, establishes an end-to-end encrypted session with a new device, using a first decryption key during initial session setup. The primary device may conglomerate all or a portion of the messages comprising the user's messaging history into a data blob which is encrypted and sent to a blob store. An E2E encrypted message is sent from the primary device to the new device, via an intermediate server. The E2E encrypted message includes a second key for decrypting the data blob and a pointer to the location of data blob on the blob store. The new device retrieves the data blob from the blob store and decrypts the data blob using the second key to extract plaintext versions of the user's messages and adds the messages to the messaging application on the new device. Multiple data blobs may be sent from the primary device to the new device until all or a desired subset of the user's messaging history is present on the new device.
US11616736B2 Dynamic resource allocation aided by reinforcement learning
A communication system in which DRA control is aided by RL. An example embodiment may control one or more buffer queues populated by downstream and/or upstream data streams. The egress rates of the buffer queues can be dynamically controlled using an RL technique, according to which a learning agent can adaptively change the state-to-action mapping function of the DRA controller while circumventing the RL exploration phase and relying on extrapolation of the already taken actions instead. This feature may result in at least two benefits: (i) cancellation of a performance penalty typically associated with RL exploration; and (ii) faster learning of the environment, as the learning agent can determine the performance metrics of many actions per state in a single occurrence of the state. In an example embodiment, the communication system may be a DSL system, a PON system, or a wireless communication system.
US11616733B2 Method for controlling network congestion, access device, and computer readable storage medium
A method for controlling network congestion, including overlaying an overlay network packet header on an encapsulation outer layer of a transmit packet, where the overlay network packet header includes an outer Internet Protocol (IP) header, and an explicit congestion notification (ECN) identifier of an ECN is set in the outer IP header, decapsulating the overlay network packet header for an encapsulated reply packet, where an inner congestion identifier that is based on the ECN identifier is obtained from an IP header of the decapsulated reply packet through matching, and if the decapsulated reply packet is a User Datagram Protocol (UDP) packet, forwarding the UDP packet to a preset slow channel.
US11616731B1 Determining a time-to-live budget for network traffic
A Time-To-Live budget can be determined for network packets and used to understand an impact of network expansion on dropped packets. Additionally, the TTL budget can be used to determine how network expansion impacts services provided in the data center. In one embodiment, agents executing on data center routers are used to transmit packet header data including a TTL budget to a collector server computer. The collector server computer can discern signal (production flows) from noise (traceroutes and probing traffic) to detect packets that are at risk of being dropped or have been dropped due to TTL expiration. Alerts can be generated for packet flows with dangerously low remaining TTL budget or no remaining budget, which are at high risk of expiring due to operational events resulting in traffic temporarily traversing slightly longer paths. A dashboard can be provided with historic TTL budget data and trends.
US11616728B2 Modifying quality of service treatment for data flows
Modifying quality of service treatment for data flows A method of transmitting a data flow via a network is disclosed where the network supports transmission of data in accordance with a plurality of Quality of Service, QoS, models. Prior to transmission of the data flow, a client system configures a first class of service for the data flow based on a first QoS model, and a first portion of the data flow is transmitted through the network in accordance with the first class of service. In response to detecting a renegotiation condition, the network communicates with the client system to configure a second class of service for the data flow based on a second QoS model, and a subsequent portion of the data flow is transmitted through the network using the second class of service.
US11616727B2 Data pipeline configuration using network sensors
In one embodiment, a service associates a plurality of descriptive tags with a node in a network, based on an inspection of packets sent by the node that is performed by one or more sensors deployed to the network. The service identifies, based on the plurality of descriptive tags, data to be extracted from traffic of the node by an edge device located at an edge of the network. The service determines, based on the plurality of descriptive tags, an external destination to which the data should be sent by the edge device after extraction. The service sends a data pipeline configuration to the edge device, wherein the data pipeline configuration causes the edge device to extract the data from the traffic sent by the node and to send the data to the external destination.
US11616722B2 Storage system with adaptive flow control using multiple feedback loops
At least one processing device comprises a processor and a memory coupled to the processor. The at least one processing device is configured to implement adaptive flow control in conjunction with processing of input-output operations in a storage system. The adaptive flow control comprises a first feedback loop in which a window size defining an amount of concurrent processing of the input-output operations in the storage system is adjusted responsive to a measured latency for processing of one or more of the input-output operations. The adaptive flow control further comprises a second feedback loop in which at least one latency threshold used to control adjustment of the window size in the first feedback loop is adjusted. The at least one processing device illustratively comprises at least one processing core of a multi-core storage node of a distributed storage system.
US11616720B2 Packet processing method and system, and device
The application disclose a packet processing method that includes: receiving, by a service distribution node, service routing information sent by a controller, where the service routing information includes a flow identifier, a service identifier, and a next-hop address, the flow identifier is used to identify a packet flow, the service identifier is used to identify a sequence of a service node instance that processes the packet flow, and the next-hop address is used to identify the service node instance that processes the packet flow; receiving a first packet; acquiring a first flow identifier according to the first packet, and searching the service routing information according to the first flow identifier to acquire a matched service identifier and a matched next-hop address; and sending a second packet to a first service node instance that has the matched next-hop address, which implements service processing on a packet flow.
US11616719B2 Techniques for determining client-side effects of server-side behavior using canary analysis
In one embodiment of the present invention, a sticky canary router routes each request associated with a service to either a canary cluster of servers that implement a modification to the service or a baseline cluster of servers that do not implement the modification. The sticky canary router implements a mapping algorithm that determines the routing of each request based on a current time, a time window for the routing, and a characteristic of the request. Notably, the mapping algorithm may be implemented such that, for time segments with duration equal to the time window, the sticky canary router routes all requests received from a particular device in a consistent fashion—either to the canary cluster or to a baseline cluster. Configured thusly, the sticky canary router enables the analysis of approximately full sections of client interactions with the canary servers, thereby facilitating identification of client-side effects of the changes.
US11616715B2 Stateless multicast with traffic engineering
Various example embodiments for supporting stateless multicast in communication networks are presented. Various example embodiments for supporting stateless multicast in communication networks may be configured to support stateless multicast in a packet distribution network that supports traffic engineering (TE). Various example embodiments for supporting stateless multicast in a packet distribution network that supports TE may be configured to support stateless multicast in a stateless multicast domain with TE. Various example embodiments for supporting stateless multicast in a stateless multicast domain with TE may be configured to support stateless multicast in a stateless IP multicast domain with TE, which may be referred to herein as a stateless IP multicast TE domain.
US11616713B2 Next generation network monitoring architecture
A stream processing system in a first zone of a telecommunication network may obtain at least one policy for processing trace data of virtual network functions (VNFs) in the first zone, and obtain the trace data of the VNFs from a data distribution platform of the telecommunication network, where the trace data is published in accordance with a topic to the data distribution platform by the VNFs, and where the stream processing system comprises a subscriber to the topic. The first stream processing system may additionally forward at least a first portion of the trace data to a second stream processing system of the telecommunication network in accordance with the at least one policy, where the first portion comprises less than all of the trace data, and where the second stream processing system is for a region of the telecommunication network that includes the first zone and a second zone.
US11616701B2 Virtual proximity radius based web conferencing
Techniques for utilizing a communication system that provides access to a representation of a virtual environment to participants. The communication system may establish connections between personal communication bridge(s) associated with participant(s) interacting within a virtual proximity radius of one another's virtual indicator in the virtual environment. The communication system may cause conversation data to be sent each personal communication bridge associated with a participant that is within the virtual proximity radius of the sender, and cause conversation data to be received via the personal communication bridge of a participant that is within the virtual proximity radius of the sender. The communication system may also analyze data associated with the participant profile(s) and transcribed conversation data from the communication bridges(s) to recommend potential conversations of interest to participant(s).
US11616700B1 Machine learning algorithms for change management in information technology environment
An information technology (IT) network includes configuration items (CIs) that may constantly change, where the CIs describe hardware components or software components that are configured to operate on the IT network. Machine learning techniques can be employed determine whether a CI has been changed (e.g., added, updated, or removed) in the IT network. For example, a software code or a log message associated with a CI can be analyzed to determine whether the CI is a newly added or updated within the IT network.
US11616697B2 Self-healing and dynamic optimization of VM server cluster management in multi-cloud platform
Virtual machine server clusters are managed using self-healing and dynamic optimization to achieve closed-loop automation. The technique uses adaptive thresholding to develop actionable quality metrics for benchmarking and anomaly detection. Real-time analytics are used to determine the root cause of KPI violations and to locate impact areas. Self-healing and dynamic optimization rules are able to automatically correct common issues via no-touch automation in which finger-pointing between operations staff is prevalent, resulting in consolidation, flexibility and reduced deployment time.
US11616696B2 Transparent auto-negotiation of Ethernet
A system for negotiating Ethernet link settings between interconnected nodes in a network having an Ethernet protocol stack that includes a PCS sub-layer with an auto-negotiation function. The system comprises connecting an intermediate device coupled between two network nodes via optical or copper interfaces, with the link settings between each node and the connected intermediate device being the same, thereby bypassing the auto-negotiation of the PCS sub-layer in the intermediate device. The intermediate device may transparently send negotiation messages from each node to the other during the link negotiation phase without interacting with those messages. Instead of the intermediate device, a single form pluggable (SFP) device may be connected between the two network nodes via optical or copper interfaces on the network side and via an SFP slot on the device side.
US11616695B2 System for evaluating and tuning resources for anticipated demands
An infrastructure management subsystem receives a selection of a planned configuration of the computing infrastructure and a baseline demand that includes a current usage of computing resources of the computing infrastructure. The infrastructure management subsystem determines an anticipated turbulence. The anticipated turbulence includes a quantitative indication of anticipated fluctuations in future infrastructure demand as a function of time. The infrastructure management subsystem determines an effective turbulence for the planned infrastructure configuration. The effective turbulence includes a quantitative indication of anticipated fluctuations in future infrastructure availability. The infrastructure management subsystem determines a configuration score corresponding to an extent to which the anticipated fluctuations in the effective turbulence destructively interfere with the anticipated fluctuations in the anticipated turbulence.
US11616693B1 Systems and methods for indicating connection relevance in a network environment
Systems, devices, and methods are discussed for memory efficient network use modeling.
US11616692B1 Configuration drift management tool
A system includes one or more databases configured to store at least one configuration rule and one or more processors in communication with the databases. The processors may be configured to compare a product parameter to configuration rules to determine a drift item based on a current value of the product parameter being different than acceptable values defined by a test specified by the configuration rule, the test comprising one of a plurality of test types. The processors may be further configured to store, based on a determination that the drift item is not in a drift database of the databases, the drift item in a database, receive a record of one or more actions performed to resolve the drift item, and in response to receipt of the record, modify a status of the drift item from unresolved to resolved in the database.
US11616688B1 Adapting delivery of digital therapeutics for precision medicine
Systems, methods, and devices, including computer-readable media, for managing operation of devices in complex systems and changing environments. In some implementations, a server system stores data indicating management plans for each of a plurality of different devices, each management plan indicating a device-specific set of program states for programs in a predetermined set of programs. The server system alters the management plans and enforces interdependence of the programs, and the server system generates a customized instruction that alters operation of the device according to the device-specific set of program states assigned in the altered management plan for the device. The server system causes each device to perform one or more operations of the device determined according to the device-specific set of program states assigned in the altered management plan for the device.
US11616685B2 Data link error feedback signaling
A data link error feedback signaling system includes a transmitting network device and a receiving network device. The receiving network device may be operable to receive a network data unit from the transmitting network device over a data link, detect an error in the network data unit, and provide data link integrity information based on the error to the transmitting network device. The receiving network device may provide the data link integrity information by marking the data link flawed in a routing protocol, transmitting the data link integrity information via an informational protocol, and so on. The transmitting network device may respond to the data link integrity information, such as by marking the data link less preferred, marking the data link down, transmitting an alarm regarding the data link to a network operator, omitting taking an action upon determining that errors are below an error threshold, and so on.
US11616682B2 Threshold selection for KPI candidacy in root cause analysis of network issues
In one embodiment, a network assurance service that monitors a network maps time series of values of key performance indicator (KPIs) measured from the network to lists of unique values from the time series. The service sets a target alarm rate for anomaly detection alarms raised by the network assurance service. The service uses an optimization function to identify a set of thresholds for the KPIs. The optimization function is based on: a comparison between the target alarm rate and a fraction of network issues flagged by the service as outliers, KPI thresholds selected based on the lists of unique values from the time series, and a number of thresholds that the KPIs must cross for the service to raise an alarm. The service raises an anomaly detection alarm for the monitored network based on the identified set of thresholds for the KPIs.
US11616679B2 Detection and mitigation of 5G/6G message faults
In current practice, faulted messages are typically discarded and a retransmission is requested. Forward error-correction codes (FEC) in 5G and 6G are bulky, resource-expensive, and often unable to resolve the problem. Disclosed are systems and methods for determining which specific message elements are faulted, so that just the faulted portion can be retransmitted, instead of the entire message. For example, the amplitudes of the I and Q branches, of each message element, can be compared to the calibrated amplitude levels of the modulation scheme. Any message element with a large amplitude deviation is suspect. Other factors, such as the SNR, can also be considered in evaluating the validity of each message element. Usually, all of the faulted message elements occupy just a portion of the message. Compact formats are disclosed specifying which portion of the message is to be retransmitted, thereby saving time, power, and background generation.
US11616678B2 Data recovery using subcarriers gradients
The data recovery from sub-carriers gradients (DRSG) of a received OFDM signal affected by deterministic and random distortions introduced by a transmission link, contributes a method and a circuit for utilizing gradients characterizing shapes of OFDM sub-carriers comprised in such OFDM signal for recovering data symbols transmitted originally.
US11616677B2 Receiving device, mobile terminal test apparatus provided with receiving device, and mobile terminal test method
A receiving device includes a reception unit 10 that samples a signal to be measured a transmitted from a DUT 2 and acquires a sample signal d; an FFT processing unit 21 that performs an FFT process by multiplying the sample signal; a signal length calculation unit 31 that calculates a signal length of the signal to be measured from the sample signal; a comparing unit 33 that compares the calculated signal length of the signal to be measured with a first FFT length conforming to a communication standard; and an FFT length setting unit 34 that, when as a result of the comparison by the comparing unit, the signal length is shorter than the first FFT length, sets a second FFT length shorter than the signal length of the signal to be measured, as the FFT length of the FFT process by the FFT processing unit.
US11616676B1 Phase tracking reference signal phase noise tracking
Method and apparatus for PTRS for OTFS waveforms. The apparatus measures a PTRS using an OTFS including a delay-Doppler domain. The OTFS includes a plurality of symbols in the delay-Doppler domain based on the PTRS. A first symbol of the plurality of symbols includes a first PTRS resource sample having a first value in the delay-Doppler domain. A second symbol of the plurality of symbols includes a second PTRS resource sample having a second value in the delay-Doppler domain. The first PTRS resource sample is adjacent to the second PTRS resource sample. The apparatus performs phase noise tracking for a data channel based on the measured PTRS.
US11616674B2 Time division multiplexing of synchronization channels
The apparatus may be a base station. The apparatus processes a first group of synchronization signals. The apparatus processes a second group of synchronization signals. The apparatus performs a first transmission by transmitting the processed first group of the synchronization signals in a first synchronization subframe. The apparatus performs a second transmission by transmitting the processed second group of the synchronization signals in a second synchronization subframe.
US11616667B2 Multi-level coded modulation for non-coherent communication
Disclosed are techniques related to wireless communication system in which multi-level encoded modulation (MLCM) is applied to non-coherent communication. In the proposed techniques, a small fraction of differential phase rotations or bits participating in differential symbol coding are protected with strong codes while other complementary differential phase rotations or bits are protected with weaker codes. Compared to conventional non-coherent communication techniques in which a uniform protection is applied to any fraction of differential phase rotation or any bit of a differential symbol, the proposed MLCM approach enables more spectrally efficient scheme.
US11616664B2 Carrier frequency offset correction and doppler mitigation
Various strategies and devices for same are disclosed to correct for/mitigate frequency offset (such as due to differing accuracies between an oscillator of a transmitting device and an oscillator of a receiving device) and Doppler shift (such as due to a changing relative position between a receiving device and a transmitting device). These strategies may be employed in a MIMO setting, such as, e.g. a stationary base station and a plurality of terminal devices (e.g. user devices, mobile stations, etc.), in which the transmissions for each terminal device may be associated with a different frequency offset and a different Doppler shift.
US11616659B2 Integrated cloud system for premises automation
A system comprises premises equipment including premises devices located at a premises. The system includes a partner device located at the premises and configured to use a partner protocol different from a protocol of the premises equipment. The system includes a system server configured to interact with the premises devices. The system server is configured to interact with the partner device via a partner proxy corresponding to the partner device. The system includes automation rules coupled to the system server. The automation rules include actions and triggers for controlling interactions between at least one of the partner device and the premises devices. The system includes a user interface coupled to the system server and configured to interact with the premises devices and the partner device.
US11616653B2 Storing error-encoded data slices in vast network based on storage requirements and parameters
A method for use in a distributed storage network includes determining storage parameters associated with error-encoded data slices generated from data to be stored in the distributed storage network. The storage parameters include information indicating a read threshold number of error-encoded data slices required to recover the data. Storage requirements of a storage unit included in the distributed storage network are also determined. The storage unit includes multiple memory devices configured to store one or more error-encoded data slices of the read threshold number of error-encoded data slices. A number of the one or more error-encoded data slices are stored in the storage unit based on the storage requirements of the storage unit and the storage parameters.
US11616649B2 Computer-implemented systems and methods relating to a binary blockchain comprising a pair of coupled blockchains
There may be provided a computer-implemented method. The computer-implemented method includes: i) after a proof-of-stake token is transferred to an address of a determined type on a proof-of-stake blockchain, adding a record of the transfer of the proof-of-stake token to the proof-of-work blockchain; ii) identifying a node, from a group of nodes, to participate in adding a block to the proof-of-stake blockchain, the identifying based on the proof-of-work blockchain; and iii) including a block submitted by the identified node in the proof-of-stake blockchain.
US11616648B2 Method and system for Cheon resistant static Diffie-Hellman security
A method for providing Cheon-resistance security for a static elliptic curve Diffie-Hellman cryptosystem (ECDH), the method including providing a system for message communication between a pair of correspondents, a message being exchanged in accordance with ECDH instructions executable on computer processors of the respective correspondents, the ECDH instructions using a curve selected from a plurality of curves, the selecting including choosing a range of curves; selecting, from the range of curves, curves matching a threshold efficiency; excluding, within the selected curves, curves which may include intentional vulnerabilities; and electing, from non-excluded selected curves, a curve with Cheon resistance, the electing comprising a curve from an additive group of order q, wherein q is prime, such that q−1=cr and q+1=ds, where r and s are primes and c and d are integer Cheon cofactors of the group, such that cd≤48.
US11616646B2 Key-management for advanced metering infrastructure
A method for replacing an existing key derivation key in a utility meter arranged in a meter communication infrastructure in a secure way. The method provide a secure mechanism for exchange of symmetric keys without the need for transferring keys across the meter communication infrastructure. From the head-end system to the utility meter is transmitted a command data message comprising a request for replacing the existing key derivation key with the new key derivation key, the key-generation information and a activation key or an authentication code calculated based on the activation key. The utility meter receiving the command data message is arranged to derive the new key derivation key based on a copy of a disaster recovery key stored in the utility meter and on the key-generation information comprised in the received command data message. Further, the utility meter is arranged for deriving a activation key from the new key derivation key. The activation key is used for verifying the command data message. If the command data message is verified the existing key derivation key is replaced by a new key derivation key.
US11616638B2 Blockchain ledger growth management
Systems and methods for blockchain ledger growth management using separation of a blockchain ledger into multiple blockchain ledgers (each ledger having a state that can be tracked and used). The systems and methods also include linking the separated ledgers by utilizing a linking application and smart contracts added to the separated ledgers.
US11616633B2 Half-duplex operation in new radio frequency division duplexing bands
A UE may be configured for half-duplex communications. An access point may configure half-duplex UEs for efficient resource utilization using two or more different half-duplex configurations that include different timing for channels in different directions. A UE may determine a half-duplex configuration for use in communicating with the access point, each slot of the half-duplex configuration including at least a PDCCH on a downlink frequency and an uplink short burst on an uplink frequency, and each slot associated with a HARQ timeline. The UE may determine a direction for a slot. The UE may transmit or receive according to the direction for the slot and the half-duplex configuration.
US11616632B2 Full duplex expander in a full duplex network
In one embodiment, a method receives a downstream signal and an upstream signal in a same frequency band. The downstream signal and the upstream signal are separated into a first path and a second path. The downstream signal using the first path and the upstream signal using the second path are amplified in an analog domain. The method isolates the downstream signal and the upstream signal from one another and sends the downstream signal downstream to a subscriber device and sends the upstream signal towards a full duplex node.
US11616626B2 Transport block size determination for sidelink communications
Methods, systems, and devices for sidelink wireless communications are described in which a transmitting device may determine a transport block size (TBS) for a sidelink data channel transmission and provide an indication in in sidelink control information (SCI) to allow a receiving device to determine the TBS to be used for decoding the sidelink communication. The indication provided in the SCI may be an explicit indication in an information element that indicates whether feedback channel resources are included or excluded when determining a number of symbols for use in a TBS determination. The indication provided in the SCI may also be an implicit indication based on one or more values of one or more parameters provided in the SCI. The sidelink communications devices may determine a same TBS across multiple instances of a sidelink data channel transmission that may be transmitted using slots having different slot formats.
US11616622B2 Network node and method for managing transmission of cell reference symbols
A method performed by a network node for managing transmission of Cell Reference Symbols, CRS, wherein the network node operates one or more cells and the network node is configured to transmit the CRS in a first bandwidth mode. When the network node has identified a cell which is not actively serving any UEs, also referred to as an empty cell, the network node applies a reduced CRS bandwidth mode in the first cell in relation to the first bandwidth mode. By applying a reduced CRS bandwidth mode in the empty cell, the overall interference of the CRS from the empty cell is reduced, thereby enhancing the performance in cells actively serving UEs.
US11616621B2 Method and apparatus for transmitting reference signal in multi-antenna system
A method for transmitting a reference signal in a multi-antenna system is provided. The method includes: selecting at least one orthogonal frequency division multiplexing (OFDM) symbol in a subframe containing a plurality of OFDM symbols; allocating a channel quality indication reference signal (CQI RS) capable of measuring a channel state for each of a plurality of antennas to the selected at least one OFDM symbol; and transmitting the CQI RS, wherein the CQI RS is allocated to an OFDM symbol which does not overlap with an OFDM symbol to which a common reference signal to be transmitted to all user equipments in a cell or a dedicated reference signal to be transmitted to a specific user equipment in the cell is allocated.
US11616620B2 Sounding reference signal subframe position in a plurality of scheduled consecutive subframes
A wireless device receives a radio resource control message comprising an aperiodic sounding reference signal (SRS) subframe parameter. A downlink control information is received. The downlink control information indicates uplink resources in a plurality of scheduled consecutive subframes for transmission of transport blocks by the wireless device and triggers an SRS transmission in a subframe of the plurality of scheduled consecutive subframes. The SRS is transmitted in the subframe. A position of the subframe in the plurality of scheduled consecutive subframes is determined based on the aperiodic SRS subframe parameter.
US11616618B2 CSI reference signaling in LTE/NR coexistence
There is disclosed a method of operating a user equipment in a NR radio access network, wherein the method comprises receiving channel state information reference signaling, CSI-RS, in a CSI-RS pattern. The CSI-RS pattern represents a distribution of subcarriers for carrying CSI-RS over a range of numbered subcarriers, and comprises a first subpattern and a second subpattern. The CSI-RS pattern is based on received first configuration information and received second configuration information. Further, the first configuration information indicates the first subpattern of subcarriers starting at a first starting subcarrier with even number, and the second configuration information indicates the second subpattern starting at a second starting subcarrier with an odd number. The disclosure also pertains to related methods and devices.
US11616616B2 Reference signaling for radio access networks
There is disclosed a method of operating a signaling radio node in a radio access network, the signaling radio node being adapted for transmitting on a plurality of layers utilizing an antenna arrangement; wherein the method comprises transmitting, on each of the plurality of layers, reference signaling in the same symbol time interval, wherein reference signaling on at least a first layer of the plurality of layers is shifted in time and/or phase relative to reference signaling on at least a second layer of the plurality of layers.There are also disclosed related methods and devices.
US11616615B2 Adaptation of secure sounding signal to bandwidth variation
This disclosure describes systems, methods, and devices related to adaptation of secure sounding signal. A device may determine a negotiated bandwidth to be used when communicating with a first station device. The device may determine a first bit stream used to generate a cyclic shift diversity (CSD) value based on the negotiated bandwidth, wherein a first number of bits is used for the first bit stream when a first negotiated bandwidth is used, and wherein a second number of bits is used for the first bit stream when a second negotiated bandwidth is used. The device may determine a second bit stream used to generate a random phase. The device may determine a secure a long training field (LTF) based on a combination of the first bit stream and the second bit stream. The device may cause to send a frame to the first station device, wherein the frame comprises the secure LTF.
US11616614B2 Usage of synchronization signal block index in new radio
A base station may determine an SS block index associated with an SS block for transmission, and may scramble information based on at least a portion of the determined SS block index. The information may include at least one of a reference signal, data, paging information, control information, broadcast information, or a CRC associated with control information. The base station may transmit the SS block and scrambled information to a UE. A UE may receive an SS block and information scrambled based on at least a portion of an SS block index associated with the SS block. The information may include at least one of a reference signal, data, paging information, control information, broadcast information, or a CRC associated with control information. The UE may descramble the scrambled information based on the at least the portion of the SS block index.
US11616613B2 PDCCH signaling for multi-TRP with disjoint resource blocks
Aspects of the present disclosure provide techniques for signaling PDCCH with relevant QCL relationships for CE for a UE to use to process a multi-TRP transmission sent using disjoint RBs.
US11616611B1 Precoding wireless communications
Apparatuses, methods, and systems are disclosed for precoding wireless communications. An apparatus includes a processor that determines a transform precoder. The processor (805) precodes a plurality of source information symbols over a set of available physical transmission resources using the determined transform precoder. The processor combines the precoded source information symbols using a redundant representation.
US11616597B1 Hierarchical cyclic redundancy check techniques
Methods, systems, and devices for wireless communications are described. In some wireless communications system, a wireless device may append, during a first encoding stage, a first set of cyclic redundancy check bits having a first size to each code block of a plurality of code blocks and may concatenate two or more code blocks from the plurality of code blocks into a first set of code blocks, each code block of the two or more code blocks including the appended first set of cyclic redundancy check bits. The wireless device may further append, during a second encoding stage, a second set of cyclic redundancy check bits having a second size to the first set of code blocks, and may transmit a message comprising the plurality of code blocks including the appended first set of cyclic redundancy check bits and the appended second set of cyclic redundancy check bits.
US11616591B2 C and L band optical communications module link extender, and related systems and methods
This disclosure describes C and L band optical communications module link extender, and related systems and methods. An example method may include receiving, by a dense wave division multiplexer (DWDM) at a headend, one or more optical data signals over a C band and an L band. The example method may also include combining the one or more optical data signals. The example method may also include outputting a second signal to a first WDM at the headend. The example method may also include separating, by the first WDM, the second signal into a C band signal and an L band signal. The example method may also include outputting the C band signal to a first amplifier at the headend and the L band signal to a second amplifier at the headend. The example method may also include amplifying, by the first amplifier, the C band signal. The example method may also include outputting an amplified C band signal to a coexistence filter. The example method may also include amplifying, by the second amplifier, the L band signal. The example method may also include outputting an amplified L band signal to the coexistence filter. The example method may also include outputting, by the coexistence filter, a third signal.
US11616590B2 System comprising multiple units
A system (100) comprising: a first unit (104) and one or more second units (104). The first unit (102) comprises: a timing reference (114) configured to provide a master-timing-reference-signal; a master time block configured to provide a master-time-signal (117) for the first unit (102) based on the master-timing-reference-signal; and a first interface (122) configured to: receive timestamped-processed-second-RF-signals from the one or more second units (104); and provide a first-unit-timing-signal (262) to the one or more second units (104) based on the master-time-signal. The one or more second units (104) each comprise: a slave time block (141) configured to: determine a slave-time-signal (142) for the second unit (104) based on the master-timing-reference-signal; determine one or more second-timing-values based on the slave-time-signal; determine an adjustment-time based on the first-unit-timing-signal received from the first unit (102) and the second-timing-values; and adjust the slave-time-signal based on the adjustment-time.
US11616589B2 Methods and systems for performing and recording live music near live with no latency
Exemplary methods include a processor executing instructions stored in a memory for generating an electronic count-in, binding it to a first performance to generate a master clock and transmitting a first musician's first performance and first timing information to a network caching, storage, timing and mixing module. The first musician's first performance may be recorded locally at full resolution and transmitted to a full resolution media server and the first timing information may be transmitted to the master clock. The first musician's first performance is transmitted to a sound device of a second musician and the second musician creates a second performance, transmits it and second timing information to a network caching, storage, timing and mixing module. The first and second performances are mixed along with the first and the second timing information to generate a first mixed audio, which can be transmitted to a sound device of a third musician.
US11616587B1 Remote clock synchronization using network communication and satellite signals
A reference time associated with a satellite signal received at a clock synchronization source is determined, wherein the reference time is from a master reference clock. A recorded time associated with a corresponding satellite signal received at a remote clock synchronization destination is received from the remote clock synchronization destination via a network, wherein the received recorded time is from a remote clock to be synchronized with the master reference clock. A clock adjustment value is calculated based on a comparison of the determined reference time and the received recorded time. The clock adjustment value is provided to the remote clock synchronization destination, wherein the clock adjustment value is able to be utilized by the remote clock synchronization destination to adjust the remote clock to increase synchronization with the master reference clock.
US11616578B2 Adjusting eye heights and optical power levels of a multi-level optical signal
A multi-level optical signal is sampled to generate an eye diagram. The signal can be adjusted when eyes in the eye diagram have different heights. More specifically, a first value is determined, and the height of a first eye is adjusted using the first value. The first value is multiplied by a stored factor to produce a second value, and the height of a second eye is adjusted using the second value, and so on for other eyes. As a result, eye heights are the same. Similarly, optical power levels of the signal can be adjusted when the levels are not equally spaced. As a result, the optical power levels are equally spaced.
US11616577B2 Optical transceiver in transistor outline package
An optical signal transceiver in a transistor outline package includes a component base, a laser device, a first wavelength division multiplexing prism and a second wavelength division multiplexing prism, a first photodetector, and a second photodetector. The component base is inside the transistor outline package and supports the laser device, the laser device emitting light to the outside of the transistor outline package. The first and second prisms and the first photodetector and the second photodetector are also located on the component base. Light output as optical signals sequentially pass through the first and second multiplexing prisms. The first input optical signal is transmitted to the first photodetector through the first prism, and the second input optical signal passes through the first prism and is passed on to the second photodetector via the second prism.
US11616574B2 Optical ground terminal
Optical ground terminals (OGT) allowing high optical rate communications for line of sight and non-line of sight operating conditions are disclosed. The described devices include a multifaceted structure where optical telescopes, phase array antennas, and arrays of optical detectors are disposed. Methods to calculate angle-of-arrival based the contributions from optical detectors are also disclosed.
US11616565B2 Beam pointing fine tuning for vehicle-based antennas
A first beam is implemented, from a set of vehicle-based antennas, for current or future communication with a ground-based or satellite-based network via an external antenna (e.g., of a base station or satellite). A second beam may be implemented to detect or determine a better pointing angle for the first beam, thereby “fine tuning” the pointing angle for the first beam. Specifically, the second beam may be “swept” through a range of pointing angles while a signal parameter representing signal quality or strength is measured, detected, or calculated at each pointing angle. The values for the signal parameter may be evaluated to identify a desired value and the pointing angle at which the desired value was obtained. The first beam may be reoriented or repointed at the desired pointing angle, and one or more nodes of vehicle-based communication system may communicate with an external network via the first beam.
US11616564B2 Reconfigurable and modular active repeater device
A device includes a primary sector and secondary sectors communicatively coupled to the primary sector. The processor included in the primary sector is configured to down convert a Radio Frequency (RF) signals with a first frequency to an analog baseband (IQ) signal with a second frequency, and receive a second digital baseband signal that comprises a first digital baseband signal and a digital echo signal. The first digital baseband signal comprises a training sequence signal. Further, the processor estimates a plurality of filter taps of the FIR filter based on the digital echo signal and estimate the digital echo signal in the received second digital baseband signal based on the first digital baseband signal and the plurality of filter taps of the FIR filter. The estimated digital echo signal is removed from at least one current digital baseband signal based on the down conversion of the RF signals.
US11616563B2 Systems and methods for updating beamforming codebooks for angle-of-arrival estimation using compressive sensing in wireless communications
A wireless communication device includes: a processing circuit configured to: receive, from an antenna array during a previous period, a first directional electromagnetic signal including beam sweeping reference symbols of a previous beam sweeping period; compute an estimated combined channel; estimate a dominant angle-of-arrival (AoA) of the first directional electromagnetic signal based on the estimated combined channel and a previous beamforming codebook including two or more beamforming vectors corresponding to different AoAs; construct an updated beamforming codebook based on the estimated dominant AoA and one or more remaining AoAs spaced apart from the estimated dominant AoA; receive, at the antenna array during a current period, a second directional electromagnetic signal including data symbols; determine a beamforming vector for data reception of the second directional electromagnetic signal based on the updated beamforming codebook; and detect the data symbols in the second directional electromagnetic signal based on the determined beamforming vector.
US11616561B2 Beam selection for terminal devices in MU-MIMO operation
There is provided mechanisms for beam selection. A method is performed by a network node. The method comprises performing a beam management procedure for at least two terminal devices. During the beam management procedure reference signals are transmitted in a beam sweep as performed in a set of beams. During the beam management procedure, each of the at least two terminal devices reports at least two beams in the set of beams for which the reference signals have been received with highest power. The method comprises selecting which beams to serve the at least two terminal devices based jointly on the reports and a mutual interference criterion for the at least two terminal devices.
US11616556B2 Beam management techniques for damaged antenna elements
Methods, systems, and devices for wireless communications are described. A first wireless device may communicate with a second wireless device using a first set of beams including a first beam and a second beam, where the first and second beams are generated via first and second sets of antenna elements, respectively. The first wireless device may compare a first power associated with the first beam and a second power associated with the second beam, and may determine that at least one antenna element from the first set of antenna elements, the second set of antenna elements, or both, is defective based on the comparison. The first wireless device may switch from the first set of beams to a second set of beams based on the at least one antenna element being defective, and communicate with the second wireless device using the second set of beams.
US11616552B2 UE capability for CSI reporting
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be a UE. The UE determines that the UE possesses T processing units for calculation of channel state information (CSI) reports. The UE transmits, to a base station, an indication indicating the T processing units. The UE receives, from the base station, a trigger for updating or providing M CSI reports. The UE determines that P processing units of the T processing units are available for calculation of CSI reports. The UE updates or provides N CSI reports. N is an integer smaller than or equal to M and allows processing units assigned for calculation of the N CSI reports to be smaller than or equal to the P processing units.
US11616549B2 Method for reporting channel state information in wireless communication system and apparatus therefor
Provided are a method and an apparatus for reporting channel state information (CSI) by a user equipment in a wireless communication system. According to the present invention, the user equipment may receive configuration information related with the CSI from a base station and measure the CSI based on the configuration information. Thereafter, the user equipment includes reporting the CSI to the base station and the CSI includes a rank indicator (RI), a channel quality indicator (CQI), and an indicator indicating the number of amplitude coefficients other than 0 and the second part includes a precoding matrix indicator (PMI).
US11616548B2 Millimeter-wave beam alignment assisted by ultra wide band (UWB) radio
A first device and second device communicate using mmWave communication with antenna alignment based on processing of ultra wide band (UWB) pulses. A limit on angle resolution due to a small number of antennas on either of the devices is relieved by using two or more carrier frequencies in the UWB pulses. A limit on angle resolution is further overcome in some situations by use of a neural network to refine angle estimates. In some situations, received power values are further used to select an angle for beam alignment.
US11616546B2 High frequency beam forming device
Disclosed is a high frequency beam forming device. The high frequency beam forming device includes a 2D radiation array structure unit in which oscillators coupled to antennas are arranged in 2D; and a plurality of phase difference detectors coupled between the oscillators formed in the 2D radiation array structure unit to detect a phase difference between the coupled oscillators.
US11616543B2 Method for determining uplink transmission parameters and method and device for transmitting configuration information
A method for determining uplink transmission parameters and a method for transmitting configuration information. The method includes: receiving indication information transmitted from a network side; and determining uplink transmission parameters on the basis of the indication information. Also provided in the disclosure are a device for determining uplink transmission parameters and a device for transmitting configuration information, and a storage medium. The disclosure solves the problem in which a terminal cannot determine uplink transmission parameters in a variety of complicated antenna configurations, thus achieving the effect of effectively reduced overhead.
US11616542B2 Channel-matrix reduction for precoding control
A channel matrix representing characteristics of a multi-path channel between a transmitter device (210) equipped with multiple transmitter antennas (211, 212, 213, 214, 215) and a receiver device (220, 230, 240) equipped with multiple receiver antennas (221, 222, 231, 232, 241, 242) is determined. The channel matrix is organized in a first number of channel vectors each associated with a different one of the multiple receiver antennas (221, 222, 231, 232, 241, 242). The channel vectors are combined to a smaller second number of linear combinations of the channel vectors and a reduced channel matrix is composed from the linear combinations of the channel vectors. A precoding matrix is determined based on the reduced channel matrix, and multi-antenna transmission by the transmitter device is controlled based on the determined precoding matrix.
US11616536B2 Time division multiplexed multiple default beams
Aspects of the present disclosure implement techniques for configuring time division multiplexed multiple default beams per slot for communication between the user equipment (UE) and the base station. Thus, in one instance, the time division multiplexed default beams can be applied within each slot (e.g., a plurality of default beams in a single slot) instead of a single default beam. In other instance, the time division multiplexed default beams may be applied across multiple slots (e.g., a first default beam in the first slot and a second default beam in a second slot).
US11616530B2 Echo canceller system and echo cancelling method
An echo canceller system includes a data transmitter circuit and an echo canceller circuit. The data transmitter circuit is configured to receive a transmitted signal. The echo canceller circuit includes a first filter. The first filter is configured to generate a first filtered signal according to the transmitted signal and a filter coefficient vector. The filter coefficient vector is updated according to a high-frequency leakage process. The echo canceller circuit is further configured to generate an echo cancelling signal according to the first filtered signal. The data transmitter circuit is further configured to generate an output signal according to a received signal and the echo cancelling signal.
US11616521B2 Radio-frequency module and communication device
A radio-frequency module includes an integrated circuit (IC) device and an external inductor provided outside the IC device. The IC device includes a plurality of low-noise amplifiers, one or more inductors, and a switching circuit. The plurality of low-noise amplifiers includes a plurality of transistors in one to one correspondence. The one or more inductors are coupled to one or more of the plurality of transistors. Each inductor is coupled to the emitter or source of a corresponding one of the plurality of transistors. The switching circuit is coupled between the emitter or source of each of the plurality of transistors and the external inductor. The external inductor is coupled between the switching circuit and ground in series with each of the one or more inductors via the switching circuit.
US11616520B2 RF receiver
A device includes, in part, an antenna adapted to receive an RF signal that includes modulated data, a splitter/coupler adapted to split the received RF signal, a receiver adapted to demodulate the data from a first portion of the RF signal, and a power recovery unit adapted to convert to a DC power a second portion of the RF signal. The splitter/coupler is optionally adjustable to split the RF signal in accordance with a value that may be representative of a number of factors, such as the target data rate, the DC power requirement of the device, and the like. The device optionally includes a switch and/or a power combiner adapted to deliver all the received RF power to the receiver depending on any number of operation conditions of the device or the device's distance from an RF transmitting device.
US11616519B2 Electronic apparatus and method
According to one embodiment, an electronic apparatus includes a receiver and a signal addition circuit. The receiver receives a reception signal of a first frequency band. The signal addition circuit is configured to input the reception signal and a calibration signal of a second frequency band which is different from the first frequency band to the receiver.
US11616518B2 Electronic device and method for transmitting and receiving signals
The present invention relates to an electronic device and, more particularly, to an electronic device and a method for transmitting and receiving signals. To this end, the electronic device according to the present invention may comprise: a transceiving unit comprising a first group of power amplifiers (PAs) including at least one PA and a second group of PAs including at least one PA; an antenna unit comprising a first antenna selectively coupled to a PA supporting a first frequency range or a second frequency range of the first group of PAs and the second group of the PAs, and a second antenna selectively coupled to a PA supporting the second frequency range or a third frequency range of the first group of PAs and the second group of the PAs; a power supply unit comprising a first power supply modulator connected to the first group of PAs and a second power supply modulator connected to the second group of PAs; and a communication processor for changing an output voltage at least in part on the basis of transmit power of the PA coupled to at least one of the first power supply modulator and the second power supply modulator, wherein at least one of the first group of PAs and at least one of the second group of PAs are capable of transmitting signals simultaneously.
US11616517B2 Multiband transmitter
Apparatuses and methods are disclosed regarding a multiband transmitter. In an example aspect, an apparatus for processing signals for wireless transmission includes a wireless interface device. The wireless interface device includes an upconverter, a tunable filter, and a driver amplifier. The upconverter has an output and is configured to upconvert a baseband frequency to a radio frequency based on a local oscillator signal. The tunable filter has an input and an output; the input of the tunable filter is coupled to the output of the upconverter. The driver amplifier has an input; the input of the driver amplifier is coupled to the output of the tunable filter.
US11616514B2 Method and apparatus for channel encoding and decoding in a communication system using a low-density parity check code
An apparatus is provided for channel encoding in a communication system using an LDPC code. The apparatus includes at least one processor configured to encode input bits using a Bose-Chaudhuri-Hocquenghem (BCH) code, shorten one or more bits of the encoded input bits according to a number of bit groups to be shortened and an order among a plurality of orders according to which the bit groups are shortened, wherein the number of bit groups to be shortened is based on a number of bits to be shortened which is based on a number of the encoded input bits, encode information bits including the encoded input bits and the shortened one or more bits, using an LDPC code to generate parity bits, and puncture one or more bits in the parity bits based on a puncturing parameter among puncturing parameters; and a transmitter configured to transmit a signal that is generated from the encoded information bits based on the punctured one or more bits. The plurality of orders are based on the puncturing parameters and include a first order and a second order that is different from the first order.
US11616510B2 Ramp voltage generator and image sensor
A ramp voltage generator includes: a ramping cell array including a plurality of ramping current cells; a calibration cell array including a plurality of calibration current cells; and a current-voltage converter suitable for converting a current supplied from activated ramping current cells among the ramping current cells and activated calibration current cells among the calibration current cells into a voltage to generate a ramp voltage.
US11616508B2 Delay estimation device and delay estimation method
The disclosure provides a delay estimation device and a delay estimation method. The delay estimation device includes a pulse generator, a digitally controlled delay line (DCDL), a time-to-digital converter (TDC), and a control circuit. The pulse generator receives a reference clock signal, outputs a first clock signal in response to a first rising edge of the reference clock signal, and outputs a second clock signal in response to a second rising edge of the reference clock signal. The DCDL receives the first clock signal from the pulse generator and converts the first clock signal into phase signals based on a combination of delay line codes. The TDC samples the phase signals to generate a timing code based on the second clock signal. The control circuit estimates a specific delay between the first clock signal and the second clock signal based on the timing code.
US11616502B2 Phase interpolator and clock signal selector thereof
A phase interpolator capable of preventing a glitch from being generated during a clock signal switching operation and a clock signal selector thereof are provided. The clock signal selector includes a selector and a selection signal generator. The selector receives multiple clock signals with different phases. The selector selects one of the clock signals according to a selection signal to generate a selected clock signal. The selection signal generator is coupled to the selector and generates the selection signal. When the selector switches from selecting a first clock signal to selecting a second clock signal as the selected clock signal, the selection signal generator generates a set time point according to a transition point of one of the first clock signal and the second clock signal whose phase lags behind a phase of the other, and generates the selection signal according to the set time point.
US11616501B2 Programmable fractional time delay in digitally oversampled microphone systems, circuits, and methods
Programming time delay data in an oversampled sensor includes determining whether to enter Programming Mode based on a value of a system parameter received by the oversampled sensor. Programming Mode is entered when the value of the system parameter corresponds to Programming Mode. The time delay data is programmed in the oversampled sensor during Programming Mode. The oversampled sensor uses the time delay data to time delay its output in an oversampled domain. Programming Mode is exited after a predetermined time has expired relative to when Programming Mode was entered. The system parameter can be a frequency of a sampling clock signal.
US11616498B2 Software-defined pulse orchestration platform
A system comprises pulse program compiler circuitry operable to analyze a pulse program that includes a pulse operation statement, and to generate, based on the pulse program, machine code that, if loaded into a pulse generation and measurement circuit, configures the pulse generation and measurement circuit to generate one or more pulses and/or process one or more received pulses. The pulse operation statement may specify a first pulse to be generated, and a target of the first pulse. The pulse operation statement may specify parameters to be used for processing of a return signal resulting from transmission of the first pulse. The pulse operation statement may specify an expression to be used for processing of the first pulse by the pulse generation and measurement circuit before the pulse generation and measurement circuit sends the first pulse to the target.
US11616495B2 Input circuitry for inter-integrated circuit system
Inter-integrated circuit input circuitry includes a pull-up current circuit and an input circuit. The input circuit includes an output inverter, an input inverter, and a pull-up circuit. The pull-up circuit is coupled to an input of the input inverter, and includes a pull-up transistor and a cascode transistor. The pull-up transistor is coupled to the input of the input inverter. The cascode transistor is coupled to the pull-up current circuit and the pull-up transistor, and configured to isolate the pull-up transistor from capacitance of a conductor coupled to the pull-up current circuit and the input circuit.
US11616490B2 RF filter circuit including BAW resonators
An RF circuit device using modified lattice, lattice, and ladder circuit topologies. The devices can include four resonator devices and four shunt resonator devices. In the ladder topology, the resonator devices are connected in series from an input port to an output port while shunt resonator devices are coupled the nodes between the resonator devices. In the lattice topology, a top and a bottom serial configurations each includes a pair of resonator devices that are coupled to differential input and output ports. A pair of shunt resonators is cross-coupled between each pair of a top serial configuration resonator and a bottom serial configuration resonator. The modified lattice topology adds baluns or inductor devices between top and bottom nodes of the top and bottom serial configurations of the lattice configuration. These topologies may be applied using single crystal or polycrystalline bulk acoustic wave (BAW) resonators.
US11616489B2 Bulk acoustic wave filter having release hole and fabricating method of the same
A bulk acoustic wave filter includes: a first bulk acoustic wave resonator including, in an order from bottom to top, a first cavity, a first bottom electrode, a first segment of a piezoelectric layer, and a first top electrode; a second bulk acoustic wave resonator disposed adjacent to the first bulk acoustic wave resonator, and including, in the order from bottom to top, a second cavity, a second bottom electrode, a second segment of the piezoelectric layer, and a second top electrode; a boundary structure surrounding the first cavity and the second cavity, the boundary structure including a boundary portion extending between and separating the first cavity and the second cavity, and the boundary portion being disconnected at a disconnection region; and a first release hole formed in the piezoelectric layer, and overlapping the disconnection region.
US11616487B2 Acoustic wave devices on stacked die
Aspects of this disclosure relate to acoustic wave devices on stacked die. A first die can include first acoustic wave device configured to generate a boundary acoustic wave. A second die can include a second acoustic wave device configured to generate a second boundary acoustic wave, in which the second die is stacked with the first die. The first acoustic wave resonator can include a piezoelectric layer, an interdigital transducer electrode on the piezoelectric layer, and high acoustic velocity layers on opposing sides of the piezoelectric layer. The high acoustic velocity layers can each have an acoustic velocity that is greater than a velocity of the boundary acoustic wave.
US11616481B2 Systems and methods for modular power amplifiers
Systems and apparatuses are disclosed that include an RF generator configured to generate RF signals having a wavelength. Amplifiers are configured to receive and amplify the RF signals from the RF generator and are separated from each other by a separation distance in a range between about 0.2 times the wavelength and about 10.0 times the wavelength. A power management system is configured to control one or more of the amplifiers based on information received that is associated with the RF signals.
US11616479B2 Power amplifier apparatus
A power amplifier apparatus includes a semiconductor substrate, a plurality of first transistors on the semiconductor substrate, a plurality of second transistors, at least one collector terminal electrically connected to collectors of the plurality of first transistors, a first inductor having a first end electrically connected to the collector terminal and a second end electrically connected to a power supply potential, at least one emitter terminal electrically connected to emitters of the plurality of second transistors and adjacent to the collector terminal in a second direction, a second inductor having a first end electrically connected to the emitter terminal and a second end electrically connected to a reference potential, and at least one capacitor having a first end electrically connected to the collectors of the plurality of first transistors and a second end electrically connected to the emitters of the plurality of second transistors.
US11616476B2 Power amplifier circuit
A power amplifier circuit includes a first impedance transformer circuit arranged to connect with a carrier device, and a second impedance transformer circuit arranged to connect with a peaking device. Both the first and the second impedance transformer circuit include a parallel impedance transformer arrangement.
US11616473B2 Circuit device and oscillator
A circuit device includes an oscillation circuit generating an oscillation signal by oscillating a vibrator, a temperature sensor circuit performing an intermittent operation, a logic circuit performing temperature compensation processing based on an output of the temperature sensor circuit, and a power supply circuit supplying power to the oscillation circuit. The oscillation circuit is disposed in a circuit region, the temperature sensor circuit and the logic circuit are disposed in a circuit region, and the power supply circuit is disposed in a circuit region, which is positioned between the circuit region and the circuit region.
US11616466B2 Current sensor state determination device and in vehicle rotating electric machine system having same
A current sensor state determination device determines that an abnormality is caused in a current sensor when a sum of phase currents based on current detection values from each of the current sensors in three phases is greater than a first determination value, and determines that no abnormality is caused in the current sensor when the sum of phase currents is equal to or less than the first determination value. The state determination device determines that the current sensor is normal when it is determined that (i) no abnormality is caused in a preset electric angle range equal to or less than one electric-angle cycle of the rotating electric machine and (ii) a value of an electric current flowing in the rotating electric machine in a rotating coordinates system calculated based on the current detection value is equal to or greater than a second determination value.
US11616465B2 Spread-spectrum control for an inverter for controlling an electric machine
An electronic data processor comprises a data storage device in communication with the electronic data processor. A control module stored in the data storage device, the control module comprising software instructions for execution by the electronic data processor to change dynamically the fundamental switching frequency of the control signals to reduce electromagnetic noise within a target frequency band if the fundamental switching frequency is equal to or greater than a threshold fundamental switching frequency.
US11616462B1 Motor parameter estimation device and method
A motor parameter estimation method includes obtaining an operation signal of a motor, wherein the operation signal includes an encoder signal, a phase current and a driving voltage, obtaining a number of poles according to the encoder signal and the phase current, performing a simulation procedure according to the driving voltage, the number of poles and an initial random parameter set, wherein the simulation procedure is calculating a simulation response current, calculating an error value between the simulation response current and the phase current, determining whether the error value falls into a threshold range, if the error value falls outside of the threshold range, performing the simulation procedure according to the driving voltage, the number of poles and an update random parameter set, and if the error value falls into of the threshold range, outputting the number of poles and the initial random parameter set.
US11616457B2 Torque capability optimization under active limiting of regenerative current in synchronous motor drives
A method of controlling operation of an electric machine includes: determining a voltage-based torque limit based on a voltage constraint of a direct current (DC) bus supplying power to an inverter for powering the electric machine; determining a motor current-based torque limit based on a motor current limit; determining a final torque limit based on the voltage-based torque limit and the motor current-based torque limit; determining a limited command torque based on a torque command and the final torque limit; determining an initial current command corresponding to the inverter satisfying a regenerative current limit of the DC bus; and calculating a final current command based on, at least, the limited command torque and the initial current command. The method includes the final current command exceeding the initial current command to cause the electric machine to produce a torque corresponding to the limited torque command.
US11616455B2 Electrostatic actuator
An actuator is configured to include a first substrate that has a first conductive surface, which may be or include a first conductive electrode layer. The actuator also includes a second substrate that has a second conductive surface, which may be or include a second conductive electrode layer. The first and second conductive surfaces face toward each other across a compression space between the first and second substrates. A group of elastic support nodules span the compression space and separate the first and second conductive surfaces. The compression space is less than fully filled with solid elastic material and is configured to be compressed by relative movement of the first and second conductive surfaces toward each other in response to a voltage difference between the first and second conductive surfaces.
US11616452B2 Switching device, switching power supply apparatus, and vehicle
A switching device is provided. The apparatus includes a switching circuit and a noise filter. The switching circuit is capable of switching a connection destination of a first power conversion circuit other than a second power conversion circuit among the plurality of power conversion circuits between a phase corresponding to the first power conversion circuit and a certain phase of the external power supply. The second power conversion circuit corresponds to the certain phase of the external power supply. In the noise filter, a capacitor is provided on a side of the multiple-phase AC supply of the switching circuit.
US11616449B2 Power adapter
A power adapter, includes: a transformer, including a primary winding and a secondary winding; a primary circuit, including a primary main switch, electrically coupled to the primary winding; a secondary circuit, including a first switch unit and a second switch unit; a first end of the first switch unit and a first end of the second switch unit are coupled to the secondary winding of the transformer, and a second end of the first switch unit and a second end of the second switch unit connected to a first output port and a second output port, respectively; a control circuit, configured to detect output voltages of the first output port and the second output port, and controlling the primary main switch, the first switch unit and the second switch unit to adjust the output voltages of the first output port and the second output port.
US11616447B2 Flyback power converter and relevant control methods
A flyback power converter converts an input power on a primary side into an output power on a secondary side. On the secondary side, the output power is monitored to provide a representative signal representing a characteristic of the output power. A count is kept unchanged when a clock ticks if the representative signal is within a first range defined in accordance with a target value, that the representative signal is going to be regulated at. The count is changed in response to the clock if the representative signal is within a second range different from the first range. In response to the count, a driving current is generated to control a coupler, which generates a compensation signal on the primary side that controls power transmitted from the primary side to the secondary side.
US11616446B1 Power supply having a resonant topology, method of operating a power supply having a resonant topology and apparatus
An apparatus includes a switching circuit, a resonant circuit coupled to an output of the switching circuit, a rectification circuit coupled between the resonant circuit and an output of the apparatus, and a controller coupled to the switching circuit. The controller, during a soft start-up operation of the power supply, is configured to switch a plurality of switches with a variable limited maximum duty cycle at a minimum frequency and after the variable limited maximum duty cycle reaches the limited maximum duty cycle at the minimum frequency, simultaneously switch the frequency to a maximum frequency and switch the duty cycle to a minimum duty cycle at the maximum frequency for a same on-time as the limited maximum duty cycle at the minimum frequency.
US11616443B2 Buck-boost converter
A buck-boost converter including an inductor, a first transistor, a second transistor, a third transistor, a fourth transistor, a voltage detection circuit, and a voltage control circuit is provided. The first transistor is coupled to a first terminal of the inductor and receives a first control signal. The second transistor is coupled to the first terminal of the inductor and receives a second control signal. The third transistor is coupled to a second terminal of the inductor and receives a third control signal. The fourth transistor is coupled to the second terminal of the inductor and receives a fourth control signal voltage. The detection circuit detects the third control signal to selectively provide a voltage drop indication signal. When a voltage conversion mode is a buck mode, the voltage control circuit switches a conduction state of the third control signal in response to the voltage drop indication signal.
US11616440B2 DC/DC voltage converter and method
In an embodiment, a voltage converter includes: a first transistor coupled between an internal node and a first node receiving a supply voltage; a second transistor coupled between the internal node and a second node receiving a reference voltage; an inductance coupled between the internal node and an output node; a first circuit controlling the first and second transistors; and a second circuit configured to detect, when the first and second transistors are in the off state, when the voltage of the internal node is equal to the voltage of the output node, to condition a switching to the on state of the first transistor.
US11616437B2 Constant power control circuit and voltage generator circuit thereof
A constant power control circuit driving an external device receiving an input voltage and generating an output voltage is provided. A first conversion circuit converts the voltage difference between the input voltage and the output voltage to generate a charge current. An energy storage circuit is charged during a charging period by the charge current to provide a stored voltage. The charging period is terminated in response to the stored voltage reaching a predetermined voltage. A control circuit adjusts a control signal according to a length of the charging period. A second conversion circuit generates a counting voltage according to the control signal. The counting voltage is inversely proportional to the voltage difference. A third conversion circuit converts the counting voltage into a limitation current. A driving circuit compares the setting current and the limitation current to generate a driving signal and send it to the external device.
US11616435B2 Power supply controller with a load line compensator
The present application provides a controller for a switching power supply such as a DC-DC converter which provides an output voltage and an output current. The controller is configured to provide at least one control signal to operate the switching power supply to maintain the output voltage at a first reference voltage. The controller employs a load line compensator responsive to output current for adjusting the reference voltage employed by the compensator. The load line compensator employs one or either or both of a high pass filter or saturating element to provide a filtered/saturated value which is the value employed in adjusting the reference voltage.
US11616433B2 Active noise filtering for switch mode power supplies
In a described example, a circuit includes a sensor, a controller and an amplifier. The sensor has a sensor input and a sensor output. The sensor input is adapted to be coupled to a chassis of a switch-mode power supply (SMPS). The controller has an input, a timing output and a level output. The input of the control circuit is coupled to the sensor output. The amplifier has a timing control input, a level control input and an amplifier output. The level control input is coupled to the level output of the controller. The timing control input is coupled to the timing output, and the amplifier output is coupled to the sensor input. The amplifier is configured to provide compensation pulses at the amplifier output having magnitude and timing to reduce common-mode noise on the chassis.
US11616426B2 Method for manufacturing a stator
A method and an apparatus are provided for manufacturing a stator with a plurality of hairpin conductors. For inserting the hairpin conductors (15, 15) into the slots (11) of a stator core (12) a stator core template (22) is provided. Hairpin conductors (15) are axially inserted into slots (21) of the stator core template (22) such that the hairpin conductor (15) is arranged at a first position (P1) within said slot (21). The hairpin conductor (15) is then moved within said slot (21) to a different position (P2). A complete nest (20) of hairpin conductors (15) formed within the stator core template (22) is then transferred to the stator core (12).
US11616423B1 Printed circuit board stator winding enhancements for axial field rotary energy device
A motor includes a stator and a rotor having an axis of rotation and a magnet. The stator includes a PCB having PCB panels. Each PCB panel is assigned to one electrical phase. Each PCB panel has a pair of PCB layers. Each PCB layer includes coils, and each coil in each PCB layer of a PCB panel is circumferentially aligned with a corresponding coil in another PCB layer. One coil in one PCB layer is coupled to a corresponding coil in another PCB layer with a via. A number of turns in each coil is a multiple of a number of electrical phases configured for the PCB stator. In addition, the vias that connect two coils in a pair of PCB layers that belong to a same electrical phase do not intersect coils in PCB layers that belong to other electrical phases of the PCB stator.
US11616420B2 Free piston generator based on split thermodynamic cycle
Provided is a free piston generator based on a split thermodynamic cycle, which belongs to the technical field of power energy. The present disclosure solves the problem of low power generation efficiency of an existing free piston generator. The free piston generator includes a linear generator set and two internal combustion engine sets arranged at two ends of the linear generator set. Air is first subjected to first-stage compression by the low-pressure cylinder set in the internal combustion engine sets and is then subjected to second-stage compression in the high-pressure cylinders, so that the intake pressure of an internal combustion engine is effectively increased, which is favorable for increasing the average effective pressure in a work process, thereby improving the thermal efficiency and the power generation efficiency of the free piston generator. A combusted working medium is first subjected to first-stage expansion in the high-pressure cylinders and is then subjected to second-stage expansion in the low-pressure cylinders, which effectively increases the utilization rate of energy in exhaust gas, increases the expansion work, and further improves the thermal efficiency and the power generation efficiency of the free piston generator.
US11616417B2 Outer rotor motor with integrated brake
An electric motor assembly includes an outer rotor motor, a sensor, and a brake assembly. The outer rotor motor includes a stator and a rotor. The rotor at least partly circumscribes the stator and is rotatable relative to the stator about an axis. The rotor includes a rotor core extending radially outwardly to present axially opposite first and second sides, and a plurality of magnets supported relative to the rotor core. The sensor is operable to sense a condition associated with the electric motor assembly. The brake assembly is operably coupled to the rotor core to selectively reduce the rotational speed of the rotor. The brake assembly is positioned at least partly axially outward from the first side of the rotor core, and the sensor is positioned at least partly axially outward from the second side of the rotor core.
US11616411B2 Overlapped end caps for stator core
A set of interchangeably pairable end caps is provided for electrically insulating a variety of stator cores having differing axial stack heights. Each pair of end caps cooperatively defines a generally radially projecting, generally axially extending wire barrier including axially opposed ends. Each of the ends forms a respective rounded winding ramp configured to smoothly guide wiring into a wire trough in part defined by the wire barrier.
US11616401B2 Smart RF lensing: efficient, dynamic and mobile wireless power transfer
An RF lens includes a multitude of radiators adapted to transmit radio frequency electromagnetic EM waves whose phases are modulated so as to concentrate the radiated power in a small volume of space in order to power an electronic device positioned in that space. Accordingly, the waves emitted by the radiators are caused to interfere constructively at that space. The multitude of radiators are optionally formed in a one-dimensional or two-dimensional array. The electromagnetic waves radiated by the radiators have the same frequency but variable amplitudes.
US11616400B2 Electronic device
An electric device provided by the disclosure includes: a battery; at least two charging circuits respectively connected with the battery; a charging port, connected with the at least two charging circuits; and at least two wireless receiving circuits, connected with the at least two charging circuits by one-to-one correspondence; wherein the at least two charging circuits are configured for processing a voltage and a current output by the charging port or each wireless receiving circuits, and providing the processed voltage and current to charge the battery. The electric device charges the battery by using multiple charging circuits, which may improve the charging power of the battery and accelerate the charging rate.
US11616396B2 System and method for delivering electric power
A system for transferring electric power is provided. A power supply conductor conducts a power supply current that generates a first resultant magnetic field. An electric motor has a power input terminal connected to the power supply conductor and a movable output component. A generator has a movable input component connected to the movable output component such that the movable output component causes movement of the movable input component. The generator converts the movement of the movable input component into a power output current to the power output terminal that generates a second resultant magnetic field. A plurality of field line guides are positioned for field lines of the second resultant magnetic field to couple to the plurality of field line guides and are formed to guide the field lines into a helical shape.
US11616394B2 Electronic device
An electronic device includes a magnetic element, and a first circuit module. The magnetic element includes a magnetic core set and a winding assembled in the magnetic core set. The first circuit module is coupled to the first winding of the magnetic element. A vertical projection area of the first circuit module has an overlap portion with a vertical projection area of the winding of the magnetic core set on a first plane, and the first plane is a horizontal plane at which the winding is located.
US11616393B2 Low-power high-frequency directional tunable AC magnetic field
Apparatus for near-field wireless energy transfer. A first layer provides or comprises a piezoelectric phase or a material with or adapted for electromechanical coupling; and a second layer provides or comprises a magnetostrictive phase or a material with or adapted for a magnetomechanical coupling. The second layer is mechanically and/or chemically coupled to the first layer to provide a composite structure.
US11616385B2 Vehicle battery system
A vehicle battery system configured to appropriately control a battery installed in a vehicle includes a controller and a rechargeable battery installed in the vehicle in a replaceable manner, charged by an electric power generator, and supplies electric power to auxiliary equipment of the vehicle. The controller determines whether a first battery or a second battery with charging efficiency lower than the first battery is installed in the vehicle as the rechargeable battery and, when determining that the second battery is installed as the rechargeable battery, makes the maximum generated power voltage that is the maximum value of the generated power voltage of the electric power generator higher than when determining that the first battery is installed.
US11616384B2 Battery charger with constant current control loop
It is an object of one or more embodiments of the present disclosure to provide a battery charger with a constant current control loop, for use in linear and switching chargers. Advantages include digital controls and a comparator, for decreasing charging current towards termination. The technique of the disclosure eliminates a constant voltage loop and amplifier, without increasing charging time. The technique also simplifies porting the design to another process technology node, and reduces size.
US11616379B2 Electric energy supply device comprising a busbar matrix, and method for operating the energy supply device
The disclosure relates to an electrical energy supply device having a plurality of usage units, each of which is adapted to generate or to buffer electrical energy. The disclosure proposes that the energy supply device carries out an energy exchange with multiple external components at the same time through a busbar assembly and in the energy supply device the usage units are divided up into strands and each strand end of the strand is connected across a respective galvanically separable switching unit.
US11616368B2 Power supply system including DC-to-DC converter and control method therefor
A DC-DC converter includes a bridge circuit electrically connected to a DC link capacitor; an inductor and a capacitor electrically connected to the bridge circuit, in which the inductor is connected to a first end of a battery, and the capacitor is connected to the first end and a second end of the battery; a sensor configured to sense a voltage between the bridge circuit and the DC link capacitor; and a controller configured to control switching operations of the bridge circuit so that a power output by the DC-DC converter and supplied to the first end of the battery has a droop curve-shaped power value according to the sensed voltage.
US11616366B2 AC essential bus delta current and over current protection scheme
A system includes a first AC bus configured to supply power from a first generator. A second AC bus is configured to supply power from a second generator. An AC essential bus tie contactor (AETC) selectively connects between an AC essential bus and the first and second AC busses. An AETC controller is connected to switch the AETC between a first state connecting the AC essential bus to the first AC bus and a second state connecting the AC essential bus to the second AC bus. A sensor system is configured to detect at least one of delta current and overcurrent in the AC essential bus and in at least one of the first AC bus and the second AC bus. The sensor system is operatively connected to the AETC controller for switching the AETC between the first state and the second state based on input from the sensor system.
US11616365B2 Decentralized hardware-in-the-loop scheme
A method tests the configuration of an aggregated DERs system using distributed asset managers in a decentralized hardware-in-the-loop (“HIL”) scheme. The managers contain the model of the asset they are meant to control. The method programs an asset manager with a model of a DERs asset. A plurality of asset managers are connected to a central controller. The plurality of asset managers are also connected to a simplified hardware-in-the-loop platform. The simplified HIL platform is configured to solve a network model, a load model, a non-controllable asset model, and a grid model. The method tests the DERs system control structure by using: (a) the simplified HIL platform to solve the network model, the load model, the non-controllable asset model, and the grid model, and (b) the asset manager to solve the model of the DERs asset, without any simulation between the central controller and the distributed asset managers.
US11616364B2 Preemptive power transfer switching
An electrical load system includes one or more electrical loads, a power transfer switch, and an electronic control system. The power transfer switch is coupled with and can provide power to one or more electrical loads from a first power source or a second power source. The electronic control system evaluates a source impedance of the first source and controls the power transfer switch in response to the source impedance of the first source indicating a fault condition of the first power source that would interrupt power from the first power source to the one or more electrical loads prior to the fault condition disrupting power from the first power source to the one or more electrical loads.
US11616360B2 Integrated circuit with capability of inhibiting ESD zap
An integrated circuit is provided. An ESD inhibition circuit of the integrated circuit is connected with a first pad, a first node and a second node. The ESD inhibition circuit includes a capacitor bank, a resistor, a voltage selector and a switching transistor. The capacitor bank is connected between the first pad and a third node. The resistor is connected between the third node and the first node. The two input terminals of the voltage selector are connected with the third node and a fourth node, respectively. An output terminal of the voltage selector is connected with a fifth node. A first terminal of the switching transistor is connected with the first pad. A second terminal of the switching transistor is connected with the second node. A gate terminal of the switching transistor is connected with the fifth node.
US11616359B2 ESD protection circuit
Disclosed is an ESD protection circuit which performs a protection operation by detecting an introduction of an ESD signal when the ESD signal is introduced through a power line. The ESD protection circuit includes a noise detection circuit configured to provide a first detection signal which detects power noise or an ESD signal introduced through a power line; an ESD detection circuit configured to provide a second detection signal which detects an ESD signal introduced through the power line; and a pull-down control circuit configured to perform pull-down on the ESD signal of the power line when the first detection signal which detects the power noise or the ESD signal and the second detection signal which detects the ESD signal are received.
US11616355B2 Tensioning device for a wired energy and/or data transmission path
A tensioning device for a wired energy or data transmission path includes a winding drum, a cable guide wire stored on the winding drum, and a spring accumulator. The winding drum is rotatable by an electrical drive for winding and unwinding the cable guide wire. The spring accumulator is operably exerting a resilient tensile force on a wire portion unreeled from the winding drum.
US11616354B2 Battery pack
A battery pack houses a battery inside a battery case, the battery case (100) includes an opening (450), cables (200, 300) electrically connected with the battery is inserted to the opening, a cable protection member (400) including a through portion (410) is arranged at the opening, the cable protection member is attachable to the opening in at least two different directions, and a position of the through portion to the battery case changes according to an attaching direction.
US11616348B2 Method of installing spiral hangers about a messenger line while removing lashing wire
There is provided a method of installing spiral hangers about a messenger line installed between first and second utility poles with a cable being lashed to the messenger line with a lashing wire. The method includes attaching a first and second spiral hangers to the messenger line between first and second utility poles with the first spiral hanger disposed about the messenger line and the cable. The method includes removing the lashing wire from being around the messenger line and the cable adjacent the second spiral hanger. The method includes moving the second spiral hanger towards the second utility pole. The method includes attaching a successive spiral hanger to the messenger line between the spiral hangers, and repeating the moving of the second spiral hanger and attaching another successive spiral hanger.
US11616341B2 Systems and methods for chip-scale lasers with low spatial coherence and directional emission
Exemplary embodiments of the present disclosure include chip-scale laser sources, such as semiconductor laser sources, that produce directional beams with low spatial coherence. The lasing modes are based on the axial orbit in a stable cavity and have good directionality. To reduce the spatial coherence of emission, the number of transverse lasing modes can be increased by fine-tuning the cavity geometry. Decoherence is reached in as little as several nanoseconds. Such rapid decoherence facilitates applications in ultrafast speckle-free full-field imaging.
US11616340B2 Methods and systems to generate laser light
There is provided a method of operating a laser. The method comprises receiving a target power and calculating an operating power of a lasing module of the laser. The operating power may be calculated based on the target power and a minimum lasing power of the lasing module. The method also comprises determining an operating current for the lasing module based on the operating power, and driving the lasing module at the operating current to produce an output light having the operating power. In addition, the method comprises providing the output light to an optical modulator of the laser, and operating the optical modulator to modulate the output light to have an output power corresponding to the target power.
US11616339B2 Light source device
A light source device includes: first and second laser diodes; a reflector having: first and second reflecting faces configured to reflect a portion of light from the respective first and second laser diodes and to transmit a portion of the light from the respective first and second laser diodes, and first and second exit faces configured to allow the portions of the light transmitted through the respective first and second reflecting faces to exit; and a photodetector including: first and second light receiving element configured to receive light exiting the first and second exit faces, respectively. The reflector is configured such that the light transmitted through the first reflecting face is hindered from exiting the second exit face and the light transmitted through the second reflecting face is hindered from exiting the first exit face.
US11616337B2 Optical module
An optical module includes a light-forming unit to form light. The light-forming unit includes a base member having an electronic temperature control module, a base plate, a plurality of submounts, and a microelectromechanical system (MEMS) base. The light-forming unit also includes a plurality of laser diodes arranged on the submounts, a filter arranged on the base plate and located to receive the light emitted from the plurality of laser diodes and multiplex the emitted light, a MEMS arranged on the MEMS base and located to receive the light multiplexed by the filter. The MEMS includes a scanning mirror to scan the light multiplexed by the filter, and the electronic temperature control module regulates a temperature range of the MEMS. The light-forming unit also includes a protective member surrounding and sealing the light-forming unit, which includes a base body and a lid welded to the base body.
US11616335B2 Method for assembling a cable connector
A method for assembling a cable connector which has an outer conductor part, and insulating part and an electrical cable that is prefabricated with an inner conductor part. In a first method step, the insulating part is introduced into the outer conductor part by relative movement between the insulating part and the outer conductor part. In a second method step, before or at least partially during the first method step, the electrical cable is prefabricated to have an inner conductor part secured on an inner conductor of the cable. In a third method step, during or after the first method step, the prefabricated cable is introduced into the insulating part up to a defined axial terminal position. The positions of the inner conductor part, the outer conductor part and/or the insulating part are fixed relative to each other by compressing the outer conductor part at least partly.
US11616333B2 Endoscope device and cable assembly thereof
An endoscope device and a cable assembly thereof are provided. The cable assembly includes a first substrate, a second substrate, and a wire. The first substrate includes a first body and a first solder pad disposed on the first body. The second substrate is correspondingly disposed on the first substrate and includes a second body, a second solder pad disposed on the second body and corresponding to the first solder pad, and an accommodating portion corresponding to the second solder pad. The wire includes a soldering portion disposed in the accommodating portion. The first solder pad and the second solder pad are coupled to each other by at least one of a first solder and a second solder, and the soldering portion and the second solder pad are coupled to each other by the first solder.
US11616332B2 Portable charger with interchangeable connectors
An electronic device includes a housing, a removable connector comprising a base portion and an upper portion on the base portion, and a recess in the housing accommodating at least part of a removable connector, wherein at least part of the base portion is positioned in the recess. The upper portion of the removable connector comprises a male connecting element for connecting to a second electronic device. The electronic device further includes a battery configured for charging a battery of the second electronic device via the removable connector when at least the part of the base portion is positioned in the recess, and the male connecting element is coupled to the second electronic device.
US11616327B2 Contact assembly with ground structure
A contact assembly includes a leadframe having signal contacts and ground contacts including intermediate portions extends between mating ends and terminating ends. The contact assembly includes a contact holder holding the intermediate portions. The contact assembly includes cables terminated to the leadframe having signal conductors held by insulators and ground shields surrounding the signal conductors to provide electrical shielding and drain wires electrically connected to the ground shields. The signal conductors are terminated to terminating ends of corresponding signal contacts. The drain wires are terminated to terminating ends of ground contacts to electrically common the ground shields and the ground contacts of the leadframe. The contact assembly includes a ground bus separate and discrete from the leadframe terminated to each of the ground contacts to electrically common the ground contacts.
US11616321B2 Receptacle connector with cable-clamped structure
A receptacle connector with a cable-clamped structure of the invention includes a housing, an electrical module and a cable clamping module. The electrical module is disposed in the housing and includes a circuit board, a plurality of contacting terminals and a plurality of prick type terminals. The circuit board is disposed in the housing. The contacting terminals and the prick type terminals are disposed on the printed circuit board. The cable clamping module includes a first clamping member, a second clamping member and a cable clamper, wherein the first clamping member engages the second clamping member, and the cable clamper is pivoted to the first clamping member. A cable extends through the first clamping member and the second clamping member engaging the first clamping member, the cable clamper presses the cable with the first positioning portion positioned in the second positioning portion of the first clamping portion.
US11616318B2 Electrical connection component
An electrical connection component includes a conductor, and a housing into which the conductor is press-fitted. The housing includes a press-fitted portion having a hollow shape and into which the conductor is press-fitted in a press-fitting direction, and a restriction portion provided at a position different from a position of the press-fitted portion, the restriction portion restricting at least a part of the conductor from being displaced in a direction different from the press-fitting direction from a time point when press-fitting of the conductor into the press-fitted portion is started to a time point when the press-fitting is completed.
US11616316B2 Socket contact element for an electrically conductive connection
The invention relates to a socket contact element for establishing an electrically conductive connection including a crimp section for establishing an electrically conductive connection to a line and a contact box for establishing a detachable electrically conductive connection to a contact box plug, wherein the socket contact element is constructed in one piece and includes a plurality of integrally implemented functions based on geometrical designs. Furthermore, the invention relates to a sheet-shaped semifinished product for producing a socket contact element and the production method by forming.
US11616313B2 Grid array connector system
A compute system is provided that includes cables that are terminated to a grid array connector that is mounted on a substrate that has an integrated circuit packaged mounted thereon. The cables include conductors that are electrically connected to the integrated circuit via terminals supposed by the substrate.
US11616312B2 Electrical socket having a plurality of wire-terminated contacts
Example implementations relate to an electrical socket for an electronic packaging assembly, which accepts a modular integrated circuit (IC) on one side and a circuit board on another side. In some examples, the electrical socket has a first body mountable on a first surface of the circuit board and a second body mountable on a second surface of the circuit board. The first body includes a plurality of conductors (wire-terminated contacts), where each first conductor includes a first end to protrude beyond the first surface of the circuit board and a second end to protrude beyond the second surface of the circuit board. The second body includes a plurality of receptacles, where each receptacle is coupled to the second end of a respective first conductor.
US11616304B2 Spiral segment antenna
An antenna (100) for emitting radiation from at least one electromagnetic traveling wave which propagates along a guide path is designed to reduce reflection of the traveling wave likely to occur at the end of the guide path. To this purpose, the guide path has at least one portion in the form of a spiral segment (11, 12), which is connected to another portion of the guide path in the form of a loop (13). Gain in the antenna's reflection coefficient can be obtained in this manner, which is effective in particular near a lower frequency limit of a transmission band of the antenna.
US11616303B2 Folded antenna
A folded antenna includes: a substrate including a dielectric base material and a ground disposed on a first surface of the dielectric base material; and an antenna element including a bent portion bent in a direction perpendicular to the substrate, and a folded portion further bent in a direction parallel to the substrate from the bent portion and capacitively coupled to the ground via the dielectric base material. An impedance of the folded antenna is adjusted by adjusting an area of the folded portion by changing a width dimension of the folded portion without changing a height dimension of the bent portion.
US11616302B2 Dielectric resonator antenna having first and second dielectric portions
An electromagnetic device includes: a first electromagnetic, EM, signal feed; a second EM signal feed disposed adjacent to the first EM signal feed; and, an elevated electrically conductive region disposed between and elevated relative to the first and second EM signal feeds.
US11616301B2 Antenna structure
An antenna structure is provided, including a substrate, an impedance control line, a first impedance control area, and a metal element. The impedance control line is located on the first side of the substrate. The first impedance control area is arranged on the substrate, located on one side of the impedance control line, close to the second end of the impedance control line, and separated from the impedance control line by a first hollow part. The metal element is arranged on the substrate and connected to the first end and the second end of the impedance control line, and the first impedance control area. As such, the present invention controls the impedance in the high frequency range between 5.85 and 7.25 GHz through the impedance control line and the first impedance control area, provides a complete current flow area, and improves the impedance control effect, efficiency, and gain.
US11616295B2 Systems and methods for adaptive generation of high power electromagnetic radiation and their applications
Disclosed are systems for adjusting bias power provided to a radio-frequency amplifier to one or more figures of merit based on sensed characteristics of the amplifier and/or characteristics of the input or output power. The systems may be used in terrestrial and satellite based communications and radar, among other possibilities.
US11616292B2 Antenna, antenna device, and antenna device for vehicle
An antenna (100) includes a ground plate (110) and a radiating element (130) that has a shape expanding in a predetermined expansion direction and a self-similar shape with respect to an end portion (135) connected to a feeding line (151) that is a feeding portion. The radiating element (130) is arranged in a standing state relative to the end portion (135) so as to face the end portion (135) toward the ground plate (110). In addition, the radiating element (130) has a first radiating element portion (131) and a second radiating element portion (133) that are plane-symmetric to each other across a predetermined virtual symmetric plane (A1) along the expansion direction, and thereby forms a shape expanded in the expansion direction.
US11616288B2 Electronic device including 5G antenna module
An electronic device including an antenna module is provided. The electronic device includes a 5th generation (5G) antenna module that includes an antenna array, at least one conductive region operating as a ground with respect to the antenna array, and a first communication circuit feeding a power to the antenna array to communicate through a millimeter wave signal, and a printed circuit board (PCB) that includes a second communication circuit and a ground region. The second communication circuit feeds the power to an electrical path at least including the at least one conductive region and transmits or receives a signal in a frequency band different from a frequency band of the millimeter wave signal based on the electrical path supplied with the power and the ground region.
US11616283B2 5G mmWave antenna architecture with thermal management
Embodiments include an electronic package that includes a radio frequency (RF) front end. In an embodiment, the RF front end may comprise a package substrate and a first die attached to a first surface of the package substrate. In an embodiment, the first die may include CMOS components. In an embodiment, the RF front end may further comprise a second die attached to the first surface of the package substrate. In an embodiment, the second die may comprise amplification circuitry. In an embodiment, the RF front end may further comprise an antenna attached to a second surface of the package substrate. In an embodiment, the second surface is opposite from the first surface.
US11616282B2 Transition between a single-ended port and differential ports having stubs that match with input impedances of the single-ended and differential ports
This document describes techniques, apparatuses, and systems utilizing a high-isolation transition design for differential signal ports. A differential input transition structure includes a first layer and a second layer made of a conductive metal and a substrate positioned between the first and second layers. The second layer includes a first section that electrically connects to a single-ended signal contact point and to a first contact point of a differential signal port. The first section includes a first stub based on an input impedance of the single-ended signal contact point and a second stub based on a differential input impedance associated with the differential signal port. The second layer includes a second section that electrically connects to a second contact point of the differential signal port and to the first layer through a via housed in a pad. The second section includes a third stub associated with the differential input impedance.
US11616275B2 Connecting assembly, battery module, battery pack, device, and manufacturing method
This application provides a connecting assembly, a battery module, a battery pack, a device, and a manufacturing method. The connecting assembly includes an insulation board and a busbar. The insulation board includes a hollow portion, a first side, and a second side. The busbar includes a first busbar and a second busbar. The first busbar is disposed on the first side of the insulation board. The second busbar is disposed from the second side into the hollow portion of the insulation board. The battery module includes a battery cell and a module frame. The battery cell is accommodated in the module frame. A device using a battery cell as a power supply includes: a power source configured to provide a driving force for the device; and a battery module configured to provide electrical energy to the power source.
US11616273B2 Method for manufacturing a separator
The disclosure provides a method for manufacturing a separator, comprising the steps of: providing a nonporous precursor substrate; coating a heat-resistant slurry on a surface of the nonporous precursor substrate to form a heat-resistant coating layer, wherein the heat-resistant slurry comprises a binder and a plurality of inorganic particles; and stretching the nonporous precursor substrate with the heat-resistant coating layer formed thereon to generate a separator comprising a porous substrate and a heat-resistant layer; wherein the heat-resistant layer is disposed on the surface of the porous substrate in the range of 10% to 90% of the total surface area of the porous substrate.
US11616271B2 Battery separator including inorganic coating disposed on dense layer formed on support layer, and method for preparing the same
A battery separator and a preparation method therefor are provided. The separator includes a lithium ion battery separator substrate and an inorganic coating, the lithium ion battery separator substrate consists of a support layer and a dense layer, and the inorganic coating is coated on the dense layer; the separator has excellent high-temperature resistance, and still has good strength retention and the heat shrinkage rate thereof is no more than 2% after treatment at 300° C. for 1 h, and thus ensures the stability and isolation of the rigid structure of the separator coating at high temperatures; the substrate has a uniform and compact double-layer structure, effectively controls phenomena such as pinholes and filler particles fall-off in a subsequent coating process, and meets the requirements of lithium ion battery separators with respect to heat resistance, porosity and strength, thus having excellent comprehensive performance.
US11616270B2 Battery with thermal runaway prevention
A battery includes a plurality of battery cells, each battery cell including a core, a source of thermal control fluid in fluid communication with the core, and a first pressure sensitive valve positioned between the core and the source of thermal control fluid, the first pressure sensitive valve adapted to open when pressure within the core exceeds a first pre-determined value.
US11616267B2 Modular system for traction batteries of motor vehicles
A modular system for traction batteries of motor vehicles, having multiple battery modules includes respective battery cells, which can be electrically connected to one another in modular manner to produce different variants of traction batteries, wherein the battery modules each have a modular housing, in which the respective battery cells are arranged in fluid-tight manner; the battery modules each have a mechanical interface by means of which the battery modules can be attached to an underside of a motor vehicle.
US11616265B2 Battery module
A battery module includes first and second modules each including a series of cell stacks, each including a series of unit cells arranged in a first direction, and an insulation member insulating at least one unit cell. The battery module also includes a module housing, a coupling part on the module housing configured to couple the module housings of the first and second modules together, and a series of receiving parts in the module housing accommodating the cell stacks. Each receiving part includes a fixed wall around a respective cell stack and having at least a portion that is in contact with the respective cell stack. The coupling part includes a connector configured to electrically connect the module housings of the first and second modules together.
US11616264B2 System and method for initializing and operating metal-air cell
A method and system for creating low corrosion passivation layer on an anode in a metal-air cell comprise asserting high negative potential and low drawn current density on the cell after its operational parameters have stabilized after the cell has been powered-on. As a result the H2 evolution rate momentarily raises and then drops sharply, thereby causing the creation of a passivation layer on the face of the anode.
US11616262B2 Battery and capacitor assembly for a vehicle and a method for heating and cooling the battery and capacitor assembly
A battery and capacitor assembly for a hybrid vehicle includes a plurality of battery cells, a plurality of capacitor cells, a cooling plate, a pair of end brackets, and a housing. The plurality of capacitor cells are arranged adjacent to the plurality of battery cells such that the plurality of battery cells and the plurality of capacitor cells form a cell stack. The pair of end brackets are disposed at opposite ends of the cell stack and are attached to the cooling plate. The pair of end brackets compress the plurality of battery cells and the plurality of capacitor cells. The housing is attached to the cooling plate and encloses the cell stack and the pair of end brackets.
US11616254B2 Hybrid solid-state cell with a sealed anode structure
A monolithic ceramic electrochemical cell housing is provided. The housing includes two or more electrochemical sub cell housings. Each of the electrochemical sub cell housing includes an anode receptive space, a cathode receptive space, a separator between the anode receptive space and the cathode receptive space, and integrated electron conductive circuits. A first integrated electron conductive circuit is configured as an anode current collector within the anode receptive space. A second integrated electron conductive circuit is disposed as a cathode current collector within the cathode receptive space.
US11616249B2 Solid oxide fuel cell system with hydrogen pumping cell with carbon monoxide tolerant anodes and integrated shift reactor
A fuel cell system includes a fuel cell stack, a fuel inlet conduit configured to provide a fuel to a fuel inlet of the fuel cell stack, an electrochemical pump separator containing an electrolyte, a cathode, and a carbon monoxide tolerant anode, a fuel exhaust conduit that operatively connects a fuel exhaust outlet of the fuel cell stack to an anode inlet of the electrochemical pump separator, and a product conduit which operatively connects a cathode outlet of the electrochemical pump separator to the fuel inlet conduit.
US11616248B2 Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
Molten carbonate fuel cells (MCFCs) are operated at elevated pressure to provide increased operating voltage and/or enhanced CO2 utilization with a cathode input stream having a low CO2 content. It has been discovered that increasing the operating pressure of a molten carbonate fuel cell when using a low CO2-content cathode input stream can provide unexpectedly large increases in operating voltage while also reducing or minimizing the amount of alternative ion transport and/or enhancing CO2 utilization.
US11616244B2 Electrochemical apparatus and hydrogen system
An electrochemical apparatus includes: a reformer that produces a first hydrogen-containing gas by reforming a raw material; a combustor that heats the reformer; an electrochemical device that includes an anode and a cathode, the electrochemical device operating by using the first hydrogen-containing gas supplied to the anode; a first flow rate controller that controls a flow rate of the first hydrogen-containing gas supplied to the anode and a flow rate of a second hydrogen-containing gas supplied from a supply source, the second hydrogen-containing gas being different from the first hydrogen-containing gas; a second flow rate controller that controls a flow rate at which an anode-off gas exhausted from the anode is recycled to the anode and a flow rate at which the anode-off gas is supplied to the combustor; and a controller that controls the first flow rate controller and the second flow rate controller.
US11616243B2 Temperature control method for vehicular proton exchange membrane fuel cell system
A temperature control method for a vehicular proton exchange membrane fuel cell system comprises the following steps: detecting a cooling loop inlet temperature of a fuel cell stack by using a temperature sensor, and inputting the temperature into a controller to achieve cooling fan control based on the controller, wherein the cooling fan control comprises fuzzy logic self-adaptive proportional integral control and feedforward compensation control, gain parameters of the proportional integral control are self-adaptively updated by a fuzzy logic algorithm, a load current of the fuel cell serves as disturbance and is used for feedforward compensation, and meanwhile, the opening degree of the fan is determined by the total cooling capacity requirement and the number of cooling fans; and finally, inputting a control signal output by the controller into an actuator of a thermal management subsystem, and conducting cooling inlet temperature control of the fuel cell stack.
US11616242B2 Method for controlling fuel cell
A method for controlling a fuel cell that includes an electrochemical reactor; a cooling circuit; a controller; a coolant circuit; a first temperature sensor; and a second temperature sensor. The cooling circuit includes a cooling pipe and is configured to cool the electrochemical reactor; the controller is configured to control operations of the electrochemical reactor and the cooling circuit; the cooling pipe includes a first water inlet and a first water outlet; and the coolant circuit is connected to the first water inlet and the first water outlet. The method includes comparing the first temperature of the coolant at the first water inlet to the second temperature at the first water outlet; and controlling operations of the heater and the electrochemical reactor based on the comparison result.
US11616237B2 Battery plates useful in bipolar battery assemblies and methods of preparation
A battery plate having a substrate with opposing surfaces and one or more nonplanar structures and one or more active materials disposed on at least one of the opposing surfaces; wherein the battery plate includes one or more of: i) one or more projections disposed within but do not extend beyond the active material; ii) one or more projections which project beyond the active material and substantially free of the active material or dust formed from the active material; and/or iii) a frame about the periphery of the substrate which projects beyond the active material and is substantially free of the active material or dust formed from the active material; and wherein the battery plate is adapted to form part of one or more electrochemical cells in a battery assembly.
US11616236B2 Binder, method of preparing the same, electrode for secondary battery including the binder, and secondary battery including the electrode
A binder including a metal salt of a graft copolymer, which is a polymerization product of polyvinyl alcohol, an ethylenically unsaturated carboxylic acid, and a polymerizable monomer having a long-chain alkyl group.
US11616235B2 Functional lithiated agent-containing additives in Li-ion battery electrodes
Systems and methods for batteries comprising a cathode, an electrolyte, and an anode, wherein one or both electrodes contain a functional lithiated agent-containing additive.
US11616233B2 Amorphous silicon-carbon composite, preparation method therefor, and lithium secondary battery comprising same
An amorphous silicon-carbon composite, a method for preparing the amorphous silicon-carbon composite using a pyrolysis method, a negative electrode for a lithium secondary battery, and a lithium secondary battery including the same.
US11616227B2 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
The method for manufacturing a positive electrode active material for a non-aqueous electrolyte secondary battery according to one embodiment of the present invention comprises: a first step for adding an alkaline solution having a tungsten compound dissolved therein to a lithium-metal composite oxide powder represented by general formula LizNi1-x-yCoxMyO2 (where 0≤x≤0.1, 0≤y≤0.1, and 0.97≤z≤1.20 are satisfied, and M is at least one type of element selected from among Mn, W, Mg, Mo, Nb, Ti, Si, and Al), and mixing same; and a second step for heating the mixture of the alkaline solution and the lithium-metal composite oxide powder at 100-600° C., wherein the amount of the alkaline solution to be added in the first step is 0.1-10 mass % with respect to the amount of the lithium-metal composite oxide powder.
US11616226B2 Method for preparing high-voltage cathode material by body modification and regeneration of waste lithium cobaltate material
The disclosure discloses a method for preparing a high-voltage cathode material by body modification and regeneration of a waste lithium cobaltate material. The waste lithium cobaltate cathode material is calcined, and then measured; a lithium source, a magnesium source, nano-scale TiO2 and the waste lithium cobaltate cathode material powder are mixed to obtain a mixture, placed in a ball milling tank containing absolute ethanol, and the resulting mixture is ball milled, and then dried to obtain a mixed powder; the mixed powder is calcined to obtain a magnesium-titanium co-doped regenerated lithium cobaltate cathode material; the magnesium-titanium co-doped regenerated lithium cobaltate cathode material is added into a mixed solution obtained by ultrasonically mixing absolute ethanol with the aluminum source, and then heated and stirred continually until the solvent evaporates to obtain a residue; the residue is calcined to obtain an aluminum-coated magnesium-titanium co-doped regenerated lithium cobaltate cathode material.
US11616223B2 Electrochemical device and electronic device comprising same
The present application relates to an electrochemical device and an electronic device including the same. The electrochemical device includes a cathode, a separator and an anode, wherein the cathode includes a cathode current collector; a first cathode active material layer including a first cathode active material; a second cathode active material layer including a second cathode active material, wherein the first cathode active material layer is disposed between the cathode current collector and the second cathode active material layer, and the first cathode active material layer is disposed on a first surface, facing the anode, of the cathode current collector; and an insulating layer, wherein the insulating layer is disposed on a second surface, that is not facing the anode, of the cathode current collector. According to the present application, arranging the cathode by combining the double cathode active material layers with an insulating layer in the electrochemical device, the electrochemical device will not catch on fire or fail when being pierced, so that the mechanical safety performance of the electrochemical device is ensured.
US11616222B2 All solid state battery and method for producing same
A main object of the present disclosure is to provide an all solid state battery wherein interface resistance between a current collector and an active material layer is low. In the present disclosure, the above object is achieved by providing an all solid state battery comprising: an electrode including a current collector, an electron conductive layer, and an active material layer, in this order, and a solid electrolyte layer formed on the active material layer side of the electrode, and the electron conductive layer is an agglutinate of metal particles or a metal foil, and electron conductivity of the electron conductive layer is 1×103 S/cm or more at 25° C.
US11616219B2 Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
Electrodes and methods of forming electrodes are described herein. The electrode can be an electrode of an electrochemical cell or battery. The electrode includes a current collector and a film in electrical communication with the current collector. The film may include a carbon phase that holds the film together. The electrode further includes an electrode attachment substance that adheres the film to the current collector.
US11616207B2 Organic-light-emitting-diode device and fabricating method thereof, displaying base plate and displaying device
An organic-light-emitting-diode device and a fabricating method thereof, a displaying base plate and a displaying device, wherein the organic-light-emitting-diode device includes a substrate, and an anode layer, an organic functional layer and a cathode layer that are provided in stacking on one side of the substrate, wherein the organic functional layer includes a first functional layer, a second functional layer and a light emitting layer that are provided in stacking, and the first functional layer is provided closer to the anode layer; and a HOMO energy level of the second functional layer is deeper than both of a HOMO energy level of the first functional layer and a HOMO energy level of a host material of the light emitting layer.
US11616206B2 Separation method, display device, display module, and electronic device
The yield of a separation process is improved. The mass productivity of a display device which is formed through a separation process is improved. A layer is formed over a substrate with use of a material including a resin or a resin precursor. Next, a resin layer is formed by performing heat treatment on the layer. Next, a layer to be separated is formed over the resin layer. Then, the layer to be separated and the substrate are separated from each other. The heat treatment is performed in an atmosphere containing oxygen or while supplying a gas containing oxygen.
US11616204B2 Organic electroluminescence device and organometallic compound for organic electroluminescence device
An organic electroluminescence device includes a first electrode; an emission layer on the first electrode; and a second electrode on the emission layer, wherein the emission layer comprises an organometallic compound represented by Formula 1, and the organic electroluminescence device can achieve long life and deep blue light emission:
US11616202B2 Compound, composition and organic optoelectronic device and display device
A compound represented by a combination of Chemical Formula 1 and Chemical Formula 2 bonded together, a composition including the compound, an organic optoelectronic device, and a display device are disclosed. In Chemical Formula 1 and Chemical Formula 2, each substituent is the same as described in the specification.
US11616197B2 Variable resistance memory device
A variable resistance memory device includes a plurality of memory cells arranged on a substrate. Each of the memory cells includes a selection element pattern and a variable resistance pattern stacked on the substrate. The selection element pattern includes a first selection element pattern having a chalcogenide material and a second selection element pattern having a metal oxide and coupled to the first selection element pattern.
US11616196B2 Low current RRAM-based crossbar array circuit implemented with switching oxide engineering technologies
Switching oxide engineering technologies relating to low current RRAM-based crossbar array circuits are disclosed. An apparatus, in some implementations, includes: a substrate; a bottom electrode formed on the substrate; a switching oxide stack formed on the bottom electrode. The switching oxide stack includes one or more base oxide layers and one or more discontinuous oxide layers alternately stacked; An apparatus further includes a top electrode formed on the switching oxide stack. The base oxide layer includes TaOx, HfOx, TiOx, ZrOx, or a combination thereof. The discontinuous oxide layer includes Al2O3, SiO2, Si3N4, Y2O3, Gd2O3, Sm2O3, CeO2, Er2O3, or the combination thereof.
US11616193B2 Semiconductor device and method for fabricating the same
A semiconductor device includes: a substrate comprising a magnetic tunneling junction (MTJ) region and a logic region, a MTJ on the MTJ region, a top electrode on the MTJ, a connecting structure on the top electrode, and a first metal interconnection on the logic region. Preferably, the first metal interconnection includes a via conductor on the substrate and a trench conductor, in which a bottom surface of the trench conductor is lower than a bottom surface of the connecting structure.
US11616185B2 Energy harvesting device for electronic devices
A device that includes a region comprising a heat generating device, and an energy harvesting device coupled to the region comprising the heat generating device. The energy harvesting device includes a first thermal conductive layer, a thermoelectric generator (TEG) coupled to the first thermal conductive layer, and a second thermal conductive layer coupled the thermoelectric generator (TEG) such that the thermoelectric generator (TEG) is between the first thermal conductive layer and the second thermal conductive layer. In some implementations, the energy harvesting device includes an insulation layer.
US11616180B2 Light emitting device, and method of manufacturing light emitting device
A light emitting device includes a base, a first external terminal, a second external terminal, a plurality of wirings respectively electrically connecting the first external terminal and the second external terminal, and a plurality of light emitting elements each electrically connected to a corresponding one of the wirings. The wirings include a first wiring connecting the first external terminal and the second external terminal at a smallest distance, a second wiring longer than the first wiring, and a third wiring longer than the second wiring. The first, second, and third wirings have a substantially equal electric resistance. At least two of the first, second and third wirings are each provided with at least two of the light emitting elements with an average width in an intermediate region between adjacent ones of the light emitting elements being smaller than an average width in a region other than the intermediate region.
US11616179B2 Light emitting device and method of manufacturing light emitting device
A method of manufacturing a light emitting device that comprises a first cover member and a second cover member, includes: providing a package that comprises a substrate, a plurality of resin walls, and a recessed part defined by an upper surface of the substrate and lateral surfaces of the plurality of resin walls, wherein the substrate includes a grooved part surrounding a first region; mounting a light emitting element in the first region; forming the second cover member in a region between the lateral surfaces defining the recessed part to an upper edge of an outer perimeter of the grooved part; forming the first cover member, which comprises depositing an uncured resin on the second cover member, and allowing the uncured resin to flow into a groove of the grooved part; and forming a light transmitting member on the first cover member and the light emitting element.
US11616176B2 Optoelectronic component with a housing body and an optical element both including a reflector
An optoelectronic component is disclosed. In an embodiment an optoelectronic component includes a housing body, an optical element and a rabbet comprising a shoulder and a cheek, wherein the rabbet is located on an upper side of the housing body, wherein the optical element is located in the rabbet such that a brim of the optical element rests on the shoulder of the rabbet, wherein the upper side of the housing body comprises a rectangular shape, and wherein the shoulder of the rabbet is located only at corners of the rabbet.
US11616168B2 Micro light-emitting diode display
A micro light-emitting diode display includes a first-type semiconductor base layer, a plurality of semiconductor light-emitting mesas dispersedly disposed on the first-type semiconductor base layer, a semiconductor heightening portion disposed on the first-type semiconductor base layer, a first bonding metal layer disposed on the semiconductor heightening portion, and a plurality of second bonding metal layers respectively disposed on the semiconductor light-emitting mesas. A top surface of the semiconductor heightening portion and a plurality of top surfaces of the semiconductor light-emitting mesas facing away from the first-type semiconductor base layer are coplanar. The top surface of the semiconductor heightening portion forms a first bonding surface adjacent to the first bonding metal layer. The top surfaces of the semiconductor light-emitting mesas respectively form a plurality of second bonding surfaces adjacent to the second bonding metal layers, and the first bonding surface and the second bonding surfaces are coplanar.
US11616164B2 Method for producing a nitride compound semiconductor component
A method for producing a nitride compound semiconductor component is disclosed. In an embodiment the method includes providing a growth substrate, growing a nucleation layer of an aluminum-containing nitride compound semiconductor onto the growth substrate, growing a tension layer structure for generating a compressive stress, wherein the tension layer structure comprises at least a first GaN semiconductor layer and a second GaN semiconductor layer, and wherein an Al(Ga)N interlayer for generating the compressive stress is disposed between the first GaN semiconductor layer and the second GaN semiconductor layer and growing a functional semiconductor layer sequence of the nitride compound semiconductor component onto the tension layer structure, wherein a growth of the second GaN semiconductor layer is preceded by a growth of a first 3D AlGaN layer on the Al(Ga)N interlayer in such a way that it has nonplanar structures.
US11616162B2 Energy harvesting electro-optic displays
An energy harvesting electro-optic display is disclosed comprising a photovoltaic cell that converts part of the incident light to electric current or voltage, wherein the electric current or voltage is used for the operation of the electro-optic display upon the conversion or stored in a storage component to be used for the operation of the display.
US11616152B2 Semiconductor devices with single-photon avalanche diodes and hybrid isolation structures
An imaging device may include single-photon avalanche diodes (SPADs). To improve the sensitivity and signal-to-noise ratio of the SPADs, light scattering structures may be formed in the semiconductor substrate to increase the path length of incident light through the semiconductor substrate. To mitigate crosstalk, an isolation structure may be formed in a ring around the SPAD. The isolation structure may be a hybrid isolation structure with both a metal filler that absorbs light and a low-index filler that reflects light. The isolation structure may be formed as a single trench or may include a backside deep trench isolation portion and a front side deep trench isolation portion. The isolation structure may also include a color filtering material.
US11616144B2 Semiconductor device
A semiconductor device includes a first active fin protruding from a substrate, a first gate pattern covering a side surface and a top surface of the first active fin, and first source/drain patterns at opposite sides of the first gate pattern, each of the first source/drain patterns including a first lower side and a second lower side spaced apart from each other, a first upper side extended from the first lower side, a second upper side extended from the second lower side. The first lower side may be inclined at a first angle relative to a top surface of the substrate, the second upper side may be inclined at a second angle relative to the top surface of the substrate, and the first angle may be greater than the second angle.
US11616140B2 Vertical transport field effect transistor with bottom source/drain
A vertical field effect transistor structure having at least two vertically oriented fins extending from a substrate. The vertical field effect transistor structure further includes a first source/drain region disposed in the substrate between the two vertically oriented fins and under each of the fins. The outer ends of the first source/drain region are in contact with outer ends of the fins. A portion of the first source/drain region extends beyond the fins.
US11616139B2 LDMOS and fabricating method of the same
An LDMOS includes a semiconductor substrate. A well is disposed within the semiconductor substrate. A body region is disposed within the well. A first gate electrode is disposed on the semiconductor substrate. A source electrode is disposed at one side of the first gate electrode. The source electrode includes a source contact area and numerous vias. The vias connect to the source contact area. The vias extend into the semiconductor substrate. A first drain electrode is disposed at another side of the first gate electrode and is opposed to the source electrode.
US11616133B2 Fin field-effect transistor device and method
A method includes forming a doped region on a top portion of a substrate, forming a first epitaxial layer over the substrate, forming a recess in the first epitaxial layer, the recess being aligned to the doped region, performing a surface clean treatment in the recess, the surface clean treatment includes: oxidizing surfaces of the recess to form an oxide layer in the recess, and removing the oxide layer from the surfaces of the recess, and forming a second epitaxial layer in the recess.
US11616132B2 Semiconductor device and methods of manufacture
A semiconductor device and method of manufacturing are provided. In an embodiment a first nucleation layer is formed within an opening for a gate-last process. The first nucleation layer is treated in order to remove undesired oxygen by exposing the first nucleation layer to a precursor that reacts with the oxygen to form a gas. A second nucleation layer is then formed, and a remainder of the opening is filled with a bulk conductive material.
US11616131B2 Device and method for tuning threshold voltage by implementing different work function metals in different segments of a gate
A semiconductor device includes an active region spanning along a first direction. The semiconductor device includes a first elongated gate spanning along a second direction substantially perpendicular to the first direction. The first elongated gate includes a first portion that is disposed over the active region and a second portion that is not disposed over the active region. The first portion and the second portion include different materials. The semiconductor device includes a second elongated gate spanning along the second direction and separated from the first elongated gate in the first direction. The second elongated gate includes a third portion that is disposed over the active region and a fourth portion that is not disposed over the active region. The third portion and the fourth portion include different materials.
US11616128B2 Transistor structure with reduced leakage current and adjustable on/off current
A transistor structure includes a gate, a spacer, a channel region, a first concave, and a first conductive region. The gate is above a silicon surface. The spacer is above the silicon surface and at least covers a sidewall of the gate. The channel region is under the silicon surface. The first conductive region is at least partially formed in the first concave, wherein a conductive region of a neighborhood transistor structure next to the transistor structure is at least partially formed in the first concave.
US11616125B2 Integrated circuit device and manufacturing method thereof
A method of manufacturing an integrated circuit device includes: doping a substrate with a first type dopant to form a well region; forming a first semiconductor fin and a second semiconductor fin wider than the first semiconductor fin over the well region; forming a first source/drain region of a second type dopant on the first semiconductor fin, the second type dopant is of a different conductivity type than the first type dopant; forming a second source/drain region of the first type dopant on the second semiconductor fin.
US11616122B2 Germanium containing nanowires and methods for forming the same
Provided herein are tapered nanowires that comprise germanium and gallium, as well as methods of forming the same. The described nanowires may also include one or more sections of a second semiconductor material. Methods of the disclosure may include vapor-liquid-solid epitaxy with a gallium catalyst. The described methods may also include depositing a gallium seed on a surface of a substrate by charging an area of the substrate using an electron beam, and directing a gallium ion beam across the surface of the substrate.
US11616121B2 Silicon controlled rectifier and method for making the same
The present disclosure provides a silicon controlled rectifier and a manufacturing method thereof. The silicon controlled rectifier comprises: an N-type well 60, an upper portion of which is provided with a P-type heavily doped region 20 and an N-type heavily doped region 28; an N-type well 62, an upper portion of which is provided with a P-type heavily doped region 22 and an N-type heavily doped region 26; and a P-type well 70 connecting the N-type well 60 and 62, an upper portion of which is provided with a P-type heavily doped region 24; wherein a first electrode structure is in mirror symmetry with a second electrode structure with respect to the P-type heavily doped region 24, and active regions of the N-type well 60 and 62 are respectively provided between the P-type heavily doped region 24 and each of the N-type heavily doped region 28 and 26.
US11616120B2 Semiconductor substrate, method of manufacturing semiconductor device, and method of manufacturing semiconductor substrate
A semiconductor substrate includes a surface having a groove. The groove includes an inner bottom surface and an inner wall surface. The inner wall surface has a depression. The depression has a depth from a direction along a surface of the inner wall surface to a width direction of the groove. The substrate being exposed to the inner wall surface.
US11616115B2 Display device
A display device includes a substrate including a display area at which an image is displayed and a non-display area which is adjacent to the display area, and in the non-display area a common voltage transmitting line which is connected to the display area and through which a common voltage is provided to the display area, an organic insulating layer between the common voltage transmitting line and the substrate, a first opening which is in the common voltage transmitting line and exposes the organic insulating layer to outside the common voltage transmitting line and an auxiliary electrode which faces the organic insulating layer with the common voltage transmitting line therebetween, contacts the common voltage transmitting line at the first opening and covers the first opening.
US11616112B2 Display apparatus including power supply wires inhabiting non-display area
A display apparatus includes: a base substrate including a display area and a non-display area adjacent to the display area; a first power supply wire in the non-display area, a first power supply voltage being applied to the first power supply wire; a second power supply wire in the non-display area and spaced apart from the first power supply wire, a second power supply voltage being applied to the second power supply wire; and a dam overlapping the first power supply wire and the second power supply wire, having a first height on the first power supply wire, and having a second height greater than the first height between the first power supply wire and the second power supply wire.
US11616111B2 Organic light-emitting display device including a compensation line
An organic light-emitting display device includes: a substrate on which a display area and a non-display area surrounding the display area are defined, the display area includes a main area and at least one protruding area, and a plurality of pixels is in the display area; a first signal line on the substrate in the main area to provide signals to the plurality of pixels; a second signal line on the substrate in the protruding area to provide signals to the plurality of pixels; a compensation line on the substrate in the non-display area and electrically connected to the second signal line; and a bridge pattern over the second signal line and the compensation line in the non-display area and electrically connecting the second signal line with the compensation line, the bridge pattern including a double-bridge structure.
US11616110B2 Display device and array substrate
A display device according to an embodiment of the present invention includes: a substrate, a plurality of pixels on the substrate, a first inorganic insulating layer that covers the plurality of pixels, a conductive layer on the first inorganic insulating layer, and a second inorganic insulating layer that on the conductive layer, the conductive layer being between the first inorganic insulating layer and the second inorganic insulating layer, wherein the first inorganic insulating layer includes an area that is in direct contact with the second inorganic insulating layer, and all of the conductive layer is covered with the first inorganic insulating layer and the second inorganic insulating layer.
US11616106B2 Display device requiring reduced manufacturing steps
A display device is provided that includes a substrate, a first conductive layer disposed on the substrate, a first insulating layer disposed on the first conductive layer, a second insulating layer disposed on the first insulating layer, the second insulating layer including a contact hole exposing the first conductive layer, a second conductive layer disposed on the first insulating layer and electrically connected to the first conductive layer through the contact hole, a second insulating layer disposed on the first insulating layer, a first electrode disposed on the second insulating layer and the second conductive layer, the first electrode being electrically connected to the second conductive layer, a light emitting layer disposed on the first electrode, and a second electrode disposed on the light emitting layer.
US11616105B2 Display device structure for reducing defects
Provided is a display device including an organic insulating layer; a pixel electrode on the organic insulating layer; a pixel defining layer configured to cover an edge of the pixel electrode, having an opening corresponding to the pixel electrode, the pixel defining layer including a first layer including an inorganic insulating material and a second layer having less light transmittance in a first wavelength band than the first layer; an intermediate layer on a portion of the pixel electrode exposed via the opening, and including an emission layer; and an opposite electrode on the intermediate layer.
US11616102B2 Display device and fabricating method thereof
Provided is a display device that includes a substrate including a plurality of pixels; a display element layer including a light emitting element provided in each of the pixels; and a touch sensor on the display element layer. The touch sensor may include: a base layer on the display element layer; a first conductive pattern on the base layer; a first insulating layer provided over the first conductive pattern; a second conductive pattern on the first insulating layer; a second insulating layer provided over the second conductive pattern; an intermediate layer on the base layer; and a cover layer provided over the intermediate layer. The intermediate layer and the cover layer may include different materials.
US11616096B2 Display device
A display device includes a substrate, a first light-emitting unit, a second light-emitting unit, a first light conversion unit, a second light conversion unit, a first buffer layer, a second buffer layer, and a sidewall buffer layer. The first light-emitting unit and the second light-emitting unit are disposed on the substrate. The first buffer layer is disposed between the first light conversion unit and the first light-emitting unit and has a first curved bottom surface. The second buffer layer is disposed between the second light conversion unit and the second light-emitting unit and has a second curved bottom surface. The sidewall buffer layer directly contacts the first light conversion unit and the second light conversion. A width of the first curved bottom surface is different from a width of the second curved bottom surface.
US11616093B2 Light receiving element and electronic apparatus
A first light receiving element according to an embodiment of the present disclosure includes a plurality of pixels, a photoelectric converter that is provided as a layer common to the plurality of pixels, and contains a compound semiconductor material, and a first electrode layer that is provided between the plurality of pixels on light incident surface side of the photoelectric converter, and has a light-shielding property.
US11616090B2 Solid-state imaging element and imaging device
The height of a solid-state imaging element is further reduced as compared to the related art. A solid-state imaging element that is a wafer-level chip size package, including: an optical sensor chip; a protective layer that is stacked on a light receiving surface of the optical sensor chip; and a rewiring layer that is stacked on a surface opposite to the light receiving surface of the optical sensor chip, in which a connection terminal of the rewiring layer is a copper flat pad without a solder ball, an alloy layer of tin and copper is not formed on a front surface of the flat pad, and a thermal expansion coefficient of the protective layer is substantially balanced with a thermal expansion coefficient of the rewiring layer.
US11616087B2 Transceiver assembly for free space power transfer and data communication system
A transceiver assembly for a wireless power transfer system includes a transceiver system comprising a photodiode assembly, a voltage converter and a light emitting diode and a photodiode. The photodiode assembly may be configured to receive a high-power laser beam from a transmitter and to convert the high-power laser beam to electrical energy. The voltage converter may be configured to adjust an input impedance based on a voltage measure of the photodiode assembly so as to maximize power transfer from the photodiode assembly to an energy storage device electrically coupled to the voltage converter. The light emitting diode and the photodiode may be configured to enable free space optical communication with the transmitter. The light emitting diode may emit signals indicating a presence and a location of the transceiver to the transmitter at least when the energy storage device requires a charge.
US11616086B2 Thin film transistor panel, electric device including the same, and manufacturing method thereof
A thin film transistor panel according to an exemplary embodiment includes: a substrate; a first transistor disposed on the substrate and including a first semiconductor layer including a low temperature polysilicon and a first control electrode overlapping the first semiconductor layer; a second transistor disposed on the substrate and including a second semiconductor layer including an oxide semiconductor and a second control electrode overlapping the second semiconductor layer; a first gate insulation layer disposed between the first semiconductor layer and the first control electrode of the first transistor and including a first insulation layer and a second insulation layer; and a second gate insulation layer disposed between the second semiconductor layer and the second control electrode of the second transistor and including the second insulation layer, wherein the density of the first insulation layer may be higher than the density of the second insulation layer, the first semiconductor layer of the first transistor may be in contact with the first insulation layer, and the second semiconductor layer of the second transistor may be in contact with the second insulation layer.
US11616080B2 Three-dimensional memory device with ferroelectric material
A memory device includes: a first layer stack and a second layer stack formed successively over a substrate, where each of the first and the second layer stacks includes a first metal layer, a second metal layer, and a first dielectric material between the first and the second metal layers; a second dielectric material between the first and the second layer stacks; a gate electrode extending through the first and the second layer stacks, and through the second dielectric material; a ferroelectric material extending along and contacting a sidewall of the gate electrode; and a channel material, where a first portion and a second portion of the channel material extend along and contact a first sidewall of the first layer stack and a second sidewall of the second layer stack, respectively, where the first portion and the second portion of the channel material are separated from each other.
US11616077B2 3D NAND memory device and method of forming the same
A semiconductor device includes a first substrate having a first side for forming memory cells and an opposing second side, a doped region formed in the first side of the first substrate, a first connection structure formed over the second side of the first substrate and coupled to the doped region through a first VIA, and a transistor formed in a first side of a second substrate and coupled to the first connection structure. The first VIA extends from the second side of the first substrate to the doped region. The memory cells include a plurality of word lines formed over the first side of the first substrate, a plurality of insulating layers disposed between the plurality of word lines, and a common source structure coupled to and extending from the doped region, and further extending through the plurality of word lines and the plurality of the insulating layers.
US11616076B2 Three-dimensional semiconductor memory device
A three-dimensional semiconductor memory device includes a substrate, an electrode structure including gate electrodes sequentially stacked on the substrate, a source structure between the electrode structure and the substrate, vertical semiconductor patterns passing through the electrode structure and the source structure, a data storage pattern between each of the vertical semiconductor patterns and the electrode structure, and a common source pattern between the source structure and the substrate. The common source pattern has a lower resistivity than the source structure and is connected to the vertical semiconductor patterns through the source structure.
US11616071B2 NOR memory cell with vertical floating gate
An electrically erasable programmable nonvolatile memory cell includes a semiconductor substrate having a first substrate region and a trench region apart from the first substrate region in a lateral direction, a channel region between the first substrate region and the bottom portion of the trench region, an electrically conductive control gate insulated from and disposed over the first channel portion, an electrically conductive floating gate insulated from the bottom and sidewall portions of the trench region, an insulation region disposed over the second channel portion between the control gate and the second floating gate portion, an electrically conductive source line insulated from the floating gate and electrically connected to the trench region of the substrate, and an electrically conductive erase gate insulated from and disposed over a tip of the floating gate.
US11616070B2 Semiconductor device
A semiconductor device includes a substrate including a first plate portion and a second plate portion, a stack structure including interlayer insulating layers and gate electrodes alternately stacked on the substrate, a first block separation structure on the first plate portion and a second block separation structure on the first plate portion. Each of the first and second block separation structures includes first separation regions, a cell array separation structure including a second separation region connected to the first separation regions and channel structures penetrating the stack structure, wherein the stack structure includes first stack structures separated by the first separation regions of the first block separation structure and extending in the first direction, second stack structures separated by the first separation regions of the second block separation structure, and at least one third stack structure separated from the first and second stack structures by the cell array separation structure.
US11616069B2 Semiconductor structure and manufacturing method thereof
The present application discloses a semiconductor structure and a manufacturing method thereof. The semiconductor structure comprises a substrate, a gate dielectric layer, a floating gate, a first dielectric layer and a control gate. The gate dielectric layer is disposed on the substrate. The floating gate is disposed on the gate dielectric layer and has at least one tip on a top surface of the floating gate. The first dielectric layer is disposed on the floating gate. The control gate is disposed above the first dielectric layer and at least partially overlaps the floating gate.
US11616061B2 Cut metal gate with slanted sidewalls
A method includes providing a structure having a substrate, semiconductor fins, and an isolation structure between adjacent semiconductor fins; forming a first gate structure engaging the semiconductor fins; depositing an inter-layer dielectric layer over the semiconductor fins and the first gate structure; removing the first gate structure, resulting in a first trench; depositing a second gate structure into the first trench, wherein the second gate structure includes a dielectric layer and a conductive layer; forming one or more mask layers over the second gate structure; patterning the one or more mask layers to have an opening exposing a portion of the second gate structure between two adjacent semiconductor fins; and etching the second gate structure through the opening to produce a second trench having tapered sidewalls, wherein the second trench is wider at top than at bottom.
US11616060B2 Techniques for forming gate structures for transistors arranged in a stacked configuration on a single fin structure
A stacked transistor architecture has a fin structure that includes lower and upper portions separated by an isolation region built into the fin structure. Upper and lower gate structures on respective upper and lower fin structure portions may be different from one another (e.g., with respect to work function metal and/or gate dielectric thickness). One example methodology includes depositing lower gate structure materials on the lower and upper channel regions, recessing those materials to re-expose the upper channel region, and then re-depositing upper gate structure materials on the upper channel region. Another example methodology includes depositing a sacrificial protective layer on the upper channel region. The lower gate structure materials are then deposited on both the exposed lower channel region and sacrificial protective layer. The lower gate structure materials and sacrificial protective layer are then recessed to re-expose upper channel region so that upper gate structure materials can be deposited.
US11616059B2 Semiconductor device and method of fabricating the same
A semiconductor device includes a substrate that includes peripheral and logic cell regions, a device isolation layer that defines a first active pattern on the peripheral region and second and third active patterns on the logic cell region, and first to third transistors on the first to third active patterns. Each of the first to third transistors includes a gate electrode, a gate spacer, a source pattern and a drain pattern. The second active pattern includes a semiconductor pattern that overlaps the gate electrode. At least a portion of a top surface of the device isolation layer is higher than a top surface of the second and third active patterns. A profile of the top surface of the device isolation layer includes two or more convex portions between the second and third active patterns.
US11616058B2 Semiconductor device with diffusion suppression and LDD implants and an embedded non-LDD semiconductor device
The present disclosure provides a method for forming a semiconductor device containing MOS transistors both with and without source/drain extension regions in a semiconductor substrate having a semiconductor material on either side of a gate structure including a gate electrode on a gate dielectric formed in a semiconductor material. In devices with source/drain extensions, a diffusion suppression species of one or more of indium, carbon and a halogen are used. The diffusion suppression implant can be selectively provided only to the semiconductor devices with drain extensions while devices without drain extensions remain diffusion suppression implant free.
US11616057B2 IC including back-end-of-line (BEOL) transistors with crystalline channel material
IC device including back-end-of-line (BEOL) transistors with crystalline channel material. A BEOL crystalline seed may be formed over a dielectric layer that has been planarized over a front-end-of-line (FEOL) transistor level that employs a monocrystalline substrate semiconductor. The BEOL crystalline seed may be epitaxial to the substrate semiconductor, or may have crystallinity independent of that of the substrate semiconductor. The BEOL crystalline seed may comprise a first material having a higher melt temperature than a melt material formed over the seed and over the dielectric layer. Through rapid melt growth, the melt material may be heated to a temperature sufficient to transition from an as-deposited state to a more crystalline state that is derived from, and therefore associated with, the BEOL crystalline seed. A BEOL transistor may then be fabricated from the crystallized material.
US11616056B2 Vertical diode in stacked transistor architecture
An integrated circuit structure includes a first semiconductor fin extending horizontally in a length direction and including a bottom portion and a top portion above the bottom portion, a bottom transistor associated with the bottom portion of the first semiconductor fin, a top transistor above the bottom transistor and associated with the top portion of the first semiconductor fin, and a first vertical diode. The first vertical diode includes: a bottom region associated with at least the bottom portion of the first semiconductor fin, the bottom region including one of n-type and p-type dopant; a top region associated with at least the top portion of the first semiconductor fin, the top region including the other of n-type and p-type dopant; a bottom terminal electrically connected to the bottom region; and a top terminal electrically connected to the top region at the top portion of the first semiconductor fin.
US11616054B2 Gate structure for semiconductor devices
A semiconductor structure is disclosed, including a first gate and a second gate aligned with the first gate, a first gate via, a second gate via, multiple conductive segments, and a first conductive line. The first gate via is disposed on the first gate and the second gate via is disposed on the second gate. The first and second gates are configured to be a terminal of a first logic circuit, which is coupled to a terminal of a second logic circuit. The first conductive line is coupled to the first gate through a first connection via and the first gate via and is electrically coupled to the second gate through a second connection via and the second gate via.
US11616051B2 Semiconductor package device
A semiconductor package device includes a first semiconductor package, a second semiconductor package, and first connection terminals between the first and second semiconductor packages. The first semiconductor package includes a lower redistribution substrate, a semiconductor chip, and an upper redistribution substrate vertically spaced apart from the lower redistribution substrate across the semiconductor chip. The upper redistribution substrate includes a dielectric layer, redistribution patterns vertically stacked in the dielectric layer and each including line and via parts, and bonding pads on uppermost redistribution patterns. The bonding pads are exposed from the dielectric layer and in contact with the first connection terminals. A diameter of each bonding pad decreases in a first direction from a central portion at a top surface of the upper redistribution substrate to an outer portion at the top surface thereof. A thickness of each bonding pad increases in the first direction.
US11616048B2 IC package with multiple dies
An integrated circuit (IC) package includes a first die with a first surface overlaying a substrate. The first die includes a first metal pad at a second surface opposing the first surface. The IC package also includes a dielectric layer having a first surface contacting the second surface of the first die. The IC package further includes a second die with a surface that contacts a second surface of the dielectric layer. The second die includes a second metal pad aligned with the first metal pad of the first die. A plane perpendicular to the second surface of the first die intersects the first metal pad and the second metal pad.
US11616044B2 Chip packaging method and particle chips
A method for packaging chips includes: providing a filter wafer and a plurality of substrates to be packaged, each substrate to be packaged being provided with one or more first pads; flip-chip bonding the substrates to be packaged on the filter wafer; molding the substrates to be packaged to form a molded layer on the substrates to be packaged, the substrates to be packaged, the molded layer, and the filter wafer forming a molded structure, each substrate to be packaged, a portion of the molded layer formed on the substrate to be packaged, and the filter wafer together enclosing a cavity; exposing the first pads out of the molded layer; and cutting the molded structure into a plurality of particle chips.
US11616042B2 Methods of bonding of semiconductor elements to substrates, and related bonding systems
A bonding system for bonding a semiconductor element to a substrate is provided. The bonding system includes a substrate oxide reduction chamber configured to receive a substrate. The substrate includes a plurality of first electrically conductive structures. The substrate oxide reduction chamber is configured to receive a reducing gas to contact each of the plurality of first electrically conductive structures. The bonding system also includes a substrate oxide prevention chamber for receiving the substrate after the reducing gas contacts the plurality of first electrically conductive structures. The substrate oxide prevention chamber has an inert environment when receiving the substrate. The bonding system also includes a reducing gas delivery system for providing a reducing gas environment during bonding of a semiconductor element to the substrate.
US11616039B2 Semiconductor package
A semiconductor package including a first stack; a plurality of TSVs passing through the first stack; a second stack on the first stack and including a second surface facing a first surface of the first stack; a first pad on the first stack and in contact with the TSVs; a second pad on the second stack; a bump connecting the first and second pads; a first redundancy pad on the first surface of the first stack, spaced apart from the first pad, and not in contact with the TSVs; a second redundancy pad on the second surface of the second stack and spaced apart from the second pad; and a redundancy bump connecting the first redundancy pad and the second redundancy pad, wherein the first pad and first redundancy pad are electrically connected to each other, and the second pad and second redundancy pad are electrically connected to each other.
US11616036B2 Semiconductor device and method of manufacturing the same
A method includes forming a first substrate including a first dielectric layer and a first metal pad, forming a second substrate including a second dielectric layer and a second metal pad, and bonding the first dielectric layer to the second dielectric layer, and the first metal pad to the second metal pad. One or both of the first and second substrates is formed by forming a first insulating layer, forming an opening in the layer, forming a barrier on an inner surface of the opening, forming a metal pad material on the barrier, polishing the metal pad material to expose a portion of the barrier and to form a gap, expanding the gap, forming a second insulating layer to fill the opening and the gap, and polishing the insulating layers such that a top surface of the metal pad is substantially planar with an upper surface of the polished layer.
US11616035B2 Semiconductor structure
A semiconductor structure, including a substrate and multiple chips, is provided. The chips are stacked on the substrate. Each of the chips has a first side and a second side opposite to each other. Each of the chips includes a transistor adjacent to the first side and a storage node adjacent to the second side. Two adjacent chips are bonded to each other. The transistor of one of the two adjacent chips is electrically connected to the storage node of the other one of the two adjacent chips to form a memory cell.
US11616028B2 Semiconductor devices having crack-inhibiting structures
Semiconductor devices having metallization structures including crack-inhibiting structures, and associated systems and methods, are disclosed herein. In one embodiment, a semiconductor device includes a metallization structure formed over a semiconductor substrate. The metallization structure can include a bond pad electrically coupled to the semiconductor substrate via one or more layers of conductive material, and an insulating material—such as a low-κ dielectric material—at least partially around the conductive material. The metallization structure can further include a crack-inhibiting structure positioned beneath the bond pad between the bond pad and the semiconductor substrate. The crack-inhibiting structure can include (a) a metal lattice extending laterally between the bond pad and the semiconductor substrate and (b) barrier members extending vertically between the metal lattice and the bond pad.
US11616026B2 Semiconductor device and method of manufacture
A device includes an interconnect device attached to a redistribution structure, wherein the interconnect device includes conductive routing connected to conductive connectors disposed on a first side of the interconnect device, a molding material at least laterally surrounding the interconnect device, a metallization pattern over the molding material and the first side of the interconnect device, wherein the metallization pattern is electrically connected to the conductive connectors, first external connectors connected to the metallization pattern, and semiconductor devices connected to the first external connectors.
US11616022B2 Method for fabricating semiconductor device with porous insulating layers
The present application discloses a method for fabricating a semiconductor device. The method includes providing a substrate; forming an insulating layer above the substrate; forming a first opening in the insulating layer; conformally forming a first framework layer in the first opening; forming an energy-removable layer on the first framework layer and filling the first opening; forming a second opening along the energy-removable layer and the first framework layer; conformally forming a second framework layer in the second opening; forming a top contact on the second framework layer and filling the second opening and forming a top conductive layer on the top contact; and performing an energy treatment to transform the energy-removable layer into porous insulating layers on two sides of the top contact.
US11616018B2 Semiconductor devices including a thick metal layer
A semiconductor device includes a plurality of middle interconnections and a plurality of middle plugs, which are disposed in an interlayer insulating layer and on a substrate. An upper insulating layer is disposed on the interlayer insulating layer. A first upper plug, a first upper interconnection, a second upper plug, and a second upper interconnection are disposed in the upper insulating layer. Each of the plurality of middle interconnections has a first thickness. The first upper interconnection has a second thickness that is greater than the first thickness. The second upper interconnection has a third thickness that is greater than the first thickness. The third thickness is twice to 100 times the first thickness. The second upper interconnection includes a material different from the second upper plug.
US11616014B2 Peripheral inductors
Disclosed herein are peripheral inductors for integrated circuits (ICs), as well as related methods and devices. In some embodiments, an IC device may include a die having an inductor extending around at least a portion of a periphery of the die.
US11616011B2 IC having trench-based metal-insulator-metal capacitor
An integrated circuit (IC) includes a semiconductor surface layer of a substrate including circuitry formed in the semiconductor surface layer configured together with a Metal-Insulator-Metal (MIM) capacitor. A multi-layer metal stack on the semiconductor surface layer includes a bottom plate contact metal layer including a bottom capacitor plate contact. A first interlevel dielectric (ILD) layer is over the bottom plate contact metal layer. The MIM capacitor includes a trench in the first ILD layer over the bottom capacitor plate contact, wherein the trench is lined by a bottom capacitor plate with a capacitor dielectric layer thereon, and a top capacitor plate on the capacitor dielectric layer. A fill material fills the trench to form a filled trench. A second ILD layer is over the filled trench. A filled via through the second ILD layer provides a connection to the top capacitor plate.
US11616008B2 Through-substrate via structure and method of manufacture
A method for forming a through-substrate via structure includes providing a substrate and providing a conductive via structure adjacent to a first surface of the substrate. The method includes providing a recessed region on an opposite surface of the substrate towards the conductive via structure. The method includes providing an insulator in the recessed region and providing a conductive region extending along a first sidewall surface of the recessed region in the cross-sectional view. In some examples, the first conductive region is provided to be coupled to the conductive via structure and to be further along at least a portion of the opposite surface of the substrate outside of the recessed region. The method includes providing a protective structure within the recessed region over a first portion of the first conductive region but not over a second portion of the first conductive region that is outside of the recessed region. The method includes attaching a conductive bump to the second portion of the first conductive region.
US11616007B2 Electronic package
An electronic package and method for manufacturing the same are provided. The electronic package includes a substrate and a wetting layer. The substrate includes a plurality of conductive step structures each including a first portion and a second portion. The first portion has a first bottom surface, a first outer surface and a first inner surface. The second portion has a second bottom surface, a second outer surface and a second inner surface, wherein the second portion partially exposes the first bottom surface. The wetting layer at least covers the second bottom surface, the second outer surface and the second inner surface of the second portion of each of the conductive step structures.
US11616006B2 Semiconductor package with heatsink
According to an aspect, a semiconductor package includes a substrate having a first surface and a second surface opposite to the first surface, a semiconductor die coupled to the second surface of the substrate, and a molding encapsulating the semiconductor die and a majority of the substrate, where at least a portion of the first surface is exposed through the molding such that the substrate is configured to function as a heat sink.
US11616002B2 Through-circuit vias in interconnect structures
An integrated circuit (IC) with through-circuit vias (TCVs) and methods of forming the same are disclosed. The IC includes a semiconductor device, first and second interconnect structures disposed on first and second surfaces of the semiconductor device, respectively, first and second inter-layer dielectric (ILD) layers disposed on front and back surfaces of the substrate, respectively, and a TCV disposed within the first and second interconnect structures, the first and second ILD layers, and the substrate. The TCV is spaced apart from the semiconductor device by a portion of the substrate and portions of the first and second ILD layers. A first end of the TCV, disposed over the front surface of the substrate, is connected to a conductive line of the first interconnect structure and a second end of the TCV, disposed over the back surface of the substrate, is connected to a conductive line of the second interconnect structure.
US11616001B1 Dissipation of heat from a semiconductor chip
A semiconductor chip includes semiconductor dice contained in a packaging apparatus including a cover and a plate, thereby forming a vapor chamber. The semiconductor dice and intermediate layers are alternately stacked. A capillary mechanism is provided on a horizontal internal face of the cover. Nets are provided on vertical internal faces of the cover, around the capillary mechanism. Each of the intermediate layers includes protuberances in contact with the nets. A channel is defined between any adjacent two of the protuberances. The channels travel past the intermediate layers. Coolant filled in the vapor chamber is turned into vapor after absorbing heat. The vapor ascends to the cover via the channels. The coolant is returned into liquid after transferring heat to the cover. The liquid descends to the plate. Thus, the coolant is circulated in the vapor chamber. Each of the intermediate layers includes a capillary structure to facilitate the circulation of the coolant.
US11616000B2 Methods and apparatus to provide electrical shielding for integrated circuit packages using a thermal interface material
Methods and apparatus are disclosed to provide electrical shielding for integrated circuit packages using a thermal interface material. An integrated circuit package includes a substrate including a ground plane layer and a solder mask; a semiconductor die attached to the substrate, the solder mask layer separating the semiconductor die from the ground plane layer; and a thermal interface material surrounding at least a portion of the semiconductor die, the thermal interface material electrically coupled to the ground plane layer.
US11615996B2 Thin dual foil package including multiple foil substrates
A foil package includes a first foil substrate with a first and a second main surface, a second foil substrate with a first and a second main surface, wherein its first main surface is arranged facing the second main surface of the first foil substrate. The foil package includes at least one electronic device arranged between the first foil substrate and the second foil substrate and a first electrically conductive layer structure structured into a plurality of first partial areas arranged on the second main surface of the first foil substrate. The plurality of partial areas incompletely cover the second main surface of the first foil substrate. The at least one electronic device includes a terminal side and a side opposite to the terminal side.
US11615992B2 Substrate isolated VTFET devices
A method of forming vertical transport field effect transistor (VTFET) devices is provided. The method includes forming a plurality of vertical fins on an upper insulating layer of a dual insulator layer semiconductor-on-insulator (SeOI) substrate, and forming two masking blocks on the plurality of vertical fins, wherein a portion of a protective layer and a fin template on each of the plurality of vertical fins is exposed between the two masking blocks. The method further includes removing a portion of the upper insulating layer between the two masking blocks to form a first cavity beneath the plurality of vertical fins, and forming a first bottom source/drain in the first cavity below the plurality of vertical fins. The method further includes replacing the two masking blocks with a masking layer patterned to have two mask openings above portions of the upper insulating layer adjacent to the first bottom source/drain.
US11615991B2 Semiconductor device and method
An embodiment method includes: forming fins extending from a semiconductor substrate; depositing an inter-layer dielectric (ILD) layer on the fins; forming masking layers on the ILD layer; forming a cut mask on the masking layers, the cut mask including a first dielectric material, the cut mask having first openings exposing the masking layers, each of the first openings surrounded on all sides by the first dielectric material; forming a line mask on the cut mask and in the first openings, the line mask having slot openings, the slot openings exposing portions of the cut mask and portions of the masking layers, the slot openings being strips extending perpendicular to the fins; patterning the masking layers by etching the portions of the masking layers exposed by the first openings and the slot openings; and etching contact openings in the ILD layer using the patterned masking layers as an etching mask.
US11615990B2 CMOS top source/drain region doping and epitaxial growth for a vertical field effect transistor
A method includes forming a p-type field effect transistor region and an n-type field effect transistor region into a semiconductor substrate. The method implements a process flow to fabricate highly doped top source/drains with minimal lithography and etching processes. The method permits the formation of VFETs with increased functionality and reduced scaling.
US11615985B2 Semiconductor device with low-galvanic corrosion structures, and method of making same
A semiconductor device includes a first dielectric layer over a device base layer, the first dielectric layer having a first opening with a first sidewall; a first interconnect segment extending through the first opening; and a cap layer over a top surface of the first interconnect segment, wherein the cap layer comprises a first metal, carbon, and nitrogen.
US11615984B2 Method of dielectric material fill and treatment
Embodiments herein provide for oxygen based treatment of low-k dielectric layers deposited using a flowable chemical vapor deposition (FCVD) process. Oxygen based treatment of the FCVD deposited low-k dielectric layers desirably increases the Ebd to capacitance and reliability of the devices while removing voids. Embodiments include methods and apparatus for making a semiconductor device including: etching a metal layer disposed atop a substrate to form one or more metal lines having a top surface, a first side, and a second side; depositing a passivation layer atop the top surface, the first side, and the second side under conditions sufficient to reduce or eliminate oxygen contact with the one or more metal lines; depositing a flowable layer of low-k dielectric material atop the passivation layer in a thickness sufficient to cover the one or more metal lines; and contacting the flowable layer of low-k dielectric material with oxygen under conditions sufficient to anneal and increase a density of the low-k dielectric material.
US11615982B2 Reducing spacing between conductive features through implantation
A method includes forming a first dielectric layer over a source/drain region, and forming a source/drain contact plug over and electrically connecting to the source/drain region. A top portion of the source/drain contact plug has a first lateral dimension. An implantation process is performed to implant a dopant into the first dielectric layer. The implantation process results in the source/drain contact plug to have a second lateral dimension smaller than the first lateral dimension. The method further includes forming a second dielectric layer over the etch stop layer, and forming a gate contact plug adjacent to the source/drain contact plug.
US11615979B2 Method of processing wafer
A method of processing a workpiece with a disk-shaped blade containing abrasive grains includes the steps of placing an auxiliary plate made of a material having a modulus of elasticity higher than a material of which a front surface side of the workpiece is made, on the front surface side of the workpiece, causing the blade rotated to cut into the front surface side of the workpiece to cut the workpiece as well as the auxiliary plate, and removing the auxiliary plate from the workpiece that has been cut by the blade.
US11615974B2 Fab management with dynamic sampling plans, optimized wafer measurement paths and optimized wafer transport, using quantum computing
Systems and methods of optimizing wafer transport and metrology measurements in a fab are provided. Methods comprise deriving and updating dynamic sampling plans that provide wafer-specific measurement sites and conditions, deriving optimized wafer measurement paths for metrology measurements of the wafers that correspond to the dynamic sampling plan, managing FOUP (Front Opening Unified Pod) transport through the fab, transporting wafers to measurement tools while providing the dynamic sampling plans and the wafer measurement paths to the respective measurement tools before or as the FOUPs with the respective wafers are transported thereto, and carrying out metrology and/or inspection measurements of the respective wafers by the respective measurement tools according to the derived wafer measurement paths. Quantum computing resources may be used to solve the corresponding specific optimization problems, to reduce the required time, improve the calculated solutions and improve the fab yield and accuracy of the produced wafers.
US11615966B2 Flowable film formation and treatments
Exemplary processing methods may include forming a plasma of a silicon-containing precursor. The methods may include depositing a flowable film on a semiconductor substrate with plasma effluents of the silicon-containing precursor. The semiconductor substrate may define a feature within the semiconductor substrate. The methods may include forming a plasma of a hydrogen-containing precursor within the processing region of the semiconductor processing chamber. A bias power may be applied to the substrate support from a bias power source. The methods may include etching the flowable film from a sidewall of the feature within the semiconductor substrate with plasma effluents of the hydrogen-containing precursor. The methods may include densifying remaining flowable film within the feature defined within the semiconductor substrate with plasma effluents of the hydrogen-containing precursor.
US11615963B2 Electronic device, electronic module and methods for fabricating the same
An electronic device, an electronic module comprising the electronic device and methods for fabricating the same are disclosed. In one example, the electronic device includes a semiconductor substrate and a metal stack disposed on the semiconductor substrate, wherein the metal stack comprises a first layer, wherein the first layer comprises NiSi.
US11615960B2 Method for removing re-sputtered material from patterned sidewalls
The present invention provides a method for removing re-sputtered material on a substrate. A process chamber having a plasma source and a substrate support is provided along with the substrate having an upper surface and a lower surface. A masking material having a patterned sidewall is patterned onto the upper surface of the substrate along with a sacrificial layer between the upper surface of the substrate and the masking material. The lower surface of the substrate is placed onto the substrate support. A plasma is generated using the plasma source. The substrate is processed on the substrate support using the generated plasma. The sacrificial layer is removed after the processing of the substrate.
US11615957B2 Method for forming boron-based film, formation apparatus
A method of forming a boron-based film mainly containing boron on a substrate includes forming, on the substrate, an adhesion layer containing an element contained in a surface of the substrate and nitrogen, and subsequently, forming the boron-based film on the adhesion layer.
US11615954B2 Epitaxial strontium titanate on silicon
A method for processing a substrate includes positioning a silicon substrate in a deposition chamber. One or more intermediate layers are deposited on a surface of the silicon. The one or more intermediate layers can include strontium, which combines with the silicon to form strontium silicide. Alternatively, the one or more intermediate layers comprise germanium. A layer of amorphous strontium titanate is deposited on the one or more intermediate layers in a transient environment in which oxygen pressure is reduced while temperature is increased. The substrate is then exposed to an oxidizing and annealing atmosphere that oxidizes the one or more intermediate layers and converts the layer of amorphous strontium titanate to crystalline strontium titanate.
US11615951B2 Pulsatile flow atmospheric real time ionization
This disclosure presents inventions for ionization, for example, for use in mass spectrometer devices and methods. In an embodiment, a device is provided for introduction of pulses of a first carrier gas into an ionization chamber and introduction of a second carrier gas into the ionization chamber. Electrodes in the chamber ionize the carrier gas and direct the ionized gas toward a sample for analysis. The second carrier gas can either assist in washing out the first carrier gas or may become ionized along with the first carrier gas to improve ionization of an analyte. In an embodiment, a method for producing ionized carrier gasses is provided.
US11615949B2 Automated inline preparation and degassing of volatile samples for inline analysis
An analysis system includes a degassing cell, at least one first valve, and at least one second valve. The at least one first valve is fluidly coupled with a top of the degassing cell, the at least one first valve configured selectably connect the degassing cell to a displacement gas flow and to a vacuum source. The at least one second valve is fluidly connected with a lateral side of the degassing cell and separately fluidly connected with a bottom of the degassing cell. The at least one second valve is selectably coupled with any of a source of a sample-carrying fluid, a transfer line configured to deliver a sample to an analysis device, or a waste output.
US11615948B1 Ion pump for use in low gravity environments
According to an embodiment, an ion pump for use in a low gravity environment includes a housing at least partially defining a pumping chamber, the pumping chamber enclosing a first cathode plate and a second cathode plate, and a plurality of cylindrical anodes disposed between the first cathode plate and the second cathode plate. The ion pump also includes a feedthrough extending external to the pumping chamber from a wall of the housing, and a baffle including a body disposed in a space between the plurality of anodes and an inner surface of the wall. The body has dimensions selected to prevent particles having a size greater than a selected particle size from migrating from the pumping chamber to the feedthrough when in the low gravity environment.
US11615947B2 Systems and methods for an improved magnetron electromagnetic assembly
The present invention provides a magnetron system, comprising a baseplate assembly. The baseplate assembly defining a housing portion and a power feedthrough. A sputtering target is disposed within the housing portion of the baseplate assembly. An electromagnetic assembly is disposed within the housing portion of the baseplate assembly. The electromagnetic assembly comprising a plurality of electromagnet pairs and a plurality of magnet pairs, wherein the plurality of electromagnet pairs and the plurality of magnet pairs are arranged in an alternating order such that at least one electromagnet pair of the plurality of electromagnet pairs is juxtapositioned between two magnet pairs of the plurality of magnet pairs, and at least one magnet pair of the plurality of magnet pairs is juxtapositioned between two electromagnet pairs of the plurality of electromagnet pairs.
US11615945B2 Plasma processing apparatus and techniques
An apparatus may include a main chamber, a substrate holder, disposed in a lower region of the main chamber, and defining a substrate region, as well as an RF applicator, disposed adjacent an upper region of the main chamber, to generate an upper plasma within the upper region. The apparatus may further include a central chamber structure, disposed in a central portion of the main chamber, where the central chamber structure is disposed to shield at least a portion of the substrate position from the upper plasma. The apparatus may include a bias source, electrically coupled between the central chamber structure and the substrate holder, to generate a glow discharge plasma in the central portion of the main chamber, wherein the substrate region faces the glow discharge region.
US11615942B2 Control method of radiofrequency source
The present disclosure provides a radio frequency (RF) source control method. An RF source includes at least one pair of a main power supply and a secondary power supply with a same frequency. The RF source control method includes dividing each process step of process steps of a plasma process into a plurality of time periods, and when performing each process step, maintaining a common exciter (CEX) phase locking delay angle of the at least one pair of the main power supply and the secondary power supply corresponding to each of the time periods at a predetermined value to provide an increased angular distribution uniformity of plasma. The RF source control method provided by the present disclosure may be used to adjust plasma distribution above a to-be-processed workpiece to average the plasma angular direction distribution of the entire process step as a whole to increase process uniformity of the to-be-processed workpiece.
US11615938B2 High-resolution multiple beam source
A thermal field emitter, an apparatus, and a method for generating multiple beams for an e-beam tool are provided. The thermal field emitter includes an electron emitting portion configured to emit an electron beam and a nano-aperture array (NAA) having a plurality of openings. The NAA is positioned in a path of the electron beam. The NAA is configured to form multiple beams. The multiple beams include electrons from the electron beam that pass through the plurality of openings.
US11615932B2 Pluggable connecting device for contactors and a contactor
The present disclosure provides a pluggable connecting device for a contactor and a contactor, the contactor including a housing, a coil framework located inside the housing, the coil framework provided with a first and a second connecting sheet, and an electromagnetic coil wound on the coil framework, two ends of the electromagnetic coil electrically connected to the first and second connecting sheets. The pluggable connecting device includes an insulated connecting member, and a first and second conductive elements which are fixedly connected with the insulated connecting member. The first conductive element is provided with an insertion end and a wiring end which are arranged oppositely, the second conductive element is provided with an insertion end and a wiring end which are arranged oppositely, and the insertion ends of the first and second conductive elements are configured for connection with the first and second connecting sheets respectively in a pluggable manner.
US11615930B2 Current breaker, safety circuit and secondary battery pack
A current cut-off device includes a plate-shaped terminal piece having a contact, a movable piece including an elastic portion formed in a plate shape so as to be elastically deformed and a movable contact arranged at one end portion of the elastic portion and having the movable contact so as to be pressed against and in contact with the contact, and a thermally actuated element which biases the movable piece by deforming in accordance with a temperature change and causes a state of the movable piece to be shifted from a conductive state in which the movable contact is in contact with the contact to a cut-off state in which the movable contact is separated from the contact. When the state of the movable piece is shifted from the conductive state to the cut-off state, as the movable contact moves, it gets over the contact.
US11615925B2 Hazardous location compliant circuit protection devices having enhanced safety intelligence, systems and methods
Compliant electrical circuit protection devices are described for use in hazardous environments without presenting ignition risks for potentially explosive environmental conditions. Sensing features and systems may evaluate wiring limits and user selected settings for compatibility, detect loose connections and operating parameters to ensure safe operation of the device, and to intelligently diagnose and manage issues of concern for the circuit protection devices as well as the larger electrical power system.
US11615923B2 Methods, systems and apparatus for powering a vehicle
This application is directed to an apparatus for providing electrical charge to a vehicle. The apparatus comprises a driven mass configured to rotate in response to a kinetic energy of the vehicle, the driven mass coupled to a shaft, where rotation of the driven mass causes the shaft to rotate. The apparatus further comprises a hardware controller. The hardware controller identifies output power parameters for the vehicle and generate a control signal based on the identified output power parameters for the vehicle. The apparatus also comprises a generator that generates an electrical output based on a mechanical input and a conditioning circuit electrically coupled to the generator. The conditioning circuit receives the electrical output from the generator and the control signal from the hardware controller, generates a charge output based on the electrical output and the control signal, and conveys the charge output to the vehicle.
US11615918B2 Method for manufacturing a coil element assembly
A coil module includes a coil conductor including a plurality of coil elements and a plurality of wire electrodes disposed on a circuit board, each of the plurality of coil elements including a pair of leg portions and a bridge portion connecting one end portions of the pair of leg portions together, the plurality of coil elements being disposed to cross a winding axis. A method for manufacturing the coil module includes an assembly forming step of integrating the plurality of coil elements with resin to form a coil element assembly, and a conductor forming step of mounting the coil element assembly on the circuit board to complete the coil conductor wound about the winding axis. In the conductor forming step, the resin is introduced into a die set in which the plurality of coil elements are arranged to form a block, to thus form the coil element assembly.
US11615916B2 Power supply apparatus and image forming apparatus
A power supply apparatus includes a transformer, an electrolytic capacitor provided in primary circuitry of the transformer, a board, and a heat sink having a protruding portion and a cover portion. The electrolytic capacitor includes an explosion-proof valve that opens to cause an electrolytic solution to be jetted from the electrolytic capacitor. The electrolytic capacitor is placed on the board so that a surface of the electrolytic capacitor opposite to a surface on which the explosion-proof valve is provided faces the board. The cover portion has a hole formed in the cover portion and, when the cover portion is viewed in a direction vertical to the surface of the electrolytic capacitor on which the explosion-proof valve is provided, at least the explosion-proof valve and the hole formed in the cover portion do not overlap each other and the cover portion encompasses the explosion-proof valve.
US11615914B2 Magnet wire with thermoplastic insulation
Magnet wire included extruded insulation formed from a blend of two or more different polymeric materials is described. A magnet wire may include a conductor and insulation formed around the conductor. The insulation may include at least one layer of extruded insulation formed from a blend of a first polymeric material and a second polymeric material different than the first polymeric material. The first polymeric material may include one of polyetheretherketone, polyaryletherketone, polyetherketoneketone, polyphenylsulfone, polyphenylene sulfide, or polybenzimidazole. The second polymeric material may include one of polyphenylsulfone, polyetherimide, polyethersulfone, polyphenylene sulfide, polycarbonate, or polyester.
US11615913B2 Coil molded article and reactor
Provided is a coil molded article including: a coil having a winding portion; and an integration resin portion that coats at least an inner peripheral face of the winding portion, wherein the coil molded article further includes a gap portion that is integrated into the inner peripheral face and divides an internal space of the winding portion into two portions in an axial direction of the winding portion. Further provided is a reactor including: the above-described coil molded article; and a magnetic core including an inner core portion that is arranged inside the winding portion included in the coil molded article, and an outer core portion that is arranged outside the winding portion.
US11615911B2 Coil component having dual insulating structure
A coil component includes a body, a support substrate embedded in the body, a first coil portion and a second coil portion disposed on the support substrate, a first external electrode and a second external electrode disposed on one end surface of the body to be spaced apart from each other, a third external electrode and a fourth external electrode disposed on the other end surface of the body to be spaced apart from each other, a surface insulating layer disposed on one surface of the body connecting the one end surface and the other end surface of the body to each other, and an edge protection layer disposed between the first and second external electrodes and between the third and fourth external electrodes in the one end surface and the other end surface of the body, and having one end portion extending upwardly of the surface insulating layer.
US11615908B2 Flow-guiding rod, bushing and converter transformer system
A flow-guiding rod includes a cooling channel provided in a rod portion of the flow-guiding rod, and a coolant inlet pipe and a coolant outlet pipe provided on end(s) of the flow-guiding rod. The coolant inlet pipe and the coolant outlet pipe are communicated with the cooling channel.
US11615906B2 Low-profile transformer and related components, systems, and methods
A transformer includes an outer cabinet and an inner tank. The outer cabinet includes a base configured to be installed below ground level, a housing wall configured to be installed at least partially below ground level, and a sill coupled to the housing wall and configured to be installed above ground level. The sill includes a top access opening between an interior space of the outer cabinet and an exterior of the outer cabinet. The inner tank is disposed on the base at least partially below ground level and includes an active part including a transformer circuit. The inner tank includes a plurality of terminals electrically coupled to the active part, each terminal extending from the inner tank into the interior space of the outer cabinet along a respective terminal axis that passes through the top access opening at a respective upward angle with respect to ground level.
US11615901B2 Ferrite sintered magnet
A ferrite sintered magnet comprises a plurality of main phase grains containing a ferrite having a hexagonal structure, wherein at least some of the main phase grains are core-shell structure grains each having a core and a shell covering the core; and wherein the minimum value of the content of La in the core is [La]c atom %; the minimum value of the content of Co in the core is [Co]c atom %; the maximum value of the content of La in the shell is [La]s atom %; the maximum value of the content of Co in the shell is [Co]s atom %; [La]c+[Co]c is 3.08 atom % or more and 4.44 atom % or less; and [La]s+[Co]s is 7.60 atom % or more and 9.89 atom % or less.
US11615899B2 Polymer voltage-dependent resistor
The present invention relates to a polymer voltage-dependent resistor (PVDR) in various physical forms and methods for manufacturing the varistor. The body of the PVDR is composed of a polymer matrix having a filler composed of doped zinc oxide particles, other semi conductive particles or metal particles uniformly distributed therein. Conductive electrodes may be affixed to the polymer matrix and electrical leads attached to the electrodes.
US11615898B2 Method and apparatus for wrapping flexible flat cable
A method for wrapping an FFC is provided. The method includes: a step of removing release paper from a shielding tape which includes the release paper and adhesive paper; a step of aligning an FFC on an adhesive surface of the adhesive paper from which the release paper is removed; and a preliminary bending step.
US11615895B2 Systems and methods for automatically managing image data
Computer-implemented methods and systems are provided for curating medical images for a medical image database. An example method for curating involves operating a processor to obtain a query medical image, assign the query medical image to an initial set of related images, and generate a similarity indicator for each image of the initial set. The similarity indicator is representative of a measure of similarity between image data of that image and the initial set. The processor is operable to define an intermediate set from the initial set based on the similarity indicators; and generate a relevancy indicator for each image of the intermediate set. The relevancy indicator is representative of a measure of the relevancy between relevance of the image and the intermediate set. The processor is operable to define a curated set of images from the intermediate set based on the relevancy indicators.
US11615891B2 Heart failure event rate assessment
This document discusses, among other things, systems and methods to determine an alert state for each of a plurality of patients using received physiologic information, determine an event rate for the plurality of patients for a specific alert state, and adjust a composite HF risk determination for the plurality of patients using the determined event rate.
US11615886B2 Syringe pump and related method
A syringe pump includes a lead screw, a motor, and a sliding block assembly. The lead screw has threads and the motor is coupled to the lead screw to rotate it. The half-nut housing has a half nut and a barrel cam. The half nut is disposed within the half-nut housing. The half nut has half-nut threads at an end adjacent to the lead screw void. The half nut engages or disengages with the threads of the lead screw. The half nut includes a half-nut cam-follower surface and a half nut slot. The barrel cam is disposed within the half-nut housing and engages with the half-nut cam-follower surface. The barrel cam includes a pin to fit within the half nut slot such that the barrel cam rotates between a first position and a second position to actuate the half nut between the engagement position and the disengagement position, respectively.
US11615885B2 Wearable sensing device and sensor unit for acquiring one or more physiological signals of a subject
A wearable sensing device (100) for sensing one or more physiological signals of a subject, comprising: a sensor unit (200), including a housing, a connection receptacle (210) and electronic circuitry configured for acquiring one or more physiological signals received via the connection receptacle; a patch unit (300), including a connection plug (310) connected via conductive tracks (341) to a plurality of electrodes (342) configured for sensing the one or more physiological signals. The connection plug (310) is configured for being connectable with the connection receptacle (210) such that the one or more physiological signals sensed by the electrodes (342) are transmitted to the electronic circuitry of the sensor unit (200). The patch unit (300) comprises at least one top layer (380) and at least one bottom layer (360, 330), each including an adhesive material, such that the at least one top layer (380) is configured to be attachable to a surface of the housing and the at least one bottom layer (360, 330) is configured to be attachable to the skin of the subject.
US11615884B2 Techniques for virtualized tool interaction
A computer implemented method is provided for a virtual training system. A virtual surgical simulation associated with a type of surgical procedure is accessed. Image data associated with a controller and a workspace is received. Controller data corresponding to a controller interaction is received. A first interaction of the controller within the workspace based on at least one of the image data and the controller data is determined. Using the set of one or more transformation rules, the first interaction of the controller is transformed to a manipulation of a virtualized surgical tool in the virtual surgical simulation. A representation is output of the manipulation of the virtualized surgical tool.
US11615882B2 Apparatus, non-transitory computer-readable storage medium, and computer-implemented method for distributed ledger management of nuclear medicine products
Systems and methods for tracking and management of a distributed ledger including information for a batch of radiopharmaceutical material are disclosed. Certain examples provide a computer-implemented method of managing radiopharmaceutical material including tracking, using at least one processor, a status of a batch of radiopharmaceutical material, the status to include a type, a quantity, and a timestamp associated with the batch of radiopharmaceutical material; generating a record in a first copy of a distributed ledger using the type, quantity, and timestamp associated with the batch of radiopharmaceutical material; updating the record based on at least one of usage of the batch of radiopharmaceutical material, resale of at least a portion of the batch of radiopharmaceutical material, and decay of the batch of radiopharmaceutical material; and sharing the record with a second copy of the distributed ledger.
US11615876B2 Predictive model for substance monitoring and impact prediction
A method, computer program product, and a system where a processor(s) obtains data related to physical activities performed by an individual from a sensor(s) proximate to the individual. The processor(s) cognitively analyzes the data to identify baseline behavioral patterns of the individual, when the individual is engaged in each of the physical activities. The processor(s) obtains data indicating consumption of a substance by the individual at a first time. The processor(s) determines impacts of the consumption on the baseline behavioral patterns of the individual and generates a data structure (a predictive model) that includes expected deviations from the baseline behavioral patterns of the individual, when the individual has consumed the substance.
US11615874B1 Personalized medicine and therapies platform
Disclosed are devices, systems, methods, and computer program products for managing the development and treatment supply chain in delivering personalized medicine therapies. In some aspects, a unified configuration system (UCS) for an enterprise software platform is described that enables and facilitates individual stakeholders of the personalized medicine development and treatment supply chain to create and manage independent configurations of their supply chain management software for an enterprise software platform.
US11615873B2 Deep learning based dosed prediction for treatment planning and quality assurance in radiation therapy
A method and system for generating a treatment plan are disclosed herein. A computing system receives a plurality of dose volume histograms for a plurality of patients and a plurality of volumetric dose distributions corresponding to the plurality of dose volume histograms. The computing system generates a volumetric dose prediction model using a neural network by learning, by the neural network, a relationship between a plurality of dose volume histograms for the plurality of patients and the corresponding plurality of volumetric dose distributions. The computing system receives a candidate dose volume histogram for a target patient. The computing system infers, via the volumetric dose prediction module, a volumetric dose prediction distribution matching the candidate dose volume histogram. The computing system generates a recommendation based on the inferred volumetric dose prediction distribution.
US11615872B2 Chronic disease discovery and management system
The disclosed systems and methods include displaying disease trigger icons within a disease trigger map in a GUI, where the disease trigger map corresponds to a particular disease symptom, and where the position and size of a particular trigger icon within the trigger map based one or more of (i) the degree or strength of a statistical association between the trigger icon's corresponding disease trigger and the disease symptom, and (ii) a cumulative frequency and/or amount of exposure to the trigger icon's corresponding disease trigger. Some embodiments also include displaying a patient population disease trigger map one or more relationships between (i) one or more disease triggers and (ii) one or more patients of the patient population. Some embodiments may further include facilitating communication and/or disease trigger information sharing among patients.
US11615871B2 Patient-specific medication management system
Systems for use with a medical device for controlling an infusion device are provided. In one aspect, a system includes an infusion device that is configurable with operating limit parameters for providing medication to a patient, and a limiting system. The limiting system receives laboratory information associated with a patient, compares current operating parameters of the infusion device with the operating limit parameters in view of the laboratory information for the patient before and during administration of the medication to the patient by the infusion device, determines that administration of the medication by the infusion device should be prevented based on comparing the operating parameters with the operating limit parameters in view of the laboratory information and, responsive to determining that the operation should be prevented, prevents the administration of the medication by the infusion device, and generates a notification indicating that the operating limit parameters require modification.
US11615867B2 Molecular structure editor with version control and simultaneous editing operations
Computer-based methods that permit two or more users to perform simultaneous edits on a digitally encoded molecular structure. The methods use properties of conflict-free replicated data types (CRDT's) and causal trees to provide a distributed system which can manage the life-cycle of virtual molecular structures; including simultaneous editing, versioning, and provenance. Applications of the technology include, but are not limited to: simultaneous computer aided design of molecules in 2D or 3D in which users may be distributed across multiple computers and in which the need for computer time synchronization (offline or online editing) is obviated; version control and provenance tracking of a virtual molecule; and other types of data used in computer aided molecular design activities.
US11615864B2 Accurate and sensitive unveiling of chimeric biomolecule sequences and applications thereof
Unveiling of chimeric biomolecule sequences and applications thereof are described. Generally, systems comprising statistical analysis are performed to unveil chimeric biomolecule sequences from sequencing data sets. Bloom filters and hierarchical bloom filter tree data structures can be constructed such that chimeric sequence unveiling systems are more efficient. Finally, chimeric sequences are used to develop research tools, diagnostics, and medicaments.
US11615862B2 Link evaluation for a memory device
Methods, systems, and devices for link evaluation for a memory device are described. A memory device may receive signaling over a channel and may identify logic values encoded into the signaling based on sampling the signaling against a reference voltage. The sampling may occur at a reference time within a sampling period. To evaluate a quality (e.g., margin of error) of the channel, the memory device may adjust the reference voltage, the reference time, or both, and either the memory device or the host device may determine whether the memory device is still able to correctly identify logic values encoded into signaling over the channel. In some cases, the channel quality may be evaluated during a refresh cycle or at another opportunistic time for the memory device.
US11615859B2 One-time programmable memories with ultra-low power read operation and novel sensing scheme
An OTP with ultra-low power read can be programmed with a minimum and a maximum program voltage. When programming within the range, the post-program OTP to pre-program resistance ratio can be larger than N, where N>50, so that more sensing techniques, such as single-end sensing, can be used to reduce read current. At least one of the OTP cells can be coupled to a common bitline, which can be further coupled to a first supply voltage lines via a plurality of datalines. The resistance in the at least one OTP cell can be evaluated by strobing at least one comparator output of the discharging bitline/dataline.
US11615856B2 Memory device and method of performing program operation
A memory device having an improved operation speed may include a memory block including memory cells, a peripheral circuit configured to perform a program operation of increasing each of threshold voltages of the memory cells, and a control logic configured to control the peripheral circuit to perform the program operation. The program operation may include a plurality of program loops, each of the plurality of program loops may include a program voltage apply operation and a verify operation, and the control logic may control the peripheral circuit to perform verification on a highest program state during a verify operation included in a next program loop of any one program loop, when verification of a next higher program state among the plurality of program states is passed during a verify operation included in the any one program loop among the plurality of program loops.
US11615849B2 Memory device and programming method thereof
A method for programming a memory device including a first plane and a second plane is provided. The method includes simultaneously initiating programming of the first plane and the second plane, and in response to the first plane being successfully programmed and the second plane not being successfully programmed, suspending the programming of the first plane, and keeping the programming of the second plane.
US11615843B2 Controlling voltage resistance through metal-oxide device
Embodiments of the present invention provide a computer system, a voltage resistance controlling apparatus, and a method that comprises at least two electrodes on proximal endpoints; a first layer disposed on the at least two electrodes, wherein the first layer is a made of a metal-oxide; a second layer disposed on the second layer, wherein the second first layer is made of an electrically conductive metal-oxide; a forming contact disposed on the second layer, wherein a combination of the forming contact disposed on the first layer disposed on the second layer operatively connects the at least two electrodes; and a computer system operatively connected to the forming contact, wherein the computer system is configured to apply a predetermined voltage to the first layer and the second layer respectively and display an overall resistance increase using a user interface.
US11615840B2 Memory device
According to one embodiment, a memory device includes a memory cell including a resistance change memory element in which a plurality of data values according to resistance are allowed to be set, and a selector element connected to the resistance change memory element in series, a word line supplying a select signal for selecting the resistance change memory element by the selector element to the memory cell, a bit line to which a data signal according to a data value set in the resistance change memory element is read, a load circuit connected to the memory cell in series and functioning as a load, and a comparator circuit which compares a voltage obtained by the load circuit with a plurality of reference voltages.
US11615839B2 Non-volatile memory with variable bits per memory cell
In a three dimensional non-volatile memory structure that etches part of the top of the memory structure (including a portion of the select gates), data is stored on a majority (or all but one) of the word lines as x bits per memory cell while data is stored on a top edge word line that is closest to the etching with variable bits per memory cell. In one example embodiment that implements vertical NAND strings, memory cells connected to the top edge word line and that are on NAND strings adjacent the etching store data as n bits per memory cell and memory cells connected to the top edge word line and that are on NAND strings not adjacent the etching store data as m bits per memory cell, where m>x>n.
US11615838B2 Programming memory cells at two different levels in parallel
One embodiment of a memory device includes an array of multiple-level memory cells and a controller. The controller is configured to program the multiple-level memory cells via a multiple-pass programming operation, the multiple-pass programming operation to program lower page data in a first pass and program higher page data in a second pass such that memory cells to be programmed to a higher level are programmed in parallel with memory cells to be programmed to a lower level.
US11615827B2 Hardware accelerator with analog-content addressable memory (a-CAM) for decision tree computation
Examples described herein relate to a decision tree computation system in which a hardware accelerator for a decision tree is implemented in the form of an analog Content Addressable Memory (a-CAM) array. The hardware accelerator accesses a decision tree. The decision tree comprises of multiple paths and each path of the multiple paths includes a set of nodes. Each node of the decision tree is associated with a feature variable of multiple feature variables of the decision tree. The hardware accelerator combines multiple nodes among the set of nodes with a same feature variable into a combined single node. Wildcard values are replaced for feature variables not being evaluated in each path. Each combined single node associated with each feature variable is mapped to a corresponding column in the a-CAM array and the multiple paths of the decision tree to rows of the a-CAM array.
US11615826B1 Dual-address command management using content addressable memory
A memory system includes a memory device and a processing device operatively coupled with the memory device. The processing device perform operations comprising: responsive to receiving a memory access command, determining that the memory access command is a dual-address command comprising a source address and a destination address; generating a first content addressable memory (CAM) entry associated with a read command of the dual-address command, wherein the first CAM entry references the source address; generating a second CAM entry associated with a write command of the dual-address command, wherein the second CAM entry references the destination address; inserting the first CAM entry and the second CAM entry into a CAM; and issuing, to the memory device, the read command associated with the first CAM entry.
US11615825B2 Clock synchronizing method of a multiple clock domain memory device
A memory device includes: a first clock receiver configured to receive a first clock signal; a second clock receiver configured to receive a second clock signal when data is input or output, wherein the second clock signal has a first clock frequency in a preamble period, and has a second clock frequency different from the first clock frequency after the preamble period; a command decoder configured to receive a clock synchronization command synchronized with the first clock signal and generate a clock synchronization signal, wherein the clock synchronization signal is generated during the preamble period; and a clock synchronizing circuit configured to generate a plurality of division clock signals in response to the second clock signal, latch the clock synchronization signal during the preamble period, and selectively provide the plurality of division clock signals as internal data clock signals according to a result of the latching.
US11615818B2 Apparatus, system and method for associating one or more filter files with a particular multimedia presentation
A method, apparatus, computer program product and computer accessible code configured to link or otherwise associate content filters with a multimedia presentation, e.g., a movie. The content filter data includes an identifier value with an aspect ratio identifier or as a function of an aspect ratio for a particular multimedia presentation associated with the filter information. In one implementation, association between a filter set and a multimedia presentation involves a filtering application that searches a particular multimedia presentation to locate aspect ratio information and further searches filter information for a matching aspect ratio identifier.
US11615808B2 Magnetic head and magnetic recording device
According to one embodiment, a magnetic head includes first and second magnetic poles, and a stacked body provided between the first and second magnetic poles. The stacked body includes a first magnetic layer, a second magnetic layer provided between the second magnetic pole and the first magnetic layer, a third magnetic layer provided between the second magnetic pole and the second magnetic layer, a first non-magnetic layer provided between the first magnetic layer and the first magnetic pole, a second non-magnetic layer provided between the second and first magnetic layers, a third non-magnetic layer provided between the third and second magnetic layers, and a fourth non-magnetic layer provided between the second magnetic pole and the third magnetic layer. A thickness of the first magnetic layer is thicker than a thickness of the second magnetic layer. A thickness of the third magnetic layer is thicker than the second layer thickness.
US11615807B1 Flat profile tape recording head having beveled non-functional portions
The present disclosure is generally related to a tape head assembly narrower than the width of a tape, wherein the tape head assembly comprises one or more heads, wherein each of the one or more heads comprise a curved surface comprising a first beveled wing, a second beveled wing, and a flat-lapped surface disposed between the first beveled wing and the second beveled wing. The first beveled wing and the second beveled wing each comprise outer corners recessed from a top surface of the flat-lapped surface such that there is no interaction between the outer corners of the beveled wings and the tape.
US11615806B2 Magnetic head with assisted magnetic recording
A magnetic head includes a main pole configured to serve as a first electrode, an upper pole containing a trailing magnetic shield configured to a serve as a second electrode, and an electrically conductive portion located in a trailing gap between the main pole and the trailing magnetic shield. The electrically conductive portion is not part of a spin torque oscillator stack, and the electrically conductive portion includes first and second electrically conductive, non-magnetic material layers. The spin torque oscillator stack is coupled to the first electrically conductive, non-magnetic material layer. The main pole and the trailing magnetic shield are electrically shorted by the electrically conductive portion across the trailing gap between the main pole and the trailing magnetic shield such that an electrically conductive path is present between the main pole and the trailing magnetic shield through the electrically conductive portion.
US11615802B2 Methods and apparatus for biometric processes
A method for generating an acoustic stimulus for use in an ear biometric process on a user, the method comprising: receiving an indication of stimulation frequencies for use in the ear biometric process; grouping the stimulation frequencies into bands of a psychoacoustic scale; generating the acoustic stimulus, the acoustic stimulus comprising a masked bandpass component within each band of the psychoacoustic scale that comprises one or more of the stimulation frequencies.
US11615800B2 Speaker recognition method and system
A speaker recognition system for assessing the identity of a speaker through a speech signal based on speech uttered by said speaker is provided. The system includes a framing module that subdivides the speech signal over time into a set of frames, and a filtering module that analyzes the frames of the set to discard frames affected by noise and frames which do not comprise a speech, based on a spectral analysis of the frames. A feature extraction module extracts audio features from frames which have not been discarded, and a classification module processes the audio features extracted from the frames which have not been discarded for assessing the identity of the speaker.
US11615799B2 Automated meeting minutes generator
A transcription of audio speech included in electronic content associated with a meeting is created by an ASR model trained on speech-to-text data. The transcription is post-processed by modifying text included in the transcription, for example, by modifying punctuation, grammar, or formatting introduced by the ASR model and by changing or omitting one or more words that were included in both the audio speech and the transcription. After the transcription is post-processed, output based on the post-processed transcription is generated in the form of a meeting summary and/or template.
US11615795B2 Method and system for providing secured access to services rendered by a digital voice assistant
Method and system for providing secured access to services rendered by digital voice assistants are disclosed. In an example, the method includes generating, by the digital voice assistant in a set-up mode, hierarchical access levels for a plurality of services rendered by the digital voice assistant, based on an input from a super user. The method further includes generating, by the digital voice assistant in an operational mode and upon receiving a voice command from a user for a first time, a unique voice directive corresponding to the voice command. The unique voice directive comprises language tags and voice tags extracted from the voice command. The method further includes assigning an access level from among the hierarchical access levels to the unique voice directive and rendering a service from among the plurality of services based on the access level and the voice directive.
US11615787B2 Dialogue system and method of controlling the same
A dialogue system includes a processor configured to: generate a meaning representation corresponding to an input sentence by performing Natural Language Understanding on the input sentence, generate an output sentence corresponding to the input meaning representation based on Recurrent Neural network (RNN), and determine whether the input sentence cannot be processed using the natural language generator. The processor calculates a parameter representing a probability of outputting the input sentence when the meaning representation corresponding to the input sentence is input to the natural language generator, and determines whether the input sentence cannot be processed based on the calculated parameter.
US11615782B2 Semi-sorted batching with variable length input for efficient training
Techniques are described for training neural networks on variable length datasets. The numeric representation of the length of each training sample is randomly perturbed to yield a pseudo-length, and the samples sorted by pseudo-length to achieve lower zero padding rate (ZPR) than completely randomized batching (thus saving computation time) yet higher randomness than strictly sorted batching (thus achieving better model performance than strictly sorted batching).
US11615781B2 End-to-end multi-speaker audio-visual automatic speech recognition
A singe audio-visual automated speech recognition model for transcribing speech from audio-visual data includes an encoder frontend and a decoder. The encoder includes an attention mechanism configured to receive an audio track of the audio-visual data and a video portion of the audio-visual data. The video portion of the audio-visual data includes a plurality of video face tracks each associated with a face of a respective person. For each video face track of the plurality of video face tracks, the attention mechanism is configured to determine a confidence score indicating a likelihood that the face of the respective person associated with the video face tack includes a speaking face of the audio track. The decoder is configured to process the audio track and the video face track of the plurality of video face tracks associated with the highest confidence score to determine a speech recognition result of the audio track.
US11615780B2 Electronic apparatus and controlling method thereof
A electronic apparatus includes a display, a voice receiver configured to receive a user voice input, and a processor to obtain a first text from the user voice input that is received through the voice receiver based on a function corresponding to a first voice recognition related to a first language, based on an entity name not being included in the first text using the function corresponding to the first voice recognition related to the first language, obtain a second text corresponding to the entity name from of the user voice input based on a function corresponding to a second voice recognition related to a second language, and control the display to display a voice recognition result corresponding to the user voice input based on the first text and the second text.
US11615779B2 Language-agnostic multilingual modeling using effective script normalization
A method includes obtaining a plurality of training data sets each associated with a respective native language and includes a plurality of respective training data samples. For each respective training data sample of each training data set in the respective native language, the method includes transliterating the corresponding transcription in the respective native script into corresponding transliterated text representing the respective native language of the corresponding audio in a target script and associating the corresponding transliterated text in the target script with the corresponding audio in the respective native language to generate a respective normalized training data sample. The method also includes training, using the normalized training data samples, a multilingual end-to-end speech recognition model to predict speech recognition results in the target script for corresponding speech utterances spoken in any of the different native languages associated with the plurality of training data sets.
US11615778B2 Method for receiving emergency information, method for signaling emergency information, and receiver for receiving emergency information
A device may be configured to parse a syntax element specifying the number of available languages within a presentation associated with an audio stream. A device may be configured to parse one or more syntax elements identifying each of the available languages and parse an accessibility syntax element for each language within the presentation.
US11615777B2 Terminal and operating method thereof
A terminal may include a display that is divided into at least two areas, when a real time broadcasting, where a user of the terminal is a host, starts through a broadcasting channel, and of which one area of the at least two areas is allocated to the host; an input/output interface that receives a voice of the host; a communication interface that receives one item selected of at least one or more items and a certain text from a terminal of a certain guest, of at least one or more guests who entered the broadcasting channel; and a processor that generates a voice message converted from the certain text into the voice of the host or a voice of the certain guest.
US11615775B2 Synchronized mode transition
Methods, systems, computer-readable media, devices, and apparatuses for synchronized mode transitions are presented. A first device configured to be worn at an ear includes a processor configured to, in a first contextual mode, produce an audio signal based on audio data. The processor is also configured to, in the first contextual mode, exchange a time indication of a first time with a second device. The processor is further configured to, at the first time, transition from the first contextual mode to a second contextual mode based on the time indication.
US11615774B2 Generation system of synthesized sound in music instruments
A generation system (100) of synthesized sound comprises: a first stage (1), wherein features (F) are extracted from an input raw sound and parameters of said features are evaluated; a second stage (2) wherein the evaluated parameters are used to create a plurality of physical models that are metrically evaluated in order to find the parameters of the best physical model, and a third stage (3) wherein the parameters of the best physical model are perturbed in order to create perturbed physical models and a metric evaluated of the perturbed physical models is performed to find the parameters of the best physical model.
US11615773B1 String sustainer for musical instrument
A sustainer is described for use with resonant strings in instruments like guitars, bases, slide guitars and others. Described sustainers can be handheld or integrated into an instrument. Sustainers under the current disclosure can include an approaching or direction detector that detects movement of a resonant element towards or away from the sustainer. Depending on the movement a signal can be fed to an output actuator that creates a magnetic field to sustain or otherwise interact with the resonance of the element.
US11615770B2 Percussive response unit
A percussive response unit, and percussion instruments with same, including a rod having a rod shaft and a first retaining element, such a first head, disposed at a first rod end and having a first head width. At least a first striker set of at least one striker is disposed along a first portion of the rod shaft and is positionable near the first head. Each striker defines an opening that is larger than the outer diameter of the rod shaft to enable at least one direction of movement. A second retaining element such as a second head is connected to the second rod end to secure the first striker set on the rod shaft. Other embodiments include percussion instruments with multiple internal resonance cavities, internal resonance members, and internal and/or external strikers.
US11615769B2 Display device with image shift
A display device includes a controller and a display panel. The controller receives original image data and output a display image signal. The display panel receives the display image signal and displays a display image corresponding to the display image signal. The controller includes an image shift controller and a memory. The image shift controller generates shifted image data by modulating the original image data to shift the display image sequentially along a preset shift path on the display panel. The memory stores a shift path value indicating a distance by which the display image has been shifted on the preset shift path. The image shift controller generates the display image signal by processing the shifted image data. When the display device is powered on, the image shift controller generates shifted image data corresponding to a shift path value stored in the memory.
US11615766B2 Control method for magnifying display screen and associated display system
A display system includes a display device. The display device is arranged to receive a video signal and a control signal from a host system, and includes a processing circuit and a display screen, wherein the processing circuit is arranged to process an original frame corresponding to the video signal according to the control signal, to generate a magnified frame, and generate a processed frame according to the magnified frame and the original frame, and the display screen is coupled to the processing circuit, and is arranged to display the processed frame.
US11615765B2 Direct-lit LED backlight display and light emission control method therefor
A light emission control method is adapted to a direct-lit LED backlight display. The display includes a backlight module, a driving circuit, a detection circuit, and a control circuit. The backlight module includes a first light emission group and a second light emission group. The first light emission group includes a plurality of first LEDs, and the second light emission group includes a plurality of second LEDs. The first LEDs and the second LEDs are in an interleaved arrangement. The driving circuit is activated to selectively drive the first light emission group and the second light emission group to emit light. On detection of an abnormal light-emission status of any of the plurality of LEDs, the detection circuit sends an abnormal signal. The control circuit obtains a shut-down group according to the abnormal signal and actives the driving circuit not to drive the shut-down group to emit light.
US11615764B2 Electronic device and method for controlling brightness of display
Disclosed is an electronic device including a processor configured to set a wake-up luminance of a display, based on a wake-up illuminance, to set, upon detecting an illuminance change through the illuminance sensor, a first target luminance of the display by using a first threshold illuminance value at a time point of detecting the illuminance change, to identify whether a flag setting related to an update of a threshold illuminance value is changed, while changing a luminance of the display based on the first target luminance, to determine the first target luminance as a final luminance of the display when there is no change in the flag setting, to update the first threshold illuminance value to a second threshold illuminance value when there is a change in the flag setting, and to change a target luminance of the display from the first target luminance to a second target luminance by using the second threshold illuminance value.
US11615762B1 Edge illumination architecture for display device
A display driver includes first interface circuitry, a graphic memory, image processing circuitry, and drive circuitry. The first interface circuitry is configured to receive an edge illumination command from a controller external to the display driver. The graphic memory is configured to store image data. The image processing circuitry is configured to render an edge-illuminated image by overlaying an edge illumination graphic on a first image corresponding to the image data in response to the edge illumination command. The edge illumination graphic extends along an edge of a display region of a display panel. The drive circuitry is configured to drive the display panel based on the edge-illuminated image.
US11615756B2 Display device, semiconductor device, and electronic device
A semiconductor device includes a display device and a source driver. Each of a plurality of pixels included in the display device is supplied with a first data potential and a second data potential included in a range of a first potential or higher to a second potential or lower. The first data potential makes the pixel display an image with a first gray level. The pixel performs calculation with the first data potential and the second data potential to generate a third data potential. The third data potential makes the pixel display an image with a second gray level. A reference potential of the first data potential is an intermediate potential between the first potential and the second potential, and the gray level width that can be displayed by the second data potential is larger than the gray level width that can be displayed by the first data potential.
US11615755B1 Increasing resolution and luminance of a display
The disclosed system modifies luminance of a display associated with a selective screen. The display provides a camera with an image having resolution higher than the resolution of the display by presenting multiple images while the selective screen enables light from different portions of the multiple images to reach the camera. The resulting luminance of the recorded image is lower than a combination of luminance values of the multiple images. The processor obtains a criterion indicating a property of the input image where image detail is unnecessary. The processor detects a region of the input image satisfying the criterion, and determines a region of the selective screen corresponding to the region of the input image. The processor increases the luminance of the display by disabling the region of the selective screen corresponding to the region of the input image.
US11615752B2 Backlight driver, backlight device including the same, and operating method of the backlight device
A backlight device includes LED elements divided into dimming groups; a panel driver configured to output a reference current for driving the LED elements; and pixel circuits, each of which is connected to the panel driver through a common line and is respectively configured to drive first LED elements comprised in a corresponding dimming group. Each of the pixel circuits is configured to: in a first period of a frame period, obtain a reference voltage based on the reference current and store the reference voltage, in a second period of the frame period, obtain luminance data of an image displayed by the corresponding dimming group, and in a third period of the frame period, drive the first LED elements during a light emitting time corresponding to the luminance data obtained in the second period using the reference voltage stored in the first period.
US11615751B1 Display control circuit and backlight control method thereof having dynamic backlight adjusting mechanism
The present invention discloses a backlight control method having dynamic backlight adjusting mechanism used in a display control circuit is provided and includes the steps outlined below. A frame refresh time length of a former frame is obtained. When a current frame is started to be displayed, a backlight module is controlled to output a strobe backlight in a backlight turn-on time period. When an actual display time reaches the frame refresh time length and a next frame is not started to be displayed, the backlight module is controlled to output a constant backlight until the next frame is started to be displayed. When the actual display time does not reach the frame refresh time length and the next frame is started to be displayed, the backlight module is controlled to output the constant backlight until the frame next to the next frame is started to be displayed.
US11615750B2 Display device and method of driving the same
A display device including a display panel including pixels, a data driver configured to apply a data voltage to the pixels, a sensing driver configured to receive a sensing voltage from the pixels, a gate driver configured to apply a gate signal to the pixels, and a driving controller configured to control the gate driver, the sensing driver, and the data driver. The sensing driver generates leakage sensing data for current leakage characteristic of the pixels based on the sensing voltage received in a first sensing period, and generates threshold voltage sensing data for a threshold voltage of a driving transistor of the pixels based on the sensing voltage received in a second sensing period.
US11615747B2 Pixel circuit and driving method thereof, array substrate and display apparatus
Disclosed are a pixel circuit and a driving method thereof, an array substrate and a display apparatus. The pixel circuit includes a pixel sub-circuit. The pixel sub-circuit includes a first adjusting circuit and a second adjusting circuit. The first adjusting circuit is configured to receive a first data signal and a light emitting control signal to control a magnitude of a driving current used for driving a light emitting element to emit light; the second adjusting circuit is configured to receive a second data signal and a time control signal to control a time duration in which the driving current is applied to the light emitting element; and the time control signal changes within a time period during which the light emitting control signal allows the driving current to be generated. The pixel circuit can control the time duration in which the driving current is applied to the light emitting element, so that the light emitting element can realize display of various grayscales by controlling the light emitting time of the light emitting element, on the premise that the light emitting element operates at a relatively high current density.
US11615742B2 Display device including an adhesive member overlapped by a sensor unit and another adhesive member and method for manufacturing the same
A display device includes a display module, a first adhesive member including a thermal initiator and directly disposed on a rear surface of the display module, a sensor unit directly disposed on the first adhesive member, and a second adhesive member including a photoinitiator and directly disposed on at least a portion of the first adhesive member and the rear surface of the display module.
US11615741B2 Methods and apparatuses for driving display panel, and display devices
A method and apparatus of driving a display panel, and a display device. The display panel includes a transparent display area and a non-transparent display area and a plurality of pixels formed on the display panel. In one or more embodiments, the method includes: determining a first type of picture data to be displayed in the non-transparent display area and a second type of picture data to be displayed in the transparent display area in picture data of a frame of picture; performing a sub-pixel rendering operation on the first type of picture data to obtain first rendered picture data; driving the non-transparent display area according to the first rendered picture data; and driving the transparent display area according to the second type of picture data.
US11615738B2 Pixel driving circuit and driving method therefor, display panel, and display apparatus
A pixel driving circuit includes a driving control sub-circuit having a first driving sub-circuit and a time control sub-circuit having a second driving sub-circuit. The driving control sub-circuit is configured to: be connected to an element to be driven, write a first data signal into the first driving sub-circuit, enable the first driving sub-circuit to output a driving signal to drive the element to operate. The time control sub-circuit is configured to: write a second voltage signal and a second data signal into the second driving sub-circuit, write a fourth voltage signal into the second driving sub-circuit, connect the second driving sub-circuit to a third voltage signal terminal and the first driving sub-circuit. The second driving sub-circuit is configured to output a third voltage signal to the first driving sub-circuit to enable the first driving sub-circuit to stop outputting the driving signal to control operating duration of the element.