Document Document Title
US11589144B2 Protective cover assembly having improved Z-strength
A protective cover assembly is disclosed that comprises a porous expanded membrane having a plurality of pores, a first surface and a second surface opposite the first surface. The porous expanded membrane comprises an active area and a bonded area. The bonded area comprises an adhesive material that forms a bridge extending through the plurality of pores in the bonded area from the first surface to the second surface. The adhesive material in the bonded area improves the Z-strength and allows the porous expended membrane to be a lightweight material having a mass/area ratio of less than or equal to 3 g/m2.
US11589141B2 Data collection method and related device
In an embodiment, a data collection method includes: collecting, by a data collection device, performance indicator data of a target device based on a collection periodicity; detecting change amplitude of the collected performance indicator data that is in a change detection window, where the change detection window includes multiple collection periodicities; and when it is detected that change amplitude of the performance indicator data that is in the change detection window is greater than or equal to a change detection threshold, sending the performance indicator data that is in the change detection window to a data analysis device.
US11589139B2 Method for checking, evaluation, and/or error diagnosis of a sensor system, sensor system, and system
A method for checking, evaluation, and/or error diagnosis of a sensor system. The sensor system includes at least one sensor unit and an internal data processing unit. The sensor unit outputs sensor data as a function of a physical stimulus and the internal data processing unit is configured to process the sensor data output by the sensor unit to form output data. The sensor data output by the sensor unit is read out from the sensor system and recorded by an external processor unit in a recording step. The recorded sensor data are fed by the external processor unit into the internal data processing unit in an injection step. The fed-in sensor data are processed by the internal data processing unit in a processing step.A sensor system, and a system made up of a sensor system and a processor unit are also described.
US11589132B2 Methods and apparatus for integrating media across a wide area network
A system for distributing media includes a wide area network (WAN), a media player coupled to the WAN at a first home, and a media server coupled to the WAN at a second home for providing media. A service is coupled to the WAN for receiving a request for media from the media player and for establishing a connection between the first and second homes over the WAN. Media is streamed across the WAN from the second home to the first home. The system may include a storage device coupled to the media player where media is transferred across the WAN for storage at the storage device. A media device may be coupled to the media player for playing the streamed/transferred media where the media player and the media device may comprise a television, stereo, or computer and the media item may comprise video, photographs, or audio.
US11589130B2 System, method, and program for distributing live video
A video distribution system according to an embodiment of the present invention comprises a video distribution server and a user terminal, in which the server provides a live video distribution service for distributing and viewing live video to a user via the user terminal. The system is configured such that the distribution screen presented to the distributor of the live video has a comment display area for displaying at least part of the comment group including comments from viewers, and the display mode is based on at least the number of hidden subsequent comments whose order of posting is later than that of the displayed portion of the comment group displayed in that area. Therefore, when the distributor responds to a displayed comment, the distributor can obtain information based on the number of hidden subsequent comments whose order of posting is later than that of this comment.
US11589128B1 Interactive purchasing of products displayed in video
Methods and the systems for providing an interactive, program based product introduction experience are described. In one example, video content may be captured, enriched with product data, and provided on-demand to interactive user devices. Users viewing the content may be presented with supplemental information or resources allowing those users to obtain more information about objects appearing in the video, or purchase products that may be a sociopathic with those objects. The objects appearing in the video may be passively up hearing, rather than explicitly introduced or offered for sale as part of the original video content. However, the supplemental information allows such users to discover and/or purchase new products through interactivity with the video content.
US11589125B2 Dynamic content generation
A system comprises a receiver to receive a main content. The system further comprises a detector to detect a placeholder in the main content for placement of a media object. Further, the system comprises an obtainer to obtain a plurality of media objects having placement attributes corresponding to the placeholder in the main content, where a placement attribute is indicative of characteristics of a media object compatible with the placeholder. The system further comprises a selector to select one of the plurality of media objects for being placed in the placeholder of the main content, based on a user profile. Further, the system comprises a generator to generate a final content indicative of the selected media object embedded in the main content.
US11589124B1 Methods and systems for seamlessly transporting objects between connected devices for electronic transactions
Methods and Systems are disclosed for displaying objects between disparate devices connected to an electronic network. One method comprises detecting, by a multimedia device connected to an electronic network, an object in a multimedia stream; determining an identifier associated with the detected object; detecting a mobile device connected to the electronic network, the mobile device being a device other than the multimedia device; and generating a display of the detected object at the detected mobile device.
US11589122B2 System and method for providing a list of video-on-demand programs
A list of video-on-demand (VOD) programs based on viewer selections is provided. VOD programs may be marked with a mark indicating the level of viewer interest. In one embodiment, a list of VOD programs may be displayed that includes or excludes programs having a particular mark, or sorts programs based on the marks. In another embodiment, a list of VOD programs may be displayed based on availability times. In yet another embodiment, after a viewer has played back a VOD program, a list of related VOD programs may be automatically displayed.
US11589121B2 Content recommendation techniques with reduced habit bias effects
Aspects of the subject disclosure may include, for example, identifying content consumption data associated with media content consumption at a customer device, and generating a content selection recommendation for the customer device. Some embodiments can include determining a habit-based content selection vector for the customer device. Various embodiments can include determining the habit-based content selection vector based on a habit profile for the customer device. Some embodiments can include adjusting a content selection vector for the customer device based on the habit-based content selection vector for the customer device. Various embodiments can include generating the content selection recommendation for the customer device based on the adjusted content selection vector. Other embodiments are disclosed.
US11589117B2 Delivery of different services through different client devices
A system that handles delivery of service(s) through a client device, includes an interactive service provider, a video service provider, and a client device. The interactive service provider inserts at least one of digital watermarks and digital fingerprints in non-programming media content. The video service provider transmits a media stream of the media content that includes programming media content and the non-programming media content. The client device detects at least one of the inserted digital watermarks and the digital fingerprints in the playback duration of the media content and renders overlay graphics on the media content. The client device activates at least one of input devices paired with the client device and the rendered overlay graphics. The client device further receives trigger responses over activated overlay graphics and displays an interactive view to enable delivery of service(s) in response to the trigger responses.
US11589116B1 Detecting prurient activity in video content
Techniques are disclosed for detecting a type of prurient activity shown by a portion of video content. In an example, a machine learning model of a computer system may receive a second portion of video content, the machine learning model including a neural network that is trained to analyze a temporal dimension of the second portion. The machine learning model determines a score indicating a likelihood that the video content shows the type of prurient activity based in part on applying a three-dimensional filter to the second portion of the video content. The computer system then generates a video clip that includes at least the portion of the video content showing the type of prurient activity based on the score, and provides the video clip for display.
US11589106B2 System and method for timing management for digital video recording
Aspects of the subject disclosure may include, for example, identifying a media program and receiving a digital media stream including metadata and payload data, wherein the payload data includes program content of the identified media program. The metadata further includes program event information and program status information related to the identified media program. A recording status of the identified media program is determined, wherein an active recording status indicates the identified media program is being recorded at a media recorder. Responsive to the active recording status, an end of program is determined according to the identified media program, the program event information and the program status information. Responsive to the end of program, termination of the recording of the media program is initiated. Other embodiments are disclosed.
US11589097B2 Dynamic scheduling and channel creation based on external data
A system is provided for dynamic scheduling and channel creation based on external data. A media item to be inserted in a first media feed of a first channel is determined based on a plurality of pre-encoded media content, metadata, audience-based parameters received from external data source and defined parameters. The plurality of pre-encoded media content comprises live feed and is segmented into a plurality of media segments, each corresponding to different quality level and content encryption mode. A second channel is generated from first channel based on audience-based parameters, insertion of media item, and a second programming schedule. The second programming schedule is generated from modification of first programming schedule based on content recognition-based information that corresponds to the live feed of one of a plurality of channels. The media item is delivered, in viewable format, in second media feed of second channel to a consumer device.
US11589094B2 System and method for recommending media content based on actual viewers
Aspects of the subject disclosure may include, for example, a device, that has a processing system including a processor; and a memory that stores executable instructions that, when executed by the processing system, facilitate performance of operations, where the operations include detecting each individual of an audience viewing media content on user equipment; retrieving a user profile for each individual of the audience resulting in user profiles; creating a group profile from the user profiles; determining, based on the group profile, a recommendation for viewing a candidate media content; and providing the recommendation to the user equipment for the audience. Other embodiments are disclosed.
US11589090B2 Selective picture-based encryption of video streams
A method for encrypting a video stream in a video encoder is provided that includes receiving the video stream and encrypting randomly selected pictures in the video stream as the video stream is encoded.
US11589087B2 Movie advertising playback systems and methods
An ad in a movie can be a static ad having a position in the movie that cannot be moved, or a dynamic ad having a position in the movie that can be changed. When a viewer wishes to skip a portion of the movie containing the ad, the playback system determines whether the ad is static or dynamic. If the ad is static, only the portion of the movie preceding the static ad can be skipped; the ad is unskippable. This technique is referred to as “bounceback” since the end of the skip bounces back to the start of the static ad. If the ad is dynamic, it is moved to after the end of the skip. This technique is referred to as “slip-ad” since the ad slips to later in the movie. When a movie has multiple ads, some can be static and some can be dynamic.
US11589086B2 Systems and methods for targeted advertisement insertion into a program content stream
A computerized system for targeted ad insertion receives a program content stream and detects images in the content stream. The system recognizes at least one visual object within the images and matches the recognized visual object to an advertisement that correlates with the recognized visual object. The system may then select an advertisement that advertises, correlates to, is directed to or is otherwise relevant to products or services falling under the theme, topic, category of interest and/or relevant viewer demographic and inserts an identifier of the matched advertisement at an insertion point into the program content stream. This enables playback of the matched advertisement during playback of the program content stream at a time that correlates to the insertion point into the program content stream of the identifier of the matched advertisement.
US11589082B2 Live view collection and transmission system
A system including a third-party server and a live-view server is disclosed. The live-view server receives, from the third-party server, a request for a live view of each location, structure, or point of interest; identifies at least one vehicle positioned at each location, structure, or point of interest; obtains each requested live view from a live-view camera of the at least one identified vehicle; and transmits, to the third-party server, a dynamic hyperlink associated with each requested live view. The third-party server receives, from a request device, a request for a live view of a specific location, structure, or point of interest; identifies at least one live view, from a live-view database, associated with the specific location, structure, or point of interest; and serves to the request device, via the dynamic hyperlink, the at least one live view.
US11589081B2 Tiered digital content recording
A digital content recording network controller device determines a first content of a set of content to be more likely to be requested by a user of a content access device than a second content of the set of content based on monitored behavior of the user. The device stores the first content in a first storage device of a tiered group of storage devices and stores the second content in a second storage device of the tiered group of storage devices wherein the content access device is located closer to the first storage device than the second storage device. This balances storage load with accessibility, resulting in a faster responding system that does not require as much storage.
US11589066B2 Video decoding method and apparatus using multi-core transform, and video encoding method and apparatus using multi-core transform
A method and apparatus for performing transformation and inverse transformation on a current block by using multi-core transform kernels in video encoding and decoding processes. A video decoding method may include obtaining, from a bitstream, multi-core transformation information indicating whether multi-core transformation kernels are to be used according to a size of a current block; obtaining horizontal transform kernel information and vertical transform kernel information from the bitstream when the multi-core transformation kernels are used according to the multi-core transformation information; determining a horizontal transform kernel for the current block according to the horizontal transform kernel information; determining a vertical transform kernel for the current block according to the vertical transform kernel information; and performing inverse transformation on the current block by using the horizontal transform kernel and the vertical transform kernel.
US11589061B2 Transmission device, transmission method and reception device
An excellent display can be performed even when the frame rate changes dynamically at the reception side. When a switching portion at which a sequence of video streams to be transmitted is switched from a first sequence to a second sequence having a different frame rate from the first sequence is provided, display control information is inserted into at least encoded image data of a picture corresponding to the switching portion or a packet containing the encoded image data. A reception side performs display control of pictures using the display control information and implements an excellent display.
US11589059B2 Video compression apparatus, electronic apparatus, and video compression program
A video compression apparatus includes: an acquisition unit configured to acquire video data including a plurality of frames outputted from an imaging element that has a first imaging region to image a subject and a second imaging region to image a subject and for which a first frame rate can be set for the first imaging region and a second frame rate higher than the first frame rate can be set for the second imaging region; and a compression unit configured to compress the video data acquired by the acquisition unit based on the first frame rate and the second frame rate.
US11589056B2 Video decoding apparatus and video coding apparatus
A video decoding apparatus includes matrix reference pixel derivation circuitry that derives reference samples by using top neighboring samples and left neighboring samples of a current block, weight matrix derivation circuitry that derives a weight matrix, matrix prediction image derivation circuitry that derives a prediction image, and matrix prediction image interpolation circuitry that derives a predicted image by using the prediction image. A size index is derived according to a value of a target block width and a value of a target block height. A prediction size is derived using the size index. In a case that a first condition, that both the value of the transform block width and the value of the transform block height are equal to 4, is true, the size index is set equal to 0 and the prediction size is set equal to 4.
US11589054B2 Method and apparatus for history-based motion vector prediction
A method includes acquiring a current picture segmented into a plurality of units and divided into a plurality of tiles, each unit divided into a plurality of blocks, the plurality of blocks in each unit being arranged as a first grid, and the plurality of units being arranged as a second grid in each tile. The method includes decoding, for one of the units in a first tile, a first current block from the plurality of blocks using an entry from a first HMVP buffer associated with the first tile. The method includes updating the first HMVP buffer with a motion vector of the decoded first current block. The method includes in response to determining that the first current block is located in a first column and a first row of a first unit of a row in the second grid of the first tile, resetting the first HMVP buffer.
US11589052B2 Techniques for bitstream extraction for subpicture in coded video stream
A method, computer program, and computer system are provided for video coding. Video data having one or more subpictures is received. Resampling parameters and spatial scalability parameters corresponding to the subpictures are extracted. The resampling and spatial scalability parameters correspond to one or more flags signaled in a parameter set associated with the video data The video data is decoded based on the extracted resampling and spatial scalability parameters.
US11589049B2 Method and apparatus of syntax interleaving for separate coding tree in video coding
A method and apparatus of video coding operate by receiving input data associated with a current data unit in a current picture, wherein the current data unit includes a luma component and a chroma component and the current data unit includes a luma data unit and a chroma data unit. The operation proceeds by splitting the luma data unit and the Chroma data unit using one shared tree until the luma data unit and the chroma data unit reach a stop node, encoding or decoding the stop node as a leaf CU (coding unit) if the stop node is greater than M×N for the luma component, M and N are positive integers, and signalling or parsing a prediction mode for the stop node if the stop node is smaller than or equal to M×N for the luma component.
US11589045B2 Video coding method and apparatus utilizing combination of diverse block partitioning structures
The present invention relates to a block partitioning structure from among the video coding schemes and to a method and apparatus for encoding and decoding the block partitioning structure, the method comprising the steps of: acquiring block partitioning data; partitioning a block by means of the acquired block partitioning data; and encoding and decoding by means of the partitioned block. The encoding and decoding method and apparatus according to the present invention has the benefit of improving encoding efficiency with respect to the existing video compression schemes.
US11589044B2 Video encoding and decoding with ternary-tree block partitioning
A video system that applies constraints on block partitioning is provided. The system receives a partitioning control parameter from a bitstream specifying a maximum block size for enabling ternary-tree split that is constrained to be 64 or smaller. The system receives data from a bitstream for a block of pixels to be decoded as a current block of a current picture of a video. The system splits the current block into one or more partitions recursively, wherein ternary split is disallowed for a partition of the current block unless the partition is less than or equal to the maximum block size. The system reconstructs the one or more partitions of the current block.
US11589039B2 Restrictions of usage of tools according to reference picture types
A video processing method includes determining, for a conversion between a current video block of a video including multiple video blocks and a coded representation of the video, and from types of reference pictures used for the conversion, applicability of a coding tool to the current video block and performing the conversion based on the determining. The method may be performed by a video decoder or a video encoder or a video transcoder.
US11589037B2 Motion compensation using size of reference picture
A video coder is configured to determine a reference block of a reference picture for prediction of a current block of a current picture using motion information and to generate a set of reference samples for the current block of the current picture. To generate the set of reference samples, the video coder is configured to perform reference sample clipping on the reference block of the reference picture based on a size of the reference picture. The video coder is further configured to generate a prediction block for the current block of the current picture based on the set of reference samples.
US11589032B2 Methods and apparatus for using track derivations to generate new tracks for network based media processing applications
The techniques described herein relate to methods, apparatus, and computer readable media configured to perform media processing tasks. A media processing entity includes a processor in communication with a memory, wherein the memory stores computer-readable instructions that, when executed by the processor, cause the processor to perform receiving, from a remote computing device, multi-view multimedia data comprising a hierarchical track structure comprising at least a first track comprising first media data at a first level of the hierarchical track structure, and a second track comprising task instruction data at a second level in the hierarchical track structure that is different than the first level of the first track. The instructions further cause the processor to perform processing the first media data of the first track based on the task instruction data of the second track to generate modified media data and an output track that includes the modified media data.
US11589030B2 Method and device for converting 2D image into 3D image and 3D imaging system
The present disclosure discloses a method and a device for converting two-dimensional (2D) images into three-dimensional (3D) images and a 3D imaging system, wherein the method comprises the following steps: acquiring 2D image to be processed; performing perspective transformation on the 2D image to obtain a left-eye image and a right-eye image respectively; adjusting a distance between the left-eye image and the right-eye image according to the result of perspective transformation; and synthesizing the left-eye image and the right-eye image after the distance adjustment. In embodiments of the present disclosure, binocular parallax images are created by performing perspective transformation on the 2D image to be processed; the distance between the left-eye image and the right-eye image after perspective transformation is adjusted to form binocular parallax and create a convergence angle, so that the images observed by naked eyes are located at different depths, thus different stereoscopic effects may be seen. The image transformation is performed on the 2D image without involving the resolution and definition of the image, so that the image quality of the 3D imaged image is the same as that of the original 2D image and the 3D imaging effect is not affected.
US11589029B2 3D imaging system for RGB-D imaging
A 3D imaging system includes a camera to capture visible images, and a MEMS device with a scanning mirror that sweeps a beam in two dimensions. Actuating circuits receive angular extents and offset information and provide signal stimulus to the MEMS device to control the amount and direction of mirror deflection on two axes. The scan angle and offset information may be modified in response to camera properties.
US11589025B2 Computer-readable non-transitory storage medium having stored therein information processing program, information processing method, information processing system, and information processing apparatus
A first image is generated by imaging a first three-dimensional virtual space including a predetermined object by a first virtual camera. In addition, a map object formed by a three-dimensional model corresponding to the first three-dimensional virtual space is generated, and an indicator object indicating the position of a predetermined object is placed on the map object. Then, a second image is generated by imaging the map object by a second virtual camera. At this time, the second image is generated such that, regarding the indicator object placed on the map object, the display manners of a part hidden by the map object and a part not hidden by the map object as seen from the second virtual camera are different from each other.
US11589022B2 Scope of coverage indication in immersive displays
An immersive display and a method of operating the immersive display to provide information relating to an object. The method includes receiving information from an input device of the immersive display or coupled to the immersive display, detecting an object based on the information received from the input device, and displaying a representation of the object on images displayed on a display of the immersive display such that attributes of the representation distinguish the representation from the images displayed on the display, wherein the representation is displayed at a location on the display that corresponds with a location of the object.
US11589018B2 Rotation-type optical module and projection apparatus
A rotation-type optical module includes a driving element, a turntable, an optical material, a balancing ring, and a first weight substance. The driving element includes a body and a rotating shaft body. The turntable is sleeved on the rotating shaft body and includes a first surface and a second surface. The optical material is disposed on the first surface of the turntable. The balancing ring is disposed between the driving element and the turntable and includes a third surface and a fourth surface, and the third surface and the second surface face each other. The balancing ring includes an outer retaining wall and at least one inner retaining wall which protrude from the fourth surface, and the first weight substance abuts between the outer retaining wall and the at least one inner retaining wall. A projection apparatus including the foregoing rotation-type optical module is further provided.
US11589017B1 Ground line monitoring system
A ground line monitoring system includes a camera mounted in a first automobile vehicle. A waveguide directs a light into the camera having a first in-coupling grating receiving a first light imaging data and passing the first light imaging data as a first frequency of the light and a second in-coupling grating receiving a second light imaging data and passing the second light imaging data as a second frequency of the light. A color filter wheel receives the first frequency of the light and the second frequency of the light. An image sensor of the camera receives the first frequency of the light and the second frequency of the light at different times due to rotation of the color filter wheel. A controller performs a calculation using directions and angles of the first frequency of the light and the second frequency of the light to correct a camera image.
US11589016B2 Apparatus and method for recording video in vehicle
An apparatus for recording a video in a vehicle includes: a camera to obtain a video of surroundings of the vehicle, a first sensor to sense a surrounding motion of the vehicle, a second sensor to sense an impact from the surroundings of the vehicle, and a controller to determine a video recording mode of the camera, depending on whether the surrounding motion of the vehicle is consecutively made for a specific time period or more. In particular, the controller controls operations of the camera and the first sensor, depending the determined video recording mode. The video recording mode is controlled to reduce power consumption, in the state that it rains or snows when the video is recorded using a radar in parking.
US11589013B2 Automatic display system for gaze area and remote state monitoring system using the same
An automatic display system for a gaze area has a video input unit, an object detection unit and a gaze area setting unit that sets an area containing a part or the whole of the object detected by the object detection unit, or a predetermined area in the entire video as the gaze area. A control signal corresponding to the set gaze area information is received, and a gaze area acquisition unit acquires the gaze area from the entire video according to the control signal. A video output unit outputs a video of the acquired gaze area. The video input unit, a control signal receiving unit, and the gaze area acquisition unit are disposed in the input terminal; the gaze area setting unit and the video output unit are disposed in the output terminal; and information is transmitted between the input terminal and the output terminal by wireless communication.
US11589011B1 Bezels with cameras and light sources
In some examples, a computer includes a display panel, a bezel around the display panel, a camera, and a plurality of separate light sources integrated into the bezel at respective different locations.
US11589002B2 Webcam with improved user engagement and display visibility
A webcam apparatus, having a display surface characterized by a display area, includes an image capture device characterized by an optical axis and a first footprint in a plane perpendicular to the optical axis; and an energy transfer device with a first portion coupled to the image capture device; and a second portion allowing attachment to an edge of a display screen. When attached, the image capture device and the first portion lie against and in contact with the display surface, or in a proximate and parallel plane. An optical axis characterizing the image capture device is aligned with a gaze direction of a user addressing a viewer via the captured images. The first portion of the energy transfer device is transparent at optical wavelengths, and has a second footprint in the plane perpendicular to the optical axis. The first and second footprints are small relative to the display area.
US11589001B2 Information processing apparatus, information processing method, and program
There is provided an information processing apparatus including a display control section that controls a second display device present in a second space. The second display device displays a first captured image obtained by imaging at least one or more first users present in a first space. The display control section superimposes and displays a second user object on the first captured image in accordance with line-of-sight relevant information of each of the first users. The second user object corresponds to each of at least one or more second users present in the second space. This makes it possible to achieve more realistic communication.
US11588999B2 Vehicular vision system that provides camera outputs to receivers using repeater element
A vehicular vision system includes a camera and a repeater element at a vehicle. The repeater element is powered at least in part via power-over-coax and includes a de-serializer, a repeater and at least two serializers. The camera captures image data and outputs a camera output that includes serialized image data. The camera output is received at the repeater element and is de-serialized via the de-serializer to generate a de-serialized output. The de-serialized output is provided to the repeater and at least two repeater outputs are provided to the serializers. The serializers serialize the received repeater outputs to generate respective serialized outputs. The serializers each output the respective serialized output to a respective receiver of the vehicle. Each of the serialized outputs is representative of the serialized image data of the camera output received from the camera.
US11588994B2 Image sensor with embedded neural processing unit
An imaging system has a imaging array on a semiconductor chip which also includes circuit the elements NPU and SRAM to rapidly identify target objects in the imaging data and output their high level representations with low power consumption.
US11588992B2 Surround-view imaging system
The present invention refers to a surround-view imaging system for time-of-flight (TOF) depth sensing applications and a time-of-flight sensing based collision avoidance system comprising such an imaging system. The imaging system for time-of-flight depth sensing applications comprises a lens system, adapted for imaging angles of view (AOV) larger than 120° in an image on an image plane; a sensor system, adapted to convert at least a part the image in the image plane into an electronic image signal; and an evaluation electronics, adapted to analyze the electronic image signal and to output resulting environmental information; wherein the lens system and/or the sensor system are designed for specifically imaging fields of view (FOV) starting at zenithal angles larger than 60°.
US11588988B2 Image sensor and binning method thereof
The binning method of an image sensor includes reading out a plurality of pixel signals from at least two rows of each of a plurality of areas of a pixel array at a time, each of the plurality of areas including a plurality of pixels arranged in a 2n×2n matrix, where n is an integer equal to or greater than 2; generating first image data by performing analog-to-digital conversion on the plurality of pixel signals; generating, based on the first image data, a first summation value of each of a plurality of binning areas based on two pixel values corresponding to a same color in each of the plurality of binning areas, the plurality of binning areas corresponding to the plurality of areas of the pixel array; and generating a second summation value of each of two binning areas based on two first summation values corresponding to a same color in the two binning areas, the two binning areas being adjacent to each other in a column direction among the plurality of binning areas.
US11588987B2 Neuromorphic vision with frame-rate imaging for target detection and tracking
An imaging system and a method of imaging are provided. The imaging system includes a single optics module configured for focusing light reflected or emanated from a dynamic scene in the infrared spectrum and a synchronous focal plane array for receiving the focused light and acquiring infrared images having a high spatial resolution and a low temporal resolution from the received focused light. The imaging system further includes an asynchronous neuromorphic vision system configured for receiving the focused light and acquiring neuromorphic event data having a high temporal resolution, and a read-out integrated circuit (ROIC) configured to readout both the infrared images and event data.
US11588978B2 Under-display camera systems and methods
An example image capture device includes memory and one or more processors coupled to the memory and a camera sensor. The camera sensor is disposed to receive light through at least a portion of a display. The one or more processors are configured to determine an effective aperture for the camera sensor. The one or more processors are configured to apply a mask to one or more pixels in the at least a portion of the display, wherein the mask is based on the effective aperture. The one or more processors are configured to capture an image using the camera sensor.
US11588971B2 Imaging apparatus with two operation interfaces for setting imaging conditions
The imaging apparatus according to the present invention includes: a first operation unit having a plurality of buttons corresponding to setting items of imaging conditions, and capable of adjusting the setting items according to operation; and a second operation unit capable of performing a rotating operation and a depressing operation and setting conditions related to the setting items according to operation.
US11588969B2 Devices, methods, and graphical user interfaces for assisted photo-taking
An electronic device obtains one or more images of a scene, and displays a preview of the scene. If the electronic device meets levelness criteria, the electronic device provides a first audible and/or tactile output indicating that the camera is obtaining level images of the scene. In some embodiments, the electronic device detects, using one or more sensors, an orientation of a first axis of the electronic device relative to a respective vector, and the levelness criteria include a criterion that is met when the first axis of the electronic device moves within a predefined range of the respective vector. In some embodiments, if the orientation of the first axis of the electronic device moves outside of the predefined range of the respective vector, a second audible and/or tactile output, indicating that the camera is not obtaining level images of the scene, is provided.
US11588964B2 Execution status indication method, apparatus, and unmanned aerial vehicle
A execution status indication method includes receiving a control instruction sent from a control device, the control instruction being configured to instruct an unmanned aerial vehicle (UAV) to perform an operation; and controlling an indicator light at the UAV to indicate an execution status of the control instruction executed by the UAV.
US11588949B1 Image forming apparatus and conveyance control method
According to one embodiment, an image forming apparatus includes a conveying roller to convey sheets of different types along a conveyance path, a first sensor to detect a sheet being conveyed at a first position, a second sensor to detect the sheet being conveyed at a second position that is at a fixed distance downstream of the first position, a registration roller pair that is downstream of the second sensor, and a control unit. The control unit calculates a transit time for the sheet between the first position and the second position according detection results from the first and second sensors, and then sets a conveying distance for the sheet after the second position to be used for aligning the sheet against the registration roller pair based on the calculated transit time of the sheet.
US11588942B2 Image reading control method and apparatus executing different modes of document discharge based on detected target image satisfying preset sorting condition
A conveying device can selectively execute discharge processes of a plurality of discharge procedures each having a different mode of discharge to a discharge tray. An image reading portion reads images on document sheets conveyed along a conveyance path and outputs data about read images. An image reading control method includes detecting a target image that satisfies a predetermined sorting condition associated with any one of the plurality of discharge procedures from the read images. The image reading control method further includes, in a case where the target image is detected, executing a discharge control that causes the conveying device to execute the discharge process of the discharge procedure corresponding to the target image.
US11588933B2 Methods and apparatus for identification and optimization of artificial intelligence calls
The present invention relates to communications methods and apparatus for determining whether a received call originated from an artificial intelligence system and the call handling procedures to be used on the received call based on whether or not the call was determined to have been originated from an artificial intelligence system. An exemplary method embodiment includes the steps of: receiving a first call; determining whether said first call originated from an artificial intelligence system; and when said first call is determined to have originated from an artificial intelligence system performing one or more artificial intelligence call handling operations.
US11588932B2 Activating a connected flight mode
In general, the subject matter described in this disclosure can be embodied in methods, systems, and program products for determining, by a mobile computing device while a cellular connection mode remains activated and a second wireless connection mode remains activated, that a sensor of the mobile computing device has detected information indicating that the mobile computing device is located on an airplane. The mobile computing device transitions, in response to having determined that the sensor has detected information indicating that the mobile computing device is located on the airplane, the mobile computing device into a connected flight mode, including by terminating the cellular connection mode while allowing the second wireless connection mode to remain activated.
US11588931B2 Transport-to-transport communication network
An example operation includes one or more of receiving a request from an occupant in a first transport to initiate a voice communication with an occupant in a second transport, determining the occupant in the second transport is available for the voice communication based on a length of time the occupant will remain in the first transport and a length of time the occupant will remain in the second transport, and responsive to the determining, enabling the voice communication between the occupant in the first transport and the occupant in the second transport.
US11588929B2 Optical element, mobile phone cover plate and mold for manufacturing optical element
An optical element (100c), a mobile phone cover plate covering the optical element (100c) and a mold for manufacturing the optical element (100c). The optical element (100c) comprises: plural texture patterns (1c), at least one of the plural texture patterns (1c) having a concave structure or a convex structure, the at least one texture pattern (1c) containing at least one sub-texture pattern unit (11c, 12c), wherein the at least one texture pattern (1c) is of a curved shape. Hence, the texture patterns may produce a light shadow effect, which have a good visual effect, and when they are applied in the field of decoration, they are able to enhance a decoration effect, and make the decoration rich in visual senses and pictures vivid.
US11588928B2 Mobile telephone case facilitating wireless charging
A mobile telephone case that includes a housing structured to receive a mobile telephone, the housing includes a perimeter frame disposed about a perimeter of the mobile telephone to substantially cover and protect the mobile telephone, an at least partially open front face to provide access to a display screen of the mobile telephone, and a protective rear panel that is at least partially movable between an open orientation and a closed orientation when the housing is operatively disposed on the mobile telephone. The protective rear panel substantially covers and protects a rear surface of the mobile telephone when in the closed orientation, with at least a portion thereof being at least partially separable from the perimeter frame to define the open orientation that provides wireless charging access to the rear surface of the mobile telephone with the housing still disposed on the mobile telephone.
US11588925B2 Method for transferring large amounts of data through a telematic network in an efficient and reliable manner at a high-speed
The method is for the transfer of data of a message subdivided in fragments from a first intermediary electronic processing unit (43) to a second intermediary electronic processing unit (45); before the transfer, the first unit (43) receives the data encapsulated in the payload of data packets of the TCP type from a sender electronic processing unit (41) and decapsulates them; after the transfer, the second unit (45) encapsulates data in the payload of data packets of the TCP type and transmits them to a recipient electronic processing unit (47); the transfer takes place by means of data packets of the UDP type; the first unit (43) also inserts in the payload (32) of UDP packets; a first data field (C1) containing an identifier of a connection between the sender unit (41) and the recipient unit (47), a second data field (C2) containing an identifier of the message to be transferred, and a third data field (C3) containing a number that identifies the position of a fragment within the message to be transferred.
US11588919B2 Information processing apparatus, information processing system, information processing method and recording medium
An information processing apparatus communicably connected with an intermediary device capable of communicating with at least one device, the information processing apparatus including: circuitry configured to receive, from a terminal operated by a user, identification information that the terminal has acquired from the extraneous source; and transmit a request for execution of a process associated with the acquired identification information to the intermediary device, the request for execution causing the intermediary device to execute the process according to the request for execution to control the device.
US11588916B2 Information processing apparatus, method of controlling information processing apparatus, and information processing system
An information processing apparatus includes a first obtaining unit configured to obtain a notification information set from a cloud storage, a second obtaining unit configured to transmit user ID information of a user using the information processing apparatus to a cloud server, and to obtain notification ID information transmitted from the cloud server in response to the transmitted user ID information, and a determination unit configured to determine the notification information included in the notification information set obtained by the first obtaining unit and corresponding to the notification ID information obtained by the second obtaining unit as notification information of a display target.
US11588914B2 Maintaining minimum interface functionality in an absence of a push-based communications connection in a group-based communication system
Methods, systems, and apparatuses are provided for maintaining minimum interface functionality in an absence of a push based communications connection in a group-based communication system.
US11588905B2 Systems and methods for flexible software update in a network of moving things
Communication network architectures, systems and methods for supporting a network of mobile nodes. As a non-limiting example, various aspects of this disclosure provide communication network architectures, systems, and methods for supporting a dynamically configurable communication network comprising a complex array of both static and moving communication nodes (e.g., the Internet of moving things).
US11588901B2 Detection results communication systems and methods
Various techniques are disclosed for encoding and communicating detection results. In one example, a device includes a detector configured to capture measurement data in response to an external source. The device further includes one or more processors. The detection device further includes one or more memories including instructions stored therein, which when executed by the one or more processors, cause the one or more processors to perform operations. The operations include analyzing the measurement data to generate detection results. The operations further include generating a quick response (QR) code encoding at least a portion the detection results. The operations further include providing the QR code for access by an external device. Additional devices and related methods are also provided.
US11588900B2 Systems and methods multi-tenant and omni-channel routing
Systems and methods for multi-tenant and omni-channel routing are disclosed. In one embodiment, a method for multi-tenant and omni-channel routing may include: (1) a multi-tenant and omni-channel routing computer program executed by an information processing apparatus comprising at least one computer processor receiving, from a first platform in a multi-tenant system, a call to transfer an interaction between the first platform and a third party to a second platform in the multi-tenant system; (2) the multi-tenant and omni-channel routing computer program collecting a context of the interaction from the first platform; (3) the multi-tenant and omni-channel routing computer program identifying the second platform based on the context of the interaction; and (4) the multi-tenant and omni-channel routing computer program routing the interaction to the second platform and communicating the context to the second platform.
US11588899B2 Method and apparatus to facilitate a multi-point connection with a communication device
Aspects of the subject disclosure include, for example, selecting a first edge device of a first network to provide a part of a service to a communication device, establishing a first session between the first edge device and a device of a second network for a duration of the service, wherein the first session is associated with a first portion of an address, establishing a second session between the first edge device and the communication device in accordance with an access technology to facilitate a transfer of first data associated with the first part of the service to the communication device, wherein the second session is associated with a second portion of the address, and wherein the second portion of the address identifies the access technology, and transferring the first data to the communication device in accordance with the address, wherein the address comprises a third portion that identifies the communication device. Other embodiments are disclosed.
US11588893B1 Determining which edge node to utilize based on response time and network bandwidth
Determining which edge nodes should be used for data feed preprocessing based on response time between the edge nodes and the sources and network bandwidth usage. Edge node determination does not rely on which edge node is closest in physical proximity to the source, but rather makes a determination that minimizes transmission time and ensures network bandwidth usage is minimized. Machine learning models associated with source and edge node are trained over time based on observed response times and/or network bandwidth utilization, subsequently the models are executed with bandwidth network set to zero and the model outputting the lowest response time is deemed to be the edge node that is used.
US11588892B1 Adaptive rebuilding of encoded data slices in a storage network
A method for execution by a computing device of a storage network begins by obtaining scoring information for a rebuilding encoded data slices for one or more storage units of a set of storage units of the storage network, where the scoring information includes two or more of a plurality of rebuilding rates, a plurality of input/output rates, a plurality of scores, and a plurality of selection rates. The method continues with determining a rebuilding rate of the plurality of rebuilding rates to utilize for the rebuilding based on the scoring information. The method continues by implementing the rebuilding of the encoded data slices in accordance with the rebuilding rate.
US11588891B2 Access pattern driven data placement in cloud storage
A system and method for storing data in a distributed network having a plurality of datacenters distributed over a plurality of geographic regions. The method may involve receiving data, including metadata, uploaded to a first datacenter of the distributed network, receiving access information about previous data that was previously stored in the plurality of datacenters of the distributed network, predicting one or more of the plurality of geographic regions from which the uploaded data will be accessed based on the metadata and the access information, and instructing the uploaded data to be transferred from the first datacenter to one or more second datacenters located at each of the one or more predicted geographic regions.
US11588890B2 System, method and apparatus having a redundant cluster for processing data
Disclosed are a data processing system, a method and an apparatus. The system includes: a first client, a data synchronization terminal, and a second client. The first client is configured to send data indicated by a data sending instruction to a first server cluster in a first server cluster group. The data synchronization terminal is configured to synchronize data in the first server cluster of the first server cluster group to a second server cluster in a second server cluster group. The second client is configured to acquire data from a target second server cluster; determine, in response to that transmission of data with location information currently being acquired from the target second server cluster is interrupted, target second location information from a predetermined target second location information group; and continue to acquire data from the storage location indicated by the target second location information.
US11588889B1 Validating media content retrieved from untrusted networks
A processing service of a provider network may protect media content from being tampered with when it is transmitted from the provider network/transcoder to untrusted networks (e.g., third-party networks/CDNs) and to a media player. The processing service (e.g., the transcoder) generates a public and a private key. The service uses the private key to digitally sign content portions (e.g., video frames) before distribution to untrusted CDNs. The provider network creates a manifest that includes the public key. To play the media content, the media player obtains a manifest that includes the public key (via a secure/trusted connection with the provider network). The media player may then obtain the media content from an untrusted edge server/CDN and validate it using the public key that was separately obtained from the manifest (to verify the content was not tampered with).
US11588886B2 Managing replication of computing nodes for provided computer networks
Techniques are described for providing managed computer networks, such as for managed virtual computer networks overlaid on one or more other underlying computer networks. In some situations, the techniques include facilitating replication of a primary computing node that is actively participating in a managed computer network, such as by maintaining one or more other computing nodes in the managed computer network as replicas, and using such replica computing nodes in various manners. For example, a particular managed virtual computer network may span multiple broadcast domains of an underlying computer network, and a particular primary computing node and a corresponding remote replica computing node of the managed virtual computer network may be implemented in distinct broadcast domains of the underlying computer network, with the replica computing node being used to transparently replace the primary computing node in the virtual computer network if the primary computing node becomes unavailable.
US11588880B2 Capturing and automatically uploading media content
A computer-implemented method for automatically uploading media content from a mobile device to an online service provider can include receiving, in the mobile device, identifying information corresponding to a user account associated with at least one of a plurality of online service providers; capturing media content with a media input component included in the mobile device; and after the media content is captured, automatically uploading to the at least one online service provider the captured media content and the identifying information, without receiving user input contemporaneous with the automatic uploading that specifies that the captured media content is to be uploaded. The mobile device can further include a wireless communication component configured to wirelessly send data to and wirelessly receive data from the plurality of online service providers, which can be external to the mobile device.
US11588870B2 W3C media extensions for processing DASH and CMAF inband events along with media using process@append and process@play mode
A method and apparatus for processing events in a media stream may be provided. The method may include obtaining media data; generating, from the media data, one or more event segments and one or more media segments; parsing a respective event from the one or more event segments to determine an event start time, event end time, and dispatch mode; appending the respective event from the one or more event segments to an event dispatch buffer based on a comparison of the event start time and a current playback position, and a determination that the respective event is not present in an already dispatched buffer; and dispatching the respective event based on the position associated with the respective event in the event dispatch buffer, the event start time, the event end time, and the current playback position.
US11588866B2 Delivering tailored audio segments within live audio streams
An online system tailors audio segments for users accessing a live audio stream such that the audio segments can be presented to users during a break of the live audio stream. The audio segment can include interactive content as well as one or both of an audio clip and a standard message, each of which serves as a type of introduction to the interactive content. For each user, the online system analyzes characteristics of the user to determine whether to include the standard message in addition to the audio clip, or to withhold the standard message from the audio segment. Therefore, different users accessing the live audio stream can be appropriately introduced to the interactive content which can improve the likelihood that the users interact with the interactive content.
US11588863B2 System for providing efficient delivery of media content to the masses
A system for providing efficient delivery of media content to the masses is disclosed. In particular, the system may include receiving requests for content from a plurality of user devices. The system may then include synchronizing fulfillment timeframes for delivering the content based on a preset time interval. In response to the requests, the system may deliver the content, such as via a satellite network, to a storage device, such as, but not limited to, a digital video recorder, a video-ready-access device equipped with a satellite receiver and antenna, a digital subscriber line access multiplexer equipped with a satellite received and antenna, or any combination thereof, based on the preset time interval. The system may then include causing the storage device to deliver the requested content to the plurality of user devices via a wireless network communicatively linked to the plurality of user devices.
US11588861B2 Electronic device and operating method for registering IP multimedia subsystem
An electronic device according to an embodiment may include a communication circuit, a processor, operatively connected to the communication circuit, and a memory operatively connected to the processor. The memory may store instructions to cause the processor to update an application including IP multimedia subsystem (IMS)-related data. Based on the update data received from a server through the communication circuit, obtain the updated IMS-related data through the application when the application is updated, and renew the IMS configuration information.
US11588858B2 Monitoring a privacy rating for an application or website
A method, non-transitory computer readable medium, and policy rating server device that receives a request from a client computing device for one or more privacy ratings. The request identifies at least one application, such as an application installed on the client computing device for example. A policy associated with the identified application is obtained. The obtained policy is analyzed to identify a plurality of key words or phrases associated with use by the at least one application of functionality of, or personal information stored on, the client computing device. One or more privacy ratings are generated based on numerical values assigned to each of the identified key words or phrases, the generated one or more privacy ratings are output to the client computing device in response to the request.
US11588857B2 Network asset lifecycle management
Systems and methods for network asset lifecycle management are described. Network assets may include ephemeral Internet-accessible assets such as IP addresses, domain names, digital certificates, and cloud infrastructure accounts. A set of addresses associated with a computer network such as the Internet are scanned. Response data is received from one or more network systems connected to the computer network and processed to identify one or more network assets associated with an entity such as an enterprise organization. Asset data indicative of the identified network assets are then stored to build a record of the network assets associated with the entity.
US11588856B2 Automatic endpoint security policy assignment by zero-touch enrollment
A model-based industrial security policy configuration system implements a plant-wide industrial asset security policy in accordance with security policy definitions provided by a user. The configuration system models the collection of industrial assets for which diverse security policies are to be implemented. An interface allows the user to define zone-specific security configuration and event management policies for a plant environment at a high-level based on a security model that groups the industrial assets into security zones. When new industrial devices are subsequently installed on the plant floor, the system determines whether a security policy defined by the model is applicable to the new device and commissions the new device to comply with any relevant security policies. This mitigates the necessity for a system administrator to manually configure individual devices to comply with plant-wide security policies.
US11588855B2 Policy approval layer
A customer of a policy management service may use an interface with a configuration and management service to interact with policies that may be applicable to the customer's one or more resources. The customer may create and/or modify the policies and the configuration and management service may notify one or more other entities of the created and/or modified policies. The one or more other entities may be operated by user authorized to approve the created and/or modified policies. Interactions with the configuration and management service may be the same as the interactions with the policy management service.
US11588851B2 Detecting device masquerading in application programming interface (API) transactions
This disclosure describes a technique to determine whether a client computing device accessing an API is masquerading its device type (i.e., pretending to be a device that it is not). To this end, and according to this disclosure, the client performs certain processing requested by the server to reveal its actual processing capabilities and thereby its true device type, whereupon—once the server learns the true nature of the client device—it can take appropriate actions to mitigate or prevent further damage. To this end, during the API transaction the server returns information to the client device that causes the client device to perform certain computations or actions. The resulting activity is captured on the client computing and then transmitted back to the server, which then analyzes the data to inform its decision about the true client device type. Thus, when the server detects the true client device type (as opposed to the device type that the device is masquerading to be), it can take appropriate action to defend the site.
US11588850B2 Security techniques for 5G and next generation radio access networks
Malicious attacks by certain devices against a radio access network (RAN) can be detected and mitigated, while allowing communication of priority messages. A security management component (SMC) can determine whether a malicious attack against the RAN is occurring based on a defined baseline that indicates whether a malicious attack is occurring. The defined baseline is determined based on respective characteristics associated with respective devices that are determined based on analysis of information relating to the devices. In response to determining there is a malicious attack, SMC determines whether to block connections of devices to the RAN based on respective priority levels associated with respective messages being communicated by the devices. SMC blocks connections of devices communicating messages associated with priority levels that do not satisfy a defined threshold priority level, while managing communication connections to allow messages satisfying the defined threshold priority level to be communicated via the RAN.
US11588849B2 System for providing enhanced cryptography based response mechanism for malicious attacks
Embodiments of the present invention provide a system for providing enhanced cryptography based response mechanism for malicious attacks. The system is configured for generating one or more tracker seeds, storing the one or more tracker seeds in at least one entity system associated with an entity, identifying a malicious event associated with data in the at least one entity system, in response to identifying the malicious event, identifying an encryption algorithm key pair for the malicious event based on the one or more tracker seeds, and decrypting the data in the at least one entity system based on the encryption algorithm key pair.
US11588848B2 System and method for suspending a computing device suspected of being infected by a malicious code using a kill switch button
A system for suspending a computing device suspected of being infected by a malicious code is configured to receive a signal to initiate a suspension procedure of the computing device. The system captures states of instructions that are being executed by a processor of the computing device, where the instructions comprise the malicious code. The system prioritizes the operation of a kill switch button over the instructions being executed by the processor. The system sends notification signals to servers managing a user account associated with a user currently logged in at the computing device, indicating that the computing device is suspected of having been infected by the malicious code. In response to sending the notification signals to the servers, the user account is suspended. The system terminates network connections of the computing device such that the computing device is disconnected from other devices.
US11588847B2 Automated seamless recovery
A processor may detect a risk on a local machine. The processor may determine that the risk warrants a heightened-level remediation. The processor may connect the local machine to a cloud-based desktop environment. The processor may perform the heightened-level remediation on the local machine. The processor may merge data from the cloud-based desktop environment to the local machine in response to the heightened-level remediation being performed.
US11588845B2 Method for managing a memory
A computer-implemented method for managing a memory in a network to which a unit for detecting or preventing undesirable network intrusions is assigned. A first message is received by a user of the network in the process. If the first message is to be stored, a second message is randomly selected from the messages stored in the memory, the randomly selected second message is deleted from the memory, and the first message is stored in the memory.
US11588844B1 Distributing search loads to optimize security event processing
Disclosed herein are methods, systems, and processes to distribute and disperse search loads to optimize security event processing in cybersecurity computing environments. A search request that includes a domain specific language (DSL) query directed to a centralized search cluster by an event processing application is intercepted. The event processing application is inhibited from issuing the search request to the centralized search cluster if a structured or semi-structured document matches the DSL query.
US11588842B2 Network anomaly detection and mitigation simulation tool
One or more network tests for a network are selected, wherein the selected one or more network tests simulate an attempt to establish an anomalous network configuration. A network configuration update is generated based on the selected one or more network tests and the network configuration update is issued to a network-based device. A performance of the network is monitored for establishment of the anomalous network configuration in response to the network configuration update and a configuration of the network is revised based on the monitored performance of the network, to mitigate the establishment of the anomalous network configuration.
US11588841B2 Generating malicious network traffic detection models using cloned network environments
Techniques and mechanisms are disclosed for creating an environment for detecting malicious network traffic. A test computer network including a plurality of cloned nodes is created. The plurality of cloned nodes in the test computer network corresponds to at least some of a plurality of target nodes of a host computer network, and the test computer network has no network connectivity to the host computer network. Sensors in both the host computer network and the test computer network generate network flow records that are sent to a detection processing pipeline. The detection processing pipeline merges the records received from the sensors and uses the merged records to train at least one model used to identify instances of malicious network traffic.
US11588839B2 Leveraging user-behavior analytics for improved security event classification
Systems and methods for improving security event classification by leveraging user-behavior analytics are provided. According to an embodiment, a UEBA-based security event classification service of a cloud-based security platform maintains information regarding historical user behavior of various users of an enterprise network. An endpoint protection platform running on an endpoint device that is part of the enterprise network performs an initial classification of the event, based on which the endpoint protection platform blocks activity by the process. The endpoint production platform requests input from the cloud-based security platform which causes the cloud-based security platform performs a reclassification of the event based on contextual information, multiple data feeds and the UEBA-based security event classification service. Based on the reclassification of the event, the cloud-based security platform causes the endpoint protection platform to allow the process to proceed by providing the resulting security event classification to the endpoint protection platform.
US11588838B2 Threat mitigation system and method
A computer-implemented method, computer program product and computing system for: obtaining hardware performance information concerning hardware deployed within a computing platform; obtaining platform performance information concerning the operation of the computing platform; obtaining application performance information concerning one or more applications deployed within the computing platform; and generating a holistic platform report concerning the computing platform based, at least in part, upon the hardware performance information, the platform performance information and the application performance information.
US11588837B2 Secured automated or semi-automated system
Secured automated or semi-automated systems are provided herein. In one embodiment, a sensor system includes a sensor, a legacy computing environment that is configured to communicate with the sensor and process sensor raw data output, and transmit the processed sensor output to a first network node over the network, and a trusted computing environment configured to receive raw sensor output directly from the sensor and transmit the raw sensor output to an additional network node or the first network node over the network.
US11588834B2 Systems and methods for identifying attack patterns or suspicious activity in client networks
Systems and methods for identifying attack patterns or suspicious activity can include a profile builder, a primitive creator, and a compromise detector. The profile builder can populate one or more baseline activity profiles for each client of the plurality of clients or entities associated therewith. The primitive creator can create primitives by comparing identified or extracted features to information in the one or more baseline activity profiles. The compromise detector can receive primitives, and based on identified combinations or sequences of primitives, generate compromise events to be provided to clients.
US11588832B2 Malicious incident visualization
Techniques to provide visualizations of possible malicious incidents associated with an event on a host device may include causing presentation of graphics of a process or thread in a user interface. Information about detected events may be transmitted to a computing device that generates the visualizations for presentation to an analyst to verify the malicious incidents. Based on patterns and information conveyed in the visualizations, the computer device or host device may take action to protect operation of the host device caused by the event.
US11588831B2 Systems and methods for side-channel monitoring of a local network
Systems and methods for side-channel monitoring a local network are disclosed. The methods involve generating a program trace signal from at least one of power consumption, electromagnetic emission, or acoustic emanation of a control processor connected to the local network and operating a monitoring processor to detect a communication of a message on the local network; identify at least one purported control processor related to the communication; analyze the program trace signal of the at least one purported control processor relative to the communication; and at least one of an authenticate or verify one or more purported control processors of the at least one purported control processor based on the program trace signal of the at least one purported control processor.
US11588830B1 Using machine learning to detect malicious upload activity
A method for training a machine learning model using information pertaining to characteristics of upload activity performed at one or more client devices includes generating first training input including (i) information identifying first amounts of data uploaded during a specified time interval for one or more of multiple application categories, and (ii) information identifying first locations external to a client device to which the first amounts of data are uploaded. The method includes generating a first target output that indicates whether the first amounts of data uploaded to the first locations correspond to malicious or non-malicious upload activity. The method includes providing the training data to train the machine learning model on (i) a set of training inputs including the first training input, and (ii) a set of target outputs including the first target output.
US11588829B2 Methods and apparatus for network detection of malicious data streams inside binary files
Methods, apparatus, systems and articles of manufacture are disclosed to detect an attack in an input file. An example apparatus includes a detection controller to identify a section of a number of bytes of data in a buffer including a first or second byte of data indicative of a value within a preconfigured range, the preconfigured range corresponding to a range of values indicative of memory addresses, update a merged list with a chunk of data that includes the section having the first or second byte of data indicative of the value within the preconfigured range, and a reoccurrence detector to concatenate the chunk of data in the merged list into a string to identify a number of occurrences the string matches remaining data in the buffer, and in response to a detection of the number of occurrences exceeding an occurrence threshold, determine that the data includes a malicious data stream.
US11588826B1 Domain name permutation
Methods and systems for identifying a network threat are disclosed. The methods described herein may involve receiving at least one permutation of a domain name, wherein the at least one permutation is registered with a domain name registrar. The methods described herein may further involve executing a scanning function to identify an active service on the at least one permutation registered with the domain name registrar and implementing a threat prevention procedure upon identifying an active service on the at least one permutation.
US11588823B1 Data security systems and methods
A system for data security includes a processor and a non-transitory, tangible, computer-readable storage medium having instructions stored thereon that, in response to execution by the processor, cause the processor to perform operations including: (i) logging a plurality of data access events initiated by a user; (ii) analyzing the plurality of data access events; (iii) generating, based upon the analyzing, a user profile, the user profile including at least one historical data access pattern associated with the user; (iv) comparing a data access event initiated by the user to the user profile; and (v) determining, based upon to the comparing, whether the data access event initiated by the user corresponds to the at least one historical data access pattern included in the user profile.
US11588820B2 Certificate based automated network configuration
Disclosed are techniques for determining network configurations through machine logic from security certificates of destination computer devices in the network. When a security component of a network receives an incoming data packet sent to a destination computer device in the network, a security certificate is requested from the destination computer device. The security component then configures a set of network rules for forwarding data packets to the destination computer device based on information in the security certificate of the destination computer device. Properties of the incoming data packet are compared to the set of network rules to determine whether to forward the incoming data packet to the destination computer.
US11588813B2 Systems and methods for biometric authentication using existing databases
Systems, methods, and non-transitory computer readable medium use external databases for biometric authentication. A server receives a request for authentication of a user from a requestor. A notification is sent to a user device associated with the user from the server. A biometric image is received within the server in response to the notification. A biometric ID of the user is sent from the server to an external database for identifying a biometric template stored with the external database. An authentication result indicative of a match between the biometric image and the biometric template is determined and the authentication result is sent to the requestor. The external databases are owned by a third party, and the biometric template of the user was previously generated and stored within the external database in association with the biometric ID.
US11588809B2 System and method for securing a content creation device connected to a cloud service
A certified application is installed onto a content creation device and a mobile certified application is installed onto a mobile device, the applications establish first and second trust relationships with the cloud service. The certified application and mobile certified application establish the third trust relationship via a proximity network. The mobile certified application generates a first ephemeral key pair having a private part. The certified application generates a second ephemeral key pair having a private part. The mobile certified application requests a service from the content creation device involving the transfer of data between the content creation device and the cloud service. The data is protected by at least one of the first and second ephemeral key pairs in response to invocation of the service. The service results in the data being stored at the cloud service and/or rendered at the content creation device.
US11588805B2 Syncing data warehouse permissions using single sign-on authentication
Syncing data warehouse permissions using single sign-on authentication including establishing a link between a first cloud-based data warehouse and a second cloud-based data warehouse, wherein the link facilitates access to data stored in the second cloud-based data warehouse via the first cloud-based data warehouse; receiving, by the first cloud-based data warehouse, a first query referencing first data stored in the second cloud-based data warehouse; accessing, by the first cloud-based data warehouse, from the second cloud-based data warehouse, the first data; and sending a response to the first query based on the accessed first data.
US11588803B2 Systems, methods, and apparatuses for implementing super community and community sidechains with consent management for distributed ledger technologies in a cloud based computing environment
Systems, methods, and apparatuses for implementing super community and community sidechains with consent management for distributed ledger technologies in a cloud based computing environment are described herein. For example, according to one embodiment there is a system having at least a processor and a memory therein executing within a host organization and having therein: means for operating a blockchain interface to a blockchain on behalf of a plurality of tenants of the host organization, wherein each of the plurality of tenants are participating nodes with the blockchain; means for receiving a login request from a user device, the login request requesting access to a user profile associated with a first one of the plurality of tenants; means for authenticating the user device and retrieving a user profile from the blockchain based on the authentication of the user device, wherein the user profile is stored as a blockchain asset within the blockchain with a first portion of the user profile comprising non-protected data accessible to all participating nodes on the blockchain and with a second portion of the user profile comprising protected data accessible only to participating nodes having user consent; means for prompting the user device to grant user consent to share the protected data with a second one of the plurality of tenants; and means for sharing the protected data with the second one of the plurality of tenants by permitting access to the protected data within the blockchain asset by the second tenant's participating node. Other related embodiments are disclosed.
US11588800B2 Customizable voice-based user authentication in a multi-tenant system
A system authenticates users using voice-based conversations. The system allows the authentication process to be customized using an authentication plan. For example, the system may be a multi-tenant system that allows customization of the authentication process for each tenant. The authentication plan is represented as an expression of phrase types, each phrase type associated with a phrase verification method. The system authenticates a user by executing the expression of an authentication plan for that user in response to a request from the user. The system performs a conversation with the user according to the authentication plan. The system determines whether to allow or deny the user request based on the result of evaluation of the expression of the authentication plan.
US11588797B2 Vehicle distributed computing for additional on-demand computational processing
Systems and techniques for vehicle distributed computing for on-demand computational capacity. Systems and techniques described herein enable distribution of discrete computational work requests to other vehicle systems through generation and awarding of smart contracts to locally positioned other vehicle systems bidding for the smart contracts. Data for processing the requests is encrypted and send to the vehicle winning the smart contract, which processes the request and returns the completed work product. Completion of the smart contract initiates transfer of value to the processing vehicle as incentive for processing the work load.
US11588796B2 Data transmission with obfuscation for a data processing (DP) accelerator
According to one embodiment, a host communicates with a data processing (DP) accelerator using an obfuscation scheme. The DP accelerator receives an obfuscation kernel algorithm (or obfuscation algorithm), where the obfuscation kernel algorithm is used to obfuscate and de-obfuscate data in communication with a host. The DP accelerator de-obfuscates, using the obfuscation kernel algorithm, obfuscated data received from the host for a prediction request to obtain one or more AI models. The DP accelerator generates prediction results by applying the one or more AI models to a prediction input. The DP accelerator obfuscates, using the obfuscation kernel algorithm, the prediction results. The DP accelerator sends the obfuscated prediction results to the host, where the host retrieves the prediction results by de-obfuscating the obfuscated prediction results.
US11588794B2 Method and apparatus for secure application framework and platform
A security platform architecture is described herein. The security platform architecture includes multiple layers and utilizes a combination of encryption and other security features to generate a secure environment. A method, system and apparatus include/are configured for maintaining a secure vault, accessing building block modules and implementing an orchestrator. The vault stores code. The building block modules are formed using the code stored in the secure vault. The orchestrator controls access to the building block modules.
US11588789B2 System and method employing virtual ledger
A system, method and computer program product for computer based open innovation including an asset valuation device receiving asset information regarding one or more tangible or non-tangible assets, and generating a valuation signal, based on the asset information; a self-executing code device receiving the valuation signal, and generating a self-executing code signal, based on the valuation signal; an air router device having both a low band radio channel, and an internet router channel for redundant internet communications, and a malicious code removal device for scrubbing malicious code from data received, receiving the valuation signal, and generating a node voting request signal, based on the valuation signal; and a mesh network having a plurality of node devices receiving the node voting request signal, and generating vote confirmation signals, based on the node voting request signal. The node devices are employed to perform problem solving, smart contract processing, and/or cryptocurrency mining.
US11588787B2 Premises management configuration and control
Disclosed are methods, systems, and devices for management of a premises. The premises may comprise one or more devices, such as a gateway device, a control device, or a premises device. A computing device, such as a server external to the premises, may receive data indicative of the premises device. The computing device may determine to update a configuration of one or more devices at the premises, such as the gateway device or the control device. Configuration data may be sent to the gateway device to update the configuration.
US11588778B2 System and method for enhanced second screen experience
A system and method for providing an enhanced second screen experience is provided includes a content-rich second screen user interface with information relative to an event and event participants as well as social media aspects relative to the event and event participants.
US11588774B2 Control of notifications to a user of an electronic messaging system
An example method of controlling notifications to a user of an electronic messaging system comprises controlling communication of a notification associated with a thread of the electronic messaging system to the user based on a determined level of interest of the user in a topic of the thread and at least one of: the obtained timing information relating to the timing of the most recent notification associated with the thread; and an obtained measure of similarity between the topic of the thread and a second topic associated with the most recent notification associated with the thread.
US11588771B2 Systems and methods for including enriched calling information in rich communications services (RCS) messaging
A messaging platform may send, based on a query, information identifying one or more virtual assistants to a user device. The messaging platform may receive, from the user device, a response identifying a particular virtual assistant, of the one or more virtual assistants, wherein the virtual assistant is associated with an organization. The monitoring platform may send, to the user device, information related to the particular virtual assistant and may communicate, via the particular virtual assistant, with the user device via a rich communications services (RCS) communication session. The messaging platform may receive, from another device associated with the organization, a request to communicate with the user device and may convert the request into an RCS message. The messaging platform may send, via a server device, the RCS message to the user device to allow the user device to perform one or more actions.
US11588766B2 Mobile dashboard for automated contact center testing
A mobile dashboard for automated contact center testing gives up-to-the-minute status reports on your customer experience, enabling you to make operational decisions and drill down to the source of an issue while on the go. A mobile-optimized executive dashboard display can be customized for each unique user, so business and technical stakeholders can filter the display for the customer experience (CX) metrics that are most relevant to them, and configure push notification alerts accordingly.
US11588759B2 Automated communications over multiple channels
A company may implement automated workflows for convenience of users or to reduce support costs. For example, allowing a user to change an address using an automated workflow may be faster or less expensive than with a human agent. Companies may provide support over different types of communications channels with different capabilities, such as voice channels and text channels. Instead of implementing different workflows for different channels, a company may separate aspects of the workflow that are common to different channels from aspects of the workflow that are different for different channels. For example, a workflow may be implemented to determine an action in response to a received communication where the action may be used with multiple channels. The action may then be used to select an action implementation that is specific to a channel.
US11588758B2 Generating a user unavailability alert in a collaborative environment
Generating a user unavailability alert in a collaborative environment. An embodiment can include receiving a user input from a user indicating an unavailability of the user. Responsive to the user input, activity of the user in the collaborative environment can be analyzed to identify whether any pending actions are allocated to the user which relate to other people identified by the user's participation in the collaborative environment. Responsive to determining at least one pending action is allocated to the user which relates to at least one other person identified by the user's participation in the collaborative environment, a first message can be generated to be communicated to the at least one other person indicating the unavailability of the user, and the first message can be communicated to the at least one other person.
US11588752B2 Route exchange in multi-tenant clustered controllers
Route exchange in a plurality of network controller appliances on a per-tenant basis is disclosed. In one aspect, a method includes receiving, from a network management system and at a first network controller appliance, a designation of at least two tenants to be hosted on the first network controller appliance, the first network controller appliance being one of a plurality of network controller appliances in a SD-WAN; sending, from the first network controller appliance to other network controller appliances of the plurality of network controller appliances, a tenant list query message to obtain a corresponding tenant list of each of the other network controller appliances; and receiving a corresponding response from each of the other network controller appliances indicating the corresponding tenant list of each of the other network controller appliances, the corresponding response being used to update the tenant list on the first network controller appliance.
US11588751B2 Combined network and computation slicing for latency critical edge computing applications
Methods and devices for creating and operating a combined network and computational slice instance (NCSI) in a Multi-access Edge Computing (MEC) scenario. Communication and computational resources may be reserved by a NCSI controller for the NCSI. The communication resources may include network slices and the computational resources may include MEC computational resources of one or more MEC servers. The reserved resources may be selected based on quality of service (QoS) requirements of UEs that will utilize the NCSI. During operation, reserved resources for the NCSI may be dynamically renegotiated based on an aggregate load of the NCSI, the QoS of data traffic, and/or updated QoS requirements of the UEs.
US11588749B2 Load balancing communication sessions in a networked computing environment
Techniques for load balancing communication sessions in a networked computing environment are described herein. The techniques may include establishing a first communication session between a client device and a first computing resource of a networked computing environment. Additionally, the techniques may include storing, in a data store, data indicating that the first communication session is associated with the first computing resource. The techniques may further include receiving, at a second computing resource of the networked computing environment, traffic associated with a second communication session that was sent by the client device, and based at least in part on accessing the data stored in the data store, establishing a traffic redirect such that the traffic and additional traffic associated with the second communication session is sent from the second computing resource to the first computing resource.
US11588739B2 Enhanced management of communication rules over multiple computing networks
Described herein are systems, methods, and software to enhance the implementation of communication rules in a computing network. In one example, a method of operating a communication settings system maintains communication rules for a plurality of networks, wherein the communication rules define forwarding actions for ingress and egress packets to and from applications in the plurality of computing networks. The service further identifies a configuration request from a computing network with applications executing in the computing network, identifies a subset of the communication rules based on the plurality of applications, and provides the subset of the communication rules to the computing network.
US11588735B2 Edge processing of sensor data using a neural network to reduce data traffic on a communication network
Methods, systems, and apparatuses related to edge processing of sensor data using a neural network to reduce network traffic to and/or from a server. In one approach, a cloud server processes sensor data from a vehicle using an artificial neural network (ANN). The ANN has several layers. Based on analyzing at least one characteristic of the sensor data received from the vehicle and/or a context associated with processing the sensor data, the cloud server determines to send one or more of the layers of the ANN for edge processing on the vehicle itself. In other cases, the cloud server decides to send the one or more layers to an edge server device located on a communication path between the vehicle and the cloud server. The edge processing reduces network data traffic.
US11588734B2 Systems for providing an LPM implementation for a programmable data plane through a distributed algorithm
Described are programmable input output (IO) devices comprising: an match processing unit (MPU) and a memory unit. The MPU comprising at least one arithmetic logic unit (ALU). The memory unit having instructions stored thereon which, when executed by the respective programmable IO device, cause the programmable IO device to perform operations. These operations comprise: receiving, from an inbound interface, a packet comprising packet data for at least one range-based element; determining, via the MPU, a lookup result by performing a modified binary search on an interval binary search tree with the packet data to determine a longest prefix match (LPM), wherein the interval binary search tree maps the at least one range-based element to an associated data element; and classifying the packet based on the lookup result.
US11588733B2 Slice-based routing
In a slice-based network, switches can be programmed to perform routing functions based on a slice identifier. The switch can receive a packet and determine a slice identifier for the packet based on packet header information. The switch can use the slice identifier to determine a next hop. Using the slice identifier with a multi-path table, the switch can select an egress interface for sending the packet to the next hop. The multi-path table can ensure that traffic for a slice stays on the same interface link to the next hop, even when a link aggregation group (“LAG”) is used for creation of a virtual channel across multiple interfaces or ports.
US11588731B1 Cloud-to-cloud interface
In general, this disclosure describes a cloud exchange (or “cloud exchange”) that offers a cloud-to-cloud interface (CCI) for interconnecting cloud services to tenants within public clouds. As described herein, the cloud exchange may be configured with a cloud-to-cloud interface that enables tenant applications of a public cloud to subscribe to and communicate with cloud services, using an end-to-end layer 3 path, in some cases without requiring a separate routing protocol session with a public edge device for the public cloud. In some examples, the public cloud provides a virtual layer 2 connection from a tenant within a public cloud to a routing instance of the cloud exchange, and the cloud exchange uses the routing instance to route service traffic between the tenant and the cloud services.
US11588728B2 Tree structure-based smart inter-computing routing model
Systems and methods are disclosed for retrieving, from a database, over a network, historical routing data for multiple attributes and determining, for each attribute, based on its respective historical routing data, whether processing volume and processing error rates for each attribute exceed respective threshold. If both processing volume and error rate exceed their respective thresholds, the systems and methods describe herein calculate, for each qualifying attribute, a degree to which routing for each attribute can be improved. The systems and methods described herein output a ranking for each qualifying attribute based on their respective degrees to which routing can be improved for the respective attributes.
US11588726B2 Augmented routing of data
Disclosed herein are systems and methods for creating an ultra-lightweight multi-tenant network virtualization model by augmenting an OSI layer 4 tuple (protocol, source IP address, destination IP address, source port, destination port) with additional private gateway-specific source and destination augmented addresses. A unique OpenVPN Augmented Address (OAA) may be created and assigned to each device on a network such as a mesh-linked system. This OAA may form part of a packet shim created with routing path information for both the source and the destination resources. Once created, the shim may be inserted into a packet header for transmission. Once the initial packet is transmitted, each hop creates its own resources for managing transmission of subsequent packets in this session. The packet shim operates to establish a communications session on layer 4 (Transport) between the requestor and the target resource which is intermediate-device agnostic.
US11588723B2 Return source relationship management system, method, device, and server, and storage medium
The embodiment of the present disclosure provides a back-to-source relationship management system, method, apparatus, server and storage medium. The back-to-source relationship management system comprises a back-to-source relationship management server, which is configured for obtaining a target domain name corresponding to a target CDN node back-to-source relationship to be adjusted and adjustment information; using the adjustment information to adjust the target CDN node back-to-source relationship to obtain the adjusted target CDN node back-to-source relationship; synchronizing the target domain name and the adjusted target CDN node back-to-source relationship to a cache management server; the cache management server is configured for receiving the target domain name and the adjusted target CDN node back-to-source relationship; using the adjusted target CDN node back-to-source relationship to update the CDN node back-to-source relationship corresponding to the target domain name and obtain a new CDN node back-to-source relationship.
US11588719B2 Adaptive time slot allocation to reduce latency and power consumption in a time slotted channel hopping wireless communication network
Excessive latencies and power consumption are avoided when a large number of leaf nodes (LNs) contend simultaneously to join a time slotted channel hopping wireless communication network having a root node (RN) interfaced to LNs by one or more intermediate nodes (INs). A first plurality of shared transmit/receive slots (STRSs) is allocated for at least one IN, and a second plurality of STRSs is advertised for use by contending LNs, where the first plurality is larger than the second plurality. When a LN joins, its STRSs are re-defined such that most become shared transmit-only slots (STOSs) and no STRSs remain. The numbers of STRSs allocated to INs may vary inversely with their hop counts from the RN. One or more STOSs may be added for each of one or more INs in response to a predetermined network condition.
US11588718B2 System and method for monitoring network performance
A system and method for monitoring one or more Mobility Management Entities (MMEs) with a plurality of scalable Virtual Machines (VM)/probes arranged in a cluster format. A ciphered packet is received from a MME at a smart cluster device/probe whereby data is aggregated from the individual clustered VMs/probes for distribution to a monitoring device. The smart cluster device/probe is preferably configured to decipher the ciphered packet received from the MME and extract metadata from the deciphered packet to identify subscriber information for the received packet. The deciphered packet is then distributed to one of the plurality of clustered probes to balance the load amongst the plurality of clustered probes. The balancing of loads is based upon prescribed load balancing criteria such that each packet received for an identified subscriber is sent to a same probe such that load balancing is performed on a per subscriber basis and/or with other state-based criteria. KPI session related data associated with a subscriber is generated in a clustered probe that receives the distributed packet from the smart cluster device/probe. Subscriber related data from each clustered probe is then aggregated with at least one monitoring device operably coupled to the clustered probes such that a user of the monitoring device is provided with the perception that the monitoring device is coupled to a single probe.
US11588716B2 Adaptive storage processing for storage-as-a-service
Adaptive storage processing for storage-as-a-service, including detecting, by a cloud-based monitoring system, a storage system state for a storage system by monitoring the storage system in real-time remotely via a network; selecting, by the cloud-based monitoring system based on the storage system state, an entry in a tunables repository, wherein the entry in the tunables repository comprises a tunable parameter for the storage system state; accessing, by the cloud-based monitoring system via the network, a gateway for the storage system; and modifying, by the cloud-based monitoring system via the gateway, the tunable on the storage system based on the tunable parameter for the storage system state.
US11588715B1 Analysis of system conditions from endpoint status information
A system includes Session-Initiation-Protocol (SIP) servers that provide services for a respective set of endpoints. A monitor server can receive connectivity status of the respective set of endpoints based on registration status provided by the endpoints to the SIP servers. Based upon the received connectivity status, endpoints having connectivity problems are parsed into one or more subgroups. Potential problem sources are identified for the connectivity problems of the parsed endpoints. For each of the subgroups, the monitor server determines whether the subgroup exceeds a corresponding trigger threshold. In response a corresponding trigger threshold being exceeded, an action profile specifying an entity is accessed. A notification is transmitted to the entity.
US11588712B2 Systems including interfaces for communication of run-time configuration information
Examples of services described herein expose an application programming interface (API) which may return the run-time configuration information. In this manner, software external to the service (e.g., an orchestrator) may query the service to determine the run-time configuration information, then provide both the initial configuration information known to the external software and the run-time configuration information to an Internet-facing gateway. Examples described herein may accordingly avoid or reduce instances of an upgrade dependency. When the service is upgraded, the run-time configuration information may be obtained by calling the API without a need to also upgrade the software external to the service.
US11588710B2 Intelligent prioritized mobility of low-latency applications
A radio access network (RAN) node can receive, from a user equipment (UE), a request to establish a session associated with a low-latency service level agreement (SLA). The session can be mapped to a radio bearer associated with a network slice configured to support the low-latency SLA, wherein the network slice can include a RAN portion and a core network portion that are co-located at a RAN edge to support the low-latency SLA. The RAN node can provide information related to the radio bearer to a distributed unit (DU) associated with the RAN portion of the network slice and route traffic associated with the session through the network slice configured to support the low-latency SLA via the radio bearer mapped to the session. As such, the session can have a context maintained in the RAN portion and the core network portion of the network slice.
US11588701B2 Method and system for determining network slice topology, and device
A method includes obtaining, by a management device, sub-interface information that includes a correspondence between an identifier of a first sub-interface of a first device and a first network slice identifier, a correspondence between an identifier of a second sub-interface of a second device and a second network slice identifier, and information indicating that the first sub-interface is directly connected to the second sub-interface, and determining, by the management device, a network slice topology based on the obtained sub-interface information.
US11588694B1 Low-overhead real-time configuration drift detection
A management controller may monitor an information handling system to detect an event associated with a change to a configuration setting by subscribing with an internal event bus to receive the event associated with the change in the configuration setting, and evaluate whether there is a discrepancy between a current configuration setting of the information handling system and a baseline configuration setting. If a configuration drift exists based on the discrepancy, then the configuration drift may be sent to a management console.
US11588692B2 System and method for providing an intelligent ephemeral distributed service model for server group provisioning
A system for distributing firmware, comprising a group controller operating on a processor and configured to perform an algorithmic process of sending an update task with a download host to one of two or more group members. A group member operating on a processor and configured to perform an algorithmic process of receiving the update task with the download host and to request a payload file from the download host.
US11588689B1 Migrating software defined network
Some embodiments provide a method of migrating a first software defined (SD) network managed by a first network manager to a second SD network managed by a second network manager. The method of some embodiments is performed by a third network manager that provides an interface that allows a set of users to specify and review logical network components, which the first and second network managers can then respectively deploy in the first and second SD networks. The third network manager in some embodiments identifies for a migration manager a first group of two or more logical network components that the third network manager previously specified for the first network manager to deploy in the first SD network. The migration manager then uses this information to correctly convert the first group of logical network components to a second group of two or more logical components in an appropriate manner that will allow the third network manager to manage the second group of logical network components that is implemented in the second SD network.
US11588686B2 Dynamic port configuration for network routers
A small form-factor pluggable (SFP) transceiver is detected to be plugged into an SFP port of the network router following a bootup of the network router. Information on one or more device features of the SFP transceiver is obtained from the SFP transceiver plugged into the SFP port of the network router. Subsequently, a port configuration policy that corresponds to the one or more device features of the SFP transceiver and one or more router parameters of the network router is applied to the SFP port of the network router.
US11588679B2 System and method of establishing seamless remote access virtual private network connections
A system and a method of establishing seamless remote access VPN connections are described. For establishment of a VPN connection for a user device, a cluster leader of a cluster of controllers identifies an active controller and a standby controller, based on network load of each controller of the cluster of controllers. An active VPN connection is established between the user device and the active controller and a standby VPN connection is established between the user device and the standby controller. The standby VPN connection is utilized in place of the active VPN connection during failover of the active controller. Because information of an active session is regularly shared by the active controller to the standby controller, the standby controller can seamlessly resume the active session during failover of the active controller.
US11588676B2 Method and system for detecting errors in local area network
Novel tools and techniques are provided for implementing error detection in a network, and, more particularly, to methods, systems, and apparatuses for implementing error and/or fault detection in a network and/or media stream and providing options to address the error and/or fault in the network and/or media stream. In various embodiments, a computer might detect an error in a first network and send a notification indicating that the error has occurred. The notification might contain one or more options to address the error in the first network. The computer, a user device, a service provider device, or a content provider device might receive and display the notification containing the one or more options. The computer, the user device, the service provider device, or the content provider device might then select at least one of the one or more options to address the error in the first network.
US11588673B2 Techniques for transmitting information related to a PPDU format in wireless local area network system
According to various embodiments, a receiving station (STA) may receive a physical layer protocol data unit (PPDU). The PPDU may include a first signal field and a second signal field. The first signal field may include 3-bit information. The receiving STA may determine whether the PPDU is related to single user (SU) transmission or multiple user (MU) transmission, whether the PPDU is related to orthogonal frequency division multiple access (OFDMA), whether the PPDU is related to multi-user multiple input multiple output (MU-MIMO), and whether the PPDU is related to a trigger-based (TB) PPDU, based on the 3-bit information.
US11588670B2 Method and device for indicating numerology
Embodiments of the disclosure provide a method and device for indicating numerology. The method comprises: determining numerology information of a carrier, the numerology information indicating numerologies of one or more basic units for the carrier; and transmitting the numerology information to a terminal device to enable reception based on the numerology information.
US11588658B2 System and method for providing network support services and premises gateway support infrastructure
A service management system communicates via wide area network with gateway devices located at respective user premises. The service management system remotely manages delivery of application services, which can be voice controlled, by a gateway, e.g. by selectively activating/deactivating service logic modules in the gateway. The service management system also may selectively provide secure communications and exchange of information among gateway devices and among associated endpoint devices. An exemplary service management system includes a router connected to the network and one or more computer platforms, for implementing management functions. Examples of the functions include a connection manager for controlling system communications with the gateway devices, an authentication manager for authenticating each gateway device and controlling the connection manager and a subscription manager for managing applications services and/or features offered by the gateway devices. A service manager, controlled by the subscription manager, distributes service specific configuration data to authenticated gateway devices.
US11588653B2 Blockchain-based smart contract call methods and apparatus, and electronic device
This specification describes techniques for blockchain-based smart contract call. One example method includes receiving a target transaction initiated by a client device of a blockchain, wherein the target transaction is preconfigured for a call rule used to initiate a call for a smart contract; obtaining the call rule preconfigured for the target transaction; executing the call rule to initiate a call for a target smart contract; and providing a call result to the client device when the call for the target smart contract is completed.
US11588652B2 Systems and methods for improving smart city and smart region architectures
Improved systems, methods, and architectures to enhance decision making in Smart Cities and Smart Regions. A system includes an index structure including a first hierarchical data structure including a first hierarchical score based on a plurality of first-level elements, each of the plurality of first-level elements having a respective weighting, and a second hierarchical data structure including a plurality of second hierarchical scores based on a plurality of second-level elements, each of the plurality of second-level elements having a respective weighting, such that the first hierarchical score is based on the plurality of second hierarchical scores through an index factor; and a computer-implemented regional monitor engine to manage local access to a plurality of external data sources to coordinate writes to the index structure.
US11588649B2 Methods and systems for PKI-based authentication
Methods, systems, and devices are provided for authenticating API messages using PKI-based authentication techniques. A client system can generate a private/public key pair associated with the client system and sign an API message using the private key of the private/public key pair and a PKI-based cryptographic algorithm, before sending the signed API message to a server system. The server system (e.g., operated by a service provider) can authenticate the incoming signed API message using a proxy authenticator located in less trusted zone (e.g., a perimeter network) of the server system. In particular, the proxy authenticator can be configured to verify the signature of the signed API message using the public key corresponding to the private key and the same cryptographic algorithm. The authenticated API message can then be forwarded to a more trusted zone (e.g., an internal network) of the server system for further processing.
US11588645B1 Systems and methods for compromise resilient and compact authentication for digital forensics
A new compromise-resilient and compact cryptographic tool is provided that ensures a breach-resilient authentication and integrity of system measurements in computer systems. The described methods are forward-secure digital signatures with signature and partial public key aggregation capabilities. The methods reduce the total space overhead of signature and public key storage. The methods offer a high space efficiency for systems who has relatively low state transitions, wherein the same message is continuously signed and then followed by different messages.
US11588642B2 Method and apparatus for sharing and acquiring information
Embodiments of the present application disclose a method and an apparatus for sharing and acquiring information. A specific implementation of the method for sharing information includes: receiving access information of a wireless access point shared by a first terminal device, where the access information of the wireless access point is included in a connection record generated by the first terminal device; and storing the access information of the wireless access point, and synchronizing the access information of the wireless access point with other nodes of the blockchain. In this implementation, the blockchain stores the access information of the wireless access point, and all nodes of the blockchain store the access information of the wireless access point, thereby improving stability of the stored access information of the wireless access point, and better providing a wireless access service for users.
US11588640B2 Method for performing a preprocessing computation during a proactive MPC process
The subject matter discloses computer-implemented method performed during a multi-party computation (MPC) process performed between multiple parties, said method comprising, the multiple parties executing a pre-processing phase and obtain values of correlated random variables to be used in an MPC process, the parties periodically verifying the correctness of the correlated random variables by exchanging information between the multiple parties, refreshing the values of the correlated random variables in each of the multiple parties, wherein no party of the multiple parties has access to values of the correlated random variables stored in another party of the multiple parties during the verifying and refreshing processes, the multiple parties using the correlated random variables during the MPC process after verifying a correctness of the correlated random variables.
US11588635B2 Strong resource identity in a cloud hosted system
Aspects of the present disclosure relate to systems and methods for providing strong resource identification. When a resource is created, saved, or re-based, a cryptographic key pair may be generated and associated with the resource. A public key of the cryptographic key pair may be used as a unique identifier. Information about the resource, such as the name of the resource and its actual location may be stored in an index based upon the resource's public key. Sharing the resource with other devices may comprise sending the resource's key, as opposed to information about the resource's actual location, to one or more recipient device.
US11588628B1 Space-and-wave-division de-multiplexing of a quantum key distribution and classical channels into a single receiving optical fiber
A space and wave division multiplexing and demultiplexing system and method for quantum key distribution (QKD) using free space laser communications. The system operates to transmit a quantum channel, including a key of QKD, included in a combined laser transmission with a classical channel, including an encrypted message of QKD. The laser transmission can be transmitted through free space to a lens, wherein it is diffracted into two separate diffraction patterns and captured by a double clad optical receiver fiber having an inner core and a concentric outer core. The diffraction pattern of the classical channel is captured by the outer core, while the diffraction pattern of the quantum channel is captured by the inner core, thus allowing separate treatment of each channel.
US11588624B2 Technologies for load balancing a network
Technologies for load balancing a storage network include a system. The system includes circuitry to adjust routing rules in a network interface controller to deliver a packet from one of multiple uplinks to one of any physical functions, circuitry to remap, in response to a failure of a switch, a port from one physical function to another physical function, and circuitry to communicate control data between a software defined network controller and one or more agents in one or more host endpoints with a hierarchical distributed hashing table.
US11588621B2 Efficient private vertical federated learning
Systems and techniques that facilitate universal and efficient privacy-preserving vertical federated learning are provided. In various embodiments, a key distribution component can distribute respective feature-dimension public keys and respective sample-dimension public keys to respective participants in a vertical federated learning framework governed by a coordinator, wherein the respective participants can send to the coordinator respective local model updates encrypted by the respective feature-dimension public keys and respective local datasets encrypted by the respective sample-dimension public keys. In various embodiments, an inference prevention component can verify a participant-related weight vector generated by the coordinator, based on which the key distribution component can distribute to the coordinator a functional feature-dimension secret key that can aggregate the encrypted respective local model updates into a sample-related weight vector. In various embodiments, the inference prevention component can verify the sample-related weight vector, based on which the key distribution component can distribute to the coordinator a functional sample-dimension secret key that can aggregate the encrypted respective local datasets into an update value for a global model.
US11588619B2 Generating customized smart contracts
Embodiments relate to a smart contract platform that facilitates creation, execution and verification of customized smart contracts. The smart contract platform enables design of customized smart contracts for execution and verification on a distributed ledger network, including smart contracts with logic for querying and fetching sensitive transactional data from participant nodes. A distributed ledger can store tokens indicating successful completion of one or more transaction elements without making some or all the associated transactional data visible. A smart contract form viewer can be used to view and interact with a smart contract form linked to the smart contract. The smart contract form can present contractual provisions in natural language, present transactional data to an authorized user, and accept entry or validation of designated transaction data. As such, the smart contracts described herein provide visibility and verifiability without the lost privacy and lack of customizability that exist with present solutions.
US11588618B2 Transaction processing method, apparatus, device and system for multi-chain system
Embodiments of the present disclosure provide a transaction processing method, apparatus, device and system for a multi-chain system. The multi-chain system includes a mainchain and at least one slave-chain, a multi-chain network of the multi-chain system includes a plurality of nodes, and each node is deployed with one or more of the mainchain and the slave-chains. The method is executed by a slave-chain node deployed with the slave-chain. The method includes: generating slave-chain blocks based on a slave-chain consensus mechanism, and storing the slave-chain blocks on the slave-chain; and in response to determining that a confirmation condition of the mainchain is met, transmitting a slave-chain block to be confirmed on the slave-chain to nodes of the mainchain, to request consensus nodes of the mainchain to confirm the slave-chain block to be confirmed, and storing confirmation information of the slave-chain block to be confirmed on the mainchain.
US11588617B2 Validating confidential data using homomorphic computations
The disclosed exemplary embodiments include computer-implemented apparatuses and methods that validate confidential data based privacy-preserving homomorphic computations involving encrypted data. For example, an apparatus may receive, from a first computing system, encrypted data that includes a first encrypted value representative of at least one of first account data or an element of cryptographic data. Based on the first encrypted value and on second encrypted values, the apparatus may generate encrypted residual values representative of second account data associated with one or more reference accounts, and the apparatus may request and receive a decrypted residual value associated with each of the encrypted residual values from a second computing system. The apparatus may transmit the decrypted residual values to the first computing system, which may validate the first account data based on at least the decrypted residual values and perform operations associated with the validated first account data.
US11588613B1 Systems and methods for synchronization of photons over quantum channels with co-propagating clock pulses
Systems and methods for operating a quantum network system. The methods comprise, by a network node: generating optical clock pulses and photons using the optical clock pulses; generating a combined signal by combining the optical clock pulses with at least some of the photons such that a consistent temporal offset exits between the optical clock pulses and the first photons and/or a wave function of each photon at least partially overlaps an envelope of a respective one of the optical clock pulses; and transmitting the combined signal over a first quantum channel in which the optical clock pulses co-propagate with the photons.
US11588607B2 User equipment-assisted information for full-duplex user equipment
The apparatus, in some aspects may be a UE configured to communicate, in a FD mode, with at least one base station. The UE may further be configured to determine, when communicating with the at least one base station in the FD mode, FD UE assistance information including one or more FD UE assistance parameters. The UE may also be configured to transmit, to the at least one base station, an indication of the determined FD UE assistance information including the one or more FD UE assistance parameters. In some aspects, the apparatus may be a base station configured to communicate with at least one UE operating in a FD mode. The base station may further be configured to receive, from the at least one UE, an indication of FD UE assistance information including one or more FD UE assistance parameters.
US11588605B2 Resource scheduling method and apparatus, data transmission method and apparatus and communication system
A resource scheduling method and apparatus, data transmission method and apparatus and communication system. The resource scheduling apparatus includes: a first receiving unit configured to, on a first BWP, receive downlink control information carried by a first control resource set; and a determining unit configured to, when a size of the downlink control information is determined by a second BWP, determine that a first starting position that is frequency domain scheduled on the first BWP is a second starting position of a frequency domain range of the first control resource set. Hence, more terminal equipments may be made to receive and share common messages and system resource overhead may be saved. And furthermore, it may be used to receive the dedicated message from the terminal equipment, so as to ensure robustness when the BWP is switched, thereby solving an existing problem.
US11588599B2 Enhancements on random access for NR-unlicensed
A network device (e.g., a user equipment (UE), or a new radio NB (gNB)) can process or generate a configuration of a physical random access channel (PRACH) over physical resource blocks (PRBs) that are interlaced in an unlicensed band in an NR unlicensed (NR-U) communication. The PRBs in the PRACH can be based on an occupied channel bandwidth (OCB) of the unlicensed band in the NR-U communication. A random access channel transmission in the PRACH can then be generated by interlacing the PRBs defining the PRACH.
US11588598B2 System for transmitting reference signal with information on state of channel
A reference signal (RS) transmission system to transmit a channel state information (CSI) RS for extraction of CSI to a relay and a macro terminal is disclosed. The base station transmits information on a sub frame containing the CSI RS to the relay or the macro terminal. The macro terminal and the relay receive the CSI RS using the information on the sub frame. The macro terminal and the relay extract the CSI using the CSI RS and transmit the extracted CSI to the base station.
US11588597B2 Determining a density of a phase tracking reference signal
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit, to a base station, a report that indicates a phase tracking reference signal (PTRS) density for a PTRS. The UE may receive, from the base station via a downlink shared channel, the PTRS in accordance with the PTRS density based at least in part on the report. Numerous other aspects are described.
US11588590B2 Adaptive payload extraction and retransmission in wireless data communications with error aggregations
Provided are systems and methods for adaptive payload extraction and retransmission in wireless data communications. An example method commences with transmitting a network packet to a receiver via a communication channel. The method further includes receiving a further network packet including a further payload. The method continues with determining, based on the payload and the further payload, an error vector. The method includes generating, based on the error vector, a plurality of indices. An index of the plurality of indices corresponds to a portion of a plurality of non-overlapping portions of the payload. The method further continues with selecting, based on the error vector, at least one index from the plurality of indices. The method includes sending, to the receiver via the communication channel, a further network packet. The further network packet includes the selected index and a portion of the payload corresponding to the selected index.
US11588589B2 Method for performing sidelink communication on basis of polar code and device therefor
Disclosed are a method for transmitting a sidelink signal encoded on the basis of a polar code, by a terminal in a wireless communication system supporting a sidelink according to various embodiments, and a device therefor. Disclosed are a method for transmitting a sidelink signal encoded on the basis of a polar code and a device therefor, the method comprising the steps of: mapping, to bit indices of a polar code, information bits of input information including information on a plurality of fields; encoding the mapped information bits on the basis of the polar code; and transmitting a sidelink signal including the encoded information bits, wherein information bits corresponding to a particular field among the plurality of fields are mapped to a bit index lower than a bit index to which the information bits corresponding to the remaining fields are mapped.
US11588585B2 Methods and apparatus for transmitting information on two PDSCHs
This application provides an information transmission method and apparatus. The solution includes: determining, by a terminal device, at least two transport blocks; and decoding, by the terminal device, first information transmitted by using the at least two transport blocks, where the first information includes at least one of control information and data. This solution is applicable to a scenario in which same information or information with a same information source is transmitted by using a plurality of transport blocks.
US11588584B2 Short latency fast retransmission triggering
The invention relates to an improved transmission protocol for uplink data packet transmission in a communication system. A receiver of a user equipment receives a Fast Retransmission Indicator, referred to as FRI. The FRI indicates whether or not a base station requests a retransmission of a previously transmitted data packet. A transmitter of the user equipment retransmits the data packet using the same redundancy version as already used for the previous transmission of the data packet.
US11588583B2 Method and device for configuring HARQ feedback between terminal nodes
The embodiments of the present application relate to a method and device for configuring hybrid automatic repeat request (HARQ) feedback between terminal nodes. The method of the embodiments of the present application includes: a base station configuring a HARQ feedback enable rule of a sidelink interface for a terminal; indicating to said terminal the HARQ feedback enable rule of the configured sidelink interface, to enable the terminal to determine, according to the HARQ feedback enable rule of the configured sidelink interface, to enable or not enable HARQ feedback on the sidelink interface.
US11588579B2 Interleaving based on code block groups for a wireless communication system
An apparatus for wireless communication includes a transmitter and a receiver. The receiver is configured to receive a first code block (CB) that is associated with a code block group (CBG) and that is included in a transport block (TB). The receiver is further configured to receive a second CB that is associated with the CBG and that is included in the TB. The first CB is distinct from the second CB. The second CB includes at least a first bit that is associated with the first CB.
US11588578B2 System and method for encoding data using punctured low-density parity-check codes
A method for encoding or transmitting. In some embodiments, the method includes forming a set of one or more unpunctured codewords by coding a plurality of payload bits at a mother code rate, removing a plurality of punctured bits from the set of one or more unpunctured codewords to form a set of one or more punctured codewords, and transmitting the set of one or more punctured codewords. In some embodiments, the number of punctured bits exceeds a first threshold, or the number of punctured bits exceeds a second threshold.
US11588575B2 Method and device for processing interference, storage medium and electronic device
Disclosed are a method and apparatus for processing interference, a storage medium and an electronic device. The method includes: generating a first reference signal, and sending the first reference signal according to a first parameter set.
US11588573B2 System and method for terahertz polarization-division multiplexing
A THz waveguide is described, comprising four conductive wires separated by an air gap, the THz waveguide allowing low-loss and dispersion-free propagation of a THz signal. The system for terahertz polarization-division multiplexing comprises at least two THz sources, a THz waveguide and a THz receiver, wherein said THz waveguide comprises four conductive wires separated by an air gap; THz pulses from the THz sources being coupled into the THz waveguide; the THz waveguide transmitting the THz pulses independently, the THz waveguide operating as a broadband polarization-division multiplexer. The method for terahertz polarization-division multiplexing, comprising multiplexing THz pulses from terahertz sources in free-space, coupling resulting multiplexed THz pulses into a THz waveguide comprising four conductive wires separated by an air gap; and demultiplexing the multiplexed THz pulses after propagation in the waveguide.
US11588572B2 Wavelength converter and optical transmission device that includes wavelength converter
An optical transmission device includes a first wavelength multiplexer, a second wavelength multiplexer, a wavelength converter and a third wavelength multiplexer. The first wavelength multiplexer multiplexes optical signals in a first wavelength band to generate first wavelength multiplexed light. The second wavelength multiplexer multiplexes optical signals in the first wavelength band to generate second wavelength multiplexed light in a first polarization. The wavelength converter converts a wavelength of the second wavelength multiplexed light from the first wavelength band into a second wavelength band by a cross phase modulation among the second wavelength multiplexed light, first pump light in a second polarization and second pump light in the second polarization. The second polarization is orthogonal to the first polarization. The third wavelength multiplexer multiplexes the second wavelength multiplexed light whose wavelength has been converted by the wavelength converter and the first wavelength multiplexed light.
US11588571B2 Separator modules for terminal bodies
Signal distribution arrangements are assembled by selecting a terminal body and a tap module combination that provides the desired signal strength at the intended position in an optical network. Each terminal body includes an input connection interface, a pass-through connection interface, a module connection interface, and multiple drop connection interfaces. Each tap module houses an optical tap having an asymmetric split ratio. Most of the optical signal power received at the signal distribution arrangement passes to the pass-through connection interface. A portion of the optical signal power is routed to the drop connection interfaces (e.g., via a symmetrical optical power splitter). The tap module and terminal body combination are selected based on the desired number of drop connection interfaces and to balance the asymmetric split ratio with the symmetric split ratio.
US11588565B2 Network system that facilitates device recognition in a high-frequency communication environment
System recognition is performed on devices connected to an identical system without recognizing a device of a different system as a device of the identical system in high-frequency communication. In a device network system, in a state in which a first device group is set in advance as a physically connectable system or in a state in which the first device group is recognized as a physically connectable system, in a case where the first device group or a second device detects occurrence of a state in which the second device outside the system is recognized as belonging to the system, the first device group or the second device causes the second device to leave the system. As a result, a network can be normally maintained even in high-frequency communication.
US11588563B2 Computing and reporting a relevance metric for a positioning beacon beam
Disclosed are techniques for computing and reporting a relevance metric for a positioning beacon beam. In an aspect, a first node receives, from a second node, a plurality of beams, determines a relevance metric for each of one or more beams of interest from the plurality of beams, wherein the relevance metric for each beam of the one or more beams of interest is based on a time of arrival at the first node of the beam and a signal strength of the beam, and sends, to the second node, a report identifying each of the one or more beams of interest and including the relevance metric for each of the one or more beams of interest.
US11588562B2 Systems, methods, and devices for electronic spectrum management
Methods for tracking a signal origin by a spectrum analysis and management device are disclosed. Signal characteristics of other known emitters are used for obtaining a position of an emitter of a signal of interest. In one embodiment, frequency difference of arrival technique is implemented. In another embodiment, time difference of arrival technique is implemented.
US11588554B2 Free space optical communication system and method
A free-space optical communication method is provided. The method includes generating, at a transmitter of a satellite, an optical frequency comb and a pump signal, modulating the optical frequency comb to generate a data signal and an idler signal that is a phase conjugate of the data signal, attenuating the pump signal, transmitting over free-space, from the satellite, a communication signal having the data signal, the idler signal and the pump signal, receiving from the satellite, at a receiver, the transmitted communication signal having the data signal, the idler signal, and the attenuated pump signal, amplifying, at a phase-sensitive amplifier, the data signal and the idler signal, and demodulating the data signal and the idler signal to extract data.
US11588547B2 Seam abstraction in communications networks
A method for routing data in a network includes receiving, by a first network node, data to be routed using a first layer protocol to a second network node where the first network node is intermittently connected to the second network node over a link spanning a portion of the network. The first network node determines that the link fails to meet a communications criteria and encapsulates the data using a second layer protocol to produce encapsulated data. The second layer protocol is transparent to the first layer protocol and the encapsulated data includes connectivity instructions to route the encapsulated data to the second network node via a third network node. The second network node and the third network node are in communication across the portion of the network and the first network node is able to transmit the encapsulated data to the third network node.
US11588546B2 Mobile satellite modem for combined geostationary, medium and low earth orbit satellite operation
The present teachings include a method and computing apparatus for triggering synchronization of a satellite modem to a carrier frequency of a beam of a satellite, retrieving ephemeris information for the satellite and beam configuration information for the beam, calculating a velocity of the satellite per the ephemeris information, and adjusting the carrier frequency of the satellite modem when communicating via the beam to compensate for a doppler offset induced in the carrier frequency by the velocity. In the method, the satellite has a satellite type selected from a Geosynchronous Earth Orbit (GEO), Medium Earth Orbit (MEO) or Low Earth Orbit (LEO) type of satellite, and the satellite type is different than a satellite type of an immediately preceding synchronization.
US11588545B2 Broadband satellite terminal
A satellite system may have a constellation of communications satellites in orbits such as highly inclined eccentric geosynchronous orbits and low earth orbits. Satellite terminals may be used to communicate with the satellite constellation. The satellite terminals may have control circuitry that dynamically adjusts phased antenna array circuitry to steer antenna beams towards one or more satellites. Multiple antenna beams may be steered in different directions simultaneously. A satellite terminal may be used in simultaneously transmitting and receiving data from different respective satellites and may be used in transmitting and receiving satellite signals in multiple satellite bands. The satellite terminal may have an outdoor unit that is coupled to an indoor unit over a digital communications path. The outdoor unit may include the phased antenna array circuitry and transceiver and modem circuitry, whereas the indoor unit may cache media and serve as a firewall, router, and wireless access point.
US11588539B2 Coordination-free mmWave beam management with deep waveform learning
A system and method for beam management in a wireless network are provided. A learning module having a trained classification module processes received I/Q input samples to determine transmitted beam information of incoming RF transmissions. The learning module includes a beam inference engine to determine waveform characteristics of incoming RF transmissions, and an angle of arrival engine operative to determine an angle of arrival of the incoming RF transmissions on an antenna array. An incoming RF transmission and angle of arrival are selected based on the determined waveforms for beam management operations.
US11588536B2 Systems and methods for beamforming training in wireless local area networks
Presently disclosed are systems and methods for beamforming training in WLANs. In various embodiments, there are unified MIMO beamforming training procedure, which includes a training period in which an initiator transmits multiple unified training frames for performing a transmit-beamforming training of the initiator and a receive-beamforming training of one or more responders; a feedback period in which each responder replies with a beamforming-feedback response; and an acknowledgement period during which the initiator transmits respective acknowledgement frames to the one or more responders from which responses were received. Rules for restricted random access in various slots of the feedback period may be implemented, to address response contention between multiple qualifying responders.
US11588535B2 Dynamic beam-switching latency for beam refinement procedures
Certain aspects of the present disclosure provide techniques for beam refinement procedures including dynamic signaling and/or selection of beam-switching latency for beam refinement procedures using inter- and/or intra-antenna module beam switching. A method by a base station (BS) includes configuring a user equipment (UE) with one or more reference signal (RS) resource sets. Each of the one or more RS resource sets is associated with a first or second type of beam refinement procedure. The BS receives an indication from the UE of at least a first latency and a second latency, longer than the first latency. The BS dynamically selects, for each RS transmission using one of the configured resource sets, the first or second latency. The BS sends the RS transmissions at the selected latency with respect to downlink control information (DCI) triggering the RS transmissions for the first or second type of beam refinement procedure.
US11588526B2 Heat dissipation for millimeter-wave devices with antenna switching
Described herein are systems, methods and devices for implementing a temperature-aware, multi-antenna scheduler that cools mmWave devices by preventing heat buildup via switching or distributing a data stream to other redundant antennas, allowing for dissipation of heat as well as providing reliable connectivity.
US11588525B2 Adaptive co-phasing for beamforming using co-phasing matrices for wireless communications
A network node, wireless device and methods for co-phasing for beamforming using co-phasing matrices for wireless communications are provided. In one example, a network node for co-phasing in beamforming for transmissions is provided. The network node includes processing circuitry including a processor and a memory where the memory contains instructions executable by the processor to configure the network node to: obtain co-phasing information associated with a wireless device, generate at least two co-phasing matrices based on the co-phasing information, and apply the at least two co-phasing matrices to at least two resource structures.
US11588522B2 Techniques for sparse code multiple access (SCMA) codebook design
The present disclosure describes a method, an apparatus, and a computer readable medium for a multilayer transmission in a wireless network. For example, the method may include generating a group of binary data bits for resources of each layer of a plurality of layers, mapping the group of binary data bits of each layer of the plurality of layers to respective code words in a signal constellation, combining the code words, and transmitting the combined code word to receiver in the wireless network. As such, the multilayer transmission in a wireless network is achieved.
US11588517B2 Signal correction for serial interfaces
Signal correction circuitry is described that improves the integrity of data transmitted over a serial data interface without interrupting the communication between the connected devices. The signal correction circuitry includes edge correction circuitry that speeds up the rising and falling edges of the data signal(s). The signal correction circuitry also includes DC compensation circuitry that boosts the level(s) of the data signal(s).
US11588514B2 System for bidirectional transmission of signals in a plastic waveguide
A system for bidirectional transmission in a plastic waveguide of a plurality of signals, between a first transceiver device and a second transceiver device, the plurality of signals comprising a payload carrier signal and one or more reference signals generated by one or more local oscillators on different frequencies, the first transceiver device being a power radio transceiver device, the second transceiver device being a multisignal transceiver device with no energy consumption which comprises a passive transmitter and a passive receiver.
US11588513B2 Integrated RF front end with stacked transistor switch
A monolithic integrated circuit (IC), and method of manufacturing same, that includes all RF front end or transceiver elements for a portable communication device, including a power amplifier (PA), a matching, coupling and filtering network, and an antenna switch to couple the conditioned PA signal to an antenna. An output signal sensor senses at least a voltage amplitude of the signal switched by the antenna switch, and signals a PA control circuit to limit PA output power in response to excessive values of sensed output. Stacks of multiple FETs in series to operate as a switching device may be used for implementation of the RF front end, and the method and apparatus of such stacks are claimed as subcombinations. An iClass PA architecture is described that dissipatively terminates unwanted harmonics of the PA output signal. A preferred embodiment of the RF transceiver IC includes two distinct PA circuits, two distinct receive signal amplifier circuits, and a four-way antenna switch to selectably couple a single antenna connection to any one of the four circuits.
US11588511B2 Plug-in radio module for automation engineering
Disclosed is a plug-in radio module for automation engineering for wireless data transmission, having at least a wired interface for connecting to a corresponding wired field device interface of a field device and radio module electronics having a radio antenna, wherein the radio module electronics are configured to use the wired interfaces to query at least one current value of the field device and to use the current value to adapt a paging interval and/or a radio data width for the wireless data transmission as appropriate, so that the radio module electronics perform an adapted-power mode of operation in which the wireless data transmission is matched to the power currently made available to the field device.
US11588508B2 Monitoring cell phone usage in correctional facilities
Disclose herein are embodiments related to a system made up of a lighting fixture and a radio frequency detection device. The lighting fixture having a secure housing and at least one power connection, and the radio frequency detection device being designed to operatively connect to the at least one power connection device within the lighting fixture.
US11588507B2 Radio frequency front-end
A radio frequency front-end is disclosed having a first power amplifier (PA) having a first PA input and a first PA output, a second PA having a second PA input and a second PA output, and a low-noise amplifier (LNA) having an LNA output connected to a receive output terminal and an LNA input. An input 90° hybrid coupler has a first port input connected to a transmit terminal, a second port input connected to a fixed voltage node through an isolation impedance, a third port output connected to the first amplifier input and a fourth port output connected to the second amplifier input. An output 90° hybrid coupler has a first port output connected to a common terminal, a second port output connected to the LNA input, a third port input connected to the second PA output, and a fourth port input connected to the first PA output.
US11588500B2 Detecting actuations of buttons of a control device
A load control device may be used to control and deliver power to an electrical load. The load control device may comprise a control circuit for controlling the power delivered to the electrical load. The load control device may comprise multiple actuators, where each of the actuators is connected between a terminal of the control circuit and a current regulating device. The number of the actuators may be greater than the number of the terminals. The control circuit may measure signals at the terminals and determine a state configuration for the actuators based on the measured signals. The control circuit may compare the state configuration to a predetermined dataset to detect a ghosting condition.
US11588492B2 Analog to digital converter and a method for analog to digital conversion
An analog to digital converter (ADC) receives first and second analog input signals. A charge sampling demultiplexer includes multiple capacitors that sample the first and second analog input signals, and generates multiple input samples representative of charge stored on the capacitors. A plurality of sub-ADCs each include first and second charge-to-time converters, which receive from the charge sampling demultiplexer respective first and second input sample of the first and second analog input signals and output respective first and second pulse-width-modulated (PWM) signals responsively to the respective first and second input samples. Temporal processing circuitry processes the PWM signals to generate a digital value indicative of a temporal difference between the first and second PWM signals. Output reordering circuitry receives the digital value from each of the sub-ADCs and generates a digital output indicative of a difference between the first and second analog input signals.
US11588491B2 Signal generation circuit and method, and digit-to-time conversion circuit and method
A signal generating electric circuit, a signal generating method, a digit-to-time converting electric circuit and a digit-to-time converting method. The signal generating electric circuit includes: a first generating electric circuit configured for, based on a first frequency control word and a reference time unit, generating a periodic first output signal; and a second generating electric circuit configured for, based on a second frequency control word and the reference time unit, generating a periodic second output signal. The first frequency control word includes a first integer part and a first fractional part, the second frequency control word includes a second integer part and a second fractional part, the first integer part is equal to the second integer part, the first fractional part is not zero, the second fractional part is zero, and a period of the first output signal and a period of the second output signal are not equal.
US11588488B1 Dual-loop phase-locking circuit
A dual-loop phase-locking circuit combines a conventional phase-frequency-detector (PFD) and frequency-divider based first loop to lock an output signal frequency to a multiple of a reference signal frequency within a first loop bandwidth BW1 with a second loop to simultaneously lock the output signal phase to a second signal independently locked to the same multiple of the reference signal. The second loop integrates the phase error between the output signal and the second signal, and applies an offset at the PFD output in the first loop to reduce the first loop phase errors within a second loop bandwidth BW2 (
US11588485B2 Power domain change circuit and operating method thereof
A power domain change circuit includes an input circuit and an output circuit. The input circuit is suitable for operating in a first power domain and generating first and second intermediate processing signals. The output circuit is suitable for operating in a second power domain and generating a final output signal by averaging and combining transition jitter components of the first and second intermediate processing signals.
US11588482B1 Multiplexing sample-and-hold circuit
A signal processing circuit. In some embodiments, the signal processing circuit includes a first sample and hold circuit and a second sample and hold circuit. The first sample and hold circuit may include: a hold capacitor; an input switch connected between a common input node and the hold capacitor; a signal path amplifier having an input connected to the hold capacitor; and an output switch connected between an output of the signal path amplifier and a common output node. An input of a voltage feedback amplifier may be connected to the hold capacitor, and an output of the voltage feedback amplifier may be operatively coupled to an internal node of the input switch.
US11588479B2 Spread spectrum clock generator and spread spectrum clock generation method, pulse pattern generator and pulse pattern generation method, and error rate measuring device and error rate measuring method
Provided are a spread spectrum clock generator and a spread spectrum clock generation method, a pulse pattern generator and a pulse pattern generation method, and an error rate measuring device and an error rate measuring method capable of improving usability when adjusting a waveform of a modulation signal during training. A setting screen 60 includes a 0-th frequency shift input unit 71 for arbitrarily setting a frequency shift of a waveform of a modulation signal in a plurality of time sections, a first frequency shift input unit 72, a second frequency shift input unit 73, a third frequency shift input unit 74, and a modulation selection unit 67 for switching a waveform pattern of the modulation signal from a first pattern to a second pattern.
US11588471B1 Sample-and-hold, loop-based schemes with damping control for saturation recovery in amplifiers
Examples of amplifiers and nth-order loop filters thereof are configured to enable fast and robust recovery from saturation, while limiting signal distortion at or near full power delivery across multiple process and temperature corners. An example nth-order loop filter comprises n series-coupled resistor-capacitor (RC) integrators. In an example, each of the second RC integrator to the (n−1)th RC integrator has a reset mechanism responsive to a reset signal output from a reset controller when an input signal overload condition is detected at the input. Upon detecting the overload condition, each of the third RC integrator to the (n−1)th RC integrator is hard reset, the nth RC integrator is not reset, and a controlled reset is performed on the second RC integrator to recover from saturation caused by the signal overload condition, while maintaining the output signal below the 1% total harmonic distortion (THD) level at or near full power delivery.
US11588467B2 Acoustic wave device, acoustic wave device package, multiplexer, radio-frequency front-end circuit, and communication device
An acoustic wave device includes a support substrate made of silicon, a piezoelectric body provided directly or indirectly on the support substrate, the piezoelectric body including a pair of main surfaces facing each other, and an interdigital transducer electrode provided directly or indirectly on at least one of the main surfaces of the piezoelectric body, a wave length that is determined by an electrode finger pitch of the interdigital transducer electrode being λ. An acoustic velocity VSi=(V1)1/2 of bulk waves that propagate in the support substrate, which is determined by V1 out of solutions V1, V2, V3 of x derived from the expression, Ax3+Bx2+Cx+D=0, is higher than or equal to about 5500 m/s.
US11588462B2 Acoustic wave device
An acoustic wave device includes a piezoelectric layer and an interdigital transducer disposed on the piezoelectric layer. The interdigital transducer primarily includes Al and includes an additive selected from a group consisting of Nd, Sc, and Ta, and a concentration of the additive in a region opposite to a piezoelectric-layer-side region of the interdigital transducer is higher than a concentration of the additive in the piezoelectric-layer-side region of the interdigital transducer.
US11588451B2 Amplifier for driving a capacitive load
It is disclosed an amplifier for driving a capacitive load, comprising an input terminal adapted to receive an input voltage signal, an output terminal adapted to drive the capacitive load, a linear amplification stage, switching amplification stage, a capacitor, a first switch and a measurement and control circuit. The measurement and control circuit is configured to: measure the value of the current generated at the output from the linear amplification stage and generate a driving voltage signal of the switching amplification stage; generate the first switching signal to open the first switch and generate an enabling signal to enable the operation of at least part of the switching amplification stage; generate the first switching signal to close the first switch and generate the enabling signal to disable the operation of the switching amplification stage; generate the first switching signal to open the first switch.
US11588450B2 Amplification circuit and communication device
Provided is an amplification circuit that includes: a low-noise amplifier that includes an FET as an amplification element and that amplifies a radio-frequency signal inputted to the gate of the FET; an input matching network that matches the input impedance of the low-noise amplifier; and a switch that is serially connected between ground and a node on a line connecting the input matching network and the gate of the FET to each other.
US11588449B2 Envelope tracking power amplifier apparatus
An envelope tracking (ET) power amplifier apparatus is provided. The ET power amplifier apparatus includes an amplifier circuit configured to amplify a radio frequency (RF) signal based on an ET voltage and a tracker circuit configured to generate the ET voltage based on an ET target voltage. The ET power amplifier apparatus also includes a control circuit. The control circuit is configured to dynamically determine a voltage standing wave ratio (VSWR) change at a voltage output relative to a nominal VSWR and cause an adjustment to the ET voltage. By dynamically determining the VSWR change and adjusting the ET voltage in response to the VSWR change, the amplifier circuit can operate under a required EVM threshold across all phase angles of the RF signal.
US11588447B2 Source switch split LNA design with thin cascodes and high supply voltage
A receiver front end capable of receiving and processing intraband non-contiguous carrier aggregate (CA) signals using multiple low noise amplifiers (LNAs). Cascode circuits, each having a “common source” configured input FET and a “common gate” configured output FET, serve as the LNAs. An amplifier-branch control switch, configured to withstand relatively high voltage differentials by means of a relatively thick gate oxide layer and coupled between a terminal of the output FET and a power supply, controls the ON and OFF state of each LNA while enabling use of a relatively thin gate oxide layer for the output FETs, thus improving LNA performance. Some embodiments may include a split cascode amplifier and/or a power amplifier.
US11588445B2 Method and system for process and temperature compensation in a transimpedance amplifier using a dual replica
The present disclosure provides for process and temperature compensation in a transimpedance amplifier (TIA) using a dual replica via monitoring an output of a first TIA (transimpedance amplifier) and a second TIA; configuring a first gain level of the first TIA based on a feedback resistance and a reference current applied at an input to the first TIA; configuring a second gain level of the second TIA and a third TIA based on a control voltage; and amplifying a received electrical current to generate an output voltage using the third TIA according to the second gain level. In some embodiments, one or both of the second TIA and the third TIA include a configurable feedback impedance used in compensating for changes in the second gain level due to a temperature of the respective second or third TIA via the configurable feedback impedance of the respective second or third TIA.
US11588444B2 Method and system for powering an audio amplifier
A method for powering an audio amplifier includes receiving an input audio signal in an audio signal processor, delaying the input audio signal in the audio signal processor to generate a delayed audio signal, predicting a power demand estimate by analyzing the input audio signal to calculate the power demand estimate in the audio signal processer, and selecting, by the audio signal processor, power conversion settings for a DC to DC converter on the basis of the power demand estimate. The method further includes supplying power input to the DC to DC converter, converting the power input in accordance with the power conversion settings to provide a power output, powering the audio amplifier using the power output, and supplying the delayed audio signal to the audio amplifier from the audio signal processor to generate an amplified audio signal.
US11588443B2 Method and device for selectively supplying voltage to multiple amplifiers by using switching regulators
Various embodiments disclose a method and a device including: an antenna, a switching regulator, communication chip including an amplifier and a linear regulator operably connected to the amplifier and the switching regulator, the communication chip configured to transmit a radio-frequency signal from the electronic device through the antenna, and control circuitry configured to control the communication chip such that the linear regulator provides the amplifier with a voltage corresponding to an envelope of an input signal input to the amplifier, the input signal corresponding to the radio-frequency signal.
US11588440B2 Test apparatus of solar cell, and photovoltaic system including the same
Disclosed are a test apparatus of a solar cell and a photovoltaic system including the same. A test apparatus of a solar cell according to an embodiment of the present disclosure includes an interface to receive cell information including cell efficiency, cell voltage, and cell current and a processor to perform learning based on the cell information of the solar cell and line information of a string line including the solar cell, predict an output of a solar cell module including the solar cell based on the learning, and output an output prediction value of the solar cell module. As a result, an output deviation of the solar cell module including a plurality of solar cells can be reduced.
US11588434B2 Expandable splice for a solar power system
The present disclosure describes an expandable splice configured for reinforcing a tube of a solar owner system, the splice including a top panel, a bottom panel, a first side panel, a second side panel, and at least one beveled corner panel, wherein the first and second side panels are connected to the top and bottom panels either directly or by the at least one beveled corner panel to form a channel therebetween.
US11588426B2 Rotor angle error compensation for motors
An apparatus for driving a motor includes motor circuitry and neural network circuitry. The motor circuitry is configured to generate, based on an error compensated rotor angle and current at a plurality of phases of the motor, a d-axis instant current value and generate a d-axis instant voltage value based on the d-axis instant current value. The motor circuitry is further configured to generate voltage at the plurality of phases based on the d-axis instant voltage value. The neural network circuitry is configured to generate a rotor angle offset based on an instant rotor speed at the motor. The neural network circuitry has been trained to generate the rotor angle offset to minimize the d-axis instant voltage value for each of a plurality of rotor speeds at the motor. The error compensated rotor angle is based on the rotor angle offset.
US11588420B2 Thermo-dielectric-elastomer-cell
Methods, systems, and apparatuses related to thermo-dielectric-elastomer-cells may be shown and described. In one embodiment a thermo dielectric elastomer cell (TDEC) can include a layer of carbon nanotubes that absorb sunlight; a layer of photo switchable molecules; a plurality of dielectric elastomer layers, each of the plurality of dielectric elastomer layer comprising a layer of dielectric elastomer material and a layer of N-P junction transistors between the layers of dielectric elastomer material; a layer of insulators separating each of the plurality of dielectric elastomer layers; and an elastic cushioning which is placed between the plurality of dielectric elastomer layers and surrounding the dielectric elastomer material.
US11588419B2 Rotary mechanism
A rotating mechanism which includes a rail of a helical shape formed to be of uniform diameter, a column member disposed at an inner side of the rail, a rotating shaft inserted through and fixed at a center of the column member, a moving body attachable to the rail, and a magnet body disposed slightly separated from the column member.
US11588418B2 Energy harvesting devices and methods of making and use thereof
Disclosed herein are energy harvesting devices and methods of making and use thereof. The energy harvesting devices can efficiently harvest energy for motions at a frequency of 5 Hz or less.
US11588414B2 Method for operating converter and converter arrangement
A method for operating an electric power converter and an electric power converter configured to convert DC power into AC power supplied to a three-phase AC network, conclude, during the converting, that a single-phase tripping has started in the three-phase AC network connected to the three-phase output of the converter, and after the concluding that the single-phase tripping has started in the three-phase AC network, control an active current in the three-phase output of the converter such that a negative sequence voltage in the three-phase output of the converter remains at or below a predetermined level, wherein the converter is configured to perform the controlling until concluding that the single-phase tripping has ended in the three-phase AC network.
US11588408B2 Power supply circuit, corresponding device and method
An embodiment provides a circuit including a transformer having a primary winding coupled to an input port configured to receive an input voltage and a secondary winding configured to provide an output voltage at an output port, controller circuitry configured to switch on and off a current through the primary winding so that energy is transferred to the secondary winding while switching and supply circuitry connected to the controller circuitry, wherein the supply circuitry is coupled to an auxiliary winding of the transformer and configured to provide a supply voltage for the controller circuitry. The controller circuitry is further configured to: transition to a burst mode to switch on and off the current through the primary winding in first bursts, wherein the first bursts are separated by intervals during which switching on and off the current through the primary winding of the transformer by the first bursts is discontinued and provide second bursts during the intervals in order to keep the supply voltage of the controller circuitry between a lower bound value and an upper bound value while the output voltage ramps down to a requested valley value or provide second bursts during the intervals after reaching a timeout limit in order to provide the supply voltage to the controller circuitry while the output voltage ramps down to a requested valley value.
US11588407B2 Switched mode power supply
One example discloses a switched mode power supply device, comprising: an energy storage device; a controller configured to discharge the energy storage device; a voltage drop device having a first pin coupled to the energy storage device, a second pin coupled to the controller, and a third pin coupled to receive a first power-down signal; wherein the first power-down signal indicates that the energy storage device is to be discharged; wherein the voltage drop device is configured to input a first voltage from the energy storage device on the first pin and output a second voltage to the controller on the second pin; and wherein the second voltage is lower than the first voltage.
US11588403B2 Buck-boost converting circuit
Provided is a buck-boost converting circuit including an LED current regulator and bypass switches. The buck-boost converting circuit includes switches coupled in a matrix form in order to individually control a plurality of LEDs connected in series, an LED current regulator, and a circuit capable of buck-boost conversion.
US11588401B2 Method for operating an inverter and inverter for carrying out the method
In a method for operating an inverter for converting DC voltage into AC voltage, having at least one DC/DC step-up converter for converting a DC input voltage applied at the step-up converter DC input into an output voltage higher by a voltage stroke, an intermediate circuit, a DC/AC converter and an AC output for connection to a supply network and/or consumers, a voltage ripple is superimposed on the intermediate circuit voltage and in each step-up converter a switch is switched on/off with a specific switching frequency and a specific duty cycle, for measuring the output voltage of each step-up converter and the intermediate circuit voltage including the voltage ripple. A minimum voltage stroke of each step-up converter is dynamically calculated as a function of the respective measured step-up converter input voltage and the measured intermediate circuit voltage ripple, which minimizes the intermediate circuit voltage setpoint.
US11588400B2 Series resonator converter
Aspects of series resonator DC-to-DC converters are described. A series resonator DC-to-DC converter can include a first half-bridge circuit comprising a first high-side switch and a first low-side switch, a second half-bridge circuit comprising a second high-side switch and a second low-side switch, and a resonator in series between the first high-side switch and the first low-side switch. The circuit design and switching controller can be relied upon to impart soft-switching.
US11588397B2 Three-level power conversion system and control method
A power conversion system includes a first power conversion port including a three-level power factor correction device and a primary power conversion circuit, a second power conversion port including a three-level rectifier and a third power conversion port including a rectifier, the first power conversion port, the second power conversion port and the third power conversion port magnetically coupled to each other through a transformer.
US11588395B2 Voltage converter arrangement comprising an input regulating element, and method of operating a voltage converter arrangement
A voltage converter arrangement includes a clocked voltage converter capable of generating an output voltage on the basis of an input voltage. The voltage converter arrangement further includes a first input regulating element connected between a first input voltage node and a second input voltage node, the second input voltage node having a reference potential. The first input regulating element is configured to allow a current flow so as to counteract fluctuations in the input current of the voltage converter arrangement.A corresponding method is also described.
US11588392B2 Zero current detector with a gate pre-charge circuit
A switch-mode power supply and a zero current detector for use therein. A zero current detector includes an input stage and an output stage. The output stage is coupled to the input stage. The output stage includes a detector output terminal, a first transistor, and a second transistor. The first transistor includes an input terminal and a control terminal. The input terminal is coupled to the detector output terminal. The control terminal is coupled to the input stage. The second transistor includes an input terminal, a control terminal, and an output terminal. The input terminal is coupled to the control terminal of the first transistor. The control terminal is coupled to the input terminal of the second transistor. The output terminal is coupled to ground.
US11588391B1 Power conversion structure, system, method, electronic device including power conversion structure, and chip unit
A power conversion structure, a power conversion system, a power conversion method, an electronic device including the power conversion structure, and a chip unit are provided. By connecting one switched capacitor series branch between a third terminal of a first switch series branch and a ground terminal, when the power conversion structure needs to operate in a switched capacitor converter mode, a direct current part of a current output from the third terminal of the first switch series branch flows to an inductor, and only an alternating current component flows through an on-state first switch, such that the on-state loss of the first switch can be greatly reduced, and the efficiency of the power conversion structure can be improved.
US11588385B2 Method for gel curing a varnish of a stator assembly
A method for gel curing a varnish of a stator assembly includes: applying an electrically-insulating material to a plurality of electrical conductors of a stator assembly; monitoring a temperature of the stator assembly using at least one temperature sensor; determining whether the temperature of the stator assembly has reached a target temperature; in response to determining that the temperature of the stator assembly is equal to the target temperature, heating the stator assembly using an induction heating element to maintain the temperature of the stator assembly at the target temperature for a predetermined amount of time; determining whether the temperature of the stator assembly is equal to the final target temperature; in response to determining that the target temperature is not equal to the final target temperature, increasing the target temperature by a predetermined amount of degrees.
US11588379B2 Arrangement for cooling an electric machine in a motor vehicle, and method for operating the arrangement
A temperature control arrangement (1) of a motor vehicle has an electric machine (2) with a rotor (3) and a stator (4), a stator cooling arrangement with a first cooling circuit (6) for cooling the stator (4) with a first cooling medium (8) flowing in the first cooling circuit (6) that is formed by a motor vehicle cooling circuit, a rotor cooling arrangement with a second cooling circuit (7) for cooling the rotor (3) with a second cooling medium (9) flowing in the second cooling circuit (7) that is formed by a transmission oil cooling circuit, a heat exchanger (10) that thermally couples the first cooling circuit (6) and the second cooling circuit (7). The stator cooling arrangement is configured such that the first cooling medium (8) makes direct contact with the stator windings.
US11588378B2 Liquid-cooled core assembly for linear motors and linear motor comprising such core assembly
A liquid-cooled core assembly for a linear motor includes an iron-core having a middle part, teeth extending from two opposite sides of the middle part and forming slots therebetween, coils wound around the teeth, axial cooling-fluid passageways extending across the middle part, and cooling conduits mounted inside the passageways. The core assembly further includes a cooling arrangement having a liquid supply part and a liquid collection part mounted against respective two other opposite sides of the iron-core. The liquid supply and collection parts are in fluid communications with the cooling conduits. An inlet connector is in fluid communication with the liquid supply part, and an outlet connector is in fluid communication with the liquid collection part.
US11588377B2 Electronic devices with a motor that includes a stator with a non-uniform radius of curvature
A fan motor suitable for use in an electronic device, such as a consumer electronic device, is disclosed. The fan motor includes a stator and a rotor. In order to minimize a varying torque applied to the rotor, the stator includes modifications. For example, the stator includes stator teeth, each with an arc defined by a radius of curvature that varies. The radius (from a reference point to the arc) can vary in accordance with a sinusoidal curve. Furthermore, the corners of each stator tooth may be rounded. The rounded corners of the stator teeth may include a uniform (or constant, non-varying) radius of curvature. These enhancement are designed to provide a more uniform torque by the stator to the rotor. As a result, the rotation of the rotor is subject to smaller fluctuations, and the fan motor undergoes less vibration and generates less acoustical noise.
US11588371B2 Motor-driven compressor
Connectors are each integrated with a holder in a state in which bus bars are projected. A first projection and a second projection of the holder are respectively inserted in a first insertion hole and a second insertion hole in a circuit substrate. This determines positions of the holder and the circuit substrate relative to each other. The holder has coil lead wire insertion holes, capacitor lead wire insertion holes, and element lead wire insertion holes. These insertion holes extend in the same direction as the direction in which the bus bars project from the holder.
US11588370B2 Transmission with integrated electric machine
An electric machine for arrangement in a transmission housing, having an adapter device, an axle connected to the adapter device, a rotor arranged on the axle by a bearing device so as to be rotatable about the axle, and a stator which surrounds the rotor in a circumferential direction and which is arrangeable spaced apart from the rotor, and at least partially fixable, in the adapter device, wherein the adapter device partially covers the rotor and/or the stator.
US11588366B2 System for an electric motor with coil assemblies and internal radial magnetic elements
One variation of a system for an electric motor includes a rotor including magnetic elements within a body. The system also includes a stator including coil assemblies arranged about the rotor. Each coil assembly includes an outer hook element and an inner hook element. The outer hook element extends across a first axial face and an outer radial surface of the rotor. The inner hook element: extends across a second axial face of the rotor; extends partially across the inner radial surface of the rotor; and is coupled to the outer hook element to define a throat configured to locate the rotor within the coil assembly. The system includes a shaft coupled to the inner radial surface of the rotor. Furthermore, the system includes a controller configured to drive current through the coil assemblies to generate a toroidal magnetic field configured to couple the magnetic elements to rotate the rotor.
US11588363B2 Integrated electric propulsion assembly
An integrated stator assembly incorporated in an electric motor including a rotor that includes a plurality of rotor magnets, each rotor magnet of the plurality of magnets having a polar axis running from a rotor magnet south pole to a rotor magnet north pole. The assembly comprising a mandrel of dielectric material, wherein the mandrel includes a first cylindrical surface coaxial to an axis of rotation of the rotor, an upper edge, and a lower edge. A plurality of electrically conductive stator windings wound upon the mandrel, each winding of the plurality of windings including a plurality of turns traversing the first cylindrical surface, wherein each turn of the plurality turns further comprises a first upper section disposed on the first cylindrical surface, wherein the first upper section intersects the upper edge of the mandrel, and the first upper section forms a first angle to the axis of rotation.
US11588362B2 Rotor drive applied to drive motor with a structure in which removes a fixation jaws for holding a permanent magnet
Provided is a rotor for application in a drive motor that includes multiple cores of the rotor that define a plurality of slots into each of which a permanent magnet is inserted, in which the cores of the rotor include a first core in which fixation jaws for holding in place one surface of the permanent magnet and the other surface opposite to the one surface in a direction of extension of the permanent magnet are disposed, and a second core in which fixation jaws for holding in place one surface of the one surface of the permanent magnet and the other surface opposite to the one surface in the direction of the extension of the permanent magnet are disposed.
US11588361B2 Inferior permanent magnet rotor for a refrigerant compressor
An interior permanent magnet rotor, for a drive unit disposed in the interior of a hermetically sealed housing of a refrigerant compressor, whereas the rotor includes a first axial section with permanent magnets, followed by a second axial section without permanent magnets. In order to reduce the risk of a magnetic short-circuit it is provided that the second axial section, adjacent to the first axial section, includes a first axial subsection with a reduced radial dimension not going beyond the permanent magnets in the first axial section, whereas the axial length of the first axial subsection is smaller than the axial length of the first axial section, and the second axial section, adjacent to its first axial subsection, includes a second axial subsection with a radial dimension larger than the reduced radial dimension of the first axial subsection.
US11588358B2 Communication control device
A communication control device comprises: an antenna; and a control unit that controls wireless communication related to wireless power transfer to a power receiver device through a power transmitter device. The control unit acquires via the antenna a radio wave status of each of a plurality of channels related to the wireless communication. The control unit acquires a power transmission status of the wireless power transfer. The control unit sets, based on the acquired power transmission status, switching conditions for switching the channel according to the radio wave status. The control unit causes the channel to be switched based on the radio wave status and the switching conditions. The control unit causes the wireless communication to continue on the switched channel.
US11588355B1 Wireless charging mouse device, wireless charging mouse, lower shell of wireless charging mouse, and method for producing lower shell
A wireless charging mouse device, a wireless charging mouse, a lower shell of the wireless charging mouse, and a method for producing the lower shell are provided. The wireless charging mouse includes an upper shell, a lower shell, and an electronic module located between the upper shell and the lower shell. The lower shell includes an upper board, a lower board, and a wireless charging assembly located between the upper board and the lower board. A side surface of the upper board is fixed to a side surface of the lower board by gluing or melting. The upper board has a connection hole. The wireless charging assembly includes a circuit board and a wireless charging coil. A connection structure of the circuit board is exposed from the upper board by passing through the connection hole, so as to be electrically coupled to the electronic module.
US11588353B2 Quality factor estimation of an inductive element
The present disclosure relates to a device comprising an inductive element and a first capacitive element series connected between a first node and a second node, a first MOS transistor connected between the first node and a third node configured to receive a reference potential, the second node being coupled directly or via a second MOS transistor to the third node, a second capacitive element connected between a fourth node and an interconnection node between the first capacitive element and the inductive element, a current generator configured to provide an AC current to the fourth node, and a switch connected between the fourth node and the third node.
US11588352B2 Inductive power transfer coupler array
An inductive or wireless power transfer coupler array has at least two coupler modules connected in parallel to a common power source. Each coupler module comprises a resonant circuit, including at least one transmitter coil and a capacitive element. Each of the coupler modules is connected to a second terminal of the power source across the respective resonant circuit by a corresponding pair of switching elements, and each coupler module is linked with at least one other coupler module at a shared one switching element of the corresponding pair of switching elements. A control module is configured to effect control between the active state and the passive state by controlling the phase angle of the corresponding pair of switching elements.
US11588343B2 Power storage device, power storage system, power supply system, and control method for power storage device
A power storage device includes: a cell; and a controller that: causes the cell to discharge from a full charge capacity to a set capacity that is set in advance, and executes a full charge capacity correction mode including a remaining capacity calculation operation and capacity consumption calculation operation. In the remaining capacity calculation operation, the controller: acquires a first voltage of the cell at the set capacity in response to the cell discharging from the full charge capacity to the set capacity, and calculates an actual remaining capacity of the cell based on the first voltage and one of a plurality of correlations between a voltage of the cell and a cell capacity.
US11588341B2 Quick battery charging system
The present disclosure discloses a quick battery charging system including a lithium secondary battery having a negative electrode porosity of 25 to 35% and a negative electrode loading amount of x0. The system includes a storage unit which stores a lookup table for mapping first coefficient information of an upper bound condition associated with a C-rate of a charge current represented by a quadratic function and information associated with the negative electrode loading amount (x0). The system includes a charging control apparatus which reads the information associated with the negative electrode loading amount (x0) from the storage unit, determines the first coefficient information of the quadratic function representing the upper bound condition from the lookup table, determines the C-rate range of the charge current using the first coefficient information, and supplies the charge current satisfying the determined C-rate range to the lithium secondary battery.
US11588340B2 Electric power station
The disclosed apparatus and method is a closed loop system that obtains, stores and transfers motive energy. Preferably, the majority of the electricity generated is utilized to service a load or supplied to the grid. A portion of the electric power produced is used to recharge the batteries for subsequent use of the electric motor. The system controls and manages the battery power by controlling the charging and discharging of the battery reservoir via a series of electrical and mechanical innovations controlled by electronic instruction using a series of devices to analyze, optimize and perform power production and charging functions in sequence to achieve its purpose.
US11588339B2 Combination charging cable and hair tie assembly
A combination charging cable and hair tie assembly includes an elastic band that is comprised of a resiliently stretchable material for stretching around a user's hair in the manner of a hair tie. A plurality of conductors is each of the conductors is woven into the elastic band to elongate and shorten when the elastic band is stretched and released. A first charge plug is coupled to the elastic band to engage a charge port on an electronic device. A second charge plug is coupled to the elastic band and the second charge plug is matable to the first charge plug such that the elastic band forms a closed loop to serve as a hair tie. Additionally, the second charge plug can engage a charge port on an electronic device.
US11588337B2 Centralized charging cabinet provided with isolation area and charging area
The present disclosure provides a centralized charging cabinet, including: a charging cabinet, provided with an isolation area and a charging area therein; an isolation transformer, provided in the isolation area; and at least one charging unit, provided in the charging area, where each of the charging unit is electrically connected to a secondary winding of the isolation transformer through a plurality of first connection structures, and the plurality of first connection structures are located at a back region of the charging area. In the centralized charging cabinet, the isolation transformer is provided in the isolation area inside the charging cabinet, the charging unit is provided in the charging area inside the charging cabinet, which realizes a centralized layout of the isolation transformer and the charging unit and improves the space utilization.
US11588333B2 Microgrid power flow monitoring and control
A microgrid power flow monitoring and control system is described herein. The control system may determine active and reactive power sharing shortage on the electric power delivery system. The control system may utilize the control strategies of generation units, such as ISO control, droop control and constant power control to estimate power flow within a microgrid or other isolated system. A control strategy of one or more generators may be modified based on the determined power flow.
US11588323B2 Method and apparatus for locating faults in an islanded microgrid
A fault isolating device for use in a microgrid disconnected from a main power grid includes a voltage meter for detecting a voltage anomaly indicative of an electrical fault, a timer for establishing a time window that begins and ends a predetermined time after a voltage anomaly is detected, a switch that is opened at the start of the time window, and a microcontroller that determines whether to leave the switch open to isolate a faulted portion of the microgrid or to close the switch. A plurality of fault isolating devices can be distributed throughout a microgrid to isolate a faulted branch or faulted branches of an islanded microgrid without interfering with normal fuse operation when the microgrid is connected to the main power grid.
US11588321B2 Low-voltage protection switch unit
A low-voltage protection switch unit, such as a motor protection switch, includes: at least an external conductor line, from an external line supply terminal of the low-voltage protection switch unit to an external line load terminal of the low-voltage protection switch unit; a neutral conductor line, from a neutral conductor terminal of the low-voltage protection switch unit to a neutral conductor load terminal of the low-voltage protection switch unit; a mechanical bypass switch arranged in the external conductor line; a semiconductor circuit arrangement connected in parallel with the mechanical bypass switch; an electronic control unit for actuating the mechanical bypass switch and the semiconductor circuit arrangement in a specifiable manner; and a current measurement arrangement connected to the electronic control unit, the current measurement arrangement being arranged at least in the external conductor line. The electronic control unit switches the semiconductor circuit arrangement on/off in a specifiable clocked manner.
US11588320B2 Power distribution assembly having a fault detection system
A power distribution assembly comprising a chassis having at least one wall, a deformable material layer positioned on the at least one wall of the chassis and configured to deform in response to a triggering even. The power distribution assembly further comprising a conductive sense layer positioned on the deformable material layer opposite the at least one wall of the chassis.
US11588319B2 Differential protection method, differential protection device, and differential protection system
A differential protection method for monitoring a line of a power grid. Current phasor measured values are captured at the ends of the line and transmitted to an evaluation device which is used to form a differential current value with current phasor measured values temporally allocated to one another. Time delay information indicating the time delay between local timers of the measuring devices is used for the temporal allocation of the current phasor measured values captured at different ends, and a fault signal indicating a fault affecting the line is generated if the differential current value exceeds a predefined threshold value. The reliability of the time synchronization is further increased by forming a quotient of the current phasor measured values to form an asymmetry variable, that is used to check a transit time difference of messages transmitted via the communication connection in different directions.
US11588318B2 Sensor-based remote condition monitoring device and method for disconnector devices
A device, a method and a system for monitoring an electrical connection status of a disconnector device are disclosed. The disconnector device is connectable to pole-mounted equipment in a power distribution or transmission grid, thereby disconnecting the pole-mounted equipment. The connection status monitoring device includes a determining section configured to determine whether the disconnector device has been activated and to generate connection status indicator data, indicative of whether the disconnector device has been activated. The determining section further includes a wireless communication section which is adapted to connect to a wireless communication infrastructure using a wireless communication protocol, and to transmit the connection status indicator data over the wireless communication infrastructure.
US11588317B2 Ground fault circuit interrupter with leakage protection module and self-test module
A ground fault circuit interrupter is provided, including a sensor module, a leakage protection module, a self-test module and a tripping module. The sensor module is configured to generate a sensor current according to a detection signal. The leakage protection module is configured to: generate a trip driving signal in a detection stage according to the sensor current; and generate a trip driving signal in a non-detection stage after the self-test module has a fault. The self-test module is configured to generate the detection signal in the detection stage, and determine that the leakage protection module does not have a fault if the leakage protection module generates the trip driving signal. The tripping module is configured to respond to the trip driving signal generated in the non-detection stage to disconnect a load from a power supply circuit, and not respond to the trip driving signal generated in the detection stage.
US11588316B2 Circuit with timing function and leakage protection plug
Disclosed are a circuit with a timing function and a leakage protection plug. An output terminal of a timing chip U2 is connected to an isolating switch U3; the isolating switch U3 is connected to a rectifier module D3; the rectifier module D3 is connected to a circuit breaker X1; a switch tube Q4 and the switch tube Q3 are connected to a resistor R21, and a second switch terminal of the switch tube Q4 is grounded; an output terminal of a zero sequence current transformer is connected to a first input terminal of a microprocessor U1; and an output terminal of the microprocessor U1 is connected to a control terminal of the switch tube Q4. The leakage protection plug of this disclosure has both leakage protection and timing functions.
US11588314B2 Banding for high voltage applications
Banding and clamp for use to in high voltage environments of over 15 kV. The banding includes and inner core and an outer insulative layer. The inner core has non-piercing edges. The inner core is configured to have strength to prevent movement of components to which the banding is attached. The outer insulative layer surrounds at least a portion of the inner core. The outer insulative has a phase-to-ground rating of greater than 15 kV.
US11588307B1 Pulling grip assembly
A pulling grip assembly and methods, systems, and apparatuses for constructing the pulling grip assembly are disclosed. The pulling grip assembly can include a pulling grip. The pulling grip can include an elongated body portion and a lug portion. The lug portion can include a blind hole for receiving an assembly including a hollow fastening member and a pulling cable retained within the hollow fastening member.
US11588301B2 Vertical cavity surface emitting laser device
A VCSEL device includes an N-type metal substrate and laser-emitting units on the N-type metal substrate. Each laser-emitting unit includes an N-type contact layer in contact with the N-type metal substrate; an N-type Bragg reflector layer in contact with the N-type contact layer; a P-type Bragg reflector layer above the N-type Bragg reflector layer; an active emitter layer between the P-type Bragg reflector layer and the N-type Bragg reflector layer; a current restriction layer between the active emitter layer and the P-type Bragg reflector layer; a P-type contact layer in contact with the P-type Bragg reflector layer; and an insulation sidewall surrounding all edges of the N-type and P-type Bragg reflector layers, the N-type and P-type contact layers, the active emitter layer and the current restriction layer. A P-type metal substrate has through holes each aligned with a current restriction hole of a corresponding laser-emitting unit.
US11588299B2 Vertical-cavity surface-emitting laser fabrication on large wafer
Methods for fabricating vertical cavity surface emitting lasers (VCSELs) on a large wafer are provided. An un-patterned epi layer form is bonded onto a first reflector form. The first reflector form includes a first reflector layer and a wafer of a first substrate type. The un-patterned epi layer form includes a plurality of un-patterned layers on a wafer of a second substrate type. The first and second substrate types have different thermal expansion coefficients. A resulting bonded blank is substantially non-varying in a plane that is normal to an intended emission direction of the VCSEL. A first regrowth is performed to form first regrowth layers, some of which are patterned to form a tunnel junction pattern. A second regrowth is performed to form second regrowth layers. A second reflector form is bonded onto the second regrowth layers, wherein the second reflector form includes a second reflector layer.
US11588295B2 Pump modulation for optical amplifier link communication
A system and method for communicating supervisory information between amplifier nodes in an optical communication network utilizes modulation of an included pump source to superimpose the supervisory information on through-transmitted customer signals (or ASE associated with the amplifier if no customer traffic is present). The supervisory information (which may include monitoring messages, provisioning data, protocol updates, and the like) is utilized as an input to an included modulator, which then forms a drive signal for the pump controller. In a preferred embodiment, binary FSK modulation is used.
US11588290B2 Methods and apparatus for generating ghost light
A system includes a light transmitter configured to emit a first light beam. The first light beam includes a primary portion and an amplified spontaneous emission (ASE) portion. The system also includes a host material configured to receive the first light beam and emit a second light. The host material is configured to generate the second light by depopulation of chromophores of one or more dopants in the host material caused by energy of the primary portion of the first light beam. The second light is continuous wave and speckle free.
US11588288B2 Method and system for forming an adapter for an electrical connector for a vehicle using a 3D printer
The present disclosure generally relates to a novel concept of forming an adapter for an automotive application to be used for connecting a breakout box in-between an electrical control unit (ECU) of a vehicle and an electrical wiring system comprised with the vehicle. The adapter is formed using a 3D printer based on a construction of an electrical connector design provided with the ECU. The present disclosure also relates to a corresponding system and a computer program product.
US11588285B2 Coaxial connector system with adaptor
A connector system includes an adapter with a first mating portion, a second mating portion and a transition portion. A continuous outer wall extends across the first mating portion, the transition portion and the second mating potion. A first terminal positioned in the adapter. At least one receptacle has a receptacle mating section and a receptacle transition section. A continuous receptacle outer conductive wall extends across the receptacle mating section and the receptacle transition section. A receptacle inner wall extends perpendicular to the receptacle outer wall. A second terminal is positioned in the at least one receptacle. A retention member is provided in the receptacle mating section. The continuous outer wall and the continuous receptacle outer wall form a grounding shield minimizing signal leakage from the first terminal and the second terminal.
US11588281B1 Trailer illumination assembly
A trailer illumination assembly includes a trailer that has a plurality of running lights disposed on the trailer. The trailer includes a power source is positioned in the trailer and a female light plug which can be electrically coupled to a male light plug on a towing vehicle. The female light plug is in communication with the plurality of running light. An adapter plug is pluggable into the female light plug when the female light plug is not electrically coupled to the male light plug on the towing vehicle. Additionally, the adapter plug places the power source on the trailer in electrical communication with the plurality of running lights on the trailer. In this way the running lights on the trailer can be powered by the power source on the trailer.
US11588278B2 Connector assembly
A connector assembly includes a connector and a cable connected thereto. First and second inner conductor contacts are disposed within an outer conductor sleeve of the connector. The cable has first and second insulated inner conductors. The inner conductor contacts each have a mating portion, for mating with a mating connector, and a connecting portion, in which the inner conductors are connected, with a transition portion extending therebetween. The inner conductor contacts have a first contact spacing in the mating portion and a smaller second contact spacing in the connecting portion. In the transition portion, a transition from the first to the second contact spacing occurs continuously. In an end portion of the cable, the inner conductors are disposed parallel to each other within the outer conductor sleeve and are spaced apart from each other by a conductor spacing equal to the second contact spacing.
US11588268B1 Extendable electrical outlet enclosure
An extendable electrical outlet enclosure with a tubular main body, a bezel, a cap, at least one extension tube, and a back plate. The tubular main body has a first end, a second end, and a wall extending between the first end and second end. The tubular main body also has an electrical device support that extends inward from the wall and defines a separation between an electrical plug section and a wiring section. The bezel surrounds an opening in the main body at the first end and allows the cap to removably mount to the electrical enclosure. The at least one extension tube attaches to the tubular main body at the second end and has a leading end, a trailing end, and an outer wall extending between the leading end and the trailing end. The back plate couples with the at least one extension tube at the trailing end.
US11588263B2 Battery product
The present disclosure provides a battery product and an assembling method of the battery product, the battery product comprises a box and a heating connector. The box comprises a mounting panel. The mounting panel has a first receptacle portion and a second receptacle portion, and the second receptacle portion and the first receptacle portion are provided opposite to each other and communicating with each other. The heating connector comprises: a first plug assembly being mounted on the first receptacle portion; and a second plug assembly being mounted on the second receptacle portion. Compared with the technology related to the background, the battery product is equivalent to directly integrating the receptacle of the heating connector on the mounting panel, which not only eliminates the manner of fixing by the bolt, but also improves the integration of the battery product, thereby improving the space utilization and energy density.
US11588246B2 NFC antenna structure and NFC circuit board and wireless charger using the same
A Near-Field Communication (NFC) antenna structure includes an NFC antenna and a conductive structure. The NFC antenna extends to form an inner coil and an outer coil. The conductive structure is formed corresponding to a region between the inner coil and the outer coil.
US11588245B2 Mobile device
A mobile device includes a metal mechanism element, a dielectric substrate, a ground plane, a parasitic radiation element, and a feeding radiation element. A connection end of the parasitic radiation element is coupled to the ground plane. The parasitic radiation element includes a first widening portion, which is positioned at a bend of the parasitic radiation element. The parasitic radiation element has a vertical projection on the metal mechanism element. The vertical projection at least partially overlaps a first closed end of the slot. The feeding radiation element is disposed between the parasitic radiation element and the ground plane. The dielectric substrate is adjacent to the metal mechanism element. The parasitic radiation element and the feeding radiation element are disposed on the dielectric substrate. An antenna structure is formed by the parasitic radiation element, the feeding radiation element, and the slot of the metal mechanism element.
US11588244B2 Antenna structure
The disclosure provides an antenna structure, including at least one supporting module, a first antenna, and a second antenna. The first antenna is disposed on the at least one supporting module and includes a first feeding point and a first zero-current zone. The first antenna is connected to a ground plane. The second antenna is disposed on the at least one supporting module and includes a second feeding point and a second zero-current zone. The second antenna is connected to the ground plane. The first feeding point of the first antenna is disposed in the second zero-current zone of the second antenna, and the second feeding point of the second antenna is disposed in the first zero-current zone of the first antenna.
US11588243B2 Antenna module and communication apparatus equipped with the same
An antenna module includes a dielectric substrate, a ground electrode, a power feeding element (121) and a power feeding element (122) each facing the ground electrode, and power feeding wirings (141) and (142). The power feeding wiring (141) transmits a radio frequency signal to a power feeding point (SP1) of the power feeding element (121). The power feeding wiring (142) transmits a radio frequency signal to a power feeding point (SP2) of the power feeding element (122). A frequency of a radio wave from the power feeding element (122) is higher than a frequency of a radio wave from the power feeding element (121). The power feeding wiring (142) includes a via rises from the ground electrode side to the power feeding element (122) at a position different from the power feeding point (SP2) and a wiring pattern that connects the via and the power feeding point (SP2).
US11588238B2 Sidelobe-controlled antenna assembly
An antenna assembly includes a plurality of antenna elements, a microstrip feed network that is configured to supply power to the plurality of antenna elements, and one or more resistors disposed within the microstrip feed network proximate to one or more of the plurality of antenna elements. The resistors are configured to control sidelobes of the antenna assembly.
US11588236B2 Vehicle-to-infrastructure communication control including node deficiency determination
A system comprises an infrastructure element including a computer programmed to communicate with a first stationary communication node having a first directional short-wave antenna with a first field of view and a second stationary communication node having a second directional short-wave antenna with a second field of view. The first communication node is located within the second field of view. The computer is programmed to determine a first and a second transmission parameter for the first and second stationary communication node respectively based on received object detection sensor data including object data from a respective field of view of each communication node's directional antenna. Each of the first and second transmission parameters includes a transmission power and/or a data throughput rate. The computer is programmed, based on received communication metrics from the first communication node, to determine a deficiency of the second communication node, and upon determining the deficiency of the second communication node, to actuate the first communication node to provide coverage for the second field of view.
US11588232B2 Flexible radome structures
An antenna structure includes a radiator element configured for operation at a first microwave frequency range and at a second microwave frequency range that is higher than the first microwave frequency range, and a reflector including the radiator element attached thereto. The reflector includes an enclosure that houses the radiator element and a radiating aperture. The antenna structure further includes a radome assembly adjacent the radiating aperture. The radome assembly includes a flexible radome having a thickness that is less than a wavelength corresponding to the first or second microwave frequency ranges, and a tensioning member that extends along a perimeter of the flexible radome and maintains tension in a surface of the flexible radome.
US11588227B1 Four-element phased array antenna
An aviation antenna assembly may include a base portion for operably coupling the antenna assembly to an aircraft body, a support platform, and a plurality of antenna elements including a first antenna element, a second antenna element, a third antenna element, and a fourth antenna element. The support platform may be operably coupled to the base portion to support each of the first, second, third and fourth antenna elements uniformly distributed about a central axis. The support platform may support the first antenna element opposite the third antenna element relative to the central axis, and support the second antenna element opposite the fourth antenna element relative to the central axis. A line intersecting a center of the first and third antenna elements may form a 45° angle relative to a line of symmetry passing through the antenna assembly.
US11588223B2 Electronic device with millimeter wave antennas on printed circuits
An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas and transceiver circuitry such as millimeter wave transceiver circuitry. The antennas may be formed from metal traces on printed circuits. A flexible printed circuit may have an area on which the transceiver circuitry is mounted. Protruding portions may extend from the area on which the transceiver circuitry is mounted and may be separated from the area on which the transceiver circuitry is mounted by bends. Antenna resonating elements such as patch antenna resonating elements and dipole resonating elements may be formed on the protruding portions and may be used to transmit and receive millimeter wave antenna signals through dielectric-filled openings in a metal electronic device housing or a dielectric layer such as a display cover layer formed from glass or other dielectric.
US11588215B2 Energy storage device
An energy storage device includes: an electrode assembly; a case that houses the electrode assembly; and a spacer that is a side spacer disposed between the electrode assembly and the case. The spacer has a rear portion disposed to face the electrode-assembly end portion, a side portion extended in a direction along the side surface of the electrode assembly, and a connection that rotatably connects the side portion to the rear portion.
US11588214B2 Battery straps
A battery and straps for a battery are disclosed. The battery according to various embodiments comprises a number of straps which connect a number of battery cells in series. The battery straps may pass through cutouts provided in a cell divider wall. The cutouts and straps may define a common headspace. The battery may have five connecting straps and two end straps.
US11588212B2 Connection assembly for use in battery modules and a battery module
Disclosed are a connection assembly for a battery module and a battery module. The connection assembly for a battery module has a housing, a first cover plate and a second cover plate, wherein the housing has a body and a protrusion extending continuously from the body; the first cover plate covers the body; the second cover plate is arranged to be integrated with the first cover plate; the second cover plate is configured to be movable relative to the first cover plate so as to be switched between a closed position and an open position; in the closed position, the second cover plate covers the protrusion; and in the open position, the second cover plate is detached from the protrusion. In the connection assembly for a battery module and the battery module provided in the present application, the second cover plate is movable relative to the first cover plate, to facilitate switching between the closed position and the open position, so that the disassembly and assembly processes of the connection assembly and the battery module are simplified. The second cover plate is arranged to be integrated with the first cover plate, so that the quantity of parts of the connection assembly and the battery module is reduced.
US11588211B2 Automatic pressure jig device for bringing electrode lead into close contact with busbar, and battery module manufacturing system comprising same
Provided is an automatic pressing jig apparatus including: a plurality of contacting units configured to simultaneously press each of a plurality of bus bars provided in a battery module and press an end of a lead assembly from a top of the plurality of bus bars to prevent the lead assembly from protruding from a surface of the plurality of bus bars; a pair of pressing units connected to the plurality of contacting units and configured to adjust a pressing force of the plurality of contacting units with respect to the plurality of bus bars; a support frame supporting the pair of pressing units; and a distance adjusting unit connected to the support frame and configured to ascend or descend the support frame to move the plurality of contacting units away from or close to the battery module.
US11588210B2 Battery-based neural network weights
Methods of forming a controllable resistive element include forming source and drain regions in a substrate. A battery stack is formed on a substrate between the source and drain regions. Respective anode and cathode electrical connections are formed to the battery stack. Respective source and drain electrical connections are formed.
US11588207B2 Separator for electrochemical element and electrochemical element
A heat-resistant separator for an electrochemical element in which the thickness of the separator is reduced while maintaining the balance between the short circuit resistance, resistance, electrolyte impregnation performance, and electrolyte retention performance of the separator. A separator for an electrochemical element includes beaten cellulose fibers, wherein the value obtained by dividing the average value for the distance between the center point of a cellulose stem fiber constituting part of the separator and the center point of another cellulose stem fiber nearest to said cellulose stem fiber by the thickness of the separator is 0.80 to 1.35.
US11588206B2 Pressure balancing device
A pressure balancing device comprises a mounting seat, a breathable film and a drying component. The mounting seat comprises a mounting seat housing and a support portion connected to the mounting seat housing. A fluid channel is formed in the mounting seat housing, the support portion is disposed in the fluid channel, and the fluid channel is capable of fluidly communicating an interior space of a component to be depressurized with the external environment. The breathable film covers on the fluid channel. The drying component is disposed on the support portion and is located between the support portion and the breathable film, and the drying component is configured to absorb moisture entering the fluid channel. In the present disclosure, the drying component is provided inside of the breathable film of the pressure balancing device, and water vapor entering the pressure balancing device is absorbed by the drying component.
US11588204B2 Venting device and battery pack assembly including same, and vehicle including the battery pack assembly
A venting device is provided at one side of a battery pack to discharge a venting gas generated in an inner space of the battery pack to the outside. The venting device includes a cylinder block configured to communicate with the inside of the battery pack and a venting gas flow path for discharging the venting gas to the outside, a piston assembly configured to move upward along an extension direction of the cylinder block by receiving a force caused by the increase of the internal pressure of the battery pack so that the inner space of the battery pack communicates with the venting gas flow path and a magnet unit installed in the cylinder block and configured to restrict upward movement of the piston assembly by a magnetic force so that the communication between the venting gas flow path and the inner space of the battery pack is blocked.
US11588202B2 Cell module assemblies and methods of manufacturing cell module assemblies
A cell module assembly includes a top frame, a bottom frame, multiple lithium-ion battery cells, a top collector plate, a bottom collector plate, and a curable adhesive. The top frame includes protrusions that define first multiple pockets. The bottom frame includes protrusions that define second multiple pockets axially aligned with the first multiple pockets. Each of the first and the second multiple pockets have multiple windows. The battery cells are received within a pocket in each of the first and second multiple pockets. The top collector plate is coupled to the top frame and includes multiple apertures above the first multiple pockets. The bottom collector plate is coupled to the bottom frame. The top collector plate and the bottom collector plate are electrically connected to the battery cells. The curable adhesive is received within each window in the first multiple pockets and couples each battery cell to the top frame.
US11588194B2 Battery heat adjustment circuit and method, storage medium and electronic device
Provided in embodiments of the disclosure are a battery heat adjustment circuit and method, a storage medium and an electronic device. The circuit includes a battery pack, the battery pack including at least two battery blocks, and each battery block including one or more battery cells; a first controller, respectively connected to partial battery blocks included in the battery pack, and configured to detect a state of partial battery blocks included in the battery pack and control, based on a state detection result, partial battery blocks included in the battery pack to discharge; and a heat adjustment loop, connected to the first controller, and configured to respectively adjust, by using electric energy released by partial battery blocks included in the battery pack, heat of partial battery blocks included in the battery pack. By means of the disclosure, the problems that heating and heat balance of zones in the battery may not be simultaneously solved in the relevant art is solved.
US11588192B2 Thermal runaway detection system for batteries within enclosures
A battery thermal runaway detection sensor system for use within a battery enclosure housing one or more batteries. The system has at least one gas sensor for detecting a venting condition of a battery cell of hydrogen, carbon monoxide or carbon dioxide, and providing a sensed output in real time. A microcontroller determines power management and signal conditioned output on the concentration of specific battery venting gases based on the sensed output from said at least one gas sensor.
US11588191B2 Vehicular battery charger, charging system, and method with user-selectable operation modes
A vehicle battery charger and a vehicle battery charging system are described and illustrated, and can include a controller enabling a user to enter a time of day at which the vehicle battery charger or system begins and/or ends charging of the vehicle battery. The vehicle battery charger can be separate from the vehicle, can be at least partially integrated into the vehicle, can include a transmitter and/or a receiver capable of communication with a controller that is remote from the vehicle and vehicle charger, and can be controlled by a user or another party (e.g., a power utility) to control battery charging based upon a time of day, cost of power, or other factors.
US11588190B2 Electric battery recharge method
A method and system of recharging an electric battery, include an alternation of phases of recharge at a constant current and of phases of recharge at constant voltage.
US11588187B2 Enhanced solid state battery cell
An enhanced solid state battery cell is disclosed. The battery cell can include a first electrode, a second electrode, and a solid state electrolyte layer interposed between the first electrode and the second electrode. The battery cell can further include a resistive layer interposed between the first electrode and the second electrode. The resistive layer can be electrically conductive in order to regulate an internal current flow within the battery cell. The internal current flow can result from an internal short circuit formed between the first electrode and the second electrode. The internal short circuit can be formed from the solid state electrolyte layer being penetrated by metal dendrites formed at the first electrode and/or the second electrode.
US11588180B2 Bipolar all-solid-state sodium ion secondary battery
Provided is a bipolar all-solid-state sodium ion secondary battery that can increase the voltage without impairing safety. A bipolar all-solid-state sodium ion secondary battery includes: a plurality of all-solid-state sodium ion secondary batteries 1 in each of which a positive electrode layer 3 capable of absorbing and releasing sodium, a solid electrolyte layer 4 made of a sodium ion-conductive oxide, and a negative electrode layer 5 capable of absorbing and releasing sodium are laid one upon another in this order; and a current collector layer 2 provided between the positive electrode layer 3 of each of the plurality of all-solid-state sodium ion secondary batteries 1 and the negative electrode layer 5 of the adjacent all-solid-state sodium ion secondary battery 1 and shared by the positive electrode layer 3 and the negative electrode layer 5.
US11588179B2 Method for producing non-aqueous electrolyte solution, non-aqueous electrolyte solution, and non-aqueous electrolyte secondary battery
A non-aqueous electrolyte secondary battery which uses a non-aqueous electrolyte solution in which a main component of a non-aqueous solvent is a fluorinated solvent, and by which it is possible to suitably prevent a decrease in battery capacity. A method for producing the non-aqueous electrolyte solution disclosed here includes a fluorinated solvent provision step for preparing the fluorinated solvent, a highly polar solvent provision step for preparing a highly polar solvent having a relative dielectric constant of 40 or more, a LiBOB dissolution step for preparing a highly concentrated LiBOB solution by dissolving LiBOB in the highly polar solvent at a concentration that exceeds the saturation concentration in the fluorinated solvent, and a mixing step for mixing the fluorinated solvent with the highly concentrated LiBOB solution.
US11588176B2 All solid-state lithium-ion battery incorporating electrolyte-infiltrated composite electrodes
Electrolyte-infiltrated composite electrode includes an electrolyte component consisting of a polymer matrix with ceramic nanoparticles embedded in the matrix to form a networking structure of electrolyte. Suitable ceramic nanoparticles have the basic formula Li7La3Zr2O12 (LLZO) and its derivatives such as AlxLi7-xLa3Zr2-y-zTayNbzO12 where x ranges from 0 to 0.85, y ranges from 0 to 0.50 and z ranges from 0 to 0.75, wherein at least one of x, y and z is not equal to 0. The networking structure of the electrolyte establishes an effective lithium-ion transport pathway in the electrode and strengthens the contact between electrode layer and solid-state electrolyte resulting in higher lithium-ion electrochemical cell's cycling stability and longer battery life. Sold-state electrolytes incorporating the ceramic particles demonstrate improved performance. Large dimensional electrolyte-infiltrated composite electrode sheets can be used in all solid-state lithium electrochemical pouch cells which can be assembled into battery packs.
US11588171B2 Thin film electrochemical cell activated with a solid electrolyte and housed in a casing formed of opposed ceramic substrates sealed together with an intermediate ring-shaped metallization
A miniature electrochemical cell having a total volume that is less than 0.5 cc is described. The cell casing is formed by joining two ceramic casing halves together. One or both casing halves are machined from ceramic to provide a recess that is sized and shaped to contain the electrode assembly. The opposite polarity terminals are electrically conductive feedthroughs or pathways, such as of gold, and are formed by brazing gold into tapered via holes machined into one or both ceramic casing halves. The two ceramic casing halves are separated from each other by a metal interlayer, such as of gold, bonded to a thin film metallization layer, such as of titanium, that contacts an edge periphery of each ceramic casing half. A solid electrolyte of LiPON (LixPOyNz) is used to activate the electrode assembly.
US11588170B2 Secondary battery including electrode lead exposed within the sealing part and method for manufacturing the same
Disclosed are a secondary battery and a method for manufacturing the same. According to the present invention, since an external protrusion protruding from the outside of an exterior constituting a body of the secondary battery as a component through which a secondary battery according to a related art is electrically connected to external electric equipment is removed, the secondary battery may be reduced in volume under the same capacity.
US11588169B2 Fuel cell and method of manufacturing the same
A fuel cell includes a cell stack including a plurality of unit cells stacked in a first direction; a first end plate including a guide through-hole formed therein, the first end plate being disposed on one end of two ends of the cell stack; a second end plate including a guide support hole formed therein, the guide support hole overlapping the guide through-hole in the first direction, the second end plate being disposed on an opposite end of the two ends of the cell stack; and an enclosure surrounding a side portion between the two ends of the cell stack together with the first end plate and the second end plate, the enclosure being formed as a unitary structure. The enclosure includes a body surrounding the side portion of the cell stack and first and second ends coupled to the first end plate and the second end plate, respectively.
US11588168B2 Separator for fuel cell or current collecting member for fuel cell, and solid polymer electrolyte fuel cell
In order to provide a separator for fuel cells, or a current collecting member for fuel cells, which has low contact resistance, excellent corrosion resistance and which can be economically manufactured, and a manufacturing method thereof, this separator for fuel cells comprises a substrate having iron or aluminum as the main component, a gas barrier film formed directly on said substrate and having excellent corrosion resistance, and a conductive resin film formed on the gas barrier film and containing a conductive ceramics or graphite particles having a particle diameter of 1-20 μm.
US11588167B2 Fuel cell and method of manufacturing fuel cell
A fuel cell includes: a membrane electrode assembly of a flat plate shape including an electrolyte membrane and an electrode catalyst layer, the membrane electrode assembly having a first side intersecting a flow pathway of a reactive gas on a surface of the fuel cell and a second side differing from the first side; a frame member of a flat plate shape including an opening part for arrangement of the membrane electrode assembly, the opening part having a first frame side corresponding to the first side and a second frame side corresponding to the second side; and an adhesive member for bonding between an outer periphery of the membrane electrode assembly and an inner periphery of the frame member. The thickness of the adhesive member in an area from an inner peripheral edge at the second frame side toward a center of the frame member may be greater than the thickness of the adhesive member in an area from an inner peripheral edge at the first frame side toward the center of the frame member.
US11588164B2 Fuel cell vehicle
A fuel cell stack formed by stacking a plurality of power generation cells together in a vehicle width direction and a voltage control unit including a voltage controller and a control case are mounted in a front box of a fuel cell vehicle. The control case is joined to a stack case in a manner that the control case is provided adjacent to the stack case in a direction perpendicular to the stacking direction of the plurality of power generation cells. A cell voltage detection unit is provided between the fuel cell stack and a voltage control unit.
US11588160B2 Fuel cell gas/liquid separator including first container for negative electrode exhaust and second container for positive electrode exhaust
A gas and liquid separator includes a first separating portion configured to separate a liquid droplet from a first exhaust gas discharged from a negative electrode of a fuel cell, a first container accommodating the first separating portion, a first storage reservoir storing water flowing down from the first separating portion, a second container provided at a lower side of the first storage reservoir, a second storage reservoir provided at a lower portion of the second container, and a valve apparatus including a valve discharging water stored in the first storage reservoir, wherein a second exhaust gas discharged from a positive electrode flows in the second container, and water discharged from the first storage reservoir is stored in the second storage reservoir.
US11588156B2 Copper foil having excellent adhesive strength, electrode comprising same, secondary battery comprising same, and manufacturing method therefor
An embodiment of the present invention provides a copper foil which comprises a copper layer and an anticorrosive film placed on the copper layer, and has a Young's modulus of 3800 to 4600 kgf/mm2 and a modulus bias factor (MBF) less than 0.12, wherein the modulus bias factor (MBF) is obtained by formula 1 below. MBF=(maximum Young's modulus−minimum Young's modulus)/(average Young's modulus)  [Formula 1]
US11588155B1 Battery configurations for cell balancing
Energy storage devices, battery cells, and batteries of the present technology may include a first battery cell. The first battery cell may include an anode current collector, and an anode active material disposed on the anode current collector. The first battery cell may include a cathode current collector and a cathode active material disposed on the cathode current collector. The current collectors may be polymeric materials. The batteries may include a first conductive band electrically coupled with the first battery cell. The first conductive band may be seated on the second surface of one of the anode current collector or the cathode current collector. The first conductive band may extend about a perimeter of the one of the anode current collector or the cathode current collector. The batteries may include a cell module including a first flexible extension electrically coupled with the first conductive band.
US11588152B2 Cathode active material for secondary battery and manufacturing method thereof
The present invention relates to a cathode active material for a secondary battery and a manufacturing method thereof. A cathode active material, according to one embodiment of the present invention, comprises silicon-based primary particles, and a particle size distribution of the silicon-based primary particles is D10≥50 nm and D90≤150 nm. The cathode active material suppresses or reduces tensile hoop stress generated in lithiated silicon particles during a charging of a battery to thus suppress a crack due to a volume expansion of the silicon particles and/or an irreversible reaction caused by the crack, such that the lifetime and capacity of the battery can be improved.
US11588151B2 Multilayer anode and lithium secondary battery including the same
A multilayer anode includes an anode collector, and a plurality of anode mixture layers sequentially stacked on at least one surface of the anode collector, and including natural graphite as an anode active material. A weight ratio of the natural graphite in innermost and outermost anode mixture layers is greater than a weight ratio of the natural graphite in an anode mixture layer located between the innermost and outermost anode mixture layers, in a stacking direction of the plurality of anode mixture layers. Performance of a cell may be improved and calendering-calender contamination occurring in a calendering process and an electrode stripping phenomenon may be prevented.
US11588148B2 Powder, electrode and battery comprising such a powder
Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 μm or less, or the silicon-based domains are not at all agglomerated into agglomerates.
US11588147B2 Film electrode, resin layer forming ink, inorganic layer forming ink, and electrode printing apparatus
A disclosed film electrode includes an electrode base, and an active material layer formed on the electrode base, and a resin layer adhering to at least one of a peripheral portion of the active material layer and a surface of the active material layer in a direction extending along a plane of the electrode base.
US11588145B2 Methods of briquetting precursor materials for prelithiated silicon active materials
A method of making a lithiated silicon-based precursor material for a negative electrode material of an electrochemical cell that cycles lithium ions is provided. An admixture comprising a plurality of lithium particles and a plurality of silicon particles is briquetted by applying pressure of greater than or equal to about 10 MPa and applying heat at a temperature of less than or equal to about 180° C. to form a precursor briquette. The briquette has lithium particles and silicon particles distributed in a matrix and has a porosity level of less than or equal to about 60% of the total volume of the precursor briquette. The briquetting is conducted in an environment having less than or equal to about 0.002% by weight of any oxygen-bearing species or nitrogen (N2).
US11588142B2 Solution-phase deposition of thin films on solid-state electrolytes
Methods, systems, and compositions for the solution-phase deposition of thin films comprising one or more artificial solid-electrolyte interphase (SEI) layers. The thin films can be coated onto the surface of porous components of electrochemical devices, such as solid-state electrolytes employed in rechargeable batteries. The methods and systems provided herein involve exposing the component to be coated to different liquid reagents in sequential processing steps, with optional intervening rinsing and drying steps. Processing may occur in a single reaction chamber or multiple reaction chambers.
US11588141B2 Display apparatus and method of manufacturing the same
In a method of manufacturing a display apparatus, the method includes: preparing a support substrate; forming a metal oxide layer on a surface of the support substrate, the metal oxide layer comprising first charges; forming a debonding layer on a surface of the metal oxide layer, the debonding layer comprising second charges opposite to the first charges; forming a flexible substrate on a surface of the debonding layer; forming a display element and a thin film encapsulation layer on a surface of the flexible substrate, the display element comprising a thin film transistor and an organic light-emitting diode; and isolating the flexible substrate from the support substrate.
US11588140B2 Organic vapor jet print head for depositing thin film features with high thickness uniformity
Devices for deposition of material via organic vapor jet printing (OVJP) and similar techniques are provided. The depositor includes delivery channels ending in delivery apertures, where the delivery channels are flared as they approach the delivery apertures, and/or have a trapezoidal shape. The depositors are suitable for fabricating OLEDs and OLED components and similar devices.
US11588139B2 Circularly polarized light emitting organic light emitting diodes
Disclosed herein are light emitting device that emit highly circularly polarized light. These devices may be used to form a dot-matrix display or an electronic information display comprised of a series of photopolymerizable, chiral liquid crystalline layers that can be solvent cast on a substrate. The mixture of chiral materials in each successive layer may be blended in such a way that each layer has the same chiral pitch and may also be blended so that the ordinary and extraordinary refractive indices in each layer match the other layers such that the complete assembly of layers will optically function as a single relatively thick layer of chiral liquid crystal. The chiral nematic material in each layer can spontaneously adopt a helical structure with a helical pitch. Further disclosed are pixel structures that not only emit light with brightness and chromaticity information, but also depth of focus information as well.
US11588132B2 Thin film package structure, thin film packaging method and display device for improving characteristic of contact surface of organic layer coating
The present disclosure discloses a thin film package structure, a thin film packaging method and a display device. The thin film package structure includes: an inorganic layer, a buffer layer and an organic layer successively covering an external of an electroluminescence unit structure from inside to outside; composition of said buffer layer is organic, and a thickness of said buffer layer is less than that of said organic layer. The thin film packaging method includes: covering a buffer layer on an inorganic layer encapsulating an electroluminescence unit structure; covering an organic layer on a surface of said buffer layer; composition of said buffer layer is organic, and a thickness of said buffer layer is less than that of said organic layer.
US11588121B2 Organic electroluminescent materials and devices
New organometallic complexes having bis- or tris-heteroleptic ligands and large aspect ratio in one direction and their use in OLEDs to enhance the efficiency is disclosed.
US11588117B2 Materials for electronic devices
The invention relates to compounds comprising functional substituents in a specific spatial arrangement, devices containing same, and the preparation and use thereof.
US11588116B2 Organic light emitting device
Provided is an organic light-emitting device comprising an anode, a cathode, and a light-emitting layer provided between the anode and the cathode, wherein the light-emitting layer comprises a first compound of Chemical Formula 1 and a second compound of Chemical Formula 2: wherein: A is Chemical Formula 1a or 1b: Ar1 and Ar2 are each independently a C6-60 aromatic ring or a C2-60 heteroaromatic ring, and Ar1 and Ar2 are unsubstituted, or substituted with C1-60 alkyl, C6-60 aryl, or C2-60 heteroaryl; Ar′1 and Ar′2 are each independently substituted or unsubstituted C6-60 aryl or substituted or unsubstituted C2-60 heteroaryl; provided that a1+b1+c1+d+e+f is 1 or more; or a2+b2+c2+d+e+f is 1 or more; R′1 and R′2 are each independently hydrogen, deuterium, C1-60 alkyl, C6-60 aryl, or C2-60 heteroaryl; and r and s are each independently 0 to 7.
US11588114B2 Organic molecules for use in optoelectronic devices
An organic molecule, comprising a structure of Formula III: especially for use in optoelectronic components.
US11588107B2 Integrated circuit structure
An IC structure comprises a substrate, a first material layer, a second material layer, a first via structure, and a memory cell structure. The substrate comprises a memory region and a logic region. The first material layer is disposed on the memory region and the logic region. The second material layer is disposed on the first material layer only at the memory region. The first via structure formed in the first material layer and the second material layer. The memory cell structure is over the first via structure.
US11588104B2 Resistive memory with vertical transport transistor
Embodiments of the present invention include a memory cell that has a vertically-oriented fin. The memory cell may also include a resistive memory device located on a first lateral side of the fin. The resistive memory device may include a bottom electrode, a top electrode, and a resistive element between the bottom electrode and the top electrode. The memory cell may also include a vertical field-effect transistor having a metal gate and a gate dielectric contacting a second lateral side of the fin opposite the first lateral side.
US11588102B2 Semiconductor material for resistive random access memory
Embodiments include a resistive random access memory (RRAM) storage cell, having a resistive switching material layer and a semiconductor layer between two electrodes, where the semiconductor layer serves as an OEL. In addition, the RRAM storage cell may be coupled with a transistor to form a RRAM memory cell. The RRAM memory cell may include a semiconductor layer as a channel for the transistor, and also shared with the storage cell as an OEL for the storage cell. A shared electrode may serve as a source electrode of the transistor and an electrode of the storage cell. In some embodiments, a dielectric layer may be shared between the transistor and the storage cell, where the dielectric layer is a resistive switching material layer of the storage cell.
US11588096B2 Method to achieve active p-type layer/layers in III-nitrtde epitaxial or device structures having buried p-type layers
An optoelectronic or electronic device structure, including an active region on or above a polar substrate, wherein the active region comprises a polar p region. The device structure further includes a hole supply region on or above the active region. Holes in the hole supply region are driven by a field into the active region, the field arising at least in part due to a piezoelectric and/or spontaneous polarization field generated by a composition and grading of the active region.
US11588089B2 Printed wiring board having thermoelectric emlement accommodatred therein
A printed wiring board includes a core substrate including core material and having opening such that the opening penetrates through the core substrate, thermoelectric elements including P-type and N-type thermoelectric elements such that the thermoelectric elements are accommodated in the opening of the core substrate, a first build-up layer that mounts a heat-absorbing element thereon and includes a first resin insulating layer such that the first resin insulating layer is formed on first surface of the core substrate and covering the opening of the core substrate, and a second build-up layer that mounts a heat-generating element thereon and includes a second resin insulating layer such that the formed on the second resin insulating layer is foamed on second surface of the core substrate on the opposite side and covering the opening of the core substrate and has thickness that is greater than thickness of the first resin insulating layer.
US11588086B2 Micro-LED display
A micro-LED display includes a casing, a light-transmitting cover, a micro-LED array substrate, a circuit board, and at least one functional component. The light-transmitting cover is disposed on the casing and has a display area, a non-display area, and a plurality of first vias. The first vias are located in the display area. The micro-LED array substrate is disposed between the light-transmitting cover and the casing. The micro-LED array substrate has a plurality of second vias overlapped with the first vias in an orthogonal projection direction. The circuit board is disposed between the micro-LED array substrate and the casing, and the circuit board has a functional component disposing area overlapped with the display area in the orthogonal projection direction. The functional component is disposed in the functional component disposing area. The functional component is overlapped with the second vias in the orthogonal projection direction.
US11588085B2 Light emitting drive substrate and manufacturing method thereof, light emitting substrate and display device
A light emitting drive substrate, a manufacturing method of the light emitting drive substrate, a light emitting substrate and a display device. The light emitting drive substrate includes a first light-emitting subregion, a second light-emitting subregion, a periphery area, a first power supply wire and a second power supply wire. A resistance between the first end and the second end of the first power supply wire is equal to a resistance between the first end and the second end of the second power supply wire, and a wire length between the first end and the second end of the first power supply wire is not equal to a wire length between the first end and the second end of the second power supply wire.
US11588083B2 High voltage monolithic LED chip with improved reliability
Monolithic LED chips are disclosed comprising a plurality of active regions on a submount, wherein the submount comprises integral electrically conductive interconnect elements in electrical contact with the active regions and electrically connecting at least some of the active regions in series. The submount also comprises an integral insulator element electrically insulating at least some of the interconnect elements and active regions from other elements of the submount. The active regions are mounted in close proximity to one another to minimize the visibility of the space during operation. The LED chips can also comprise layers structures and compositions that allow improved reliability under high current operation.
US11588080B2 Optical apparatus and three-dimensional modeling apparatus
The illumination optical system includes a beam shaper which converts an intensity distribution of a laser beam in each of a short axis direction and a long axis direction, which is a Gaussian distribution, into an intensity distribution of a parallel beam on a modulation surface of the optical modulator in each of the short axis direction and the long axis direction, which is a top hat distribution. The modulation surface and an irradiated surface are optically conjugated with respect to the long axis direction by a third lens and a fourth lens. Further, the modulation surface and a front focus position of the fourth lens are optically conjugated with respect to the short axis direction by a first lens, a second lens, and the third lens. The fourth lens condenses a beam having a top hat distribution at the front focus position onto the irradiated surface.
US11588077B2 Display with quantum dot or quantum platelet converter
A display device including an array of pixels, each pixel including at least three sub-pixels having a LED device emitting light with a blue color point. The first sub-pixel is designed to emit red light having a first color point, the second sub-pixel is designed to emit green light having a second color point, where the LED device of the third sub-pixel is covered with a third wavelength converting layer designed to emit light having a fourth color point. The fourth color point being such that the combination of light emitted by the LED device not converted by the wavelength converting layer and the light converted by the wavelength converting layer results in light having a third color point, where the first, the second and the third color points define a second color space in which a set color space is included.
US11588076B2 Radiation-emitting optoelectronic component
A radiation-emitting optoelectronic component may include a semiconductor chip or a semiconductor laser which, in operation of the component, emits a primary radiation in the UV region or in the blue region of the electromagnetic spectrum. The optoelectronic component may further include a conversion element comprising a first phosphor configured to convert the primary radiation at least partly to a first secondary radiation having a peak wavelength in the green region of the electromagnetic spectrum between 475 nm and 500 nm inclusive. The first phosphor may be or include BaSi4Al3N9, SrSiAl2O3N2, BaSi2N2O2, ALi3XO4, M*(1−x*−y*−z*) Z*z*[A*a*B*b*C*c*D*d*E*e*N4-n*On*], and combinations thereof.
US11588073B2 Light emitting device with reflector
This application describes a light emitting device or an assembly of light emitting devices. In the completed light emitting device, a distributed Bragg reflector minimizes the possibility of disturbing adjacent light emitting devices. Methods to fabricate such devices and assemblies of devices are also described.
US11588069B2 Photovoltaic devices and method of making
Embodiments of a photovoltaic device are provided herein. The photovoltaic device can include a layer stack and an absorber layer disposed on the layer stack. The absorber layer can include a first region and a second region. Each of the first region of the absorber layer and the second region of the absorber layer can include a compound comprising cadmium, selenium, and tellurium. An atomic concentration of selenium can vary across the absorber layer. The first region of the absorber layer can have a thickness between 100 nanometers to 3000 nanometers. The second region of the absorber layer can have a thickness between 100 nanometers to 3000 nanometers. A ratio of an average atomic concentration of selenium in the first region of the absorber layer to an average atomic concentration of selenium in the second region of the absorber layer can be greater than 10.
US11588066B2 Tandem solar cells having a top or bottom metal chalcogenide cell
Tandem solar cell configurations are provided where at least one of the cells is a metal chalcogenide cell. A four-terminal tandem solar cell configuration has two electrically independent solar cells stacked on each other. A two-terminal solar cell configuration has two electrically coupled solar cells (same current through both cells) stacked on each other. Carrier selective contacts can be used to make contact to the metal chalcogenide cell (s) to alleviate the troublesome Fermi level pinning issue. Carrier-selective contacts can also remove the need to provide doping of the metal chalcogenide. Doping of the metal chalcogenide can be provided by charge transfer. These two ideas can be practiced independently or together in any combination.
US11588058B2 Semiconductor device and manufacturing method thereof
Provided are a transistor which has electrical characteristics requisite for its purpose and uses an oxide semiconductor layer and a semiconductor device including the transistor. In the bottom-gate transistor in which at least a gate electrode layer, a gate insulating film, and the semiconductor layer are stacked in this order, an oxide semiconductor stacked layer including at least two oxide semiconductor layers whose energy gaps are different from each other is used as the semiconductor layer. Oxygen and/or a dopant may be added to the oxide semiconductor stacked layer.
US11588055B2 Thin-film transistor and method for manufacturing the same, array substrates, display devices
The present disclosure provides a thin-film transistor and a method for manufacturing the same, an array substrate, and a display device. The thin film transistor of the present disclosure include a plurality of insulating layers, among which at least one insulating layer on the low temperature polysilicon layer comprises organic material, so vias could be formed in the organic material by an exposing and developing process, thereby effectively avoiding the over-etching problem of the low temperature polycrystalline silicon layer caused by dry etching process. By adopting the method for manufacturing the film transistors of the present disclosure, the contact area and uniformity of the drain electrode and the low temperature polysilicon material layer can be increased; the conductivity can be improved; and the production cycle of products can be greatly reduced and thereby improving the equipment capacity.
US11588053B2 Display device and method of fabricating the same
A display device includes a buffer layer disposed on a substrate and comprising a first buffer film, and a second buffer film, wherein the first buffer film and the second buffer film are sequentially stacked in a thickness direction of the display device; a semiconductor pattern disposed on the buffer layer; a gate insulating layer disposed on the semiconductor pattern; and a gate electrode disposed on the gate insulating layer, wherein the first buffer film and the second buffer film comprise a same material, and a density of the first buffer film is greater than a density of the second buffer film.
US11588052B2 Sub-Fin isolation schemes for gate-all-around transistor devices
Sub-fin isolation schemes for gate-all-around (GAA) transistor devices are provided herein. In some cases, the sub-fin isolation schemes include forming one or more dielectric layers between each of the source/drain regions and the substrate. In some such cases, the one or more dielectric layers include material native to the gate sidewall spacers, for example, or other dielectric material. In other cases, the sub-fin isolation schemes include substrate modification that results in oppositely-type doped semiconductor material under each of the source/drain regions and in the sub-fin. The oppositely-type doped semiconductor material results in the interface between that material and each of the source/drain regions being a p-n or n-p junction to block the flow of carriers through the sub-fin. The various sub-fin isolation schemes described herein enable better short channel characteristics for GAA transistors (e.g., employing one or more nanowires, nanoribbons, or nanosheets), thereby improving device performance.
US11588051B2 Semiconductor device and fabrication method thereof
Semiconductor device is provided. The semiconductor device includes a substrate and a fin on the substrate. The fin includes channel layers stacked along a normal direction of a substrate surface. The channel layers includes a first channel layer and a second channel layer under the first channel layer, and the second channel layer has recessed sidewalls with respect to corresponding sidewalls of the first channel layer. The semiconductor device further includes a gate structure, disposed around each of the first channel layer and the second channel layer; and a doped source/drain layer in the fin on two sides of the gate structure. The doped source/drain layer is respectively connected to the second channel layer and the first channel layer.
US11588047B2 Semiconductor component and manufacturing method thereof
The present disclosure discloses a semiconductor component and a method for forming the semiconductor component. The semiconductor component includes a substrate, a III-V layer, a doped III-V layer, a gate contact, a first field plate, and a second field plate. The gate contact has first and second sides away from the doped III-V layer. The first field plate has first and second sides, and the first side is closer to the second side of the gate contact than the second side. The second field plate has first and second sides, and the first side is closer to the second side of the gate contact than the second side. The first field plate is closer to the doped III-V layer than the second field plate and the first side and the second side of the gate contact.
US11588044B2 Bipolar junction transistor (BJT) structure and related method
Embodiments of the disclosure provide a bipolar junction transistor (BJT) structure and related method. A BJT according to the disclosure may include a base over a semiconductor substrate. A collector is over the semiconductor substrate and laterally abuts a first horizontal end of the base. An emitter is over the semiconductor substrate and laterally abuts a second horizontal end of the base opposite the first horizontal end. A horizontal interface between the emitter and the base is smaller than a horizontal interface between the collector and the base.
US11588043B2 Bipolar transistor with elevated extrinsic base and methods to form same
Aspects of the disclosure provide a bipolar transistor structure with an elevated extrinsic base, and related methods to form the same. A bipolar transistor according to the disclosure may include a collector on a substrate, and a base film on the collector. The base film includes a crystalline region on the collector and a non-crystalline region adjacent the crystalline region. An emitter is on a first portion of the crystalline region of the base film. An elevated extrinsic base is on a second portion of the crystalline region of the base film, and adjacent the emitter.
US11588039B2 Semiconductor device
A semiconductor device includes an active region in a substrate, at least one nano-sheet on the substrate and spaced apart from a top surface of the active region, a gate above or below the nano-sheet, a gate insulating layer between the at least one nano-sheet and the gate, and source/drain regions on the active region at both sides of the at least one nano-sheet. The at least one nano-sheet includes a channel region; a gate disposed above or below the nano-sheet and including a single metal layer having different compositions of metal atoms of a surface and an inside thereof; a gate insulating layer between the nano-sheet and the gate; and source/drain regions disposed in the active region of both sides of the at least one nano-sheet.
US11588038B2 Circuit structure with gate configuration
The present disclosure provides a semiconductor structure in accordance with some embodiment. The semiconductor structure includes a semiconductor substrate having a first circuit region and a second circuit region; active regions extended from the semiconductor substrate and surrounded by isolation features; first transistors that include first gate stacks formed on the active regions and disposed in the first circuit region, the first gate stacks having a first gate pitch less than a reference pitch; and second transistors that include second gate stacks formed on the active regions and disposed in the second circuit region, the second gate stacks having a second pitch greater than the reference pitch. The second transistors are high-frequency transistors and the first transistors are logic transistors.
US11588035B2 Semiconductor devices
A semiconductor device includes a substrate having a first region and a second region, gate electrodes stacked in the first region and forming a pad region having a stepped shape extending by different lengths in the second region, interlayer insulating layers alternately stacked with the gate electrodes, channel structures passing through the gate electrodes in the first region and including a channel layer, separation regions passing through the gate electrodes in the first and second regions, an etch-stop layer disposed on uppermost gate electrodes, among the gate electrodes forming the pad region in the second region, not to overlap the first region and the separation regions, a cell region insulating layer covering the gate electrodes and the etch-stop layer, and contact plugs passing through the cell region insulating layer and the etch-stop layer in the second region and connected to the gate electrodes in the pad region.
US11588034B2 Field effect transistor including gate insulating layer formed of two-dimensional material
Provided is a field effect transistor including a gate insulating layer having a two-dimensional material. The field effect transistor may include a first channel layer; a second channel layer disposed on the first channel layer; a gate insulating layer disposed on the second channel layer; a gate electrode disposed on the gate insulating layer; a first electrode electrically connected to the first channel layer; and a second electrode electrically connected to the second channel layer. Here, the gate insulating layer may include an insulative, high-k, two-dimensional material.
US11588033B2 Uniform threshold voltage non-planar transistors
Transistors having nonplanar electron channels in the channel width plane have one or more features that cause the different parts of the nonplanar electron channel to turn on at substantially the same threshold voltage. Advantageously, such transistors have substantially uniform threshold voltage across the nonplanar electron channel. Devices, image sensors, and pixels incorporating such transistors are also provided, in addition to methods of manufacturing the same.
US11588032B2 Three-dimensional semiconductor memory devices and methods of fabricating the same
Three-dimensional semiconductor memory devices and methods of fabricating the same. The three-dimensional semiconductor devices include an electrode structure with sequentially-stacked electrodes disposed on a substrate, semiconductor patterns penetrating the electrode structure, and memory elements including a first pattern and a second pattern interposed between the semiconductor patterns and the electrode structure, the first pattern vertically extending to cross the electrodes and the second pattern horizontally extending to cross the semiconductor patterns.
US11588031B2 Semiconductor structure for memory device and method for forming the same
A semiconductor structure for a memory device includes a first gate structure and a second gate structure adjacent to the first gate structure. The second gate structure includes a first layer and a second layer, and the first layer is between the second layer and the first gate structure. The first layer and the second layer include a same semiconductor material and same dopants. The first layer has a first dopant concentration, and the second layer has a second dopant concentration different from the firs dopant concentration.
US11588024B2 High voltage blocking III-V semiconductor device
A semiconductor device includes a type IV semiconductor base substrate, a first type III-V semiconductor layer formed on a first surface of the base substrate, and a second type III-V semiconductor layer with a different bandgap as the first type III-V being formed on the first type III-V semiconductor layer. The semiconductor device further includes first and second electrically conductive device terminals each being formed on the second type III-V semiconductor layer and each being in ohmic contact with the two-dimensional charge carrier gas. The base substrate includes a first highly doped island that is disposed directly beneath the second device terminal and extends to the first surface of the base substrate. The first highly-doped island is laterally disposed between portions of semiconductor material having a lower net doping concentration than the first highly-doped island.
US11588019B2 Bipolar junction transistor with constricted collector region having high gain and early voltage product
A semiconductor device includes a bipolar junction transistor having a collector, a base, and an emitter. The collector includes a current collection region, a constriction region laterally adjacent to the current collection region, and a contact region laterally adjacent to the constriction region, located opposite from the current collection region. The current collection region, the constriction region laterally, and the contact region all have the same conductivity type. The base includes a current transmission region contacting the current collection region and a constricting well laterally adjacent to, and contacting, the current transmission region and contacting the constriction region. The current transmission region and the constricting well have an opposite conductivity type than the current collection region, the constriction region laterally, and the contact region.
US11588016B2 Semiconductor device having a super junction structure and method of manufacturing the same
A semiconductor device having a super junction and a method of manufacturing the semiconductor device capable of obtaining a high breakdown voltage are provided, whereby charge balance of the super junction is further accurately controlled in the semiconductor device that is implemented by an N-type pillar and a P-type pillar. The semiconductor device includes a semiconductor substrate; and a blocking layer including a first conductive type pillar and a second conductive type pillar that extend in a vertical direction on the semiconductor substrate and that are alternately arrayed in a horizontal direction, wherein, in the blocking layer, a density profile of a first conductive type dopant may be uniform in the horizontal direction, and the density profile of the first conductive type dopant may vary in the vertical direction.
US11588012B2 Semiconductor devices and method of manufacturing the same
A method of manufacturing a semiconductor device includes forming a preliminary lower electrode layer on a substrate, the preliminary lower electrode layer including a niobium oxide; converting at least a portion of the preliminary lower electrode layer to a first lower electrode layer comprising a niobium nitride by performing a nitridation process on the preliminary lower electrode layer; forming a dielectric layer on the first lower electrode layer; and forming an upper electrode on the dielectric layer.
US11588010B2 Capacitor structure
A capacitor structure includes a first metal structure, a second metal structure, and a dielectric material. The second metal structure is disposed below the first metal structure. Each of the first metal structure and the second metal structure includes at least three conductive components. The conductive components have a fish-bone shape. The dielectric material is disposed in a plurality of isolators of the first metal structure, in a plurality of isolators of the second metal structure, and between the first metal structure and the second metal structure.
US11588006B2 Displaying backplane and fabricating method thereof, and displaying device
A displaying region of a displaying backplane is delimited into a first displaying region and a second displaying region, the light transmittance of the first displaying region is less than that of the second displaying region, the displaying backplane has a metal signal line in a trace region, a plurality of sub-pixels located within the first displaying region are connected to a common cathode, and the common cathode is connected to the metal signal line. At least some of the sub-pixels located within the second displaying region are connected to independent cathodes, the independent cathodes are separate from each other, the displaying backplane further includes a first electrically conductive layer, and the independent cathodes are connected to the metal signal line via the first electrically conductive layer. The first electrically conductive layer is a planar electrode, and the orthographic projection of the planar electrode covers the second displaying region.
US11588004B2 Foldable, flexible display apparatus and method of manufacturing the same
A foldable, flexible display apparatus includes a flexible display panel which displays an image and includes a display side on which the image is displayed and of which portions thereof face each other in a folded state of the flexible display apparatus; a cover window on the display side of the flexible display panel and including: a window film comprising a transparent plastic film having a modulus of elasticity of about 6.3 gigapascals or more; and a coating layer on the window film, and configured to be transparent and to protect the window film from physical damage thereto; and an adhesive layer between the window film and the display side of the flexible display panel, and configured to have elasticity and bond the window film and the flexible display panel to each other.
US11588000B2 Display device
A display device that can improve transmittance of a sensor area that overlaps a display area includes a substrate that includes a display area in which a plurality of pixels are disposed, a sensor area in the display area, the sensor area overlapping a sensor, and a wiring connection area between the display area and the sensor area; a first wiring and a second wiring disposed in the display area and that extend in a first direction and are connected to the plurality of pixels; and a third wiring disposed in the sensor area and that extends in the first direction, wherein the third wiring is connected to the second wiring and overlaps the first wiring in a plan view. The third wiring is spaced apart from the first wiring with a first insulating layer interposed therebetween.
US11587997B2 Display apparatus
A display apparatus includes a first TFT in a display area including a first semiconductor pattern including a polysilicon, a first gate electrode overlapping with the first semiconductor pattern under conditions that a first gate insulating layer is interposed, and first source and drain electrodes connected to the first semiconductor pattern, a second TFT in the display area including a second semiconductor pattern including a first oxide semiconductor, a second gate electrode overlapping with the second semiconductor pattern under conditions that second and third gate insulating layers are interposed, second source and drain electrodes connected to the second semiconductor pattern, and a third TFT in a non-display area including a third semiconductor pattern including a second oxide semiconductor, a third gate electrode overlapping with the third semiconductor pattern under conditions that the third gate insulating layer is interposed, and third source and drain electrodes connected to the third semiconductor pattern.
US11587996B2 Display apparatus
A display apparatus includes a first transistor, a first pixel electrode, a second transistor, and a second pixel electrode. The first transistor includes a first drain electrode. The first pixel electrode is positioned between an edge of the display apparatus and a center of the display apparatus and includes a first recessed structure. The first recessed structure directly contacts the first drain electrode. The second transistor includes a second drain electrode. The second pixel electrode is positioned between the edge of the display apparatus and the first pixel electrode and includes at least one recessed structure. The at least one recessed structure includes a second recessed structure. The second recessed structure directly contacts the second drain electrode. A total maximum width of the at least one recessed structure is greater than a maximum width of the first recessed structure.
US11587993B2 Display panel including barrier holes formed through stack of planarization layer and pixel defining layer
A display panel and a manufacturing method thereof are provided in the present application. The display panel includes a substrate, a planarization layer disposed on the substrate, and a pixel definition layer disposed on the planarization layer. The display panel includes a test region, wherein a plurality of virtual pixel openings are disposed in the pixel definition layer positioned in the test region, and a plurality of barrier holes in a one-to-one correspondence to the virtual pixel openings are disposed in the planarization layer positioned in the test region, and a barrier layer fills each of the barrier holes.
US11587990B2 Display device and touch input system including the same
A display device includes a display unit comprising a plurality of light-emitting areas emitting light. A touch sensing unit is disposed on the display unit to sense a touch. A buffer part is disposed on the touch sensing unit to cushion an external impact. A metal pattern is disposed on the buffer part and has a mesh structure. The metal pattern includes a plurality of code patterns having a cut shape that encodes position information.
US11587980B2 Display device
A display device includes a display substrate, a light emitting element layer disposed on a surface of the display substrate and including display pixels, a sensing substrate having a surface attached to another surface of the display substrate, a sensing element layer disposed on another surface of the sensing substrate and including sending pixels that each sense light of a color, and a photorefractive layer disposed on the sensing element layer and including micro lenses.
US11587978B2 Phase change memory with improved recovery from element segregation
A method is presented for reducing element segregation of a phase change material (PCM). The method includes forming a bottom electrode, constructing a layered stack over the bottom electrode, the layered stack including the PCM separated by one or more electrically conductive and chemically stable materials, and forming a top electrode over the layered stack. The PCM is Ge—Sb—Te (germanium-antimony-tellurium or GST) and the one or more electrically conductive and chemically stable materials are titanium nitride (TiN) segments.
US11587977B2 Memory device and method of manufacturing the same
A method of manufacturing a memory device includes sequentially forming and then etching a preliminary selection device layer, a preliminary middle electrode layer, and a preliminary variable resistance layer on a substrate, thereby forming a selection device, a middle electrode, and a variable resistance layer. At least one of a side portion of the selection device or a side portion of the variable resistance layer is removed so that a first width of the middle electrode in a first direction parallel to a top of the substrate is greater than a second width of the variable resistance layer in the first direction or a third width of the selection device in the first direction. A capping layer is formed on at least one of a side wall of the etched side portion of the selection device or a side wall of the etched side portion of the variable resistance layer.
US11587974B2 Micro LED transferring method and display module manufactured by the same
A micro light emitting diode (LED) transferring method includes setting a micro LED transfer substrate and a target substrate to initial positions and transferring a plurality of micro LEDs arranged in a partial region of the micro LED transfer substrate to the target substrate. Once the micro LEDs in the partial region are transferred to the target substrate, the micro LED transfer substrate is rotated and a plurality of micro LEDs, arranged in a remaining region of the micro LED transfer substrate, are then transferred to the target substrate.
US11587972B2 Wafer level light-emitting diode array
A light emitting device including a substrate, first and second light emitting diodes (LEDs) each including first and second semiconductor layers, a first upper electrode disposed on the second LED, electrically connected to the first LED, and insulated from the second semiconductor layer of the first LED, and a second upper electrode disposed on the second LED, electrically connected to the second LED, and insulated from the second semiconductor layer of the second LED, in which a portion of the substrate between the LEDs does not overlap the semiconductor layers, the first upper electrode has a portion electrically connected to the second semiconductor layer of the second LED and covering the first portion and portions of the LEDs, and the second upper electrode has a groove partially enclosing the portion of the first upper electrode in a plan view.
US11587968B2 Solid-state imaging device and electronic apparatus
The present technology relates to a solid-state imaging device capable of suppressing deterioration in dark characteristics, and an electronic apparatus. The device includes a photoelectric conversion section; a trench between the photoelectric conversion sections in adjacent pixels; and a PN junction region on a sidewall of the trench and including a P-type region and an N-type region, the P-type region having a protruding region. The device can include an inorganic photoelectric conversion section having a pn junction and an organic photoelectric conversion section having an organic photoelectric conversion film that are stacked in a depth direction within a same pixel; and a PN junction region on a sidewall of the inorganic photoelectric conversion section. The PN junction region can further include a first P-type region and an N-type region; and a second P-type region. The present technology can be applied to, for example, a back-illuminated CMOS image sensor.
US11587966B2 Fingerprint acquisition apparatus, display panel and electronic device
A fingerprint acquisition apparatus includes a plurality of photoelectric conversion units and a first shading pattern. The first shading pattern includes at least one first shading block including a first opening, and an orthographic projection of the first opening in the first shading block on the base substrate is within an orthographic projection of a target photoelectric conversion unit corresponding to the first shading block on the base substrate.
US11587965B2 Display panel and manufacturing method thereof, display device and operation method thereof
A color filter (CF) substrate, a manufacturing method thereof, a display panel, a display device and an operation method thereof are provided. The CF substrate includes: a base substrate, a CF pixel array and image sensors. The CF pixel array is provided on the base substrate and includes CF pixel units in an array. The image sensors are provided on the CF pixel array, correspond to the CF pixel units, and are configured to receive light travelling through the CF pixel units for imaging.
US11587963B2 Solid-state imaging element and electronic apparatus
To enhance a charge transfer efficiency in a transfer gate having a vertical gate electrode. A solid-state imaging element includes a photoelectric conversion section, a charge accumulating section, and a transfer gate. The photoelectric conversion section is formed in a depth direction of a semiconductor substrate, and generates charges corresponding to a quantity of received light. The charge accumulating section accumulates the charges generated by the photoelectric conversion section. The transfer gate transfers the charges generated by the photoelectric conversion section to the charge accumulating section. The transfer gate includes a plurality of vertical gate electrodes which is filled to a predetermined depth from an interface of the semiconductor substrate, and at least a part of a diameter is different in the depth direction of the semiconductor substrate.
US11587962B2 Imaging system including analog compression for simultaneous pulse detection and imaging
An imaging system includes a light sensor, a pulse detection imaging (PDI) circuit, and an image processing unit. The light sensor generates one or both of an image signal and a pulse signal. The pulse PDI circuit includes a first terminal in signal communication with the light sensor to receive one or both of the image signal and the pulse signal and a second terminal in signal communication with a voltage source. The image processing unit is in signal communication with the PDI circuit to receive one or both of the image signal and the pulse signal and to simultaneously perform imagery and pulse detection based on the image signal and the pulse signal, respectively.
US11587960B2 Photodetector
A photodetector device comprising n-type and p-type light absorbing regions arranged to form a pn-junction and n+ and p+ contact regions connected to respective contacts. The light absorbing regions and the contact regions are arranged in a sequence n+ p n p+ so that, after a voltage applied between the n+ and p+ contacts is switched from a reverse bias to a forward bias, electrons and holes which are generated in the light absorbing regions in response to photon absorption drift towards the p+ and n+ contact regions respectively, which causes current to start to flow between the contacts after a time delay which is inversely proportional to the incident light intensity.
US11587957B2 Semiconductor device
A semiconductor device that is less influenced by variations in characteristics between transistors or variations in a load, and is efficient even for normally-on transistors is provided. The semiconductor device includes at least a transistor, two wirings, three switches, and two capacitors. A first switch controls conduction between a first wiring and each of a first electrode of a first capacitor and a first electrode of a second capacitor. A second electrode of the first capacitor is connected to a gate of the transistor. A second switch controls conduction between the gate and a second wiring. A second electrode of the second capacitor is connected to one of a source and a drain of the transistor. A third switch controls conduction between the one of the source and the drain and each of the first electrode of the first capacitor and the first electrode of the second capacitor.
US11587955B2 TFT backplane and micro-LED display
A TFT backplane and a micro-LED display are provided A metal light shielding layer is placed at the lower surface of the substrate and the position of the metal light shield layer is corresponding to the active layer. This reduces the size of the side frame, which is used when assembling multiple displays in a large-size micro LED display application. This could meet the demand of large-size micro-LED display. In addition, this could further reduce the steps of depositing and patterning a conventional shield metal layer in a convention process of manufacturing the TFT. Therefore, the manufacturing steps of the TFT backplane are simplified and thus the manufacturing cost is reduced.
US11587950B2 Memory device and method of forming the same
A memory device includes a multi-layer stack, a plurality of channel layers and a plurality of ferroelectric layers. The multi-layer stack is disposed on a substrate and includes a plurality of gate layers and a plurality of dielectric layers stacked alternately. The plurality of channel layers penetrate through the multi-layer stack and are laterally spaced apart from each other, wherein the plurality of channel layers include a first channel layer and a second channel layer, and a first electron mobility of the first channel layer is different from a second electron mobility of the second channel layer. Each of the plurality of channel layers are spaced apart from the multi-layer stack by one of the plurality of ferroelectric layers, respectively.
US11587943B2 Bonded die assembly using a face-to-back oxide bonding and methods for making the same
A first semiconductor die includes a first substrate, first semiconductor devices, first dielectric material layers having a first silicon oxide surface as an uppermost surface and forming first metal interconnect structures. A second semiconductor die includes a second substrate, second semiconductor devices, and second dielectric material layers forming second metal interconnect structures. A handle substrate is attached to a topmost surface of the second semiconductor die. The second substrate is thinned, and a second silicon oxide surface is provided as a bottommost surface of the second semiconductor die. The second semiconductor die is bonded to the first semiconductor die by inducing oxide-to-oxide bonding between the second silicon oxide surface and the first silicon oxide surface. The handle substrate is detached, and inter-die connection via structures are formed through the second substrate and the bonding interface to contact the first metal interconnect structures. External bonding pads may be subsequently formed.
US11587942B2 Semiconductor memory device
According to one embodiment, a semiconductor memory device includes: a substrate; a semiconductor above the substrate functioning as a channel of a cell transistor; a first silicon nitride layer above the semiconductor having an internal compressive stress of a first value; and a second silicon nitride layer above the first silicon nitride layer having an internal compressive stress of a second value. The second value is greater than the first value.
US11587940B2 Three-dimensional semiconductor memory devices
Disclosed is a three-dimensional semiconductor memory device comprising a peripheral circuit structure on a first substrate, a second substrate on the peripheral circuit structure, first to fourth stack structures spaced apart in a first direction on the second substrate, first and second support connectors between the second and third stack structures, third and fourth support connectors between the third and fourth stack structures, and a through dielectric pattern penetrating the first stack structure and the second substrate. A first distance between the first and second support connectors is different from a second distance between the third and fourth support connectors.
US11587939B2 Etch method for opening a source line in flash memory
Various embodiments of the present disclosure are directed towards a method for opening a source line in a memory device. An erase gate line (EGL) and the source line are formed elongated in parallel. The source line underlies the EGL and is separated from the EGL by a dielectric layer. A first etch is performed to form a first opening through the EGL and stops on the dielectric layer. A second etch is performed to thin the dielectric layer at the first opening, wherein the first and second etches are performed with a common mask in place. A silicide process is performed to form a silicide layer on the source line at the first opening, wherein the silicide process comprises a third etch with a second mask in place and extends the first opening through the dielectric layer. A via is formed extending through the EGL to the silicide layer.
US11587931B2 Multiplexor for a semiconductor device
A memory device can comprise an array of memory cells comprising a plurality of vertically stacked tiers of memory cells, a respective plurality of horizontal access lines coupled to each of the plurality of tiers, and a plurality of vertical sense lines coupled to each of the plurality of tiers. The array of memory cells can further comprise a plurality of multiplexors each coupled to a respective vertical sense line and configured to electrically couple the respective vertical sense line to a horizontal sense line. The memory device can also comprise a semiconductor under the array (SuA) circuitry, comprising a plurality of sense amplifiers, each sense amplifier coupled to a respective subset of the plurality of multiplexors.
US11587930B2 3-D DRAM structures and methods of manufacture
Memory devices incorporating bridged word lines are described. The memory devices include a plurality of active regions spaced along a first direction, a second direction and a third direction. A plurality of conductive layers is arranged so that at least one conductive layer is adjacent to at least one side of each of the active regions along the third direction. A conductive bridge extends along the second direction to connect each of the conductive layers to one or more adjacent conductive layer. Some embodiments include an integrated etch stop layer. Methods of forming stacked memory devices are also described.
US11587929B2 Semiconductor memory device
A semiconductor memory device includes a stack including a plurality of layers vertically stacked on a substrate, each of the layers including a bit line extending in a first direction and a semiconductor pattern extending from the bit line in a second direction crossing the first direction, a gate electrode along each of the semiconductor patterns stacked, a vertical insulating layer on the gate electrode, a stopper layer, and a data storing element electrically connected to each of the semiconductor patterns. The data storing element includes a first electrode electrically connected to each of the semiconductor patterns, a second electrode on the first electrode, and a dielectric layer between the first and second electrodes. The stopper layer is between the vertical insulating layer and the second electrode.
US11587926B2 Semiconductor structure
Semiconductor structures are provided. Each transistor includes a first source/drain region over a semiconductor fin, a second source/drain region over the semiconductor fin, a channel region in the semiconductor fin and between the first and second source/drain regions, and a metal gate electrode formed on the channel region and extending in a second direction. In a first transistor of the transistors, the first source/drain region is formed between the metal gate electrode of the first transistor and the metal gate electrode of a second transistor of the transistors. The second source/drain region is formed between the metal gate electrode of the first transistor and the dielectric-base dummy gate. A first contact of the first source/drain region is separated from a spacer of the metal gate electrode of the first transistor. A second contact of the second source/drain region is in contact with a spacer of the dielectric-base dummy gate.
US11587922B2 Process control for package formation
A method includes bonding a first and a second device die to a third device die, forming a plurality of gap-filling layers extending between the first and the second device dies, and performing a first etching process to etch a first dielectric layer in the plurality of gap-filling layers to form an opening. A first etch stop layer in the plurality of gap-filling layers is used to stop the first etching process. The opening is then extended through the first etch stop layer. A second etching process is performed to extend the opening through a second dielectric layer underlying the first etch stop layer. The second etching process stops on a second etch stop layer in the plurality of gap-filling layers. The method further includes extending the opening through the second etch stop layer, and filling the opening with a conductive material to form a through-via.
US11587920B2 Bonded semiconductor die assembly containing through-stack via structures and methods for making the same
A bonded assembly includes a first three-dimensional memory die containing a first alternating stack of first insulating layers and first electrically conductive layers and first memory structures located in the first alternating stack, a second three-dimensional memory die bonded to the first three-dimensional memory die, and containing a second alternating stack of second insulating layers and second electrically conductive layers, and second memory structures located in the second alternating stack. The first electrically conductive layers have different lateral extents along the first horizontal direction that decrease with a respective vertical distance from driver circuit devices, and the second electrically conductive layers have different lateral extents along the first horizontal direction that increase with the respective vertical distance from the driver circuit devices.
US11587919B2 Microelectronic devices, related electronic systems, and methods of forming microelectronic devices
A microelectronic device comprises a first die comprising a memory array region comprising a stack structure comprising vertically alternating conductive structures and insulative structures, and vertically extending strings of memory cells within the stack structure. The first die further comprises first control logic region comprising a first control logic devices including at least a word line driver. The microelectronic device further comprise a second die attached to the first die, the second die comprising a second control logic region comprising second control logic devices including at least one page buffer device configured to effectuate a portion of control operations of the vertically extending string of memory cells. Related microelectronic devices, electronic systems, and methods are also described.
US11587918B2 Semiconductor devices, semiconductor device packages, electronic systems including same, and related methods
Semiconductor devices and semiconductor device packages may include at least one first semiconductor die supported on a first side of a substrate. The at least one first semiconductor die may include a first active surface. A second semiconductor die may be supported on a second, opposite side of the substrate. The second semiconductor die may include a second active surface located on a side of the second semiconductor die facing the substrate. The second semiconductor die may be configured to have higher median power consumption than the at least one first semiconductor die during operation. An electronic system incorporating a semiconductor device package is disclosed, as are related methods.
US11587916B2 Package structure and manufacturing method thereof
A package structure includes a semiconductor die, an antenna substrate structure, and a redistribution layer. The semiconductor die is laterally wrapped by a first encapsulant. The antenna substrate structure is disposed over the semiconductor die, wherein the antenna substrate structure includes a circuit substrate and at least one antenna element inlaid in the circuit substrate. The redistribution layer is disposed between the semiconductor die and the antenna substrate structure, wherein the at least one antenna element is electrically connected with the semiconductor die through the circuit substrate and the redistribution layer. The at least one antenna element includes patch antennas.
US11587914B2 LED chip and manufacturing method of the same
A light emitting chip including a first LED sub-unit, a second LED sub-unit disposed on the first LED sub-unit, a third LED sub-unit disposed on the second LED sub-unit, a passivation layer disposed on the third LED sub-unit, and a first connection electrode electrically connected to at least one of the first, second, and third LED sub-units, in which the first connection electrode and the third LED sub-unit form a first angle defined between an upper surface of the third LED sub-unit and an inner surface of the first connection electrode that is less than about 80°.
US11587913B2 Light emitting diode package structure
A light emitting diode package structure is provided. The light emitting diode package structure includes first and second chips. A value of an intensity of a peak wavelength of a first shoulder wave of the first chip divided by an intensity of a peak wavelength of a first main wave of the first chip is defined as a first intensity ratio. A value of an intensity of a peak wavelength of a second shoulder wave of the second chip divided by an intensity of a peak wavelength of a second main wave of the second chip is defined as a second intensity ratio. The first and second chips satisfy “a difference between the intensities of the peak wavelengths of the first and second main waves being less than or equal to 2.5 nanometers” and “a difference between the first and second intensity ratios being greater than 0.1”.
US11587911B2 Process for producing a high-frequency-compatible electronic module
The field of the invention is that of producing 3D electronic modules, compatible with components operating beyond 1 GHz. The invention relates to a 3D electronic module featuring an interconnection between a horizontal conductor and a vertical conductor to which it is connected exhibits, in a vertical plane, a non-zero curvature. It also relates to the associated production process.
US11587910B2 Stacked semiconductor structure and method
A device comprises a first chip comprising a first connection pad embedded in a first dielectric layer and a first bonding pad embedded in the first dielectric layer, wherein the first bonding pad comprises a first portion and a second portion, the second portion being in contact with the first connection pad and a second chip comprising a second bonding pad embedded in a second dielectric layer of the second chip, wherein the first chip and the second chip are face-to-face bonded together through the first bonding pad the second bonding pad.
US11587909B2 High bandwidth die to die interconnect with package area reduction
Package structure with folded die arrangements and methods of fabrication are described. In an embodiment, a package structure includes a first die and vertical interposer side-by-side. A second die is face down on an electrically connected with the vertical interposer, and a local interposer electrically connects the first die with the vertical interposer.
US11587907B2 Package structure
A package structure includes a first die, a second die, a bonding die, a gap fill structure and conductive vias. The bonding die includes a bonding dielectric layer and bonding pads. The bonding dielectric layer is bonded to a first dielectric layer of the first die and a second dielectric layer of the second die. The bonding pads are embedded in the bonding dielectric layer and electrically bonded to a first conductive pad of the first die and a second conductive pad of the second die. The gap fill structure is disposed on the first die and the second die, and laterally surrounds the bonding die. The conductive vias penetrates through the gap fill structure to electrically connect to the first die and the second die.
US11587906B2 Package structures having underfills
A package structure includes a lower substrate, substrate connection terminals on the lower substrate, a semiconductor package on the substrate connection terminals, the semiconductor package including a package substrate and a first encapsulant covering the package substrate, first underfills between the lower substrate and the semiconductor package, the first underfills covering corner portions of the semiconductor package, as viewed in a plan view, and covering at least one of the substrate connection terminals, and a second underfill between the lower substrate and the semiconductor package, the second underfill covering a side surface of the semiconductor package in a plan view.
US11587905B2 Multi-chip package and manufacturing method thereof
A multi-chip package and a manufacturing method thereof are provided. The multi-chip package includes a redistribution circuit structure; a first semiconductor chip disposed on the redistribution structure and having a first active surface on which a first conductive post is disposed; a second semiconductor chip disposed above the first semiconductor chip and having a second active surface on which a first conductor is disposed; and a first encapsulant disposed on the redistribution circuit structure and encapsulating at least the first semiconductor chip, wherein the first conductive post and the first conductor are aligned and bonded to each other to electrically connect the first semiconductor chip and the second semiconductor chip.
US11587903B2 Semiconductor device package and a method of manufacturing the same
At least some embodiments of the present disclosure relate to a semiconductor device package. The semiconductor device package includes a first substrate with a first surface and a second surface opposite to the first surface, a second substrate adjacent to the first surface of the first substrate, and an encapsulant encapsulating the first substrate and the second substrate. The first substrate defines a space. The second substrate covers the space. The second surface of the first substrate is exposed by the encapsulant. A surface of the encapsulant is coplanar with the second surface of the first substrate or protrudes beyond the second surface of the first substrate.
US11587891B2 Ceramic semiconductor package seal rings
In examples, a semiconductor package comprises a ceramic substrate and first and second metal layers covered by the ceramic substrate. The first metal layer is configured to carry signals at least in a 20 GHz to 28 GHz frequency range. The package comprises a semiconductor die positioned above the first and second metal layers and coupled to the first metal layer. The package comprises a ground shield positioned in a horizontal plane between the semiconductor die and the first metal layer, the ground shield including an orifice above a portion of the first metal layer. The package includes a metal seal ring coupled to a top surface of the ceramic substrate, the metal seal ring having a segment that is vertically aligned with a segment of the ground shield. The segment of the ground shield is between the orifice of the ground shield and a horizontal center of the ground shield. The package comprises a metal lid coupled to a top surface of the metal seal ring.
US11587890B2 Tamper-resistant circuit, back-end of the line memory and physical unclonable function for supply chain protection
A tamper-resistant memory is formed by placing a solid-state memory array between metal wiring layers in the upper portion of an integrated circuit (back-end of the line). The metal layers form a mesh that surrounds the memory array to protect it from picosecond imaging circuit analysis, side channel attacks, and delayering with electrical measurement. Interconnections between a memory cell and its measurement circuit are designed to protect each layer below, i.e., an interconnecting metal portion in a particular metal layer is no smaller than the interconnecting metal portion in the next lower layer. The measurement circuits are shrouded by the metal mesh. The substrate, metal layers and memory array are part of a single monolithic structure. In an embodiment adapted for a chip identification protocol, the memory array contains a physical unclonable function identifier that uniquely identifies the tamper-resistant integrated circuit, a symmetric encryption key and a release key.
US11587889B2 Reduced pattern-induced wafer deformation
A semiconductor device wafer includes a plurality of device patterns formed in or over a semiconductor substrate, and a scribe area from which the device patterns are excluded. A plurality of dummy features are located in at least one material level in the scribe area, including over laser scribe dots formed in the semiconductor substrate.
US11587888B2 Moisture seal for photonic devices
The present disclosure relates to semiconductor structures and, more particularly, to a moisture seal for photonic devices and methods of manufacture. The structure includes: a first trench in at least one substrate material; a guard ring structure with an opening and which at least partially surrounds the first trench; and a second trench at a dicing edge of the substrate, the second trench being lined on sidewalls with barrier material and spacer material over the barrier material.
US11587884B2 Patterned ground shield device including multiple pattered ground shield layers
A patterned ground shield device includes a first patterned ground shield layer and a second patterned ground shield layer. The first patterned ground shield layer is located on a first layer, and the second patterned ground shield layer is located on a second layer. The first patterned ground shield layer includes a plurality of first strip-shaped structures, and each of the first strip-shaped structures includes an oxide diffusion material. The second patterned ground shield layer includes a plurality of second strip-shaped structures, and each of the second strip-shaped structures includes a conductive material, wherein the first strip-shaped structures and the second strip-shaped structures are disposed to each other in an interlaced manner.
US11587879B2 Electronic apparatus and manufacturing method thereof
An electronic device includes a first part, and a circuit plate including a circuit substrate, a plating film made of a plating material and being disposed on a front surface of the substrate. The plating film includes a first part region on which the first part is disposed via a first solder, and a liquid-repellent region extending along a periphery side of the first part region in a surface layer of the plating film, and having a liquid repellency greater than a liquid repellency of the plating film. The liquid-repellent region includes a resist region. The plating film includes a remaining portion between the liquid-repellent region and the front surface of the circuit substrate in a thickness direction of the plating film orthogonal to the front surface. The remaining portion is made of the plating material and is free of the oxidized plating material.
US11587878B2 Substrate having electronic component embedded therein
A substrate having an electronic component embedded therein includes a core structure including a first insulating body and core wiring layers and having a cavity penetrating through a portion of the first insulating body, an electronic component disposed in the cavity, an insulating material covering at least a portion of each of the core structure and the electronic component and disposed in at least a portion of the cavity, a wiring layer disposed on the insulating material, and a build-up structure disposed on the insulating material and including a second insulating body and a build-up wiring layer. A material of the first insulating body has a coefficient of thermal expansion (CTE) less than a CTE of the second insulating body, and the insulating material has a CTE less than a CTE of a material of the second insulating body.
US11587870B2 Apparatus comprising aluminum interconnections, memory devices comprising interconnections, and related methods
An apparatus comprising a multilevel wiring structure comprising aluminum interconnections. The aluminum interconnections comprise a first portion, a second portion, and a third portion, where the second portion is between the first portion and the third portion. The third portion comprises a greater width in a lateral direction than a width in the lateral direction of the second portion. A memory device comprising a memory array comprising memory cells and a control logic component electrically connected to the memory array. At least one of the memory cells comprises a multilevel wiring structure comprising interconnect structures, where the interconnect structures comprise a first portion, a second portion adjacent to the first portion, and a third portion adjacent to the second portion. The third portion comprises a greater width in a lateral direction than a width in the lateral direction of the second portion. Related apparatus, memory devices, and methods are also disclosed.
US11587865B2 Semiconductor device including capacitor and resistor
A semiconductor device includes a capacitor and a resistor. The capacitor includes a first plate, a capacitor dielectric layer disposed over the first plate, and a second plate disposed over the capacitor dielectric layer. The resistor includes a thin film. The thin film of the resistor and the first plate of the capacitor, formed of a same conductive material, are defined in a single patterning process.
US11587863B2 Semiconductor structure and method of forming semiconductor package
The present disclosure provides a semiconductor structure, including a capacitor. The capacitor includes a first electrode and a second electrode respectively electrically connected to a first conductor and a second conductor; and a first dielectric layer between the first electrode and the second electrode. In some embodiments, the first dielectric layer contacts with a sidewall surface of the first conductor. The semiconductor structure further includes a second dielectric layer over and adjacent to the capacitor. A method of forming the semiconductor package is also provided.
US11587862B2 Microelectronic devices having air gap structures integrated with interconnect for reduced parasitic capacitances
Embodiments of the invention include a microelectronic device that includes a substrate, at least one dielectric layer on the substrate and a plurality of conductive lines within the at least one dielectric layer. The microelectronic device also includes an air gap structure that is located below two or more of the plurality of conductive lines.
US11587861B2 Semiconductor device and manufacturing method thereof
A semiconductor device including an insulating circuit board. The insulating circuit board has an insulating plate, a plurality of circuit patterns disposed on a front surface of the insulating plate, any adjacent two of the circuit patterns having a gap therebetween, each circuit pattern having at least one corner, each corner being in a corner area that covers the corner and a portion of each gap adjacent to the corner, and a buffer material containing resin, applied at a plurality of corner areas, to fill the gaps in the plurality of corner areas.
US11587859B2 Wiring protection layer on an interposer with a through electrode
An interposer includes a base layer having a first surface and a second surface, a redistribution structure on the first surface, an interposer protection layer on the second surface, a pad wiring layer on the interposer protection layer, an interposer through electrode passing through the base layer and the interposer protection layer and electrically connecting the redistribution structure to the pad wiring layer, an interposer connection terminal attached to the pad wiring layer, and a wiring protection layer including a first portion covering a portion of the interposer protection layer adjacent to the pad wiring layer, a second portion covering a portion of a top surface of the pad wiring layer, and a third portion covering a side surface of the pad wiring layer. The third portion is disposed between the first portion and the second portion. The first to third portions have thicknesses different from each other.
US11587858B2 Zinc-cobalt barrier for interface in solder bond applications
A microelectronic device has bump bond structures on input/output (I/O) pads. The bump bond structures include copper-containing pillars, a barrier layer including cobalt and zinc on the copper-containing pillars, and tin-containing solder on the barrier layer. The barrier layer includes 0.1 weight percent to 50 weight percent cobalt and an amount of zinc equivalent to a layer of pure zinc 0.05 microns to 0.5 microns thick. A lead frame has a copper-containing member with a similar barrier layer in an area for a solder joint. Methods of forming the microelectronic device are disclosed.
US11587856B2 Solid state switching device
Solid state switching device including: a pair of line terminals including first and second line terminals for electrical connection with a corresponding phase conductor of an electric line; a switching assembly including one or more solid state power switches, the switching assembly having a first and second power terminals electrically connected with the first and second lines terminals, respectively; a heat sink element in thermal coupling with the switching assembly to adsorb heat from the switching assembly; an additional heat extraction arrangement to extract heat from the switching assembly and convey at least a portion of the adsorbed heat along the phase conductor through the first and second line terminals.
US11587855B2 Method of attaching an insulation sheet to encapsulated semiconductor device
A method of manufacturing a semiconductor device, including: preparing a power semiconductor chip, a lead frame having a die pad part and a terminal part integrally connected to the die pad part, and an insulating sheet in a semi-cured state; disposing the power semiconductor chip on a front surface of the die pad part and performing wiring; encapsulating the lead frame and the power semiconductor chip with an encapsulation raw material in a semi-cured state, to thereby form a semi-cured unit, the terminal part projecting from the semi-cured unit, and a rear surface of the die pad part being exposed from a rear surface of the semi-cured unit; pressure-bonding a front surface of the insulating sheet to the rear surface of the semi-cured unit to cover the rear surface of the die pad part; and curing the semi-cured unit and the insulating sheet by heating.
US11587851B2 Embedded bridge with through-silicon vias
An integrated circuit (IC) package comprising a-substrate having a first side and an opposing a second side, and a bridge die within the substrate. The bridge die comprises a plurality of vias extending from a first side to a second side of the-bridge die. The-bridge die comprises a first plurality of pads on the first side of the bridge die and a second plurality of pads on the second side. The plurality of vias interconnect ones of the first plurality of pads to ones of the second plurality of pads. The bridge die comprises an adhesive film over a layer of silicon oxide on the second side of the bridge die.
US11587842B2 Semiconductor die with improved ruggedness
A semiconductor die includes a substrate, a first passivation layer over the substrate, and a second passivation layer over the first passivation layer and the substrate. The substrate has boundaries defined by a substrate termination edge. The first passivation layer is over the substrate such that it terminates at a first passivation termination edge that is inset from the substrate termination edge by a first distance. The second passivation layer is over the first passivation layer and the substrate such that it terminates at a second passivation termination edge that is inset from the substrate termination edge by a second distance. The second distance is less than the first distance such that the second passivation layer overlaps the first passivation layer.
US11587839B2 Device with chemical reaction chamber
A device is disclosed. The device includes a housing that defines a chamber. The chamber is to be at least partially filled with an electrolyte material. The device also includes a plurality of electrodes that are at least partially embedded in the housing and exposed to the chamber. The device further includes an access port that provides fluid communication between an interior of the housing and the outside environs.
US11587838B2 Grinding control method and device for wafer, and grinding device
A grinding control method and device for a wafer, and a grinding device are provided. A grinder is controlled to grind a mass production wafer with a set grinding parameter. In a case that it is determined to perform a test using a test wafer, the grinder may be controlled to grind the test wafer with the set grinding parameter. A first total thickness variation of the grinded test wafer is acquired by a dedicated measurement device, and an updated grinding parameter is acquired based on the first total thickness variation. The grinder is controlled to grind the mass production wafer with the updated grinding parameter. In this way, a wafer with a uniform thickness can be obtained, thereby improving flatness of the grinded wafer.
US11587837B2 Oxygen vacancy passivation in high-k dielectrics for vertical transport field effect transistor
Embodiments of the present invention are directed to fabrication method and resulting structures for vertical tunneling field effect transistors (VFETs) having an oxygen vacancy passivating bottom spacer. In a non-limiting embodiment of the invention, a first semiconductor fin is formed in a first region of a substrate and a second semiconductor fin is formed in a second region of the substrate. A bilayer bottom spacer is formed in direct contact with sidewalls of the semiconductor fins. The bilayer bottom spacer includes a first layer and an oxygen-donating second layer positioned on the first layer. A first dielectric film is formed on the sidewalls of the first semiconductor fin. The first dielectric film terminates on the first layer. A second dielectric film is formed on the sidewalls of the second semiconductor fin. The second dielectric film extends onto a surface of the oxygen-donating second layer.
US11587836B2 Method of manufacturing a semiconductor structure by forming a mask layer using side wall spacers as an alignment mark
A semiconductor structure and its fabrication method are provided in the present disclosure. The method includes providing a layer to-be-etched, including first regions and second regions. The method further includes forming a plurality of discrete first sacrificial layers on the layer to-be-etched, where a plurality of openings is between the plurality of first sacrificial layers and includes first openings on the first regions. The method further includes forming initial sidewall spacer structures on sidewalls of the plurality of first sacrificial layers, where the initial sidewall spacer structures include first sidewall spacers, and the first sidewall spacers fill the first openings. The method further includes, using the first sidewall spacers as an alignment mark, forming a first mask layer on the layer to-be-etched and the initial sidewall spacer structures, where the first mask layer exposes a portion of the layer to-be-etched and a portion of the initial sidewall spacer structures.
US11587834B1 Protective coating for plasma dicing
The present invention provides a method for an improved protective coating for plasma dicing a substrate. A work piece having a support film, a frame and the substrate, the substrate having a top surface and a bottom surface, the top surface of the substrate having a plurality of device structures and a plurality of street areas is provided. The work piece is formed by adhering the substrate to a support film and then mounting the substrate with the support film to a frame. A composite material coating having a matrix component and a filler component is applied to the top surface of the substrate. The filler component has a plurality of particles. The composite material coating is removed from at least one street area to expose the street area. The exposed street area is plasma etched. The composite material coating is removed from the top surface of the substrate.
US11587831B2 Method for machining workpiece
Provided is a method for machining a workpiece including a substrate that has front and back surfaces and a ductile material layer that contains a ductile material and is disposed on the front or back surface. The method includes a tape bonding step of bonding a tape on a side of the substrate of the workpiece, a holding step of holding the workpiece by a holding table via the tape, and a cutting step of relatively moving the holding table and a cutting blade to cause the cutting blade to cut into the ductile material layer and the substrate. In the cutting step, the cutting blade is rotated such that a portion of the cutting blade, the portion being located on a forward side in a moving direction of the cutting blade relative to the holding table, cuts into the workpiece from the ductile material layer toward the substrate.
US11587828B2 Semiconductor device with graphene conductive structure and method for forming the same
The present disclosure relates to a semiconductor device and a method for forming a semiconductor device with a graphene conductive structure. The semiconductor device includes a first gate structure disposed over a semiconductor substrate, and a first source/drain region disposed in the semiconductor substrate and adjacent to the first gate structure. The semiconductor device also includes a first silicide layer disposed in the semiconductor substrate and over the first source/drain region, and a graphene conductive structure disposed over the first silicide layer. The semiconductor device further includes a first dielectric layer covering the first gate structure, and a second dielectric layer disposed over the first dielectric layer. The graphene conductive structure is surrounded by the first dielectric layer and the second dielectric layer.
US11587825B2 Method of preparing an isolation region in a high resistivity silicon-on-insulator substrate
A multilayer composite structure and a method of preparing a multilayer composite structure are provided. The multilayer composite structure comprises a semiconductor handle substrate having a minimum bulk region resistivity of at least about 500 ohm-cm and an isolation region that impedes the transfer of charge carriers along the surface of the handle substrate and reduces parasitic coupling between RF devices.
US11587822B2 Structures for improving radiation hardness and eliminating latch-up in integrated circuits
Structures and processes for improving radiation hardness and eliminating latch-up in integrated circuits are provided. An example process includes forming a first doped buried layer, a first well, and a second well, and using a first mask, forming a second doped buried layer only in a first region above the first doped buried layer and between at least the first well and the second well, where the first mask is configured to control spacing between the wells and the doped buried layers. The process further includes using a second mask, forming a vertical conductor located only in a second region above the first region and between at least the first well and the second well, where the vertical conductor is doped to provide a low resistance link between the second doped buried layer and at least a top surface of the substrate.
US11587818B2 Chuck design and method for wafer
An apparatus for securing a wafer includes a chuck, at least one O-ring disposed on the chuck, a vacuum system connected to the chuck, such that the vacuum system comprises a plurality of vacuum holes through the chuck connected to one or more vacuum pumps, and a controller configured to control the height of the at least one O-ring relative to the top surface of the chuck. The controller is connected to pressure sensors capable of detecting a vacuum. The at least one O-ring may include a plurality of O-rings.
US11587814B2 Vertical batch furnace assembly
A vertical batch furnace assembly for processing wafers comprising a cassette handling space, a wafer handling space, and an internal wall separating the cassette handling space and the wafer handling space. The cassette handling space is provided with a cassette storage configured to store a plurality of wafer cassettes provided with a plurality of wafers. The cassette handling space is also provided with a cassette handler configured to transfer wafer cassettes between the cassette storage and a wafer transfer position. The wafer handling space is provided with a wafer handler configured to transfer wafers between a wafer cassette in the wafer transfer position and a wafer boat in a wafer boat transfer position. The internal wall is provided with a wafer transfer opening adjacent the wafer transfer position for a wafer cassette from or to which wafers are to be transferred. The cassette storage comprises two cassette storage carousels.
US11587808B2 Chip carrier device
A chip carrier device includes a frame, a chip support and a limiter. The chip support is disposed on the frame, and includes a supporting film for chips to be adhered thereto. A peripheral portion of the supporting film is attached to a surrounding frame part of the frame. A crossing portion of the supporting film passes through a center of the supporting film, and interconnects two opposite points of the peripheral portion. The supporting film is formed with through holes. The limiter includes a limiting part that interconnects two opposite points of the surrounding frame part, that is positioned corresponding to the crossing portion, and that is positioned on one side of the supporting film where the chips are to be arranged.
US11587807B2 Annealing apparatus and method thereof
An annealing apparatus includes a heater plate and a cooler plate disposed in a chamber, a delivering robot, a sensor and circuitry. The delivering robot is configured to deliver a wafer between the heater plate and the cooler plate in the chamber. The sensor is located on the delivering robot and configured to output a first signal in response to a motion of the delivering robot. The circuitry is coupled to the sensor and configured to detect whether an abnormality of the delivering robot occurs according to the first signal.
US11587805B2 Substrate processing apparatus and substrate processing method
A substrate processing apparatus includes: a rotary holder configured to hold and rotate a substrate; a liquid supplier including a nozzle that ejects a processing liquid; a driver configured to move the nozzle between a center of the substrate and a peripheral portion of the substrate; and a controller configured to: execute a supply control to supply the processing liquid to the surface of the substrate so as to form a supply trajectory in a spiral shape, by ejecting the processing liquid from the nozzle while rotating the substrate and moving the nozzle from the center of the substrate toward the peripheral portion of the substrate; and when executing the supply control, gradually reduce an ejection amount of the processing liquid per unit area on the surface of the substrate, at least in a portion forming an outermost periphery of the supply trajectory.
US11587803B2 Substrate processing apparatus
A substrate processing apparatus processes a surface of a substrate with a processing fluid and includes a support tray in which a concave part for housing the substrate is provided on an upper surface thereof; a storage container in which a cavity is formed, wherein the support tray may be stored in a horizontal posture in the cavity; and a fluid supply part supplying the processing fluid to the cavity, wherein the storage container has a flow path which receives the processing fluid and discharges the processing fluid in a horizontal direction into the cavity from a discharge port that opens on a side wall surface of the cavity and toward the cavity, and a lower end position of the discharge port in a vertical direction is the same as or higher than a position of the upper surface of the support tray stored in the cavity.
US11587799B2 Methods and apparatus for processing a substrate
Methods and apparatus for processing a substrate are provided herein. For example, the method can include depositing a first layer of metal on a first substrate; depositing a second layer of metal atop the first layer of metal; depositing a third layer of metal on a second substrate; depositing a fourth layer of metal atop the third layer of metal; and bringing the second layer of material into contact with the fourth layer of material under conditions sufficient to cause the first substrate to be bonded to the second substrate by a diffusion layer formed by portions of the first layer of metal diffusing through the second layer of metal and portions of the third layer of metal diffusing through the fourth layer of metal.
US11587791B2 Silicon intermixing layer for blocking diffusion
A method of forming an integrated circuit structure includes forming a gate dielectric on a wafer, forming a work function layer over the gate dielectric, depositing a capping layer over the work function layer, soaking the capping layer in a silicon-containing gas to form a silicon-containing layer, forming a blocking layer after the silicon-containing layer is formed, and forming a metal-filling region over the blocking layer.
US11587790B2 Integrated circuits with capacitors
Examples of an integrated circuit with a capacitor structure and a method for forming the integrated circuit are provided herein. In some examples, an integrated circuit device includes a substrate and a trench isolation material disposed on the substrate. An isolation structure is disposed on the trench isolation material. A first electrode disposed on the isolation structure, and a second electrode disposed on the isolation structure. A capacitor dielectric is disposed on the isolation structure between the first electrode and the second electrode. In some such examples, the isolation structure includes a first hard mask disposed on the trench isolation material, a dielectric disposed on the first hard mask, and a second hard mask disposed on the dielectric.
US11587784B2 Smooth titanium nitride layers and methods of forming the same
The disclosed technology generally relates to forming a titanium nitride layer, and more particularly to forming by atomic layer deposition a titanium nitride layer on a seed layer. In one aspect, a semiconductor structure comprises a semiconductor substrate comprising a non-metallic surface. The semiconductor structure additionally comprises a seed layer comprising silicon (Si) and nitrogen (N) conformally coating the non-metallic surface and a TiN layer conformally coating the seed layer. Aspects are also directed to methods of forming the semiconductor structures.
US11587783B2 Si precursors for deposition of SiN at low temperatures
Methods and precursors for depositing silicon nitride films by atomic layer deposition (ALD) are provided. In some embodiments the silicon precursors comprise an iodine ligand. The silicon nitride films may have a relatively uniform etch rate for both vertical and the horizontal portions when deposited onto three-dimensional structures such as FinFETS or other types of multiple gate FETs. In some embodiments, various silicon nitride films of the present disclosure have an etch rate of less than half the thermal oxide removal rate with diluted HF (0.5%).
US11587782B2 Semiconductor arrangement and method for making
A method for fabricating a semiconductor arrangement is provided. The method includes forming a first dielectric layer and forming a first semiconductive layer over the first dielectric layer. The first semiconductive layer is patterned to form a patterned first semiconductive layer. The first dielectric layer is patterned using the patterned first semiconductive layer to form a patterned first dielectric layer. A second semiconductive layer is formed over the patterned first dielectric layer and the patterned first semiconductive layer.
US11587779B2 Multi-pass mass spectrometer with high duty cycle
A multi-pass time-of-flight mass spectrometer is disclosed having an elongated orthogonal accelerator (30). The orthogonal accelerator (30) has electrodes (31) that are transparent to the ions so that ions that are reflected or turned back towards it are able to pass through the orthogonal accelerator (30). The electrodes (31) of the orthogonal accelerator (30) may be pulsed from ground potential in order to avoid the reflected or turned ion packets being defocused. The spectrometer has a high duty cycle and/or space charge capacity of pulsed conversion.
US11587776B1 Ion detection systems
An ion detection system comprising an upper plate configured for propagation of ions therethrough, a lower plate comprising a converter configured for converting ions impinging thereon to secondary electrons, a secondary electron multiplication assembly configured for receiving the secondary electrons and comprising at least one or optionally a series of oppositely facing pairs of dynodes, wherein in the optional series of oppositely facing pairs of dynodes, each pair is spaced apart from an adjacent pair, and wherein a first electric field is created in between the oppositely facing pair of dynodes. A magnetic system is provided for generating a magnetic field.
US11587773B2 Substrate pedestal for improved substrate processing
A substrate pedestal includes a thermally conductive substrate support including a mesh, a thermally conductive shaft including a plurality of conductive rods therein, each conductive rod having a first end and a second end, and a sensor. The first end of each conductive rod is electrically coupled to the mesh, and the sensor is disposed between the first and second ends of each conductive rod and configured to detect current flow through each conductive rod.
US11587772B2 Multi-layer protective coating
Methods and apparatus for preparing a protective coating are described. In one example aspect, an apparatus for preparing a protective coating includes a chamber, a substrate positioned within the chamber configured to hold at least a target object, an inlet pipe configured to direct a monomer vapor into the chamber, and one or more electrodes configured to perform a chemical vapor deposition process to produce a multi-layer coating. The chemical vapor deposition process comprises multiple cycles, each cycle comprising a pretreatment phase and a coating phase to produce a layer of the multi-layer coating.
US11587768B2 Nanosecond pulser thermal management
Some embodiments include a thermal management system for a nanosecond pulser. In some embodiments, the thermal management system may include a switch cold plates coupled with switches, a core cold plate coupled with one or more transformers, resistor cold plates coupled with resistors, or tubing coupled with the switch cold plates, the core cold plates, and the resistor cold plates. The thermal management system may include a heat exchanger coupled with the resistor cold plates, the core cold plate, the switch cold plate, and the tubing. The heat exchanger may also be coupled with a facility fluid supply.
US11587766B2 Symmetric VHF source for a plasma reactor
The disclosure pertains to a capacitively coupled plasma source in which VHF power is applied through an impedance-matching coaxial resonator having a symmetrical power distribution.
US11587764B2 Magnetic housing systems
Embodiments described herein relate to magnetic and electromagnetic systems and a method for controlling the density profile of plasma generated in a process volume of a PECVD chamber to affect deposition profile of a film. In one embodiment, a plurality of retaining brackets is disposed in a rotational magnetic housing of the magnetic housing systems. Each retaining bracket of the plurality of retaining brackets is disposed in the rotational magnetic housing with a distance d between each retaining bracket. The plurality of retaining brackets has a plurality of magnets removably disposed therein. The plurality of magnets is configured to travel in a circular path when the rotational magnetic housing is rotated around the round central opening.
US11587762B2 Device and method for determining a property of a sample that is to be used in a charged particle microscope
The invention relates to a device and method for determining a property of a sample that is to be used in a charged particle microscope. The sample comprises a specimen embedded within a matrix layer. The device comprises a light source arranged for directing a beam of light towards said sample, and a detector arranged for detecting light emitted from said sample in response to said beam of light being incident on said sample. Finally, the device comprises a controller that is connected to said detector and arranged for determining a property of said matrix layer based on signals received by said detector.
US11587761B2 Charged particle beam apparatus and setting assisting method
A GUI (graphical user interface) image includes an input portion and a reference image. The reference image includes a plan diagram and numerical value information. The plan diagram includes a figure indicating an electron penetration range, a figure indicating a characteristic X-ray generation range, and a figure indicating a back-scattered electron generation range. The numerical value information includes numerical values indicating sizes of these ranges.
US11587758B2 Apparatus of plural charged-particle beams
A multi-beam apparatus for observing a sample with high resolution and high throughput is proposed. In the apparatus, a source-conversion unit forms plural and parallel images of one single electron source by deflecting plural beamlets of a parallel primary-electron beam therefrom, and one objective lens focuses the plural deflected beamlets onto a sample surface and forms plural probe spots thereon. A movable condenser lens is used to collimate the primary-electron beam and vary the currents of the plural probe spots, a pre-beamlet-forming means weakens the Coulomb effect of the primary-electron beam, and the source-conversion unit minimizes the sizes of the plural probe spots by minimizing and compensating the off-axis aberrations of the objective lens and condenser lens.
US11587757B2 X-ray tube insulation, window, and focusing plate
X-ray transparent insulation can be sandwiched between an x-ray window and a ground plate. The x-ray transparent insulation can include aluminum nitride, boron nitride, or polyetherimide. The x-ray transparent insulation can include a curved side. The x-ray transparent insulation can be transparent to x-rays and resistant to x-ray damage, and can have high thermal conductivity. An x-ray window can have high thermal conductivity, high electrical conductivity, high melting point, low cost, and matched coefficient of thermal conductivity with the anode. The x-ray window can be made of tungsten. For consistent x-ray spot size and location, a focusing plate and a filament can be attached to a cathode with an open channel of the focusing plate aligned with a longitudinal dimension of the filament. Tabs of the focusing plate bordering the open channel can be bent to align with a location of the filament.
US11587755B2 Power switch with independent light-emitting chamber
A power switch with an independent light-emitting chamber includes a housing, a press-key, a power assembly, at least one light-emitting unit, and a circuit board. The housing is provided therein with a partition wall that divides the interior of the housing into a first receiving space and a second receiving space. The press-key and the power assembly can be disposed in the first receiving space. The press-key can bring the power assembly into a power-off state or a power-on state. The light-emitting unit can be disposed in the second receiving space and thereby turn the second receiving space into an independent light-emitting chamber. The circuit board can be disposed in the housing and electrically connected to the power assembly and the light-emitting unit. The power switch is enhanced in safety as the partition wall keeps the light-emitting unit and the power assembly from each other and hence from short-circuiting.
US11587753B2 Performance improvement unit for pulsed-ultraviolet devices
Embodiments of the present disclosure disclose a method for improving a performance of a pulsed-ultraviolet (PUV) device. The method includes monitoring an input current across a circuit breaker in communication with a UV lamp, where the input current is delivered by a power signal and is interrupted by the circuit breaker upon exceeding a predefined cut-off current; generating a pulse signal having a set of frequencies based on the power signal for driving the UV lamp, where the pulse signal is associated with a predetermined cut-off frequency that increases the input current beyond the cut-off current; determining a predefined threshold current less than the cut-off current; and configuring the pulse signal with multiple distinct pulse frequencies per second for a predefined configuration period based on the input current exceeding the threshold current. The distinct pulse frequencies per second include at least one pulse frequency greater than the cut-off frequency.
US11587752B2 Electromagnetic relay
An electromagnetic relay includes a movable element, a movable yoke, a fixed yoke, a movable section, and a stopper. The movable element includes a movable contact point. The movable yoke is connected to the movable element to move together with the movable element. The movable section includes a movable core made of an inorganic magnetic material and a shaft made of an inorganic material. The fixed yoke is made of an inorganic magnetic material and disposed between the movable core and the movable yoke. The stopper protrudes from either one of the fixed yoke or the movable section toward the other to contact with the other when the movable section moves toward the fixed yoke. The stopper is integrally formed with the either one of the fixed yoke or the movable section.
US11587751B2 Electromagnetic relay and terminal block
An electromagnetic relay and a terminal block each include a voltage converter. The voltage converter is located adjacent to a coil and electrically connected to first coil terminals and second coil terminals. The voltage converter converts a power supply voltage input through one of the first coil terminals to a set value different from the input power supply voltage and outputs the power supply voltage to an electromagnet through one of the second coil terminals.
US11587749B2 Contact unit for a switching device and switching device
A contact unit for a switching device includes: a first fixed contact; a second fixed contact; a contact bridge; a first movable contact and a second movable contact that are arranged at the contact bridge; a first arc extinguishing chamber, a second arc extinguishing chamber, and a third arc extinguishing chamber; and an arc guiding system. The first fixed contact is in contact with the first movable contact and the second fixed contact is in contact with the second movable contact in a switched-on state of the contact unit. The first fixed contact is free of contact with the first movable contact and the second fixed contact is free of contact with the second movable contact in a switched-off state of the contact unit. The first and the second arc extinguishing chamber and the arc guiding system in coordination with each other extinguish a first arc.
US11587747B2 Operating device
An operating device is provided for a human-powered vehicle. The operating device basically includes a base, a first electric switch, a second electric switch, a first operating member and a second operating member. The first operating member is movable with respect to the base to activate the first electric switch as the first operating member moves from a non-operated position to an intermediate operating position, and then activate the second electric switch as the first operating member moves from the intermediate operating position to an additional operating position. The second operating member is movable with respect to the base to activate the second electric switch as the second operating member moves from a non-operated position to an intermediate operating position, and then activate the first electric switch as the second operating member moves from the intermediate operating position of the second operating member to an additional operating position.
US11587745B1 Backlight module
A backlight module includes a circuit board, a light-shielding plate, and a light guide plate. The circuit board is provided with first and second light-emitting units. The light-shielding plate is disposed above the circuit board. The light guide plate is disposed between the circuit board and the light-shielding plate and includes first and second single-key light guide areas. The first and second single-key light guide areas respectively have first and second through holes respectively accommodating the first and second light-emitting units. A distance between the geometric center of the first single-key light guide area and that of the light guide plate is greater than a distance between the geometric center of the second single-key light guide area and that of the light guide plate. A current flowing through the first light-emitting unit is greater than a current flowing through the second light-emitting unit.
US11587741B2 Compositions and methods for energy storage device electrodes
An energy storage device can include a cathode, an anode, and a separator between the cathode and the anode, where the anode and/or electrode includes an electrode film having a super-fibrillized binder material and carbon. The electrode film can have a reduced quantity of the binder material while maintaining desired mechanical and/or electrical properties. A process for fabricating the electrode film may include a fibrillization process using reduced speed and/or increased process pressure such that fibrillization of the binder material can be increased. The electrode film may include an electrical conductivity promoting additive to facilitate decreased equivalent series resistance performance. Increasing fibrillization of the binder material may facilitate formation of thinner electrode films, such as dry electrode films.
US11587735B2 Multilayer electronic component and manufacturing method thereof
A multilayer electronic component, in which the external electrode may be thinned to secure capacitance per unit volume, while securing the external electrode at a corner in a specific thickness or higher with improved reliability for moisture resistance.
US11587728B2 Assembly process of Halbach magnetic ring component
An assembly process of a Halbach magnetic ring component, including an adsorbing each magnetic shoe on the outer surface of a positioning cylinder; sleeving the sleeve on the outer surface of a circular ring; moving the sleeve downwards so that the upper part of each magnetic shoe is exposed; performing first dispensing on the exposed part of the upper part of each magnetic shoe; sleeving the aluminum ring on the outer surface of the exposed part of the upper part of each magnetic shoe, so that the aluminum ring covers the first dispensing area of each magnetic shoe; moving the sleeve downwards until the sleeve is completely separated from the magnetic shoe, and performing second dispensing on the lower region of each magnetic shoe; moving the aluminum ring downwards until the aluminum ring is completely sleeved on the outer surface of each magnetic shoe.
US11587726B2 Coupled inductor structure
A system comprises a first inverter and a second inverter connected in parallel, a coupled inductor connected to outputs of the first inverter and the second inverter, wherein the coupled inductor comprises a plurality of windings formed by a single winding wire and an output filter coupled to an output of the coupled inductor.
US11587725B2 Inductor component
An inductor component includes a core including a winding core portion, a first collar disposed at a first end of the winding core portion in an axial direction, and a second collar disposed at a second end of the winding core portion in the axial direction. The inductor component further includes a first electrode disposed on the first collar; a second electrode disposed on the second collar; and a wire electrically connected to the first electrode and the second electrode and wound around the winding core portion in such a manner as to form a plurality of wound regions arranged along the axial direction of the winding core portion. A distance between adjacent ones of the wound regions is greater than a winding pitch of the wire in each of the wound regions.
US11587723B2 Reactor having relay member with input/output terminal
A reactor includes: an outer peripheral iron core; three leg iron cores; and three coils, each of the coils having an input side coil end and an output side coil end projecting from a same end surface on an end side in the axial direction of the three leg iron cores, where the three coils include two first coils in which a projecting position of the input side coil end and a projecting position of the output side coil end has a first relative positional relationship and include one second coil having a second relative positional relationship opposite to the first relative positional relationship and where winding directions from the input side coil end to the output side coil end of the first and the second coils are reversed to each other.
US11587722B2 Coil component
A coil component includes a body having one surface and the other surface opposing each other in one direction, and a plurality of walls each connecting the one surface to the other surface; a coil portion buried in the body, and having both ends exposing to one of the plurality of walls of the body; first and second external electrodes respectively including first and second terminal electrodes disposed on one surface of the body and spaced apart from each other, and first and second connection electrodes respectively connecting the first and second terminal electrodes to both ends of the coil portion; a first external insulating layer disposed on the other surface of the body; and a first shielding layer disposed on the external insulating layer.
US11587720B2 Multilayer coil component
A multilayer coil component includes a multilayer body formed by stacking a plurality of insulating layers in a length direction and that has a built-in coil, and first and second outer electrodes that are electrically connected to the coil. The coil is formed by a plurality of coil conductors stacked in the length direction being electrically connected to each other. The first and second outer electrodes respectively extend along and cover at least parts of first and second end surfaces and parts of a first main surface. A stacking direction of the multilayer body and a coil axis direction of the coil are parallel to the first main surface. A low-dielectric-constant layer having a smaller relative dielectric constant than the insulating layers is provided between the multilayer body and the part of the first outer electrode that extends along the first main surface.
US11587717B2 Inductor element
An inductor element includes a first conductive portion, a second conductive portion, and a magnetic core. The first conductive portion includes a first round-about portion, a first mount portion, and a second mount portion. The second conductive portion includes a second round-about portion, a third mount portion, and a fourth mount portion. The magnetic core houses at least a part of the first and second conductive portions so that each mount surface of the first to fourth mount portions is exposed from one side of the magnetic core. The first and second conductive portions are arranged so that the first and second directions are substantially parallel and opposite to each other. The first and third mount portions are at least partially overlapped with each other in a third direction perpendicular to the first and second directions.
US11587712B2 Coil component
Terminal electrodes are disposed on mounting surfaces of flanges of a substantially drum-shaped core that are directed to a mounting substrate. A rounded surface is formed on the mounting surface. An end portion of the wire extends along the rounded surface from a side on which the inner end surface is present toward a side on which the outer end surface is present.
US11587708B2 Magnetic device with a hybrid free layer stack
In one aspect, the disclosed technology relates to a magnetic device, which may be a magnetic memory and/or logic device. The magnetic device can comprise a seed layer; a first free magnetic layer provided on the seed layer; an interlayer provided on the first free magnetic layer; a second free magnetic layer provided on the interlayer; a tunnel barrier provided on the second free magnetic layer; and a fixed magnetic layer. The first free magnetic layer and the second free magnetic layer can be ferromagnetically coupled across the interlayer through exchange interaction.
US11587707B2 Magnet arrangement for producing a field suitable for NMR in a concave region
A magnet system for use in a nuclear magnetic resonance (“NMR”) apparatus includes a first magnet and a second magnet located on a backplane to form a gap therebetween, wherein the first magnet and the second magnet are each shaped to form trapezoidal prisms with dimensions selected to optimize a magnetic field at a target region in space external to the magnet system.
US11587706B2 Magnetic fastener
A novel magnetic fastener is realized that utilizes a pair of multipole magnets rotatable relative to each other, allowing the holding force to be selected for ease of operation, namely closing and opening. Each multipole magnet includes a striped pattern of alternating polarity (north and south poles), with the striped patterns having the same pole spacing or pitch. When the stripes of alternating north and south poles are oriented lengthwise, the stripes of the south poles can judiciously align with the stripes of the north poles from the other magnet, creating a strong magnetic force between them to form a fastener. However, when the striped pattern of alternating north and south poles are oriented substantially orthogonal, the stripes are mutually being alternating attracted and repelled, allowing the magnets to be easily separated to effect opening.
US11587705B2 Electromagnetic wave absorbing composition and electromagnetic wave absorbing body
Provided is an electromagnetic-wave absorber composition and an electromagnetic-wave absorber that can favorably absorb a plurality of electromagnetic waves of different frequencies in a high frequency band in or above the millimeter-wave band. The electromagnetic-wave absorber composition includes a magnetic iron oxide that magnetically resonates at a high frequency in or above the millimeter-wave band and a resin binder. The electromagnetic-wave absorber composition has two or more extrema separated from each other on a differential curve obtained by differentiating a magnetic property hysteresis loop at an applied magnetic field intensity of from 16 kOe to −16 kOe. The electromagnetic-wave absorber includes an electromagnetic-wave absorbing layer formed of the above-described electromagnetic-wave absorber composition.
US11587703B2 Electronic device and surge handling
An electronic isolator device arranged for receiving field wiring from a field element includes a connector configured to receive a surge element for providing surge functionality to the electronic isolator device, and to provide surge protection to the connectivity by way of the field wiring. The connector is configured to connect the surge element to the electronic isolator device and to the field wiring. The connector is arranged for parallel connection of the surge element with respect to the field wiring such that the surge element can be connected and disconnected with the isolator device without disrupting the connection of the isolator device with the field elements.
US11587702B2 Grommet with a plurality of zones having different levels of elasticity
The invention relates to a grommet made of a material that is elastic at least in portions for receiving at least one elongate object for strain relief and sealing, comprising an outer frame element that can be opened along a slit and comprises at least two membranes that are spaced apart in the longitudinal direction of the elongate object to be received and each comprise a hole of equal size, so as to be flush with one another, for receiving the elongate object.The invention is characterised in that the respective hole of the at least two membranes contacts the material of the frame element on the side of the slit.
US11587701B2 Series-connected superconducting magnet cables
A superconducting device includes a superconducting cable having a plurality of superconducting tapes in a plurality of phases, including a first phase, and at least one further phase. One or more superconducting tapes of the first phase is in electrical contact with one or more superconducting tapes of the at least one further phase through at least one resistive barrier that prevents current from passing between the first phase and the at least one further phase in the absence of a voltage between one or more of the superconducting tapes of the first phase or the at least one further phase. The first phase is electrically connected in series to at least one further phase.
US11587700B2 High strength dielectric member for a communications cable
A new dielectric material for a communication cable has a dielectric base with strength members embedded therein. By a new process, vacuum voids are formed in the dielectric base and at least partially contain or abut the strength members. The material is particularly well suited for a first dielectric tape, where the cable includes a first insulated conductor, the first dielectric tape and a second insulated conductor, with the first insulated conductor being twisted with the second insulated conductor with the first dielectric tape residing between the first insulated conductor and the second insulated conductor. The material is also suitable for a separator of the cable serving to separate twisted pairs from each other within the cable, as well as other components of the cable, such as an insulation layer of one or more of the insulated conductors of the twisted pairs.
US11587693B2 Solidifying method of hydroxides of radionuclides
The present disclosure provides a solidifying method of a radionuclide. The solidifying method of the radionuclide includes operations of: providing a low melting point glass including Bi2O3, B2O3, ZnO and SiO2; providing a glass mixture mixing a mixture to be treated containing a hydroxide of radionuclide and BaSO4 and the low melting point glass; and heating the glass mixture.
US11587691B2 Radiation-shielding material
A radiation shielding material that is lighter and has lower installation restrictions than conventional methods, and that exhibits excellent shielding efficiency against radiation in the high energy region. The radiation shielding material comprises a complex containing a fibrous nanocarbon material, a primary radiation shielding particle, and a binder, wherein the fibrous nanocarbon material and the primary radiation shielding particle are dispersed in the binder.
US11587688B2 Apparatus and method for providing healthcare services remotely or virtually with or using an electronic healthcare record and/or a communication network
An apparatus, including a memory or a database which stores an electronic healthcare record of or for an individual or a patient a comment, note, or message, in advance of a video call, and information regarding an appointment for or regarding the video call; a processor which generates an appointment message or reminder message containing information regarding the appointment and containing a link or hyperlink for initiating the video call, wherein the video call is initiated via the link or the hyperlink; a receiver which receives information regarding the individual or the patient during the video call, receives information input into or entered into a provider communication device or a user communication device, wherein the processor or a computer generates a report containing information regarding the video call; and a transmitter, wherein the transmitter transmits the report to the user communication device.
US11587684B2 Prediction of target ablation locations for treating cardiac arrhythmias using deep learning
Systems and methods for generating an ablation map identifying target ablation locations on a heart of a patient are provided. One or more input medical images of a heart of a patient and a voltage map of the heart of the patient are received. An ablation map identifying target ablation locations on the heart is generated using one or more trained machine learning based models based on the one or more input medical images and the voltage map. The ablation map is output.
US11587683B2 Methods and systems for detecting environment features in images, predicting location-based health metrics based on environment features, and improving health outcomes and costs
Various aspects described herein relate to a location-based and population-based health metric processes. In one example, a computer-implemented method for generating one or more predicted health metrics for a location includes receiving a request to assess the one or more health metrics associated with the location, and identifying at least one current or future built, social, or natural environment parameter associated with the location. The method may further include calculating one or more predicted health metrics associated with the location based upon at least one of the current or future built, social, or natural environment parameters associated with the location, monetizing the healthcare costs of the predicted health metrics and displaying the one or more predicted health metrics and costs.
US11587682B2 Method and system to integrate data, analyze and develop improved care plan for a patient at home
A method and system for connecting, capturing, managing and predicting outcomes for an improved care for home based patients by collecting data from caregivers and home-based patients. The method and system implemented as a mobile technology is more efficient and effective method for delivering healthcare that will ease the caregiving burden. Providing resources and information to communicate, capture and deliver by the caregivers (formal and informal), patients and healthcare providers communicate helps integrate essential data and care. Through the use of this mobile technology and associated devices vital information from informal caregivers, which is currently not regularly used in remotely located patients, can be captured and implemented in the decisions and adjustments to patients' care plans. In addition, the technology helps with adherence of patient specific treatment guidelines for home-based patients.
US11587679B2 Generating computer models from implicitly relevant feature sets
Mechanisms are provided for training a hybrid machine learning (ML) computer model to simulate a biophysical system of a patient and predict patient classifications based on results of simulating the biophysical system. A mechanistic model is executed to generate a training dataset. A surrogate ML model is trained to replicate logic of the mechanistic computer model and generate patient feature outputs based on surrogate ML model input parameters. A transformation ML model is trained to transform patient feature outputs of the surrogate ML model into a distribution of patient features. A generative ML model is trained to encode samples from a uniform distribution of input patient data into mechanistic model parameter inputs that are coherent to the target distribution of patient features and are input to the surrogate ML model. Input patient data for a patient is processed through the ML models to predict a patient classification for the patient.
US11587676B2 Managing health conditions using preventives based on environmental conditions
A computer system manages a health condition based on conditions of an environment. Health information of a user is analyzed to determine a health condition affected by environmental conditions. One or more events for the user are obtained based on personal information. The environmental conditions for one or more event locations are determined. One or more preventive items are indicated for the user to attend the one or more events in order for the health condition to tolerate the environmental conditions of the one or more event locations. Embodiments of the present invention further include a method and program product for managing a health condition based on conditions of an environment in substantially the same manner described above.
US11587674B2 Electronic identification, location tracking, communication and notification system with beacon clustering
A system and method for identifying a customer's location at a business and provide notification to a company representative upon arrival of the customer at the business location. Real-time location determinations for the customer and customer location tracking can be provided. One or more wireless beacons communicate with the customer's electronic device. The beacons provide the system with real-time data about the customer's whereabouts, allowing for the confirmation and tracking of the customer at the location. A first non-limiting example of use, include a company that provides food and beverage allowing the customer to place an order for food and beverages on their electronic device and having the order delivered to the person at their current location as determined by the system. Another non-limiting example includes a company using the notification system to have assigned staff members notified of the customer's arrival.
US11587671B2 Automatic association of medical elements
An infusion system automatically determines when an infusion device moved within a physical area associated with a patient, and automatically displays an electronic list of procedures or prescriptions associated with the patient based on determining the infusion device moved within the physical area associated with the patient and receiving the indication of the operation. When a selection is received from the electronic list, operating parameters associated with the selection and the patient are automatically downloaded from a remote computing device to the infusion device.
US11587668B2 Methods and systems for a medical image annotation tool
Various methods and systems are provided for suggesting annotation shapes to be applied to a medical image. In one example, a method includes outputting, for display on a display device, a set of annotation icons from an icon library based on a current image displayed on the display device and displaying an annotation on the current image in response to selection of an annotation icon from the set. The method further includes automatically adjusting the annotation to a corresponding anatomical feature in the current image and saving the current image with the annotation.
US11587667B2 Contextually adaptive digital pathology interface
A method, system, and computer program product for an image visualization system (120) that includes a contextually adaptive digital pathology interface. At least one image of a biological sample stained for the presence of one or more biomarkers is obtained (300). The image is displayed on a display screen at a first zoom level (310), in which a first subset of user selectable elements are contemporaneously displayed (320). As a result of user input, the image being is displayed at a second zoom level (330), in which a second subset of user selectable elements are contemporaneously displayed with the image (340). The one or more elements within the second subset of user selectable elements are disabled or hidden at the first zoom level, or one or more elements within the first subset of user selectable elements are disabled or hidden at the second zoom level.
US11587666B2 Delivery of an extended digital therapeutic (ExRx) based on an emotional/mental state (EMS) and/or home-bound state (HBS)
The current invention describes a method and system for delivering reconfigured digital content or reconfigured delivery of digital content designed to allay the effects of Q/D-related EMS. Disclosed is a system/method for delivering an extended digital therapeutic (ExRx) based on a selected emotional/mental state (EMS) and home-bound state (HBS).
US11587665B2 Methods, systems, and non-transitory computer readable media for estimating maximum heart rate and maximal oxygen uptake from submaximal exercise intensities
A system for estimating maximum heart rate and maximal oxygen uptake from submaximal exercise intensities can include an exercise intensity monitor, a cardiopulmonary monitor, and one or more computers. The computers can be configured, by virtue of appropriate programming, to receive submaximal exercise intensity data from the exercise intensity monitor and submaximal cardiopulmonary data from the cardiopulmonary monitor while a user, who coupled to the exercise intensity monitor and the cardiopulmonary monitor, is performing an exercise at a submaximal exercise intensity. The one or more computers then determine a heuristic estimate of a maximal cardiopulmonary state of the user based on the submaximal exercise intensity data and the submaximal cardiopulmonary data.
US11587664B2 Glucose level control system with therapy customization
Systems and methods are disclosed herein for providing a configuration code for customizing a glucose level control system for at least an initial period. The configuration code can be based on one or more dosing parameters from a tracked medicament therapy administered to a subject over a tracking period by the glucose level control system. The configuration code includes encoded dosing parameters including a correction dosing parameter based on at least some of the correction boluses of medicament administered during the tracking period, a food intake dosing parameter comprising an indication of a food intake bolus size of medicament based on one or more food intake boluses provided during the tracking period, and a basal dosing parameter based on at least some of the basal doses of medicament administered during the tracking period.
US11587662B2 Medical system
The invention refers to a medical device for supporting health control. In order to provide safe access to a dose helper functionality, the device has a first storage means arranged to store an initial data matrix with at least one initial parameter set containing at least two initial data entries for one parameter of the dose helper functionality; receiving means arranged to receive initialization data and/or security data, preferably from a second storage means, for example provided by a hardware key; selecting means operable to select based at least in part on the initialization data one data entry for each initial parameter set as initial data or one initial parameter template containing a reference to one data entry for each initial parameter set as initial data; and first activation means arranged to activate, preferably based at least in part on the security data, execution of the dose helper functionality based on the selected initial data. The invention further refers to a respective medical system, a method for providing such information, a respective computer program and a respective computer program product.
US11587661B2 Real time adaptive controller medication dosing
Systems and methods for monitoring accurate, real-time medicament device events, performing analytics on that data, and providing notifications are described. In various embodiments, an application server receives controller medication events, analyzes the events, associated event times, and controller medication dosage plans to characterize event times and send notifications for future doses. The controller medication dosage plan may specify a dose time for a planned dose, a narrow time window comprising the dose time, and an expanded time window comprising the narrow time window and longer in duration than the narrow time window, and the events may be characterized based on their time relative to the dose time, the time windows, and other events.
US11587660B2 Methods and systems for managing patient treatment compliance
Provided are computer implemented method and systems for providing and monitoring patient compliance with a patient healthcare treatment plan. The method includes receiving, from a healthcare provider over a network, application features for generating a patient application including patient instructions for using a medical therapy, and generating an application for a patient. The application includes at least an input for the user to input data for use in evaluating patient compliance with a treatment plan. In addition, the method includes receiving, from the healthcare provider over the network, a prescription for the application for the patient, and activating the application after the patient receives training on use of the application. The method also may include receiving patient compliance data from the application over the network based on the input.
US11587659B2 Pill pack packaging
Pill pack packaging that monitors and reports on pill compliance is disclosed. The pill pack packaging includes a circuit disposed on the cover of pill receptacles. A processor monitors the changes in electrical signals from the circuit. When the electrical signals change, the processor records the time and date. The processor may also report the time and date of pill receptacle opening to a mobile device via wireless transmission. The device may also be capable of providing alerts regarding lack of compliance or loss of the pill pack.
US11587658B2 Communication loop and record loop system for parallel/serial dual microfluidic chip
A method for a microfluidic testing device includes pumping a portion of a biologic sample into each of a first plurality of parallel pathways from the first reservoir using a micro-pump, applying a separate treatment agent of the plurality of treatment agents within each of the first plurality of parallel pathways to the portion of the biologic sample within the parallel pathway, pumping a second portion of the biologic sample into a selected second parallel pathway associated with a determined treatment agent of a second plurality of parallel pathways from the first reservoir using a second micro-pump, applying the determined treatment agent at a plurality of different dosage levels within the selected second parallel pathway to the second portion of the biologic sample within the selected second parallel pathway, and determining a dosage level of the plurality of different dosage levels of the determined treatment agent providing the treatment efficacy.
US11587657B2 Method, apparatus, and computer program product for performing an alternative evaluation procedure in response to an electronic message
A method, apparatus and computer program product are provided for parsing a message received from a requesting computer to identify an indication of a transaction, an entity identifier, and an identifier of a first evaluation system. The entity identifier is evaluated based on historical data and/or eligibility data to determine an alternative evaluation procedure. The alternative evaluation procedure is preformed to obtain response information regarding the transaction, that may differ from response information otherwise obtained via the first evaluation system. A response to the message is constructed that includes the response information and is transmitted to the requesting computer.
US11587654B2 Data command center visual display system
A data command center visual display system presents dynamic data to a display screen. The command center visual display system includes a plurality of adjustable display panels configured to display predetermined combinations of patient identification information, patient insurance information, patient medical history information, a patient's insurance billing regulations, preferred practice patterns, and patient payment information, and a patient flowsheet that integrates the patient medical history information and patient payment information into a table that presents the patient's medical history by visit to one or more physicians with respective procedures or actions performed during each visit represented as icons identifying the procedure performed and icons indicating whether the procedure has been paid for in part or in full, the icons providing links to associated medical history data and/or financial data. The respective procedures or actions may also be activated directly from the table or display panels without leaving the display screen. In response to selection by a user of the visual display system, the adjustable display panels and patient flowsheet are moved into a task-based or specialty-specific display configuration such that the patient identification information, patient insurance information, patient medical history information, and patient payment information may be accessed without leaving the display screen.
US11587652B1 System and method for handling exceptions during healthcare record processing
Methods, systems, and apparatuses to improve the handling of exceptions during the retrieval and processing of health records from various data sources are provided. During the retrieval and processing of health records, exceptions to typical behavior are recorded with context at the data extraction protocol level, at the health record level and at the level of elements with the document. Accordingly, insights may be developed and configurations, rules, or coding changes, based on the detected exceptions may be proposed. In some instances, an operator may be notified about the exceptions such that the operator may act on the insight. In some instances, the processing of extracted records (documents, messages) may be deferred until the operator has made appropriate changes to configuration, rules, or code. In some instances, the system may supplement and/or replace the operator with machine learning engines that act on the developed insights.
US11587648B1 Systems and methods for analyzing captured biometric data
A computer system for analyzing biometric data of a user collected from a plurality of user devices and used to generate an insurance policy for the user includes a processor and a non-transitory, tangible, computer-readable storage medium having instructions stored thereon that, in response to execution by the processor, cause the processor to perform operations including: (i) receiving, from a wearable electronic user device, biometric data associated with a user; (ii) analyzing, based upon a plurality of rules, the biometric data; (iii) determining a health score associated with the user, based in part upon the analysis of the biometric data, wherein the health score represents a likelihood that the user will maintain a level of health for a predefined period of time; (iv) retrieving terms and conditions for an insurance policy from a database based upon the health score; and (v) generating, based upon the determining, an insurance policy for the user based upon the terms and conditions.
US11587644B2 Methods of profiling mass spectral data using neural networks
Methods are provided to classify and identify features in mass spectral data using neural network algorithms. A convolutional neural network (CNN) was trained to identify amino acids from an unknown protein sample. The CNN was trained using known peptide sequences to predict amino acid presence, diversity, and frequency, peptide length, subsequences of amino acids classified by features include aliphatic/aromatic, hydrophobic/hydrophilic, positive/negative charge, and combinations thereof. Mass spectra data of a sample unknown to the trained CNN was discretized into a one-dimensional vector and input into the CNN. The CNN models can potentially be integrated to determine the complete peptide sequence from a spectrum, thereby improving the yield of identifiable protein sequences from mass spec analysis.
US11587643B2 Methods and apparatuses for a unified artificial intelligence platform to synthesize diverse sets of peptides and peptidomimetics
In one aspect, a method is disclosed wherein an artificial intelligence (AI) enabled automated flow synthesis platform is configured to generate optimized synthesizing recipes which enable a sequence to be synthesized using an automated flow process. The method includes receiving a synthesizing recipe including parameters used during the automated flow process to synthesize the sequence, receiving spectral data from detectors monitoring the automated flow process in a reaction chamber, where the spectral data corresponds to a reaction point in the automated flow process, and determining, based on indicators associated with the spectral data, characteristics of a chemical reaction at the reaction point in the automated flow process. An artificial intelligence engine determines the chemical reaction. The method includes associating, based on the spectral data, the synthesizing recipe with the chemical reaction.
US11587641B2 Fuse fault repair circuit
A fuse fault repair circuit includes a fuse array, a signal storage module, and a scan repair module. The fuse array includes a redundant fuse array and a non-redundant fuse array. When the fuse array is not faulty, the redundant fuse array has no signal output, and the non-redundant fuse array outputs S first logic signals. Each storage unit in the signal storage module is configured to store a first logic signal sent by one fuse unit connected thereto. The scan repair module is configured to scan the storage units in the signal storage module, determine, when a faulty storage unit is scanned, that a first fuse unit connected to the faulty storage unit is faulty, and replace the first fuse unit with a first redundant fuse unit corresponding to the first fuse unit. The first logic signal corresponding to the first redundant fuse unit is a normal signal.
US11587640B2 Carrier based high volume system level testing of devices with pop structures
A testing apparatus comprises a tester comprising a plurality of racks, wherein each rack comprises a plurality of slots, wherein each slot comprises: (a) an interface board affixed in a slot of a rack, wherein the interface board comprises test circuitry and a plurality of sockets, each socket operable to receive a device under test (DUT); and (b) a carrier comprising an array of DUTs, wherein the carrier is operable to displace into the slot of the rack; and (c) an array of POP memory devices, wherein each POP memory device is disposed adjacent to a respective DUT in the array of DUTs. Further, the testing apparatus comprises a pick-and-place mechanism for loading the array of DUTs into the carrier and an elevator for transporting the carrier to the slot of the rack.
US11587639B2 Voltage calibration scans to reduce memory device overhead
A voltage calibration scan is initiated. A first value of a data state metric measured for a sample block of a memory device based on associated with a first bin of blocks designated as a current is received. The first value is designated as a minimum value. A second value of the data state metric for the sample block is measured based on a set of read voltage offsets associated with a second bin of blocks having an index value higher than the current bin. In response to determining that the second value exceeds the first value, the first bin is maintained as the current bin and the voltage calibration scan is stopped.
US11587637B1 Apparatuses, systems, and methods for error correction of selected bit pairs
Apparatuses, systems, and methods for error correction for selected bit pairs. A memory device may include an error correction code (ECC) circuit which may receive data bits as part of a read or write operation and generate parity bits based on the data bits. The parity bits may be used to locate and correct errors in the data bits. The parity bits may be generated based on a syndrome value. Each of the individual data bits may be associated with a syndrome value. In addition, some selected pairs of data bits may also be associated with a syndrome value. This may allow the ECC circuit to correct errors in individual data bits or in one of the selected pairs of data bits. In some embodiments, the selected pairs may represent adjacent memory cells along a word line.
US11587632B1 Semiconductor device structure having fuse elements
A semiconductor device structure is provided. The semiconductor device structure includes a plurality of fuse elements, a reference resistor unit, a first conductive terminal, a first switching circuit, and a second switching circuit. Each of the plurality of fuse elements has a first terminal and a second terminal. The reference resistor unit is configured to receive a first power signal and electrically couple with the first terminal of each of the plurality of fuse elements. The first conductive terminal is configured to receive a second power signal and is electrically connected to the second terminal of each of the plurality of fuse elements.
US11587627B2 Determining voltage offsets for memory read operations
A processing device of a memory sub-system is configured to identify a read level of a plurality of read levels associated with a voltage bin of a plurality of voltage bins of a memory device; assign a first threshold voltage offset to the read level of the voltage bin; assign a second threshold voltage offset to the read level of the voltage bin; perform, on block associated with the read level, a first operation of a first operation type using the first threshold voltage offset; and perform, on the blocks associated with the read level, a second operation of a second operation type using the second threshold voltage offset.
US11587626B2 Semiconductor storage device
A semiconductor storage device of an embodiment includes a wiring layer M1 and a wiring layer M2. The wiring layer M1 includes a signal line through which a data signal is transferred, and a plurality of dummy patterns formed of a material same as a material of the signal line. The wiring layer M2 includes a voltage supply line through which voltage Vdd is supplied and another voltage supply line through which voltage Vss is supplied. Each of the dummy patterns is electrically connected with any one of the voltage supply lines. In a dummy pattern disposed adjacent to the signal line, a surface facing the signal line is constituted by a first surface positioned at a first distance to the signal line and a second surface positioned at a second distance to the signal line, the second distance being different from the first distance.