Document Document Title
US11509390B2 Reliable delivery of digital services
Systems and methods for reliable content delivery from a satellite to sub-edge devices are described. Content is delivered to a plurality of edge devices. Missing portions of the content are identified. One or more of the missing portions are selected, and the selected portions are recovered via a satellite network or a non-satellite network. The recovery is coordinated by a central cloud device based on one or more recovery factors.
US11509387B2 Selection of decoding level at signal forwarding devices
In response to an instruction received from a base station, a signal forwarding device applies a signal forwarding scheme selected from a plurality of signaling forwarding schemes by a scheduler. The signal forwarding scheme may be applied by the signal forwarding device to forward signals from the base station to a user equipment (UE) device and/or from the UE device to the base station. The scheduler selects the signal forwarding scheme based on channel characteristics of the channel between the signal forwarding device and the UE device and/or the channel between the signal forwarding device and the base station. Although at least some of the channel characteristics are determined by the base station, at least some of the channel characteristics can be determined by the signal forwarding device in some situations.
US11509386B2 Broadband repeater with security for ultrawideband technologies
An ultrawideband radio transceiver/repeater provides a low cost infrastructure solution that merges wireless and wired network devices while providing connection to the plant, flexible repeater capabilities, network security, traffic monitoring and provisioning, and traffic flow control for wired and wireless connectivity of devices or networks. The ultrawideband radio transceiver/repeater can be implemented in discrete, integrated, distributed or embedded forms.
US11509383B2 Default physical downlink shared channel downlink beam determination with self-interference
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive scheduling information that schedules a physical downlink shared channel (PDSCH) communication for the UE; and select a downlink beam for reception of the PDSCH communication from a set of usable downlink beams associated with an uplink beam to be used by the UE for uplink transmission in one or more symbols in which the PDSCH communication is scheduled. Numerous other aspects are provided.
US11509382B2 RACH design for beamformed communications
In a mmW network, a UE and a base station may establish a link using a RACH procedure. A base station may transmit, in a beamformed signal, a message to a UE during a RACH procedure. The message to the UE may include a value indicating a request for beam information. The base station may receive a message from the UE during the RACH procedure that includes a beam information report comprising the beam information.
US11509380B2 Beam failure reporting using data field in uplink control channel
Methods, systems, and devices for wireless communications are described. Some wireless communications networks may support carrier aggregation such that a user equipment (UE) may operate on both a primary cell using a first frequency range and a secondary cell using a second frequency range. In some cases, a beam failure associated with one or more beams of the secondary cell may be identified by the UE, and a beam failure recovery procedure may be triggered. The UE may send a beam failure recovery request message in an uplink data field of a physical uplink control channel (PUCCH) message to a base station of the primary cell. In response to the beam failure recovery request message, the base station of the primary cell may transmit a response to the UE which includes beam failure mitigation information.
US11509376B2 Base station, user equipment, and communication signal transmitting and receiving methods
A base station, user equipment, and communication signal transmitting and receiving methods. A communication signal transmitting apparatus includes a transmitter; a processor, and non-transitory computer-readable storage medium storing a program for execution by the processor, the program including instructions to determine at least two different resource element groups to use to transmit a synchronization signal, each different resource element group of the at least two different resource element groups used to separately transmit the synchronization signal, and transmit the synchronization signal to user equipment on each of the resource element groups, where, for each resource element group, the synchronization signal transmitted on the respective resource element group carries at least one piece of same information, the same information is cell specific information, and the synchronization signals transmitted on the at least two resource element groups using different beams.
US11509370B2 Indicating frequency and time domain resources in communication systems with multiple transmission points
The technologies described herein are generally directed toward facilitating indicating frequency and time domain resources in communication systems with multiple transmission points. According to an embodiment, a system can comprise a processor and a memory that can store executable instructions that, when executed by the processor, facilitate performance of operations. The operations can include determining a first and a second transmission resource to use for transmission of a signal to a user device by, respectively, a first and a second network node. The operations can further include determining that the first and the second transmission resource comprise a same transmission resource. The operations can further include communicating, to a user equipment, a value corresponding to the first transmission resource and an indication that the first and the second transmission resource comprise the same transmission resource.
US11509366B2 Hybrid FD-MIMO: combining codebook-based and reciprocity-based beamforming
A method, system and apparatus for realizing FD_MIMO in codebook-based transmissions. The method, system and apparatus include the combing of one or more horizontal codebooks and one or more vertical codebooks. A 2D beamformer for downlink transmissions is generated based on the combination of the one or more horizontal codebooks and one or more vertical codebooks.
US11509365B1 System and method for dynamic sidelobe multiplexing in beamspace MIMO systems
A system and method utilizing a novel dynamic sidelobe multiplexing (DSM) is proposed for the applications in beamspace multiple-input multiple-output (MIMO) systems. The DSM technique pre-codes the transmitted data over transmitter beams in order to open up a new path to the receiver.
US11509364B2 Techniques and apparatuses for uplink precoder determination using downlink reference signals or downlink precoder determination using uplink reference signals
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive an indication of whether to use uplink reference signals or downlink reference signals for uplink precoder determination. The UE may selectively transmit a plurality of uplink reference signals or one or more measurement reports based at least in part on the indication, wherein the one or more measurement reports are determined based at least in part on measuring a plurality of downlink reference signals. The UE may receive an indication of a precoder, of a plurality of precoders, to be used to precode an uplink communication, wherein the precoder is identified based at least in part on the plurality of uplink reference signals or the one or more measurement reports. The UE may precode the uplink communication using the precoder. Numerous other aspects are provided.
US11509361B1 Hybrid user selection and beamforming method for multi-user MIMO
In one embodiment, a method includes receiving SRS received from a plurality of UEs associated with the base station from an RU associated with the base station, estimating strengths or signal-to-noise ratios (SNRs) for pre-determined beams for each of the plurality of UEs based on the received SRS, selecting a subset of the plurality of UEs to which downlink data is to be transmitted for a RBG in a TTI based on the estimated strengths or SNRs of the pre-determined beams for the plurality of UEs, computing a precoding matrix for the RBG based on the selected subset, preparing multi-layered UE data for the RBG based on the selected subset and the computed precoding matrix, sending the multi-layered UE data and the precoding matrix for the RBG to the RU, where the RU transmits pre-coded multi-layered UE data to the UEs in the subset using MIMO technologies.
US11509359B2 Initiator device, responder device, and system
An initiator device is provided with a generation circuit for supporting Single User (SU)-Multiple Input Multiple Output (MIMO) operation and generating a first signal including a value that indicates which of a reciprocal MIMO phase and a non-reciprocal MIMO phase is to be applied to SU-MIMO BF training, and a transmission circuit for transmitting the first signal to a responder device. The responder device is provided with a reception circuit for receiving the first signal from the initiator device, and a processing circuit for determining on the basis of the value which of the reciprocal MIMO phase and the non-reciprocal MIMO phase is to be applied to SU-MIMO BF training.
US11509356B2 Wireless communication system and related method for processing uplink fronthaul data
The wireless communications system comprises: a plurality of remote units, wherein each remote unit is configured to convert a respective RF signal into a plurality of time and frequency samples, perform a noise estimation corresponding to the plurality of time and frequency samples, compute a plurality of coefficients corresponding to the plurality of time and frequency samples that have an amplitude greater than at least a predefined threshold value, and multiply each of the plurality of coefficients by its corresponding time and frequency sample to create a plurality of weighted time and frequency samples; at least an intelligent switching unit, coupled to the plurality of remote units, wherein the intelligent switching unit is configured to receive the plurality of weighted time and frequency samples from each of the plurality of remote units, temporally align the pluralities of weighted time and frequency samples, compute a set of weighted sums of time and frequency samples and transmit the set of weighted sums of time and frequency samples; and a baseband processing unit coupled to the intelligent switching unit and configured to receive the set of weighted sums of time and frequency samples, and compute a remaining portion of baseband protocol stack processing on the set of weighted sums of time and frequency samples.
US11509350B2 Methods and apparatus to facilitate hopping of measurement occasions for transmissions
Apparatus, methods, and computer readable media for facilitating of measuring occasions for transmissions based on frequency division multiplexing and spatial division multiplexing are disclosed herein. An example method for wireless communication at a UE includes receiving, from a base station, a hopping pattern indication configuring a hopping pattern. The example method also includes measuring interference of respective CSI-RS transmitted to other UEs included in a UE group based on at least the hopping pattern indication. The example method also includes reporting the measured interference to the base station. An example method for wireless communication at a base station includes transmitting a hopping pattern indication to each of a plurality of UEs. The example method also includes transmitting reference signals for the plurality of UEs using the hopping pattern among multiple subbands, and receiving a report of interference measured by each of the plurality of UEs based on the reference signals.
US11509349B2 Reception device, wireless communication system, interference-power estimation method, control circuit, and recording medium
A reception device includes an interference cancellation unit to extract a symbol from a received signal with a first signal inserted in a time direction of a data symbol, the symbol being a signal during an interval corresponding to the first signal, to reproduce an interference signal during an interval corresponding to the data symbol, and to output a first interference-cancelled signal obtained by extracting the data symbol from a signal obtained by cancelling the interference signal from the received signal, and an interference-power estimation unit to estimate desired signal power by subtracting second average power of a symbol of a first signal, extracted from the received signal, from first average power the data symbol to estimate first noise power by subtracting the desired signal power from third average power of the data symbol, to estimate second noise power from the first noise power, and to estimate interference power by subtracting the second noise power from the second average power.
US11509342B2 Wireless communication device
The invention relates to a wireless communication device 1 having an upper part 10 and a bottom part 11, the upper part 10 comprising one or more transmission antenna device(s) 12a, 12b; 15. The upper part 10 and the bottom part 11 are arranged movably in relation to each other, so that the bottom part 11, in use mode, is closer to the user than the upper part 10. The bottom part 11 comprises one or more reception antenna device(s) 14a, 14b, 14c, 14d.
US11509338B2 Nested feedback for offset cancellation in a wireline receiver
Systems and methods are provided for optimizing offset compensation in a receiver with multiple offset compensation D/A converters. At each stage where offset cancellation is applied, there is a fan-out of two or more. At the final stage, comparator offset compensation codes are summed and compared against a digital reference. In one version the digital reference is zero. A second implementation has a non-zero digital reference which is the sum of comparator offsets stored from start up. The difference between the sum of offsets and digital reference is applied to a digital accumulator. The most significant bits of the digital accumulator are applied to a digital D/A converter, which cancel analog offsets in an intermediate stage of amplifiers. The summation of offsets feeding into an accumulator is implemented for all preceding stages.
US11509337B2 Implementation of improved omni mode signal reception
In an aspect of the disclosure, an apparatus for wireless communication is provided. The apparatus may include several detectors, each of which may be configured to detect a signal received by a corresponding antenna of several antennas. The apparatus may include a processing system configured to detect a remote apparatus based on outputs from the detectors. The apparatus may include several modem radio frequency chips each including a corresponding detector of the several detectors, and a modem baseband chip including the processing system. The processing system may be configured to allow at most one of the detectors to output a detection declaration to the processing system at a time. The processing system may be configured to send a power-down command to and disconnect from each of the detectors that does not detect the signal from a corresponding antenna of the several antennas.
US11509335B2 High isolation radio frequency multiplexer
A radio frequency (RF) multiplexer circuit is provided. The multiplexer includes a first circuit coupled between a first input terminal and a first output terminal. The first circuit is configured and arranged to transfer a first RF signal coupled at the first input terminal to the first output terminal as a first output signal when a first control signal is at a first logic value. The multiplexer includes a second circuit coupled between a second input terminal and the first output terminal. The second circuit is configured and arranged to transfer a second RF signal coupled at the second input terminal to the first output terminal as a second output signal having a gain higher than the gain of the second RF signal when the first control signal is at a second logic value.
US11509331B2 Data processing device and data processing method
The present technology relates to a data processing device and a data processing method, which are capable of securing excellent communication quality in data transmission using an LDPC code. In group-wise interleave, an LDPC code in which a code length N is 16200 bits and an encoding rate r is 10/15 or 12/15 is interleaved in units of bit groups of 360 bits. In group-wise deinterleave, a sequence of the LDPC code that has undergone the group-wise interleave is restored to an original sequence. For example, the present technology can be applied to a technique of performing data transmission using an LDPC code.
US11509330B2 Guaranteed data compression
A method of compressing data is described in which the compressed data is generated by either or both of a primary compression unit or a reserve compression unit in order that a target compression threshold is satisfied. If a compressed data block generated by the primary compression unit satisfies the compression threshold, that block is output. However, if the compressed data block generated by the primary compression unit is too large, such that the compression threshold is not satisfied, a compressed data block generated by the reserve compression unit using a lossy compression technique, is output.
US11509328B2 Computer data compression utilizing multiple symbol alphabets and dynamic binding of symbol alphabets
The generation of symbol-encoded data from digital data, as part of the compression of the digital data into a compressed digital data, can be performed with reference to multiple alternative alphabets. A selection of a specific alphabet is made based on the digital data being compressed, the compression parameters, or combinations thereof. Information indicative of the selected alphabet is encoded into one or more headers of the resulting compressed digital data. A single alphabet can be selected for all of a set of digital data being compressed, or multiple different alphabets can be selected, with different ones of the multiple different alphabets being utilized to compress different portions of the digital data. Additionally, rather than explicitly specifying a specific selected alphabet, the header information can comprise information from which a same alphabet can be independently selected heuristically by both the compressor and the corresponding decompressor.
US11509320B2 Signal converting apparatus and related method
A signal converting apparatus includes a comparing device, a first digital-slope quantizer, and a second digital-slope quantizer. The comparing device having a first input terminal and a second input terminal for receiving a first received signal and a second received signal, and for generating an output signal at an output port. The first digital-slope quantizer generates a first set of digital signals to monotonically adjust the first received signal and the second received signal at the first input terminal and the second input terminal during a first phase according to a first quantization unit. The second digital-slope quantizer generates a second set of digital signals to monotonically adjust the first received signal and the second received signal at the first input terminal and the second input terminal during a second phase after the first phase according to a second quantization unit.
US11509319B2 Low integral non-linearity digital-to-time converter for fractional-N PLLS
An apparatus includes a first digital-to-time converter (DTC) and a second DTC. The first DTC includes a sequence of delay stages. Each of the delay stages adds a delay to an input signal based on a control signal. Each delay stage includes a comparator and a capacitor coupled to an input of the comparator and to ground. The second DTC is coupled in parallel to the first DTC. The second DTC adds a delay to the input signal based on a complement of the control signal.
US11509318B2 Voltage controlled oscillator structure and phase-locked loop
The present invention includes a voltage controlled oscillator circuit and a phase-locked loop device. The voltage controlled oscillator circuit comprises: a voltage-to-current conversion module, used for converting a control voltage of a voltage controlled oscillator into a control current as a linear function of the control voltage; and a current controlled oscillation module, used for outputting a low-amplitude oscillation signal based on the control current, so as to reduce power consumption. Further provided in the present invention is a phase-locked loop device comprising the voltage controlled oscillator circuit. According to the voltage controlled oscillator circuit, design parameters of low power consumption and high linearity may be achieved, thereby making a gain Kvco of the voltage controlled oscillator relatively stable, and it may be ensured that the voltage controlled oscillator and the phase-locked loop comprising the same have relatively excellent device performance.
US11509315B2 Fractional-N phase-locked loop and sliced charge pump control method thereof
A fractional-N phase locked loop (PLL) and a sliced charge pump (CP) control method thereof are provided. The fractional-N PLL includes a first current source, a first phase frequency detector (PFD), a second current source, a second PFD, and a divided clock controller. The first current source provides a first current. The first PFD generates a first detection signal according to a first divided clock, for controlling the first current source, wherein the first divided clock is generated according to an oscillation clock having an oscillation period. The second current source provides a second current. The second PFD generates a second detection signal according to a second divided clock, for controlling the second current source. The divided clock controller controls the second divided clock based on a variable delay relative to the first divided clock, wherein the variable delay is an integer times the oscillation period.
US11509313B1 Delay-locked loop circuit with multiple modes
A DLL circuit comprising a delay circuit, a phase detector and a counting control circuit. The delay circuit is configured to receive a reference clock signal, and delay the reference clock signal to output a delayed clock signal. The phase detector is configured to detect a phase difference between the reference clock signal and the delayed clock signal to generate a phase difference signal. The counting control circuit is configured to generate a control delay signal according to the phase difference signal. The delay circuit delays the reference clock signal according to the control delay signal to output the delayed clock signal. When the counting control circuit is in the first mode, the counting control circuit has a first update frequency. When the counting control circuit is in the second mode, the counting control circuit has a second update frequency.
US11509308B1 Sequential circuit without feedback or memory element
A low power sequential circuit (e.g., latch) uses a non-linear polar capacitor to retain charge with fewer transistors than traditional CMOS sequential circuits. In one example, a sequential circuit includes pass-gates and inverters, but without a feedback mechanism or memory element. In another example, a sequential uses load capacitors (e.g., capacitors coupled to a storage node and a reference supply). The load capacitors are implemented using ferroelectric material, paraelectric material, or linear dielectric. In one example, a sequential uses minority, majority, or threshold gates with ferroelectric or paraelectric capacitors. In one example, a sequential circuit uses minority, majority, or threshold gates configured as NAND gates.
US11509305B2 Switchable diode devices having transistors in series
An electronic chip includes a chip core including an input terminal, an output terminal, an external pad, and an input-output circuit coupled to the chip core and the external pad. The input-output circuit includes an enable terminal coupled to the chip core, a connection terminal coupled to the external pad, a switchable diode device coupled between a supply voltage and a reference voltage, and a levelling circuit. The switchable diode device is coupled to the connection terminal and the enable terminal and is configured to operate as a diode in response to a control signal in a first state applied to the enable terminal and to operate as an open circuit in response to the control signal in a second state applied to the enable terminal. The levelling circuit is coupled to the connection terminal, the input terminal of the chip core, and the output terminal of the chip core.
US11509303B2 Glitch power analysis and optimization engine
A switching activity report of simulated switching activities of a semiconductor circuit is accessed. A plurality of glitch bottleneck ratios corresponding to a plurality of pins in the semiconductor circuit are determined, comprising by: setting an initial bottleneck ratio on a leaf output pin; and backward traversing the semiconductor circuit to determine a plurality of glitch bottleneck ratios of pins in a fan-in cone of the leaf output pin.A plurality of total glitch powers associated with the plurality of pins is determined, a total glitch power of the plurality of total glitch powers being determined based on a glitch bottleneck ratio and a glitch power of a corresponding pin. One or more critical bottleneck pins among the plurality of pins are identified based on the plurality of total glitch powers. One or more gates associated with the one or more critical bottleneck pins are adjusted to reduce corresponding one or more total glitch powers of the one or more gates.
US11509302B2 Reset isolation for an embedded safety island in a system on a chip
Disclosed embodiments include an electronic system with a power on reset (POR) circuit. The POR circuit includes first voltage detection circuitry to perform a first detection on a supply voltage and to output a first control signal in response to the first detection, second voltage detection circuitry to perform a second detection on the supply voltage and to output a second control signal in response to the second detection, and third voltage detection circuitry to perform a third detection on the supply voltage and to output at least one third control signal in response to the third detection. The POR circuit further has sequencing circuitry with a first input to receive the at least one third control signal and to output a reset signal in response to the at least one third control signal.
US11509301B2 Electronic switch with current regulation
An electronic switch includes a current sensor and a semiconductor switch having two semiconductors configured to carry and disconnect a current in both directions, and a control circuit configured to operate the semiconductor switch by pulse-width modulation and to determine a phase control factor of the pulse-width modulation as a function of measurement values of the current sensor such that in fault-free operation, the electronic switch remains in the ON state and that two limit values exist for protection. The electronic switch is operated by pulse-width modulation when a first one of the two limit values is exceeded, and the electronic switch is switched off when a second one of the two limit values, which is greater than the first limit value, is exceeded. The electronic switch is configured to reduce an edge steepness of a switching edge as the phase control factor decreases.
US11509299B2 Dynamic comparator
The present description concerns a comparator (1) of a first voltage (V+) and of a second voltage (V−), comprising first (100) and second (102) branches each comprising a same succession of alternated first (106) and second (108) gates in series between a node (104) and an output (1002; 1022) of the branch (100; 102), wherein: each branch starts with a first gate (106), each gate (106; 108) has a second node (114) receiving a bias voltage, the second node (114) of each first gate (106) of the first branch (100) and of each second gate (108) of the second branch (102) receives the first voltage (V+), the second node of the other gates receiving the second voltage (V−), and an order of arrival of the edges on the outputs (1002; 1022) of the branches determines a result of a comparison.
US11509289B2 Composite component and mounting structure therefor
In a composite component, a semiconductor device is stacked on an elastic wave device. Side electrodes extend from at least one side surface of a piezoelectric substrate of the elastic wave device to at least a side surface of a semiconductor substrate of the semiconductor device and are connected to an IDT electrode and functional electrodes. The side electrodes extend onto at least one of a second main surface of the piezoelectric substrate and a second main surface of the semiconductor substrate.
US11509288B2 Vibrator device, oscillator, gyro sensor, electronic apparatus, and vehicle
A vibrator device includes a vibration element including a vibration portion and a fixed portion, a supporting member to which the fixed portion is attached to support the vibration element, and a first substrate to which the supporting member is attached, the supporting member includes a attaching portion attached to the first substrate, and A1≥A2 is satisfied in a case where an area of a rectangular region including the fixed portion is A1 and an area of a rectangular region including the attaching portion is A2 in a plan view seen from a thickness direction of the vibration element.
US11509287B2 Bi-polar border region in piezoelectric device
An acoustic device includes a foundation structure and a transducer provided over the foundation structure. The foundation structure includes a piezoelectric layer between a top electrode and a bottom electrode. The piezoelectric layer has an active portion within an active region of the transducer, and a bi-polar border portion within a border region of the transducer. The piezoelectric material in the active portion has a first polarization. The bi-polar border portion has a first sub-portion and a second sub-portion, which resides either above or below the first sub-portion. The piezoelectric material in the first sub-portion has the first polarization, and the piezoelectric material in the second sub-portion has a second polarization, which is opposite the first polarization.
US11509273B2 Apparatus and methods for power amplifier distortion network
Apparatus and methods for power amplifier distortion networks are disclosed. In one aspect, there is provided a power amplifier system including a power amplifier configured to amplify a radio frequency input signal. The power amplifier including an input configured to receive the radio frequency input signal and an output configured to generate an amplified radio frequency signal. The power amplifier system further includes a distortion network electrically coupled to either the input or the output of the power amplifier. The distortion network including a plurality of channelized resistors. The channelized resistors connected in series to either an input or an output of the power amplifier.
US11509272B2 Time encoding modulator circuitry
This application describes time-encoding modulator circuitry (200), and in particular a PWM modulator suitable for use for a class-D amplifier. A forward signal path receives a digital input signal (Din) and outputs an output PWM signal (Sout) and includes a first PWM modulator (101). A feedback path provides feedback to an input of the first PWM modulator (101). The feedback path includes an ADC (203) which receive a first PWM signal (Sa) derived from the output PWM signal. The ADC (203) includes a second PWM modulator (401) which generates a second PWM signal (Sb) based on the first PWM signal. A controller (201) controls the second PWM modulator such that a PWM carrier of the second PWM signal is phase and frequency matched to a PWM carrier of the output PWM signal.
US11509271B2 Power amplifier module
A power amplifier module includes an output-stage amplifier, a driver-stage amplifier, an input switch, an output switch, an input matching circuit, an inter-stage matching circuit, an output matching circuit, and a control circuit. The input switch selectively connects one of a plurality of input signal paths to an input terminal of the driver-stage amplifier. The output switch selectively connects one of a plurality of output signal paths to an output terminal of the output-stage amplifier. The control circuit controls operations of the driver-stage amplifier and the output-stage amplifier. The input switch, the output switch, and the control circuit are integrated into an IC chip. The control circuit is disposed between the input switch and the output switch.
US11509268B2 Power control and indicator for preamp of acoustic string instrument
A power control and indicator device for coupling to an acoustic string instrument preamp is provided. The device includes a light emitting diode having an anode terminal and a cathode terminal, a switch having a first terminal and a second terminal, the switch having a closed position that closes a circuit between the first and second terminal and an open position that opens the circuit between the first and second terminal, a battery connector having a positive terminal and a negative terminal, the battery connector adapted to couple to a battery, a preamp connector having a positive terminal and a negative terminal, whereby with a battery connected to the battery connector, wherein with the switch in the closed position, the light emitting diode is powered and illuminates and the battery connector is coupled to the preamp connector, the battery provides power to the preamp connector, and wherein with the switch in the open position, the light emitting diode is not powered and does not illuminate and the battery connector is not coupled to the preamp connector and the battery does not provide power to the preamp connector.
US11509267B2 Amplifier
An amplifier includes: a signal polarity inversion circuit which modulates an input signal and outputs a modulation signal; an amplifier circuit which is constituted from an operational transconductance amplifier (OTA) to amplify the modulation signal and output a current; and a sample-hold circuit having a sampling capacitor which is charged and discharged by selective sampling of the output current of the amplifier circuit and a holding capacitor to which the voltage of the sampling capacitor is transferred.
US11509266B2 Voltage-controlled oscillator (VCO) with LC circuit and series resistors
A system includes a data path and a phase-locked loop (PLL) coupled to the data path. The system also includes a voltage-controlled oscillator (VCO) coupled to the PLL. The VCO includes an LC circuit with first and second differential output terminals. The VCO also includes a first resistor coupled between the first differential output terminal and drain terminals of a first pair of complementary metal-oxide semiconductor (CMOS) transistors. The VCO also includes a second resistor coupled between the second differential output terminal and drain terminals of a second pair of CMOS transistors.
US11509264B2 Full spectrum electro-magnetic energy system
Electro-magnetic (EM) energy collected in three dimensions, in layers allows for multiple planes to function operatively with optimized band gap structures whereby integrated variant and overlapping three-dimensional electro-magnetic films permit systems to collect energy across the entire electro-magnetic spectrum, and present systems utilizing both direct and indirect light to be leveraged. The EM-CS captures and contains more energy from EMR than conventional systems addressing global energy needs.
US11509263B2 Electrically isolated heat dissipating junction box
A junction box used for making electrical connections to a photovoltaic panel. The junction box has two chambers including a first chamber and a second chamber and a wall common to and separating both chambers. The wall may be adapted to have an electrical connection therethrough. The two lids are adapted to seal respectively the two chambers. The two lids are on opposite sides of the junction box relative to the photovoltaic panel. The two lids may be attachable using different sealing processes to a different level of hermeticity. The first chamber may be adapted to receive a circuit board for electrical power conversion. The junction box may include supports for mounting a printed circuit board in the first chamber. The second chamber is configured for electrical connection to the photovoltaic panel. A metal heat sink may be bonded inside the first chamber.
US11509262B2 Photovoltaic power generation virtual inertia compensation system and method based on super capacitor energy storage
The present invention discloses a photovoltaic power generation virtual inertia compensation system based on SCES, comprising a photovoltaic array, a boost circuit and a grid-connected inverter, which are electrically connected in sequence, and further comprising a supercapacitor assembly for energy storage, a bidirectional DC-DC converter and a virtual inertia control module; an end of the bidirectional DC-DC converter is electrically connected to an output end of the unidirectional DC-DC boost circuit and an input end of the power grid inverter, and the other end thereof is electrically connected to the supercapacitor assembly; the bidirectional DC-DC converter comprises two power switch devices; the virtual inertia control module comprises a first inverting adder, a virtual inertia converter, a second inverting adder, a first PI controller, a third inverting adder, a second PI controller and a PWM modem, which are electrically connected in sequence.
US11509253B2 Electric drive assembly with dynamic control of pulse width modulation switching
An electric drive system includes a rechargeable energy storage unit, a power inverter, an electric motor and a controller having a processor and tangible, non-transitory memory on which instructions are recorded. A transfer of electrical power between the rechargeable energy storage unit and the electric motor is governed by a pulse width modulation (PWM) switching frequency. The controller is configured to determine a current switching frequency based in part on a PWM type, a PWM switching frequency style and an inverter direct current voltage. A PWM scalar is determined based in part on the current switching frequency and a maximum value of a control reference frequency. The controller is configured to transmit a command signal to regulate the transfer of electrical power based in part on the PWM scalar, the PWM switching frequency being proportional to a product of the PWM scalar and the control reference frequency.
US11509251B2 Motor driving device and air conditioner
A motor driving device is a device for driving a motor including stator windings, includes: a connection switching unit that is connected to the stator windings, includes circuits including semiconductor switches, and switches connection condition of the stator windings to either of first connection condition and second connection condition different from the first connection condition by setting the semiconductor switches to ON or OFF; and an inverter that supplies AC drive voltages to the stator windings.
US11509241B2 Power conversion system with N power converters, each having 2 outputs
A power conversion system includes N power converters. Each power converter includes an input terminal, a first output terminal and a second output terminal. Each of the N power converters receives a DC power through the corresponding input terminal. The first output terminal of a first power converter of the N power converters and the second output terminal of an N-th power converter of the N power converters are connected in parallel to form an N-th total output terminal to output an N-th total output power. The first output terminal of an i-th power converter of the N power converters and the second output terminal of an (i−1)-th power converter of the N power converters are connected in parallel to form an (i−1)-th total output terminal to output an (i−1)-th total output power.
US11509240B2 Switching device
A switching device according to the present invention is a switching device for switching a load by on-off control of voltage, and includes an SiC semiconductor layer where a current path is formed by on-control of the voltage, a first electrode arranged to be in contact with the SiC semiconductor layer, and a second electrode arranged to be in contact with the SiC semiconductor layer for conducting with the first electrode due to the formation of the current path, while the first electrode has a variable resistance portion made of a material whose resistance value increases under a prescribed high-temperature condition for limiting current density of overcurrent to not more than a prescribed value when the overcurrent flows to the current path.
US11509237B2 Power conversion device
A power conversion device includes first and second current detectors. A coil is connected a first power terminal through the first and second current detectors. A first switch has a source terminal connected to the coil and a second semiconductor switch has a drain terminal connected to the coil. A first diode is connected between a drain terminal of the first semiconductor switch and a second power supply terminal. A second diode is connected between a source terminal of the second semiconductor switch and the second power terminal. A capacitor is connected in parallel with the first and second diodes. A control circuit is configured to turn the first and second semiconductor switches on or off based on current detections of the first and second current detectors.
US11509236B2 Power conversion device
An object is to obtain a power conversion device that can suppress the generation of noise due to coupling and achieve the size reduction of a substrate. In a power conversion device, a main circuit wire for connecting main circuit components to form a main circuit includes a first main circuit wire and a second main circuit wire wired so as to be separated from each other on a substrate. A control wire is wired between the first main circuit wire and the second main circuit wire so as to be insulated therefrom, and the first main circuit wire and the second main circuit wire are connected to each other via the main circuit component placed so as to be separated from the control wire in the thickness direction of the substrate.
US11509235B2 Modular power supply
A mounting base can comprise: a group of mounting areas, each mounting area of the group of mounting areas comprising: a respective mechanical connector member of a group of respective mechanical connector members for attaching to a complementary mechanical connector member on each direct-current to direct-current (DC/DC) converter unit of the group of DC/DC converter units, and a respective electrical connector of a group of respective electrical connectors for attaching to a complementary electrical connector on each DC/DC converter unit of the group of DC/DC converter units, a group of electrical conductors attached to the group of respective electrical connectors in each mounting area, and attached to a main connector on the mounting base for connecting to a high-voltage (HV) connector of a main HV supply, and a cooling channel extending in heat conducting contact with the group of mounting areas.
US11509229B2 Resonant core power supply
A resonant core power supply includes a core with excitation, resonant, and load windings where the resonant winding is coupled to a tank circuit and a controller manipulates the phase, amplitude and waveform of an excitation signal applied to the excitation winding.
US11509219B2 Reservoir capacitor for boost converters
A power supply comprising a first-stage capacitor configured to provide energy to a second stage power converter. An energy transfer element coupled to the first-stage capacitor. A reservoir capacitor coupled to the energy transfer element. The reservoir capacitor is configured to receive charge from the energy transfer element. A power switch configured to control a transfer of energy from an input of the power supply to the first-stage capacitor. A controller coupled to the power switch, the controller configured to generate a hold-up signal in response to the input of the power supply falling below a threshold voltage. A charge circuit comprising a first switch and a second switch configured to be controlled by the hold-up signal. The first switch couples the reservoir capacitor to an input of the energy transfer element. The second switch is configured to uncouple the reservoir capacitor from receiving charge from the energy transfer element.
US11509216B2 Semiconductor device for non-isolated buck converter, non-isolated buck converter, and power supply device
A non-isolated buck converter generates an output voltage by stepping down an input voltage obtained by subjecting an alternating-current voltage to full-wave rectification and smoothing, by using a step-down circuit including a switching element, an inductor, and a freewheeling diode. The switching element is disposed between a first terminal and a second terminal. A semiconductor device in charge of switching control operates with a potential at the second terminal as a reference. A control circuit provided in the semiconductor device includes a protecting circuit capable of referring to an evaluation voltage corresponding to a voltage between the first terminal and the second terminal at a sampling timing at which a predetermined period of time has passed from turning off of the switching element, and performing a protecting operation that fixes the switching element to an off state on the basis of the evaluation voltage.
US11509215B2 Power control apparatus and power control method with oscillation control
Recently, it is desired to improve responsiveness in case where a drop in the output voltage is prevented. A power supply control device is provided, comprising a switch control unit for controlling an ON/OFF state of a switching device of a boosting chopper using an oscillation wave, a voltage acquisition unit for acquiring DC output voltage corresponding to an output of the boosting chopper, and an oscillation control unit for reducing a change speed of the oscillation wave during at least a part of a period during which the switching device is in an ON state, in response to a drop in the DC output voltage.
US11509212B2 Switched-mode power supply with voltage limitation
A switched-mode power supply has a rectifier device, a switching unit which is arranged downstream of the rectifier device, a transmission device which is arranged downstream of the switching unit and a filter device. In order to reduce the sensitivity of the switched-mode power supply to high-energy interferences, it is proposed that the filter device contains a current-compensated choke coil which is connected to a voltage limiter circuit in such a way that in the case of interference signals applied to the choke coil, a damping of the interference signals takes place by way of the voltage limiter circuit.
US11509210B1 Frequency synchronization for a voltage converter
A device includes a comparator having a first comparator input configured to receive a time signal. The device also includes a subtractor having a subtractor output coupled to a second comparator input, and a first subtractor input adapted to be coupled to a voltage converter terminal. The device also includes a current source having an output coupled to a second subtractor input, and a current source input coupled to the first subtractor input. The device also includes a capacitor coupled to the second subtractor input and to ground. The device also includes a latch having an output and first and second inputs. The latch output is coupled to a control terminal of a transistor in parallel with the capacitor, the first latch input is coupled to the comparator output, and the second latch input is configured to receive a clock signal.
US11509204B2 Axial air gap motor and clothing processing apparatus having same
An axial air gap motor comprises: a frame; a stator that is arranged in an outer side of the frame in a radial direction; a first rotor that is spaced from one side of the stator in an axial direction, that has an air gap therebetween, and that is rotatably arranged in one side of the frame; and a second rotor that is spaced from the other side of the stator in the axial direction, that has an air gap therebetween, that is rotatably arranged in the other side of the frame, and that is connected with the first rotor in the axial direction.
US11509202B2 Variable flux permanent magnet motor
A permanent magnet motor is provided that produces variable magnetic flux. The motor may include two different types of permanent magnets with different coercivities. The magnetic state of one of the magnets may be altered during use. In one state, the effective magnetic flux of the motor is greater, and in another state, the effective magnetic flux of the motor is less.
US11509200B2 Process for making a continuous bar winding for an electric machine
A process for making a continuous bar winding (4) for an electric machine is described, comprising: a) a step of providing a template (10) having a template axis (X) and a circular array of slots (11) extended about said template axis (X), said circular array of slots having a number of slots equal to a number of slots of the stator or of the rotor of said electric machine, each slot (11) of said circular array having a first and a second open end face (11A, 11B) which are axially spaced from one another and a third open end face (11C), said third face (11C) being a longitudinal face extended between said first and second end faces (11A, 11B) b) a step of providing a conductive bar (20); c) a step of locking a locking portion (21) of said conductive bar; d) a step of inserting the conductive bar (20) into the slots (11) of said array and shaping the conductive bar (20) so that such conductive bar (20) repeatedly passes through the slots (11) of said array from the side of the first open end faces (11A) to the side of the second open end faces (11B) and vice versa, so that said bar (20) has a plurality of bar portions (20B, 20E, 20H) received in the slots (11) of said array and a plurality of connecting portions (20C, 20D; 20F, 20G) projecting beyond said first and second open end faces (11A, 11B), each of said connecting portions joining a pair of said bar portions (20B, 20E, 20H) received in the slots (11) of said array; in which said step d) comprises: d1) an operation of inserting a first bar portion (20B) of said plurality of bar portions into a respective slot (11) of said circular array of slots (11) through said third face (11C) of such slot (11); d2) an operation of shaping a first connecting portion (20C, 20D) of said plurality of connecting portions (20C, 20D; 20F, 20G); d3) an operation of inserting a second bar portion (20E) of said plurality of bar portions (20B, 20E, 20H) into a further slot (11) of said array, different from the slot (11) into which said first bar portion (20B) has been inserted, through said third face (11C) of the further slot (11); in which said first connecting portion (20C, 20D) joins said first and second bar portions (20B, 20E) projecting beyond the second end faces (11B) of the slots (11) in which said first and second bar portions (20B, 20E) have been inserted.
US11509199B2 Systems and processes for aligning permanent magnet motors in an electric submersible pump
The present invention relates to electric submersible pumps that have two or more permanent magnet motors and more specifically to such systems wherein permanent magnet motors are aligned using phase and pole alignment marks.
US11509192B2 Electric motor connections for power tools
In at least one illustrative embodiment, a power tool may comprise an electric motor comprising a rotor configured to rotate about an axis, a stator assembly including at least three windings arranged around the rotor, and at least three lugs affixed to the stator assembly, where each of the lugs is electrically coupled to one or more of the windings. The lugs may all be arranged to one side of a plane that passes through the axis. The power tool may further comprise at least three electrical wires, where each of the electrical wires is removably coupled to one of the lugs, and a control circuit configured to supply electrical power to the windings, via the electrical wires and the lugs, to drive rotation of the rotor about the axis.
US11509190B2 Motor and method of producing the same
A motor includes: a motor housing; a stator disposed inside the motor housing and supported by the motor housing; and a thermally conductive sheet disposed so as to fill a gap in a radial direction or an axial direction between the motor housing and the stator.
US11509187B2 Integrated terminal box of a rotary dynamoelectric machine
A rotary dynamoelectric machine includes a single- or multi-phase winding system, which is arranged in a stator and has winding connection lines which are guided into a terminal box for contacting external connection lines. The terminal box is located in a region of an end side of the stator, is recessed in a housing of the stator, and is arranged axially between the stator and an end shield.
US11509185B2 Electrical machine
The present disclosure describes an electrical machine. The Electrical machine includes a stator, a rotor, a winding fitted to the rotor, and an apparatus for supplying electrical energy to the winding. The apparatus includes a slip ring and a brush assembly including a brush holder and a brush. The slip ring and the brush assembly are arranged in a housing. An annular gap is disposed between the slip ring and the housing. The housing is fluidically substantially sealed in relation to an exterior, and a flow path of air is routed through the housing in a closed arrangement. The housing includes a housing part fluidically connected to the annular gap via a first flow opening and a second flow opening. A flow section of the flow path is routed through the housing part, and leads from the first flow opening to the second flow opening.
US11509182B2 Wire guiding device for a rotor of a synchronous electric machine of the wound rotor type
A guiding device is for the winding of electrically conductive wires about a plurality of poles of a rotor of an electric machine that are distributed about a shaft extending axially in the rotor. The device includes a guide head that is able to be mounted on the shaft. The guide head includes a metallic basic structure provided with a plurality of arms that extend radially from an inner part of the metallic basic structure provided with a central orifice, and a plastics structure overmoulded on the metallic basic structure, in a set-back manner with respect to an internal cylindrical surface of the central orifice, such that the internal cylindrical surface of the central orifice of the metallic basic structure is designed to be in direct contact with the shaft of the rotor for mounting on the shaft of the rotor with an interference fit.
US11509181B2 Armature having a core leg position fixing member for reducing thermal stress
This armature has a core leg portion fixing member that is provided in a slot so as to overlap with a part at a position different from a position in an axial direction corresponding to a joint portion, and that includes a first fixing layer for fixing an armature core and a leg portion.
US11509179B2 Axial field rotary energy device having PCB stator and variable frequency drive
An axial field rotary energy device or system includes an axis, a PCB stator and rotors having respective permanent magnets. The rotors rotate about the axis relative to the PCB stator. A variable frequency drive (VFD) having VFD components are coupled to the axial field rotary energy device. An enclosure contains the axial field rotary energy device and the VFD, such that the axial field rotary device and the VFD are integrated together within the enclosure. In addition, a cooling system is integrated with the enclosure to cool the axial field rotary energy device and the VFD.
US11509177B2 Magnet structure with a plurality of individual magnets in the form of blocks
A magnet structure comprising a plurality of individual magnets in the form of an elongate block (4) having a length (4a) extending beyond the thickness of the magnet structure. The elongate block (4) is cylindrical or polyhedral in shape with at least one flat longitudinal face (4b) orientated towards a working surface of the magnet structure, the elongate block (4) having a line of magnetisation extending along its length. The individual magnets (4) being positioned at a distance from each other in the magnet structure in order to be electrically isolated from each other, the length (4a) of each block (4) being greater than the diameter of the flat longitudinal face (4b) for a cylindrical block (4) or with a larger diagonal (4c) connecting two apexes of said longitudinal face (4b) for a block (4) in the form of a polyhedron.
US11509175B1 Homopolar multi-core energy conversion device
A homopolar multi-core energy conversion device is an apparatus that uses magnetic flux commutation instead of a combination of electrical current commutation and brushes. The apparatus includes a first discontinuous annular stator core, a second discontinuous annular stator core, and a rotor core. The first discontinuous annular stator core is configured to generate a circumferentially-segmented clockwise magnetic flux around the rotor core, while second discontinuous annular stator core is configured to generate a circumferentially-segmented counter-clockwise magnetic flux around the rotor core. The rotor core is configured to radially partition a traversing magnetic flux. The circumferentially-segmented clockwise magnetic flux, the circumferentially-segmented counter-clockwise magnetic flux, and the traversing magnetic flux interact with each other so that the apparatus can function either as a motor or as a generator. The aforementioned components of the apparatus can be configured into different embodiment to achieve the same function.
US11509174B2 Power receiving apparatus, power transmitting apparatus, control methods thereof, and non-transitory computer-readable storage medium
A power receiving apparatus comprises a power receiving unit that receives power transmitted wirelessly from a power transmitting apparatus, a communication unit that transmits, to the power transmitting apparatus, information regarding a received power received by the power receiving unit, and a control unit that determines whether or not it is necessary to update a reference value which is generated in the power transmitting apparatus on the basis of the information regarding the received power and is used for a detection of an object different from the power receiving apparatus by the power transmitting unit and requests the power transmitting apparatus to update the reference value when it is determined that it is necessary to update the reference value.
US11509172B2 Wireless charging system and associated methods
A wireless charging system concurrently charges several wireless devices within a shielded chamber acting as a hollow electromagnetic waveguide. Electrically conductive walls of the chamber create transverse modes that support longitudinal propagation of the electromagnetic field along the waveguide with no diminution of the energy flux density due to the inverse-square law. A transmitting antenna located inside the chamber emits an electromagnetic field that excites one or more transverse modes of the waveguide. An absorptive lid absorbs the electromagnetic field to minimize reflections that could excite longitudinal modes. Each wireless device includes a whisker antenna that receives part of the electromagnetic field for charging a battery. Due to the spatial uniformity of the electromagnetic field, the wireless devices charge with high efficiency regardless of their positions, ensuring they all charge at a similar rate.
US11509171B2 Wireless charging pulse generator
A controller for generating a sequence of pulse is disclosed. The controller includes a plurality of pulse width modulation (PWM) modules. Each PWM Module configured to generate a first sequence of pulses and a second sequence of pulses each having a width that is modulated by a PWM value stored in a PWM register of the PWM module. Each PWM module includes two outputs. The first sequence of pulses is outputted on the first output and the second sequence of pulses is outputted on the second output. The controller also includes a memory having a plurality of memory tables and a plurality of direct memory access (DMA) modules. Each memory table configured to store PWM values to be written into the PWM register and each DMA module is coupled to a respective PWM module in the plurality of PWM modules and to a respective memory table in the plurality of memory tables and configured to write a PWM value from the memory table into the PWM register in response to a DMA trigger. The controller further includes a core coupled to the plurality of memory tables and configured to write the PWM values into the plurality of memory tables.
US11509168B2 Wireless power supply system and power transmission device thereof
Provided is a wireless power supply system employing a magnetic resonance technique in which high-frequency power is wirelessly supplied from a power transmission device that includes a power transmission coil to a power reception device that includes a power reception coil that is at least magnetically coupled with the power transmission coil. The wireless power supply system includes a relay coil that is coupled with the power transmission coil and the power reception coil using at least a magnetic field, and a relay circuit that is connected to the relay coil and forms a resonant circuit together with the relay coil. When k1 represents a coupling coefficient between the power transmission coil and the power reception coil and k2 represents a coupling coefficient between the power transmission coil and the relay coil, a relationship k1≥k2 holds true.
US11509167B2 Wireless docking device and method therefor
A method may include determining that an information handling system is placed on a wireless charging pad. The wireless charging pad is communicatively coupled to a wireless docking station. The method may further include receiving, at the wireless charging pad, a first unique identifier from the wireless docking station. A wireless dock connection is initiated between the wireless docking station and the information handling system in response to receiving the first unique identifier.
US11509165B2 Automatic transfer switch for lighting loads with integral load shedding by dimming control
An automatic power transfer switch system includes a dimmable lighting load adapted to operate under a variable amount of power in dependence on a dimming control signal, an automatic transfer switch configured to connect a primary electrical power source to the dimmable lighting load under normal operating conditions of the primary electrical power source in a first mode, and to automatically disconnect the primary electrical power source from the load and connect an emergency electrical power source to the load under malfunctioning operating conditions of the primary electrical power source in a second mode, the automatic transfer switch further including an integrated load reduction dimmer configured to provide a dimming control signal to the dimmable lighting load. A load shedding controller communicatively coupled to the automatic transfer switch to provide a load shedding control signal to the automatic transfer switch, wherein the integrated load reduction dimmer develops the dimming control signal in response to the load shedding control signal.
US11509163B2 Multi-level DC to AC inverter
A single- or multi-phase DC to AC converter system suited for solar energy installations achieves cost reduction by eliminating low-frequency power transformers. One DC input polarity is selectively switched to an output terminal when the instantaneous AC output from a second output terminal is desired to be of the opposite polarity, while the other DC input polarity is used to form an approximation to a segment of a sine wave of the desired polarity at the second output terminal. The approximation for each phase is built in a multilevel fashion by outputting, at different times, voltage levels that differ by an integer multiple of a predetermined voltage step size, to the respective live AC output terminal through an associated low pass filter. A common-mode AC signal is thereby created on the balanced DC input lines at a frequency which is the AC output frequency times the number of phases, and which is useful for detecting ground faults in the DC circuit.
US11509162B2 Voltage generating method and apparatus
Provided are a voltage generating method and apparatus. A wireless power device includes a boosting circuit configured to generate a high voltage, and a switch arrangement circuit configured to selectively transmit energy to the boosting circuit, for the generating of the high voltage, using an inductor included in a resonator and in response to a build-up request for the high voltage.
US11509160B2 Wireless charging device
A wireless charging device is disclosed, and comprises a microcontroller, a wireless charging module, at least one radiator fan, at least one status light, and a temperature sensor. The microcontroller has a memory unit that stores with a plurality of setting parameters, such that the microcontroller controls the wireless charging module to produce a wireless charging signal with a specific power according to the setting parameters, thereby transmitting the wireless charging signal to a receiver coil of a mobile electronic device under wirelessly charged. According to the setting parameters, the microcontroller also carries out a controlling operation of the radiator fan, such as fan rotation starting, rotation speed raising, rotation speed lowering, and fan rotation stopping. In addition, the microcontroller also controls the status light to exhibits a corresponding lighting scenario according to the setting parameters and an immediate charging mode.
US11509159B2 System and method for thermal cutoff protection device control from an external component
A device for controlling battery operation includes a battery cell, a thermal cutoff, and a battery management system. The thermal cutoff is coupled in series between the battery cell and a system load of the device. The thermal cutoff has at least three terminals. A first terminal of the thermal cutoff is electrically-coupled to the battery cell and a second terminal of the thermal cutoff is electrically-coupled to the system load. The thermal cutoff includes a permanent failure mechanism having an open state and closed state wherein the closed state allows electrical communication between the first terminal and the second terminal. The battery management system is electrically-coupled to a third terminal of the thermal cutoff. The permanent failure mechanism permanently switches to the open state in response to an electrical signal from the battery management system.
US11509156B2 Apparatus and method for charging battery
An electronic device is provided. The electronic device includes a battery, an interface configured to support a connection with an external power supply unit, a charging circuit configured to charge the battery with a power being supplied from the external power supply unit, and a processor configured to receive information on the supplied power of the external power supply unit from the external power supply unit, determine a voltage to be supplied from the external power supply unit based on supplied voltage information of the external power supply unit and status information of the battery, transmit information on the determined voltage to the external power supply unit, and charge the battery with the determined voltage. The determined voltage is a voltage determined so that a difference between an input voltage and an output voltage of the charging circuit is minimized.
US11509154B1 System for establishing a primary function display in an electrical vertical takeoff and landing aircraft
A system for establishing a primary function display for an electrical vertical takeoff and landing aircraft. The system further includes a plurality of sensors that detects at least a metric and generates at least a datum based on the at least a metric. Specifically, state of charge is at least generated based on the performance metric of an energy source. The system further includes a display to show the at least a datum. The system further includes a controller that receives the at least a datum and generates a visual to the pilot.
US11509151B2 Charging stand with swivel jack
An appliance charging stand is provided, including a housing with an upper portion defining a receptacle for an appliance, a base connected to the upper portion and having a peripheral edge. A swiveling jack defines a power cord connection socket and is rotatably secured between the upper portion and the base to swivel about a vertical axis between a first position and a second position.
US11509149B2 Modular device charging station
A modular device charging station connectible to a power source through a cable includes an input endcap defining a power connector slot and a plurality of input locator pins in a predefined layout. A cradle body is defined by a device receptacle, with an input side having a power connector socket connectible to the cable and defining one or more input side locator holes receptively engageable with the input locator pins. An output side A pass-through power connector plug and a plurality of output locator pins in the predefined layout are on an output side. A terminating endcap defines a plug pocket and a plurality of terminating-side locator holes in the predefined layout receptively engageable with the output locator pins. A charging circuit with a power signal input is connected to the power connector socket, and the pass-through power connector plug is electrically connected to the power connector socket.
US11509147B2 Method and apparatus for controlling a battery pack
A method of controlling a battery including a first control circuit and a plurality of modules arranged in series between first and second terminals, each module including electric cells and switches and a second switch control circuit, the battery further including at least one first data transmission bus coupling the first control circuit to each second control circuit, the method including the transmission, by the first control circuit to the second control circuits, of first data representative of an electric cell configuration to be obtained to follow a set point for the delivery of a voltage and/or of a current between the first and second terminals, the second control circuits connecting or disconnecting the electric cells based on said first data and on a classification of the priorities of the electric cells.
US11509140B1 Solar augmenter
This invention presents an electronically configurable architecture where the plurality of photovoltaic panels can be connected to deliver the maximum power output. This architecture provides maximum power point to the maximum number of photovoltaic panels by connecting them in parallel. Under-rated panels are dynamically coupled with over-rated or maximum-rated panels in a series-connected architecture to utilize the under rated power in the final delivery. Notable efficiency improvements may be observed in contrast to the prevailing optimization with minimum power drop out architecture. The architectural modifications are proposed with bi-stable electromagnetic changeover contacts to minimize the power dissipation in control side. Moreover the rearrangement in connection architecture is proposed to be communicated on instance and regular basis through SMS and SPI protocol for easy fault diagnosis by the service personnel from the proposed data mining firmware.
US11509137B2 Voltage and current management in three-phase interconnected power systems using positive and negative sequence secondary control
A method and apparatus for secondary control in a power network. In one embodiment, the method comprises determining a frequency area controller error (ACE) equation for an area and a voltage ACE for the area; decomposing the frequency ACE equation and the voltage ACE equation to generate a first set of symmetric sequences for the frequency ACE equation and a second set of symmetric sequences for the voltage ACE equation, respectively, wherein the first and second sets of symmetric sequences represent positive and negative sequences; and implementing, by an area controller for the area, secondary control on each sequence in the first and second sets of symmetric sequences separately.
US11509128B2 Multi-port solid-state circuit breaker apparatuses, systems, and methods
A multi-port solid-state circuit breaker system includes a first electrical power bus, a second electrical power bus, and a plurality of breaker legs conductively coupled with the first electrical power bus and the second electrical power bus in parallel with one another. Each of the plurality of breaker legs includes a first power semiconductor device coupled in series with a second power semiconductor device and an input/output port intermediate the first power semiconductor device and the second power semiconductor device. At least one of the first semiconductor device and the second semiconductor device includes an actively controlled switching device. A surge suppressor is conductively coupled in parallel with the plurality of breaker legs.
US11509127B2 Method and apparatus for switching current
A device, system, and method is disclosed for improving safety of a power system. For example, a differential current may be detected using at least one sensor by temporarily enabling sampling of current flowing through one or more conductors. Additionally, current flow may be temporarily altered in order to sample current in a system. The measurements may be handled locally and/or remotely and appropriate actions may be taken to enhance the overall safety of the system.
US11509126B2 Wiring structure with movement mechanism
A wiring structure (10) includes: a fixed member (14); a movable member (12) which moves rectilinearly with respect to the fixed member (14); a wire material (16) which connects the movable member (12) and the fixed member (14); a movable guide (18) over which the wire material (16) is stretched and which can move rectilinearly with respect to the fixed member (14); and a movement mechanism (20) which causes the movable guide (18) to move, in conjunction with the rectilinear movement of the movable member (12), rectilinearly in a direction in which the loosening or tightening of the wire material (16) caused by the rectilinear movement of the movable member (12) is offset.
US11509124B2 Conductor spacer assembly with locking feature
Conductor spacer assemblies are disclosed that can be easily and rapidly clamped to parallel electrical conductors suspended between supports, and that can be easily and rapidly secured together with an automatically actuated fastener assembly. The conductor spacer assembly includes an upper spacer body that is coupled to a lower spacer body and an automatically actuated fastener assembly that facilitates quick and safe installation of the conductor spacer assemblies.
US11509121B2 Electrical energy transmission device and life cycle management
An electrical energy transmission device for the transmission of electrical energy has a fluid-holding chamber. An electrically insulating fluid is contained in the fluid-holding chamber. The electrically insulating fluid is, at least in part, air-drawn from the surroundings of the electrical energy transmission device. The insulating fluid is used for insulating phase conductors in order to avoid short circuit conditions.
US11509119B2 Wavelength beam combining system and method for manufacturing laser diode bar array
In a WBC system of the present disclosure, an LD bar array constituted by a plurality of LD bars is configured such that a main axis direction of an off-angle of at least one LD bar is reversed with respect to a main axis direction of an off-angle of the other LD bar. By doing so, even in the LD bar in which a wavelength distribution in a wafer exists, a difference between a designed lock wavelength and a gain peak wavelength can be kept within a range where an LD oscillation due to an external resonance is possible for all emitters in the LD bar, thereby an output in the WBC system can be maximized.
US11509118B2 Laser device
A security or identification device comprises a membrane laser structure configured to be optically pumped. The membrane laser structure comprises a flexible emission layer comprising a gain material; and one or more structures formed in or associated with the flexible emission layer and configured to provide optical feedback in the emission layer to produce a laser light output having at least one property representing an identifier.
US11509115B2 Electrically pumped photonic-crystal surface-emitting laser
An electrically pumped photonic-crystal surface-emitting laser, the epitaxy structure has a first mesa, the first mesa has multiple air holes and forming a photonic crystal structure, the epitaxy structure further has a second mesa, the second mesa and photonic crystal structure is facing the same direction; a first metal electrode arranged on the insulating layer, and covering the photonic crystal structure; a second metal electrode arranged on the second mesa and protruding out of the groove, making the first metal electrode and the second metal electrode face the same direction; and further make the first metal electrode connect to the first connecting metal and make the second metal electrode connect to the second connecting metal for making the photonic crystal structure become flip chip.
US11509109B2 Broadband Tm-doped optical fiber amplifier
A broadband optical amplifier for operation in the 2 μm visible wavelength band is based upon a single-clad Tm-doped fiber amplifier (TDFA). A compact pump source uses a combination of low-power laser diode with a fiber laser to provide a multi-watt pump beam without needing to include thermal management and/or pump wavelength stability components. The broadband optical amplifier is therefore able to be relatively compact device with fiber coupled output powers of >0.5 W CW, high small signal gain, low noise figure, and large OSNR, important for use as a versatile wideband preamplifier or power booster amplifier.
US11509104B2 Short-circuit probe, plug-in connection with such a short-circuit probe and a method for producing such a short-circuit probe
A short-circuit probe for short-circuiting an inner conductor with an outer conductor in a multiway coaxial plug includes an electrically-conductive contact spring comprising a holding and stabilizing section and a contacting section. The contacting section is bent and comprises an inner-conductor contact section and an outer-conductor contact section. A housing comprises: a receiving space; an inner-conductor insertion opening in a first end face, via which the short-circuiting inner conductor of the multiway coaxial plug can be inserted into the receiving space and can be brought into contact with the inner-conductor contact section; and a laterally and/or radially aligned outer-conductor contacting opening, wherein the outer-conductor contact section of the contact spring passes through the outer-conductor contacting opening and can be brought into contact with the outer conductor. The contact spring is arranged inside the receiving space and extends over a predominant length of the housing.
US11509102B1 Powered wall plate with plug prongs
A powered wall plate comprising a wall plate, at least two electrical plug prongs, an electrical circuit, and an electrical feature. The wall plate has a front surface opposite a rear surface and at least one opening sized to expose a first electrical receptacle of an electrical device. The at least two electrical plug prongs originate within the wall plate and extend rearward from the rear surface, and are configured to removably mate with a second electrical receptacle of the electrical device. The electrical circuit is located between the front surface and the rear surface. The electrical feature is exposed on the wall plate and is configured to receive power from the at least two electrical plug prongs through the electrical circuit. The wall plate may have a profile with a first thickness and a second thickness. The second thickness may be less than three times the first thickness.
US11509098B2 Electrical connecting assembly
The present disclosure provides an electrical connecting assembly, comprising an electrical connector and a circuit board. The electrical connector comprises a plurality pairs of signal terminals and a plurality of ground terminals. One ground terminal is disposed between two pairs of adjacent signal terminals. Each of the signal terminals comprises a bent part and a signal terminal plugging part. Each of the ground terminals comprises a shielding part and a ground terminal plugging part. The circuit board comprises a plurality pairs of signal terminal plugging holes and a plurality of signal ground terminal plugging holes. The plurality of ground terminal plugging holes are arranged along a baseline. Each pair of the signal terminal plugging holes are respectively disposed on two sides of the baseline. The bent parts of the plurality of the signal terminals alternately extend toward two sides of the baseline.
US11509097B2 Connector
A connector includes a first housing and a second housing having facing surfaces facing each other. One of the first and second housings includes a receiving portion open forward in a front end part and the other includes a rotating portion to be arranged in the receiving portion in the front end part. The second housing is rotated with respect to the first housing about an axis passing through the rotating portion in the receiving portion along a width direction and is coupled to the first housing. The first housing includes a lock receiving portion open forward and rearward in the front end part. The second housing includes a locking portion projecting toward the first housing and to be fit to the lock receiving portion in the front end part. The locking portion includes a wide restricting portion, and the lock receiving portion includes a wide restriction receiving portion.
US11509092B2 Electron-device protection casing using magnetic connection
An electron-device protection casing using magnetic connection includes a protection casing for receiving a tablet form electronic device; a device end connecting unit installed in the protection casing for being connected to the electronic device. The device end connecting unit further includes at least one device end magnetic unit which is positioned in the body; the device end magnetic unit serves to be magnetically connected to an external device so that the external connecting unit can be fixedly connected to the external device. The present invention further includes an intermediate connecting unit which further has at least one intermediate magnetic unit positioned for being magnetically connected to the device end magnetic unit; the positions of the device end magnetic units are corresponding to those of the intermediate magnetic units so that the device end magnetic units are attracted by the intermediate magnetic unit.
US11509085B2 Connecting socket having electronic member with cantilever structures
A connecting socket configured to connect a connector is provided. The connecting socket includes a conductive member, an opening, and an electronic member. The conductive member has a recess. The opening is formed on an end of the connecting socket and communicates with the recess. The electronic member is accommodated in the recess, and has a main body and a plurality of cantilever structures. Each of the cantilever structures includes a fixed end, a free end, a first contact point, and a second contact point. The fixed end is connected to the main body. The free end is disposed between the opening and the fixed end. The first contact point and the second contact point are disposed on opposite surfaces of the cantilever structure. When the connecting socket is connected to the connector, the first and second contact points respectively contact the connector and the conductive member.
US11509082B2 Circuit board cable connector with more than one mounting configuration
To provide a connector for which cost can be reduced. A first connector 1 includes first metal members 10A that function as terminals and second metal members 10B that function as reinforcing brackets. Each first metal member 10A and second metal member 10B include a main body part 11, a first edge part 15, a second edge part 16, and a third edge part 17. A first edge part 15 of the first metal member 10A is positioned on the upper side of the main body part 11 that is the side that receives the mating connector. The second metal member 10B is retained in a different orientation from the first metal member 10A. The first edge part 15 of the second metal member 10B is positioned below the main body part 11 of the second metal member 10B and can be attached to a first circuit board B1 arranged on the lower side of the first connector 1. The third edge part 17 of the second metal member 10B is positioned more in the Y1 direction than the main body part 11 of the second metal member 10B and can be attached to the second circuit board B2 arranged in the Y1 direction with respect to the first connector 1.
US11509081B2 Printed circuit board plug-in connection
A printed circuit board plug-in connection is provided for transmitting the highest possible currents between a printed circuit board and an electrical cable, the printed circuit board plug-in connection being manufactured as simply and economically as possible. For this purpose, a plug-in connection having a slotted pin contact is proposed. Said pin contact is arranged in an insulating body and can be inserted directly into a passage contact opening of a printed circuit board in order to establish electrical contact. The insulating body has detent arms, which releasably engage in detent openings of the printed circuit board in a locking manner at the same time. By means of dovetail connections, several insulating bodies can be fastened to each other, i.e., can be cascaded with each other. A strain relief element can also be fastened to an insulating body by means of the dovetail connection in order to provide strain relief for individual conductors of the cable.
US11509074B2 Spring-force terminal connection and conductor connection terminal
A spring-force terminal connection for connecting a conductor includes: a bus bar; a clamping spring by which the conductor to be connected is clamped against the bus bar when in a clamped state; a pivotably arranged actuation lever, the clamping spring being actuatable by a pivoting movement of the actuation lever; and a clamping cage, which forms a space for accommodating the conductor to be connected. The clamping spring includes a leaf spring and has a first end section forming a clamping region and a second end section opposite the first end section and forming a holding region. The clamping spring is fastened to the clamping cage by the second end section.
US11509071B1 Multi-band polarization rotation for interference mitigation
Aspects of the subject disclosure may include, for example, obtaining data regarding interference originating from one or more interference sources, and electronically rotating polarizations of signals relating to crossed-dipole radiating elements of an antenna system, the antenna system operating in multiple frequency bands, the electronically rotating being performed for a select number of frequency bands of the multiple frequency bands and facilitating mitigation of the interference. Other embodiments are disclosed.
US11509070B2 Multi-beam active phased array architecture with independent polarization control
In an exemplary embodiment, a phased array antenna comprises multiple subcircuits in communication with multiple radiating elements. The radio frequency signals are independently adjusted for both polarization control and beam steering. In a receive embodiment, multiple RF signals of various polarizations are received and combined into at least one receive beam output. In a transmit embodiment, at least one transmit beam input is divided and transmitted through multiple radiating elements, with the transmitted beams having various polarizations. In an exemplary embodiment, the phased array antenna provides multi-beam formation over multiple operating frequency bands. The wideband nature of the active components allows for operation over multiple frequency bands simultaneously.
US11509067B2 Three-dimensional antenna array module
An apparatus comprising at least a plurality of antenna modules mounted on a printed circuit board (PCB) is disclosed. The PCB includes a plurality of holes embedded with a heat sink. Each antenna module comprises an antenna substrate. Each antenna module further comprises a plurality of three-dimensional (3-D) antenna cells that are mounted on a first surface of the antenna substrate. Each antenna module further comprises a plurality of packaged circuitry that are mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Furthermore, each antenna module is mounted on the plurality of holes via a corresponding packaged circuitry of the plurality of packaged circuitry.
US11509066B2 Three dimensional antenna array module
Provided is an apparatus including a plurality of antenna modules and a printed circuit board (PCB) having a plurality of holes embedded with a heat sink. Each antenna module includes an antenna substrate, a plurality of three-dimensional (3-D) antenna cells mounted on a first surface of the antenna substrate, and a plurality of packaged circuitry mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Each antenna module is mounted on the plurality of holes via a corresponding packaged circuitry of the plurality of packaged circuitry.
US11509060B2 Filter-antenna and method for making the same
A filter-antenna and a method for making a filter-antenna. The filter antenna includes a microstrip antenna, such as a patch antenna, integrated with an absorptive (e.g., bandstop) filter for absorbing or dissipating energy.
US11509059B2 Waveguide polarizer and a circularly polarized antenna
A waveguide polarizer for converting between a linearly polarized electromagnetic field in a first waveguide and a circularly polarized electromagnetic field in a second waveguide is provided. The waveguide polarizer includes a structure interconnecting the first and second waveguide which includes a waveguide excitation arrangement with a bifilar helical shape. A circularly polarized antenna arranged to be connected to the first waveguide of the waveguide polarizer and a satellite arrangement are also provided.
US11509058B2 Adjustable polarization converter and electronic device
An adjustable polarization converter and an electronic device are provided. The adjustable polarization converter includes a first substrate, a second substrate, and a liquid crystal layer between the first substrate and the second substrate. The first substrate includes a first base substrate and a first electrode on the first base substrate; the second substrate includes a second base substrate and a second electrode on the second base substrate. The first electrode includes a conductive frame and two triangular conductive patches. The conductive frame includes two openings disposed in sequence, and the two triangular conductive patches are disposed in a region surrounded by the conductive frame and are centrally symmetric.
US11509057B2 RF lens antenna array with reduced grating lobes
A radio frequency antenna array uses lenses and RF elements, to provide ground-based coverage for cellular communication. The antenna array can include a spherical lens, where each spherical lens has at least two associated RF elements. Each of the RF elements associated with a given lens produces an output beam with an output area. The antenna includes a control mechanism configured to enable a user to move the RF elements along their respective tracks, and automatically phase compensate the output beams produced by the RF elements based on the relative distance between the RF elements.
US11509056B2 RF lens antenna array with reduced grating lobes
A radio frequency antenna array uses lenses and RF elements, to provide ground-based coverage for cellular communication. The antenna array can include two spherical lenses, where each spherical lens has at least two associated RF elements. Each of the RF elements associated with a given lens produces an output beam with an output area. Each lens is positioned with the other lenses in a staggered arrangement. The antenna includes a control mechanism configured to enable a user to move the RF elements along their respective tracks, and automatically phase compensate the output beams produced by the RF elements based on the relative distance between the RF elements.
US11509054B2 Dipole antenna fed by planar balun
A dipole antenna fed by a planar balun includes a first radiation element and a second radiation element respectively corresponding to poles of the dipole antenna, at least one dipole support column configured to connect the first radiation element and the second radiation element and to fix a gap between the first radiation element and the second radiation element, a planar balun connected to the first radiation element and the second radiation element and configured to feed the first radiation element and the second radiation element, and a balun housing coupled to the dipole support column and enclosing the planar balun.
US11509048B2 Antenna apparatus having antenna spacer
In one embodiment of the present disclosure, an antenna assembly includes a patch antenna array including an upper patch antenna layer, a lower patch antenna layer, and a spacer therebetween, wherein the spacer includes a plurality of apertures defined by cell walls, wherein the each aperture aligns with an upper patch antenna element and a lower patent antenna element from the patch antenna array.
US11509045B2 Vehicle body part comprising at least one directional antenna
A body part for a motorized land vehicle is provided. The body part includes at least one wall made of a plastic material and including at least one housing forming a cavity for electromagnetic waves, said housing includes: at least one transceiver for transmitting and/or receiving an electromagnetic wave in said housing; at least one adaptable surface capable of reflecting the electromagnetic wave transmitted by the transceiver in a given direction (in a controlled manner) and, conversely, capable of reflecting the electromagnetic wave coming from the exterior of the housing toward the transceiver.
US11509044B2 Antenna device for vehicle
There is provided an antenna device for a vehicle capable of suppressing interference in a case where a plurality of antennas which receive signals in different frequency bands are close to one another. The antenna device for the vehicle includes a patch antenna and a capacitance loading element which are installed away from each other on an antenna base section which is attachable to a vehicle. The capacitance loading element is a part of an antenna capable of receiving a different use frequency band from which of the patch antenna, to form a three-dimensional shape in which a pair of linear conductors which respectively repeatedly turn in a predetermined direction are connected to each other via a linear connection conductor extending in a width direction of the antenna base section, and in the capacitance loading element, a length of a folded portion of each of the linear conductors is a non-resonant length of the patch antenna.
US11509043B2 Passive entry passive start antenna
A passive entry passive start (PEPS) antenna is disclosed. In an embodiment an antenna includes an interface head component and a bobbin component comprising a ferrite core and a wire wound around the ferrite core, the wire being covered by an insulation, wherein the bobbin component and the interface head component are connectable to each other electrically and mechanically, and wherein the antenna is a PEPS antenna.
US11509042B2 Radome for automotive radar patch antenna
A novel and useful radome suitable for use in an automotive radar system that employs patch antenna arrays. In one embodiment, the radome is a ‘U’ shaped half cylinder for patch antenna arrays such as on a printed circuit board (PCB). The patch antennas may or may not be situated in the same plane. Each array has its own half cylinder associated with it. Each array may have a different antenna pattern with different gain and side lobes. In this case, each patch antenna array has its own radome configured appropriately. Alternatively, the radome comprises a half sphere shape (or bubble shape) whereby each antenna port has its own individual half sphere shaped radome. This functions to improve the performance of the radome by increasing the number of curved dimensions from one to two.
US11509039B2 Antenna module and antenna apparatus
An antenna module includes a connection member, an integrated circuit (IC) on a first surface thereof, and an antenna package on a second surface thereof. The connection member includes a wiring layer and an insulating layer. The IC is electrically connected to the wiring layer. The antenna package includes first antenna members and feed vias each electrically connected to a corresponding one of the first antenna members and a corresponding wire of the wiring layer. A feed line is electrically connected to a wire of the wiring layer and extends in a side direction of the second surface, a second antenna member is electrically connected to the feed line and is configured to transmit and/or receive an RF signal in the side direction, and a director member is spaced apart from the second antenna member in the side direction and has an inside boundary oblique to the second antenna member.
US11509036B2 In-glass high performance antenna
Disclosed is an antenna including a radiating element, a co-planar ground plane element and a transmission line extending across at least a portion of the radiating element and the ground plane element. The transmission line includes a dielectric layer. The dielectric layer has a portion of a first major surface adjacent to the ground plane and a second major surface opposite and separated from the first surface. A shield is formed on the second major surface. At least one via extends through the dielectric layer to connect the shield to the ground plane. A feed line extends longitudinally through the dielectric layer from a feed point at a proximal end of the transmission line towards a distal end of the transmission line, the feed line being shielded along a portion of its length extending across the ground plane element by the shield with the distal end of the transmission line lying in register with the radiating element and coupling the feed line to the radiating element.
US11509035B2 Waveguide antenna with integrated temperature management
An illustrative example embodiment of an antenna device includes a substrate, a plurality of antenna elements supported on the substrate, an integrated circuit supported on one side of the substrate, and a metallic waveguide antenna situated against the substrate. The metallic waveguide antenna includes a heat dissipation portion in a thermally conductive relationship with the integrated circuit. The heat dissipation portion is configured to reduce a temperature of the integrated circuit.
US11509033B2 Isolator
An isolator includes an insulating layer, a first electrode provided on a first side of the insulating layer, and a second electrode provided on a second side of the insulating layer opposite to the first side. The second electrode faces the first electrode across the insulating layer. The insulating layer includes therein a gap between the first electrode and the second electrode. The gap extends along a plane perpendicular to a thickness direction of the insulating layer.
US11509031B2 Substrate-integrated waveguide filtering crossover having a dual mode rectangular cavity coupled to eight single mode square cavities
Various substrate-integrated waveguide (SIW) filtering crossover systems are described. An example SIW filtering crossover system may include: a substrate; a top metal plate placed on top of the substrate; a bottom metal plate placed beneath the substrate; a plurality of metalized via-holes in the substrate connecting the top metal plate and the bottom metal plate; and a plurality of grounded-coplanar-waveguides (GCPWs) coupled to sidewalls of the crossover system, wherein each of the GCPWs connects the crossover system to a respective microstrip line for signal transmission between the respective microstrip line and the crossover system.
US11509029B2 RF dielectric waveguide filter
A dielectric waveguide filter comprising a block of dielectric material including exterior surfaces covered with a layer of conductive material. A plurality of resonators are formed on the block. RF signal input/outputs are formed on the block. An RF signal is transmitted through the block in a serpentine pattern. In one embodiment, a RF signal transmission channel is formed in the block and extends between and surrounding selected ones of the plurality of resonators in a serpentine pattern. In one embodiment, selected ones of the plurality of resonators are comprised of respective islands of dielectric material formed on one of the top and bottom surfaces of the block of dielectric material surrounded by the channel and respective counter-bores formed and extending into the respective islands of dielectric material. In another embodiment, the respective islands of dielectric material and counter-bores defining the respective resonators are formed in opposed top and bottom surfaces of the block.
US11509024B2 Method for arranging a contact element, contact element and battery stack
A method arranges a contact element on a battery cell of a battery layer of a battery stack for a battery device of a vehicle. Further, a contact element for a battery cell of a battery layer of a battery stack for a battery device of a device includes a contact plate section, a transition section and a positive pole section. The contact plate section surrounds the transition section and the transition section surrounds the positive pole section. The contact plate section and the positive pole section are arranged at a distance to one another and in parallel or at least substantially in parallel. Still further, battery stack having at least one battery layer with at least one battery cell includes a contact element that is arranged on the battery cell.
US11509022B2 Systems and methods for battery structure, interconnects, sensing, and balancing
Exemplary systems and methods enable efficient and reliable positioning, assembly, retention, interconnection, and management of battery cells in battery packs, for example battery packs utilized in electric vehicles.
US11509021B2 Nonaqueous electrolyte secondary battery
A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode and a separator disposed between the positive electrode and the negative electrode, wherein the separator includes an inorganic filler layer which includes a first filler layer containing phosphate salt particles and a second filler layer disposed on the first filler layer and containing inorganic particles more heat resistant than the phosphate salt particles, and the BET specific surface area of the phosphate salt particles is in the range of not less than 5 m2/g and not more than 100 m2/g.
US11509017B1 Radio battery lid
A battery housing unit including a lid, a base, and a plurality of electrochemical battery cells. The lid includes at least two channels for receiving at least one post from a military radio. The base includes a locking latch configured to attach to a corresponding catch of a military radio.
US11509014B2 Battery rack and power storage apparatus including the same
A battery pack includes a base plate forming a bottom surface; a main frame combined to the base plate and extending in a height direction to form a wall structure for supporting both side portions of the plurality of battery modules; and a top plate combined to an upper portion of the main frame to form a ceiling, wherein at least one of the top plate and the base plate is provided in a plate body shape including a bead.
US11509012B2 Thin-type battery
A thin-type battery includes: a flat shaped electrode body formed by stacking a positive electrode and a negative electrode while interposing a separator in between; an electrolyte; and an exterior body made from a laminate film, the exterior body enclosing the electrode body and the electrolyte with ends of the exterior body being hermetically sealed by heat-sealing, wherein the exterior body includes a folded part to be folded from one surface side to another surface side of the electrode body and to extend along an edge of the electrode body, and the folded part includes resin-interposed heat-sealing portions located in regions in two ends in a direction along the edge of the electrode body and outside the electrode body, where portions of the exterior body are opposed to each other, each resin-interposed heat-sealing portion being heat-sealed by interposing a piece made from a resin.
US11509011B2 Miniature electrochemical cell having a casing of a conductive plate closing an open-ended ceramic container having a via hole supporting a platinum-containing conductive pathway
A miniature electrochemical cell having a volume of less than 0.5 cc is described. The cell casing comprises an open-ended ceramic container having a via hole providing an electrically conductive pathway extending through the container. A metal lid closes the open-end of the container. An electrode assembly housed inside the casing comprises an anode current collector deposited on an inner surface of the ceramic container in contact with the electrically conductive pathway in the via hole. An anode active material contacts the current collector and a cathode active material contacts the metal lid. A separator is disposed between the anode and cathode active materials. That way, the electrically conductive pathway serves as a negative terminal, and the lid, electrically isolated from the conductive pathway by the ceramic container, serves as a positive terminal. The negative and positive terminals are configured for electrical connection to a load.
US11509010B2 Rotatable terminal plate housing assemblies and methods thereof
Embodiments described herein generally relate to a battery pack assembly. The battery pack assembly includes a plurality of housing segments and a plurality of battery cells. The plurality of housing segments are coupled to one another. Each one of the plurality of housing segments includes a terminal receiving portion. The terminal receiving portion has a pair of end walls, a pair of side walls and a floor. A terminal connector is positioned within the terminal receiving portion. The terminal connector has a pair of openings. Each battery cell of the plurality of battery cells has a terminal side. A pair of terminals are positioned on the terminal side of each of the plurality of battery cells. Each one of the plurality of housing segments are configured to be rotated with respect to an adjacent housing segment between a use position and a maintenance position.
US11509008B2 Heat exchanger with thermoelectric module and system for managing heat of battery including same
A heat exchanger with a thermoelectric module according to the present disclosure includes: a first heat exchanger including a first heat sink provided with a first base plate and first heat dissipation pins, a first thermoelectric module located over the first heat sink and performing heat absorption and heat dissipation, a plate-shaped first cooling plate located over the first thermoelectric module and having a flow channel through which coolant flows, and a first cover covering top of the first cooling plate; and a second heat exchanger having the same structure as the first heat exchanger and located under the first heat exchanger to be symmetrical with the first heat exchanger.
US11509006B2 Battery pack
A battery pack includes a plurality of cells, a refrigerant pipe, a plurality of cooling members, and a restraining unit. Each of the cooling members includes a plate-shaped portion interposed between the cells, and a contact portion jutting out from between the cells and contacting the refrigerant pipe. The restraining unit includes a pair of restraining members and a support member supporting the pair of restraining members, the pair of restraining members restraining opposite ends of the plurality of cells arranged with the plurality of cooling members interposed. The cooling members include one or more first cooling members and one or more second cooling members, the one or more second cooling members having a heat capacity higher than the one or more first cooling members and having a greater contact area with the refrigerant pipe than the one or more first cooling members.
US11509004B2 Battery module
The present disclosure relates to a battery module that has a filling portion transformed into a structure in which a battery cell is supported such that swelling pressure generated when swelling occurs is offset without an additional control, or a structure in which the battery cell is efficiently cooled.
US11509000B2 Process for the recovery of cathode materials in the recycling of batteries by removing aluminum and iron
A process for removal of aluminium and iron in the recycling of rechargeable batteries comprising providing a leachate from black mass, adding phosphoric acid (H3PO4) to said leachate and adjusting the pH to form iron phosphate (FePO4) and aluminium phosphate (AlPO4), precipitating and removing the formed FePO4 and AlPO4, and forming a filtrate for further recovery of cathode metals, mainly NMC-metals and lithium.
US11508998B2 Battery pack and electronic device
A temperature detection element is allowed to more accurately detect a temperature of a battery pack.A battery pack includes: a battery cell; a temperature detection element; and a thermally conductive member transferring heat of the battery cell to the temperature detection element.
US11508996B2 Vehicular battery charger, charging system, and method
A vehicle battery charger and a vehicle battery charging system are described and illustrated, and can include a controller enabling a user to enter a time of day at which the vehicle battery charger or system begins and/or ends charging of the vehicle battery. The vehicle battery charger can be separate from the vehicle, can be at least partially integrated into the vehicle, can include a transmitter and/or a receiver capable of communication with a controller that is remote from the vehicle and vehicle charger, and can be controlled by a user or another party (e.g., a power utility) to control battery charging based upon a time of day, cost of power, or other factors.
US11508992B2 Rechargeable lithium battery
Rechargeable lithium battery includes a negative electrode including a negative active material layer and a negative electrode functional layer disposed on the negative active material layer; a positive electrode including a positive active material; an electrolyte solution, wherein the negative electrode functional layer includes flake-shaped polyethylene particles, the electrolyte solution includes a lithium salt and a non-aqueous organic solvent, and the non-aqueous organic solvent includes about 60 volume % to about 80 volume % of a propionate-based solvent and about 20 volume % to about 40 volume % of a carbonate-based solvent.
US11508991B2 Use of a salt mixture as an additive in a lithium-gel battery
The invention relates to the simultaneous use of a first salt comprising a nitrate anion (NO3−) and a second salt comprising an anion other than nitrate, at least one of the first and second salts being a lithium salt, as ionic conductivity promoters in a rechargeable lithium-metal-gel battery. The invention also relates to a lithium-gel battery comprising a mixture of said first salt and said second salt, to a non-aqueous gel electrolyte comprising such mixture and to a lithium battery positive electrode comprising said mixture.
US11508987B2 Nonaqueous electrolyte secondary battery and method for producing same
The nonaqueous electrolyte secondary battery comprises the following: a positive electrode including a positive electrode active material that includes a lithium-containing transition metal oxide, a negative electrode including a negative electrode current collector wherein lithium metal deposits on the negative electrode current collector during charging, a separator disposed between the positive electrode and the negative electrode, and a nonaqueous electrolyte. The molar ratio of the total amount of lithium held by the positive electrode and the negative electrode to the amount of transition metal in the positive electrode is not more than 1.1. In addition, in the discharged state, a space layer is present between the negative electrode and the separator, and the positive electrode capacity per unit area, α (mAh/cm2), of the positive electrode and the average in thickness, X (μm), of the space layer 50 satisfy 0.05≤α/X≤0.2.
US11508986B2 Electrode transfer device for battery cell
An electrode transferring apparatus of a battery cell includes: a transferring body configured to transfer at least one electrode of the battery cell; and an electrode gripper mounted to the transferring body to be vertically movable, the electrode gripper being configured to grip at least one electrode of the battery cell and having a rounded end in contact with the at least one electrode.
US11508985B2 Electrode assembly and method for manufacturing the same
The present invention relates to an electrode assembly. The electrode comprises: a plurality of unit electrodes formed by connecting a plurality of electrodes made of an electrode mixture having a solid shape to each other; a separator interposed between the plurality of unit electrodes; and an electrode tab attached to the unit electrode, wherein the electrode tab comprises first and second electrode tabs, which are respectively attached to the unit electrodes and have different specific resistance.
US11508981B2 Methanation of anode exhaust gas to enhance carbon dioxide capture
A power production system includes a flue gas generator configured to generate a flue gas that includes carbon dioxide and oxygen; a fuel supply; a fuel cell assembly that includes: a cathode section configured to receive the flue gas generated by the flue gas generator, and output cathode exhaust, and an anode section configured to receive fuel from the fuel supply, and output anode exhaust that contains hydrogen and carbon dioxide; a methanator configured to receive the anode exhaust, convert at least a portion of the hydrogen in the anode exhaust to methane, and output methanated anode exhaust; a chiller assembly configured to cool the methanated anode exhaust to a predetermined temperature so as to liquefy carbon dioxide in the methanated anode exhaust; and a gas separation assembly configured to receive the cooled methanated anode exhaust and separate the liquefied carbon dioxide from residual fuel gas.
US11508977B2 Supply device having a fuel cell device and a battery, and method for frost-starting a supply device
A supply device for the electrical supply of at least one consumer has a primary current system in which there is a fuel cell device, a secondary current system in which there is a battery which has an operating voltage range limited at the top by a maximum voltage and at the bottom by a minimum voltage and which has an operating current strength range for supplying current to the at least one consumer, and a frost-starting element, which is provided in the primary current system and is designed to bring about heating of the fuel cell device. An open-circuit voltage of the fuel cell device corresponds at most to the maximum voltage of the battery.
US11508975B2 Means for maintaining desired liquid level between inter-connected tanks
Means for maintaining level complementary electrolytes inflow battery tanks has first and second interconnected tanks 2, 3. The first tank 2 contains positive electrolyte, 2b, and the second tank containing negative electrolyte 3b. Both tanks have a void 2a and 3 a respectively, for air or other noble gases. The tanks themselves are connected by pipes; a lower tank connecting pipe 4, an upper tank connection pipe 5 with an inter-pipe connecting pipe 6 therebetween. The peak of the lower tank connection pipe 4a is designed to remain below the normal liquid level 7 of both tanks, in contrast to the upper tank connection pipe 5 which remains above the desired liquid level 7.
US11508967B2 Electrolytic copper foil for secondary battery and method for producing the same
The present invention relates to an electrolytic copper foil for a secondary battery and a method of producing the same, and more particularly, to an electrolytic copper foil for a secondary battery, which has little change in a physical property of a copper foil before and after vacuum drying in a process of producing an electrolytic copper foil, thereby exhibiting excellent cycle life in a battery test at a high-density negative electrode, and preventing cracking. The electrolytic copper foil for a secondary battery is produced from a plating solution containing Total Organic Carbon (TOC), zinc, and iron by using a drum, in which a ratio of the TOC to the zinc and the iron contained in the electrolytic copper foil follows Formula 1 below: TOC/(zinc+iron)=1.3 to 1.5.  Formula 1:
US11508965B2 Anodes for lithium-based energy storage devices, and methods for making same
A method of making a prelithiated anode for use in a lithium-ion battery includes providing a current collector having an electrically conductive layer and a metal oxide layer overlaying the electrically conductive layer. The metal oxide layer has an average thickness of at least 0.01 μm. A continuous porous lithium storage layer is deposited onto the metal oxide layer by a CVD process. Lithium is incorporated into the continuous porous lithium storage layer to form a lithiated storage layer prior to a first electrochemical cycle when the anode is assembled into the battery. The anode may be incorporated into a lithium ion battery along with a cathode. The cathode may include sulfur or selenium and the anode may be prelithiated.
US11508962B2 Battery materials scale-up and processes
A cathode active material precursor for a lithium metal oxide is provided. The cathode active material precursor comprises a metal-containing oxyhydroxide. The metal-containing oxyhydroxide comprises nickel and an additional metal. At least 50 mol. % of the nickel of the metal-containing oxyhydroxide has an oxidation state of +3. A method of forming a cathode active material precursor is also provided. The method comprises combining a nickel-containing compound, an additional metal-containing compound, an oxidizing agent, and a solvent to form a solution. The method further comprises exposing the solution to heat at a temperature of from about 30° C. to about 90° C. to form a precipitate comprising the metal-containing oxyhydroxide.
US11508960B2 Lithium metal complex oxide and manufacturing method of the same
The present invention relates to a lithium metal complex oxide and a preparation method thereof, and more particularly, to a lithium metal complex oxide mixed with a metal compound for a lithium reaction, stirred and heat-treated to allow residual lithium and a metal compound for reducing lithium (or a metal compound for lithium reduction) to react with each other on a surface to form a product, which is included in the lithium metal complex oxide, in which the content of Ni3+ is higher than the content of Ni2+ and a ratio of Ni3+/Ni2+ is 1.5 or greater so that life characteristics and capacity characteristics are improved, while residual lithium is reduced, and a preparation method thereof.
US11508958B2 Non-aqueous electrolyte secondary battery
A non-aqueous electrolyte secondary battery disclosed herein includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode includes a positive electrode current collector, and a positive electrode active material layer, an insulating layer, and a boundary layer which are provided on the positive electrode current collector. The boundary layer is positioned between the positive electrode active material layer and the insulating layer, and is in contact with the positive electrode active material layer and the insulating layer. The positive electrode active material layer contains a positive electrode active material. The insulating layer contains an inorganic filler. The boundary layer contains the positive electrode active material contained in the positive electrode active material layer and the inorganic filler contained in the insulating layer. The boundary layer contains hydrated alumina. The non-aqueous electrolyte contains lithium fluorosulfonate.
US11508954B2 Non-aqueous electrolyte secondary battery and positive electrode active material
A non aqueous electrolyte secondary battery includes a positive electrode containing a positive electrode active material, a negative electrode, and a non aqueous electrolyte, and the positive electrode active material includes a positive electrode active material particle containing a lithium transition metal compound, and a coating portion coating at least a part of a surface of the positive electrode active material particle. The coating portion contains a lithium ionic conductor containing lithium, a phosphoric acid group, and yttrium. The lithium ionic conductor includes a region A in which a ratio of yttrium is relatively rich and a region B in which the ratio of yttrium is relatively poor.
US11508950B2 Electrode sheet manufacturing method and electrode sheet manufacturing apparatus
A method of manufacturing an electrode sheet by using an electrode sheet manufacturing apparatus for manufacturing the electrode sheet includes a feeding step of feeding out a sheet body from a roll on which the sheet body is wound, the sheet body including an active layer containing a catalyst laminated on a support layer, and a cutting step of forming the electrode sheet by punching the sheet body by pressing a cutting blade from a side of the support layer against the sheet body that was fed out in the feeding step.
US11508948B2 Display panel, mask, method for manufacturing display panel, and display device
The present invention provides a mask, a display panel, a method for manufacturing a display panel, and a display device. The display panel has a hollow region and a display region surrounding the hollow region. The display panel includes a plurality of organic light-emitting devices arranged only in the display region. Each of the plurality of organic light-emitting devices includes an anode layer, a cathode layer, a light-emitting layer and a functional layer. The functional layer includes a plurality of uneven portions.
US11508947B2 Method of manufacturing electronic apparatus
A method of manufacturing an electronic apparatus includes: providing a work substrate including a preliminary set module including an active area including a hole formation area; and a protective film covering at least one of an upper surface and a rear surface of the preliminary set module; radiating the laser beam to the work substrate from a first start point toward a moving path removing at least a portion of the work substrate to form a first start cutting line in the hole formation area, the moving path of the laser beam defined as a boundary between the hole formation area and the active area; radiating the laser beam along the moving path; and removing the hole formation area from the preliminary set module to form a module hole, wherein the first start cutting line forms a predetermined angle with respect to a tangential line of the moving path.
US11508946B2 Method of manufacturing display device including a formation process of a conductive film and laser curing the conductive film and manufacturing device for display device
A method of manufacturing a display device includes: providing a first substrate, a second substrate, and a plurality of connection lines, wherein the first substrate has a base substrate, wherein the second substrate faces the first substrate, and wherein the plurality of connection lines are disposed between the base substrate and the second substrate; grinding a side surface of the base substrate, a side surface of the second substrate, and side surfaces of the plurality of connection lines; and simultaneously transferring a conductive film and laser-curing the conductive film, wherein the conductive film is transferred to the ground side surface of the base substrate, the ground side surface of the second substrate, and the ground side surfaces of the plurality of connection lines.
US11508945B2 3-D display panel including heat dissipation structure between light emitting units, and manufacturing method thereof
The embodiments of the present disclosure provide a display panel, a manufacturing method thereof, and a display device. The display panel includes a first substrate and a second substrate cell-assembled to each other, a light emitting member layer disposed between the first substrate and the second substrate and a light diffusion layer disposed on a light existing side of the light emitting member layer, the light emitting member layer includes a plurality of light emitting units and imaging holes disposed on at least two sides of each of the light emitting units, the light diffusion layer includes a reflective member configured to reflect a light ray emitted by the light emitting unit and reaching the reflective member, and the reflected light ray reflected by the reflective member exits from the imaging holes.
US11508942B2 OLED display substrate and manufacturing method thereof, OLED display device, and brightness compensation method
The present disclosure relates to an OLED display substrate including a base substrate, a thin film transistor array layer and a planarization layer on the base substrate, and an anode, a pixel definition layer, a cathode, and a light emitting layer on a side of the planarization layer away from the base substrate, the pixel definition layer defining pixel regions, the light emitting layer being located on a side of the pixel definition layer away from the base substrate. The display substrate further includes a light guide that is in contact with the light emitting layer and is used to lead out light from the light emitting layer, so as to test the led-out light and adjust light emission.
US11508941B2 Display apparatus including semi-transmissive mirror
A display apparatus includes a display panel having a front area and a side area, a main body supporting the display panel, an auxiliary member arranged inside the main body, and a semi-transmissive mirror arranged between the auxiliary member and the front area, wherein the side area of the display panel may be arranged inside the main body to face the semi-transmissive mirror. Since an image partially emitted from the display panel may be reflected toward the front area, auxiliary members such as a camera, an illumination sensor, and a proximity sensor may be arranged inside the main body (or below a display) to embody a full screen display, whereby a user's satisfaction may be enhanced and a manufacturing process may be simplified.
US11508939B2 Array substrate having resonant cavity formed by reflective layer and cathode, manufacturing method thereof and display device
The disclosure provides an array substrate, a manufacturing method of the array substrate and a display device. The array substrate provided by the embodiment of the present disclosure includes sub-pixel units with multiple light-emitting colors; each sub-pixel unit includes a resonant cavity formed by a reflective layer and a cathode which are oppositely arranged, and the resonant cavity further includes: an anode positioned between the reflective layer and the cathode, and a light-emitting function layer positioned between the anode and the cathode; lengths of resonant cavities of the sub-pixel units with a same one of the light-emitting colors are the same, and lengths of resonant cavities of the sub-pixel units with different light-emitting colors are different; thicknesses of anodes of the sub-pixel units with different light-emitting colors are the same, thicknesses of light-emitting function layers of the sub-pixel units with different light-emitting colors are the same.
US11508935B2 OLED panel for lighting device with moisture intrusion delay effect
An organic light-emitting diode panel for a lighting device includes a substrate including an array area having an emission area and a dummy area disposed outside the array area, an auxiliary wiring pattern, a first electrode, a passivation pattern, an OLED emission structure, a second electrode, an adhesive layer, and an encapsulation layer. The passivation pattern and the adhesive layer have an uneven boundary surface therebetween in the dummy area. Alternatively, a lower surface of the adhesive layer has a 3D structure. Thus, a moisture intrusion path between the passivation pattern and the adhesive layer of the dummy area of the substrate may be increased. Thus, degradation of the OLED emission structure due to external moisture intrusion may be reduced or prevented.
US11508931B2 Ultrathin metal interlayer for improved injection into electron transport layer
A light-emitting device includes a first electrode, an electron transport layer (ETL), a second electrode being a transparent conductive electrode (TCE) including electrically conductive nanoparticles; an emissive layer (EML) in electrical contact with the first electrode and the second electrode; and an ultrathin metal layer between the TCE and the ETL, wherein the ultrathin metal layer provides an energy step between the TCE and the ETL.
US11508927B2 Organic electroluminescence device, preparation method thereof and display apparatus
An organic electroluminescence device, a preparation method thereof, and a display apparatus, the organic electroluminescence device including an organic light emitting layer which includes a host material, a sensitizer material, and a resonance thermally activated delayed fluorescent material, where the host material is a wide bandgap material, and the sensitizer material is a thermally activated delayed fluorescent material. The singlet state energy level of the thermally activated delayed fluorescent material falls between the singlet state energy level of the wide bandgap material and the singlet state energy level of the resonance thermally activated delayed fluorescent material. The triplet state energy level of the thermally activated delayed fluorescent material falls between the triplet state energy level of the wide bandgap material and the triplet state energy level of the resonance thermally activated delayed fluorescent material.
US11508918B2 Display panel having moisture-blocking structure and method of manufacturing the display panel
The disclosure provides a display panel and a method of manufacturing same. In the display panel, an organic light-emitting structural layer and an encapsulating structural layer are formed on a pixel defining layer and covers an entire surface of a through hole. The through hole is defined before the organic light-emitting structural layer and the encapsulating structural layer covers the surface of the through hole. Therefore, the encapsulating structural layer covers an interior lateral wall of the through hole, which prevents atmospheric moisture from invading into gaps between layers of an OLED device from the through hole and eroding a metal layer and an organic light-emitting layer in a display region.
US11508917B2 In situ thermal control of Langmuir-Schaefer transfer
This invention generally relates to a method for preparing and transferring a monolayer or thin film. In particular this present invention is an improved version of the Langmuir-Schaefer technique for preparing and transferring a monolayer or thin film, incorporating in situ thermal control of the substrate during the transfer process.
US11508916B2 Organic electroluminescent device emitting blue light
The present invention relates to organic electroluminescent devices comprising a light-emitting layer B comprising a host material HB, a first thermally activated delayed fluorescence (TADF) material EB, and a depopulation agent SB.
US11508915B2 Condensed cyclic compound and organic light-emitting device including the same
A condensed cyclic compound represented by Formula 1 and an organic light-emitting device including the same: wherein, in Formulae 1, Y11 is a group represented by Formulae 2-1 to 2-3 and Y12 is a group represented by Formulae 3-1 to 3-5, 4-1, or 4-2 as described herein.
US11508913B2 Organic electroluminescent materials and devices
The present invention includes a novel series of host materials for OLEDs based on substituted fused 1,2,4-triazines, represented by Formula I. The invention also includes an organic light-emitting device comprising an anode, a cathode, and an organic layer, disposed between the anode and the cathode, comprising a compound of Formula I. The compounds of the invention may improve the device EQE and lifetime.
US11508912B2 Light-emitting device
A light-emitting element includes a light-emitting layer including a guest, an n-type host and a p-type host between a pair of electrodes, where the difference between the energy difference between a triplet excited state and a ground state of the n-type host (or p-type host) and the energy difference between a triplet excited state and a ground state of the guest is 0.15 eV or more. Alternatively, in such a light-emitting element, the LUMO level of the n-type host is higher than the LUMO level of the guest by 0.1 eV or more, or the HOMO level of the p-type host is lower than the HOMO level of the guest by 0.1 eV or more.
US11508904B2 Semiconductor device and method for fabricating the same
A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first liner on the MTJ; forming a second liner on the first liner; forming an inter-metal dielectric (IMD) layer on the MTJ, and forming a metal interconnection in the IMD layer, the second liner, and the first liner to electrically connect the MTJ. Preferably, the first liner and the second liner are made of different materials.
US11508902B2 Hybrid ultrasonic transducer and method of forming the same
A method of manufacturing a semiconductor device includes: forming a first substrate includes a membrane stack over a first dielectric layer, the membrane stack having a first electrode, a second electrode over the first electrode and a piezoelectric layer between the first electrode and the second electrode, a third electrode over the first dielectric layer, and a second dielectric layer over the membrane stack and the third electrode; forming a second substrate, including: a redistribution layer (RDL) over a third substrate, the RDL having a fourth electrode; and a first cavity on a surface of the RDL adjacent to the fourth electrode; forming a second cavity in one of the first substrate and the second substrate; and bonding the first substrate to the second substrate.
US11508899B2 Foil transducer and valve
A foil transducer for a valve, including at least one firmly arranged holding part, at least one displaceable force transmission part, an electroactive foil composite structure and at least two electrodes. The electroactive foil composite structure has an actuating direction in which the electroactive foil composite structure is extended on actuation. The actuating direction lies in a plane spanned by the electroactive foil composite structure.
US11508894B2 Thermoelectric element
One embodiment discloses a thermoelectric element comprising: a first substrate; a plurality of thermoelectric legs disposed on the first substrate; a second substrate disposed on the plurality of thermoelectric legs above the first substrate; electrodes including a plurality of first electrodes disposed between the first substrate and the plurality of thermoelectric legs and a plurality of second electrodes disposed between the second substrate and the plurality of thermoelectric legs; and a first reinforcing part disposed on the lower surface and a portion of the side surface of the first substrate.
US11508893B2 Method of producing semiconductor sintered body
A semiconductor sintered body comprising a polycrystalline body, wherein the polycrystalline body comprises silicon or a silicon alloy, and the average grain size of the crystal grains constituting the polycrystalline body is 1 μm or less, and the electrical conductivity is 10,000 S/m or higher.
US11508892B2 Folded heatsink design for thermal challenging LED applications
This specification discloses heatsinks comprising a continuous sheet of thermally conductive material folded into a structure comprising a plurality of fins defined by bends in the sheet and arranged to transfer heat to surrounding air. The sheet may be further folded to form a planar surface defined by one or more bends in the sheet and on which one or more LEDs may be mounted. Optionally, the sheet may be further folded to partially enclose the fins within a tunnel formed by side walls defined by bends in the sheet.
US11508891B2 Method of manufacturing light-emitting module
A method of manufacturing a light-emitting module according includes providing an intermediate structure, the intermediate structure including a board, and a plurality of light sources, and forming first and second wirings on an upper surface of the intermediate structure. The first wiring includes first extending portions and first connecting portions. The second wiring includes second extending portions and second connecting portions. The forming of the first and second wirings includes forming the first extending portions and the first connecting portions and the second extending portions, forming an insulating member covering at least the first connecting portions while at least a portion of each of the second extending portions is exposed from the insulating member, and forming the second connecting portions on or above a part of the insulating member positioned on or above the first connecting portions of the first wiring.
US11508890B2 Collimation of light emitted by light emitting diodes using walls extending through transparent semiconductor
A display device includes a plurality of light emitting diodes (LEDs) having walls that extend through a transparent semiconductor layer and beyond the surface of the transparent semiconductor layer. Each of the walls surrounds at least part of each of the plurality of LEDs to collimate the light emitted by the plurality of LEDs. In some embodiments, the walls collimate the light emitted by the LEDs by reflecting the light or absorbing a portion of the light. The display device may further include an array of optical lenses that faces the surface of the transparent semiconductor layer to further collimate the light emitted from the LEDs.
US11508887B2 Package and display module
A package includes a substrate, a first light-emitting unit, a second light-emitting unit, a light-transmitting layer, and a light-absorbing layer. The substrate has a first surface and an upper conductive layer on the first surface. The first light-emitting unit and the second light-emitting unit are disposed on the upper conductive layer. The first light-emitting unit has a first light-emitting surface and a first side wall. The second light-emitting unit has a second light-emitting surface and a second side wall. The light-transmitting layer is disposed on the first surface and covers the upper conductive layer, the first light-emitting unit, and the second light-emitting unit. The light-absorbing layer is disposed between the substrate and the light-transmitting layer, covers the upper conductive layer, the first side wall, and the second side wall, and exposes the first light-emitting surface and the second light-emitting surface.
US11508886B2 Multi-color temperature and multi-channel EMC bracket structure
A multi-color temperature and multi-channel EMC bracket structure comprises a metal substrate with more than three pads arranged on a periphery thereof as multi-block electrodes. A cup-shaped insulating resin dam is located on the metal substrate. Part of the pad is located inside the insulating resin dam and another part of the pad is located outside the insulating resin dam. At least one white resin partition is arranged inside the insulating resin dam to divide the metal substrate into multiple areas for arranging different LED chip circuits respectively. The LED chip circuit comprising a plurality of LED chips. The spaces inside the cup-shaped insulating resin dam with respective to different LED chip circuits are encapsulated by fluorescent layers respectively, and the fluorescent layer is located on the LED chip. The present invention can be controlled in regions to achieve the effect of different color temperature.
US11508885B2 Light emitting device
A light emitting device includes a light emitting element, a substrate which contains a conductive member containing silver having the light emitting element mounted, and a sealing member which covers the light emitting element, and the sealing member is made of a cured silicone composite containing the following components (A), (B), (C), and (D): (A) an organopolysiloxane containing at least two alkenyl groups each bonded to a silicon atom per one molecule; (B) an organohydrogenpolysiloxane containing at least two hydrogen atoms each bonded to a silicon atom per one molecule; (C) a hydrosilylation catalyst; and (D) a zinc silanolate represented by the following formula (1): In the formula (1), R1 to R7 each independently represent a linear, branched, or cyclic monovalent hydrocarbon group having 1 to 10 carbon atoms, which may be substituted by a fluorine atom, or each independently represent a hydroxy group or an alkoxy group; and m represents an integer of 1 or greater.
US11508883B2 IR emitting pyroxene phosphors and light emitting device using the same
The invention provides luminescent material comprising E1-wSc1-x-y-u-wMyZuA2wSi2-z-uGezAluO6:Crx, wherein: E comprises one or more of Li, Na, and K; M comprises one or more of Al, Ga, In, Tm, Yb, and Lu; Z comprises one or more of Ti, Zr, and Hf; A comprises one or more of Mg, Zn, and Ni; 0
US11508881B2 Light emitting module and method of manufacturing the same
A light emitting module includes: a plurality of light emitting elements each having a primary light emitting surface and a lateral surface; a plurality of wavelength conversion members arranged respectively on the primary light emitting surfaces of the plurality of light emitting elements; and a lightguide plate having a first primary surface and a second primary surface and arranged continuously on the plurality of wavelength conversion members so that the second primary surface faces the plurality of wavelength conversion members, wherein the lightguide plate includes a plurality of recessed portions located on the second primary surface, and a lateral surface of at least one of the plurality of wavelength conversion members is partially in contact with an inner lateral surface of at least one of the plurality of recessed portions.
US11508879B2 Semiconductor device and manufacturing method therefor
A small-sized semiconductor device with a structure for stopping and keeping uncured resin or adhesive in a desired region, which is manufactured by employing a process of curing uncured resin or adhesive that is made to wet and spread on a board, is provided. The semiconductor device includes a board mounted with a semiconductor element and includes metal patterns formed on the board. The metal patterns include a first metal pattern, a second metal pattern, and a through electrode. The first metal pattern and the second metal pattern are provided separately from each other on the board. The through electrode is disposed between the first metal pattern and the second metal pattern and penetrates through the board in the thickness direction.
US11508875B2 Semiconductor light-emitting device and method of manufacturing the same
To provide a bonding-type semiconductor light-emitting device which has excellent reliabilities with smaller time deviations of the light output power and the forward voltage. A semiconductor light-emitting device 100 according to the present disclosure includes a conductive support substrate 80; a metal layer 60 containing a reflective metal provided on the conductive support substrate 10; a semiconductor laminate 30 formed from a stack of a plurality of InGaAsP group III-V compound semiconductor layers containing at least In and P provided on the reflective metal layer 60; an n-type InGaAs contact layer 20A provided on the semiconductor laminate 30; and an n-side electrode 93 provided on the n-type InGaAs contact layer 20A, wherein the center emission wavelength of light emitted from the semiconductor laminate 30 is 1000 to 2200 nm.
US11508872B2 Alignment module for transferring a magnetic light-emitting die and alignment method thereof
An alignment module and alignment method for transferring magnetic light-emitting die are provided, including a backplane having at least one cavity, a magnetic pull device and magnetic light-emitting die. The magnetic pull device is located below the cavity and disposed correspondingly to the cavity. The magnetic light-emitting die includes a magnetic metallic substrate and a peripheral electrode formed on the magnetic metallic substrate. The peripheral electrode is surrounding on the magnetic metallic substrate and formed adjacent to an inner edge of the magnetic metallic substrate. Depth of the cavity is designed as equal to a thickness of the magnetic metallic substrate such that the die is accommodated and aligning transferred to the backplane by using the cavity and magnetic pull device. By employing the proposed die alignment techniques, accurate alignment result is achieved and thereby the present invention is applied perfectly for industrial mass transfer technology.
US11508871B2 Heterostructure including a semiconductor layer with a varying composition
An improved heterostructure for an optoelectronic device is provided. The heterostructure includes an active region, an electron blocking layer, and a p-type contact layer. The electron blocking layer is located between the active region and the p-type contact layer. In an embodiment, the electron blocking layer can include a plurality of sublayers that vary in composition.
US11508870B2 Process for fabricating at least one tensilely strained planar photodiode
The invention relates to a process for fabricating at least tensilely strained planar photodiode 1, comprising producing a stack formed from a semiconductor layer 53, 55 made of a first material and from an antireflection layer 20; producing a peripheral trench 30 that opens onto a seed sublayer 22 made of a second material of the antireflection layer 20; epitaxy of a peripheral section 31 made of the second material in the peripheral trench 30; and returning to room temperature, a detecting section 10 then being tensilely strained because of the difference in coefficients of thermal expansion between the two materials.
US11508869B2 Lateral interband type II engineered (LITE) detector
A lateral interband Type II engineered (LITE) detector is provided. LITE detectors use engineered heterostructures to spatially separate electrons and holes into separate layers. The device may have two configurations, a positive intrinsic (PIN) configuration and a BJT (Bipolar junction transistor) configuration. The PIN configuration may have a wide bandgap (WBG) layer that transports the holes above a narrow bandgap (NBG) absorber layer that absorbs the target radiation and transports the electrons. The BJT configuration may have a WBG layer operating as a BJT above an NBG layer. In both configurations, the LITE design uses a Type II staggered offset between the NBG layers and the WBG layers that provides a built-in field for the holes to drift from an absorber region to a transporter region.
US11508867B2 Single photon avalanche diode device
The present invention provides a single photon avalanche diode device. The device has a logic substrate comprising an upper surface. The device has a sensor substrate bonded to an upper surface of the logic substrate. In an example, the sensor substrate comprises a plurality of pixel elements spatially disposed to form an array structure. In an example, each of the pixel elements has a passivation material, an epitaxially grown silicon material, an implanted p-type material configured in a first portion of the epitaxially grown material, an implanted n-type material configured in a second portion of the epitaxially grown material, and a junction region configured from the implanted p-type material and the implanted n-type material.
US11508866B2 Photoelectric conversion element and photoelectric conversion device
A photoelectric conversion element for detecting the spot size of incident light. The photoelectric conversion element includes a photoelectric conversion substrate having two principal surfaces, and comprises a first sensitive part and a second sensitive part that have mutually different photoelectric conversion characteristics. When a sensitive region appearing in the principal surface of the first sensitive part is defined as a first sensitive region, and a sensitive region appearing in the principal surface of the second sensitive part is defined as a second sensitive region, the first sensitive region is configured to receive at least a portion of light incident on a light-receiving surface and to decrease, proportionally to enlargement in an irradiation region of the principal surface irradiated with the incident light, the ratio of the first sensitive region to the second sensitive region in the irradiation region.
US11508859B2 Method for forming doped epitaxial layer of contact image sensor
The disclosure discloses a method for forming a doped epitaxial layer of contact image sensor. Epitaxial growth is performed in times. After each time of epitaxial growth, trench isolation and ion implantation are performed to form deep and shallow trench isolation running through a large-thickness doped epitaxial layer. Through cyclic operation of epitaxial growth, trench isolation and ion implantation, the photoresist and hard mask required at each time do not need to be too thick. In the process of trench isolation and ion implantation, the photoresist and etching morphologies are good, such that the lag problem of the prepared contact image sensor is improved. By forming the large-thickness doped epitaxial layer by adopting the method for forming the doped epitaxial layer of the contact image sensor, a high-performance contact image sensor applicable to high quantum efficiency, small pixel size and near infrared/infrared can be prepared.
US11508857B2 Optical scrambler with nano-pyramids
A pyramid structure to mitigate optical probing attacks in ICs by scrambling the measurements reflected by a laser pulse is disclosed. The pyramid structure is applied to selected areas at the bottom surface of the metal traces in metal layer to circumvent the extra silicon layer and thus minimize the changes to the conventional device structures. The pyramid structure includes randomized pyramids at nanometer scale. Optical simulation results show the pyramidized metal surface is able to prevent optical probing attacks. The fabrication of pyramids is CMOS compatible as well. Optical simulations are performed to analyze the impact these nano-scaled pyramids in a laser voltage probing attacking model. The nanopyramid can disturb the optical measurements enough to make the attacks practically infeasible. In addition, the nanopyramid structure countermeasure works in a passive mode without consuming any energy.
US11508856B2 Semiconductor device
A semiconductor device includes a photosensitive element, an insulating region, and a quench element. The photosensitive element includes a first semiconductor region of a first conductivity type, a second semiconductor region of the first conductivity type on the first semiconductor region, a third semiconductor region of a second conductivity type on the second semiconductor region, and a fourth semiconductor region of the second conductivity type around the second and third semiconductor regions. An impurity concentration of the first conductivity type in the second semiconductor region is higher than that in the first semiconductor region. An impurity concentration of the second conductivity type in the fourth semiconductor region is lower than that of the third semiconductor region. The insulating region is around the first and fourth semiconductor regions. The quench element is electrically connected to the third semiconductor region.
US11508852B2 Semiconductor device
A semiconductor device that can operate at high speed or having high strength against stress is provided. One embodiment of the present invention is a semiconductor device including a semiconductor film including a channel formation region and a pair of impurity regions between which the channel formation region is positioned; a gate electrode overlapping side and top portions of the channel formation region with an insulating film positioned between the gate electrode and the side and top portions; and a source electrode and a drain electrode in contact with side and top portions of the pair of impurity regions.
US11508851B2 Semiconductor device
A semiconductor device includes: a substrate including an active region and a device isolation region; a flat plate structure formed on the substrate; an oxide semiconductor layer covering a top surface of the flat plate structure and continuously arranged on a top surface of the substrate in the active region and the device isolation region; a gate structure arranged on the oxide semiconductor layer and including a gate dielectric layer and a gate electrode; and a source/drain region arranged on both sides of the gate structure and formed in the oxide semiconductor layer, in which, when viewed from a side cross-section, an extending direction of the flat plate structure and an extending direction of the gate structure cross each other.
US11508843B1 Semiconductor device having fully oxidized gate oxide layer and method for making the same
A method for making a semiconductor device includes forming a ROX layer on a substrate and a patterned silicon oxynitride layer on the patterned ROX layer; conformally forming a dielectric oxide layer to cover the substrate, the patterned silicon oxynitride layer, and the patterned ROX layer; and fully oxidizing the patterned silicon oxynitride layer to form a fully oxidized gate oxide layer on the substrate.
US11508841B2 Semiconductor device
A semiconductor device includes a semiconductor body having a first surface and second surface opposite to the first surface in a vertical direction, and a plurality of transistor cells at least partly integrated in the semiconductor body. Each transistor cell includes at least two source regions, first and second gate electrodes spaced apart from each other in a first horizontal direction and arranged adjacent to and dielectrically insulated from a continuous body region, a drift region separated from the at least two source regions by the body region, and at least three contact plugs extending from the body region towards a source electrode in the vertical direction. The at least three contact plugs are arranged successively between the first and second gate electrodes. Only the two outermost contact plugs that are arranged closest to the first and second gate electrodes, respectively, directly adjoin at least one of the source regions.
US11508837B2 Epitaxial structure for high-electron-mobility transistor and method for manufacturing the same
An epitaxial structure for a high-electron-mobility transistor includes a substrate, a nucleation layer, a buffer layered unit, a channel layer, and a barrier layer sequentially stacked on one another in such order. The buffer layered unit includes at least one multiple quantum well structure containing a plurality of p-i-n heterojunction stacks. Each of the p-i-n heterojunction stacks includes p-type, i-type, and n-type layers which are alternately stacked along a direction away from the nucleation layer, and which are made of materials respectively represented by chemical formulas of AlxGa(1-x)N, AlyGa(1-y)N, and AlzGa(1-z)N. For each of the p-i-n heterojunction stacks, x gradually decreases and z gradually increases along the direction away from the nucleation layer, and y is consistent and ranges from 0 to 0.7.
US11508834B2 Compound semiconductor device
A compound semiconductor device comprises a heterojunction bipolar transistor including a plurality of unit transistors, a capacitor electrically connected between a RF input wire and a base wire for each unit transistor of the unit transistors, and a bump electrically connected to emitters of the unit transistors. The unit transistors are arranged in a first direction. The bump is disposed above the emitters of the unit transistors while extending in the first direction. The transistors include first and second unit transistors, the respective emitters of the first and second unit transistors being disposed on first and second sides, respectively, of a second direction, perpendicular to the first direction, with respect to a center line of the bump extending in the first direction. The capacitor is not covered by the bump, and respective lengths of the respective base wires connected respectively to the first and second unit transistors are different.
US11508832B2 Semiconductor device and method for fabricating the same
A method for fabricating semiconductor device includes the steps of: forming a gate structure on a substrate; forming a polymer block on a corner between the gate structure and the substrate; performing a cleaning process; performing an oxidation process by injecting oxygen gas under 750° C. to form a first seal layer on sidewalls of the gate structure; and forming a source/drain region adjacent to two sides of the gate structure.
US11508831B2 Gate spacer structure and method of forming same
A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
US11508829B2 Semiconductor device and manufacturing method thereof
Some embodiments of the disclosure provide a semiconductor device. The semiconductor device comprises: a substrate; a first nitride semiconductor layer on the substrate; a second nitride semiconductor layer on the first nitride semiconductor layer and having a band gap larger than a band gap of the first nitride semiconductor layer; an intermediate layer disposed on the second nitride semiconductor layer; and a conductive structure disposed on the intermediate layer, wherein a first even interface is formed between the intermediate layer and the second nitride semiconductor layer.
US11508828B2 Selective silicon etch for gate all around transistors
Horizontal gate-all-around devices and methods of manufacturing same are described. The hGAA devices comprise a trimmed semiconductor material between source regions and drain regions of the device. The method includes selectively isotropically etching semiconductor material layers between source regions and drain regions of an electronic device.
US11508824B2 Gallium nitride transistors with multiple threshold voltages and their methods of fabrication
Gallium nitride transistors having multiple threshold voltages are described. In an example, a transistor includes a gallium nitride layer over a substrate, a gate stack over the gallium nitride layer, a source region on a first side of the gate stack, and a drain region on a second side of the gate stack, the second side opposite the first side, wherein the gate stack has a gate length in a first direction extending from the source region to the drain region, the gate stack having a gate width in a second direction perpendicular to the first direction and parallel to the source region and the drain region. The transistor also includes a polarization layer beneath the gate stack and on the GaN layer, the polarization layer having a first portion having a first thickness under a first gate portion and a second thickness under a second gate portion.
US11508821B2 Gallium nitride device for high frequency and high power applications
A semiconductor device includes a layer of a first semiconducting material, where the first semiconducting material is epitaxially grown to have a crystal structure of a first substrate. The semiconductor device further includes a layer of a second semiconducting material disposed adjacent to the layer of the first semiconducting material to form a heterojunction with the layer of the first semiconducting material. The semiconductor device further includes a first component that is electrically coupled to the heterojunction, and a second substrate that is bonded to the layer of the first semiconducting material.
US11508806B1 Low leakage ESD MOSFET
A MOSFET fabricated in a semiconductor substrate, includes: a gate oxide region formed atop the semiconductor substrate; a gate polysilicon region formed on the gate oxide region; a source region of a first doping type formed in the semiconductor substrate and located at a first side of the gate polysilicon region; and a drain region of the first doping type formed in the semiconductor substrate and located at a second side of the gate polysilicon region. The gate polysilicon region has a first sub-region of the first doping type, a second sub-region of the first doping type, and a third sub-region of a second doping type, wherein the first sub-region is laterally adjacent to the source region, the second sub-region is laterally adjacent to the drain region, and the third sub-region is formed laterally between the first and second sub-regions.
US11508804B2 Organic light emitting display device
The present disclosure discloses an organic light emitting display device. The organic light emitting display device includes a substrate, an initializing voltage input line, a first electrode line, a thin film transistor, and an organic light emitting diode arranged on the substrate. The thin film transistor includes a first electrode, a second electrode and a control electrode, and the first electrode is coupled to the first electrode line, the initializing voltage input line is provided in the same layer and is made of the same material as one of the first electrode, the second electrode and the control electrode of the thin film transistor, and an extension direction of the initializing voltage input line is substantially the same as an extension direction of the first electrode line.
US11508803B2 Array substrate, display panel and display device
The disclosure discloses an array substrate, a display panel, and a display device. A first power signal line is configured to be formed by electrically connecting a first signal line located in a first source-drain metal layer and a second signal line located in a second source-drain metal layer through a via hole, which is equivalent to that the first power signal line is composed of the first signal line and the second signal line connected in parallel, and the equivalent resistance of the parallel-connected first signal line and second signal line included in the first power signal line is smaller than the resistance of any of the signal lines. Thus, the resistance of the first power signal line may be effectively reduced, so that an IR drop of a display panel with an array substrate may be reduced, and the display uniformity of the display panel is improved.
US11508799B2 Display device comprising frame region surrounding display region
A flexible organic EL display device includes a plurality of short ring wiring lines. Each of the plurality of short ring wiring lines contacts a flattening film that is a resin layer on an end face of a terminal portion region in the flexible organic EL display device.
US11508794B2 Display panel with light-emitting portions in pixel definition layer and manufacturing method thereof
A display panel and a manufacturing method are provided, wherein the display panel includes an array substrate, a first anode layer, a pixel definition layer, a second anode layer, a light-emitting layer, and a cathode layer. The array substrate includes an array area. The first anode layer is disposed on the array area. The pixel definition layer disposed on the array area and the first anode layer includes a plurality of holes and a first area. The second anode layer is disposed on the first area. The light-emitting layer is disposed in the plurality of holes. The cathode layer is disposed on the pixel definition layer and the light-emitting layer.
US11508792B2 Display device and method for manufacturing display device
In a display region, etching stopper layers are provided between a plurality of inorganic insulating films, openings are formed in the inorganic insulating films located closer to a light-emitting element than the etching stopper layers so as to expose the upper surfaces of the etching stopper layers, and flattening films are provided in the openings such that the openings are filed with the flattening films.
US11508790B2 Display device
A display device including a window, a display panel, and an input detection sensor disposed therebetween and including a first electrode extending in a first direction, a second electrode extending in the first direction, a third electrode intersecting with the first and second electrodes while insulated therefrom, a first signal line electrically connected to an end of the first electrode, a second signal line electrically connected to an end of the second electrode, and a third signal line and a fourth signal line electrically connected to a first end and a second end of the third electrode, respectively, in which each of the first and second signal lines includes a first part and a second part extending in the first direction and disposed between the first part of the first signal line and the second part of the first signal line in a second direction crossing the first direction.
US11508784B2 Display panel comprising light enhancement region
The present application provides a display panel including a light emitting layer and a touch layer; wherein the light emitting layer comprises a plurality of blue light emitting units, a plurality of green light emitting units, and a plurality of red light emitting units; wherein a top of the touch layer is provided with a transparent cover plate, the transparent cover plate is provided with a light enhancement region, and a projection of the light enhancement region on the light emitting layer covers the blue light emitting units.
US11508777B2 Infrared solid state imaging device
An infrared solid state imaging device includes: a first PN junction diode has a first shortest length that is a shortest length from a first junction surface to a second junction surface; a PN junction diode has a second shortest length that is a shortest length from the second junction surface to a third junction surface, the second shortest length being different from the first shortest length; an insulating film serving as an element isolation region which establishes electrical isolation between a first region of the first PN junction diode and a fourth region of the second PN junction diode, and so on; and a metal wire provided on a second region of the first PN junction diode and a third region of the second PN junction diode, wherein the first PN junction diode and the second PN junction diode are connected in series.
US11508773B2 Image pickup device and electronic apparatus
The present disclosure relates to an image pickup device and an electronic apparatus that enable further downsizing of device size.The device includes: a first structural body and a second structural body that are layered, the first structural body including a pixel array unit, the second structural body including an input/output circuit unit, and a signal processing circuit; a first through-via, a signal output external terminal, a second through-via, and a signal input external terminal that are arranged below the pixel array, the first through-via penetrating through a semiconductor substrate constituting a part of the second structural body, the second through-via penetrating through the semiconductor substrate; a substrate connected to the signal output external terminal and the signal input external terminal; and a circuit board connected to a first surface of the substrate. The present disclosure can be applied to, for example, the image pickup device, and the like.
US11508772B2 Image sensor and manufacturing method thereof
An image sensor including a substrate and an image sensing element is provided. The substrate has an arc surface. The image sensing element is disposed on the arc surface and curved to fit a contour of the arc surface. The image sensing element has a front surface and a rear surface opposite to the front surface and has at least one bonding wire, the bonding wire is connected between the front surface and the substrate, and the rear surface of the image sensing element directly contacts the arc surface. In addition, a manufacturing method of the image sensor is also provided.
US11508770B2 Back-illuminated semiconductor light detecting device
A back-illuminated semiconductor light detecting device includes a light detecting substrate having pixels, and a circuit substrate having signal processing units. For each of the pixels, the light detecting substrate includes avalanche photodiodes respectively having light receiving regions provided in a first main surface side of the semiconductor substrate. In the semiconductor substrate, for each pixel, a trench surrounds at least one region including the light receiving region when viewed from a direction perpendicular to the first main surface. The number of signal processing units is larger than the number of light receiving regions in each pixel, and the number of regions surrounded by the trench in each pixel is equal to or less than the number of light receiving regions in the pixel.
US11508762B2 Substrate processing apparatus and method of manufacturing display panel using the same
A substrate processing apparatus includes a first process chamber in which a target substrate is processed, a first tank connected to the first process chamber to supply a first chemical to the first process chamber, a second process chamber in which the target substrate is processed, and a second tank connected to the second process chamber to supply a second chemical to the second process chamber. A metal ion contained in the first chemical supplied to the first process chamber has an ion concentration greater than an ion concentration of the metal ion contained in the second chemical supplied to the second process chamber.
US11508760B2 Active-matrix substrate and display device
An active matrix substrate includes a plurality of first contact holes extending through an inorganic insulating film, a first protection layer that is a silicon nitride film, and a second protection layer, a plurality of second contact holes extending through the inorganic insulating film and the second protection layer, a first transistor, and a second transistor. A channel region of the second transistor does not overlap the first protection layer.
US11508759B2 Method of manufacturing flexible array substrate, flexible array substrate, and flexible display device
A method of manufacturing a flexible array substrate, a flexible array substrate, and a flexible display device are disclosed. The method of manufacturing the flexible array substrate is implemented by using silver nanowire to form an electrically conductive pattern on a flexible substrate. In this manner, using the silver nanowire to replace metal or indium tin oxide as conventionally used to form the electrically conductive pattern can reduce trace resistance, increase panel transmittance, improve bending resistance of the flexible array substrate, avoid line breaks in products, improve production yield, and reduce manufacturing costs of products.
US11508758B2 Display panel and display
The present disclosure discloses a display panel which includes a substrate and plurality of insulating layers disposed on the substrate, and a plurality of metal routings, and includes a display region and a first non-display region at left and right sides of the display region, and a display, the plurality of metal routings being at the first non-display region and insulated from each other, and at least adjacent two of the metal routings being positioned on different layers of the insulating layers. An interval between adjacent metal routings on different insulating layers in a horizontal direction can be reduced through the above wiring manner, thereby reducing a space occupied by the first non-display region.
US11508754B2 Semiconductor memory structure and method for forming the same
A semiconductor memory structure includes a substrate, two doped regions in the substrate, a plurality of gate layers, a plurality of insulating layers, a column over the substrate, a charge-trapping layer, and a channel layer. The substrate includes dopants of a first conductivity type, and the two doped regions include dopants of a second conductivity type complementary to the first conductivity type. The gate layers and the insulating layers are alternately stacked over the substrate. The column penetrates the gate layers and the insulating layers, and includes an isolation structure, a source structure and a drain structure. at two sides of the isolation structure. The charge-trapping layer is at two sides of the column, and the channel layer is between the charge-trapping layer and the column. A bottom surface of the charge-trapping layer is in contact with the substrate and separated from the two doped regions.
US11508752B2 Grid structure to reduce domain size in ferroelectric memory device
Various embodiments of the present disclosure are directed towards an integrated chip including a pair of source/drain regions disposed in a substrate. A gate dielectric layer overlies the substrate and is spaced laterally between the pair of source/drain regions. A ferroelectric structure overlies the gate dielectric layer. The ferroelectric structure includes a ferroelectric layer and a grid structure. The ferroelectric layer includes a plurality of segments laterally offset from one another, and the grid structure laterally encloses each segment of the ferroelectric layer.
US11508747B2 Semiconductor memory device
A semiconductor memory device includes: a stacked structure including first and second select patterns spaced apart from each other in a first direction; a gate isolation layer extending in a second direction intersecting the first direction between the first and second select patterns; channel structures penetrating the stack structure; and first and second bit lines extending in the first direction, the first and second bit lines being adjacent to each other. The channel structures include: a first channel structure which penetrates the first select pattern and is spaced apart by a first distance from the gate isolation layer in the first direction; and a second channel structure which penetrates the second select pattern and is spaced apart by substantially the first distance from the gate isolation layer in the first direction. The first and second channel structures are respectively connected to the second and first bit lines.
US11508743B2 Three-dimensional memory device having multi-deck structure and methods for forming the same
Embodiments of structure and methods for forming a three-dimensional (3D) memory device are provided. In an example, a 3D memory device includes a substrate and a stack structure in an insulating structure on the substrate. The stack structure includes alternating a plurality of conductor layers and a plurality of insulating layers. The 3D memory device further includes a source structure extending vertically through the alternating stack structure. The source structure includes at least one staggered portion along a respective sidewall. The 3D memory device further includes a channel structure and a support pillar each extending vertically through the alternating stack structure and a plurality of contact structures extending vertically through the insulating structure.
US11508739B2 Method of manufacturing memory structure
A method of manufacturing a memory structure including the following steps is provided. A first pad layer is formed on a substrate. Isolation structures are formed in the first pad layer and the substrate. At least one shape modification treatment is performed on the isolation structures. Each shape modification treatment includes the following steps. A first etching process is performed on the first pad layer to reduce a height of the first pad layer and to form first openings exposing sidewalls of the isolation structures. After the first etching process is performed, a second etching process is performed on the isolation structures to modify shapes of the sidewalls of the isolation structures exposed by the first openings. The first pad layer is removed to form a second opening between two adjacent isolation structures.
US11508738B2 SRAM speed and margin optimization via spacer tuning
An N-type metal oxide semiconductor (NMOS) transistor includes a first gate and a first spacer structure disposed on a first sidewall of the first gate in a first direction. The first spacer structure has a first thickness in the first direction and measured from an outermost point of an outer surface of the first spacer structure to the first sidewall. A P-type metal oxide semiconductor (PMOS) transistor includes a second gate and a second spacer structure disposed on a second sidewall of the second gate in the first direction and measured from an outermost point of an outer surface of the second spacer structure to the second sidewall. The second spacer structure has a second thickness that is greater than the first thickness. The NMOS transistor is a pass-gate of a static random access memory (SRAM) cell, and the PMOS transistor is a pull-up of the SRAM cell.
US11508734B2 Integrated assemblies, and methods of forming integrated assemblies
Some embodiments include an integrated assembly having digit lines extending along a first direction, and rails over the digit lines. The rails include semiconductor-material pillars alternating with intervening insulative regions. The rails have upper, middle and lower segments. A first insulative material is along the upper and lower segments of the rails. A second insulative material is along the middle segments of the rails. The second insulative material differs from the first insulative material in one or both of thickness and composition. Conductive gate material is along the middle segments of the rails and is spaced from the middle segments by the second insulative material. Channel regions are within the middle segments of the pillars, upper source/drain regions are within the upper segments of the pillars and lower source/drain regions are within the lower segments of the pillars. Some embodiments include methods of forming integrated assemblies.
US11508726B2 Semiconductor structure with gate contact
A semiconductor structure and a method for forming the same are provided. In one form, the method includes: providing a base, a gate structure being formed on the base, a source/drain doped layer being formed within the base on both sides of the gate structure, and an initial dielectric layer being formed on the base exposed from the gate structure, the initial dielectric layer covering a top of the gate structure, and a source/drain contact plug electrically connected to the source/drain doped layer being formed within the initial dielectric layer on the top of the source/drain doped layer; removing a portion of a thickness of the initial dielectric layer to form a dielectric layer exposing a portion of a side wall of the source/drain contact plug; forming an etch stop layer on at least the side wall of source/drain contact plug exposed from the dielectric layer; etching the dielectric layer on the top of the gate structure using etch stop layers on side walls of adjacent source/drain contact plugs as lateral stop positions, to form a gate contact exposing the top of the gate structure; forming, within the gate contact, a gate contact plug electrically connected to the gate structure. Implementations of the present disclosure facilitate enlargement of a process window for forming a contact over active gate.
US11508721B2 Integrated fluxgate device
An integrated circuit has a substrate, a circuit, a core structure, a first encapsulation layer, a second encapsulation layer, and an oxide layer. The circuit includes transistors with active regions developed on the substrate and a metal layer formed above the active regions to provide interconnections for the transistors. The core structure is formed above the metal layer. The first encapsulation layer covers the core structure, and it has a first thermal expansion coefficient. The second encapsulation layer covers the first encapsulation layer over the core structure, and it has a second thermal expansion coefficient that is different from the first thermal expansion coefficient. As a part of the stress relief structure, the oxide layer is formed above the second encapsulation layer. The oxide layer includes an oxide thickness sufficient to mitigate a thermal stress between the first and second encapsulation layers.
US11508720B2 Memory device including alignment layer and semiconductor process method thereof
A memory device includes a well, a first gate layer, a second gate layer, a doped region, a blocking layer and an alignment layer. The first gate layer is formed on the well. The second gate layer is formed on the well. The doped region is formed within the well and located between the first gate layer and the second gate layer. The blocking layer is formed to cover the first gate layer, the first doped region and a part of the second gate layer and used to block electrons from excessively escaping. The alignment layer is formed on the blocking layer and above the first gate layer, the doped region and the part of the second gate layer. The alignment layer is thinner than the blocking layer, and the alignment layer is thinner than the first gate layer and the second gate layer.
US11508717B2 Silicon controlled rectifier
A silicon-controlled rectifier (SCR) includes a semiconductor body including a first main surface and an active device region. First through fourth surface contact areas at the first main surface are arranged directly one after another along a lateral direction. The semiconductor body is electrically contacted at each surface contact area. First and third SCR regions of a first conductivity type directly adjoin the first and third surface contact areas, respectively. Second and fourth SCR regions of a second conductivity type directly adjoin the second and fourth surface contact areas, respectively. The second SCR region at least partially overlaps a first well region of the first conductivity type at the first main surface. The first SCR region at most partially overlaps the first well region at the first main surface, and is electrically connected to the second SCR region. The third SCR region is electrically connected to the fourth SCR region.
US11508714B2 Semiconductor devices and methods related thereto
A semiconductor device comprising a plurality of cells comprising cells of a first group, a second group and a third group is provided. The cell of the first group comprises a first power supply wiring for supplying a first potential, is located between the two cells of the third group and separated therefrom in a row direction by a distance, and supplies the first potential to the cells of the second group via a wiring on a front-side of the substrate. At least one of the two cells of the third group comprises a second power supply wiring for supplying a second potential having a polarity is opposite the first potential or being a ground. A third power supply wiring on a backside of a substrate supplies the first potential. The first power supply wiring comprises a via coupled to the third power supply wiring.
US11508710B2 Method of forming semiconductor device package
A method of forming a semiconductor device package includes the following steps. A redistribution structure is formed on a carrier. A plurality of second semiconductor devices are disposed on the redistribution structure. At least one warpage adjusting component is disposed on at least one of the second semiconductor devices. A first semiconductor device is disposed on the redistribution structure. An encapsulating material is formed on the redistribution structure to encapsulate the first semiconductor device, the second semiconductor devices and the warpage adjusting component. The carrier is removed to reveal a bottom surface of the redistribution structure. A plurality of electrical terminals are formed on the bottom surface of the redistribution structure.
US11508707B2 Semiconductor package with dummy MIM capacitor die
A semiconductor package including at least one functional die; at least one dummy die free of active circuit, wherein the dummy die comprises at least one metal-insulator-metal (MIM) capacitor; and a redistribution layer (RDL) structure interconnecting the MIM capacitor to the at least one functional die.
US11508706B2 Light-emitting module
A light-emitting module includes: a lightguide plate having a main surface and including a plurality of unit regions including at least one first unit region and a plurality of second unit regions, the lightguide plate including a plurality of first recesses in the main surface; a plurality of light sources provided at the main surface, each of the light sources being located in the first recess so as to correspond to one of the unit regions; and a light-transmitting member provided in the first recess of each of the unit regions. In the second unit regions, an optical axis of the light sources is coincident with a center of the first recess. In the first unit region, the optical axis of the light source is offset from the center of the first recess, and an upper surface of the light-transmitting member has a first receding part.
US11508705B2 Method of manufacturing light-emitting device
A method of manufacturing the light-emitting device includes providing a structure body, mounting the structure body, removing a third substrate region of a silicon substrate of the structure body, disposing a resin layer, disposing a first mask member, removing a first substrate region of the silicon substrate, disposing a first wavelength conversion layer, removing the first mask member, and removing a second substrate region of the silicon substrate.
US11508702B2 Integrated control LED display system
An integrated control LED display system, comprising a number of module screens (100) which are assembled together to form a large display screen, each of the module screens (100) comprises several unit screens (200), a splicing frame (300) and a control box (400), several unit screens (200) are assembled in the splicing frame (300) to form a said module screen (100), the control box (400) is arranged on the back of the module screen (100), and the control box (400) can simultaneously control the work mode of the unit screens (200).
US11508701B2 Light emitting device
Each of a plurality of light emitting elements has a hexagonal shape with a center. An interior angle at each of corners is less than 180°. The plurality of light emitting elements include a first light emitting element having a first lateral side surface and a second light emitting element having a second lateral side surface. An orientation of the hexagonal shape of the second light emitting element is rotated by 30 degrees plus 30°+60°×N (N is an integer) with respect to the center of the second light emitting element relative to an orientation of the hexagonal shape of the first light emitting element such that the second lateral side surface is not parallel to the first lateral side surface.
US11508700B2 Left and right projectors for display device
Disclosed herein are display devices having a left projector and a right projector. According to certain embodiments, a display device includes a first display package having a first LED die, a second LED die, a third LED die, and a first backplane die that is electrically connected to the first LED die, the second LED die, and the third LED die. Each of the first LED die, the second LED die, and the third LED die is symmetric about a first plane that is parallel to an emission direction of the first LED die and perpendicular to a longitudinal direction of the first LED die. The first backplane die is symmetric about a second plane that is parallel to the emission direction of the first LED die and parallel to the longitudinal direction of the first LED die.
US11508697B2 Semiconductor memory device
According to one embodiment, a semiconductor memory device includes a memory cell, a first voltage generator and a second voltage generator. The memory cell is provided above a substrate. The first voltage generator is provided between the substrate and the memory cell. The first voltage generator is configured to generate a first voltage to be supplied to the memory cell. The second voltage generator is provided between the substrate and the memory cell. The second voltage generator is configured to generate the first voltage and have a circuit configuration equivalent to the first voltage generator.
US11508696B2 Semiconductor device
A semiconductor device includes a first electronic component, a second electronic component, a third electronic component, a plurality of first interconnection structures, and a plurality of second interconnection structures. The second electronic component is between the first electronic component and the third electronic component. The first interconnection structures are between and electrically connected to the first electronic component and the second electronic component. Each of the first interconnection structures has a length along a first direction substantially parallel to a surface of the first electronic component and a width along a second direction substantially parallel to the surface and substantially perpendicular to the first direction. The length is larger than the width. The second interconnection structures are between and electrically connected to the second electronic component and the third electronic component.
US11508694B2 Chip assembly
A method of forming a chip assembly may include forming a plurality of cavities in a carrier; The method may further include arranging a die attach liquid in each of the cavities; arranging a plurality of chips on the die attach liquid, each chip comprising a rear side metallization and a rear side interconnect material disposed over the rear side metallization, wherein the rear side interconnect material faces the carrier; evaporating the die attach liquid; and after the evaporating the die attach liquid, fixing the plurality of chips to the carrier.
US11508688B2 Bonding apparatus including a heater and a cooling flow path used for stacking a plurality of semiconductor chips
The present invention has: a heater; and a bonding tool having a lower surface on which a memory chip is adsorbed; and an upper surface attached to the heater, and is provided with a bonding tool which presses the peripheral edge of the memory chip to a solder ball in a first peripheral area of the lower surface and which presses the center of the memory chip (60) to a DAF having a heat resistance temperature lower than that of the solder ball in a first center area. The amount of heat transmitted from the first center area to the center of the memory chip is smaller than that transmitted from the first peripheral area (A) to the peripheral edge of the memory chip. Thus, the bonding apparatus in which the center of a bonding member can be heated to a temperature lower than that at the peripheral edge can be provided.
US11508681B2 Semiconductor package and method of fabricating the same
A semiconductor package includes a semiconductor substrate, a conductive pad on the semiconductor substrate, a redistribution line conductor, a coating insulator, and an aluminum oxide layer. The redistribution line conductor is electrically connected to the conductive pad. The coating insulator covers the redistribution line conductor and partially exposes the redistribution line conductor. The aluminum oxide layer is provided below the coating insulator and extends along a top surface of the redistribution line conductor, and the aluminum oxide layer is in contact with the redistribution line conductor.
US11508680B2 Solder ball application for singular die
A method is provided. The method includes one or more of conditioning one or more die pads of a singular die, applying a nickel layer to the one or more die pads, applying a gold layer over the nickel layer, applying a solder paste over the gold layer, applying one or more solder balls to the solder paste, and mating the one or more solder balls to one or more bond pads of another die, a printed circuit board, or a substrate.
US11508679B2 Polymer resin and compression mold chip scale package
A method for fabricating a chip scale package, comprising: providing a wafer; applying a polymer resin on at least part of a first surface of the wafer and to one or more sides of the wafer; and applying a compression mold on at least part of a second surface of the wafer and to one or more sides of the wafer, said first and second surfaces opposing each other.
US11508678B2 Semiconductor package structure including antenna
A semiconductor package structure is provided. The semiconductor package structure includes an antenna device and semiconductor package. The antenna device includes a conductive pattern layer including a first antenna element, formed in an insulating substrate and adjacent to a first surface of the insulating substrate. The antenna device also includes a second antenna element formed on a second surface of the insulating substrate opposite the first surface. The semiconductor package includes a redistribution layer (RDL) structure bonded and electrically connected to the conductive pattern layer. The semiconductor package also includes a first semiconductor die electrically connected to the RDL structure, and an encapsulating layer formed on the RDL structure and surrounding the first semiconductor die.
US11508675B2 Semiconductor package structure having antenna module
A semiconductor package structure having an antenna module includes: a substrate, having a first surface and a second surface; a semiconductor chip, disposed on the first surface; a plastic packaging material layer, formed on the first surface, where the plastic packaging material layer wraps the semiconductor chip and exposes a part of a front surface of the semiconductor chip; a rewiring layer, disposed on the plastic packaging material layer and electrically connected to the semiconductor chip; a metal bump, electrically connected to the rewiring layer; and an antenna module, disposed on the second surface of the substrate.
US11508674B2 High power thermally conductive radio frequency absorbers
Radio frequency (“RF”) absorbing devices used as RF termination devices or free space absorbers, for example, are formed with a planar wafer made of an inorganic thermally conductive material. The planar wafer has a first surface and a second surface opposite the first surface. A metallized resistive film is disposed on the first surface. A metallized reflective heat sink is disposed on the second surface.
US11508673B2 Semiconductor packaging substrate, fabrication method and packaging process thereof
A semiconductor packaging substrate is provided and includes: an insulating layer, a thinned circuit structure formed of circuit layers and conductive posts stacked on one another embedding in the insulating layer, and a supporting structure formed on the insulating layer and having at least one through hole exposing the conductive posts. As such, before a subsequent packaging operation, the packaging substrate can be electrically tested and screened so as to prevent a defective packaging substrate from being misused in the subsequent packaging operation and hence avoid the loss of normal electronic elements. A method for fabricating a semiconductor packaging substrate and a packaging process using the semiconductor packaging substrate are also provided.
US11508670B2 Semiconductor structure and method for manufacturing the same
A method of manufacturing a semiconductor structure includes the following operations. A wafer includes a crystal orientation represented by a family of Miller indices comprising , wherein l2+m2+n2=1. A first chip and a second chip are over the wafer. A first edge of the first chip and a second edge of the second chip are adjacent to each other. A boundary extending in a direction between the first edge and the second edge is formed. A first included angle between the first direction and the crystal orientation is greater than or equal to 0 degree and less than 45 degrees.
US11508669B2 Method and apparatus for improved circuit structure thermal reliability on printed circuit board materials
A structure is provided that reduces the stress generated in a semiconductor device package during cooling subsequent to solder reflow operations for coupling semiconductor devices to a printed circuit board (PCB). Stress reduction is provided by coupling solder lands to metal-layer structures using traces on the PCB that are oriented approximately perpendicular to lines from an expansion neutral point associated with the package. In many cases, especially where the distribution of solder lands of the semiconductor device package are uniform, the expansion neutral point is in the center of the semiconductor device package. PCB traces having such an orientation experience reduced stress due to thermal-induced expansion and contraction as compared to traces having an orientation along a line to the expansion neutral point.
US11508668B2 Semiconductor package structure and method for manufacturing the same
A semiconductor package structure and a method for manufacturing a semiconductor package structure are provided. The semiconductor package structure includes a device package and a shielding layer. The device package includes an electronic device unit and has a first surface, a second surface opposite to the first surface, and a third surface connecting the first surface to the second surface. The shielding layer is disposed on the first surface and the second surface of the device package. A common edge of the second surface and the third surface includes a first portion exposed from the shielding layer by a first length, and a common edge of the first surface and the third surface includes a second portion exposed from the shielding layer by a second length that is different from the first length.
US11508661B2 Integrated circuit and method of manufacturing same
An integrated circuit includes a set of active regions in a substrate, a first set of conductive structures, a shallow trench isolation (STI) region, a set of gates and a first set of vias. The set of active regions extend in a first direction and is located on a first level. The first set of conductive structures and the STI region extend in at least the first direction or a second direction, is located on the first level, and is between the set of active regions. The STI region is between the set of active regions and the first set of conductive structures. The set of gates extend in the second direction and overlap the first set of conductive structures. The first set of vias couple the first set of conductive structures to the set of gates.
US11508654B2 Non-volatile memory with capacitors using metal under signal line or above a device capacitor
A non-volatile storage apparatus comprises a non-volatile memory structure and a plurality of I/O pads in communication with the non-volatile memory structure. The I/O pads include a power I/O pad, a ground I/O pad and data/control I/O pads. The non-volatile storage apparatus further comprises one or more capacitors connected to the power I/O pad and the ground I/O pad. The one or more capacitors are positioned in one or more metal interconnect layers below the signal lines and/or above device capacitors on the top surface of the substrate.
US11508650B2 Interposer for hybrid interconnect geometry
An electronic device and associated methods are disclosed. In one example, the electronic device includes a substrate, a semiconductor die thereon, electrically coupled to the substrate, and an interposer adapted to connect the substrate to a circuit board. The interposer can include a major surface, a recess in the major surface, a first plurality of interconnects passing through the interposer within the recess to electrically couple the substrate to a circuit board, and a second plurality of interconnects on the major surface of the interposer to electrically couple the substrate to the circuit board, wherein each of the second plurality of interconnects comprises a smaller cross-section than some of the first plurality of interconnects.
US11508646B2 Semiconductor device
A semiconductor device comprises; a lead frame having leads and a die pad; a printed circuit board including an electrode for the connection of each of the leads and the die pad, a wiring pattern, and an opening exposing a part of a surface of the die pad; the semiconductor element for processing a high frequency signal, mounted on a surface of a metal block bonded to the surface of the die pad exposed through the opening, and connected to the wiring pattern with a metal wire; electronic components connected to the wiring pattern and mounted on a surface of the printed circuit board; and a sealing resin to seal the printed circuit board, the semiconductor element, the electronic components, and the metal wire so as to expose rear surfaces of the leads and the die pad.
US11508640B2 Semiconductor package and manufacturing method thereof
A semiconductor package and a manufacturing method thereof are provided. The semiconductor package includes a first semiconductor die, a second semiconductor die, a molding compound, a heat dissipation module and an adhesive material. The first and second semiconductor dies are different types of dies and are disposed side by side. The molding compound encloses the first and second semiconductor dies. The heat dissipation module is located directly on and in contact with the back sides of the first and second semiconductor dies. The adhesive material is filled and contacted between the heat dissipation module and the molding compound. The semiconductor package has a central region and a peripheral region surrounding the central region. The first and second semiconductor dies are located within the central region. A sidewall of the heat dissipation module, a sidewall of the adhesive material and a sidewall of the molding compound are substantially coplanar.
US11508637B2 Fan out package and methods
A semiconductor device and method is disclosed. Devices shown include a die coupled to an integrated routing layer, wherein the integrated routing layer includes a first width that is wider than the die. Devices shown further included a molded routing layer coupled to the integrated routing layer.
US11508636B2 Multi-layer solution based deposition of dielectrics for advanced substrate architectures
Embodiments include an electronic package and methods of forming an electronic package. In an embodiment, the electronic package comprises a substrate, and a plurality of conductive features formed over the substrate. In an embodiment, a bilayer build-up layer is formed over the plurality of conductive features. In an embodiment, the bilayer build-up layer comprises a first dielectric layer and a second dielectric layer. In an embodiment, a surface of the first dielectric layer comprises depressions. In an embodiment, the second dielectric layer is disposed in the depressions of the surface of the first dielectric layer.
US11508631B2 Semiconductor device
A semiconductor device may include function circuits and a test line structure beside the function circuits. The test line structure includes standard cell circuit blocks including a first components and environment circuit regions between the standard cell circuit blocks. The environment circuit regions include second components. The first components are different from the second components in structure, arrangement or a combination thereof.
US11508630B2 Thin film analyzing device and thin film analyzing method
A thin film analyzing device includes a processing and analyzing chamber for performing processing and analyzing of a subject having a thin film on a substrate. The processing and analyzing chamber includes a sample holder arranged to hold the subject, an X-ray irradiation source arranged to irradiate the subject with X-rays, a fluorescent X-ray detector configured to detect fluorescent X-rays which are emitted from the subject, a diffracted/reflected X-ray detector configured to detect reflected X-rays and diffracted X-rays which are emitted from the subject, and a substrate remover arranged to remove the substrate.
US11508629B2 Nitride semiconductor laminate, method for manufacturing nitride semiconductor laminate, method for manufacturing semiconductor laminate, and method for inspecting semiconductor laminate
There is provided a nitride semiconductor laminate, including: a substrate; an electron transit layer provided on the substrate and containing a group III nitride semiconductor; and an electron supply layer provided on the electron transit layer and containing a group III nitride semiconductor, wherein a surface force A of the electron supply layer acting as an attractive force for attracting a probe and a surface of the electron supply layer when measured using the probe consisting of a glass sphere with a diameter of 1 mm covered with Cr, is stronger than a surface force B of Pt when measured under the same condition, and an absolute value |A−B| of a difference between them is 30 μN or more.
US11508627B2 Method of metal gate formation and structures formed by the same
A method includes: providing a substrate; forming a first pair of source/drain regions in the substrate; disposing an interlayer dielectric layer over the substrate, the interlayer dielectric layer having a first trench between the first pair of source/drain regions; depositing a dielectric layer in the first trench; depositing a barrier layer over the dielectric layer; performing an operation on the substrate; removing the barrier layer from the first trench to expose the dielectric layer subsequent to the operation; and depositing a work function layer over the dielectric layer in the first trench.
US11508622B2 Semiconductor device structure with tapered contact and method for forming the same
Semiconductor device structures are provided. The semiconductor device structure includes a substrate and a first fin structure protruding from the substrate. The semiconductor device structure further includes a gate stack formed across the first fin structure and a first source/drain structure formed over the first fin structure adjacent to the gate stack. The semiconductor device structure further includes a contact structure formed over the first source/drain structure and a dielectric structure formed through the contact structure. In addition, a bottom surface of the contact structure is wider than a top surface of the contact structure.
US11508621B2 Method of manufacturing a semiconductor device and a semiconductor device
A semiconductor device includes semiconductor nanostructures disposed over a substrate, a source/drain epitaxial layer in contact with the semiconductor nanostructures, a gate dielectric layer disposed on and wrapping around each channel region of the semiconductor nanostructures, a gate electrode layer disposed on the gate dielectric layer and wrapping around each channel region, and insulating spacers disposed in spaces, respectively. The spaces are defined by adjacent semiconductor nanostructures, the gate electrode layer and the source/drain region. The source/drain epitaxial layer includes multiple doped SiGe layers having different Ge contents and at least one of the source/drain epitaxial layers is non-doped SiGe or Si.
US11508616B2 Electrical connection for semiconductor devices
In one example, a method includes performing a first etching process to pattern a dielectric layer and expose a contact etch stop layer, performing a second etching process to remove the etch stop layer and expose a top surface of an underlying feature, performing a third etching process to laterally recess the etch stop layer, and depositing a conductive material over the underlying feature to create a conductive feature in direct contact with the underlying feature.
US11508612B2 Semiconductor on insulator structure comprising a buried high resistivity layer
A cost effective process flow for manufacturing semiconductor on insulator structures is parallel is provided. Each of the multiple semiconductor-on-insulator composite structures prepared in parallel comprises a charge trapping layer (CTL).
US11508610B2 Substrate support with edge seal
Methods and apparatus for supporting a substrate are provided herein. In some embodiments, a substrate support to support a substrate having a given diameter includes: a base ring having an inner diameter less than the given diameter, the base ring having a support surface configured to contact a first surface of the substrate and to form a seal between the support surface and the first surface of the substrate, when disposed atop the base ring; and a clamp ring having an inner diameter less than the given diameter, wherein the clamp ring includes a contact surface proximate the inner diameter configured to contact an upper surface of the substrate, when present, and wherein the clamp ring and the base ring are further configured to provide a bias force toward each other to clamp the substrate in the substrate support.
US11508608B2 Vacuum wafer chuck for manufacturing semiconductor devices
Disclosed is a vacuum chuck and a method for securing a warped semiconductor substrate during a semiconductor manufacturing process so as to improve its flatness during a semiconductor manufacturing process. For example, a semiconductor manufacturing system includes: a vacuum chuck configured to hold a substrate, wherein the vacuum chuck comprises, a plurality of vacuum grooves located on a top surface of the vacuum chuck, wherein the top surface is configured to face the substrate; and a plurality of flexible seal rings disposed on the vacuum chuck and extending outwardly from the top surface, wherein the plurality of flexible seal rings are configured to directly contact a bottom surface of the substrate and in adjacent to the plurality of vacuum grooves so as to form a vacuum seal between the substrate and the vacuum chuck, and wherein each of the plurality of flexible seal rings has a zigzag cross section.
US11508604B2 Micro light emitting diode transfer device and transfer method
The present disclosure provides a micro light emitting diode transfer device and a micro light emitting diode transfer method. The micro light emitting diode transfer device includes a holding member, a light source, and a liquid crystals light valve. The liquid crystals light valve is disposed on a transmission path of planar light and includes a plurality of sub light valves. The micro light emitting diodes of irradiated part can be separated from the transfer substrate and adhere to a target substrate, and thereby the micro light emitting diodes can be selectively transferred.
US11508598B2 Frame jig for manufacturing semiconductor package, apparatus including same, and method using same
A frame jig for manufacturing a semiconductor package includes a frame body of a rectangular shape attached to a package structure of a panel shape, wherein the frame body comprises polyphenylene sulfide.
US11508597B2 High speed substrate aligner apparatus
A substrate aligner providing minimal substrate transporter extend and retract motions to quickly align substrate without back side damage while increasing the throughput of substrate processing. In one embodiment, the aligner having an inverted chuck connected to a frame with a substrate transfer system capable of transferring substrate from chuck to transporter without rotationally repositioning substrate. The inverted chuck eliminates aligner obstruction of substrate fiducials and along with the transfer system, allows transporter to remain within the frame during alignment. In another embodiment, the aligner has a rotatable sensor head connected to a frame and a substrate support with transparent rest pads for supporting the substrate during alignment so transporter can remain within the frame during alignment. Substrate alignment is performed independent of fiducial placement on support pads. In other embodiments the substrate support employs a buffer system for buffering substrate inside the apparatus allowing for fast swapping of substrates.
US11508595B2 Apparatus and method for contactless transportation of a device in a vacuum processing system
An apparatus for contactless transportation of a device in a vacuum processing system is described. The apparatus includes: a magnetic transportation arrangement for providing a magnetic levitation force (FL) for levitating the device, the magnetic transportation arrangement comprising one or more active magnetic units; a sensor for monitoring a motion of the device, and a controller configured for controlling the one or more active magnetic units based on a signal provided by the sensor.
US11508591B2 High resolution electron beam apparatus with dual-aperture schemes
An electron source emits an electron beam. The electron beam is received by a beam limiting assembly. The beam limiting assembly has a first beam limiting aperture with a first diameter and a second beam limiting aperture with a second diameter larger than the first diameter. The first beam limiting aperture receives the electron beam. This beam limiting assembly reduces the influence of Coulomb interactions.
US11508590B2 Substrate inspection system and method of use thereof
A method of inspection and an inspection system for the film deposition process for substrates that includes glass and wafer are disclosed. The inspection system includes multiple camera modules positioned in a load lock unit of a process chamber, such as the camera modules that can capture images of the substrate in the load lock. The images are analyzed by a controller of the inspection system to determine the accuracy of robots in handling the substrate, calibration of the robots based on the analysis, and defects in the substrate caused during the handling and deposition process.
US11508584B2 Deuterium-containing films
Films are modified to include deuterium in an inductive high density plasma chamber. Chamber hardware designs enable tunability of the deuterium concentration uniformity in the film across a substrate. Manufacturing of solid state electronic devices include integrated process flows to modify a film that is substantially free of hydrogen and deuterium to include deuterium.
US11508582B2 Cut metal gate processes
A method of forming a semiconductor device includes etching a gate stack to form a trench extending into the gate stack, forming a dielectric layer on a sidewall of the gate stack, with the sidewall exposed to the trench, and etching the dielectric layer to remove a first portion of the dielectric layer at a bottom of the trench. A second portion of the dielectric layer on the sidewall of the gate stack remains after the dielectric layer is etched. After the first portion of the dielectric layer is removed, the second portion of the dielectric layer is removed to reveal the sidewall of the gate stack. The trench is filled with a dielectric region, which contacts the sidewall of the gate stack.
US11508578B2 Process for preparing a support for a semiconductor structure
A process for preparing a support comprises the placing of a substrate on a susceptor in a chamber of a deposition system, the susceptor having an exposed surface not covered by the substrate; the flowing of a precursor containing carbon in the chamber at a deposition temperature so as to form at least one layer on an exposed face of the substrate, while at the same time depositing species of carbon and of silicon on the exposed surface of the susceptor. The process also comprises, directly after the removal of the substrate from the chamber, a first etch step consisting of the flowing of an etch gas in the chamber at a first etching temperature not higher than the deposition temperature so as to eliminate at least some of the species of carbon and silicon deposited on the susceptor.
US11508576B2 Method for producing transition metal dichalcogenidegraphene hetero junction composite using plasma
A method for producing a transition metal dichalcogenide-graphene heterojunction composite, the method includes: transferring a graphene onto a flexile substrate; depositing a transition metal layer on the flexible substrate onto which the graphene has been transferred; and injecting a gas containing plasma-treated sulfur (S) onto the flexile substrate onto which the transition metal layer has been deposited, is disclosed.
US11508569B2 Surface treatment compositions and methods
This disclosure relates to methods and compositions for treating a semiconductor substrate having a pattern disposed on a surface of the substrate. The methods can include a) supplying a sublimating material to a substrate having a pattern disposed on a surface thereof; b) maintaining the sublimating material on the surface for a time sufficient to modify the surface; c) solidifying the sublimating material on the surface; and d) removing by sublimation the sublimating material disposed on the surface.
US11508568B2 Excimer lamp
An excimer lamp includes a housing portion having a sealed internal space, an internal electrode, and a discharge gas with which the internal space is filled. One end side of the internal electrode is electrically connected to a power supply member provided with a metal foil electrically connected to the internal electrode and is sealed together with the power supply member to one end side of the housing portion via a sealing portion. The other end side of the internal electrode protrudes into the internal space. A protrusion length, being a length of the internal electrode in the internal space and a length from one end of the internal space to the other end of the internal electrode, is equal to or less than a length from the other end of the internal electrode to the other end of the internal space in a direction along the axis.
US11508560B2 Focus ring adjustment assembly of a system for processing workpieces under vacuum
A focus ring adjustment assembly of a system for processing workpieces under vacuum, where the focus ring may include a lower side having a first surface portion and a second surface portion, the first surface portion being vertically above the second surface portion. The adjustment assembly may include a pin configured to selectively contact the first surface portion of the focus ring, and an actuator operable to move the pin along the vertical direction between an extended position and a retracted position. The extended position of the pin may be associated with the distal end of the pin contacting the first surface of the focus ring and the focus ring being accessible for removal by a workpiece handling robot from the vacuum process chamber.
US11508557B2 Semiconductor manufacturing apparatus having an insulating plate
A semiconductor manufacturing apparatus includes a process chamber. An insulating plate divides an interior space of the process chamber into a first space and a second space and thermally isolates the first space from the second space. A gas supplier is configured to supply a process gas to the first space. A radiator is configured to heat the first space. A stage is disposed within the second space and the stage is configured to support a substrate.
US11508556B2 Plasma processing apparatus
A plasma processing apparatus includes a microwave introducing module provided at a ceiling portion of a processing chamber and configured to introduce a microwave for generating plasma of a gas into the processing chamber; and a plurality of gas supply holes formed at the ceiling portion of the processing chamber and configured to introduce the gas into a plasma processing space. Each of the plurality of gas supply holes includes a fine hole and a cavity that is expanded from the fine hole and opened to the plasma processing space. A diameter of the cavity on the plasma processing space side is 3 mm or more and is ⅛ or less of a wavelength of a surface wave of a microwave in the plasma.
US11508555B2 Plasma processing apparatus and electrode consumption amount measuring method
A plasma processing apparatus 100 is equipped with a shower head 16 and a placing table 2 facing each other. A first RF power supply 10a is configured to apply a RF power to any one of the shower head 16 or the placing table 2 without igniting plasma. A measuring device 204 is configured to measure a physical quantity of the RF power applied by the first RF power supply 10a. A process controller 91 is configured to acquire an inter-electrode distance by using the measured physical quantity of the RF power in a correlation function of the inter-electrode distance and the physical quantity of the RF power.
US11508552B2 Ion milling device
Provided is an ion milling device capable of improving the reproducibility of an ion distribution. An ion milling device includes: an ion source (1); a sample stage (2) on which a sample (4) to be processed by being irradiated with an unfocused ion beam from the ion source (1) is placed; and a drive unit (8) configured to be arranged between the ion source (1) and the sample stage (2), and to move a linear ion beam measuring member (7) extending in a first direction to a second direction orthogonal to the first direction, in which the drive unit (8) moves the ion beam measuring member (7) within an emission range of the ion beam in a state where the ion beam is outputted from the ion source (1) under a first emission condition, and an ion beam current flowing through the ion beam measuring member (7) is measured by irradiating the ion beam measuring member (7) with the ion beam.
US11508550B2 Method and apparatus for image processing
There is provided an image processing method capable of generating an image representative of a magnetic field distribution. The method starts with acquiring phase images providing visualization of electromagnetic fields respectively in a plurality of columns. Then, each of the electromagnetic fields in the columns within the phase images is separated into magnetic field and electric field components. An image representative of a magnetic field distribution is created based on the separated magnetic field components. The step of separating each electromagnetic field includes separating the electromagnetic field in a first one of the columns into magnetic field and electric field components based on the electromagnetic field in a second one of the columns, the latter electromagnetic field having an electric field component oriented in the same direction as that in the first column.
US11508549B2 Particle beam profiles for analytic equipment configuration
Beam intercept profiles are measured as a particle beam transversely scans across a probe. A current of beam particles, a detector intensity, or image pixel intensities can variously be measured to obtain the profiles. Multiple profiles are used to determine geometric parameters which in turn can be used to configure equipment. In one application, transverse beam intercept profiles are measured for different waist heights of the particle beam. Steepness of the several profiles can be used to determine a height of the probe as the height at which the profile is steepest. The known probe height enables placing the probe in contact with a substrate at another known height. In another application, transverse beam intercept profiles of orthogonal probe edges are used to position a beam waist, reduce spot size, or reduce astigmatism. Techniques are applicable to SEM, FIB, and nanoprobe systems. Methods and apparatus are disclosed, with variations.
US11508548B2 Scanning electron microscope
A scanning electron microscope includes: an electron optical column, arranged to generate electron beams and focus the electron beams on a specimen; a first detector, arranged to receive electrons generated by the electron beams acting on the specimen; and a second detector, arranged to receive photons generated by the electron beams acting on the specimen. The second detector includes a reflector and a photon detector. The reflector is in a ring shape and is arranged to cover the perimeter of the specimen. The reflector reflects the photons generated on the specimen onto the photon detector. The scanning electron microscope provided by the present disclosure can collect photons in a wide range, and the photon detector has a high reception efficiency.
US11508547B2 Semiconductor charged particle detector for microscopy
A detector may be provided with an array of sensing elements. The detector may include a semiconductor substrate including the array, and a circuit configured to count a number of charged particles incident on the detector. The circuit of the detector may be configured to process outputs from the plurality of sensing elements and increment a counter in response to a charged particle arrival event on a sensing element of the array. Various counting modes may be used. Counting may be based on energy ranges. Numbers of charged particles may be counted at a certain energy range and an overflow flag may be set when overflow is encountered in a sensing element. The circuit may be configured to determine a time stamp of respective charged particle arrival events occurring at each sensing element. Size of the sensing element may be determined based on criteria for enabling charged particle counting.
US11508545B2 Grid assembly and ion beam etching apparatus
An object of the invention is to provide a grid assembly which is easy to assemble and is high in assembly reproducibility, and an ion beam etching apparatus including it. A grid assembly is constructed of three grids each in the shape of a circular plate, which are stacked one on top of another. The grid assembly includes three fixing holes for fixing the three grids, and three positioning holes for positioning the three grids. In assembly, the three grids are stacked one on top of another on a first ring so that positioning pins provided on the first ring are inserted into the positioning holes. Then, a second ring is stacked on top of the three grids, and bolts are inserted into the fixing holes. Thus, positioning is performed by using the fixed positioning pins and thereafter the fixing can be performed, which facilitates the assembly.
US11508542B2 High breaking capacity chip fuse
A high breaking capacity chip fuse including a bottom insulative layer, a first intermediate insulative layer, a second intermediate insulative layer, and a top insulative layer disposed in a stacked arrangement in the aforementioned order, a fusible element disposed between the first and second intermediate insulative layers and extending between electrically conductive first and second terminals at opposing longitudinal ends of the bottom insulative layer, the first intermediate insulative layer, the second intermediate insulative layer, and the top insulative layer, wherein the first and second intermediate insulative layers are formed of porous ceramic.
US11508538B1 Insulation device and load break fuse cutout assembly having the same
An insulation device is disclosed. The insulation device is allowed to be assembled with a fuse tube device so as to form a load break fuse cutout fully closed. The insulation device comprises: a full-closed cylindrical insulator oriented vertically, a first cylindrical insulator oriented horizontally, a second cylindrical insulator oriented horizontally, a third cylindrical insulator oriented horizontally, a first electrical connection unit accommodated in the first cylindrical insulator, a second electrical connection unit accommodated in the second cylindrical insulator, a first arc extinguishing unit accommodated in the first cylindrical insulator, a second arc extinguishing unit accommodated in the second cylindrical insulator, and a mounting bracket connected to the full-closed cylindrical insulator. The full-closed cylindrical insulator, the first cylindrical insulator, the second cylindrical insulator, and the third cylindrical insulator are made integratedly so as to form a main insulation body of the insulation device.
US11508536B2 Battery assembly and electronic cigarette having same
The invention discloses a battery assembly and an electronic cigarette using the battery assembly, wherein the battery assembly comprises a main body, a circuit board mounted in the main body and a button assembly, the main body is provided with an avoidance hole and at least one stopper, the button assembly comprises a button cap and a button contact, the button contact is fixedly mounted in the main body and is electrically connected with the circuit board, and the button cap is slidably mounted in the avoidance hole. When the button cap slides to squeeze the button contact, the button cap abuts against the stopper to form a trigger position where the button cap triggers the button contact to transmit a control signal to the circuit board.
US11508533B2 High energy density capacitor system and method
A capacitor includes a first metal layer disposed on a wafer or substrate, a first polarized dielectric layer above the first metal layer and comprising a plurality of electrets formed by aligning molecular dipoles throughout a three-dimensional surface area of a polarizable dielectric material during polarization by applying a momentary electric field of positive or negative polarity, a second metal layer disposed on the first polarized dielectric layer to electrically isolate the first polarized dielectric layer, and a second polarized dielectric layer above the second metal layer, the second polarized dielectric layer comprising a plurality of electrets formed by aligning molecular dipoles throughout a three-dimensional surface area of a polarizable dielectric material during polarization by applying a second momentary electric field of opposing polarity. A plurality of alternating polarized dielectric layers and metal layers may be arranged in series to form a stack, with an internal passivation layer disposed between each stack.
US11508532B2 Devices and methods including polyacetylenes
Embodiments described herein relate to compositions, devices, and methods for storage of energy (e.g., electrical energy). In some cases, devices including polyacetylene-containing polymers are provided.
US11508531B2 Photovoltaic device and method of manufacturing the same
A photovoltaic device (10) is provided that comprises serially arranged photovoltaic device cells (10A, 10B). Each cell having a transparent electrode layer region electrical conductors (121A, . . . , 124A) forming an electric contact with the transparent electrode layer region, a photo-voltaic stack portion (14A, 14B) that extends over the transparent electrode region (11A, 11B) and over an insulated portion of the electrical conductors, a further electrode region (15A, 5B) that extends over the photovoltaic stack portion (14A,14B). A further electrode region (15A) of a photovoltaic device cell (10A) extends over electric contacts formed by exposed ends (12B1) of the electrical conductors of a subsequent photovoltaic device cell (10B).
US11508522B2 Multilayer electronic component
A multilayer electronic component include a first non-conductive resin layer, extending between a conductive resin layer and an electrode layer of a first external electrode, and a second non-conductive resin layer extending between a conductive resin layer and an electrode layer of a second external electrode. The first non-conductive layer and the second non-conductive layer may be spaced apart from each other to suppress arc discharge and to improve bending strength.
US11508520B2 Electronic component with external electrode including conductive resin layer and method for producing electronic component
An electronic component includes an element body and an external electrode disposed on the element body. The external electrode includes a conductive resin layer and a plating layer disposed on the conductive resin layer. The conductive resin layer includes a surface partially provided with a resin lump including an electrically insulating resin. The resin lump includes a surface exposed from the plating layer.
US11508512B2 Method for manufacturing powder magnetic core
The invention provides a method for manufacturing a powder magnetic core through simple compression molding and capable of manufacturing a complicatedly shaped powder magnetic core with reliable high strength and insulating properties. The invention is directed to a method for manufacturing a powder magnetic core with a metallic soft magnetic material powder, the method including: a first step including mixing a soft magnetic material powder and a binder; a second step including compression molding the mixture obtained after the first step; a third step including performing at least one of grinding and cutting on the compact obtained after the second step; and a fourth step including heat-treating the compact after the third step, wherein in the fourth step, the compact is heat-treated so that an oxide layer containing an element constituting the soft magnetic material powder is formed on the surface of the soft magnetic material powder.
US11508511B2 Coil device
A coil device includes a pair of first core and second core, a third core, and a pair of first coil and second coil. The third core is disposed next to the first core or the second core. The pair of first coil and second coil is each disposed between any two of the first core, the second core, and the third core next to each other. Plate surfaces of the first coil and the second coil are opposed to each other. Each of the first coil and the second coil is partly exposed in a lateral direction of the first core, the second core, or the third core.
US11508510B2 Inductors with core structure supporting multiple air flow modes
An inductor includes a plurality of stacked core parts having aligned central openings, at least one spacer separating the core parts from one another, and a winding comprising a plurality turns wound around the stack of core parts through central openings of the core parts. The at least one spacer may include respective groups of spacers disposed between respective pairs of the core parts. In some embodiments, the at least one spacer may include a plurality of spacers disposed between first and second ones of the core parts and radially distributed in a circular pattern aligned with the first and second core parts.
US11508509B2 Liquid cooled magnetic element
A magnetic element. In some embodiments, the magnetic element includes a first electrically conductive coil, having a first annular surface and a second annular surface; a second electrically conductive coil, having a first annular surface and a second annular surface; and a spacer between the first electrically conductive coil and the second electrically conductive coil; a fluid inlet; and a fluid outlet. The spacer may have a first face, the first face being separated from the first annular surface of the first electrically conductive coil by a first gap; and a fluid path may extend from the fluid inlet to the fluid outlet through the first gap.
US11508507B2 Magnetic wiring circuit board and producing method thereof
A magnetic wiring circuit board includes an insulating layer; a wire disposed on a one-side surface in a thickness direction of the insulating layer and having a one-side surface in the thickness direction disposed to face the one-side surface in the thickness direction of the insulting layer at spaced intervals thereto, an other-side surface in the thickness direction in contact with the one-side surface in the thickness direction of the insulating layer, and side surfaces each connecting an end edge of the one-side surface in the thickness direction to an end edge of the other-side surface in the thickness direction; and a magnetic layer containing a magnetic particle having a shape of an aspect ratio of 2 or more and embedding the wire.
US11508503B2 Textured planar m-type hexagonal ferrites and methods of use thereof
A grain-oriented M-type hexagonal ferrite has the formula MeFe12O19, and a dopant effective to provide planar magnetic anisotropy and magnetization in a c-plane, or a cone anisotropy, in the hexagonal crystallographic structure wherein Me is Sr+, Ba2+ or Pb2+, and wherein greater than 30%, preferably greater than 80%, of c-axes of the ferrite grains are aligned perpendicular to the c-plane.
US11508500B2 Thin film resistor (TFR) formed in an integrated circuit device using TFR cap layer(s) as an etch stop and/or hardmask
A method is provided for forming a thin film resistor (TFR) in an integrated circuit (IC) device. A TFR film is formed and annealed over an IC structure including IC elements and IC element contacts. At least one TFR cap layer is formed, and a TFR etch defines a TFR element from the TFR film. A TFR contact etch forms TFR contact openings over the TFR element, and a metal layer is formed over the IC structure and extending into the TFR contact openings to form metal contacts to the IC element contacts and the TFR element. The TFR cap layer(s), e.g., SiN cap and/or oxide cap formed over the TFR film, may (a) provide an etch stop during the TFR contact etch and/or (b) provide a hardmask during the TFR etch, which may eliminate the use of a photomask and thereby eliminate post-etch removal of photomask polymer.
US11508499B2 Grommet with groove portion between pair of contact portions, and wire harness
A grommet includes: a water stop portion that has an annular shape and is inserted to a through hole formed in an attachment panel for stopping water; and a first partition wall portion and a second partition wall portion that are unit arranged to project toward a radially inner side of the water stop portion. The water stop portion includes: a first contact portion that is capable of coming into contact with a first side surface of a circumference edge portion of the through hole; a second contact portion that is capable of coming into contact with the first side surface; a groove portion formed in an annular shape between the first contact portion and the second contact portion; and a recess/protrusion portion that is formed on a circumferential wall inside the groove portion.
US11508495B2 Method of preparing epoxy coated bus bars for use in electrical distribution equipment
An automated process for producing exposed electrical contact areas on the conductor part of an epoxy coated bus bar. When the epoxy coating is in the glassy state, one can safely and economically, preferably via automated apparatus, put the epoxy into the rubbery state by positioning the bar and applying localized heat at a select area of the coating; monitoring the heating to above the glass transition temperature of the epoxy, bringing cutting tools into contact with the epoxy for cutting and removing the rubbery coating away from the bus bar, and cooling the bus bar to bring adjacent coating back to the glassy state, thereby leaving an exposed electrical contact area of conductor on the bus bar with little or no surface damage.
US11508494B2 Dielectric composition and electronic component
A dielectric composition contains a complex oxide represented by a composition formula of BixZnyNbzO1.75+δ. x+y+z=1.00. x<0.20. 0.20≤y≤0.50. 0.25≤x/z. A dielectric composition contains a complex oxide represented by a composition formula of BixZnyNbzO1.75+δ. x+y+z=1.00. 0.20≤y≤0.50. 1.5
US11508489B2 Geologic disposal of uranium waste products
Steel and/or copper spherical capsules are specifically engineered and manufactured for housing uranium waste products. The uranium waste products are placed within the spherical capsules. Human-made cavern(s) and/or substantially lateral wellbore(s) are constructed for receiving the uranium waste containing spherical capsules. The human-made cavern(s) and/or the substantially lateral wellbore(s) are deeply located in specific types of geologic rock formations thousands of feet below the Earth's surface. These uranium waste containing spherical capsules are loaded from the Earth's surface into the human-made cavern(s) and/or into the substantially lateral wellbore(s). The emplaced spherical capsules are surrounded by an immersive protective medium within the given human-made cavern(s) and/or within the substantially lateral wellbore(s). The given human-made cavern(s) and/or the given substantially lateral wellbore(s), with the uranium waste containing spherical capsules, are sealed off.
US11508483B2 Method of identifying a subgroup of patients suffering from dcSSc which benefits from a treatment with sGC stimulators and sGC activators in a higher degree than a control group
The present invention relates to a method of identifying a subgroup of patients suffering from diffuse cutaneous systemic sclerosis (dcSSc) which subgroup of patients benefits from a treatment with at least one sGC stimulator and/or sGC activator in a higher degree than patients not belonging to this subgroup.
US11508477B2 Surgery system, contactless control panel for surgery system, and control method
A surgery system includes a contactless control panel, an infrared camera, a computer and a display. The contactless control panel includes control areas which are arranged in a predetermined pattern and are coated with infrared reflective material to reflect infrared radiation. The infrared camera captures an infrared image of the control areas. The computer performs image recognition on the infrared image, determines, based on the predetermined pattern stored in advance and a result of the image recognition, which one of the control areas is masked, and generates a device control signal based on a function corresponding to the one of the control areas that is determined to be masked. The display device displays images based on the device control signal.
US11508475B2 Method for assigning a medical device from a data network to a location as well as device for a data network
A method, assigning a medical device from a data network to a location, includes: receiving a group message, having a medical device data network address; providing a first data set, indicating network addresses of active network components; and sending request messages to active network components, indicating a data network address thereof and data network address of the medical device. An acknowledgment message from a defined active network component indicates the data network address and a port identity thereof and data network address of the medical device. A second data set is provided indicating an assignment of tuples of active component data network addresses and port identities to locations. The medical device is assigned a location based on the second data set, the data network address of the defined active component and the indicated port identity. An assignment data set is provided indicating an assignment of medical device to assigned location.
US11508473B2 System and method for labeling a therapeutic value to digital content based on meta-tags
Disclosed is a system and method for labeling digital content based on intended psycho-emotional effect on a viewer in order to provide an advisory prior to viewing comprising the steps of: uploading or stream-initiating a digital content by a viewer; selecting at least one intended psycho-emotional effect from the content based on scraped meta-data tags of the content; and overlaying a digital nutrition label to the digital content corresponding to the scraped psycho-emotional effect from the content, wherein the overlaid label displays at least one of an effect or triggered neurotransmitter associated with the effect in order to provide an advisory to the viewer prior to viewing the labeled digital content.
US11508472B2 Health tracking system with verification of nutrition information
A method for decreasing a number of individual entries in a database of user-created records which describe a single item by: receiving a plurality of user-created records, each of said records comprising at least a descriptive string; placing individual ones of the plurality of user-created records having a sufficiently similar descriptive string into one of a plurality of first groups; hashing the descriptive string of each of the plurality of first groups in order to place two or more groups into a single bin; performing a pair-wise comparison of the descriptive strings of the two or more groups in each bin; and when the comparison of the descriptive strings of the two or more groups in a bin results in a distance below a first threshold, merging the two or more groups into a combined group.
US11508461B2 Finding relatives in a database
Determining relative relationships of people who share a common ancestor within at least a threshold number of generations includes: receiving recombinable deoxyribonucleic acid (DNA) sequence information of a first user and recombinable DNA sequence information of a plurality of users; processing, using one or more computer processors, the recombinable DNA sequence information of the plurality of users in parallel; determining, based at least in part on a result of processing the recombinable DNA information of the plurality of users in parallel, a predicted degree of relationship between the first user and a user among the plurality of users, the predicted degree of relative relationship corresponding to a number of generations within which the first user and the second user share a common ancestor.
US11508460B2 Method and system for anatomical tree structure analysis
The present disclosure is directed to a computer-implemented method and system for anatomical tree structure analysis. The method includes receiving model inputs for a set of positions in an anatomical tree structure. The method further includes applying, by a processor, a set of encoders to the model inputs. Each encoder is configured to extract features from the model input at a corresponding position. The method also includes applying, by the processor, a tree structured network to the extracted features. The tree structured network has a plurality of nodes each connected to one or more of the encoders, and information propagates among the nodes of the tree structured network according to spatial constraints of the anatomical tree structure. The method additionally includes providing an output of the tree structured network as an analysis result of the anatomical tree structure analysis.
US11508455B1 Signal drop compensated memory
Apparatuses and methods for compensating for signal drop in memory. Compensating for signal drop can include applying a first signal to a terminal of a particular transistor and mirroring the first signal to a decoder replica. Compensating for signal drop can also include applying a second signal to a gate of the particular transistor, the second signal comprising a sensing signal and a signal drop on the decoder replica and sensing a state of the particular transistor.
US11508450B1 Dual time domain control for dynamic staggering
Aspects of a storage device including a memory and a controller are provided. The memory can include memory dies that draw a current from a current source during a program operation. The controller may monitor for an alarm signal from the memory dies on a first common channel between the controller and the memory dies. The alarm signal indicates that a corresponding memory die is entering an operational state that draws a peak current from the current source for the program operation. The controller can receive, from the memory dies, one or more alarm signals on the first common channel within a predetermined threshold time. The controller can transmit a postpone signal on a second common channel to the memory dies based on the one or more alarm signals received within the predetermined threshold time.
US11508449B2 Detrapping electrons to prevent quick charge loss during program verify operations in a memory device
Processing logic in a memory device initiates a program operation on a memory array, the program operation comprising a program phase and a program verify phase. The processing logic further causes a negative voltage signal to be applied to a first selected word line of a block of the memory array during the program verify phase of the program operation, wherein the first selected word line is coupled to a corresponding first memory cell of a first plurality of memory cells in a string of memory cells in the block, wherein the first selected word line is associated with the program operation.
US11508443B2 Nonvolatile memory device including a peripheral circuit to verify a program operation
A nonvolatile memory device includes a memory cell array including a plurality of memory cells, and a peripheral circuit that performs a program operation of repeatedly performing a program loop. The program loop includes performing a program by applying a program voltage to memory cells selected from the plurality of memory cells, and a first verify by applying a plurality of verify voltages to the selected memory cells. The peripheral circuit completes the program operation in response to a success of the first verify, performs a second verify by applying an additional verify voltage different from the plurality of verify voltages to the selected memory cells, and determines the program operation has failed in response to a failure of the second verify.
US11508438B1 RRAM filament location based on NIR emission
Methods and systems for locating a filament in a resistive memory device are described. In an example, a device can acquire an image indicating an occurrence of photoemission from the resistive memory device. The device can determine a location of the filament in a switching medium of the resistive memory device using the acquired image.
US11508435B2 Charge pump apparatus and calibration method thereof
A charge pump apparatus including a first charge pump system, a second charge pump system, a switch transistor, and a voltage regulation circuit is provided. The first charge pump system converts a first supply voltage into a first boost voltage. The second charge pump system converts a second supply voltage into a second boost voltage. The switch transistor is coupled to the first charge pump system and the second charge pump system, and outputs an output voltage according to the second boost voltage. The switch transistor includes a control terminal receiving the second boost voltage, a first terminal receiving the first boost voltage, and a second terminal outputting the output voltage. The voltage regulation circuit controls the second charge pump system according to the output voltage to adjust the second boost voltage so that the output voltage approaches to a target output value.
US11508433B2 Updating program files of a memory device using a differential write operation
Methods, systems, and devices for a differential write operation are described. The operations described herein may be used to alter a portion of a program file from a first state to a second state. For example, a file (e.g., a patch file) that is associated with a signature may be received at a memory device. Based on an authentication process, the file may be used to alter the program file to the second state. In some examples, the program file may be altered to the second state using a buffer of the memory device. A host system may transmit a file that includes the difference between the first state and the second state. A signature may be associated with the file and may be used to authenticate the file.
US11508432B2 Semiconductor storage device including identifying patterns at positions corresponding to memory blocks
According to one or more embodiments, a semiconductor storage device includes a first chip and a second chip. The first chip includes a semiconductor substrate and a plurality of transistors on the semiconductor substrate. The second chip includes a memory cell array and a plurality of first patterns. The memory cell array is connected to the plurality of transistors of the first chip and includes a plurality of memory blocks arranged in a first direction. The plurality of first patterns are spaced from each other in the first direction. Each first pattern represents a different number and is at a position corresponding to one or more of the memory blocks.
US11508426B1 Memory device, memory cell arrangement, and methods thereof
Various aspects relate to a memory cell arrangement including: a field-effect transistor based capacitive memory cell including a memory element, wherein a memory state of the memory element defines a first memory state of the field-effect transistor based capacitive memory cell and wherein a second memory state of the memory element defines a second memory state of the field-effect transistor based capacitive memory cell; and a memory controller configured to, in the case that a charging state of the field-effect transistor based capacitive memory cell screens an actual threshold voltage state of the field-effect transistor based capacitive memory cell, cause a destructive read operation to determine whether the field-effect transistor based capacitive memory cell was, prior to the destructive read operation, residing in the first memory state or in the second memory state.
US11508422B2 Methods for memory power management and memory devices and systems employing the same
Systems, apparatuses, and methods for operating a memory device or devices are described. A memory device or module may introduce latency in commands to coordinate operations at the device or to improve timing or power consumption at the device. For example, a host may issue a command to a memory module, and a component or feature of the memory module may receive the command and modify the command or the timing of its execution in manner that is invisible or non-disruptive to the host while facilitating operations at the memory module. In some examples, components or features of a memory module may be disabled to effect or introduce latency in operation without affecting timing or operation of a host device. A memory module may operate in different modes that allow for different latencies; the use or introduction of latencies may not affect other features or operability of the memory module.
US11508421B2 Electronic devices comprising air gaps adjacent to bitlines and related methods and systems
An electronic device that comprises bitlines and air gaps adjacent to an array region of an electronic device is disclosed. The bitlines comprise sloped sidewalls and a height of the air gaps is greater than a height of the bitlines. Additional electronic devices are disclosed, as are methods of forming an electronic device and related systems.
US11508416B2 Management of thermal throttling in data storage devices
Methods and apparatus for management of thermal throttling in data storage devices are provided. One such data storage device includes a non-volatile memory (NVM), an always-on (AON) memory, and a processor coupled to the NVM and AON memory. The processor is configured to: receive an indication that a temperature of the data storage device exceeds a first temperature threshold, while the data storage device is in a powered-on state; store, responsive to the indication, status information of the data storage device in the AON memory; cause, responsive to the indication and the stored status information, the data storage device to enter a low power state wherein the only component of the data storage device that remains on is the AON memory; and restore, responsive to the data storage device resuming the powered-on state, the status information to the data storage device from the AON memory.
US11508413B1 Systems and methods for editing media composition from media assets
Systems and methods for editing a media composition from media assets are provided. An editing device receives a media asset associated with a scene to be rendered in a media composition. The editing device receives a script including script elements that index script sections associated with the scene and metadata. The editing device edits the media composition with segments of the media asset based on a comparison of the segments, the script elements, and the metadata.
US11508411B2 Text-driven editor for audio and video assembly
The disclosed technology is a system and computer-implemented method for assembling and editing a video program from spoken words or soundbites. The disclosed technology imports source audio/video clips and any of multiple formats. Spoken audio is transcribed into searchable text. The text transcript is synchronized to the video track by timecode markers. Each spoken word corresponds to a timecode marker, which in turn corresponds to a video frame or frames. Using word processing operations and text editing functions, a user selects video segments by selecting corresponding transcribed text segments. By selecting text and arranging that text, a corresponding video program is assembled. The selected video segments are assembled on a timeline display in any chosen order by the user. The sequence of video segments may be reordered and edited, as desired, to produce a finished video program for export.
US11508406B2 Magnetic recording medium, manufacturing method of particles of epsilon type iron oxide-based compound, and manufacturing method of magnetic recording medium
Provided are a magnetic recording medium including: a non-magnetic support; and a magnetic layer which is provided on at least one surface of the non-magnetic support and includes particles of epsilon type iron oxide-based compound, and a binding agent, in which a contact angle measured regarding a surface of the magnetic layer is equal to or greater than 30.0° and smaller than 45.0° with respect to 1-bromonaphthalene and 80.0° to 95.0° with respect to water, a manufacturing method of particles of an epsilon iron oxide-based compound, and a manufacturing method of a magnetic recording medium.
US11508405B1 Magnetic recording media with plasma-polished pre-seed layer or substrate
Magnetic recording media including a soft magnetic underlayer (SUL) formed over a plasma-polished substrate or pre-seed layer. In some examples, the substrate or pre-seed layer is plasma-polished using an inert gas such as krypton so that the roughness of the surface on which the SUL is deposited is reduced. The roughness reduction can lead to improved crystallographic texture within subsequently deposited media films, and consequently, to increased recording performance of the media. In particular, media signal-to-noise ratio (SNR), linear recording density, and areal recording density or areal density capacity (ADC) can be improved. In one aspect, a carbon deposition/etching apparatus may be modified to polish the substrate or pre-seed layer with krypton or other inert gases, rather than be used to deposit carbon overcoat.
US11508400B2 Magnetic disk device with recording head including spin torque oscillator
According to one embodiment, a magnetic disk device includes a recording medium, a recording head including a main magnetic pole, a write shield magnetic pole, a coil, and a spin torque oscillator provided between the main magnetic pole and the write shield magnetic pole and a controller including a record current supply circuit and a drive current supply circuit. The controller executes a process of monitoring variation of a resistance value of the spin torque oscillator while increasing the record current in a state in which the spin torque oscillator is energized and detecting a record current value when the resistance value is increased most largely, and a process of setting the detected record current value to a lower limit of the record current supplied to the coil.
US11508398B2 Magnetic disk device and control method for magnetic disk device
According to one embodiment, a magnetic disk device includes a magnetic disk, a head and a controller. The head writes data to the magnetic disk and reads data from the magnetic disk. The controller once reads the data written to a predetermined recording area according to the number of writes of data to the predetermined recording area of the magnetic disk and rewrites the read data to the predetermined recording area. The controller adjusts an additive value to the number of writes based on the presence or absence of a defect on the recording surface of the magnetic disk.
US11508395B1 Intelligent selection of audio signatures based upon contextual information to perform management actions
Embodiments of systems and methods for intelligently selecting audio signatures based upon context information to perform management actions are described. In some embodiments, an Information Handling System (IHS) may include a processor and a memory coupled to the processor, the memory having program instructions stored thereon that, upon execution, cause the IHS to: select, based upon context information, a subset of a plurality of audio signatures, compare a received audio input to at least one audio signature among the subset of audio signatures to the exclusion of any other audio signature of the plurality of audio signatures, and, in response to the comparison indicating a match, perform one or more management actions.
US11508386B2 Audio coding method based on spectral recovery scheme
An inventive concept relates to an audio coding method to which CNN-based frequency spectrum recovery is applied. An inventive concept transmits a part of frequency spectral coefficients generated in transform coding to a decoder and the decoder recovers the frequency spectral coefficient not transmitted. Furthermore, the signs of frequency spectral coefficient are transmitted from an encoder to the decoder depending on a sign transmission rule.
US11508384B2 Apparatus and method for encoding or decoding a multi-channel signal
An apparatus for encoding a multi-channel signal having at least three channels includes an iteration processor, a channel encoder and an output interface. The iteration processor is configured to calculate inter-channel correlation values between each pair of the at least three channels, for selecting a pair including a highest value or including a value above a threshold, and for processing the selected pair using a multi-channel processing operation to derive first multi-channel parameters for the selected pair and to derive first processed channels. The iteration processor is configured to perform the calculating, the selecting and the processing using at least one of the processed channels to derive second multi-channel parameters and second processed channels. The channel encoder is configured to encode channels resulting from an iteration processing to obtain encoded channels. The output interface is configured to generate an encoded multi-channel signal including the encoded channels and the first and second multi-channel parameters.
US11508383B2 Method for operating content and electronic device for implementing same
Various embodiments provide an electronic device and a method therefor, the electronic device comprising: a voice recognition unit; a memory; a display; and a processor functionally connected to the voice recognition unit, the memory or the display, wherein the processor is configured to: acquire password information for the content selected by a user, when the voice information of a user recognized by the voice recognition unit includes a hidden command; request the user to articulate the obtained password information; and encrypt the content based on the received voice information according to the request. In addition, other embodiments are possible.
US11508381B2 Voiceprint recognition method, model training method, and server
Embodiments of this application disclose a voiceprint recognition method performed by a computer. After obtaining a to-be-recognized target voice message, the computer obtains target feature information of the target voice message by using a voice recognition model, the voice recognition model being obtained through training according to a first loss function and a second loss function. Next, the computer determines a voiceprint recognition result according to the target feature information and registration feature information, the registration feature information being obtained from a voice message of a to-be-recognized object using the voiceprint recognition model. The normalized exponential function and the centralization function are used for jointly optimizing the voice recognition model, and can reduce an intra-class variation between depth features from the same speaker. The two functions are used for simultaneously supervising and learning the voice recognition model, and enable the depth feature to have better discrimination, thereby improving recognition performance.
US11508380B2 Personalized voices for text messaging
Systems and processes for operating an intelligent automated assistant are provided. In one example, a plurality of speech inputs is received from a first user. A voice model is obtained based on the plurality of speech inputs. A user input is received from the first user, the user input corresponding to a request to provide access to the voice model. The voice model is provided to a second electronic device.
US11508369B2 Method and apparatus with speech processing
Disclosed is a method and apparatus for processing a speech. The method includes obtaining context information from a speech signal of a user using a neural network-based encoder, determining intent information of the speech signal based on the context information, determining, based on the context information, attention information corresponding to a segment included in the speech signal, and determining, based on the attention information, a segment value of the segment by recognizing, using a decoder, a portion of the context information identified as corresponding to the segment.
US11508368B2 Agent system, and, information processing method
An agent system includes: a recognizer configured to recognize speech including speech contents of an occupant in a mobile object; an acquirer configured to acquire an image including the occupant; and an estimator configured to compare wording included in the speech contents of the occupant recognized by the recognizer with unclear information which is stored in a storage and includes wording making the speech contents unclear, to estimate a first direction which is a sight direction of the occupant or a second direction which is indicated by the occupant on the basis of the image acquired by the acquirer when the speech contents of the occupant includes unclear wording, and to estimate an object which is located in the estimated first direction or the estimated second direction. The recognizer is configured to recognize the speech contents of the occupant on the basis of the object estimated by the estimator.
US11508366B2 Whispering voice recovery method, apparatus and device, and readable storage medium
A method, an apparatus and a device for converting a whispered speech, and a readable storage medium are provided. The method is implemented based on the whispered speech converting model. The whispered speech converting model is trained in advance by using recognition results and whispered speech training acoustic features of whispered speech training data as samples and using normal speech acoustic features of normal speech data parallel to the whispered speech training data as sample labels. A whispered speech acoustic feature and a preliminary recognition result of whispered speech data are acquired, then the whispered speech acoustic feature and the preliminary recognition result are inputted into a preset whispered speech converting model to acquire a normal speech acoustic feature outputted by the model. In this way, the whispered speech can be converted to a normal speech.
US11508365B2 Development of voice and other interaction applications
Among other things, a developer of an interaction application for an enterprise can create items of content to be provided to an assistant platform for use in responses to requests of end-users. The developer can deploy the interaction application using defined items of content and an available general interaction model including intents and sample utterances having slots. The developer can deploy the interaction application without requiring the developer to formulate any of the intents, sample utterances, or slots of the general interaction model.
US11508356B2 Method and apparatus for recognizing a voice
Disclosed are a speech recognition method and a speech recognition device, in which speech recognition is performed by executing an artificial intelligence (AI) algorithm and/or a machine learning algorithm provided therein. According to an embodiment of the present disclosure, the speech recognition method includes buffering an inputted spoken utterance, determining whether a preset wake-up word is present in the spoken utterance by comparing the buffered spoken utterance to the preset wake-up word, and in response to the preset wake-up word in the spoken utterance, activating a speech recognition function and isolating, from the spoken utterance, a spoken sentence as a voice command without the wake-up word, and processing the spoken sentence and outputting a processing result.
US11508355B1 Extracting natural language semantics from speech without the use of speech recognition
Systems and methods are disclosed herein for discerning aspects of user speech to determine user intent and/or other acoustic features of a sound input without the use of an ASR engine. To this end, a processor may receive a sound signal comprising raw acoustic data from a client device, and divides the data into acoustic units. The processor feeds the acoustic units through a first machine learning model to obtain a first output and determines a first mapping, using the first output, of each respective acoustic unit to a plurality of candidate representations of the respective acoustic unit. The processor feeds each candidate representation of the plurality through a second machine learning model to obtain a second output, determines a second mapping, using the second output, of each candidate representation to a known condition, and determines a label for the sound signal based on the second mapping.
US11508350B2 Apparatus for synthesizing engine sound
An apparatus for synthesizing an engine sound according to an embodiment of the present invention comprises: a memory for storing a plurality of explosion sound samples corresponding to a plurality of cylinders included in a cylinder module, respectively; a sound output unit; and a processor for calculating explosion periods of the plurality of cylinders, and overlapping the plurality of samples stored according to the calculated explosion periods on explosion noises of corresponding cylinders, respectively, to output a synthesized virtual engine sound through the sound output unit.
US11508349B2 Noise reduction method and apparatus for on-board environment, electronic device and storage medium
A noise reduction method and apparatus for an on-board environment, an electronic device and a storage medium are provided, which are applicable to a field of computer technology, and particularly to a field of audio processing. The noise reduction method for an on-board environment includes: receiving an interference signal in the on-board environment and receiving a sound signal in the on-board environment, the interference signal comprising a vibration signal of a vehicle; and performing noise reduction processing on the sound signal in the on-board environment to obtain a noise-reduced signal; wherein, the noise reduction processing comprises cancelling the interference signal from the sound signal in the on-board environment.
US11508344B2 Information processing device, information processing method and program
There is provided an information processing device, an information processing method and a program that provide, as feedback to a user, information based on a level of collaboration of multiple movement elements in a performance provided by collaborative or non-collaborative moves of multiple parts of a body of the user and that are usable to support mastering a performance. The information processing device includes a sensing data acquisition unit configured to acquire multiple sets of sensing data from at least one sensors configured to sense a condition of multiple movement elements in a performance that is performed because multiple parts of a body of a user move; a calculator configured to calculate collaboration information representing move collaborativeness of the movement elements from the acquired multiple sets of sensing data; and a notification unit configured to notify the user of feedback information based on the calculated collaboration information is provided.
US11508343B2 Isolation mount for a percussion instrument
A percussion instrument is adapted with a foam arrangement directly or indirectly in communication with its percussion surface. The foam arrangement reduces acoustic impact sounds when the instrument is struck, helps isolate vibrations from nearby percussion surfaces, and reduces or removes sound generation when air is released from the damper. To achieve these results, directly or indirectly secured to the percussion surface is an open-cell foam layer that is configured with a closed-cell foam layer positioned in a lateral side-by-side arrangement to create a spring and damper system. The open-cell foam may have one or more holes that extend entirely through its body, and inside those, one or more holes are closed-cell foam to provide additional spring-like functionality. The side-by-side dual-layer arrangement enables the closed- and open-cell foam layers to operate in tandem—the closed-cell layer operates as a spring, and the open-cell layer operates as a damper.
US11508340B2 System and method for generating a 2D image using mammography and/or tomosynthesis image data
The invention includes a method including the steps of obtaining a plurality of images, each of the images in the plurality having at least one corresponding region, generating a merged image, the merged image also having the corresponding region. The step of generating includes selecting an image source from the plurality of images to source image data for the corresponding region in the merged image by comparing attributes of the corresponding regions of the plurality of images to identify the image source having preferred attributes.
US11508336B2 Head mounted display device and driving method thereof
A head mounted display device includes: a display module displaying an image; a calculator including an adaptive luminance calculator that scans a first image based on a predetermined viewing angle and calculates a first adaptive luminance of the first image, and a discomfort luminance calculator that calculates a first discomfort luminance based on the first adaptive luminance according to an equation that models a relationship between the first adaptive luminance and the first discomfort luminance at which a user perceives discomfort; and a luminance controller that controls a dimming level of the display module to be equal to or less than the first discomfort luminance.
US11508334B2 Display screen assembly, electronic device, and method for detecting distance between display area and detection objection
A display screen assembly is provided. The display screen assembly includes a display screen, a first light source, a light conducting member, a receiving element, and a processor. The display screen includes a display region for displaying images and a non-display region surrounding the display region. The light conducting member faces the display region. At least one first light source faces at least one surface of the light conducting member. The at least one first light source is configured to emit a detection signal to the light conducting member. The light conducting member is configured to diffuse the detection signal to allow the detection signal to pass through the display region, to interact with a detection object to form a target signal. The receiving element is disposed in the display region and configured to receive the target signal.
US11508329B2 Color control method and apparatus of a to-be-displayed object, measurement device, and medium
Provided are a color control method and apparatus of a to-be-displayed object, a measurement device, and a medium. The method includes: acquiring to-be-displayed object information of the to-be-displayed object, and generating a corresponding to-be-displayed object interface according to the to-be-displayed object information; configuring color information of the to-be-displayed object interface based on a preset to-be-displayed object color mapping frame, where the to-be-displayed object color mapping frame is used for configuring a mapping relationship between the color information and the to-be-displayed object information of the to-be-displayed object on a current display interface; and displaying the to-be-displayed object information of the to-be-displayed object interface according to the configured color information.
US11508327B2 Liquid crystal display device
Provided is a liquid crystal display device including: a liquid crystal panel including display units for displaying an image using a veil-view function; and a control circuit. The display units each include a pair of sub-pixels including a first sub-pixel and a second sub-pixel. The liquid crystal panel sequentially includes an active matrix substrate, a first alignment film, a liquid crystal layer containing liquid crystal molecules, a second alignment film, and a counter substrate. The active matrix substrate includes first and second electrodes that are stacked via a first insulating layer or that face each other on the first substrate. At least one of the first or second electrode is disposed for each first sub-pixel and for each second sub-pixel. The counter substrate includes a third electrode. The control circuit is configured to switch between application of alternating voltage and application of constant voltage to the third electrode.
US11508324B2 E-paper display device and a method for driving an E-paper display panel
An E-paper display device including an E-paper display panel and a display driver is provided. The E-paper display panel displays an image. The image includes a first frame and a second frame. The display driver is coupled to the E-paper display panel. The display driver drives the E-paper display panel to display the image. The display driver drives a first pixel group of the E-paper display panel in a first polarity and drives a second pixel group of the E-paper display panel in a second polarity to display the first frame during a first frame period. The first pixel group and the second pixel group are arranged in interlacing. The display driver drives the second pixel group of the E-paper display panel in the first polarity to display the second frame during a second frame period. Moreover, a method for driving an E-paper display panel is also provided.
US11508323B2 Display panel, display device and method for driving the same
A display panel, a display device and a method for driving the display panel. The display panel includes: a rotation axis; at least one display area located at one side of the rotation axis; wherein the display area includes a plurality of display sub-areas; and a plurality of driving-control modules corresponding to the plurality of display sub-areas. The plurality of display sub-areas are sequentially arranged along a first direction; the first direction is directed from the rotation axis to the display area; when the display panel rotates around the rotation axis, areas passed by the plurality of display sub-areas form a plurality of imaging sub-areas. The plurality of driving-control modules are configured to control the plurality of display sub-areas to have different display parameters, respectively, thereby enabling imaging brightness of the plurality of imaging sub-areas to be within a preset brightness range.
US11508322B1 Method and system for dynamically setting backlight dimming algorithm for displays
A system, method, and computer-readable medium are disclosed for reducing halo artifacts of static images on a computer display. A multimedia stream is received that includes graphical images which are moving and static images as displayed on the computer display. A determination is performed if a graphical image in the multimedia stream is a static image. Additional LED zones of LEDs are turned on to provide backlighting to a computer display panel. A diming algorithm is enabled to adjust LEDs to reduce halo artifacts in the static image. Luminance correction is performed at the pixel level for the static image.
US11508314B2 Pixel and display device including the same
A pixel and a display device including the pixel are disclosed. The pixel comprises a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, a seventh transistor, an eighth transistor, a first capacitor, and a light emitting element. The eighth transistor includes a gate electrode configured to receive a second data voltage, a first electrode connected to a fourth node, and a second electrode configured to receive an initialization voltage. The eighth transistor adjusts a voltage level of the first capacitor based on a difference between the voltage level of the first capacitor and a level of the second data voltage.
US11508313B2 Display device having a plurality of display regions with different driving frequencies and driving method thereof
A display device includes a display panel including pixels connected to data lines and scan lines, a data driving circuit which drives the data lines, a scan driving circuit which drives the scan lines, and a driving controller divides the display panel into first and second display regions, controls the data driving circuit and the scan driving circuit to drive the first display region at a first driving frequency and to drive the second display region at a second driving frequency lower than the first driving frequency, and sets third driving frequencies respectively corresponding to horizontal lines in a boundary region, which is defined by a portion of the second display region adjacent to the first display region, during a multi-frequency mode. Each of the third driving frequencies has a frequency level between the first driving frequency and the second driving frequency.
US11508311B2 Display driver circuit, display module, method for driving display, and electronic device
An electronic device includes a display including a first display area and a second display area. The electronic device further includes a main controller configured to send a first clock signal separately to a first display driver circuit and a second display driver circuit. The first display driver circuit is configured to receive the first clock signal and to output a first GOA clock signal to the display. The first GOA clock signal is generated based on the first clock signal. The second display driver circuit is configured to receive the first clock signal, and is further configured to output a second GOA clock signal to the display. The second GOA clock signal is generated based on the first clock signal.
US11508309B2 Displays with reduced temperature luminance sensitivity
A display may include an array of pixels. Each pixel in the array may include a drive transistor, emission transistors, a data loading transistor, a gate voltage setting transistor, an initialization transistor, an anode reset transistor, a storage capacitor, and an optional current boosting capacitor. A data refresh may include a initialization phase, a threshold voltage sampling phase, and a data programming phase. The threshold voltage sampling phase can be substantially longer than the data programming phase to decrease a current sampling level during the threshold voltage sampling phase, which helps reduce the display luminance sensitivity to temperature variations.
US11508307B2 Method for operating display device
A display device that can correct the threshold voltage of a driving transistor without a correction of image data is provided. A display device including a pixel provided with a driving transistor, a display element, and a memory circuit and a correction data generation circuit is related. One of a source and a drain of the driving transistor is electrically connected to one electrode of the display element, and a gate of the driving transistor is electrically connected to the memory circuit. In a first period, the correction data generation circuit generates correction data that is data for correcting the threshold voltage of the driving transistor. In a second period, first data is written to the memory circuit. In a third period, second data is supplied to the pixel, whereby third data in which the second data is added to the first data is generated. In a fourth period, an image corresponding to the third data is displayed by the display element.
US11508304B2 Display panel, method for driving the display panel and display device
Provided is a display panel. The display panel includes a substrate, a plurality of sub-pixels and at least one multivoltage supply circuit; where each of the plurality of sub-pixels includes a pixel circuit and a light-emitting element; and the pixel circuit includes an initialization circuit, a data writing circuit, a drive circuit, a threshold compensation circuit, a first light-emission control circuit and a storage circuit; where the first light-emission control circuit controls the drive circuit to generate a drive current which flows into the light-emitting element in a light emission stage; and the at least one multivoltage supply circuit supplies a reset signal to a first terminal of the storage circuit in the initialization stage and a first stage and supplies a first power signal to the first terminal of the storage circuit in a second stage.
US11508298B2 Display panel and driving method thereof and display device
A display panel and a driving method thereof, and a display device are disclosed. The display panel includes a plurality of sub-pixel unit groups arranged in an array, the array includes a plurality of rows and a plurality of columns, each of the sub-pixel unit groups includes N sub-pixel units disposed along a column direction and a pixel driving circuit, each of the N sub-pixel units includes a light-emitting circuit, the pixel driving circuit is electrically connected to the light-emitting circuits of the N sub-pixel units, and the pixel driving circuit is configured to provide light-emitting driving currents to the light-emitting circuits of the N sub-pixel units.
US11508288B2 Display device correcting grayscales of logo and driving method thereof
A display device includes pixels; an image converter which generates a second image by correcting grayscales of a logo among a first image for the pixels; and a data driver which provides data voltages corresponding to the second image to the pixels. The image converter generates first accumulated data by accumulating first map data corresponding to a logo area larger than the logo among the first image during a plurality of frame periods, generates second accumulated data by scaling the first accumulated data every refresh cycle, generates third accumulated data by initializing values smaller than a first threshold value among the second accumulated data to be a background value, and specifies pixels corresponding to the logo based on second map data corresponding to the third accumulated data.
US11508282B2 Display control device, display control method, and non-transitory recording medium
A display control device includes a first display capable of color display, a first controller performing reset control of the first display, and a second controller having less throughput than the first controller. The first controller executes reset control on the first display in a case of a first operation mode in which the first controller is active. The second controller executes reset control on the first display in a case of a second operation mode in which the first controller is inactive or in a case of detection of the first controller not operating normally.
US11508281B2 Mura compensation circuit and driving apparatus for display applying the same
Provided are a mura compensation circuit which prevents a change in color of a pixel upon mura compensations for the pixel and a driving apparatus for a display applying the same. The mura compensation circuit includes a mura memory configured to store mura information including location information of a pixel having mura and compensation values for colors thereof, a gain adjustment unit configured to provide adjustment compensation values generated by applying an adjustment gain having an identical ratio to the compensation values for the colors of the pixel, and a mura compensation unit configured to receive display data of the colors of the pixel and to perform mura compensations on the display data of the colors of the pixel using the adjustment compensation values corresponding to the location information.
US11508276B2 Adaptive user interface display size for curved display edges
In aspects of adaptive user interface display size for curved display edges, a wireless device has a display screen with curved display edges to display a user interface that includes selectable elements, which are selectable to initiate respective device application actions. The wireless device implements a display control module that can determine a display size of the user interface effective to prevent the selectable elements of the user interface from being displayed within a curved display edge of the display screen. The display control module can then resize the user interface according to the determined display size, and initiate to display the user interface on the display screen, where at least a portion of the user interface is displayable within the curved display edges of the display screen and without the selectable elements of the user interface being displayed within the curved display edge of the display screen.
US11508275B1 Laser energy integrator for display waveguide breakage safety system
Systems and methods for implementing a continuously monitoring safety system that tracks emission of light energy from the light source by measuring energy at various sampling points within image frames projected by a projector and estimating a highest energy for a pupil area of each of the image frames based on a subset of sampling points encompassed by the pupil area. The highest energy for each of the image frames is summed to generate a cumulative highest energy, which is compared to a predetermined threshold, and in response to the cumulative highest energy exceeding the threshold, adjusting an power output of the projector.
US11508271B2 Display panel
An information panel or display panel suitable for mounting onto the top of a vehicle is disclosed. Information such as advertisement can be change automatically. Change of advertisement content is responsive to the speed of the vehicle.
US11508268B2 Display device including cover window
A display device includes: a display panel; and a cover window on the display panel. The display panel and the cover window include a flat area, and a bendable area adjacent to the flat area. The cover window includes: patterns at the bendable area along a first direction; and dummy patterns at the flat area along the first direction, the dummy patterns including a first dummy pattern, and a second dummy pattern adjacent to the first dummy pattern. A length of the first dummy pattern is different from a length of the second dummy pattern.
US11508265B2 Shelf information system
A shelf edge system and/or light box system which can be easily and conveniently attached to an existing shelf system, and which has a display system capable of attracting the attention of shoppers in a store.
US11508260B2 Deaf-specific language learning system and method
Disclosed is a language learning technology for deaf people. A deaf-specific language learning system includes: a sound input device configured to receive a voice from an external source; a learning server configured to store learning data and correction information; a signal processor configured to output voice pattern information corresponding to a voice signal received from the sound input device; a learning processor configured to output learning pattern information regarding the learning data received from the learning server and also output a learning result through similarity analysis; and an actuator controller configured to vibrate a vibration actuator according to the voice pattern information and the learning pattern information.
US11508256B2 Perspective selection for a debriefing scene
Debriefing a session from a user in a system. During the session, while the user performs actions on one or more tangible instruments of the system, dynamic data is logged in relation to the system along a session timeline. The dynamic data covers the actions of the user on tangible instrument(s). A graphical user interface depicting a debriefing scene, related to the session, is displayed from a first point of view starting at a first time within the session timeline. The debriefing scene is generated starting at the first time from at least a first image feed. Upon detection of a predetermined event in the dynamic data at a second time along the session timeline, a second point of view different from the first point of view is defined and the debriefing scene is generated therefrom after the second time using at least a second image feed.
US11508254B2 Training and/or assistance platform for air management via air traffic management electronic system, associated method
A training and/or assistance platform for air traffic management is provided. The platform includes an air traffic management electronic system for obtaining input data representative of air traffic, to deliver, to an air traffic controller, information established as a function of the obtained input data, and to receive instructions from the air traffic controller The platform further includes a block for automatically determining instructions based on input data representative of at least the state of air traffic. The platform further includes an electronic processing module for collecting said input data and to provide it to the automatic determining block The platform further includes a neural network derived from learning on an input data history obtained by an electronic air traffic control system and received air traffic control instruction(s) received by the system.
US11508246B1 Autonomous air taxi separation system and method
An autonomous airspace system for urban air mobility monitors flight separation for compliance with a safe separation distance. A reference formation airspace is established for a reference air taxi based on minimum longitudinal, lateral and vertical parameters. When penetration of the reference formation airspace is detected, a penetration airspace is established based on a deformation of the reference formation airspace caused by the penetrating air taxis. A centroid of the penetration airspace is determined and a target separation to the centroid is supplied to the air taxi to reestablish safe separation. The extent of separation is also safely contained by the presence of virtual air taxis whose positions on the periphery of the penetrated airspace serve to limit potential penetration of surrounding air taxi air spaces.
US11508244B2 Method, computer program product, system and craft for collision avoidance
The present disclosure relates to a method for determining an action for collision avoidance in a craft. The method (100) comprises obtaining (110) object data comprising three-dimensional object data points (420); obtaining (120) state data of the craft (260); determining (140) at least one set of manoeuvre paths (410a,b,c) for the craft (260) based on the obtained craft state data; determining (150) a set of distance thresholds (421) for the three-dimensional object data points (420) based on the object data; comparing (160) each set of manoeuvre paths (410a,b,c) with the object data and the set of distance thresholds (421), wherein the set of manoeuvre paths (410a,b,c) is identified as a colliding set of manoeuvre paths (410a,b,c) when each path of the set of manoeuvre paths (410a,b,c) is at least partially within the corresponding distance threshold (421) of at least one three-dimensional object data point (420); and determining (170) an action upon identification of at least one colliding set of manoeuvre paths (410a,b,c).
US11508242B2 Controller, control method, and brake system
A controller and a control method are capable of improving safety by automatic emergency deceleration action while suppressing a motorcycle from falling over. One arrangement also obtains a brake system that includes such a controller. In the controller, the control method, and the brake system, a control mode that causes the motorcycle to take the automatic emergency deceleration action is initiated in response to trigger information generated in accordance with peripheral environment of the motorcycle. In the control mode, automatic emergency deceleration that is deceleration of the motorcycle generated by the automatic emergency deceleration action is controlled in accordance with a lean angle of the motorcycle.
US11508240B2 Method for identifying sirens of priority vehicles and warning a hearing-impaired driver of the presence of a priority vehicle
Disclosed is a device for identifying sirens of priority vehicles and for warning a hearing-impaired driver of a motor vehicle of a presence of at least one priority vehicle in an environment of his vehicle, including at least one sound receiver, a computing unit for analyzing the audio recording and a unit for comparing the frequencies of the audio recording with frequencies previously stored in storage of the computing unit as being associated with a siren of a given priority vehicle, and for doing so for each type of priority vehicle, and at least one visual and/or vibratory element for warning the driver when a presence of a priority vehicle is detected in an environment of the motor vehicle.
US11508239B2 Road-side detection and alert system and method
An alert system and method comprising at least one alert beacon having one or more sensors (e.g., LiDAR sensor). The alert beacon further including a processor operable to poll the LiDAR sensor for a predefined number of beta readings in response to receiving an initial reading from the LiDAR sensor indicating a vehicle is within a predefined distance away from the alert beacon. The processor further being operable to calculate an average distance and an average velocity for the vehicle in response to receiving the predefined number of beta readings when the vehicle is within the predefined distance from the alert beacon. The processor also being operable to activate an audible alert and a visual alert when the average distance is below a distance threshold and the average velocity exceeds a velocity threshold in response to calculating the average distance and the average velocity.
US11508238B2 Navigation method, device and system for cross intersection
Embodiments of the present disclosure provide a navigation method, device and system for a cross intersection. The method includes: receiving a message transmitted from a vehicle controller, where the message indicates a request of a vehicle for passing an intersection; and determining whether to allow the vehicle to pass the intersection based on an occupancy condition of the intersection and transmitting an action instruction to the vehicle controller to cause the vehicle controller to control movement of the vehicle.
US11508234B1 Reducing false alarms in security system
A security system includes a security system controller and a plurality of security sensors that are operably coupled with the security system controller. The security system includes a plurality of configuration settings that define when particular alarms are to be issued by the security system based at least in part on events that are detected by the security sensors. The security system controller receives each of the events detected by the security sensors. The security system controller stores event data that includes an event type, a time value indicating when the event occurred, and an identifier of the security sensor that detected the event. The security system controller analyzes the stored event data to identify and output one or more changes to one or more of the plurality of configuration settings in order to reduce false alarms issued by a security system.
US11508220B2 Gaming system and method with matching image feature
Gaming systems and methods for providing a game and/or game feature in which images are divided in parts to form symbols or symbol parts, with the symbol parts being included in separate reels or groups from which they are randomly selected for display on a game screen, such as an array or grid formed by rows and columns. A winning or award outcome is determined based on the random game results displaying a completed image formed of the randomly displayed matching symbol parts.
US11508219B2 Skill-based gaming machine and method that maintain a desired return to player
A gaming machine having an electronic display which displays a plurality of empty drinking cups. A game controller causes the display of a ball and its movement toward and into one of the empty cups. A game play mechanism allows the player to direct the movement of the ball. If the player is successful in movement of a ball into a cup, the cup and the ball is then removed from the display. During play of the game, an amount of sobriety is determined in accord with the number of cups removed by the player. In accordance with the amount of sobriety determined, the cups are displayed in wobbling movement in order to give amusement to the game as well as difficulty in the play.
US11508218B2 Gaming devices and methods implementing dynamically modifiable sources of game play items
Systems, apparatuses and methods for enriching modifiable sources of game play items during play of the gaming activity. In a video poker embodiment, cards of the deck(s) that source the poker hand(s) may be modified during play of the poker game. In one embodiment, the deck(s) of cards changes, in some embodiments randomly, and in some embodiments geared towards the probability of the player obtaining a more favorable poker hand outcome, while in yet other embodiments ensuring a higher probability of the player obtaining a more favorable poker hand outcome. Cards in the sourcing deck(s) may be added and/or deleted or otherwise modified to statistically impact the odds of obtaining certain results from the poker game. The deck may be reset to an initial state, or backed off from the modifications, at one time or iteratively.
US11508217B2 Gaming system for presenting class II games
A gaming system particularly configured to present a Class II bingo game such as bingo includes a game host, at least two player hosts, and a sentinel. The sentinel receives a request for a bingo card purchase from a player of a player interface and upon authorizing the player request transmits the request to one of the player hosts. The player host then makes a bingo card purchase with the game host and plays a bingo card provided by the game host in relation to a set of called bingo balls. The outcome of the play of the bingo card is provided to the sentinel and the game outcome is displayed as an alternative entertaining display at the player's player interface.
US11508216B2 Tiered gaming
Some embodiments include a fantasy sports wagering game. A gaming operator may assign real life sporting players into brackets based on their expected performance so that players with similar expected performance are in a same bracket as each other. Participants in a fantasy sports wagering game may be required to select a player from each of a plurality of brackets to form a fantasy sports team for the fantasy sports wagering game.
US11508215B2 System and method for generating customized odds bet for an event
A system for managing bets comprises a memory and a processor. The memory stores information associated with a field of participants for an event, each participant associated with particular odds for the event. The processor receives a bet that a lead participant from the field of participants will finish in a particular subset of finishing positions in the event, wherein the bet is associated with customized odds. The processor further select one or more additional participants from the field of participants to add to the bet such that the odds associated with the lead participant combined with the odds associated with the one or more selected additional participants at least approximates the customized odds for the bet.
US11508209B2 Composite meters for electronic gaming machines
Systems and techniques for providing flexibly reconfigurable meters on electronic gaming machines are provided; such meters may be considered to be “transient” with respect to meters that are hard-coded into the electronic gaming machine operating system or platform software or wagering game software and may be reconfigured by updating one or more meter definition files. Some such electronic gaming machines may provide for automated output of meter information.
US11508208B2 System and method for on-line game based on consumer wish list
A system and method for assessing personal preferences and interests of end-users by engaging one or more end-users in a game in which the end-user may be given a chance to win a product item from a collection of product items selected by the end-user.
US11508199B2 Control method based on user authentication using detection sensor and device using thereof
Disclosed is a control method of a control device, the control method including determining whether a movable object is located in a first area using a detection sensor, activating a first mode among operation modes of the control device when it is determined that the movable object is located in the first area, acquiring user confirmation information from a terminal when the first mode is activated wherein the user confirmation information corresponds to user-specific information stored in the terminal and is provided to the terminal by a server before the terminal provides the user confirmation information to the control device, transmitting processing request information based on the user confirmation information to the server so that the server performs processing on the user confirmation information, acquiring a processing result for the user confirmation information from the server, and providing the processing result for the user confirmation information to the terminal.
US11508195B2 Access control system for unlocking a lock module, and method thereof
The present invention relates to an access control system, an access object and a method for access control. The access control system comprises an access request receiving device being configured and operable for receiving an access object; the access request receiving device comprising an emitter configured and operable for irradiating the access object with a radiation having a wavelength in the range of about 10″12 and 10″9 m and a detector configured and operable for detecting a response signal from the irradiated access object; a control circuit being configured and operable to receive the response signal from the access request receiving device and process the response signal to identify spectral features indicative of an XRF signature of the access object; wherein the control circuit is adapted to generate an unlocking signal for switching a module device between a locked state and an unlocked state upon identification of the XRF signature.
US11508193B2 Action based on repetitions of audio signals
Methods, systems, and apparatus for monitoring a sound are described. An audio signal is obtained and the audio signal is analyzed to generate an audio signature. An object type is identified based on the audio signature and an action corresponding to the object type is identified.
US11508189B2 Processing of accident report
An example operation may include one or more of receiving, by an accident processing node, an accident report from a transport, determining, by an accident processing node, a time and location parameters of the accident based on the report, querying, by an accident processing node, transport profiles on a storage based on the time and location parameters, and responsive to the transport profiles containing data corresponding to the time and location parameters, sending a request to access the transport profiles.
US11508188B2 Method and apparatus for testing liveness
Disclosed is a method and apparatus for testing a liveness, where the liveness test method includes receiving a color image and a photodiode (PD) image of an object from an image sensor comprising a pixel formed of a plurality of PDs, preprocessing the color image and the PD image, and determining a liveness of the object by inputting a result of preprocessing the color image and a result of preprocessing the PD image into a neural network.
US11508186B2 Smile degree detection device, method, recording medium, and camera system
An information processing device includes: a distinction unit that distinguishes a captured person on a basis of feature information of the captured person, on a basis of staff registration information containing feature information of staff members, and on a basis of customer registration information containing feature information of customers, the person captured by a camera; a staff-smile determination unit that determines, if one staff member of the staff members is distinguished as corresponding to the captured person, whether the one staff member corresponding to the captured person has smiled on a basis of a smile index of the captured person; a staff-smile counting unit that counts by which the staff members are determined to have smiled in a preset time period; a customer-revisit detection unit that detects that one customer of the customers has revisited; and a customer-revisit counting unit.
US11508184B2 Method for identifying an object within an image and mobile device for executing the method
A method for identifying a user using an image of an object of the user that has a biometric characteristic of the user, like a fingerprint or a set of fingerprints of fingertips, the method comprising: obtaining, by an optical sensor of a mobile device, the image of the object; providing the image to a neural network; processing the image by the neural network, thereby identifying both, the position of the object and the object in the image; extracting, from the identified object, the biometric characteristic; storing the biometric characteristic in a storage device and/or providing at least the biometric characteristic as input to an identification means, comprising processing the input in order to determine whether the biometric characteristic identifies the user.
US11508177B2 Display panel including light shield layer and optical processing film, manufacturing method thereof and display device
A display panel, a manufacturing method thereof and a display device are provided. The display panel includes: a photosensitive sensor; a light shield layer disposed on a sensing side of the photosensitive sensor and including at least one first opening and at least one second opening, the first opening and the photosensitive sensor are overlapped with each other in a direction perpendicular to a surface of the display panel, so that light running through the first opening is irradiated to the photosensitive sensor; and an optical processing film disposed in a region of the light shield layer close to the second opening and on at least a portion of a surface of the light shield layer away from the photosensitive sensor, and a light reflectivity of the optical processing film is less than a light reflectivity of the light shield layer.
US11508165B2 Digital mirror systems for vehicles and methods of operating the same
Digital mirror systems for vehicles and methods of operating the same are disclosed. An example vehicle control system includes: a driver monitoring system including a head position determiner to determine at least one of a location of a head, an orientation of the head, or an eye gaze point of the head; a digital mirror system including a region-of-interest (ROI) detector to identify an ROI based on the at least one of the location of the head, the orientation of the head, or the eye gaze point of the head, and a cropper to extract a portion of a first image corresponding to the ROI to form a second image, the first image representing an area exterior to the vehicle; and a display within an interior area of the vehicle to present the second image.
US11508163B2 Method and apparatus for training lane line identifying model, device, and storage medium
Embodiments of the present disclosure provide a method and apparatus for training a lane line identifying model. The method includes: acquiring a first image of a lane line, the first image being generated using a generating model based on a second image of the lane line, the first image and the second image of the lane line being associated with different physical environments respectively; acquiring lane line information in the second image of the lane line; and training the lane line identifying model using the first image and the acquired lane line information of the lane line.
US11508161B2 Driving support system and server device
A driving support system includes: an acquisition portion configured to acquire visual-recognition position information on a position where a driver of a vehicle visually recognizes a traffic light; an image acquisition portion configured to acquire a forward image ahead of the vehicle; a traffic-light recognition portion configured to recognize a traffic light included in a forward image; and a notification portion configured to notify the driver of warning when the traffic light is not recognized from the forward image, in a case where the vehicle is present at a position based on the visual-recognition position information.
US11508158B2 Electronic device and method for vehicle driving assistance
An electronic device for and a method of assisting vehicle driving are provided. The electronic device includes a plurality of cameras configured to capture a surrounding image around a vehicle; at least one sensor configured to sense an object around the vehicle; and a processor configured to obtain, during vehicle driving, a plurality of image frames as the surrounding image of the vehicle is captured based on a preset time interval by using the plurality of cameras, based on the object is sensed using the at least one sensor while the vehicle is being driven, extract an image frame corresponding to a time point when and a location where the object has been sensed, from among the obtained plurality of image frames, perform object detection from the extracted image frame, and perform object tracking of tracking a change in the object, from a plurality of image frames obtained after the extracted image frame. The present disclosure also relates to an artificial intelligence (AI) system that utilizes a machine learning algorithm, such as deep learning, and applications of the AI system.
US11508154B2 Systems and methods for generating a video summary
Systems and method of generating video summaries are presented herein. Information defining a video may be obtained. The video may include a set of frame images. Parameter values for parameters of individual frame images of the video may be determined. Interest weights for the frame images may be determined. An interest curve for the video that characterizes the video by interest weights as a function of progress through the set of frame images may be generated. One or more curve attributes of the interest curve may be identified and one or more interest curve values of the interest curve that correspond to individual curve attributes may be determined. Interest curve values of the interest curve may be compared to threshold curve values. A subset of frame images of the video to include within a video summary of the video may be identified based on the comparison.
US11508150B2 Image processing apparatus and method of controlling the same
In order to make it possible for the user to perceive the possibility of a collision with an object in the real world, an image processing apparatus comprises: a location estimation unit configured to, based on a video obtained by an image capturing unit for capturing a physical space, estimating a self-location of the image capturing unit in the physical space; a recognition unit configured to recognize a physical object existing within a certain distance from the self-location based on the video; an area decision unit configured to decide a predetermined area in the physical space in relation to the video; and a determination unit configured to determine whether or not a warning is given in accordance with whether or not a physical object recognized by the recognition unit is included in the predetermined area.
US11508149B2 Operating method with goods information and non-transitory computer readable medium thereof
An operating method with goods information is applicable to an electronic device. The operation method includes: obtaining image information associated with one or more goods objects on a target electronic shelf among a plurality of electronic shelves in a network; and performing first communicating with a server for controlling the electronic shelves in the network according to either or both of the image information and feature information associated with the one or more goods objects, wherein feature information is extracted from the image information and the first communicating includes wirelessly transmitting either or both of the image information and the feature information associated with the one or more goods objects to the server.
US11508146B2 Convolutional neural network processing method and apparatus
A convolutional neural network (CNN) processing method and apparatus. The apparatus may select, based on at least one of a characteristic of at least one kernel of a convolution layer or a characteristic of an input of the convolution layer, one operation mode from a first operation mode reusing a kernel, of the at least one kernel, and a second operation mode reusing the input, and perform a convolution operation based on the selected operation mode.
US11508144B2 Method and device for object detection
The present disclosure provides an object detection method and an object detection device. The object detection device includes: a heterogeneous processor and a memory, the heterogeneous processor including: a processing unit and a programmable logic unit, wherein the programmable logic unit is configured to receive a to-be-detected image, perform feature extraction on the to-be-detected image, and write an extracted feature into the memory; the processing unit is configured to read the feature from the memory, perform target object detection according to the feature, and output a detection result to the programmable logic unit; and the programmable logic unit is further configured to receive the detection result, generate prompt information according to the detection result, and output the prompt information.
US11508140B2 Auto-configuring a region of interest (ROI) associated with a camera
Disclosed herein are apparatuses and methods for auto-configuring a region of interest (ROI) associated with a camera. In one implementation, a method comprises receiving image frames from a camera installed in the environment, wherein the ROI is located within the view of the image frames. The method includes tracking a plurality of persons in the image frames and determining a respective trajectory of movement for each person of the plurality of persons. The method further includes comparing each of the respective trajectories to one another and identifying, based on the comparing, a common trajectory shared by more than one person of the plurality of persons, wherein the common trajectory is not fully encompassed in the ROI. The method additionally includes updating the ROI to encompass the common trajectory, and includes configuring the updated ROI to be associated with new image frames from the camera.
US11508133B2 Augmented reality visualizer and measurement system for swimming pool components
An augmented reality visualizer and measurement system for swimming pool components (e.g., liners and safety covers) is provided in some examples of the present disclosure. In one example, a system can receive images of physical markers positioned spatially around a perimeter of a swimming pool in real space. The system can identify the physical markers in the images by analyzing the images using one or more image processing techniques. The system can determine one or more characteristics of the swimming pool based on relationships between the physical markers. The system can then generate pool component information based on the determined one or more characteristics of the swimming pool, and output the pool component information.
US11508132B2 Computer implemented method, a device and a computer program product for augmenting a first image with image data from a second image
A method for inserting objects from a 2D image into another environment while keeping the spatial relationships of the objects in the 2D image intact is provided.A device comprising circuitry configured to carry out the method and a computer program product adapted to carry out the method are also provided.
US11508128B2 Shared room scale virtual and mixed reality storytelling for a multi-person audience that may be physically co-located
A system for viewing a shared virtual reality having a plurality of virtual reality headsets. Each headset producing a shared virtual reality that is viewed by persons wearing the headsets. The system comprises a communication network to which each headset is in communication to send and receive a virtual orientation and a virtual position associated with each person of the persons wearing the headsets. The system comprises a computer in communication with each headset through the network which transmits a virtual audience that is viewed by each headset. The virtual audience formed from the virtual orientation and the virtual position associated with each person wearing the headset over time as each person views the virtual story, so each person views in the headset the person is wearing the virtual story, the virtual orientation and virtual position of each other person of the persons wearing the headset. A method for viewing a shared virtual reality. A non-transitory readable storage medium which includes a computer program stored on the storage medium in a non-transient memory for viewing a shared virtual reality.
US11508123B2 Image processing device, encoding device, decoding device, image processing method, program, encoding method, and decoding method for processing multiple video camera image streams to generate stroboscopic images
Image processing apparatus responsive to successive groups of images of an object captured at the same time by two or more spaced apart image capturing devices and to depth information indicating a three-dimensional location of the object relative to at least one distance measuring device includes: a frame selecting unit configured to select a set of the successive image groups; a model generating unit configured to generate a three dimensional model, for each image group in the set of image groups, from images captured at the same time by the two or more spaced apart image capturing devices and from the depth information, and to map a texture to the generated three dimensional model; and a composition unit configured to generate a stroboscopic image, with respect to a stroboscopic image viewpoint, by superposing the three dimensional models generated by the model generating unit on a predetermined background.
US11508120B2 Methods and apparatus to generate a three-dimensional (3D) model for 3D scene reconstruction
Methods, apparatus, systems and articles of manufacture for generating a three-dimensional (3D) model for 3D scene reconstruction are disclosed. An example apparatus includes a 3D scene generator to generate a 3D model for digital image scene reconstruction based on a trained generative model and a digital image captured in a real environment. An image simulator is to generate a simulated image based on the 3D model, the simulated image corresponding to the captured image. A discriminator is to apply a discriminative model to the simulated image to determine whether the simulated image is simulated.
US11508119B2 Inverse path tracing for material and lighting estimation
In one embodiment, a computing system accesses a three-dimensional (3D) model of an environment, the 3D model comprising a virtual representation of an object in the environment. The computing system accesses an image of the object captured by a camera from a camera pose. The computing system accesses light source parameters associated with a virtual representation of a light source in the environment. The computing system renders, using the 3D model, pixels associated with the virtual representation of the object based on the light source parameters, the pixels being rendered from a virtual perspective corresponding to the camera pose. The computing system determines updated light source parameters based on a comparison of the rendered pixels to corresponding pixels located in the image of the object.
US11508114B2 Distributed acceleration structures for ray tracing
A path tracing system in which the traversal task is distributed between one global acceleration structure, which is central in the system, and multiple local acceleration structures, distributed among cells, of high locality and of autonomous processing. Accordingly, the centrality of the critical resource of accelerating structure is reduced, lessening bottlenecks, while improving parallelism.
US11508104B2 Medical image processing apparatus, medical image processing method, and storage medium
A medical image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry is configured to obtain a measurement value related to the shape of a heart valve in medical image data. The processing circuitry is configured to cause a display to display a numerical value related to the shape of an artificial valve to be placed for the heart valve.
US11508102B2 Systems and methods for image processing
The present disclosure is related to systems and methods for image processing. The method may include obtaining an image including at least one of a first type of artifact or a second type of artifact. The method may include determining, based on a trained machine learning model, at least one of first information associated with the first type of artifact or second information associated with the second type of artifact in the image. The trained machine learning model may include a first trained model and a second trained model. The first trained model may be configured to determine the first information. The second trained model may be configured to determine the second information. The method may include generating a target image based on at least part of the first information and the second information.
US11508099B2 System and method for color mapping for improved viewing by a color vision deficient observer
A method and system for color mapping digital visual content for improved viewing by a color vision deficient observer includes receiving the digital visual content to be color mapped, clustering color values of the digital visual content into a plurality of color clusters, assigning each color cluster to a respective one of a set of target color values in which the set of target color values have increased visual distinguishability for the color vision deficient observer; and for each color cluster, mapping the color values of the color cluster to the target color value, thereby generating a color-mapped digital visual content. One or more regions of interest of the content can be identified and the color mapping may be applied onto to those regions of interest.
US11508097B1 Visualizations of multi-nodal transfers and gesture-based interactivity in virtual or augmented reality
Disclosed is an approach for generating interactive visualizations for multi-nodal transfers that may involve terminal nodes and multiple transitional nodes by using various protocols to acquire data from computing systems or devices associated with each node. A first visualization layer comprising a set of geographic or physical indicators in a multi-nodal transfer route (which comprises a set of three or more nodes) may be generated. API protocols (and/or non-API protocols) corresponding to each node in the transfer route may be identified. The protocols may be executed to obtain, from computing systems and devices associated with the nodes, data packets used to generate a second visualization layer, which may comprise graphics that visually depict details of a transfer along the transfer route. An overlay of visualization layers may be displayed such that the graphics are displayed in association with multiple nodes.
US11508096B2 Information processing apparatus and method
The present disclosure relates to information processing apparatus and method that makes it possible to suppress a reduction in encoding efficiency. Information relating to quantization of a three-dimensional position of an encoding target is generated. For example, the information relating to the quantization includes information relating to a coordinate system to be subjected to the quantization, information relating to a bounding box for normalization of position information of the encoding target, or information relating to a voxel for quantization of position information of the encoding target. In addition, three-dimensional information of the encoding target is restored from a signal string on the basis of the information relating to the quantization of the three-dimensional position of the encoding target. The present disclosure is applicable to, for example, an information processing apparatus, an image processing apparatus, an electronic device, an information processing method, a program, or the like.
US11508091B2 Calibration device for imaging device, monitoring device, work machine and calibration method
A calibration device for an imaging device includes an imaging data acquisition unit that acquires imaging data of a known external target installed at a known position outside a work range of work equipment, the imaging data being obtained by imaging of at least one imaging device provided in a work machine including the work equipment, an external target position acquisition unit that acquires a position of the known external target, and a calibration unit that calibrates the imaging device based on the position of the known external target, which is acquired by the external target position acquisition unit, and the imaging data of the known external target, which is acquired by the imaging data acquisition unit.
US11508088B2 Method and system for performing automatic camera calibration
A system and method for performing automatic camera calibration is provided. The system receives a calibration image, and determines a plurality of image coordinates for representing respective locations at which a plurality of pattern elements of a calibration pattern appear in a calibration image. The system determines, based on the plurality of image coordinates and defined pattern element coordinates, an estimate for a first lens distortion parameter of a set of lens distortion parameters, wherein the estimate for the first lens distortion parameter is determined while estimating a second lens distortion parameter of the set of lens distortion parameters to be zero, or is determined without estimating the second lens distortion parameter. The system determines, after the estimate of the first lens distortion parameter is determined, an estimate for the second lens distortion parameter based on the estimate for the first lens distortion parameter.
US11508081B2 Sealed active marker for performance capture
A sealed active marker apparatus of a performance capture system is described to provide protective housing for active marker light components coupled to a strand and attached via a receptacle, to an object, such as via a wearable article, in a live action scene. The receptacle includes a protrusion portion that permits at least one particular wavelength range of light emitted from the enclosed active marker light component, to diffuse in a manner that enables easy detection by a sensor device. A base portion interlocks with a bottom plate of the receptacle to secure the strand within one or more channels. A sealant material coating portions of the apparatus promotes an insulating environment for the active marker light component.
US11508078B2 Point cloud annotation for a warehouse environment
A system is provided for automatic identification and annotation of objects in a point cloud in real time. The system can automatically annotate a point cloud that identifies coordinates of objects in three-dimensional space while data is being collected for the point cloud. The system can train models of physical objects based on training data, and apply the models to point clouds that are generated by various point cloud generating devices to annotate the points in the point clouds with object identifiers. The solution of automatically annotated point cloud can be used for various applications, such as blueprints, map navigation, and determination of robotic movement in a warehouse.
US11508074B2 Sensor data generating device
An input interface is configured to receive at least one sensor signal corresponding to information of the exterior of the vehicle sensed by at least one sensor. A processor is configured to, based on the sensor signal, generate: a first data corresponding to first information sensed in a first area; and a second data corresponding to second information sensed in a second area located outside the first area. An output interface is configured to output the first data and the second data independently from one another.
US11508072B2 Smart phones for motion capture
A series of smart phones are mounted in respective tripods to capture motion of a person wearing markers, such as marker balls or reflectors. The videos from the phones are stripped of objects other than the markers and the videos of the markers are combined to render a 3D motion capture structure that may be applied to an image of a VR icon to cause the VR icon to move as the person originally moved.
US11508071B2 System and method to detect, suppress, and modify background regions of scanned documents
An image processing device includes an input device which receives image adjustment selections from an associated user interface device. Memory of the device stores a user interface generator, which generates a background adjustment selector for presenting to a user on the user interface device; a background adjustment component which, for each of a plurality of pixels of an input image computes adjusted color values, as a function of at least one of: (a) a background adjustment factor computed for the respective pixel, and (b) a background class derived from the computed background adjustment factor, the background adjustment factor being a function of a background strength of the pixel and a luminance strength of the pixel; and an image output component outputs an output image derived from the adjusted color values for the plurality of pixels. A processor implements the background adjustment component and image output component.
US11508070B2 Method and apparatus to classify structures in an image
Disclosed is a system and method for segmentation of selected data. In various embodiments, automatic segmentation of fiber tracts in an image data may be performed. The automatic segmentation may allow for identification of specific fiber tracts in an image.
US11508068B2 System and method for image segmentation
Methods and systems for image processing are provided. Image data may be obtained. The image data may include a plurality of voxels corresponding to a first plurality of ribs of an object. A first plurality of seed points may be identified for the first plurality of ribs. The first plurality of identified seed points may be labelled to obtain labelled seed points. A connected domain of a target rib of the first plurality of ribs may be determined based on at least one rib segmentation algorithm. A labelled target rib may be obtained by labelling, based on a hit-or-miss operation, the connected domain of the target rib, wherein the hit-or-miss operation may be performed using the labelled seed points to hit the connected domain of the target rib.
US11508062B2 Ophthalmological image processing apparatus
An ophthalmological image processing apparatus acquires a plurality of images of a subject eye photographed in a scanning-type imaging optical system, sets any one of the plurality of images as a template, sets corresponding points or corresponding regions between an image of the subject eye and the template at a plurality of positions of each of the image of the subject eye and the template, calculates a movement amount of each of the corresponding points or each of the corresponding regions, and corrects a distortion of the image of the subject eye with respect to the template based on the movement amount of each of the corresponding points or each of the corresponding regions.
US11508059B2 Methods and systems for detecting a centerline of a vessel
This application disclosures a method and system for detecting a centerline of a vessel. The method may include obtaining image data, wherein the image data may include vessel data; selecting two endpoints of the vessel based on the vessel data; transforming the image data to generate a transformed image based on at least one image transformation function; and determining a path of the centerline of the vessel connecting the first endpoint of the vessel and the second endpoint of the vessel to obtain the centerline of the vessel based on the transformed image. The two endpoints of the vessel may include a first endpoint of the vessel and a second endpoint of the vessel.
US11508058B2 System and method for evaluating impacts of defects in printed images
A system and method evaluate defects in printed images. A target image, which has been captured of a printed image, is processed to identify defects, where present, which do not occur in a source image from which the printed image was generated. A trained classification model predicts a defect class for respective regions of the target image, each of the defect classes being drawn from a predefined set of defect classes. For at least one of the identified defects, a measure of severity of the defect is determined, such as a size of the defect. A decision on the acceptability of the printed image is made, based on the measure of severity of the at least one defect and the predicted defect class of a respective one of the regions in which the defect occurs.
US11508051B2 Image and data analystics model compatibility regulation methods
A computerized model compatibility regulation method for imaging applications first performs a target domain B application by computing means using at least one image X and target domain B image analytics to generate a target domain B application output for X. The method then applies a reference domain A application by computing means to generate reference domain A application output for X. The method further performs a compatibility assessment to generate at least one compatibility result for X. In addition, the method checks the compatibility result for X and if the check output is incompatible, the method performs online correction to generate a corrected application output for X.
US11508050B2 Systems and methods for joint learning of complex visual inspection tasks using computer vision
A method for performing automatic visual inspection includes: capturing visual information of an object using a scanning system including a plurality of cameras; extracting, by a computing system including a processor and memory, one or more feature maps from the visual information using one or more feature extractors; classifying, by the computing system, the object by supplying the one or more feature maps to a complex classifier to compute a classification of the object, the complex classifier including: a plurality of simple classifiers, each simple classifier of the plurality of simple classifiers being configured to compute outputs representing a characteristic of the object; and one or more logical operators configured to combine the outputs of the simple classifiers to compute the classification of the object; and outputting, by the computing system, the classification of the object as a result of the automatic visual inspection.
US11508049B2 Deep neural network processing for sensor blindness detection in autonomous machine applications
In various examples, a deep neural network (DNN) is trained for sensor blindness detection using a region and context-based approach. Using sensor data, the DNN may compute locations of blindness or compromised visibility regions as well as associated blindness classifications and/or blindness attributes associated therewith. In addition, the DNN may predict a usability of each instance of the sensor data for performing one or more operations—such as operations associated with semi-autonomous or autonomous driving. The combination of the outputs of the DNN may be used to filter out instances of the sensor data—or to filter out portions of instances of the sensor data determined to be compromised—that may lead to inaccurate or ineffective results for the one or more operations of the system.
US11508041B2 Method and apparatus for reconstructing a point cloud representing a 3D object
The present disclosure concerns a method for reconstructing a point cloud representing a 3D object from an inverse-projected point cloud obtained by inverse-projecting at least one depth image of an original point cloud, said at least one depth image being obtained by projecting points of the original point cloud onto at least one surface, said method comprising the steps of detecting at least one missing part in the inverse-projected point cloud, and completing said at least one missing part based on points in the neighborhood of said at least one missing part.
US11508039B2 Image processing apparatus, image processing method, and storage medium
There is provided an apparatus including a first correction unit configured to acquire a first corrected pixel using the covariance matrix, a determination unit configured to determine whether the first corrected pixel is abnormal, a second correction unit configured to acquire a second corrected pixel by performing a second correction on a pixel at a position of the first corrected pixel determined to be abnormal.
US11508038B2 Image processing method, storage medium, image processing apparatus, learned model manufacturing method, and image processing system
An image processing method for generating an estimated image in which a defocus blur shape in a captured image is corrected includes a first step of acquiring input data including the captured image and shape designating information that designates a defocus blur shape in the estimated image, and a second step of inputting the input data to a machine learning model and of generating the estimated image.
US11508033B2 Display-covered camera
One embodiment provides a method, including: receiving, at an information handling device having a display, an indication to capture an image of a scene using a camera sensor positioned underneath the display; capturing, responsive to the receiving, a plurality of partial images of the scene, wherein the capturing comprises adjusting, using an adjustment mechanism, a physical position of the camera sensor after each of the plurality of partial images of the scene are captured; and stitching, subsequent to the capturing, the plurality of partial images together to form the image of the scene. Other aspects are described and claimed.
US11508031B2 Warping data
A method of warping data includes the steps of providing a set of target coordinates x∈N, calculating, by a warping engine, source coordinates x′∈N for the target coordinates x∈N, requesting, by the warping engine, data values for a plurality of source coordinates from a cache, and computing, by the warping engine, interpolated data values for each x in a neighborhood of x′ from the data values of the source coordinates returned from the cache. Requesting data values from the cache includes notifying the cache that data values for a particular group of source points will be needed for computing interpolated data values for a particular target point, and fetching the data values for the particular group of source points when they are need for computing interpolated data values for the particular target point.
US11508030B2 Post capture imagery processing and deployment systems
A post capture imagery processing system is provided. The system is for use with aerial imagery and includes a server having a processor and a memory and a software application providing instruction to the server to process the captured aerial imagery, such as spherical imagery. The server further includes instructions to geo-rectify the spherical imagery. The geo rectifying of the spherical imagery may include one of use of a third party GIS map to associate corresponding data with the spherical imagery in order to produce a geo-referenced spherical image, or calculate the geo-references by a software application performing particular operations on the server.
US11508019B2 Regulating charging and discharging of an energy storage device as part of an electrical power distribution network
A system and a method for regulating charging and discharging of an energy storage device as part of an electrical power distribution network is described. The invention is a smart control algorithm for a bi-directional switch in which an energy storage device, such as a battery set, is charged when electricity prices are low and discharged when electricity prices are high. The invention uses two different types of pricing data: forecasted price data and real-time price data. The forecasted price data is used to set a threshold. When the real-time price data of electricity exceeds this threshold, the energy storage device is set to discharge and send power to the grid. Otherwise the energy storage device is set to charge. The threshold is set periodically, typically in 30 minute to several hour intervals to capture the latest data.
US11508017B2 Information processing apparatus, information processing method for image processing, and storage medium
Technologies are provided for correlating experimental biological datasets. The disclosed technologies may be used for data dependent socialization for life scientists and organizations. Data dependent socialization may be based on statistical correlations between experimental life science data.
US11508016B1 Determining a resource for a place based on three-dimensional coordinates that define the place
Receiving a dataset and parsing from the dataset an XP coordinate value on an x-axis, a YP coordinate value on a y-axis, and a ZP coordinate value on a z-axis all within a domain having 3-dimensional features. The x-axis and y-axis are perpendicular and define a horizontal earthbound main surface. The ZP coordinate value is on the z-axis perpendicular to the horizontal earthbound main surface. The XP, YP and ZP define a place associated with a 3-dimensional feature. Stored resource rules for places in the domain are accessed that indicate a first resource if the ZP has a first value, and a second resource if the ZP has a second value. One of the resource rules that applies to the place is identified based on XP, YP and ZP. A resource for the dataset is determined by applying the identified rule. The resource is caused to be transmitted.
US11508015B1 Method and system for automatically detecting use of an alarm system
A system and method for automatically detecting if a home alarm system is being used and/or actively monitored are disclosed. The system and method use data gathered from one or more sensors, including audio information from microphones. The audio information is analyzed using a machine learning system to determine if the alarm system is being regularly used and monitored. The system and method can also automatically update a policy holder's insurance policy to reflect whether or not an alarm system is being used.
US11508014B1 Structural characteristic extraction using drone-generated 3D image data
A structural analysis computing device may generate a proposed insurance claim and/or generate a proposed insurance quote for an object pictured in a three-dimensional (3D) image. The structural analysis computing device may be coupled to a drone configured to capture exterior images of the object. The structural analysis computing device may include a memory, a user interface, an object sensor configured to capture the 3D image, and a processor in communication with the memory and the object sensor. The processor may access the 3D image including the object, and analyze the 3D images to identify features of the object—such as by inputting the 3D image into a trained machine learning or pattern recognition program. The processor may generate a proposed claim form for a damaged object and/or a proposed quote for an uninsured object, and display the form to a user for their review and/or approval.
US11508011B1 Systems and methods for environmental analysis based upon vehicle sensor data
A system for analyzing the environment of a vehicle i) receives a plurality of data from at least one sensor associated with a vehicle, such that the plurality of data includes at least one environmental condition at a location; (ii) analyzes the plurality of data to determine the at least one environmental condition at the location; (iii) determines a condition of a building at the location based upon the at least one environmental condition; (iv) determines an insurance product for the building based upon the determined condition associated with the building; and (v) generates an insurance quote for the insurance product. As a result, the speed and accuracy of insurance providers learning about potential clients and the conditions of the potential client's property and needs is increased.
US11508009B1 Trade asset card
The innovation disclosed and claimed herein, in one aspect thereof, comprises systems, methods and computer program products that enable transactions requested by a user using a trade asset card. The innovation enables the transactions to be completed in real time or near real time per pre-determined rules and settings, or audited changes to rules and settings, while staying perpetually invested in the user's investment portfolio.
US11508001B2 Dynamic checkout page optimization using machine-learned model
In an example embodiment, a method for processing payments made via an electronic payment processing system is provided. An example method includes obtaining training data from a data source. The training data relates to prior purchases made via the electronic payment processing system, wherein the data source includes, in some examples, only a checkout page in a purchase transaction funnel. Features associated with a negative user action in relation to prior purchases are identified. A machine learning algorithm produces a dynamic transactional behavior score indicative of a probability that a purchase will invoke a negative user action.
US11508000B2 Systems to fulfill a picked sales order and related methods therefor
A number of embodiments can include a system. The system can include one or more processors and one or more non-transitory computer-readable storage devices storing computing instructions. The computing instructions can be configured to run on the one or more processors and perform: receiving a request for a picked order that can comprise: a conveyance type; and one or more goods; estimating a fulfillment time interval to make ready the one or more goods of the picked order by: evaluating whether the picked order is able to be batched in a picked order batch; and when the picked order is able to be batched, evaluating the conveyance type to determine a conveyance type average fulfilment time interval; determining, using the fulfillment time interval, as estimated, and the conveyance type average fulfilment time interval, a receivable clock time at which to promise the one or more goods for receipt by a receiver; and communicating the receivable clock time to an electronic device of the receiver. Other embodiments are also disclosed herein.
US11507998B2 Matching techniques for data transaction requests with private attributes
A computer system is provided that includes a paired list of data transaction requests on which a matching process is performed. There are multiple different types of data transaction requests that are stored in the paired list including data transaction requests with midpoint attributes and data transaction requests with discretion attributes. The computer system may determine how the multiple different types of data transaction requests may be match against each other. Two matching processes can be used to determine if a match exists between the first and second sides of the paired list. Matches that are determined at private values are not disseminated to third-parties via public market data feeds.
US11507997B2 Recommender system for recommending vehicles
Systems and methods relating to recommending vehicles similar to a first vehicle based on telematic data and vehicle manufacturing data and using machine learning techniques, and systems and methods for ranking recommended vehicles according to evaluation criteria are disclosed.
US11507996B1 Catalog item selection based on visual similarity
Methods, systems, and computer-readable media for catalog item selection based on visual similarity are disclosed. A similarity detection system selects candidate items for an unavailable item in a catalog. The candidate items are selected from one or more item categories in which the unavailable item is classified. The system determines respective similarity scores for at least some of the candidate items with respect to the unavailable item. For a particular candidate item, the similarity score is determined based at least in part on a visual similarity between an image of the unavailable item and an image of the particular candidate item. The system selects, from the candidate items, a set of visually similar items to the unavailable item based at least in part on the similarity scores. The visually similar items are available to the user.
US11507989B2 Multi-label product categorization
Systems, device and techniques are disclosed for multi-label product categorization. A catalog entry and a list of categories may be received. The catalog entry may be associated with an item. A textual description may be generated by comparing words in the catalog entry to existing vocabularies of words and applying part-of-speech tagging to the catalog entry. A feature vector may be generated from the textual description by applying any of token frequency feature creation, term frequency-inverse document frequency feature creation, and pre-trained word embeddings to the textual description. A set of probabilities may be determined by inputting the feature vector into a machine learning model. The set of probabilities may include a probability for each category in the list of categories.
US11507987B2 Non-transitory computer-readable recording medium and charge calculation method
A charge calculation method executed by a processor included in a computer to execute a process, the process includes determining a degree of possibility that a virtual machine having redundant configuration exists in a plurality of virtual machines that provide a service, calculating a difference of charges for using the service before and after a first virtual machine among the plurality of virtual machines is migrated to an another location different from a location where the first virtual machine is located, and displaying the degree of possibility and the difference with respect to the service.
US11507985B2 Platform for providing customizable user brand experiences, sponsorship junctions, and conversion attribution
A computer-readable medium that, when executed on a server, establishes processes for providing a brand sponsorship environment, the processes including providing a computer-implemented platform establishing a sponsorship junction involving, in case 1, a set of trigger-monitorable activities defined by a set of sponsoring brands or, in case 2, a subset of the trigger-monitorable activities defined by the set of sponsoring brands.
US11507984B2 Generating personalized banner images using machine learning
A machine is configured to generate in real time personalized online banner images for users based on data pertaining to user behavior in relation to an image of a product. For example, the machine receives a user selection indicating one or more data features associated with the user. The one or more data features include a data feature pertaining to user behavior in relation to an image of a product. The machine generates, using a machine learning algorithm, a data representation of the machine learning algorithm based on the one or more data features including the data feature pertaining to user behavior in relation to the image of the product. The data representation includes one or more data features pertaining to one or more characteristics of online banner images. The machine generates an online banner image for the user based on the data representation.
US11507981B2 Automated lists
A system including one or more processors and one or more non-transitory computer-readable media storing computing instructions configured to run on the one or more processors and perform: receiving transaction data comprising items previously purchased; comparing the first item to the second item; identifying the first item to be related to the second item; aggregating the first product type and the second product type into a first category bundle having a first theme defined by the first and second product types; assigning a first affinity score to the first and second items based on the transaction data; detecting the first item as being a first item of interest; and when the first affinity score of the first item exceeds a threshold, displaying, to the user while browsing the one or more websites, the first category bundle comprising the first and second items. Other embodiments are described.
US11507980B2 System and method for electronic correlated sales and advertising
A system is disclosed for presenting advertisements for products and related products for a consumer based on the products being purchased.
US11507979B2 Method and apparatus for providing network information
Aspects of the subject disclosure may include, for example, a method for processing an advertising request message, including, receiving an advertising request message from a mobile device, determining if an advertising exchange server associated with the advertising request is permitted to receive enhanced information associated with the mobile device if a service provider is permitted to provide location information associated with the mobile device responsive to determining that the advertising exchange server associated with the advertising request is permitted to receive the enhanced information, responsive to determining that the service provider is permitted to provide location information, adding location information associated with the mobile device to a header of the advertising request message, and transmitting the advertising request message to the advertising exchange server. Other embodiments are disclosed.
US11507975B2 Information processing method and apparatus
A method of generating content information that matches at least one stored keyword is described. At least one keyword associated with content information is stored. At least one previously searched keyword in a search record is matched with the at least one stored keyword associated with the content information. First-category mapping data is generated based on a first mapping between the matched at least one stored keyword and the at least one previously searched keyword. Second-category mapping data is generated based on the content information and the at least one stored keyword. A received target keyword is determined to be included in the first-category mapping data. In response to the received target keyword, which is included in the first-category mapping data, circuitry of a terminal searches for the content information associated with the target keyword in the second-category mapping data and displays the content information.
US11507974B2 Presenting and ordering content items within a scrollable content unit to a social networking system user
A social networking system provides content items to a user via a feed that may include one or more sponsored content items. Multiple sponsored content items may be included in a set that is presented in the feed via a scrollable content unit that presents a sponsored content item from the set and presents additional sponsored content items from the set when user interaction is received. To place sponsored content items in the feed, the social networking system scores a set of sponsored content items based on prior user interactions with content presented via scrollable content units and a bid amount of a sponsored content item in the set. The set of sponsored content items is ranked among other sponsored content items based on its score. If the set of sponsored content items is selected for inclusion in the feed, the social networking system orders the sponsored content items in the set for presentation via the scrollable content unit.
US11507965B2 Tire inventory decision support system
A tire inventory decision support system (100) optimizes tire allocations across a plurality of trade areas for local tire dealers, as well as regional trade areas for tire repositories as regional fulfillment hubs. The system defines trade areas having demographic tire demand characteristics and corresponding to an available inventory population for respective dealers. For each trade area, optimal dealer inventory populations are projected for tire sizes and brands, based in part on the available inventory population for the dealer an actual inventory population for the associated tire repository. The system compares the optimal inventory population for each dealer to actual inventory population, and selectively generates dealer interfaces displaying recommendations for tire inventory modification based on value propositions as disparities between the optimal and actual inventory populations. The system may further identify value propositions for inventory reallocation by regional hubs themselves, based on aggregated inventory for associated dealers.
US11507962B2 Counterfeit item detection system
A counterfeit item detection system detects counterfeit items during an item listing processes provided by an online marketplace. The system enhances the ability of the online marketplace to identify and reject potential counterfeit items. The system collects item data in various formats. The item data is analyzed using speech-to-text software and natural language processing to determine data elements representing items, item features, and language context. Questions are generated using the items and item features, and stored for each item. Answers to the questions have associated counterfeit indication weights. The weights are modified and used to rank the questions as feedback is received about counterfeit items. The ranking determines future question selection, allowing the best questions to continually be identified and provided. The counterfeit item detection system also trains a neural network to detect counterfeit items in images, where the training images are obtained from videos related to the item.
US11507960B2 System and method for handling lost item in autonomous vehicle
A system for handling a lost item in an autonomous vehicle and a server. The vehicle includes a vision sensor configured to respectively capture a first vehicle interior image and a second vehicle interior image when a passenger boards and alights from the vehicle. The vehicle is configured to transmit the captured first vehicle interior image and second vehicle interior image to the server. The server is configured to compare the first vehicle interior image with the second vehicle interior image and transmit lost item information to the passenger when the lost item in the vehicle is sensed.
US11507958B1 Trust-based security for transaction payments
A point-of-sale (POS) application is installed on a computing device of a merchant to process purchase transactions in conjunction with a network-accessible payment processing system. Software is also installed on the computing device to evaluate trustworthiness of the device and to prevent the device from performing sensitive operations such as purchase transactions when the device is deemed to be untrustworthy. The software obtains a security policy from the payment processing system and locally stores the security policy. The security policy specifies trust criteria and enforcement instructions, which can be updated from time to time when the payment processing system is accessible. The software evaluates device trustworthiness by gathering information regarding device conditions and comparing the information to the trust criteria. If the trust criteria are not satisfied, sensitive operations are disabled.
US11507957B2 Smart retail analytics and commercial messaging
A real-time fraud prevention system enables merchants and commercial organizations on-line to assess and protect themselves from high-risk users. A centralized database is configured to build and store dossiers of user devices and behaviors collected from subscriber websites in real-time. Real, low-risk users have webpage click navigation behaviors that are assumed to be very different than those of fraudsters. Individual user devices are distinguished from others by hundreds of points of user-device configuration data each independently maintains. A client agent provokes user devices to volunteer configuration data when a user visits respective webpages at independent websites. A collection of comprehensive dossiers of user devices is organized by their identifying information, and used calculating a fraud score in real-time. Each corresponding website is thereby assisted in deciding whether to allow a proposed transaction to be concluded with the particular user and their device.
US11507955B2 Services for entity trust conveyances
Services for trust conveyances of entities can be provided and managed. In connection with a transaction between first and second devices, a trust management component (TMC) can indicate trust levels of entities associated with the devices with regard to the transaction and/or an action attempted by an entity. With regard to an action attempted by the first entity, the trust level of the first entity can be evaluated to determine whether it is high enough to allow the action to proceed or to have the second entity respond to the action accordingly. If it is not high enough, the second entity, using the second device, can request a trust conveyance from the first entity via the TMC. The TMC can adjust the respective trust levels based on the outcome(s) of the action(s) of the respective entities with regard to executing the transaction.
US11507953B1 Systems and methods for optimizing transaction conversion rate using machine learning
A method for optimizing transaction authorization conversion rates using machine learning includes retrieving payment transaction parameters and authorization results for a plurality of past payment transactions from a database, generating a transaction success model comprising authorization success factors for each of a plurality of payment transaction parameters using a machine learning training phase based on the retrieved payment transaction parameters and authorization results, receiving, at an acquirer processor, a payment transaction from a merchant, modifying one or more parameters of the payment transaction according to the generated transaction success model, and submitting the modified payment transaction to a financial institution for processing.
US11507950B2 Systems and methods for secure normative intermediation of payments processing peripherals
Systems and methods for secure virtualized intermediated configuration and control of payment processing peripheral devices, as may be embodied in a SNIPP system, are provided. Such systems and methods enable the request of purchaser payment information from payment processing peripheral device(s) on behalf of a POS system and the aggregation and association of that purchaser payment information with a corresponding purchase transaction received from the POS system. The purchase transaction and the payment transaction are aggregated and thereby associated; and the resulting aggregated payment transaction is submitted to an electronic payments processing facility that responds with a confirmation indicating ‘acceptance’ or ‘denial’ of the payment transaction. The confirmation is relayed to the POS system and possibly to the payment processing peripheral device(s) such that it may be displayed to the purchaser and/or an attendant.
US11507942B2 Augmented reality card activation experience
Various embodiments are generally directed to enhancing a card activation experience for an authorized card user when activating a new card by at least displaying various types of information related to the new card in augmented reality (AR) and allowing the user to perform the activation itself or experience other aspects of the activation process in AR. Information pertaining the successful activation of the card may also be provided to the user in AR.
US11507940B2 Payment card amplification device
In one aspect, the present disclosure relates to a payment card amplification device comprising a card reader, an amplifier, an antenna, and a power supply. The card reader is configured to read payment card information from a payment card and generate an output signal comprising the payment card information. The amplifier is coupled to receive the card reader output signal and configured to generate an amplified signal comprising the payment card information. The antenna is coupled to receive the amplified signal and transmit the payment card information, wherein the transmitted payment card information can be read by a payment terminal. The power supply is coupled to a power source and configured provide power to the card reader and the amplifier.
US11507939B2 Contactless card tap pay for offline transactions
Using contactless cards to pay for offline transactions. An application executing on a mobile device may receive, via a communications interface of a contactless card, an account identifier of the contactless card, and transaction data received by the contactless card from a POS device via the communications interface, the transaction data comprising at least an identifier of a merchant account, a timestamp, and an amount of the transaction, a network connection between the POS device and a payment server not available. The application may transmit the account identifier and the transaction data to the payment server via a cellular network connection of the mobile device. The mobile device may receive, from the payment server via the cellular network connection, authorization of a payment for the transaction. The application may generate a graphical indication of the authorization of the payment for the transaction and output the graphical indication of the authorization.
US11507932B2 Cardless ATM connectivity for denomination selection
Disclosed herein are system, method, and computer program product embodiments for providing denomination selection capabilities to account holders withdrawing funds via a cardless ATM system. An account holder may queue an ATM withdrawal in desired monetary denominations from a mobile application running on their mobile device. The account holder may subsequently scan a QR code displayed at an ATM using the mobile application and receive the desired monetary denominations from the ATM, all without using an ATM card. Two other approaches are provided to an account holder when queueing an ATM withdrawal that includes denominations. In a denomination-driven request, the account holder selects denominations first and then receives a list of proximate ATMs that can satisfy the denomination request. In a location-driven request, the account holder selects an ATM first and then can tailor the denomination request to the denominations available in the selected ATM.
US11507919B1 Smart container
A smart container for facilitating operations in a facility is provided. The smart container includes an apparatus configured to store and transport one or more items, one or more electronic devices disposed one or more sides on the apparatus, and a wheel-based charging system coupled to the apparatus and configured to charge one or more battery packs for the one or more electronic devices. The one or more electronic devices are configured to transmit information for monitoring and tracking a position of the smart container throughout an environment.
US11507915B1 System and method for monitoring a transport of a component
A system for monitoring a transport of a component is disclosed. The system includes a plurality of carriers. A system includes a component transported by a plurality of carriers. A system includes a central identification unit coupled to a component. A system includes a central network. A central network is configured to receive a plurality of component data from a central identification unit. A central network is configured to update a plurality of component data. A central network is configured to update a plurality of carrier data as a function of a plurality of component data. Updating a plurality of carrier data includes modifying each plurality of carrier data as a function of at least an alternate plurality of carrier data. A method for monitoring a transport of a component is also disclosed.
US11507913B2 Smart terminal facility and method suitable for the handling of cargo containers
A system and method for operating a terminal facility handling containers may comprise: a sensor set sensing containers entering and/or exiting the facility for providing container identification data and location data to a relational database; and container handling equipment having a sensor set for providing container identification data and location data to the database when a container is grasped and/or released. Sensors may sense when the equipment grasps and/or releases a container for storing a record thereof in the database, and/or geo-tagged identification data and location data relating to carriers that are to pick up and/or to deliver a container is received and stored as records in the database. The relational database contains records representing the current location of each container and each container handling equipment substantially in real time and can estimate arrival time.
US11507910B2 Equipment management method and system based on radio frequency identification
An equipment management method based on radio frequency identification comprises binding a first electronic tag and second electronic tags, reading the first electronic tag in a search mode, obtaining an abnormality list of one or more abnormal tags in the second electronic tags according to the first electronic tag, reading one of the second electronic tags in the search mode, and outputting an error signal when the read second electronic tag matches up to the abnormality list. The first electronic tag is set on a test machine, the second electronic tag are respectively set on test elements, and the test elements are disposed in the test machine.
US11507908B2 System and method for dynamic performance optimization
A system for value prediction for dynamic performance optimization includes a project value predictor that receives a Key Performance Indicator (KPI) and an initiative relating to an active project having a closure date. The KPI is associated with a KPI period including multiple intervals. The project value predictor operates to identify a relevant cluster of KPIs for the KPI based on historical data, forecast a future value of the KPI based on attributes/features of the KPI relative to the closure date, predict a possibility of failure of the KPI using a trained data model to pre-classify the KPI, categorize the KPI based on the future value or the pre-classification, where the KPI is categorized as failure based on the future value being less than a target KPI value after the KPI period and added to list for retraining the model based on the categorization. The system also leads to the identification and subsequent validation of Initiatives that impact the KPIs with quantification of the level of impact.
US11507902B2 System and method for vehicle project tracking
A method includes receiving first location information of a first vehicle, and associating the first vehicle with a first project. The method also includes receiving second location information from a second vehicle, and associating the second vehicle with a second project. The method further includes providing, to an electronic device, instructions to output a user interface that includes a map, and a first visual indicia displayed on the map at a first location corresponding to the first location information, where the first visual indicia indicates that the first vehicle is associated with the first project. The user interface further includes a second visual indicia displayed on the map at a second location corresponding to the second location information, where the second visual indicia indicates that the second vehicle is associated with the second project, and is different from the first visual indicia.
US11507898B2 System and method for dynamic multi-objective optimization of machine selection, integration and utilization
The invention provides control systems and methodologies for controlling a process having computer-controlled equipment, which provide for optimized process performance according to one or more performance criteria, such as efficiency, component life expectancy, safety, emissions, noise, vibration, operational cost, or the like. More particularly, the subject invention provides for employing machine diagnostic and/or prognostic information in connection with optimizing an overall business operation over a time horizon.
US11507893B2 Method for exploiting charging stations
Method for exploiting a network of electrical charging stations for motor vehicles. The method includes (a) a step in which a station is reserved via a reservation center and the center transmits to the vehicle a response comprising access data providing access to the station, and (b) a step in which, when the vehicle is less than 100 meters from the station, the vehicle requests access to the station and the station provides access to the electrical power available via a socket of the station. In step (b), the communication between the vehicle and the station is a local electromagnetic communication, preferably at a frequency comprised between 2400 and 2500 MHz.
US11507892B1 Determining a target recommendation based on historical transaction data
Certain aspects of the present disclosure provide techniques for determining a target recommendation for a transaction based on historical transaction data. An example technique for determining the target recommendation for a transaction based on historical data includes receiving a request for a target recommendation and transaction parameters from a user. Based on the transaction parameters, one or more subsets of historical transaction data are retrieved, and a respective weight applied to generate the target recommendation. Based on which of the one or more retrieved subsets of historical transaction data and respective weight(s) applied generate the target recommendation, a confidence level is generated. A determination is made whether the confidence level meets a minimum confidence level. Based on the determination that the confidence level meets the minimum confidence level, the target recommendation is provided.
US11507891B2 Determining availability of conference rooms
Examples disclosed herein provide the ability to determine the availability of a conference room. In one example, a computing device may determine whether there is a user present in a conference room, determine scheduling of the conference room, and illustrate, on a display outside the conference room, availability of the conference room.
US11507890B2 Ensemble model policy generation for prediction systems
Embodiments for ensemble policy generation for prediction systems by a processor. Policies are generated and/or derived for a set of ensemble models to predict a plurality of target variables for streaming data such that the plurality of policies enables dynamic adjustment of the prediction system. One or more of the policies are updated according to one or more error states of the set of ensemble models.
US11507888B2 Training method and device for machine translation model and storage medium
A training method for a machine translation model, includes: obtaining a multi-domain mixed training data set; performing data domain classification on a plurality of training data pairs in the training data set to obtain at least two domain data subsets; based on each domain data subset, determining at least two candidate optimization targets for the domain data subset, and training at least two candidate single domain models corresponding to each domain data subset based on the at least two candidate optimization targets, respectively; testing the at least two candidate single domain models corresponding to each domain data subset separately, and selecting a candidate optimization target with a highest test accuracy as a designated optimization target for the domain data subset; and training a hybrid domain model based on each domain data subset in the training data set and the designated optimization target corresponding to each domain data subset.
US11507886B2 Vectorization of structured documents with multi-modal data
Methods, systems, and computer-readable storage media for receiving structured data including a set of columns and a set of rows, determining, for each column, a column width defining a number of characters, providing, for each row, a set of padded values, each padded value corresponding to a column and including a value and one or more padding characters, the value and the one or more padding values collectively having a length equal to a respective column width, defining a set of strings by, for each row, concatenating padded values in the set of padded values to provide a string, and training the ML model by providing, for each string in the set of strings, an embedding as an abstract representation of a record of a respective row and processing the embedding through an attention layer of the ML model.
US11507885B2 Machine learning device, control device, and machine learning search range setting method
A machine learning device that searches for a first parameter of a component of a servo control device that controls a servo motor includes: a solution detection unit that acquires a set of evaluation function values used during machine learning or after machine learning, plots the set of evaluation function values in a search range of the first parameter or a second parameter used for searching for the first parameter, and detects whether a search solution is at an edge of the search range or is in a predetermined range from the edge; and a range changing unit that changes the search range to a new search range of the first parameter or the second parameter based on the estimation made on evaluation function values of an evaluation function expression when the search solution is at the edge of the search range or is in the predetermined range.
US11507879B2 Vector representation of words in a language
A method, system, and non-transitory compute readable medium for vector representation of a sequence of items, including training a sequence using a first distributed representation, such that a new distributed representation is produced for which vector entries of the new distributed representation are amplified to create dominant dimensions for when the vector entries of each item correspond to a class of an item to be explained and fractionalizing vector entries of each item that do not correspond to the class of the item to be explained such that the dominant dimensions correspond to higher absolute value entries than the fractionalized vector entries in order to emphasize the dominant dimensions.
US11507878B2 Adversarial training for event sequence analysis
Techniques are disclosed for the generation of adversarial training data through sequence perturbation, for a deep learning network to perform event sequence analysis. A methodology implementing the techniques according to an embodiment includes applying a long short-term memory attention model to an input data sequence to generate discriminative sequence periods and attention weights associated with the discriminative sequence periods. The attention weights are generated to indicate the relative importance of data in those discriminative sequence periods. The method further includes generating perturbed data sequences based on the discriminative sequence periods and the attention weights. The generation of the perturbed data sequences employs selective filtering or conservative adversarial training, to preserve perceptual similarity between the input data sequence and the perturbed data sequences. The input data sequence may be created by vectorizing a temporal input data stream comprising words, symbols, and the like, into a multidimensional vectorized numerical data sequence format.
US11507877B2 Application functionality optimization
A method, apparatus, and system provide the ability to optimize execution of an application. An application is acquired. The application includes functions, and each function has a corresponding feature flag that determines whether the corresponding function is executed. Execution conditions of execution of the application are monitored at run-time (in a machine learning module). The machine learning module recognizes a pattern relating to the execution conditions to determine a stress relating to the execution of the application. During execution of the application, the machine learning module toggles the feature flags based on the pattern and the stress such that the corresponding functions do not execute.
US11507874B2 System and method for sharing quantum information
A method of sharing address information using quantum states includes storing a number, M, of first qubits in a quantum store at a source node and storing classical information tagged to the M first qubits in a classical store at the source node, where the classical information describes a destination node where the M first qubits share entangled qubits. The M first qubits are measured at the source node and a random number is generated that represents an address of the destination node using the measured M first qubits and the classical information describing the destination node. A packet is sent from the source node that includes the generated random number in a quantum address field and further includes data intended for the destination node in a data field. A number, M, of second qubits is stored in a quantum store at the destination node, wherein each of the M first qubits is entangled with a respective one of the M second qubits. The M second qubits is measured at the destination node and a random number is generated using the measured M second qubits. The sent packet is received at the destination node. The generated random number in the quantum address field is compared at the destination node with the generated random number using the measured M second qubits. A match is determined at the destination node between the compared generated random number in the quantum address field and the generated random number using the measured M second qubits.