Document Document Title
US11290190B2 Method and apparatus for automatic signal gain setting
An apparatus for automatic amplifier gain setting of an optical amplifier, said apparatus comprising an optical channel counter, OCC, unit configured to detect a number of channels present in an optical transmission spectrum; a determination unit configured to determine an average power per channel calculated by dividing a measured total power of a signal input and/or signal output of the optical amplifier by the number of channels detected by said optical channel counter, OCC, unit and a gain adjustment unit configured to adjust the amplifier gain of said optical amplifier automatically depending on a calculated power difference between a predetermined desired power per channel and the determined average power per channel provided by said determination unit.
US11290189B2 Optical communication system and optical communication method
To provide an optical communication system and an optical communication method able to achieve a high reliable access network capable of long haul distance transmission considering the optical energy efficiency even if the user distribution is biased. An uneven branch optical splitter included in an optical communication system according to the present invention can output the optical intensities different for each output port by adjusting the branching configuration and the branching ratio. For example, a reach transmission distance of the farmost user can be extended or the number of connectible users can be increased by adjusting the branching configuration of the uneven branch optical splitter or the branching ratios such that the near minimum reception sensitivity is given for the ONU installed near the telecommunications carrier.
US11290188B2 Fiber optical communication system using asymmetric optical waveguide splitter
An optical communications system includes a laser transmitter to generate an optical signal and a first optical fiber network coupled to transmit the optical signal from the laser transmitter system. A first latchable, asymmetric coupler is disposed along the first optical fiber network to receive the optical signal, and has a first tap output that receives a selected and alterable first fraction of the optical signal. A second latchable, asymmetric coupler is disposed along the first optical fiber network to receive the optical signal from the first latchable asymmetric coupler and has a second tap output that receives a selected and alterable second fraction of the optical signal incident at the second latchable. In certain embodiments the first and second couplers are capable of operating at any of at least three tapping fractions.
US11290185B2 Remote optical fiber dispersion compensation device and method, remote access device, electronic device and non-transient computer-readable storage medium
Provided by the embodiments of the present invention are a remote optical fiber dispersion compensation device and method, the dispersion compensation device comprising: a distance measurement module, used for measuring a remote distance to a remote access optical fiber; a channel monitoring module, used for monitoring the spectral power of a transmission service wavelength channel; and a remote optical fiber dispersion power equalization module, used for compensating the dispersion of a transmission service signal and adjusting the insertion loss of the wavelength channel according to the measured remote distance of the remote access optical fiber and the monitored spectral power of the transmission service wavelength channel. By employing the embodiments of the present invention, compensation amounts of different channels may be flexibly selected by means of a wavelength selection switch, dispersion may be compensated for remote optical fiber transmission and the insertion loss may be adjusted for different channels by presetting dispersion compensation optical fibers of different lengths, thus achieving compensation and equalization of dispersion and power difference introduced by remote optical fibers of different lengths.
US11290184B2 Switchable dispersion compensating module
An optical fiber transmission system and method for using the system are provided. The system may include a span of transmission fiber for transmitting light signals through the optical fiber transmission system. The system may include a dispersion compensating module coupled to the span of transmission fiber. The system may include a switchable module including a set of selectable light signal paths, the set of selectable light signal paths including at least one path through a dispersion compensating element. The system may include a processor coupled to the switchable module for selectively monitoring the set of selectable light signal paths, where the processor is further configured to derive a metric based on the set of selectable light signal paths for controlling the dispersion compensating module.
US11290182B2 Methods and devices for communication of data between electronic vaping device and external device
An embodiment of an electronic vaping device includes: a memory; a light emitting device configured to optically transmit information associated with the electronic vaping device to an external device; and processing circuitry coupled to the memory and the light emitting device. The processing circuitry may be configured to: collect the information associated with the electronic vaping device; store the information in the memory; detect a triggering event; and initiate optical transmission of the information by the light emitting device in response to detecting the triggering event.
US11290181B1 System and method for measurement of entangled photons wavefunctions
Measurement of entangled photon quantum wavefunction properties is vital for studying the fundamentals of entanglement and for future applications in quantum communications, quantum metrology, quantum sensing and imaging. Despite its importance, measuring the wavefunction is difficult, particularly in pulsed and other systems with system features and wavefunctions changing in space and time. This invention uses ghost imaging techniques to directly measure the entangled photon wavefunction of pulsed origin temporal and polarization entangled photons. The invention may be used to improve wavefunction quality after propagation through turbulent or scattering media.
US11290180B1 Adaptive buffer region for line-of-sight network planning
Architectures and techniques are presented that improve or enhance a network planning procedure such as by selecting a more efficient test buffer that is used to identify objects that might intersect a Fresnel zone between two transceivers. An improved test buffer (e.g., buffer region) can be one that is constructed from a plurality of rectangles situated along a line of sight of the two transceivers and that are oriented according to cardinal directions.
US11290174B2 Beam selection for communication in a multi-transmit-receive point deployment
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine, based at least in part on a determination that a scheduling offset is less than a beam switching latency threshold, a set of beams for communicating with a set of transmit-receive points (TRPs), that use single downlink control information for scheduling, based at least in part on at least one of a transmission configuration indicator codepoint mapping or a control resource set configuration. The UE may communicate with the set of TRPs using the set of beams based at least in part on determining the set of beams. Numerous other aspects are provided.
US11290168B2 Method and device for transmitting and receiving channel state information, communication node, and storage medium
Provided are a method and apparatus for transmitting and receiving channel state information, a communication node, and a storage medium. A CSI matrix H is decomposed to obtain a vector group, where the vector group comprises at least two vector matrices, element information of at least one vector matrix in the vector group is quantized, and the quantized element information is transmitted.
US11290166B2 Electronic device for controlling beam based on data obtained by camera and method for the same
An electronic device and an operation method of an electronic device are provided. The electronic device includes at least one mmWave antenna module configured to include a plurality of antennas, a camera capable of measuring a distance between an external object and the electronic device, a communication processor configured to be operationally connected to the at least one mmWave antenna module, and an application processor configured to be operationally connected to the camera and the communication processor.
US11290162B2 Systems and methods for mitigating interference within actively used spectrum
An apparatus, system, and method for mitigating interference within an actively used spectrum. For example, one embodiment of a system comprises: a first wireless network operating with a first protocol and comprising a plurality of wireless transceiver stations that share a cell ID and collectively transmit a plurality of simultaneous non-interfering precoded data streams to a plurality of user equipment (UE) within the same frequency band, a second wireless network operating with a second protocol and comprising one or a plurality of antennas, wherein the first wireless network creates one or a plurality of points of zero radio frequency (RF) energy at the location of the one or at least one of the plurality of antennas.
US11290160B2 Method for transmitting feedback information for three-dimensional MIMO on basis of beamformed reference signal in wireless communication system, and apparatus therefor
The present disclosure provides a method for transmitting, by a user equipment, feedback information to a base station in a wireless communication system. The method includes receiving, from the base station, information about reference signal port group sets composed of one or more reference signal port groups; selecting at least one reference signal port group set among the reference signal port group sets; under assuming that a specific precoder has applied to the selected at least one reference signal port group set, calculating channel state information (CSI) corresponding to the selected at least one reference signal port group set; and transmitting, to the base station, the feedback information including an indicator indicating the selected at least one reference signal port group set and the channel state information; wherein the one or more reference signal port groups are composed of reference signal ports to which the same precoder is applied.
US11290158B2 Signaling RX/TX beamforming linkage for MIMO systems
The specification and drawings present methods and apparatuses for feedback signaling for beamforming purposes in a multiple input-multiple output (MIMO) radio environment. According to an embodiment of the invention, a mobile device is configured to measure an integer number P of different beam groups, each group representing one or more transmit beams and each group corresponding to one or more antenna ports at the mobile device. The mobile device is triggered according to the configuration to provide feedback. The radio access node transmits reference signals on each of the transmit beams across all of the groups for measurement by the mobile device and receives the triggered feedback including, for each of the different beam groups, at least one best match between a transmit beam of the respective group and a corresponding antenna port and an indication of measurement results for the best match.
US11290156B2 Communications method and device
Disclosed are a communications method and device. The method includes: sending, by a network device, configuration information to a terminal device; determining, by the terminal device, channel state information CSI measurement behavior and/or CSI feedback related information, where the channel state information CSI measurement behavior and/or the CSI feedback related information are/is related to the configuration information; and performing, by the terminal device, CSI measurement based on the configuration information and the CSI measurement behavior and/or the CSI feedback related information, to obtain at least one piece of CSI, and sending all or some of the at least one piece of CSI to the network device. It can be learned that, in a scenario in which a plurality of transmission modes are supported, according to the foregoing method, the terminal device can measure CSI, and feed back the measured CSI to the network device.
US11290155B2 Method and apparatus for transmitting and receiving feedback information
A method for transmitting feedback information by a terminal may comprise the steps of: receiving, from a base station, information on a feedback group allocated to the terminal in a predefined feedback table; selecting a first feedback index in the allocated feedback group; and transmitting feedback information including the selected first feedback index to the base station, wherein the feedback table includes a plurality of feedback groups, the plurality of feedback groups in the feedback table include predetermined number of feedback indices, respectively, and the plurality of feedback groups in the feedback table have differently configured quantization level resolutions for the feedback information, respectively.
US11290150B2 Systems and methods for implementing high-speed waveguide transmission over wires
Various embodiments describe communication systems for implementing high-speed transmission systems using waveguide-mode transmission over wires. In certain examples, a communication system uses wire pairs as “waveguides” that transmit data at high frequencies and speeds. The data is transmitted through wave propagation that takes various forms, such as surface waves and Total Internal Reflection (TIR) waves.
US11290148B2 Operation method and receiver device
An operation method is implemented by a receiver device. The operation method includes following steps: detecting a signal on a transmission line; performing a channel estimation to acquire a length of the transmission line; comparing the length with at least one length threshold value to generate a comparison result; and adjusting a depth of a FIFO process according to the comparison result.
US11290146B2 Method and apparatus for supporting flexible carrier aggregation in wireless communication system
A method and apparatus for supporting a flexible carrier aggregation in a new radio access technology (RAT) system is provided. A user equipment (UE) reports UE capability for supporting a flexible carrier aggregation in a single cell to a network, receives a configuration of the flexible carrier aggregation from the network, and communicates with the network via multiple physical carriers configured by the flexible carrier aggregation. The multiple physical carriers may be mapped to the single cell by the flexible carrier aggregation. Or, one physical carrier may be mapped to multiple cells by the flexible carrier aggregation.
US11290145B2 Data transmission in synchronization slots
Certain aspects of the present disclosure relate to methods and apparatus for data transmission in synchronization slots. A method for use by a base station for data transmission in synchronization slots includes transmitting a synchronization signal (SS) burst, wherein different SS blocks of the burst are transmitted using different transmit beams and performing frequency division multiplexing (FDM) or time division multiplexing (TDM) to include one or more other types of signals that need to be multicast and are also transmitted using the different transmit beams.
US11290141B2 Protective cover having replaceable male parts and protective cover kit
A protective cover is used for covering and fixing a mobile device selectively fixed to a fastener having a first or second female part. The protective cover includes an elastic protective-cover main body, a first rigid male part and a second rigid male part. The first and second rigid male parts to match first and second female parts of the fastener are selectively engaged with the elastic protective-cover main body. In addition, a protective cover kit is provided to include an elastic protective-cover main body, a rigid male part and a female-part carrier assembly. The female-part carrier assembly includes a universal female part and a female-part carrier. The universal female part, detachably connected with the female-part carrier, is universally used for detachably engaging the first or second connection part of the rigid male part. Thereupon, poor commonality between the male and female parts can be resolved.
US11290139B1 Method and system for controlling interference by dynamically adjusting quantity of antennas
A mechanism to control transmission by a base station, which may help to control interference on an adjacent frequency. The base station is configured to operate on a first frequency and is equipped with a number of antennas enabled for transmission on the first frequency. Upon detecting of a trigger for reducing potential interference on the adjacent frequency, the base station reduces the number of its antennas that are enabled for transmission on the first carrier, which may reduce the overall energy of the base station's transmission and may thereby reduce interference on the adjacent frequency. In an example implementation, the base station could disable a proper subset of its antennas from use for transmission on the first frequency, while leaving a remainder of its antennas enabled for transmission on the first frequency.
US11290134B2 Radio frequency module
Opposite-side frequency bands are opened in a plurality of carrier aggregations. In a radio frequency module, a variable phase shifter differentiates a phase in a first single mode in which signals of a first frequency band are communicated and a phase in a first carrier aggregation mode and differentiates the phase in the first single mode and a phase in a second carrier aggregation mode. The variable phase shifter makes a phase difference between the phase in the first single mode and the phase in the first carrier aggregation mode different from a phase difference between the phase in the first single mode and the phase in the second carrier aggregation mode.
US11290131B2 Bit error detection method and apparatus
A method includes: receiving a first result obtained by performing BIP check on a sent first to-be-checked bit stream; performing BIP check on a received second to-be-checked bit stream to obtain a second result, where the second to-be-checked bit stream is a bit stream received by a receiving device after the first to-be-checked bit stream is transmitted; detecting a type of a control block in the second to-be-checked bit stream, and determining a third result based on impact of the type of the control block on a BIP check result; comparing the first result, the second result, and the third result; and if the first result is different from the second result, the first result is different from the third result, and the second result is different from a predetermined result, determining that a bit error occurs when the first to-be-checked bit stream is transmitted.
US11290129B2 Polar encoder, communication unit, integrated circuit and method therefor
A polar encoder kernel, a communication unit, an integrated circuit and a method of polar encoding are described. The polar encoder kernal is configured to receive one or more bits from a kernal information block having a kernal block size of N; and output one or more bits from a kernal encoded block having a block size that matches the kernal block size N; wherein the polar encoder kernal comprises a decomposition of a polar code graph having multiple columns that are processed by a reused single datapath, at least one of said multiple columns contains two or more stages and where each column of the multiple columns is further decomposed into one or more polar code sub-graphs and is configured to process encoded bits one polar code sub-graph at a time.
US11290126B2 Key scanning method, scan method for key scan circuit, and input device implemented therewith
A key scanning method, a scan method for a key scan circuit, and an input device thereof are provided. The key scanning method comprises performing a first scan procedure which includes triggering a first main scan line and reading electrical signals received via a plurality of signal sensing lines to determine whether any of the keys among a first key group is triggered. Then, performing a second scan procedure which includes triggering at least one of a plurality of secondary scan lines and reading the electrical signals received via the plurality of signal sensing lines to determine whether any of the keys among a second key group is triggered. In the key scanning method, the first scan procedure and the second scan procedure are performed one after another, and each of the secondary scan lines is triggered at least once.
US11290125B2 Multiplexed two-step neural ADC
An analog-to-digital converter, ADC, module is configured to operate in a coarse conversion ADC phase, and a fine conversion ADC phase comprising a delta modulation loop for tracking a signal, wherein the ADC module is configured to, at initiation of input of an analog signal, operate in the coarse conversion ADC phase for determining a coarse digital value; wherein the ADC module is configured to, when the coarse digital value is determined, operate in the fine conversion ADC phase, receive the coarse digital value as an initial approximation of the analog signal and track the analog signal during a finite duration.
US11290122B2 Method and system for an asynchronous successive approximation register analog-to-digital converter with word completion algorithm
Systems and methods for an asynchronous successive approximation register analog-to-digital converter (SAR ADC) with word completion algorithm may include a SAR ADC comprising a plurality of switched capacitors, a comparator, a metastability detector including a timer having a tunable time interval, and a successive approximation register. The SAR ADC may sample input signals at inputs of the switched capacitors; compare signals at outputs of the switched capacitors, each for a respective bit; sense whether a metastability condition exists for the comparator using the timer and setting a metastability flag upon each metastability detection for each bit; increase a value of the tunable time interval if more than one metastability flag is set during conversion of a sampled input signal; decrease a value of the tunable time interval if no metastability flags are set; and use the flags for a word completion in the cases when not all the bits have been evaluated.
US11290118B2 Frequency synthesizer
A frequency synthesizer includes a phase-locked loop (PLL). The PLL includes a first voltage-controlled oscillator (VCO) and a second VCO, each comprising an oscillator, a capacitor bank, and a bias circuit. The capacitor bank is configured to selectably adjust an output frequency of the oscillator. The bias circuit is configured to provide a bias current to the oscillator, and includes a current digital-to-analog converter (IDAC), and an amplifier coupled to the IDAC and configured to drive the oscillator.
US11290116B2 Control circuit of delay lock loop and control method thereof
A control circuit of delay lock loop and a control method thereof are provided. The control circuit includes a power status detector, a voltage comparator, an enable signal generator and a control signal generator. The power status detector detects a transition edge of a clock enable signal to generate a trigger signal corresponding to a variation of an operation power. The voltage comparator compares the operation power with a reference voltage to generate a comparison result. The enable signal generator sets an enable signal to an active state according to the trigger signal and sets the enable signal to a non-active state according to the comparison result. The control signal generator outputs a control clock to generate a control signal when the enable signal is in the active state.
US11290112B1 Majority logic gate based XOR logic gate with non-linear input capacitors
A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. The majority node is then coupled driver circuitry which can be any suitable logic gate such as a buffer, inverter, NAND gate, NOR gate, etc. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. Bringing the majority output close to rail-to-rail voltage eliminates the high leakage problem faced from majority gates formed using linear input capacitors.
US11290110B2 Method and system for providing a variation resistant magnetic junction-based XNOR cell usable in neuromorphic computing
A hardware cell and method for performing a digital XNOR of an input signal and weights are described. The hardware cell includes input lines, a plurality of pairs of magnetic junctions, output transistors and at least one selection transistor coupled with the output transistors. The input lines receive the input signal and its complement. The magnetic junctions store the weight. Each magnetic junction includes a reference layer, a free layer and a nonmagnetic spacer layer between the reference layer and the free layer. The free layer has stable magnetic states and is programmable using spin-transfer torque and/or spin-orbit interaction torque. The first magnetic junction of a pair receives the input signal. The second magnetic junction of the pair receives the input signal complement. The output transistors are coupled with the magnetic junctions such that each pair of magnetic junctions forms a voltage divider. The output transistors form a sense amplifier.
US11290109B1 Multibit multi-height cell to improve pin accessibility
A MOS IC includes a MOS logic cell that includes first and second sets of transistor logic in first and second subcells, respectively. The first and second sets of transistor logic are functionally isolated from each other. The MOS logic cell includes a first set of Mx layer interconnects on an Mx layer extending in a first direction over the first and second subcells. A first subset of the first set of Mx layer interconnects is coupled to inputs/outputs of the first set of transistor logic in the first subcell and is unconnected to the second set of transistor logic. Each of the first subset of the first set of Mx layer interconnects extends from the corresponding input/output of the first set of transistor logic of the first subcell to the second subcell, and is the corresponding input/output of the first set of transistor logic.
US11290107B2 High-voltage output driver for a sensor device with reverse current blocking
A high-voltage output driver (1) for a sensor device (100) with reverse current blocking comprises a supply node (SN) to apply a supply voltage (VHV) and an output node (OP) to provide an output signal (OS) of the high-voltage output driver (1). The high-voltage output driver (1) comprises a driver transistor (MP0) being disposed between the supply node (SN) and the output node (OP). The high-voltage output driver (1) further comprises a bulk control circuit (20) to apply a bulk control voltage (Vwell) to a bulk node (BMP0) of the driver transistor (MP0), and a gate control circuit (30) to apply a gate control voltage (GCV) to the gate node (GMP0) of the driver transistor (MP0).
US11290106B2 Low-power digital signal processing
Systems and devices are provided to perform low-power digital filtering of sensor or other data based on bitwise operations. A reference sinusoid is encoded via a plurality of pulse trains, such that each pulse train includes a number of pulses n representing a value of the reference sinusoid out of a maximum possible pulses corresponding to an encoding quantization level. A circular register stores a representation of the encoded sinusoid. A set of multiple logical gate blocks are configured to multiply, via one or more bitwise operations, each of multiple bits of a received input signal with a pulse train corresponding to a value of the encoded sinusoid. A logic circuit coupled to the circular register and the set of multiple logical gate blocks is configured to generate, based on the encoded sinusoid and on the input signal, an output signal indicating an approximate value of the received input signal multiplied by the encoded sinusoid.
US11290105B1 High power RF switch with controlled well voltage for improved linearity
RF transistors manufactured using a bulk CMOS process exhibit non-linear drain-body and source-body capacitances which degrade the linearity performance of the RF circuits implementing such transistors. The disclosed methods and devices address this issue and provide solutions based on implementing two or more bias voltages in accordance with the states of the transistors. Various exemplary RF circuits benefiting from the described methods and devices are also presented.
US11290097B2 Semiconductor device
A semiconductor device formed on a semiconductor substrate of a P type includes: a vertical resistor circuit including a resistor of an N type, the resistor forming a current path in a direction perpendicular to a surface of the semiconductor substrate; a Hall element provided on the semiconductor substrate, the Hall element being configured to supply a voltage proportional to a magnetic flux density in the direction perpendicular to the surface of the semiconductor substrate; an amplifier configured to amplify the voltage supplied from the Hall element, and supply the amplified voltage; a current/voltage conversion circuit configured to supply, as a comparison reference voltage, a voltage containing a product of a reference current IREF flowing through the vertical resistor circuit and a resistance value RREF of the vertical resistor circuit; and a comparator configured to receive the voltage supplied from the amplifier and the comparison reference voltage.
US11290091B2 High-speed regenerative comparator circuit
The present disclosure provides a high-speed regenerative comparator circuit, including: a signal input stage connected with an input terminal for differential signal input; a latch for caching and serving as a differential signal output terminal; a current source connected with the signal input stage for providing a power supply voltage; a fast path connected with the output terminal and used for increasing a voltage difference of the output terminal and turning on a positive feedback network of the latch; and a reset switch, including a first reset switch and a second reset switch. In the high-speed regenerative comparator circuit of the present disclosure, the transmission delay of the regenerative comparator circuit can be greatly reduced; and in a latch phase, a bias voltage is disconnected by means of timing control, and thus the power consumption of a comparator can be reduced. The present disclosure has simple circuit and high reliability.
US11290089B2 Generation of pulse width modulated (PWM) pulses
A circuit includes a base pulse generator to generate a first pulse width modulated (PWM) pulse, a first clock generation circuit to generate M clocks of a first frequency and phase-shifted with respect to each other, and a second clock generation circuit to receive the M clocks and to generate N clocks each at a second lower frequency and the M clocks are phase-shifted with respect to each other. Each of a plurality of flip-flops includes a clock input to receive a different one of the N clocks, a data input coupled to receive the first PWM pulse, and a flip-flop output. A selection circuit includes a plurality of inputs and a selection circuit output. Each of the plurality of inputs is coupled to a corresponding flip-flop output. The selection circuit provides, responsive to a control signal, a selected one of the flip-flop outputs as the selection circuit output.
US11290084B2 Apparatus and method for controlling a resonator
A method and apparatus for modifying or controlling a resonator connected to a signal loop having an input (18828), an output (18822), and a closed loop frequency response. The signal loop has a primary resonator (18810) having a primary frequency response. There is at least one adjustable resonator (18812) having an adjustable frequency (f) and a secondary Q-factor. An adjustable scaling block (18824) applies a gain factor (g). A controller is connected to the at least one adjustable resonator (18812) and the adjustable scaling block (18824). The controller has instructions to adjust the closed loop frequency response toward a desired closed loop frequency response by controlling the adjustable frequency (f) of the at least one adjustable resonator (18812) and the gain factor (g) of the adjustable scaling block (18824).
US11290081B2 Resonator element, resonator device, oscillator, electronic device, and vehicle
A resonator element includes a quartz crystal substrate including a supporting section, a resonating section, and a coupling section coupling the supporting section and the resonating section and having thickness smaller than the thickness of the supporting section, the supporting section including a first principal plane and a first side surface coupling the first principal plane and the coupling section, a first excitation electrode disposed in the resonating section, a second excitation electrode disposed in the resonating section and overlapping the first excitation electrode via the resonating section, and first and second pad electrodes including portions disposed on the first principal plane, the first and second pad electrodes being electrically coupled to the first and second excitation electrodes.
US11290076B2 Amplifier circuit, front-end circuit, and receiver circuit
An amplifier circuit includes a first terminal and a second terminal, an amplifier disposed in a first path connecting the first terminal and the second terminal, a first switch circuit disposed in the first path between the amplifier and the second terminal, an attenuator disposed in the first path between the amplifier and the first switch circuit, and a second switch circuit disposed in a second path that is connected to the first terminal and the second terminal while bypassing the amplifier, the attenuator, and the first switch circuit.
US11290074B1 Method and device for power signal generation utilizing a fully-differential power amplifier
The present general inventive concept is directed to a method and system to generate a power signal, including summing a non-inverted reference signal and an inverted feedback signal to output a non-inverted first summation signal, summing an inverted reference signal and a non-inverted feedback signal to output an inverted second summation signal, receiving the first summation signal at a non-inverted input of a differential power output driver, and the second summation signal at an inverted input of the differential power output driver, outputting a non-inverted power signal to a first terminal of an impedance load from a non-inverted output of the differential power output driver, and outputting an inverted power signal to a second terminal of the load from an inverted output of the differential power output driver, the non-inverted power signal also being used as the non-inverted feedback signal, and the inverted power signal also being used as the inverted feedback signal.
US11290073B1 Self-biased differential transmitter
A self-biased differential transmitter is provided. The transmitter may include a differential output driver powered by a supply voltage provided by a differential signal receiver. The output driver may include a bias voltage generator to generate bias voltages to enable one or more transistors in the output driver to operate with differential signals that are beyond the safe operating voltage range of transistors included within the differential transmitter.
US11290072B2 Multi-mode power amplifier
A power amplifier module that includes a power amplifier having a plurality of amplifier gain stages, a memory device including a plurality of memory locations, and a controller to receive a control signal having at least one of a first state and a second state. The plurality of memory locations includes at least one first memory location to store a first set of configuration parameters for operation in a first mode, and at least one second memory location to store a second set of configuration parameters for operation in a second mode. The controller configures the power amplifier module in the first mode based on the first set of configuration parameters responsive to receiving the control signal having the first state and configures the power amplifier module in the second mode based on the second set of configuration parameters responsive to receiving the control signal having the second state.
US11290070B2 Common-mode leakage error calibration for current sensing in a class-D stage using a pilot tone
A system may include a Class-D stage comprising a first high-side switch coupled between a supply voltage and a first output terminal of the Class-D stage, a second high-side switch coupled between the supply voltage and a second output terminal of the Class-D stage, a first low-side switch coupled between a ground voltage and the first output terminal, and a second low-side switch coupled between the ground voltage and the second output terminal. The system may also include current sensing circuitry comprising a sense resistor, such that an output current through a load coupled between the first output terminal and the second output terminal causes a first sense voltage proportional to the output current across the sense resistor. The system may additionally include a modulator for generating a differential pulse-width modulation driving signal to the first high-side switch, the second high-side switch, the first low-side switch, and the second low-side switch and pilot tone injection circuitry configured to inject a periodic pilot tone into the differential pulse-width modulation driving signal at a pilot tone frequency.
US11290067B2 Radio frequency circuit
A radio frequency circuit has an amplifier that amplifies an input radio frequency signal, a power supply path that is disposed between an output node of the amplifier and a power supply node to which a DC bias voltage is supplied, and includes a first inductor and a second inductor connected in series, a first resonator that comprises a third inductor and a first capacitor connected in series to the third inductor, and resonates at a series resonance frequency, a second resonator that resonates at a series resonance frequency corresponding to an inductance of the first inductor, a capacitance of the second capacitor, and a resistance value of the first resistor, and a third resonator that comprises a third capacitor connected in parallel with the second inductor, and resonates at a parallel resonance frequency corresponding to a capacitance of the third capacitor and an inductance of the second inductor.
US11290063B2 Low noise amplifier
A low noise amplifier includes a preamplifier, first differential amplifiers, second differential amplifiers, a signal adder, and a load circuit. The preamplifier receives an input signal, and amplifies the input signal to generate a first signal. The input signal and the first signal have the same phase. The first differential amplifiers receive the first signal and a first reference signal and generate a first output differential signal pair. The second differential amplifiers receive the input signal and a second reference signal and generate a second output differential signal pair. The signal adder adds up the first output differential signal pair and the second output differential signal pair. The load circuit is coupled to the signal adder, and generates a third output differential signal pair according to the addition result.
US11290054B2 Floating photovoltaic panel installation structure and buoyancy body for installation of floating photovoltaic panel
Disclosed are a floating photovoltaic panel installation structure and a buoyancy body for the installation of the floating photovoltaic panel, which may have excellent strength and buoyancy performance even while having light-weight characteristics, and stably support a photovoltaic panel on the water even during the flowing of a water surface due to waves. In the floating photovoltaic panel installation structure according to an embodiment of the present disclosure, as the floating photovoltaic panel installation structure including at least one unit floating type structure for supporting a photovoltaic panel on the water, the unit floating type structure includes a plurality of buoyancy bodies arranged to be spaced apart from each other, a photovoltaic panel support structure supported on the plurality of buoyancy bodies, a triangular bracket coupled with a plurality of photovoltaic panel support structures, and a ball joint hinge apparatus for connecting the plurality of photovoltaic panel support structures. At least one buoyancy body among the plurality of buoyancy bodies is made of a material in which Polyethylene and Waste Carbon Fiber Reinforced Plastics have been blended. For maintaining stable position and posture, the buoyancy body may include a cylindrical body having both side surfaces protruded convexly, and both side surfaces of the cylindrical body may be designed to have a shape in which a curvature radius of an upper area is smaller than a curvature radius of a lower area including a portion positioned below the water surface. In order to stably support the photovoltaic panel against the movement of waves, adjacent unit floating type structures may be connected in a joint structure by the ball joint hinge apparatus of a plastic material connected to the end portion of square tubes of the photovoltaic panel support structure.
US11290045B2 Devices, systems, and methods for self-heating batteries
At least one embodiment is directed to a system including a motor, a battery that provides power to the motor, and control circuitry that provides one or more first current pulses to the motor using power from the battery to cause one or more second current pulses in the battery that heat the battery to a desired temperature while maintaining zero torque in the motor.
US11290043B2 High performance current sensing architecture for brushless motors
A motor controller for controlling the operation of a three-phase permanent magnet synchronous electric motor, wherein the three-phase permanent magnet synchronous electric motor is characterized by three phases A, B, C, and further wherein the three-phase permanent magnet synchronous electric motor is driven by regulating three phase currents iA, iB and iC for the three phases A, B, C, respectively, the motor controller comprising: a three-phase power supply for supplying the three phase currents iA, iB and iC a first sensor for sensing the phase current iA; a second sensor for sensing across the phase currents iB and iC; and a microcontroller for controlling the operation of the three-phase power supply so as to produce the three phase currents iA, iB and iC needed to operate the three-phase permanent magnet synchronous electric motor, wherein the microcontroller reads the outputs of the first sensor and the second sensor and adjusts operation of the three-phase power supply so as to produce phase currents iA, iB and iC which produce the desired torque in the three-phase permanent magnet synchronous electric motor.
US11290042B2 Supply current limiting of DC machines
An embodiment of a control system includes a current command module configured to receive a torque command and output a current command for controlling a direct current (DC) motor, and a supply current limiting module configured to receive a supply current limit as an input and actively compute a motor current limit based on the supply current limit, the supply current limiting module configured to limit the current command based on the motor current limit.
US11290037B1 Motor controller
A motor controller comprises a driving circuit, a selection circuit, a sensorless control circuit, a Hall signal control circuit, a detection circuit, a first input terminal, and a second input terminal. The Hall signal control circuit may be coupled to a Hall sensor via the first input terminal and the second input terminal. When each of the voltage of the first input terminal and the voltage of the second input terminal is at a low level, the motor controller is operated in a sensorless driving mode. When one of the voltage of the first input terminal and the voltage of the second input terminal is at a high level, the motor controller is operated in a Hall control driving mode.
US11290032B1 Systems and methods for electric vehicle energy recovery
A shock absorber including a shock absorber body substantially filled with a hydraulic fluid. The shock absorber includes a piston disposed within the shock absorber body that includes a piston head movable within the shock absorber to apply a pressure change in the hydraulic fluid. The shock absorber includes a piezoelectric material disposed within the shock absorber and in fluid communication with the hydraulic fluid. The piezoelectric material is configured to generate an electrical charge in response to the pressure change in the hydraulic fluid. The piezoelectric material is electrically connected to at least one battery configured to receive the electrical charge generated by the piezoelectric material.
US11290031B2 Vibration-type actuator with vibration body and contact body relatively moving, apparatus, multi-axis stage unit, and articulated robot
A vibration-type actuator that can suppress variation in pressing force and reaction force on vibration bodies and contact bodies includes vibration body units, each including a vibration body including an elastic body and an electro-mechanical energy conversion element, and a contact body contacting with the vibration bodies, with the contact body and the vibration bodies moving relatively in a predetermined direction. A first vibration body unit, from among the vibration body units, includes a restriction unit configured to fix the first vibration body unit and restrict a degree of freedom in the predetermined direction, and a second vibration body unit, from among the vibration body units, includes a supporting guide unit configured to support the second vibration body unit while the second vibration body unit is movable in a direction orthogonal to the predetermined direction.
US11290030B2 Drive device and method for linear or rotary positioning
The disclosure relates to a drive means for non-resonant linear and/or rotary positioning of an object, comprising at least two piezoelectric or electrostrictive actuator groups, where-in a first actuator group moves a first runner portion relative to a stationary base of the drive means according to the principle of an inertia drive, and by means of the second actuator group a second runner portion is moved relative to the first runner portion with a limited range of movement in the high-resolution scan mode, wherein a common electrical control signal is applied to the first and second actuator groups.
US11290029B2 Legged robot and manufacturing method thereof
The present disclosure provides a biomimetic mobile legged robot, which includes a body formed to extend in one direction and having a piezoelectric element, and a leg connected to intersect the body and having a piezoelectric element. Here, a power is supplied to the body and the leg, respectively, and the piezoelectric elements of the body and the leg are operated with the supplied power to cause a full body motion so that the legged robot moves.
US11290026B2 Converter system for powering an electrical load
A converter system includes a DC bus for each phase of an input AC power signal; a first switching cell for each phase, including first two active switches coupled in series across the DC bus and forming a first switching cell AC pole therebetween, the first switching cell AC pole being coupled to a respective phase; and a second switching cell for each phase, including second two active switches coupled in series across the DC bus and forming a second switching cell AC pole therebetween. The second switching cell AC poles are coupled to each other to form a flying neutral. One of the first switching cell and the second switching cell switches at a frequency at least an order of magnitude greater than the line frequency. The other of the first switching cell and the second switching cell switches at a frequency approximately equal to the line frequency.
US11290025B2 Power converter
Positive and negative power terminals protrude from a power terminal arrangement surface not facing a capacitor element. Positive and negative electrode bus bars gather with each other after at least one of them extends along a non-electrode surface of the capacitor element, and then run side by side in a bus bar parallel running section. The positive electrode bus bar runs in parallel with the negative electrode bus bar in the bus bar parallel running section, and then extends along the positive power terminal from the proximal end of the positive power terminal to the distal end thereof. The negative electrode bus bar runs in parallel with the positive electrode bus bar in the bus bar parallel running section, and then extends along the negative power terminal from the proximal end of the negative power terminal to the distal end thereof.
US11290024B2 Power supply control device, power conversion system, and power supply control method
A power supply control device according to one or more embodiments may be provided to: control a power conversion device that has a configuration in which a resonant circuit is provided on an output side of a matrix converter including switching circuits having snubber elements, and that performs AC-AC conversion of output from a multi-phase AC power supply. The power supply control device performs control such that: the output current, which has a phase difference caused by the resonant circuit, is negative during a period in which an absolute value of a positive-going output voltage that is output from the power conversion device increases while the output current is positive during a period in which the absolute value of a negative-going output voltage increases; and a polarity of the output current does not change within a period in which the snubber element is discharged.
US11290023B2 Model predictive control for matrix converter operating in current control mode with load current estimation
A matrix converter system operating in current control mode is provided. The matrix converter includes a switching matrix coupled between a low voltage side and a high voltage side, wherein the matrix converter is coupled at its low voltage side to a generator for receiving an input power including an input current and transforming the input power into an output power at its high voltage side, wherein a load is coupled to the high voltage side. The control system includes a load observer and a model predictive controller (MPC). The load observer is configured to estimate a load current that flows to the load from the high voltage side of the matrix converter as a function of a switching state of the switching matrix, an output voltage output at the high voltage side of the matrix converter, and the input current. The MPC is configured to select the switching state of the switching matrix to meet one or more control objectives defined by minimization of a multi-objective function that tracks the output voltage and the input current using the estimated load current.
US11290019B2 Power converter
A transformer includes a first core, a first primary coil, a first secondary coil, and a first insulating member. The first secondary coil includes a second conductor wound around the first core. The first insulating member covers the first secondary coil. The second conductor has a shape of a first polygon in a cross-section of the second conductor. A first corner of the first polygon has a first radius of curvature of 0.1 mm or more. The transformer thus has improved dielectric breakdown voltage and improved power efficiency.
US11290012B2 Converter with selectable output-voltage ranges
A converter that makes it possible to selectively switch between various converter architectures that are capable of supplying different output voltages on the basis of one and the same input voltage. The various architectures share at least some electronic components with one another, thereby decreasing the production cost of the converter according to the invention. The converter is particularly advantageous for lighting modules for motor vehicles, in which there are substantial space constraints but in which wide output-voltage ranges are required to be able to supply a varied and substantial number of electroluminescent light sources (LEDs) with power.
US11290008B2 Resonant switched-capacitor converter
A resonant switched-capacitor converter is provided. The resonant switched-capacitor is configured to convert an input voltage on an input terminal of the resonant switched-capacitor converter into an output voltage on an output terminal of the resonant switched-capacitor converter. The resonant switched-capacitor converter includes a first resonant tank, a second resonant tank, a non-resonant capacitor, and a connection control circuit coupled to the input terminal, the output terminal, the first resonant tank, the second resonant tank and the non-resonant capacitor. The connection control circuit is configured to control connections of the first resonant tank, the second resonant tank and the non-resonant capacitor.
US11290005B1 Power bus voltage drop compensation using sampled bus resistance determination
A power system includes a power conversion stage that receives power from an input source and delivers power to a load via a power distribution bus. The power distribution bus may include a DC transformer such as a fixed ratio bus converter or VTM having an equivalent series resistance. A control system samples the voltage delivered by the power conversion stage at a location close to the output of the power conversion stage, and the load voltage at a location close to the load. The samples may be synchronized by means of a data bus that provides communication between a control device and an output monitor. Synchronization may be accomplished within a sampling period that is short relative to changes in the voltages and currents. Each set of samples may be used to determine a value of the bus resistance. Multiple samples may be averaged to improve accuracy in the determination. The determined bus resistance, including the equivalent series resistance of any bus converter, may be used to introduce a negative resistance characteristic in the power conversion stage as a way of compensating for the actual bus resistance without resorting to full bandwidth feedback from the load.
US11290002B2 Power conversion apparatus and charging method thereof
A power conversion apparatus and a charging method of the power conversion apparatus are provided. A synchronous rectifier controller provides a voltage of a drain terminal of a synchronous rectifier transistor to charge a capacitor of a power supply terminal of the synchronous rectifier controller when the synchronous rectifier transistor is turned from an on state to an off state and a voltage of the power supply terminal is less than a preset voltage.
US11289993B2 Switching element control circuit and power module
A switching element control circuit: a third electrode voltage control part; a temperature detection part; a first electrode current detection part; a memory part which stores information including an initial threshold voltage and an operation temperature/first electrode current characteristic of the threshold voltage; and a threshold voltage calculation part which calculates a threshold voltage at the time of operating the switching element based on information including the initial threshold voltage, the operation temperature of the switching element, and a first electrode current, and information relating to an operation temperature/first electrode current characteristic of a threshold voltage, wherein the third electrode voltage control part controls the third electrode voltage based on a threshold voltage at the time of operating the switching element calculated by the threshold voltage calculation part.
US11289985B2 Dual stator machine with a rotor magnet set configured to minimize flux leakage
Disclose is a machine including: an inner stator having a plurality of radially outwardly extending teeth; an outer stator having a plurality of radially inwardly extending teeth that are offset from the radially outwardly extending teeth; a rotor including an extension between the plurality of stators, the extension including a plurality of rotor magnet slots and a plurality of flux barrier slots; the plurality of rotor magnet slots and the plurality of flux barrier slots contact one another and are arranged in a circumferentially alternating sequence, one after another, such that each of the rotor magnet slots is circumferentially bounded by a pair of the flux barrier slots; and a portion of each of the plurality of rotor magnet slots is disposed along a machine radial axis and/or a portion of each of the plurality of flux barrier slots is disposed at an angle to the machine radial axis.
US11289982B2 Circuit board, motor, controller, and electric pump
A circuit board includes a circuit board main body including a first through hole and a second through hole, a first inlay member inserted into the first through hole, and a second inlay member inserted into the second through hole. A first end surface of the first inlay member includes a first end portion on the side of the second inlay member, a second end portion on the opposite side of the second inlay member, a first area including the first end portion, and a second area including the second end portion. A first end surface of the second inlay member includes a third end portion on the side of the first inlay member, a fourth end portion on the opposite side of the first inlay member, a third area including the third end portion, and a fourth area including the fourth end portion. The circuit board further includes a first resist provided in the second area, and a second resist provided in the fourth area.
US11289980B2 Motor
One aspect of a motor of the present disclosure may include a rotor having a motor shaft disposed along a central axis extending in one direction, a stator facing the rotor via a gap in a radial direction, and a housing having an accommodating portion configured to accommodate the rotor and the stator, and to enable oil to be stored therein, wherein the housing comprises a lower wall portion facing a vertical-directional lower region in the inside of the accommodating portion, the lower wall portion comprises a cooling flow passage formed therein, and refrigerant flows in the cooling flow passage, and at least a portion of the cooling flow passage overlaps the vertical-directional lower region in the inside of the accommodating portion when viewed along a vertical direction.
US11289975B2 Fluid-cooled active part, electric machine, and drive system
The invention relates to a fluid-cooled active part (1) for an electric machine (38), wherein the active part (1) is substantially cylindrical or hollow cylindrical, having axially extending grooves (2), at least one electrical conductor (3), which is arranged in the associated groove (2) at least in some sections and which is composed of a plurality of partial conductors (4), one or more main insulators (5), each arranged between the associated conductor (3) and the associated groove (2), and partial-conductor insulators (6), each surrounding the associated partial conductor (4). The invention further relates to an electric machine (38), having such a fluid-cooled active part (1) designed as a stator (39) and/or such a fluid-cooled active part (1) designed as a rotatably mounted rotor (40), wherein the electric machine (38) can be operated with a voltage in the range of at least a few kilovolts, preferably a few tens of kilovolts. Finally, the invention relates to a drive System (41), having such an electric machine (38) and a fluid energy machine (42) for the fluid, wherein the fluid energy machine (42) is designed as a compressor, in particular for process gas, or as a pump, in particular for a process liquid. In order to provide, among other things, a high-performance fluid-cooled active part that is compact and, in particular, resistant in the environment of the fluid or of a process fluid, it is proposed, among other things, that the active part (1) has one or more cooling Channels (7) for conducting the fluid, in particular a process fluid, wherein each cooling Channel (7) is arranged between the associated main insulator (5) and the respective partial-conductor insulators (6).
US11289972B2 Electric motor with integrated brake
An electric motor comprising: a first element having at least one electromagnet, a second element, rotatable relative to the first element about an axis, the second element comprising at least one permanent magnet, wherein the electric motor is arranged to generate a torque by applying a rotating magnetic field to the second element, and a friction member coupled to the first element such that the friction member is non-rotatable relative to the first element about the axis, the friction member comprising a magnetically susceptible material and being biased by a first biasing force toward the second element, wherein the first element, the second element and the friction member are configured such that: when the electromagnet is not energized, the first biasing force causes the friction member to contact the second element to generate a braking torque.
US11289970B2 Control device and a method for controlling an electric drive
An electric drive comprises a bearingless electric machine, a converter, and a control device. The stator of the electric machine has a cage winding including bars connected to a conductor ring. The control device controls the converter to supply torque generating current components to the bars so that torque is generated in accordance with electric machine control and to supply levitation current components to the bars so that the rotor of the bearingless electric machine is levitated in accordance with levitation control. The cage winding allows the currents of the bars to be controlled so that different current sheet distributions can be generated so as to generate desired torque and magnetic force.
US11289968B2 Motor sealing structure and motor
Provided are a motor sealing structure and a motor. The motor sealing structure comprises: a rotary shaft, a bearing, which is sleeved on the rotating shaft. A shaft shoulder structure is arranged on an outer peripheral wall of the rotating shaft at a position corresponding to the bearing along an axial direction of the rotating shaft, so as to form a cavity between a portion of the bearing and the shaft shoulder structure, and a fan blade structure, which is sleeved at one end of the rotating shaft and extends in the axial direction of the rotating shaft to the position of the bearing, and is inserted into and held in the cavity.
US11289967B2 Electrically insulating, thermally conductive coatings for electrical systems and deposition methods thereof
An electric machine includes a rotor assembly having a rotor core that extends in an axial direction and a stator assembly surrounding and coaxial with the rotor assembly. The stator assembly includes a stator core having slots extending in a radial direction into an inner surface of the stator core and extending axially from a first end surface to a second end surface of the stator core. The stator assembly includes stator coil windings disposed within the respective slots of the stator core and a first electrically insulating conformal coating disposed between the stator core and the stator coil windings. The conformal coating includes a polymer matrix impregnated with an effective amount of thermally conductive ceramic materials, above a percolation threshold, that form continuous thermal pathways across a thickness of the first coating.
US11289962B2 Method of rotor production including co-curing and magnetization in place
Techniques described here provide a rotor and a method of making a rotor. In an embodiment, a method of making a rotor includes forming a magnet array by assembling a plurality of magnets into the magnet array, providing pre-preg adjacent to the magnet array, co-curing the magnet array with the pre-preg, and magnetizing the magnet array subsequent to the formation of the magnet array.
US11289961B2 Motor
An embodiment provides a motor comprising: a stator including a through hole; a cylindrical rotor which is disposed in the through hole; a rotor center shaft which is formed in the central region of the rotor and to which a rotary shaft is coupled; and a first magnet and a second magnet which are disposed between the stator and the rotor, wherein: the rotor includes an outer contour portion and a patterned portion formed between the outer contour portion and the rotor center shaft; the patterned portion includes a plurality of unit patterns and a hollow portion formed in each of the unit patterns; the outer contour portion includes an outer circumferential surface on which the first magnet and the second magnet are disposed and an inner circumferential surface which comes in contact with the plurality of unit patterns; the inner circumferential surface of the outer contour portion further includes a first protrusion portion protruding in a first direction toward the rotor center shaft; and in the first direction, the maximum length of the first protrusion portion is greater than the maximum length of each of the unit patterns.
US11289960B2 Motor and brushless wiper motor
A motor and a brushless wiper motor are provided. The motor (2) includes: a stator (8); coils (24); a shaft (31); a rotor core (32); magnets (33) which are disposed on an outer peripheral surface (32b) of the rotor core (32) and a radial thickness of which at end portions (33s) on both sides in the circumferential direction around the rotation axis is smaller than a radial thickness in a circumferential intermediate portion; and salient poles (35) that are formed between magnets (33) adjacent in the circumferential direction of the outer peripheral surface (32b) of the rotor core (32) and protrude radially outward from the end portions (33s) of the magnets (33) in the circumferential direction. The width dimensions of the salient poles (35) in the radial direction being set to 40° or less in a form of an electrical angle.
US11289959B2 Rotor and rotary electric machine
According to one embodiment, a rotor includes a rotor core including magnetic poles arranged in a circumferential direction, a cavity formed on an axis q and extending toward a central axis, and a flux barrier band formed in the magnetic pole between a pair of the cavities to cross an axis d and including a first bridge part facing one cavity, a second bridge part facing the other cavity, and a magnet embedding hole formed between the first and the second bridge parts, a first permanent magnet formed of a fixed magnetic force magnet and disposed in the magnet embedding hole to be adjacent to the first bridge part, and a second permanent magnet formed of a variable magnetic force magnet and disposed in the magnet embedding hole to be adjacent to the second bridge part.
US11289958B2 Rotor lamination and rotor assembly using same
A rotor lamination for a motor having a motor air gap width value is disclosed. The rotor lamination includes a main-body portion, a plurality of edges and a plurality of magnet-receiving slots. The main-body portion is centered at a central axis of the motor. The edges are disposed around outside of the main-body portion. The magnet-receiving slots accommodate a plurality of magnets of the motor and locate around the central axis. The magnet-receiving slot has a slot width value in an outward direction extending from the central axis. The magnet-receiving slot and the corresponding edge form a magnet depth value. The magnet depth value is greater than a sum value of a first rate constant multiplied by the slot width value and then subtracted the motor air gap width value, and is less than the sum value of the first rate constant multiplied by the slot width value and then plus the motor air gap width value.
US11289953B2 Adapting wireless power transfer parameters to transmitter operating conditions
A wireless power transmitter and/or receiver and methods for operating the same are provided for maintaining an uninterrupted wireless power transfer. A wireless power transmitter and/or receiver adapt at least one wireless power transfer parameter according to at least one operating condition of the wireless power transmitter.
US11289948B2 Wireless charging device, a receiver device, and a method of operating the same
A wireless charging device includes a driver unit configured to generate one of a first AC voltage signal having a first frequency and a second AC voltage signal having a second frequency. Also, the wireless charging device includes a transmitting unit having a first coil and a first capacitor and configured to transmit the first AC voltage signal. Further, the transmitting unit includes a second coil and a second capacitor and configured to transmit the second AC voltage signal. Additionally, the wireless charging device includes a control unit configured to detect a first receiver device operating at the first frequency based on a change in a first voltage in the transmitting unit, and detect a second receiver device operating at the second frequency based on a change in a second voltage in the transmitting unit.
US11289944B2 Distribution network risk identification system and method and computer storage medium
A distribution network risk identification system and method and a computer storage medium include: multi-source information data for risk identification is acquired; the multi-source information data is analyzed and processed to obtain a risk characteristic; a risk identification index is calculated on the basis of the risk characteristic, and a state of a power grid is determined according to the risk identification index; a temporal and spatial variation rule and variation trend of the risk characteristic are analyzed; a location and cause of occurrence of a risk are determined according to the temporal and spatial variation rule and variation trend of the risk characteristic; a severity of the risk is analyzed by adopting an analogue simulation manner; and the severity of the risk is assessed, and risk early warning information is issued on the basis of an assessment result.
US11289943B2 Contraband detection through smart power components
A method and system for contraband detection is provided that allows for the determining whether devices are authorized to receive power from an outlet. A power adapter and/or an outlet authenticate a device when it is connected to the outlet through the power adapter. On the basis of this authentication, a determination is made whether the devices are to receive power from the outlet. If the device is authorized, the outlet is activated, transitioning from inactive state (where no power is relayed through the outlet) to an active state (where power is relayed through the outlet).
US11289941B2 Uninterruptible power supply
In an uninterruptible power supply, a signal generator generates a semiconductor switch drive signal for driving a semiconductor switch and continuously generates the semiconductor switch drive signal while AC power is being supplied via a bypass circuit.
US11289939B2 Power supply apparatus and standby power source for controller for vehicle
The present disclosure provides an electric-power supplying device, wherein the device includes: an isolation driving unit, including a high-voltage-side winding and a low-voltage-side winding, configured to transform a high-voltage input from a high-voltage power supply into a low-voltage output; a high-voltage inputting unit, including a first switch part that is connected in series to the high-voltage-side winding of the isolation driving unit; an output controlling unit, including a first terminal that is connected to the low-voltage-side winding of the isolation driving unit, a second terminal for receiving an output enabling signal from external, and a third terminal for outputting a low-voltage power-supply electric power when the output enabling signal is high; a switch regulating unit, configured to output a switch regulating signal to the first switch part of the high-voltage inputting unit; a high-voltage starting-up unit, including a first end that is connected to the high-voltage power supply, and a second end that is connected to the switch regulating unit, configured to supply a starting-up voltage to the switch regulating unit; and an auxiliary-power-supply unit, including a first end that is coupled to the low-voltage-side winding of the isolation driving unit, and a second end that is connected to the switch regulating unit, configured to supply an electric power to the switch regulating unit.
US11289937B2 Feed system, feed unit, and electronic unit
A feed system has a first electronic unit, a second electronic unit, and a feed unit. The first electronic unit and the feed unit are separated. The feed unit transmits power to a power reception section of the second electronic unit based upon result information of a first authentication between the first electronic unit and the second electronic unit. The feed unit performs a second authentication on the second electronic unit in conjunction with power transmission.
US11289932B2 Battery pack and electronic device including the same
A battery pack having separate charging and discharging paths includes a battery including at least one battery cell, a processor configured to monitor the battery and to control charging and discharging operations of the battery, a charging switch arranged along at least one of a first path electrically connecting a first pole of the battery to a charging device and a third path electrically connecting a second pole of the battery to the charging device, the charging switch being configured to operate according to a control signal generated by the processor, and a discharging switch arranged along at least one of a second path electrically connecting the first pole of the battery to a load and a fourth path electrically connecting the second pole of the battery to the load, the discharging switch being configured to operate according to the control signal generated by the processor.
US11289931B2 Information processing apparatus, information processing method, storage medium, portable electrical storage device, and rental system
An information processing apparatus comprises acquiring information according to the usage circumstances of the portable electrical storage device; estimating a type of an electrical device that is connected, based on a measurement result with respect to a voltage and a current when the portable electrical storage device supplied electric power that is included in the information according to the usage circumstances; and, in a case where the type of the connected electrical device cannot be estimated, determining whether or not the connected electrical device is an electrical device that exhibits desirable load characteristics with respect to a storage battery that is provided in the portable electrical storage device, in accordance with whether or not an electric power supply amount indicated by the measurement result is equal to or greater than a predetermined threshold value.
US11289928B1 Magnetically-retained recharge cartridge
Embodiments herein described a replaceable recharge cartridge that is coupled between a charge port of a robot and a charging station. Instead of mating the charging station directly to the charge port in the robot, the recharge cartridge can instead be inserted into the charge port and serves as an interface between the robot and the charging station. As such, the wear and tear occurs on the recharge cartridge rather than the charge port of the robot. In one embodiment, the recharge cartridge is magnetically attached to the charge port for easy installation and removal. The recharge cartridge includes a ferrous slug that is attracted to a permanent magnetic disposed in the charge port. The magnetic attraction between the permanent magnetic and the ferrous slug aligns and connects the recharge cartridge to the charge port.
US11289927B2 Mobile device holder for portable electronic devices
Disclosed is a mobile device holder for use with electronic and non-electronic devices as it relates to joining one or more devices together such that the devices may be operably interactive.
US11289925B2 Battery system including battery modules connected between system terminals and control method thereof
In a method of controlling a battery system having a battery module comprising a plurality of battery sub modules connected in parallel between system terminals, the method includes: measuring voltage values of the plurality of battery sub modules and/or cells in the plurality of battery sub modules and current values that flow on the battery module; detecting an occurrence of an internal short in the battery module by monitoring the voltage values or the current values; and electrically separating at least one battery sub module in which the internal short occurs from among the plurality of battery sub modules from the system terminals in response to the internal short occurring in the battery module.
US11289920B2 Circuit and charging method for an electrical energy storage system
The invention relates to a circuit for an electrical energy storage system (100) with two energy storage units (R1, R2) respectively comprising a first and a second pole connection (P1, P4, P3, P2), said circuit comprising: at least one first and one second input (E1, E2), at least one first and one second output (A1, A2), a first switching element (S1) between the first pole connection (P1) of the first energy storage unit (R1) and the first output (A1), and a second switching element (S2) between the second pole connection (P2) of the second energy storage unit (R2) and the second output (A2), a third switching element (S3) being arranged between the second pole connection (P3) of the first energy storage unit (R1) and the first pole connection (P4) of the second energy storage unit (R2), a fourth switching element (S4) being arranged between the second pole connection (P3) of the first energy storage unit (R1) and the second pole connection (P2) of the second energy storage unit (R2), and a fifth switching element (S5) being arranged between the first pole connection (P1) of the first energy storage unit (R1) and the first pole connection (P4) of the second energy storage unit (R2), the energy storage units (R1, R2) being connected in parallel or in series according to the switch position of the third, fourth and fifth switching elements (S3, S4, S5).
US11289919B2 Charging control system
The present disclosure discloses a charging control system, which includes: a master device, including a first USB interface and a first charging management circuit; at least one slave device, including a second USB interface and a second charging management circuit; a gating control circuit, which is arranged in the master device or the slave device, wherein an input terminal of the gating control circuit is coupled to the first USB interface and the second USB interface, and an output terminal of the gating control circuit is coupled to the first charging management circuit and the second charging management circuit to select and control a charging USB interface of the first charging management circuit and a charging USB interface of the second charging management circuit. Through the above mentioned way, multiple charging modes of the master device and the slave device may be implemented without software support.
US11289917B1 Optimized photovoltaic conversion system
Different systems to achieve solar power conversion are provided in at least three different general aspects, with circuitry that can be used to harvest maximum power from a solar source (1) or strings of panels (11) for DC or AC use, perhaps for transfer to a power grid (10) three aspects can exist perhaps independently and relate to: 1) electrical power conversion in a multimodal manner, 2) alternating between differing processes such as by an alternative mode photovoltaic power converter functionality control (27), and 3) systems that can achieve efficiencies in conversion that are extraordinarily high compared to traditional through substantially power isomorphic photovoltaic DC-DC power conversion capability that can achieve 99.2% efficiency or even only wire transmission losses. Switchmode impedance conversion circuits may have pairs of photovoltaic power series switch elements (24) and pairs of photovoltaic power shunt switch elements (25).
US11289914B2 Cryptocurrency mining data center with a solar power distribution and management system
A cryptocurrency computing power supply system includes a solar DC power generation system, a DC power bus, an electronic control system and a mining node power management system. The solar DC power generation system is structured to provide DC power to a DC/DC converter. The DC power bus is structured to selectably receive power from the DC/DC converter and to provide DC power to a number of mining servers. The electronic control system is structured to selectably control the cryptocurrency computing power supply system to operate in plurality of modes. The mining node power management system includes optimizing power distribution from the solar DC power generation system to the plurality of mining servers using a cryptocurrency solar curve algorithm generated based on an analysis of statistically predicted patterns of energy usage and production.
US11289913B2 Dynamic stability analysis and control method for voltage sourced converter based high voltage direct current transmission system
A dynamic stability analysis and control method for a voltage sourced converter based high voltage direct current (VSC-HVDC) transmission system. The method includes the following steps: unlocking a converter station of the VSC-HVDC transmission system to make the VSC-HVDC transmission system run in a non-island control mode; extracting corresponding parameters of the VSC-HVDC transmission system, wherein the parameters include an effective voltage value Ut0 of an AC system, an outgoing reactive power Qvsc0 of the VSC-HVDC transmission system, a gain kp of a phase-locked loop (PLL), and a proportional integral time constant ki of the PLL; calculating a short-circuit ratio (SCR), an unit value of Ut0 and an unit value of Qvsc0; calculating a key stable component; checking the sign of the key stable component to determine the stability of the VSC-HVDC transmission system.
US11289912B2 Management system, non-transitory computer readable medium, management method, and management server
Provided is a consideration decision unit configured to decide, when the portable energy storage equipment transferred from one body to another body as a first transfer at a first timing is transferred from the other body or still another body which is different from the other body to the one body as a second transfer at a second timing, a consideration for the second transfer of the portable energy storage equipment at the second timing based on at least one of (i) a length of a period from the first timing to the second timing and (ii) a deterioration state of the portable energy storage equipment at the second timing.
US11289900B2 Broken conductor detector
The present disclosure pertains to detection of a broken conductor in an electric power system. In one embodiment, a broken conductor detector may be configured to be mounted to an electrical conductor and may comprise a communication subsystem configured to transmit a signal configured to indicate that the conductor is broken. A sensor may determine a plurality of vectors. A processing subsystem may be configured to receive the plurality of vectors from the sensor and to identify when the vector is outside of a range defined by a threshold value. The processing subsystem may determine that the conductor is falling based on the plurality of vectors remaining outside of the threshold for a period of time determined by the timer subsystem. A signal may be transmitted by the communication subsystem to indicate that the conductor is falling.
US11289887B2 Expanded two-gang electrical box
A wall-mounted enclosure having a standard forward-facing opening but also having an expanded enclosure behind the opening. The opening allows the use of conventional prior art components (such as cover plates). The expanded enclosure allows a more generous bend radius for the creation of a service loop in a fiber optic cable or similar component.
US11289885B2 Gas-insulated switchgear
A bushing tank having power receiving lead-in bushings of three phases to which conductor portions extended rearward of a main body portion in which a switching device is housed are connected is included, and the power receiving lead-in bushings of the three phases are disposed at an upper surface portion of the bushing tank at equal intervals in a circumferential direction such that end portions thereof are inclined outward so as to be separated from each other, and one of the power receiving lead-in bushings of the three phases is disposed along a front-rear direction of the main body portion. Owing to this configuration, it is possible not only to ensure insulation distances between the end portions of the power receiving lead-in bushings but also to ensure insulation distances between lead-in wires regardless of a power receiving lead-in direction.
US11289883B1 Modular plug-and-play power distribution system for a vehicle
A modular power distribution system for use on a vehicle having an electric power source. The system includes a power distribution block having a switch socket with a first format, a device socket having a second format, associated with the switch socket to form a socket pair, a relay electrically coupling the switch socket to the device socket, and input power terminals electrically coupled to the socket pair and the relay, and configured to be electrically coupled to the electric power source. A switch wire harness includes a switch plug having a first complemental format configured to be removably received by the first format of the switch socket. A device wire harness includes a device plug having a second complemental format configured to be removably received by the second format of the device socket.
US11289880B2 Light source package structure
A light source package structure is provided. The light source package structure includes a substrate, an upper electrode layer, a surrounding wall, a light emitting unit, an adhesive, and a light permeable element. The surrounding wall is annular with step structure and includes an upper tread surface arranged away from the substrate, an upper riser surface connected to an inner edge of the upper tread surface, a lower tread surface disposed at an inner side of the upper riser surface, an accommodating groove disposed between the lower tread surface and the upper riser surface, and a lower riser surface connected to an inner edge of the lower tread surface and arranged away from the upper tread surface. The lower riser surface and the first surface jointly define a receiving space.
US11289879B2 System and method for micro laser particles
Disclosed are photonic particles and methods of using particles in biological samples. The particles are configured to emit laser light when energetically stimulated by, e.g., a pump source. The particles may include a gain medium with inorganic materials, an optical cavity with high refractive index, and a coating with organic materials. The particles may be smaller than 3 microns along their longest axes. The particles may attach to each other to form, e.g., doublets and triplets. The particles may be injection-locked by coupling an injection beam into a particle while pumping so that an injection seed is amplified to develop into laser oscillation. A microscopy system may include a pump source, beam scanner, spectrometer with resolution of less than 1 nanometer and acquisition rate of more than 1 kilohertz, and spectral analyzer configured to distinguish spectral peaks of laser output from broadband background.
US11289877B2 Optical system and method for locking a wavelength of a tunable laser
An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.
US11289873B2 LiDAR systems and methods for exercising precise control of a fiber laser
Embodiments discussed herein refer to LiDAR systems and methods that enable substantially instantaneous power and frequency control over fiber lasers. The systems and methods can simultaneously control seed laser power and frequency and pump power and frequency to maintain relative constant ratios among each other to maintain a relatively constant excited state ion density of the fiber laser over time.
US11289871B2 High power CW mid-IR laser
A CW laser with a rotating ring gain element is disclosed. The ring is pumped at multiple locations and the laser generates a mid-IR output. Multiple pumped gain portions of the ring provide a power scaled output. The gain portions may be positioned in a single resonator cavity, in multiple resonator cavities, and in MOPA architectures with associated focusing, folding, and combining optical elements.
US11289870B2 Method and system for generating tunable ultrafast optical pulses
A system and a method for generating tunable ultrafast optical pulses, the method comprising spectral broadening of a laser input beam by propagating the laser input beam in a nonlinear medium of a third-order nonlinear susceptibility χ(3), yielding an output laser spectrum; and one of: i) selecting at least one portion of the output laser spectrum, yielding an output pulse different than the input pulse and centered at a different frequency; ii) temporal compensation and spatial spreading of spectral components of the output laser spectrum; selecting two pulses at two different frequencies; and nonlinearly mixing the two pulses together in a first second-order nonlinear susceptibility χ(2) nonlinear crystal into a third pulse centered at a frequency which is a difference between the frequencies of the first two pulses; and iii) dividing output laser spectrum into a pump beam and a probe beam, directing a pump pulse to a third second-order nonlinear crystal for THz radiation generation; and directing a probe pulse to a third second-order nonlinear crystal for THz radiation reconstruction.
US11289866B2 Crimp tool for crimping a prepared wire
A crimp tool calibration system for crimping a prepared wire into a corresponding contact wire barrel includes a computer, a positioner having a memory chip storing positioner data, and a tool frame. The tool frame includes a head having a receiving port therethrough, and configured for the positioner to be removably engaged with the receiving port during a crimping operation. The tool frame also includes a plurality of crimping dies positioned around a periphery of the receiving port, an adjustment device to adjust a crimp depth, and a positioner interface coupled to the tool frame. The positioner interface includes a tool memory for storing tool data, a reader, and a transmitter, where the reader is configured to read the positioner data stored on the memory chip of the positioner, and the transmitter is configured to transmit the positioner data and the tool data to the computer.
US11289861B2 Power panels including conductive clip assemblies and bus stack arrangements incorporating safety features
A power panel of an electrical distribution system including a bus arrangement with a plurality of conductive bus bars. At least one electrical accessory is coupled to the plurality of bus bars and a plurality of clip assemblies are coupled to the plurality of bus bars and the at least one electrical assembly to establish an electrical connection there between. The clip assembly for use with the bus stack arrangement includes a metallic clip with a tang and a C-shaped section interconnected with and arranged opposite the tang and a biasing element coupled to the tang.
US11289859B2 Electrical communication switch, outlet, companion device, and system
A method of operation of a controller and a controller are provided. The controller is configured to receive from a first electrical switch information indicating a state change at the first electrical switch. The controller is configured to determine, based on the received information from the first electrical switch, at least one of one or more electrical switches or one or more electrical outlets. Further, the controller is configured to send to the at least one of the one or more electrical switches or the one or more electrical outlets an action order to change a state pursuant to the information indicating the state change at the first electrical switch. The controller may be configured to receive a programming indicating the at least one of the one or more electrical switches or the one or more electrical outlets that are responsive to the state change at the first electrical switch.
US11289858B2 Overheating destructive member, conducting strip overheating power off structure and method, plug head and plug socket
A conducting strip overheating power off structure, comprises a first conducting strip, a second conducting strip, and an overheating destructive member. A first limiting strip and the second limiting strip of the overheating destructive member astride the first conducting strip and the second conducting strip. The first limiting strip or/and the second limiting strip is/are provided with a limiting portion, which enables the first conducting strip and the second conducting strip to be in contact with each other and form a closed circuit. The connecting portion connects the first limiting strip to the second limiting strip, and the supporting member is disposed between the first limiting strip and the second limiting strip. Accordingly, overheating of the supporting member causes the limiting portions to no longer capable to force the first conducting strip and the second conducting strip to be in contact with each other, thus forming an open circuit.
US11289856B1 Electrical connector grounding structure
Electrical connector grounding structure includes electrically insulative housing having accommodation hole located on base thereof and tongue plate forwardly extended from base, conducting terminal sets positioned in electrically insulative housing and including one or more than one grounding terminal, one or more than one power terminal and plurality of signal terminals, conducting member mounted in accommodation hole and having first contact portion located at top and second contact portion downwardly extended from first contact portion and kept in contact with grounding terminal, and shielding shell surrounding electrically insulative housing and kept in contact with first contact portion. Grounding terminal, conducting member and shielding shell form common ground loop to guide electromagnetic interferences and noises generated around electrical connector to circuit board for grounding release, making overall signal transmission quality more stable and reliable and achieving the effect of improving overall signal transmission stability.
US11289854B2 Electrical connecting device
An electrical connecting device includes an insulated body, a first terminal set, and a conductive shielding member. The insulated body includes a base and a tongue plate connected to the base. The first terminal set includes several first signal terminals and several first ground terminals. Each of the first signal terminals and the first ground terminals includes a fixed portion and a contact portion. The fixed portion of each of the first signal terminals and the fixed portion of each of the first ground terminals is in the base, and the contact portion of each of the first signal terminals and the contact portion of each of the first ground terminals are extending to the tongue plate and exposed from the tongue plate. The conductive shielding member is in the insulated body, and the conductive shielding member is near but not in contact with the first terminal set.
US11289841B2 Cable connector
A cable connector comprises: a first terminal; a second terminal; an insulator having an insertion groove into and from which a plate-shaped connection object is insertable and removable; and an actuator. The first terminal rotatably supports the actuator by an engaging portion that engages an engaged portion of the actuator. The second terminal includes: a first arm portion including a first contact portion configured to come into contact with one surface of the connection object by elastically deforming in a plate thickness direction of the connection object; and a second arm portion facing the first arm portion in the plate thickness direction, and including, at a tip thereof, a second contact portion configured to come into contact with an other surface of the connection object. The first contact portion is a part of an elastic piece that extends from an end of the first arm portion so as to be folded back, at the end, toward a side toward which the connection object is inserted. The second contact portion is located more to a side toward which the connection object is removed, than the first contact portion.
US11289839B2 Main board and memory slot thereof
A memory slot adapted to dispose on a circuit board is provided. The memory slot includes a slot body and a plurality of pins. The slot body includes N connecting parts for configuring to M memory cards. The plurality of pins are disposed in the slot body for electrically connecting the M memory cards to the circuit board. Each pin includes O branches extending to the connecting parts respectively for electrically connecting corresponding golden fingers of the memory cards. Where the N, M and O are greater than or equal to 2. The disclosure further provides a main board with the memory slot.
US11289838B2 Connector assembly
Each of plug contacts and each of receptacle contacts come into electrical contact with each other by mating a plug connector and a receptacle connector. Each of the receptacle contacts includes a receptacle contact guide part that has a receptacle contact guide hole into which each plug contact can be inserted in a direction toward a receptacle side board, and two spring pieces that are elastically deformed when each plug contact is inserted into the receptacle contact guide hole. The two spring pieces come into contact with each plug contact inserted into the receptacle contact guide hole by a spring restoring force.
US11289835B2 Printed circuit board (PCB) connector interface module with heat and scratch resistant coverlay and accessory system
A printed circuit board (PCB) connector interface module and an accessory system. The module including a first layer, a second layer, and a plurality of inner layers. The first layer includes a first set of contact pads configured to electrically connect to an accessory device, and a heat and scratch resistant coverlay that is adjacent to and has a first surface that is level with a first surface of the first set of contact pads. The second layer including a second set of contact pads configured to electrically connect to an internal printed circuit board (PCB) of an electronic apparatus. The plurality of inner layers including one or more printed circuit boards (PCB) and a plurality of contact vias, wherein the plurality of contact vias electrically connect the first set of contact pads to the second set of contact pads.
US11289831B2 Terminal block
A conductor connection terminal, having an insulating material housing, a busbar, a clamping spring and an operating lever which is pivotably received in the insulating material housing over a pivoting range and can be pivoted between an open position and a closed position, wherein the clamping spring has an operating arm which is deflected via a spring driver of the operating lever at least in the open position, characterized in that the operating lever is supported in the open position at a first and a second support point spaced from the first, and that the operating lever is pulled against the first and the second support point by a tensile force of the clamping spring acting on the spring driver from the operating arm.
US11289829B2 Connection structure for superconductor wires
Provided is a connection structure for superconductor wires, in which two superconductor wires include respective oxide superconducting conductor layers each formed on one surface of a base material. The oxide superconducting conductor layers are conjoined with each other while facing each other at a connected end of each of the two superconductor wires. An embedment material for reinforcement is provided from one of the two superconductor wires to the other one of the two superconductor wires in a thickness direction of the two superconductor wires at the connected end of each of the two superconductor wires.
US11289828B2 Conductor terminal
A conductor connection terminal with an insulating material housing, which has a conductor insertion channel, a busbar in the insulating material housing and a clamping spring. The clamping spring has a contact leg which is supported on the busbar, a spring arch adjoining the contact leg, a clamping leg with a clamping edge adjoining the spring arch, which together with the busbar form a clamping point for clamping an electrical conductor, and a pull tab projecting from the clamping leg. Furthermore, the conductor connection terminal has an operating lever which is pivotably mounted in the insulating material housing, wherein the operating lever has a driver lug and is designed to grip the pull tab with the driver lug and to move the pull tab when the operating lever is pivoted so as to open and close the clamping point.
US11289827B2 Electrical harness for a turbomachine
The present invention relates to an electrical harness (1) comprising at least one first cable strand (2) and at least one second cable strand (3, 4), which are respectively at least partially surrounded externally by a first shielding braid (13) and a second shielding braid (14, 15), and a connecting socket (16) externally surrounding one end of the first cable strand (17) and one end of the second cable strand (18, 19), characterised in that the connecting socket (16) comprises a fixing part (21) intended to be engaged on a fixing member of the turbomachine, and a crimping part (20), the ends (26, 27, 28) of the first (13) and second (14, 15) shielding braids being engaged externally to the crimping part (20), at least one crimping member (32) holding said ends (26, 27, 40) on the crimping part (20).
US11289816B2 Helically corrugated horn antenna and helically corrugated waveguide system
The present disclosure relates to a horn antenna or waveguide system comprising a corrugated horn or waveguide, wherein the corrugation takes the form of a helical spiral along the inner surface of the horn or waveguide. The present disclosure further relates to radar antenna.
US11289811B2 Closed-loop antenna with multiple grounding points
Various examples and schemes pertaining to a closed-loop antenna with multiple grounding points are described. An apparatus includes an electromagnetic (EM) wave interface device capable of radiating and sensing EM waves. The EM wave interface device includes a feeding port, a first grounding port coupled to an electric ground, and a second grounding port coupled to the electric ground. A first electrically-conductive path connected between the feeding port and the first grounding port forms a closed-loop antenna. A second electrically-conductive path connected between the feeding port and the second grounding port forms a non-radiative closed-loop path. A length of the first electrically-conductive path is greater than a length of the second electrically-conductive path.
US11289809B2 Dual-band directional antenna, wireless device, and wireless communication system
A dual-band directional antenna for customer-premise equipment (CPE) applications is provided. The dual-band directional antenna includes at least one conductive radiating element, a probing structure connected to the radiating element, a conductive ground plane, and at least one mounting element for mounting the at least one radiating element on the ground plane at a distance therefrom. The antenna is configured to operate in two different frequency bands. The radiating element partially encloses at least one first cut-out portion and partially encloses at least one second cut-out portion, where the at least one first cut-out portion and the at least one second cut-out portion are positioned at opposite sides of a first slot of the radiating element.
US11289800B2 Remote electronic tilt base station antennas having adjustable ret rod supports
A base station antenna includes a remote electronic tilt (“RET”) actuator, a phase shifter having a moveable element and a mechanical linkage extending between the RET actuator and the phase shifter. The mechanical linkage includes a RET rod. An adjustable RET rod support includes a base member and an adjustable member, the adjustable member has a RET rod holder and is movably mounted to the base member.
US11289793B2 Semiconductor packaging structure having antenna module
The present disclosure provides a semiconductor packaging structure having an antenna module, comprising: a substrate having a first surface and a second surface opposite to the first surface; a redistribution layer located on the first surface of the substrate; a metal bump located on one side, insulated from the substrate, of the redistribution layer, and electrically connected with the redistribution layer; a semiconductor chip disposed on a surface, insulated from the substrate, of the redistribution layer, and electrically connected with the redistribution layer, a space is configured between the semiconductor chip and the metal bump; and an antenna module located on the second surface of the substrate.
US11289791B1 Antenna connector with integrated coaxial 50-ohm radio-frequency switch
An antenna connector for a portable communication device including, in one implementation, a housing bracket, a core mounting member, a front mounting member, and a back mounting member. The housing bracket includes an antenna barrel that is configured to engage a ferrule antenna connector. The core mounting member includes a radio-frequency (RF) switch that includes a ground barrel, a first electrical contact, and a second electrical contact. The second electrical contact is configured to disconnect from the first electrical contact when a coaxial connector engages completely with the ground barrel. The front mounting member includes a front guiding section that is configured to connect with the core mounting member. The front guiding section is further configured to align the ground barrel with the antenna barrel. The back mounting member includes a back guiding section to keep the core mounting member connected to the front guiding section.
US11289788B2 Board-to-board interconnect apparatus including microstrip circuits connected by a waveguide, wherein a bandwidth of a frequency band is adjustable
Disclosed is a chip-to-chip interface using a microstrip circuit and a dielectric waveguide. A board-to-board interconnection device, according to one embodiment of the present invention, comprises: a waveguide which has a metal cladding and transmits a signal from a transmitter-side board to a receiver-side board; and a microstrip circuit which is connected to the waveguide and has a microstrip-to-waveguide transition (MWT), wherein the microstrip circuit matches a microstrip line and the waveguide, adjusts the bandwidth of a predetermined first frequency band among the frequency bands of the signal, and provides same to the receiver.
US11289786B2 Metamaterial loudspeaker diaphragm
A metamaterial loudspeaker diaphragm is disclosed. The diaphragm includes a cone structure having a periodic arrangement of two dissimilar materials, e.g., soft and hard, in an alternating periodic pattern to achieve an anisotropic structure, which results in passive amplification of the sound. The anisotropic cone structure includes a baseline cone material and a different, compatible second material. The cone includes a body having a conical cross-section, an interior side, an exterior side, and concentric circles of material alternating between a soft material and a rigid material. Circumferential grooves disposed within the concentric circles include rigid material. Concentric circles including rigid material line the interior side of the body. Substantially all the soft material of the concentric circles is disposed on the exterior side of the cone. Spokes disposed on the exterior side of the cone extend from a base toward a vertex of the cone.
US11289783B2 Transport system for convertible battery pack
A battery pack transport system includes a battery pack and a protective member assembled on the battery pack for preventing the battery pack from damage during shipping. The battery pack includes two battery cell groups each having a positive electrode and a negative electrode and a female connector electrically connected to two battery cell groups to connect two battery cell groups in parallel. The protective member engages with the female connector to change two battery cell groups from parallel connected state to isolated state.
US11289781B2 Method for producing a battery and battery
The invention relates to an accumulator having a plurality of electrode plates which are adjacently arranged and form at least one electrode plate stack in the form of a block, wherein each electrode plate comprises a frame having a grid arranged therein and wherein at least the grid is filled with an active mass, and wherein each electrode plate comprises at least one connecting lug protruding beyond the frame, wherein the connecting lugs of same-polarity electrode plates are arranged adjacent to one another in a row, wherein the connecting lugs adjacently arranged in a row are materially bonded together electrically and mechanically into a connecting lug block by at least one weld or solder point arranged between the connecting lugs. The invention furthermore relates to a method for manufacturing an accumulator.
US11289775B2 Battery wiring module including elastic joiners
Provided is a battery wiring module according to which a load that acts on module-side terminals accompanying expansion or contraction of battery cells can be reduced. A housing includes: a wire accommodating portion for accommodating wires; multiple terminal accommodating portions for accommodating module-side terminals; and first elastic joining portions that join the wire accommodating portion and the terminal accommodating portions in an elastically-deformable manner in the direction in which the battery cells are aligned.
US11289771B2 Battery components comprising fibers
Battery components are generally provided. In some embodiments, the battery components can be used as pasting paper and/or capacitance layers for batteries, such as lead acid batteries. The battery components described herein may comprise a plurality of fibers. The battery component may include, in some embodiments, a plurality of fibers and, optionally, one or more additives such as conductive carbon and/or activated carbon. In certain embodiments, the plurality of fibers include relatively coarse glass fibers (e.g., having an average diameter of greater than or equal to 2 microns), relatively fine glass fibers (e.g., having an average diameter of less than 2 microns), and/or fibrillated fibers. In some instances, such fibers may be present in amounts such that the battery component has a particular surface area, mean pore size, and/or dry tensile strength.
US11289764B2 Battery pack
A battery pack includes: a housing; a battery stack being housed in the housing, the battery stack including a plurality of prismatic batteries stacked on each other in a row; a one-side restraint portion that restrains one side of the battery stack in a Y direction; an opposite-side restraint portion that restrains another side of the battery stack in the Y direction; a housing-side end plate that restrains one side in the X direction of the battery stack and oppositely faces a housing inner-surface in the X direction; and a plate movement allowing and positioning mechanism that allows movement of the housing-side end plate in the X direction due to the expansion of the battery stack in the X direction, and positions the housing-side end plate with respect to housing 2 in the Y direction.
US11289762B2 Battery pack
The disclosure relates to a battery pack, which can include an enclosure including an upper cover and a lower case in sealed connection, a plurality of battery modules is arranged in the enclosure, and a first bonding member disposed on the upper surface of the battery modules and intended for connecting the battery modules with the upper cover. The present disclosure can strengthen the connection strength between the upper cover and the battery modules, and improve the overall stiffness of the battery modules.
US11289761B2 Battery unit
A battery unit includes a battery module having a plurality of batteries that are lined next to each other, and a case that accommodates the battery module. An intermediate heat releasing member that is configured to release heat from a center position to the case is arranged in a center position, between the plurality of batteries in the battery unit.
US11289760B2 Battery protection structure and battery module comprising same
Disclosed are a battery protection structure, which is suitable for preventing deformation caused by physical stress at a coupling portion of a base plate and an end plate, which are stacked sequentially, and a battery module comprising the battery protection structure. The battery protection structure includes: a base plate located below a battery assembly and having a male screw member around the battery assembly; an end plate located at a side of the battery assembly on the base plate; and a reinforcing member provided below the end plate and located between a barrier of the end plate and a flange protruding from the barrier, wherein the male screw member passes through the reinforcing member and the flange, and a female screw is coupled to a male screw of the male screw member on the reinforcing member.
US11289758B2 Photocatalytic power generation apparatus depending on ambient humidity difference
The present invention relates to a photocatalytic power generation apparatus depending on an ambient humidity difference. The power generation apparatus comprises a photocatalytic power generation unit driven by a humidity difference, a power storage assembly and a sunlight collection and emission assembly. The photocatalytic power generation unit driven by the humidity difference comprises an anode gas channel, a screen type photoelectric anode material, a moisture-permeable proton exchange membrane, a screen type cathode material and a cathode gas channel in sequence from one side to the other side. The photocatalytic power generation unit of the apparatus converts gas humidity difference potential energy in the anode and cathode gas channels into electric energy by a photocatalytic electrochemical reaction under an illumination condition and stores the converted electric energy into the power storage assembly.
US11289752B2 Plate assembly for heat exchanger
A plate assembly for a heat exchanger includes a first plate, a second plate, and an intermediate plate arranged between the first and second plates. The intermediate plate is joined to the first and second plates at peripheral edges to create a sealed periphery of the plate assembly. Corrugations of the intermediate plate provide crests and troughs that are in contact with inwardly facing surfaces of the first and second plates. The plate assembly can be configured as a battery cooling plate heat exchanger to transfer heat from a battery to fluid flowing through the plate assembly.
US11289748B2 Electrode plate, electrochemical device and safety coating
This application relates to an electrode plate, an electrochemical device and a safety coating. The electrode plate comprises a current collector, an electrode active material layer and a safety coating disposed between the current collector and the electrode active material layer. The safety coating layer comprises fluorinated polyolefin and/or chlorinated polyolefin polymer matrix, a conductive material and an inorganic filler. The electrode plate can quickly cut off the circuit when the electrochemical device (for example, a capacitor, a primary battery, or a secondary battery) is in a high temperature condition or an internal short circuit occurs, and thus it may improve the high temperature safety performance of the electrochemical device.
US11289744B2 Battery unit, battery monitoring system, and battery replacement method
A battery monitoring system prevents damage to a device utilizing stacked battery cells, reduces the time required for battery replacement, and increases the capacity and reduces the size of the battery monitoring system.A battery unit includes: two or more battery cells configured to generate a DC voltage; two or more measurement units configured to measure a voltage value of the two or more battery cells and obtain measurement signals representing a measurement result; two or more transmission loop antennas configured to generate an AC magnetic field corresponding to the measurement signals; a reception loop antenna configured to receive the AC magnetic fields and generate a reception signal corresponding to the AC magnetic fields; a receiver configured to demodulate the reception signal to generate information representing the measurement results; and a magnetic core that runs through the transmission loop antennas and the reception loop antenna.
US11289742B2 Method and system for dynamic battery charge rate adaptation
A method of charging a battery in an electronic device includes: supplying electrical power to the battery at a charge rate equal; determining if a battery temperature exceeds an adaptive temperature threshold; responsive to the battery temperature exceeding the adaptive temperature threshold: determining a rate of change of the battery temperature; obtaining a charge rate adjustment based on the rate of change; and modifying the charge rate by the charge rate adjustment.
US11289740B2 Rechargeable lead-acid battery with compound and sludge leveling and shedding capability
A rechargeable lead-acid battery is provided. The rechargeable lead-acid battery includes a casing, a grid structure and an electro-mechanical assembly. The casing defines an interior configured to accommodate plates and a supply of fluid that is electrically reactive with the plates to generate electricity. The grid structure is interposed between lower edges of the plates and a bottom of the casing. The electro-mechanical assembly is coupled with the grid structure and operable to agitate the grid structure.
US11289737B2 Pre-lithiated polyphenylene sulfide, polyphenylene sulfide-based solid electrolyte membrane, battery electrode sheet, quasi-solid-state lithium ion battery and method for manufacturing same
A method for manufacturing a pre-lithiated polyphenylene sulfide with a high solid solubility of lithium includes; placing NMP, Li2S, and LiOH into a high-pressure reactor to obtain a mixture, and heating the mixture to 150-250° C. for a high-temperature dehydration for 2-5 h, and then cooling the mixture to 100° C. and adding p-DCB to the mixture for a reaction at 150-250° C. for 80-200 min; dropwise adding hydrochloric acid in an identical amount as that of the LiOH neutralize LiOH, and removing NMP and H2O by evaporation or sublimation, to obtain a dry mixed powder; and to the dry mixed powder, adding a chloride ion complexing agent to obtain a mixture, stirring the mixture to homogeneity, and placing the mixture in a sealed reactor for a reaction at 150-250° C. for 80-200 min, followed by washing and drying, to obtain the pre-lithiated polyphenylene sulfide.
US11289736B2 Polymer electrolyte material for lithium battery cells
Lithium battery electrolyte materials comprising fluorinated phosphonates and having a polymer structure defined by: where R1 is —CF3, —(CF2)nCF3 and n is an integer ranging from 1 to 10, perfluoropolyether (PFPE), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), ethylene fluorinated ethylene propylene (EFEP), or polyethylene tetrafluoroethylene (ETFE) and R2 is —(CF2)n and n is an integer ranging from 1 to 10, perfluoropolyether (PFPE), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), ethylene fluorinated ethylene propylene (EFEP), or polyethylene tetrafluoroethylene (ETFE).
US11289730B2 Flexible batteries
Flexible batteries, comprising at least two cells, wherein at least two cells are connected by flexible connectors, such that the battery can be bent. The batteries can be incorporated into clothing and gear.
US11289729B2 Redox flow batteries and compounds for battery application
The present disclosure relates to organic electrolyte solutions including organic electrolytes (e.g., aromatic imides, ferrocenes, spiro fused compounds, or cyclopropenium compounds), and redox flow batteries and systems including the same.
US11289728B2 Segmented frames for redox flow batteries
A segmented frame plate is provided, which may be used in a frame plate assembly of a redox flow battery cell stack. A plurality of segmented frame plates may couple together around a perimeter of a cell plate. Each segmented frame plate may provide fluidic communication from/to a redox flow reservoir and/or another frame plate assembly to a cell plate of the frame plate assembly.
US11289725B2 Fuel cell module arrangement with leak recovery and methods of use
The present disclosure is directed to a fuel cell module. The fuel cell module may include a fuel cell having an anode, a cathode, and an electrolyte positioned between the anode and the cathode. The fuel cell module may also include an enclosure housing the fuel cell therein. The enclosure may include an air inlet and an air outlet. The fuel cell module may further include an air pressurizing mechanism fluidly connected to the enclosure. The air pressurizing mechanism may be configured to draw air through the air inlet into the enclosure and from the enclosure to the air pressurizing mechanism through the air outlet. The air pressurizing mechanism may be configured to pressurize the air to form a pressurized air stream that is directed to the cathode.
US11289721B2 Gas diffusion layer comprising porous carbonaceous film layer for fuel cell
The present invention relates to a gas diffusion layer including a porous carbonaceous film layer for a fuel cell, in which the average pore diameter of the porous carbonaceous film layer is 0.1 μm to 100 μm, a membrane-electrode assembly including the gas diffusion layer, and a fuel cell including the membrane-electrode assembly.
US11289720B2 Fuel cell having a variable water permeability
The invention relates to a fuel cell (100) comprising an anode chamber (10) for supplying a fuel-containing gas mixture, a cathode chamber (20) for supplying an oxygen-containing gas mixture, and a membrane (30) for transporting fuel ions from the anode chamber (10) into the cathode chamber (20). For this purpose, according to the invention, the membrane (30) has a graduated water permeability.
US11289715B2 Porous body for fuel cell
A porous body for a fuel cell is interposed between a membrane-electrode assembly (MEA) and a bipolar plate to form a gas channel through which a reactant gas flows in a predetermined direction, the porous body including: a main body disposed to contact the bipolar plate; and a plurality of ribs each including a land portion disposed to contact the MEA and a connecting portion connecting the land portion to the main body, in which an area of the land portion is gradually narrowed from an upstream part to a downstream part of the gas channel.
US11289706B2 Lithium ion secondary battery and electric device using same
A lithium ion secondary battery includes a positive electrode having a positive electrode active material layer on a current collector, a negative electrode having a negative electrode active material layer on a current collector, and a separator disposed between the positive electrode and the negative electrode and impregnated with a non-aqueous electrolyte solution. The positive electrode active material layer contains a positive electrode active material and a binder, the negative electrode active material layer contains a negative electrode active material and a binder, the binder of the negative electrode active material layer contains a copolymer of vinyl alcohol and an alkali metal neutralized product of ethylenically unsaturated carboxylic acid, and the separator includes a polymeric base material containing an inorganic compound or includes a polymer having a melting point or glass transition temperature of 140° C. or higher.
US11289702B2 Miniature battery with constant electrode pressure and electrolyte reservoir
An electrochemical voltage source has an anode containing lithium, a cathode containing manganese oxide, and a housing. The cathode and the anode are arranged in an interior of the housing and are arranged opposite one another. An electrolyte reservoir in the form of a compressible storage body, which receives an electrolyte, is arranged between the anode and the cathode. The storage body has a first side resting against an end face of the cathode and a second side, which faces away from the first side, and rests against an end face of the anode. The cathode experiences an increase in volume when the voltage source is discharged. The anode experiences a decrease in volume during the discharge. During the discharge, the absolute value of the volume increase of the cathode is at least as great as the absolute value of the volume decrease of the anode.
US11289701B2 Structurally controlled deposition of silicon onto nanowires
Provided herein are nanostructures for lithium ion battery electrodes and methods of fabrication. In some embodiments, a nanostructure template coated with a silicon coating is provided. The silicon coating may include a non-conformal, more porous layer and a conformal, denser layer on the non-conformal, more porous layer. In some embodiments, two different deposition processes, e.g., a PECVD layer to deposit the non-conformal layer and a thermal CVD process to deposit the conformal layer, are used. Anodes including the nanostructures have longer cycle lifetimes than anodes made using either a PECVD or thermal CVD method alone.
US11289697B2 Graphite protected anode active material particles for lithium batteries
Provided is an anode particulate or a solid mass of particulates for a lithium battery, the particulate comprising a graphite matrix and a single or a plurality of carbon foam-protected primary particles of an anode active material embedded or dispersed in the graphite matrix, wherein the primary particles of anode active material have a volume Va, the carbon foam contains pores having a pore volume Vp, and the volume ratio Vp/Va is from 0.3/1.0 to 5.0/1.0 and wherein the carbon foam is physically or chemically connected to both the graphite matrix and the primary particles of the anode active material. The carbon foam is preferably reinforced with a high-strength material.
US11289696B2 Method for manufacture of sulfur-carbon composite
A method for manufacturing a sulfur-carbon composite including the following steps of: (a) drying a porous carbon material; and (b) adding sulfur to the porous carbon material resulting from the drying of step (a), and mixing the sulfur and porous carbon material by a ball milling process and then heating the resulting ball milled product.
US11289695B2 Positive electrode active material comprising lithium-rich lithium manganese-based oxide and further comprising lithium tungsten compound, or additionally tungsten compound on the lithium-rich lithium manganese-based oxide, and positive electrode for lithium secondary battery comprising the same
A positive electrode active material includes a lithium-rich lithium manganese-based oxide, wherein the lithium-rich lithium manganese-based oxide is represented by the following chemical formula (1), Li1+aNixCoyMnzMvO2-bAb  (1) wherein, 0
US11289694B2 Negative electrode plate, preparation method thereof and electrochemical device
The invention refers to negative electrode plate, preparation method thereof and electrochemical device. The negative electrode plate comprises: a negative current collector, a negative active material layer, and an inorganic dielectric layer which are provided in a stacked manner; the negative active material layer comprises opposite first surface and second surface, wherein the first surface is disposed away from the negative current collector; the inorganic dielectric layer is disposed on the first surface of the negative active material layer. The negative electrode plate provided by the application is useful in an electrochemical device, and can result in an electrochemical device having simultaneously excellent safety performance and cycle performance.
US11289692B2 Electrode, storage battery, power storage device, and electronic device
A power storage device with high capacity is provided. A power storage device with high energy density is provided. A highly reliable power storage device is provided. A long-life power storage device is provided. An electrode with high capacity is provided. An electrode with high energy density is provided. A highly reliable electrode is provided. Such a power storage device includes a first electrode and a second electrode. The first electrode includes a first current collector and a first active material layer. The first active material layer includes active material particles, spaces provided on the periphery of the active material particles, graphene, and a binder. The active material particles are silicon. The active material particles and the spaces are surrounded by the graphene and the binder.
US11289691B2 Spherical or spherical-like cathode material for a lithium battery, a battery and preparation method and application thereof
The present invention discloses a spherical or spherical-like lithium battery cathode material, a battery and preparation methods and applications thereof. The chemical formula of the cathode material is: LiaNixCoyMnzMbO2, wherein 1.0≤a≤1.2; 0.0
US11289688B2 Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
A method for producing a positive electrode active material for nonaqueous electrolyte secondary batteries is disclosed which includes cleaning a powder formed of a lithium-nickel composite oxide represented by a general formula LizNi1-x-yCoxMyO2 where 0≤x≤0.35; 0≤y≤0.10; 0.95≤z≤1.10; and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al with an aqueous lithium carbonate solution and drying the cleaned powder.
US11289687B2 Organic light emitting diode (OLED) display panel and electronic device
An organic light emitting diode (OLED) display panel and an electronic device are provided. The OLED display panel includes a flexible polymer substrate, a first inorganic layer, a second inorganic layer, and an OLED array layer; the first inorganic layer and the second inorganic layer formed over opposite surfaces of the flexible polymer substrate, and the OLED array layer formed on a side of the first inorganic layer away from the flexible polymer substrate.
US11289686B2 Bonding apparatus and method of bonding a display device using the same
A bonding apparatus includes adhesive sheet that includes a central adhesive portion adhered to a central portion of a first substrate and a bendable adhesive portion that surrounds the central adhesive portion in a plan view and that is adhered to an edge portion of the first substrate that extends from the central portion, a molding member that includes a top surface that overlaps the central portion and a side surface bent from the top surface and that has a curved shape and that supports the adhesive sheet through the top surface, a magnet member disposed on a first display surface of a second substrate that covers the central portion of the first substrate, and pressing balls disposed in the molding member. The pressing balls press fife central adhesive portion and the bendable adhesive portion by forming attractive force with magnet member.
US11289683B2 Organic light emitting diode including convex curve or concave curve and organic light emitting device including the same
Provided are an organic light-emitting diode (OLED) and an organic light-emitting device including the same. The OLED includes a first electrode, an organic emissive layer which includes a plurality of convex curves or a plurality of concave curves in a light-emitting region and of which a slope of an inclined plane of an upper region with respect to a horizontal line dividing a height of the plurality of convex curves into halves is greater than a slope of an inclined plane of a lower region thereof, and a second electrode provided on the organic emissive layer. Accordingly, the OLED and the organic light-emitting device including the same are capable of improving current efficiency.
US11289682B2 Organic light emitting diode display device
An OLED display device includes a first substrate including a plurality of sub-pixels each including an emission area and a non-emission area; organic light emitting diodes on the first substrate; a second substrate opposed to the first substrate; a black matrix and a color filter layer on one side of the second substrate; a spacer on the black matrix and overlapping or parallel to one of the plurality of the gate lines and the plurality of data lines; and a film layer on the spacer, wherein an air gap is provided between the second substrate and the film layer, and a part of the film layer is exposed by the air gap.
US11289677B2 Display panel and display device having a protective pattern
The present disclosure relates to display panels and display devices. A display panel has a display area and a package area surrounding the display area. The display panel includes a substrate and a package cover plate bonded to the substrate in the package area via a package material melted by laser irradiation. The display area is provided with at least one mounting hole having a hole wall, and at least a portion of the hole wall of the mounting hole is coated with the package material. A protective pattern layer disposed between at least a portion of a boundary of the package area and the mounting hole is further included for blocking at least a portion of a laser beam during a movement of the laser beam from the package area to the mounting hole.
US11289676B2 Display device having a closed circular groove planarization layer
A display device with a good overall encapsulation effect, includes a light-emitting display layer, a planarization layer and an encapsulation layer which are sequentially laminated. The planarization layer is provided with at least one closed circular groove, and a projection of a closed circle formed by the groove on a plane on which the light-emitting display layer is located is completely placed outside the light-emitting display layer and surrounds the light-emitting display layer.
US11289675B2 Display panel with support structure and method of manufacturing the same
The present invention relates to manufacturing methods of display panels. According to an embodiment, a method includes: providing an array substrate, the array substrate defining at least one mounting groove for providing a mounting space for a hardware structure, the mounting groove extending through the array substrate along a thickness direction of the array substrate, forming a package structure on a side of the array substrate for packing the organic light emitting unit. The mounting groove is exposed.
US11289659B2 Organic electroluminescent materials and devices
Novel electroluminescent devices containing bicarbazole triazine compounds as emissive dopants are described. Devices incorporating this class of compounds exhibit delayed fluorescence characteristics that showed EQE's far exceeding the theoretical limit for a conventional fluorescent device.
US11289658B2 Electroluminescent device
Disclosed are electroluminescent devices that comprise organic layers that contain certain organic compounds containing one ore more pyrimidine moieties. The organic compounds containing one ore more pyrimidine moieties are suitable components of blue-emitting, durable, organo-electroluminescent layers. The electroluminescent devices may be employed for full color display panels in for example mobile phones, televisions and personal computer screens.
US11289656B2 Methods and systems for wireless to power line communications
Methods, systems, and apparatus for monitoring and controlling electronic devices using wired and wireless protocols are disclosed. The systems and apparatus may monitor their environment for signals from electronic devices. The systems and apparatus may take and disambiguate the signals that are received from the devices in their environment to identify the devices and associate control signals with the devices. The systems and apparatus may use communication means to send control signals to the identified electronic devices. Multiple apparatuses or systems may be connected together into networks, including mesh networks, to make for a more robust architecture.
US11289651B2 Memory device having via landing protection
A memory cell with a hard mask and a sidewall spacer of different material is provided. The memory cell comprises a bottom electrode disposed over a substrate. A switching dielectric is disposed over the bottom electrode and having a variable resistance. A top electrode is disposed over the switching dielectric. A hard mask disposed over the top electrode. A sidewall spacer extends upwardly along sidewalls of the switching dielectric, the top electrode, and the hard mask. The hard mask and the sidewall spacer have different etch selectivity. A method for manufacturing the memory cell is also provided.
US11289650B2 Stacked access device and resistive memory
A semiconductor device including stacked access device and resistive memory includes a stack disposed on a base structure, the stack including an access device stack and a resistive random-access memory (ReRAM) device stack, sidewall spacers disposed along a portion of the stack, a dielectric layer disposed over the stack, the sidewall spacers and the base structure, and an interlevel dielectric disposed on the dielectric layer.
US11289646B2 Method of forming a bottom electrode of a magnetoresistive random access memory cell
A method of fabricating a semiconductor device is disclosed. The method includes forming an opening with a tapered profile in a first material layer. An upper width of the opening is greater than a bottom width of opening. The method also includes forming a second material layer in the opening and forming a hard mask to cover a portion of the second material layer. The hard mask aligns to the opening and has a width smaller than the upper width of the opening. The method also includes etching the second material layer by using the hard mask as an etch mask to form an upper portion of a feature with a tapered profile.
US11289637B2 Transmon qubits with trenched capacitor structures
A qubit includes a substrate, and a first capacitor structure having a lower portion formed on a surface of the substrate and at least one first raised portion extending above the surface of the substrate. The qubit further includes a second capacitor structure having a lower portion formed on the surface of the substrate and at least one second raised portion extending above the surface of the substrate. The first capacitor structure and the second capacitor structure are formed of a superconducting material. The qubit further includes a junction between the first capacitor structure and the second capacitor structure. The junction is disposed at a predetermined distance from the surface of the substrate and has a first end in contact with the first raised portion and a second end in contact with the second raised portion.
US11289636B2 Energy recovery unit for vehicle use
An energy recovery unit (8) for use in a vehicle exhaust system (6) comprises an inlet (24) for receiving exhaust gas from the exhaust system (6); an outlet (26) for returning exhaust gas to the exhaust system (6); a thermoelectric generator (20) disposed between the inlet (24) and the outlet (26); and a valve arrangement operable to direct exhaust gas entering the inlet (24) across the thermoelectric generator (20) to enable the thermoelectric generator (20) to generate electrical energy from thermal energy contained in the exhaust gas, wherein the valve arrangement is operable to vary the direction of exhaust gas flow across the thermoelectric generator (20).
US11289635B2 Light emitting diode display apparatus and multi screen display apparatus using the same
The light emitting diode display apparatus comprises a pixel disposed on a substrate and configured to display an image. The pixel includes a first light emitting portion configured to connect with a first gate line disposed in a first direction, a data line disposed in a second direction which is perpendicular to the first direction, and a first driving power line which is parallel to the data line, a second light emitting portion configured to connect a second gate line which is parallel to the first gate line, the data line, and the first driving power line, a common connection pattern configured to connect with the first light emitting portion and the second light emitting portion in common, and a third light emitting portion configured to connect between the second driving power line and the common connection pattern. Some of the common connection pattern is configured to overlap with the second driving power line.
US11289632B2 Light emitting diode display apparatus
Provided is a display apparatus including a substrate, a plurality of light emitting device (LED) elements arranged in front of the substrate, a transmission layer formed on a front surface of the substrate to entirely cover the plurality of LED elements, a first polarization member arranged in front of the transmission layer, and a second polarization member arranged on a front surface of the first polarization member and allowing external light to be incident thereon, wherein the transmission layer is provided such that polarization of external light polarized through the second polarization member and the first polarization member is maintained in a course of the polarized external light passing through the transmission layer, being reflected by the front surface of the substrate or the plurality of LED elements and being directed to the first polarization member.
US11289620B2 Method of producing optoelectronic semiconductor chips and optoelectronic semiconductor chip
A method for producing optoelectronic semiconductor chips and an optoelectronic semiconductor chip are disclosed. In an embodiment a method includes growing a semiconductor layer sequence with an active, attaching a carrier substrate, depositing a sacrificial layer on an outer side of the carrier substrate and/or of the growth substrate, structuring the sacrificial layer so that singulation lanes are formed and dividing the carrier substrate and/or the growth substrate along the singulation lanes by a singulation stream including a laser radiation or a plasma, wherein the sacrificial layer adjacent to the singulation lanes is not transmissive to the singulation stream, and wherein the singulation stream is passed both through the singulation lanes and over the sacrificial layer.
US11289619B2 Automatically limiting power consumption by devices using infrared or radio communications
Methods, apparatus, and processor-readable storage media for automatically limiting power consumption by devices using infrared or radio communications are provided herein. An example computer-implemented method includes detecting, via at least one photodiode of an emitting sensor, one or more signals output by a user device within a predetermined proximity; automatically transitioning, via utilizing at least one transistor connected to the photodiode, and in response to detecting the one or more signals, the emitting sensor from a first power-consumption state to a second power-consumption state; transmitting one or more signals in response to transitioning from the first power-consumption state to the second power-consumption state; and subsequent to transmitting, automatically transitioning, via utilizing the at least one transistor, the emitting sensor from the second power-consumption state to the first power-consumption state after a predetermined amount of time has elapsed during which no signals were detected.
US11289616B2 High optical power light conversion device using a phosphor element with solder attachment
A light generator comprises a light conversion device and a light source arranged to apply a light beam to the light conversion element. The light conversion device includes an optoceramic or other solid phosphor element comprising one or more phosphors embedded in a ceramic, glass, or other host, a metal heat sink, and a solder bond attaching the optoceramic phosphor element to the metal heat sink. The optoceramic phosphor element does not undergo cracking in response to the light source applying a light beam of beam energy effective to heat the optoceramic phosphor element to the phosphor quenching point.
US11289614B2 Photoelectric conversion element and photoelectric conversion module
A photoelectric conversion element includes: a plurality of pixels that are formed on a common semiconductor substrate and each of which includes an avalanche photodiode; a first line that is formed on the semiconductor substrate, is electrically connected to two or more first pixels included in the plurality of pixels, and collectively extracts output currents from the two or more first pixels; and a second line that is formed on the semiconductor substrate, is electrically connected to two or more second pixels included in the plurality of pixels, and collectively extracts output currents from the two or more second pixels. A light receiving area of each first pixel is larger than a light receiving area of each second pixel.
US11289611B2 Three dimensional memory
A method to fabricate a three dimensional memory structure may include creating a stack of layers including a conductive source layer, a first insulating layer, a select gate source layer, and a second insulating layer, and an array stack. A hole through the stack of layers may then be created using the conductive source layer as a stop-etch layer. The source material may have an etch rate no faster than 33% as fast as an etch rate of the insulating material for the etch process used to create the hole. A pillar of semiconductor material may then fill the hole, so that the pillar of semiconductor material is in electrical contact with the conductive source layer.
US11289603B2 Semiconductor device and method
A semiconductor device and method of manufacture are provided which utilizes metallic seeds to help crystallize a ferroelectric layer. In an embodiment a metal layer and a ferroelectric layer are formed adjacent to each other and then the metal layer is diffused into the ferroelectric layer. Once in place, a crystallization process is performed which utilizes the material of the metal layer as seed crystals.
US11289602B2 FeFET of 3D structure for capacitance matching
An MFMIS-FET includes a MOSFET having a three-dimensional structure that allows the MOSFET to have an effective area that is greater than the footprint of the MFM or the MOSFET. In some embodiment, the gate electrode of the MOSFET and the bottom electrode of the MFM are united. In some, they have equal areas. In some embodiments, the MFM and the MOSFET have nearly equal footprints. In some embodiments, the effective area of the MOSFET is much greater than the effective area of the MFM. These structures reduce the capacitance ratio between the MFM structure and the MOSFET without reducing the area of the MFM structure in a way that would decrease drain current.
US11289601B2 Negative capacitance semiconductor sensor
A semiconductor sensor includes a source element; a drain element; and a semiconductor channel element between the source element and the drain element, forming an electrically conductive channel. An insulator is positioned between the semiconductor channel element and a solution to be sensed. A reference contacts the solution and sets an electric potential of the solution. A bias voltage source generates an external sensor bias voltage for electrically biasing the reference electrode. A sensing surface interacts with the solution comprising analytes for generating a surface potential change at the sensing surface dependent on the concentration of analytes. The sensor further includes a ferroelectric capacitance element between the insulator and the bias voltage source for generating a negative capacitance for a differential gain between the external sensor bias voltage and an internal sensor bias voltage sensed at a surface of the channel element facing the insulator or ferroelectric capacitance element.
US11289600B2 Field effect transistor
Provided is a field effect transistor including a semiconductor layer, a gate electrode provided on a channel region in the semiconductor layer, and a channel adjusting member provided adjacent to the channel region on one surface of the semiconductor layer and overlapping the gate electrode on a plane. Here, the channel adjusting member provides a depletion layer in the channel region.
US11289597B2 Superjunction transistor device with soft switching behavior
A transistor device is enclosed. The transistor device includes: a semiconductor body; a plurality of drift regions of a first doping type; a plurality of compensation regions of a second doping type adjoining the drift regions; and a plurality of transistor cells each including a body region adjoining a respective one of the plurality of drift regions, a source region adjoining the body region, and a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric. The source regions of the plurality of transistor cells are connected to a source node, the body regions of the plurality of transistor cells are separated from the plurality of compensation regions in the semiconductor body, and the plurality of compensation regions are ohmically connected to the source node.
US11289592B2 Structure to increase breakdown voltage of high electron mobility transistor
A structure to increase the breakdown voltage of the high electron mobility transistor is provided to solve the problem of function loss under a high voltage state. The structure includes a substrate, a conducting layer located on the substrate, a gate insulating layer and an electric-field-dispersion layer. The upper portion of the conducting layer is an electron supply layer, and the lower portion of the conducting layer is an electron tunnel layer. The gate insulating layer is laminated on the electron supply layer. The electric-field-dispersion layer is laminated on the gate insulating layer. The dielectric constant of the electric-field-dispersion layer is smaller than that of the gate insulating layer. A gate electrode is located between the electric-field-dispersion layer and the gate insulating layer. A source and a drain electrodes are respectively electrically connected to the electric-field-dispersion layer, the gate insulating layer, the electron supply layer, and the electron tunnel layer.
US11289590B1 Thermal diode switch
The various embodiments described herein include methods, devices, and systems for fabricating and operating diodes. In one aspect, an electrical circuit includes: (1) a diode component having a particular energy band gap; (2) an electrical source electrically coupled to the diode component and configured to bias the diode component in a particular state; and (3) a heating component thermally coupled to a junction of the diode component and configured to selectively supply heat corresponding to the particular energy band gap.
US11289589B2 Semiconductor device and manufacturing method thereof
In a method for manufacturing a semiconductor device by using a gate replacement technology, a gate space constituted by dielectric material portions, in which a semiconductor fin channel layer is exposed, is formed. The surfaces of the dielectric material portions are made hydrophobic. A first dielectric layer is formed on the semiconductor fin channel layer, while maintaining the surfaces of the dielectric material portions hydrophobic. A surface of the formed first dielectric layer is hydrophilic. A first conductive layer is formed over the first dielectric layer, while maintaining the surfaces of the dielectric material portions hydrophobic. A second conductive layer is formed over the first conductive layer and on the hydrophobic surfaces of the dielectric material portions, thereby filling the gate space.
US11289588B2 Semiconductor device including two thin-film transistors and method of fabricating the same
A semiconductor device includes a base substrate. A first thin-film transistor is disposed on the base substrate. The first thin-film transistor includes a first input electrode, a first output electrode, a first semiconductor pattern disposed below a first insulating layer, and a first control electrode disposed on the first insulating layer and below a second insulating layer. A second thin-film transistor includes a second input electrode, a second output electrode, a second semiconductor pattern disposed on the second insulating layer, and a second control electrode disposed on an insulating pattern formed on the second semiconductor pattern and exposes a portion of the second semiconductor pattern. The first semiconductor pattern includes a crystalline semiconductor. The second semiconductor pattern includes an oxide semiconductor. The first semiconductor pattern, the first control electrode, the second semiconductor pattern, and the second control electrode are overlapped.
US11289587B2 Trench power semiconductor component and method of manufacturing the same
A trench power semiconductor component and a method of manufacturing the same are provided. In the method, a step of forming a trench gate structure includes the following steps. First, a shielding electrode, a bottom insulating layer, and an upper insulating layer are formed in a trench. The bottom insulating layer covers a lower part of an inner wall of the trench, and surrounds the shielding electrode. The upper insulating layer covers an upper part of the inner wall. Thereafter, an interlayer dielectric layer and a U-shaped masking layer are formed in the trench. The interlayer dielectric layer is interposed between the upper insulating layer and the U-shaped masking layer. A portion of the upper insulating layer and a portion of the interlayer dielectric layer which are located at an upper part of the trench are removed so as to form an inter-electrode dielectric layer.
US11289586B2 Spacer structure for semiconductor device
The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a fin structure over the substrate, a gate structure over the fin structure, a first inner spacer layer formed in the fin structure and adjacent to the gate structure, and a second inner spacer layer extending through the first inner spacer layer.
US11289576B2 Wafer and method of manufactruring wafer
The wafer having a retardation distribution measured with a light having a wavelength of 520 nm, wherein an average value of the retardation is 38 nm or less, wherein the wafer comprises a micropipe, and wherein a density of the micropipe is 1.5/cm2 or less, is disclosed.
US11289572B1 Semiconductor device
A semiconductor device includes a substrate having a logic region and a high-voltage (HV) region, a first gate structure on the HV region, a first epitaxial layer and a second epitaxial layer adjacent to one side of the first gate structure, a first contact plug between the first epitaxial layer and the second epitaxial layer, a third epitaxial layer and a fourth epitaxial layer adjacent to another side of the first gate structure, and a second contact plug between the third epitaxial layer and the fourth epitaxial layer. Preferably, a bottom surface of the first epitaxial layer is lower than a bottom surface of the first contact plug and a bottom surface of the third epitaxial layer is lower than a bottom surface of the second contact plug.
US11289569B2 Hybrid decoupling capacitor and method forming same
A device includes a first capacitor and a second capacitor connected to the first capacitor in parallel. The first capacitor includes a semiconductor region and a first plurality of gate stacks. The first plurality of gate stacks comprise a plurality of gate dielectrics over and contacting the semiconductor region, and a plurality of gate electrodes over the plurality of gate dielectrics. The second capacitor includes an isolation region, a second plurality of gate stacks over the isolation region, and a plurality of conductive strips over the isolation region and parallel to the second plurality of gate stacks. The second plurality of gate stacks and the plurality of conductive strips are laid out alternatingly.
US11289568B2 Reduction of electric field enhanced moisture penetration by metal shielding
The present disclosure relates to a MIM (metal-insulator-metal) capacitor having a top electrode overlying a substrate. A passivation layer overlies the top electrode. The passivation layer has a step region that continuously contacts and extends from a top surface of the top electrode to sidewalls of the top electrode. A metal frame overlies the passivation layer. The metal frame continuously contacts and extends from a top surface of the passivation layer to upper sidewalls of the passivation layer in the step region. The metal frame has a protrusion that extends through the passivation layer and contacts the top surface of the top electrode.
US11289567B2 Display device including color filter and light shielding layer
A display device includes a base substrate, a drive chip disposed on the base substrate, a signal line group including a first signal line having a first sub line connected to the drive chip and a second sub line which overlaps a display region and is spaced apart from the first sub line when viewed in a plane, an insulating layer disposed on the base substrate, a first connection line including one end connected to the first sub line through a first contact hole and the other end connected to the second sub line through a second contact hole, an encapsulation layer disposed on the insulating layer, a light shielding layer for overlapping the first connection line when viewed in the plane, and a color filter layer which is disposed on the light shielding layer and includes a plurality of color filters divided by the light shielding layer.
US11289562B2 Display apparatus having high resolution
A display apparatus includes pixel units each of which includes a first light emitting portion, a second light emitting portion, and a third light emitting portion, each emitting a different color light. The display apparatus includes a thin film transistor substrate, a first light emitting group disposed on the thin film transistor substrate and including eight first light emitting portions included in different pixel units, a second light emitting group disposed on the thin film transistor substrate and including eight second light emitting portions included in different pixel units, and a third light emitting group disposed on the thin film transistor substrate and including four third light emitting portions included in different pixel units.
US11289558B2 Light-emitting device, method for manufacturing the same, and cellular phone
The invention relates to: a light-emitting device which includes a first flexible substrate having a first electrode, a light-emitting layer over the first electrode, and a second electrode with a projecting portion over the light-emitting layer and a second flexible substrate having a semiconductor circuit and a third electrode electrically connected to the semiconductor circuit, in which the projecting portion of the second electrode and the third electrode are electrically connected to each other; a method for manufacturing the light-emitting device; and a cellular phone which includes a housing incorporating the light-emitting device and having a longitudinal direction and a lateral direction, in which the light-emitting device is disposed on a front side and in an upper portion in the longitudinal direction of the housing.
US11289550B2 Flexible display device and method of manufacturing the same
A flexible display device includes a first flexible substrate, a display unit on the first flexible substrate, a thin film encapsulation layer for encapsulating the display unit, a cover layer for covering the thin film encapsulation layer, a touch screen layer on the cover layer, and a second flexible substrate on the touch screen layer, wherein the touch screen layer includes a sensing pattern unit, and a touch pad unit electrically connected to the sensing pattern unit, wherein the cover layer is under the sensing pattern unit, and wherein a thickness of the cover layer from an upper surface of the thin film encapsulation layer to a lower surface of the touch screen layer is about 1 μm to about 20 μm.
US11289549B2 Display panel and terminal device
A display panel includes: a display area including a photosensitive area, and a plurality of pixel units arranged in an array in the photosensitive area, wherein a light transmitting hole is provided between adjacent pixel units in the photosensitive area.
US11289545B2 Color filter substrate capable of protecting electrode, manufacturing method thereof and display panel
A color filter substrate, a manufacturing method thereof and a display panel are provided. The color filter substrate includes a first substrate, at least one spacer on a side of the first substrate, at least one electrode on a side of the at least one spacer facing away the first substrate, and at least two elastic supports on the side of the first substrate. In a plane parallel with an extending plane of the first substrate, a periphery of each spacer comprises at least two of the elastic supports, and in a direction perpendicular to the extending plane of the first substrate, a sum of a height of the spacer and a thickness of the electrode on the spacer is smaller than a height of each of the elastic supports in the periphery of the spacer.
US11289543B2 Thin film transistor, manufacturing method of same, and CMOS inverter
A thin film transistor, a manufacturing method of the same, and a CMOS inverter are provided. The thin film transistor includes a base substrate, a dielectric layer, and a semiconductor layer. A first channel is provided between the source and the drain. Carbon nanotubes are provided in the first channel. A second channel is provided between the drain and the gate. An ion gel is provided in the second channel. By regulating a composition of the ion gel and a content of a dopant, a threshold voltage of a carbon nanotube thin film transistor is effectively controlled.
US11289538B2 Memory device and semiconductor die, and method of fabricating memory device
A memory device including bit lines, auxiliary lines, selectors, and memory cells is provided. The word lines are intersected with the bit lines. The auxiliary lines are disposed between the word lines and the of bit lines. The selectors are inserted between the bit lines and the auxiliary lines. The memory cells are inserted between the word lines and the auxiliary lines.
US11289537B2 Transfer substrate, method of fabricating micro light emitting diode display substrate, and micro light emitting diode display substrate
A transfer substrate for transferring an array of a plurality of micro light emitting diodes (micro LEDs) onto a target substrate. The transfer substrate includes a base substrate and an array of a plurality of electroactive actuators. A respective one of the plurality of electroactive actuators includes a ring-shaped frame structure substantially surrounding a central opening, the ring-shaped frame structure made of an electroactive material. The ring-shaped frame structure is configured to undergo a reversible deformation between a first state and a second state upon a change in an electric field applied on the ring-shaped frame structure. A distance between two positions on an inner wall of the ring-shaped frame structure and across the central opening having a first value in the first state and a second value in the second state. The first value is greater than the second value.
US11289536B2 Light emitting device having commonly connected LED sub-units
A display apparatus including a thin film transistor (TFT) substrate, a first LED sub-unit disposed on the TFT substrate, a second LED sub-unit disposed on the first LED sub-unit, a third LED sub-unit disposed on the second LED sub-unit, electrode pads disposed between the TFT substrate and the first LED sub-unit, and connectors connecting the first, second, and third LED sub-units to a respective one of the electrode pads, in which the first LED sub-unit, the second LED sub-unit, and the third LED sub-unit are configured to be independently driven, light generated from the first LED sub-unit is configured to be emitted to the outside of the display apparatus by passing through the second LED sub-unit and the third LED sub-unit, and light generated from the second LED sub-unit is configured to be emitted to the outside of the display apparatus by passing through the third LED sub-unit.
US11289531B2 Detection panel, manufacturing method thereof and photo detection device
A detection panel, a manufacturing method thereof and a photo detection device are provided. The detection panel includes a plurality of detection pixel units in an array, the detection pixel unit includes a reflective structure on a base substrate, a detection circuit and a photoelectric conversion structure on the reflective structure; the photoelectric conversion structure includes a first electrode, a photodiode and a second electrode stacked sequentially, and the first electrode is electrically connected with the detection circuit, and the first electrode is an optically transparent electrode, and an orthographic projection of the reflective structure on the base substrate at least covers an orthographic projection of the photodiode on the base substrate.
US11289527B2 Semiconductor device, manufacturing method thereof, and electronic apparatus
A semiconductor device having a first semiconductor section including a first wiring layer at one side thereof; a second semiconductor section including a second wiring layer at one side thereof, the first and second semiconductor sections being secured together with the respective first and second wiring layer sides of the first and second semiconductor sections facing each other; a conductive material extending through the first semiconductor section to the second wiring layer of the second semiconductor section and by means of which the first and second wiring layers are in electrical communication; and an opening, other than the opening for the conductive material, which extends through the first semiconductor section to the second wiring layer.
US11289526B2 Solid-state imaging device and electronic apparatus
There is provided a solid-state imaging device including: a first substrate including a first semiconductor substrate and a first wiring layer, the first semiconductor substrate having a pixel unit with pixels; a second substrate including a second semiconductor substrate and a second wiring layer, the second semiconductor substrate having a circuit with a predetermined function; and a third substrate including a third semiconductor substrate and a third wiring layer, the third semiconductor substrate having a circuit with a predetermined function, the first, second, and third substrates being stacked in this order, the first substrate and the second substrate being bonded together with the first wiring layer and the second wiring layer opposed to each other, a first coupling structure on bonding surfaces of the first substrate and the second substrate, and including an electrode junction structure with electrodes formed on the respective bonding surfaces in direct contact with each other.
US11289513B2 Thin film transistor and method for fabricating the same, array substrate and display device
A thin film transistor and a method for fabricating the same, an array substrate and a display device are provided. The thin film transistor includes an active layer and a protective layer being provided on and in direct contact with the active layer, the protective layer is provided corresponding to a channel region of the thin film transistor; the protective layer is made of an oxygen-enriched metallic oxide insulation material which will not introduce any new element into the active layer. In the thin film transistor and the method for fabricating the same, the array substrate and the display device provided by the present disclosure, the active layer can be protected from being damaged by the etchant for forming the source/drain, and no new element will be introduced into the active layer; thus the characteristics and the stability of the thin film transistor is improved.
US11289511B2 Ferroelectric memory devices with reduced edge leakage and methods for forming the same
Embodiments of ferroelectric memory devices and methods for forming the ferroelectric memory devices are disclosed. In an example, a ferroelectric memory cell includes a first electrode, a second electrode, a ferroelectric layer disposed between the first electrode and the second electrode, and a recess between a side surface of at least one of the first electrode or the second electrode and a side surface of the ferroelectric layer.
US11289505B2 Semiconductor memory device
A semiconductor memory device according to an embodiment includes a substrate, first to eleventh conductive layers, first and second pillars, and first to fourth insulating regions. The first insulating regions are provided between the third and fifth conductive layers and between the fourth and sixth conductive layers. The second insulating regions are provided between the eighth and tenth conductive layers and between the ninth and eleventh conductive layers. The third insulating region is provided between the third to sixth conductive layers and the eighth to eleventh conductive layers. The fourth insulating region is provided between the second and seventh conductive layers. The fourth insulating region is separated from the third insulating region in a planar view.
US11289504B2 Three-dimensional semiconductor memory device and method of fabricating the same
A three-dimensional semiconductor memory device may include horizontal patterns disposed on a peripheral circuit structure and spaced apart from each other, memory structures provided on the horizontal patterns, respectively, each of the memory structures including a three-dimensional arrangement of memory cells. Penetrating insulating patterns and separation structures may isolate the horizontal patterns from one another. Through vias may extend through the penetrating insulating patterns to connect logic circuits of the peripheral circuit structure to the memory structure.
US11289502B2 Memory device and method for fabricating the same
A memory device includes a substrate having an upper surface; a stacked structure disposed on the upper surface of the substrate, wherein the stacked structure includes a first insulating layer, a first conductive layer, a second insulating layer; a second conductive layer and a third insulating layer sequentially stacked on the substrate; a plurality of channel structures penetrating the stacked structure and electrically connected to the substrate, wherein each of the channel structures includes an upper portion corresponding to the second conductive layer and a lower portion corresponding to the first conductive layer; a memory layer disposed between the second conductive layer and the upper portion; and a plurality of isolation structures penetrating the stacked structure to separate the stacked structure into a plurality of sub-stacks.
US11289498B2 Semiconductor device including nonvolatile memory device and logic device and manufacturing method of semiconductor device including nonvolatile memory device and logic device
A semiconductor device include a nonvolatile memory device, including a first well region formed in a substrate, a tunneling gate insulator formed on the first well region, a floating gate formed on the tunneling gate insulator, a control gate insulator formed on the substrate, a control gate formed on the control gate insulator, and a first source region and a first drain region formed on opposite sides of the control gate, respectively, and a first logic device, including a first logic well region formed in the substrate, a first logic gate insulator formed on the first logic well region, a first logic gate formed on the first logic gate insulator, wherein the first logic gate comprises substantially a same material as a material of the control gate of the nonvolatile memory device.
US11289489B2 Capacitor structure
A capacitor structure including a semiconductor substrate; a dielectric layer on the semiconductor substrate; a storage node pad in the dielectric layer; a lower electrode including a bottle-shaped bottom portion recessed into the dielectric layer and being in direct contact with the storage node pad; and a lattice layer supporting a topmost part of the lower electrode, wherein the lattice layer is not directly contacting the dielectric layer, but is directly contacting the topmost part of the lower electrode. The bottle-shaped bottom portion extends to a sidewall of the storage node pad. The bottle-shaped bottom portion has a width that is wider than other portion of the lower electrode.
US11289488B2 Semiconductor memory device
Disclosed is a semiconductor memory device including a stack structure including layers which are vertically stacked on a substrate and each of which includes a bit line extending in a first direction and a semiconductor pattern extending in a second direction from the bit line, a gate electrode which is in a hole penetrating the stack structure and extending along a stack of semiconductor patterns, a vertical insulating layer covering the gate electrode and filling the hole, and a data storage element electrically connected to the semiconductor pattern. The data storage element includes a first electrode, which is in a first recess of the vertical insulating layer and has a cylindrical shape whose one end is opened, and a second electrode, which includes a first protrusion in a cylinder of the first electrode and a second protrusion in a second recess of the vertical insulating layer.
US11289487B2 Doped titanium nitride materials for DRAM capacitors, and related semiconductor devices, systems, and methods
A DRAM capacitor comprising a first capacitor electrode configured as a container and comprising a doped titanium nitride material, a capacitor dielectric on the first capacitor electrode, and a second capacitor electrode on the capacitor dielectric. Methods of forming the DRAM capacitor are also disclosed, as are semiconductor devices and systems comprising such DRAM capacitors.
US11289485B2 Semiconductor device and method of manufacturing the same
A semiconductor device according to the present disclosure includes a first field effect transistor including at least two channel structure units each having a nanowire structure or a nanosheet structure, and a second field effect transistor having a Fin structure, in which the channel structure units are spaced apart from each other in a thickness direction of the first field effect transistor.
US11289481B2 Single metal that performs N work function and P work function in a high-K/metal gate
A semiconductor device includes a semiconductor substrate, an isolation structure in the semiconductor substrate for isolating a first active region and a second active region, a first device formed in the first active region, and a second device formed in the second active region. The first device has a first gate dielectric layer and a first gate electrode over the first gate dielectric layer. The first gate electrode includes at least one of Ta and C, and has a first work function for a first conductivity. The second device has a second gate dielectric layer and a second gate electrode over the second gate dielectric layer. The second gate electrode includes at least one of Ta, C, and Al, and has a second work function for a second conductivity. The second conductivity is different from the first conductivity.
US11289480B2 Semiconductor device and method
A method includes forming a first semiconductor fin in a substrate, forming a metal gate structure over the first semiconductor fin, removing a portion of the metal gate structure to form a first recess in the metal gate structure that is laterally separated from the first semiconductor fin by a first distance, wherein the first distance is determined according to a first desired threshold voltage associated with the first semiconductor fin, and filling the recess with a dielectric material.
US11289479B2 Fin-type field effect transistor structure and manufacturing method thereof
A fin-type field effect transistor comprising a substrate, at least one gate stack and epitaxy material portions is described. The substrate has fins and insulators located between the fins, and the fins include channel portions and flank portions beside the channel portions. The at least one gate stack is disposed over the insulators and over the channel portions of the fins. The epitaxy material portions are disposed over the flank portions of the fins and at two opposite sides of the at least one gate stack. The epitaxy material portions disposed on the flank portions of the fins are separate from one another.
US11289478B2 Semiconductor device including fin field effect transistor
A semiconductor device includes a first gate pattern and a second gate pattern on a substrate, the first gate pattern and the second gate pattern being spaced apart from each other, and a separation pattern that separates the first gate pattern and the second gate pattern from each other. The first gate pattern includes a first high-k dielectric pattern and a first metal-containing pattern on the first high-k dielectric pattern, the first metal-containing pattern covering a sidewall of the first high-k dielectric pattern. The second gate pattern includes a second high-k dielectric pattern and a second metal-containing pattern on the second high-k dielectric pattern, and the separation pattern is in direct contact with the first metal-containing pattern and spaced apart from the first high-k dielectric pattern.
US11289474B2 Passive devices over polycrystalline semiconductor fins
Structures including a passive device and methods of forming such structures. Multiple fins are positioned on a substrate, and an interconnect structure is positioned over the substrate. The fins contain a polycrystalline semiconductor material, and the interconnect structure includes a passive device that is positioned over the fins. The passive device may be, for example, an inductor or a transmission line.
US11289473B2 Semiconductor device
Disclosed is a semiconductor device comprising a substrate including a first region and a second region, a first gate pattern on the substrate of the first region, and a second gate pattern on the substrate of the second region. The first gate pattern comprises a first high-k dielectric pattern, a first N-type metal-containing pattern, and a first P-type metal-containing pattern that are sequentially stacked. The second gate pattern comprises a second high-k dielectric pattern and a second P-type metal-containing pattern that are sequentially stacked.
US11289472B2 Integrated circuit with electrostatic discharge protection
An integrated circuit includes an input/output (I/O) pad, an electrostatic discharge (ESD) primary circuit and a bias voltage generator. The electrostatic discharge primary circuit includes a first transistor. A first terminal of the first transistor is coupled to the I/O pad. The bias voltage generator is configured to provide a gate bias signal to the gate terminal of the first transistor. The bias voltage generator provides the gate bias signal at a first voltage level in response to that an ESD event occurs on the I/O pad. The bias voltage generator provides the gate bias signal at a second voltage level in response to that no ESD event occurs on the I/O pad. The first voltage level is lower than the second voltage level.
US11289470B2 Method of manufacturing trench transistor structure
A method of manufacturing a trench transistor structure including the following steps is provided. A substrate structure is provided. A first region and a second region are defined in the substrate structure. The substrate structure has a first trench located in the first region and a second trench located in the second region. A transistor device is formed in the first region. The transistor device includes an electrode located in the first trench. The electrode and the substrate structure are isolated from each other. An electrostatic discharge (ESD) protection device is formed in the second region. The ESD protection device includes a main body layer located in the second trench. The main body layer has a planarized top surface. PN junctions are located in the main body layer. The main body layer and the substrate structure are isolated from each other.
US11289465B2 Display device with low reflectivity metal layer surround a light emiting unit of a pixel
A display device including a substrate and a plurality of pixels is provided. The pixels are disposed on the substrate. At least one of the pixels includes a thin film transistor, a bonding pad, a light emitting unit, and a metal layer. The bonding pad is electrically connected to the thin film transistor. The light emitting unit is disposed on the bonding pad. The metal layer is insulated from the bonding pad and surrounds the bonding pad in a top view direction of the display device.
US11289463B2 Display panel
A display panel includes a first substrate, a plurality of first color micro light emitting diodes (LEDs), a plurality of second color LEDs and a shading layer. The first substrate has a plurality of pixel zones arranged in an array form. Each of the first color LEDs has a first light emitting surface facing to a display direction. Each of the second color LEDs has a second light emitting surface facing to the display direction. Each of the pixel zones is provided with one of the first color micro LEDs and one of the second color LEDs. The shading layer is disposed in the pixel zones. The shading layer overlaps part of the first light emitting surface and part of the second light emitting surface in the display direction.
US11289461B2 Light emitting device with LED stack for display and display apparatus having the same
A light emitting device for a display including a first LED sub-unit, a second LED sub-unit disposed on the first LED sub-unit, a third LED sub-unit disposed on the second LED sub-unit, electrode pads disposed below the first LED sub-unit, and a filler disposed between the electrode pads, in which the electrode pads include a common electrode pad electrically connected in common to the first, second, and third LED sub-units, and first, second, and third electrode pads connected to the first, second, and third LED sub-units, respectively, the first, second, and third LED sub-units are independently drivable, light generated in the first LED sub-unit is configured to be emitted to the outside of the light emitting device through the second and third LED sub-units, and light generated in the second LED sub-unit is configured to be emitted to the outside through the third LED sub-unit.
US11289459B2 Apparatus and method for manufacturing light-emitting diode module
The present invention relates to an apparatus and a method for manufacturing a light-emitting diode (LED) module and, more particularly, to an apparatus and a method for manufacturing a light-emitting diode module, which are capable of manufacturing a light emitting diode module on which a plurality of light-emitting diodes are mounted with an improved bonding speed and high accuracy by manufacturing the light-emitting diode module by simultaneously transferring the plurality of light emitting diodes onto a substrate by using a multi-eject pin or a multi-collet. An apparatus for manufacturing a light-emitting diode (LED) module according to one embodiment of the present invention, in which the light-emitting diode module comprises a plurality of light-emitting diodes each having one side surface with an exposed electrode surface and the other side surface corresponding to the one side surface, comprises: a sheet placement unit in which a sheet having a lower portion to which the other side surfaces of the plurality of light-emitting diodes are adhered is placed; a substrate placement unit in which a substrate is placed at a position corresponding to the sheet in the lower portion of the sheet, wherein the substrate has thereon a conductive pattern to which the one side surfaces of the plurality of light-emitting diodes are electrically contacted; and a multi-transfer unit having, on a higher portion of the sheet, a plurality of eject pins for transferring the plurality of light-emitting diodes adhered to the lower portion of the sheet onto the substrate, wherein the multi-transfer unit is characterized in that the plurality of eject pins transfer the plurality of light-emitting diodes onto the substrate.
US11289457B2 Method and device for controlling operation using temperature deviation in multi-chip package
A multi-chip package includes a first die having temperature sensors and a second die. The first die generates temperature deviation information of m (m
US11289456B2 Semiconductor package
A semiconductor package includes a frame having a through-opening, a first semiconductor chip disposed in the through-opening and having a first active surface on which a first connection pad is disposed and a first inactive surface opposing the first active surface, a second semiconductor chip disposed on the first semiconductor chip and having a second active surface on which a second connection pad is disposed and a second inactive surface opposing the second active surface, first and second bumps electrically connected to the first and second connection pads, respectively, first and second dummy bumps disposed on a same level as levels of the first and second bumps, respectively, first and second posts electrically connected to the first and second bumps, respectively, a connection member including a redistribution layer electrically connected to each of the first and second posts, and a dummy post disposed between the frame and the connection member.
US11289455B2 Backside contact to improve thermal dissipation away from semiconductor devices
In some embodiments, the present disclosure relates to a 3D integrated circuit (IC) stack that includes a first IC die bonded to a second IC die. The first IC die includes a first semiconductor substrate, a first interconnect structure arranged on a frontside of the first semiconductor substrate, and a first bonding structure arranged over the first interconnect structure. The second IC die includes a second semiconductor substrate, a second interconnect structure arranged on a frontside of the second semiconductor substrate, and a second bonding structure arranged on a backside of the second semiconductor substrate. The first bonding structure faces the second bonding structure. Further, the 3D IC stack includes a first backside contact that extends from the second bonding structure to the backside of the second semiconductor substrate and is thermally coupled to at least one of the first or second interconnect structures.
US11289454B2 Semiconductor package including dam structure surrounding semiconductor chip and method of manufacturing the same
A semiconductor package includes a base substrate, a first semiconductor chip on the base substrate, a dam structure on the base substrate and surrounding the first semiconductor chip, a second semiconductor chip on the first semiconductor chip, a non-conductive film, and a molding member. The non-conductive film may be between the base substrate, the first semiconductor chip, and the second semiconductor chip. The molding member may cover the base substrate, the first semiconductor chip, and the second semiconductor chip. A level of an upper surface of the first semiconductor chip and a level of an upper surface of the dam structure may be at a same level.
US11289451B2 Semiconductor package with high routing density patch
Methods and systems for a semiconductor package with high routing density routing patch are disclosed and may include a semiconductor die bonded to a substrate and a high routing density patch bonded to the substrate and to the semiconductor die, wherein the high routing density patch comprises a denser trace line density than the substrate. The high routing density patch can be a silicon-less-integrated module (SLIM) patch, comprising a BEOL portion, and can be TSV-less. Metal contacts may be formed on a second surface of the substrate. A second semiconductor die may be bonded to the substrate and to the high routing density patch. The high routing density patch may provide electrical interconnection between the semiconductor die. The substrate may be bonded to a silicon interposer. The high routing density patch may have a thickness of 10 microns or less. The substrate may have a thickness of 10 microns or less.
US11289444B2 Sensor systems and methods for providing sensor systems
A sensor assembly includes a die substrate and a metalized layer formed on the die substrate. The metalized layer is formed of a first metal material and includes a bonding pad to facilitate electrically coupling the sensor assembly to a sensor system. A remetalized bump is formed on the bonding pad of a second metal material and is electrically coupled to the metalized layer. An adhesive is applied to the remetalized bump and facilitates mechanically coupling the sensor assembly to the sensor system.
US11289443B2 Microspring structure for hardware trusted platform module
A secured system includes at least one semiconductor chip comprising information processing circuitry. An array of contact pads is disposed on a surface of the chip and is electrically coupled to the information processing circuitry. The secured system includes one or more semiconductor chiplets. Each chiplet comprises at least a portion of at least one hardware trusted platform module that cryptographically secures the information processing circuitry. An array of electrically conductive microsprings is disposed on a surface of the chiplet and is electrically coupled between the hardware trusted platform module and the contact pads.
US11289440B1 Combination-bonded die pair packaging and associated systems and methods
Systems and methods for semiconductor devices having a substrate with bond pads, a die pair in a stacked configuration above the bond pads and having a first die having an oxide layer, a second die having an oxide layer attached to the first oxide layer, and conductive bonds electrically coupling the dies. Interconnects extend between the bond pads and the die pair, electrically coupling die pair to the substrate. The device may include a second die pair electrically coupled to: (1) the first die pair with secondary interconnects; and (2) the substrate with through-silicon vias extending through the first die pair. The top die of a die pair may be a thick die for use at the top of a pair stack. Pairs may be created by matching dies of a first silicon wafer to dies of a second silicon wafer, combination bonding the wafers, and dicing the die pairs.
US11289438B2 Die-to-wafer bonding structure and semiconductor package using the same
According to an aspect of the inventive concept, there is provided a die-to-wafer bonding structure including a die having a first test pad, a first bonding pad formed on the first test pad, and a first insulating layer, the first bonding pad penetrates the first insulating layer. The structure may further include a wafer having a second test pad, a second bonding pad formed on the second test pad, and a second insulating layer, the second bonding pad penetrates the second insulating layer. The structure may further include a polymer layer surrounding all side surfaces of the first bonding pad and all side surfaces of the second bonding pad, the polymer layer being arranged between the die and the wafer. Additionally, the wafer and the die may be bonded together.
US11289437B1 Semiconductor device
A semiconductor device includes a power MOS chip having a source electrode on a surface and a control chip mounted on a portion of the power MOS chip, wherein, viewing from a first outer edge of the power MOS chip extending in a first direction to the control chip, a first column bonding pad and a second column bonding pad are formed in a region of the source electrode where the control chip is not mounted, and wherein a distance between a second outer edge of the power MOS chip extending in a second direction and the first column bonding pad is longer than a distance between the second outer edge and the second column bonding pad.
US11289436B2 Semiconductor package having a laser-activatable mold compound
Embodiments of molded packages and corresponding methods of manufacture are provided. In an embodiment of a molded package, the molded package includes a laser-activatable mold compound having a plurality of laser-activated regions which are plated with an electrically conductive material to form metal pads and/or metal traces at a first side of the laser-activatable mold compound. A semiconductor die embedded in the laser-activatable mold compound has a plurality of die pads. An interconnect electrically connects the plurality of die pads of the semiconductor die to the metal pads and/or metal traces at the first side of the laser-activatable mold compound.
US11289433B2 Semiconductor device packages and methods of manufacturing the same
A semiconductor package structure includes a carrier, an antenna element, an electronic component, and a conductive structure. The antenna element, which includes an exposed portion, is disposed on the carrier. The conductive structure is disposed between the carrier and the exposed portion of the antenna element. The conductive structure electrically connects the electronic component to the carrier. The carrier, the exposed portion of the antenna element, and the conductive structure define an air space to accommodate the electronic component and to space the electronic component apart from the conductive structure.
US11289432B2 Voltage compensated switch stack
A radio frequency (RF) switch arrangement that improves the voltage handling capacity of a stack of switching elements (e.g., field-effect transistors (FETs)). The RF switch arrangement can include a ground plane and a stack arranged in relation to the ground plane, the stack including a plurality of switching elements coupled in series with one another. The RF switch arrangement can also include a plurality of capacitive elements, each of the plurality of capacitive elements providing a capacitive path across respective terminals of a corresponding one of the plurality of switching elements.
US11289430B2 Semiconductor package and a method for manufacturing the same
A semiconductor package may include a package substrate, a support structure on the package substrate and having a cavity therein, and at least one first semiconductor chip on the package substrate in the cavity. The support structure may have a first inner sidewall facing the cavity, a first top surface, and a first inclined surface connecting the first inner sidewall and the first top surface. The first inclined surface may be inclined with respect to a top surface of the at least one first semiconductor chip.
US11289429B2 Three-dimensional memory die containing stress-compensating slit trench structures and methods for making the same
A vertically alternating sequence of continuous insulating layers and continuous sacrificial material layers is formed over a substrate. Memory stack structures are formed through the vertically alternating sequence. Divider trenches and slit trenches are formed such that the divider trenches laterally extend along a first horizontal direction and divide the vertically alternating sequence into a plurality of alternating stacks of insulating layers and sacrificial material layers, and the slit trenches laterally extend along a second horizontal direction that is perpendicular to the first horizontal direction. The sacrificial material layers are replaced with electrically conductive layers employing the divider trenches as a conduit for an etchant and for a reactant. Each of the divider trenches and the slit trenches are filled with material portions to provide a plurality of divider trench fill structures in the divider trenches and to provide a plurality of slit trench fill structures in the slit trenches.
US11289428B2 Element chip manufacturing method
An element chip manufacturing method including: preparing a semiconductor substrate including a first layer having a first principal surface, and a second layer having a second principal surface, the first layer provided with element regions, a dicing region, and an alignment mark, wherein the first layer includes a semiconductor layer, and the second layer includes a metal layer adjacent to the semiconductor layer; irradiating a first laser beam absorbed in the metal film and passing through the semiconductor layer, from the second principal surface side to a first region corresponding to the mark; imaging the semiconductor substrate from the second principal surface side with a camera, and then calculating a second region corresponding to the dicing region on the second principal surface; irradiating a second laser beam to the second region from the second principal surface side; and dicing the semiconductor substrate into a plurality of element chips.
US11289426B2 Semiconductor package and manufacturing method thereof
A package includes a die and a redistribution structure. The die has an active surface and is wrapped around by an encapsulant. The redistribution structure disposed on the active surface of the die and located above the encapsulant, wherein the redistribution structure comprises a conductive via connected with the die, a routing pattern located above and connected with the conductive via, and a seal ring structure, the seal ring structure includes a first seal ring element and a second seal ring element located above and connected with the first seal ring element, wherein the second seal ring element includes a seed layer sandwiched between the first seal ring element and the second seal ring element, and a top surface of the first seal ring element is substantially coplanar with a top surface of the conductive via.
US11289418B2 Package structure and manufacturing method thereof
A package structure includes a redistribution circuit structure, at least one semiconductor die, an insulating encapsulation, insulators, and metallic patterns. The at least one semiconductor die is located on and electrically connected to the redistribution circuit structure. The insulating encapsulation encapsulates the at least one semiconductor die and located on the redistribution circuit structure. The insulators are located on the redistribution circuit structure, wherein the insulators are separated and spaced apart from each other, wherein edges of each of the insulators are distant from edges of the at least one semiconductor die by an offset in a stacking direction of the redistribution circuit structure and the insulating encapsulation. Each of the metallic patterns is located on a respective one of the insulators.
US11289415B2 Semiconductor device including semiconductor chip having elongated bumps
A semiconductor chip is mounted on a mounting substrate. The semiconductor chip includes plural first bumps on a surface facing the mounting substrate. The plural first bumps each have a shape elongated in a first direction in plan view and are arranged in a second direction perpendicular to the first direction. The mounting substrate includes, on a surface on which the semiconductor chip is mounted, at least one first land connected to the plural first bumps. At least two first bumps of the plural first bumps are connected to each first land. The difference between the dimension of the first land in the second direction and the distance between the outer edges of two first bumps at respective ends of the arranged first bumps connected to the first land is 20 μm or less.
US11289412B2 Package substrate with partially recessed capacitor
A semiconductor package includes a multilayer substrate including a dielectric layer, a first conductive layer forming a first set of electrical contacts, a second conductive layer forming package electrical contacts and two capacitor electrical contacts, conductive vias extending through the dielectric layer between the first conductive layer with the second conductive layer, and a solder mask layer over the second conductive layer. The semiconductor package further includes a semiconductor die on the first side of the multilayer substrate electrically connected a capacitor on the second side of the multilayer substrate. A recessed portion of the capacitor is within a capacitor opening of the solder mask layer between the two capacitor electrical contacts and a board-side surface of the solder mask layer.
US11289411B2 Substrate structure and method for manufacturing the same
A substrate structure includes a wiring structure, a first bump pad, a second bump pad and a compensation structure. The wiring structure includes a plurality of redistribution layers. The first bump pad and the second bump pad are bonded to and electrically connected to the wiring structure. An amount of redistribution layers disposed under the first bump pad is greater than an amount of redistribution layers disposed under the second bump pad. The compensation structure is disposed under the second bump pad.
US11289406B2 Signal isolator having enhanced creepage characteristics
Methods and apparatus for a signal isolator having enhanced creepage characteristics. In embodiments, a signal isolator IC package comprises a leadframe including a die paddle having a first surface to support a die and an exposed second surface. A die is supported by a die paddle wherein a width of the second surface of the die paddle is less than a width of the die.
US11289403B2 Multi-layer substrate and method for manufacturing multi-layer substrate
A multi-layer substrate includes: a first insulating layer; a conductor layer that is provided on an upper surface of the first insulating layer and that has a penetrating portion; a second insulating layer that covers the conductor layer and that is stacked on the upper surface of the first insulating layer; a via hole that penetrates the second insulating layer from an upper surface of the second insulating layer to reach an inside of the first insulating layer and that includes the penetrating portion; and an insulating member with which the via hole is filled. The conductor layer has a portion exposed in the via hole, and the insulating member covers an upper surface and a lower surface of the conductor layer exposed in the via hole through the penetrating portion of the conductor layer.
US11289401B2 Semiconductor package
A semiconductor package and a manufacturing method thereof are provided. The semiconductor package includes a semiconductor die, an encapsulant, a redistribution layer, a polymer pattern and a heat dissipation structure. The semiconductor die has conductive pads at its active side, and is laterally encapsulated by the encapsulant. The redistribution layer is disposed at the active side of the semiconductor die, and spans over a front surface of the encapsulant. The redistribution layer is electrically connected with the conductive pads. The polymer pattern is disposed at a back surface of the encapsulant that is facing away from the front surface of the encapsulant. The semiconductor die is surrounded by the polymer pattern. The heat dissipation structure is in contact with a back side of the semiconductor die that is facing away from the active side, and extends onto the polymer pattern.
US11289393B2 Methods, devices, and systems for electronic device molding and encapsulation
Methods, devices, and systems are provided for the molding and encapsulation of flexible electronic devices. The encapsulation includes providing a mold shell made from an encapsulation material, positioning a flexible electronic device in the mold shell, and dispensing an encapsulant, in a liquid form, around the flexible electronic device. The mold shell, the dispensed encapsulant, and the electronic device forms an integral encapsulation package when the encapsulant is cured. The mold shell and the encapsulant may be made from a same material and, once cured, become an integral part of the encapsulated flexible electronic device.
US11289387B2 Methods and apparatus for backside via reveal processing
Methods and apparatus perform backside via reveal processes using a centralized control framework for multiple process tools. In some embodiments, a method for performing a backside via reveal process may include receiving process tool operational parameters from process tools involved in the backside via reveal process by a central controller, receiving sensor metrology data from at least one or more of the process tools involved in the backside via reveal process, and altering the backside reveal process based, at least in part, on the process tool operational parameters and the sensor metrology data by adjusting two or more of the process tools involved in the backside via reveal process. The profile parameters are configured to prevent backside via breakage during a chemical mechanical polishing (CMP) process.
US11289384B2 Method of manufacturing a semiconductor device and a semiconductor device
A method of manufacturing a semiconductor device includes forming a plurality of fin structures extending in a first direction over a semiconductor substrate. Each fin structure includes a first region proximate to the semiconductor substrate and a second region distal to the semiconductor substrate. An electrically conductive layer is formed between the first regions of a first adjacent pair of fin structures. A gate electrode structure is formed extending in a second direction substantially perpendicular to the first direction over the fin structure second region, and a metallization layer including at least one conductive line is formed over the gate electrode structure.
US11289380B2 Backside metal patterning die singulation systems and related methods
Implementations of methods of singulating a plurality of die comprised in a substrate may include forming a plurality of die on a first side of a substrate, forming a backside metal layer on a second side of a substrate, applying a polymer layer over the backside metal layer and forming a groove entirely through the polymer layer and partially through a thickness of the backside metal layer. The groove may be located in a die street of the substrate. The method may also include etching through a remaining portion of the backside metal layer located in the die street, removing the polymer layer, singulating the plurality of die in the substrate by removing substrate material in the die street.
US11289375B2 Fully aligned interconnects with selective area deposition
Interconnect structures and methods for forming the interconnect structures generally include forming a dielectric layer over a substrate. The dielectric layer includes a dielectric layer top surface. A metal line is formed in the dielectric layer. The metal line includes a sacrificial upper region and a lower region. The sacrificial upper region is formed separately from the lower region and the lower region includes a lower region top surface positioned below the dielectric layer top surface. The sacrificial upper region is removed, thereby exposing the lower region top surface and forming a trench defined by the lower region top surface and sidewalls of the dielectric layer. An interconnect structure is deposited such that at least a portion of the interconnect structure fills the trench, thereby defining a fully aligned top via.
US11289374B2 Nucleation-free gap fill ALD process
Processing methods comprise forming a gap fill layer comprising tungsten or molybdenum by exposing a substrate surface having at least one feature thereon sequentially to a metal precursor and a reducing agent comprising hydrogen to form the gap fill layer in the feature, wherein there is not a nucleation layer between the substrate surface and the gap fill layer.
US11289371B2 Top vias with selectively retained etch stops
Integrated chips and methods of forming the same include forming conductive lines on an underlying layer, between regions of dielectric material. The regions of dielectric material are selectively patterned, leaving at least one dielectric remnant region. An interlayer dielectric is formed over the underlying layer and the at least one dielectric remnant region, between the conductive lines.
US11289369B2 Low-k dielectric with self-forming barrier layer
A method of forming a low-k dielectric layer with barrier properties is disclosed. The method comprises forming a dielectric layer by PECVD which is doped with one or more of boron, nitrogen or phosphorous. The dopant gas of some embodiments may be coflowed with the other reactants during deposition.
US11289365B2 Air gap underneath passive devices
Certain aspects of the present disclosure generally relate to a semiconductor device including an air gap underneath passive devices. The semiconductor device generally includes a substrate layer, a passive device layer, and a dielectric layer disposed between the substrate layer and the passive device layer, wherein the dielectric layer includes an air gap disposed beneath at least one passive device in the passive device layer.
US11289362B2 Suction device, carry-in method, carrier system and exposure apparatus, and device manufacturing method
In a carrier system, a chuck unit is used to hold a placed wafer from above, and vertical-motion pins use suction to hold the wafer from below. Then, the chuck unit and the vertical-motion pins are subsequently lowered until a bottom surface of the wafer comes into contact with a wafer table. During the lowering, the holding force exerted by the chuck unit and the arrangement of chuck members are optimally adjusted such that, as a result of the restraint of the wafer by the chuck unit and the vertical-motion pins, localized surplus-restraint is imparted to the wafer, and warping does not occur.
US11289360B2 Methods and apparatus for protection of dielectric films during microelectronic component processing
Disclosed are methods and apparatus for protecting dielectric films on microelectronic components from contamination associated with singulation, picking and handling of singulated microelectronic components from a wafer for assembly with other components.
US11289357B2 Methods and apparatus for high voltage electrostatic chuck protection
Methods and apparatus for increasing voltage breakdown levels of an electrostatic chuck in a process chamber. A soft anodization layer with a thickness of greater than zero and less than approximately 10 microns is formed on an aluminum base of the electrostatic chuck. The soft anodization layer remains thermally elastic in a temperature range of approximately −50 degrees Celsius to approximately 100 degrees Celsius. An alumina spray coating is then applied on the soft anodization layer. The soft anodization layer provides thermal stress relief between the aluminum base and the alumina spray coating to reduce/eliminate cracking caused by the thermal expansion rate differences between the aluminum base and the alumina spray coating.
US11289353B2 Hermetically sealed housing with a semiconductor component and method for manufacturing thereof
A method is provided for producing a hermetically sealed housing having a semiconductor component. The method comprises introducing a housing having a housing body and a housing cover into a process chamber. The housing cover closes off a cavity of the housing body and is attached in a gas-tight manner to the housing body. At least one opening is formed in the housing. At least one semiconductor component is arranged in the cavity. The method furthermore comprises generating a vacuum in the cavity by evacuating the process chamber, and also generating a predetermined gas atmosphere in the cavity and the process chamber. The method moreover comprises applying sealing material to the at least one opening while the predetermined gas atmosphere prevails in the process chamber.
US11289352B2 In-situ metrology and process control
Methods and apparatus for the in-situ measurement of metrology parameters are disclosed herein. Some embodiments of the disclosure further provide for the real-time adjustment of process parameters based on the measure metrology parameters. Some embodiments of the disclosure provide for a multi-stage processing chamber top plate with one or more sensors between process stations.
US11289350B2 Method of manufacturing semiconductor device
There is provided a technique that includes (a) performing a heating process on a substrate in a process chamber, (b) transferring the substrate between the process chamber and a load lock chamber connected to a vacuum transfer chamber by a transfer robot installed in the vacuum transfer chamber connected to the process chamber, and (c) reading transfer information corresponding to process information applied to the substrate from a memory device in which plural pieces of the process information on a process content of the substrate and plural pieces of the transfer information of the transfer robot corresponding to the plural pieces of the process information are recorded, and controlling the transfer robot to transfer the substrate based on the read transfer information.
US11289338B2 Method for improved critical dimension uniformity in a semiconductor device fabrication process
Exemplary methods of patterning a device layer are described, including operations of patterning a protector layer and forming a first opening in a first patterning layer to expose a first portion of the protector layer and a first portion of the hard mask layer, which are then are exposed to a first etch to form a first opening in the first portion of the hard mask layer. A second opening is formed in a second patterning layer to expose a second portion of the protector layer and a second portion of the hard mask layer. The second portion of the protector layer and the second portion of the hard mask layer are exposed to an etch to form a second opening in the second portion of the hard mask layer. Exposed portions of the device layer are then etched through the first opening and the second opening.
US11289337B2 Method of forming patterns
In a method of forming pattern, a target layer is formed on a semiconductor substrate, and pluralities of first spacers having cylindrical shapes protruding from the target layer are formed. A second spacer layer is formed to cover the first spacers, provide interstitial spaces between the first spacers, and provide second inner spaces within first inner spaces of the first spacers, respectively. The second spacer layer is etched to form first opening portions in which the second inner spaces and the interstitial spaces extend into the target layer.
US11289336B2 Method for multi-level etch, semiconductor sensing device, and method for manufacturing semiconductor sensing device
Present disclosure provides a method for multi-level etch. The method includes providing a substrate, forming a first reference feature over a control region of the substrate, forming an etchable layer over the first reference feature and a target region over the substrate, patterning a masking layer over the etchable layer, the masking layer having a first opening projecting over the control region and a second opening projecting over the target region, and removing a portion of the etchable layer through the first opening and the second opening until the first reference feature is reached. A semiconductor sensing device manufactured by the multi-level etch is also disclosed.
US11289335B2 Method for fabricating a semiconductor device
A method for fabricating a semiconductor device includes forming a deposition-type interface layer over a substrate, converting the deposition-type interface layer into an oxidation-type interface layer, forming a high-k layer over the oxidation-type interface layer, forming a dipole interface on an interface between the high-k layer and the oxidation-type interface layer, forming a conductive layer over the high-k layer, and patterning the conductive layer, the high-k layer, the dipole interface, and the oxidation-type interface layer to form a gate stack over the substrate.
US11289334B2 Epitaxial wafer including boron and germanium and method of fabricating the same
An epitaxial wafer and a method of fabricating an epitaxial wafer, the method including providing a semiconductor substrate doped with both boron and germanium such that a sum of boron concentration and germanium concentration is at least 8.5E+18 atoms/cm3 and the germanium concentration is 6 times or less the boron concentration; forming an epitaxial layer on the semiconductor substrate such that the semiconductor substrate and the epitaxial layer constitute the epitaxial wafer; and annealing the epitaxial wafer for 1 hour or longer at a temperature of 1,000° C. or less.
US11289332B2 Directional processing to remove a layer or a material formed over a substrate
A method of fabricating a semiconductor device includes forming a hard mask layer over a substrate. A multi-layer resist is formed over the hard mask layer. The multi-layer resist is etched to form a plurality of openings in the multi-layer resist to expose a portion of the hard mask layer. Ion are directionally provided at an angle to the multi-layer resist to predominately contact sidewalls of the plurality of openings in the multi-layer resist rather than the hard mask layer. In one embodiment, the multi-layer resist is directionally etched by directing etch ions at an angle to predominately contact sidewalls of the plurality of openings in the multi-layer resist rather than the hard mask layer. In another embodiment, the multi-layer resist is directionally implanted by directing implant ions at an angle to predominately contact sidewalls of the plurality of openings in the multi-layer resist rather than the hard mask layer.
US11289331B2 Methods for graphene formation using microwave surface-wave plasma on dielectric materials
A method of forming graphene layers is disclosed. A method of improving graphene deposition is also disclosed. Some methods are advantageously performed at lower temperatures. Some methods advantageously provide graphene layers with lower resistance. Some methods advantageously provide graphene layers in a relatively short period of time.
US11289329B2 Methods and apparatus for filling a feature disposed in a substrate
Methods and apparatus for method for filling a feature with copper. In some embodiments, the methods include: (a) depositing a first cobalt layer via a physical vapor deposition (PVD) process atop a substrate field and atop a sidewall and a bottom surface of a feature disposed in a substrate to form a first cobalt portion atop the substrate field and a second cobalt portion atop the sidewall; (b) depositing copper atop the first cobalt portion atop the substrate field; and (c) flowing the copper disposed atop the first cobalt portion atop the substrate field over the second cobalt portion and into the feature, wherein the first cobalt portion atop the substrate field reduces the mobility of copper compared to the mobility of copper over the second cobalt portion.
US11289323B2 Processing of semiconductors using vaporized solvents
Processes and apparatuses for the treatment of semiconductor workpieces are provided. In some embodiments, a method can include placing the workpiece into a process chamber; vaporizing a solvent to create a vaporized solvent; introducing the vaporized solvent into the process chamber; and exposing the workpiece to the vaporized solvent.
US11289317B2 Interactive analysis of mass spectrometry data
This invention relates to graphical user-interactive analysis of data, including in particular, mass spectrographic data analysis, as well as methods and software for generating and using such. One aspect provides user-customizable reports, including methods and apparatuses for generating customizable pivot tables and graphs specific to mass spectrographic data.
US11289316B2 Spectrum data processing device and analyzer
A data processing device configured to create, based on a plurality of spectra each obtained from each of a plurality of specimens containing a predetermined component at known concentrations different from one another, a calibration curve showing a relationship between a concentration of the component in the specimen and an area of a peak corresponding to the component of a spectrum of the specimen, where each of the plurality of spectra has a peak top at a position depending on a component contained in a specimen. The device includes a display unit and a peak range setting unit configured to allow an operator to set both end positions of a peak or a position of a baseline corresponding to the component included in the displayed spectrum.
US11289310B2 Circuits for edge ring control in shaped DC pulsed plasma process device
The present disclosure relates to an apparatus and method that manipulates the voltage at an edge ring relative to a substrate located on a substrate support located within a processing chamber. The apparatus includes a substrate support assembly that has a body having a substrate electrode embedded therein for applying a voltage to a substrate. The body of the substrate support assembly additionally has an edge ring electrode embedded therein for applying a voltage to an edge ring. The apparatus further includes an edge ring voltage control circuit coupled to the edge ring electrode. A substrate voltage control circuit is coupled to the substrate electrode. The edge ring voltage control circuit and the substrate voltage control circuit are independently tunable to generate a difference in voltage between the edge ring voltage and the substrate voltage.
US11289308B2 Apparatus and method for processing substrate and method of manufacturing semiconductor device using the method
A substrate processing apparatus includes a process chamber including a plasma generation region configured to receive at least one first process gas and have first radio-frequency (RF) power applied thereto, to generate plasma; a gas distribution region configured to supply the at least one first process gas to the plasma generation region; a gas mixing region configured to receive at least one second process gas and radicals generated in the plasma generation region to generate an etchant based on the radicals being mixed with the at least one second process gas; a pedestal on which a substrate is disposed; a processing region in which the pedestal is installed; and a shower head configured to supply the etchant from the gas mixing region to the processing region, the substrate disposed on the pedestal being processed by the etchant. The gas mixing region is separate from each of the plasma generation region and the processing region.
US11289304B2 Apparatus using multiple beams of charged particles
Disclosed herein is an apparatus comprising: a first electrically conductive layer; a second electrically conductive layer; a plurality of optics element s between the first electrically conductive layer and the second electrically conductive layer, wherein the plurality of optics elements are configured to influence a plurality of beams of charged particles; a third electrically conductive layer between the first electrically conductive layer and the second electrically conductive layer; and an electrically insulating layer physically connected to the optics elements, wherein the electrically insulating layer is configured to electrically insulate the optics elements from the first electrically conductive layer, and the second electrically conductive layer.
US11289301B2 Multi-pixel X-ray source with tungsten-diamond transmission target
A multi-pixel x-ray source is provided. The x-ray source includes a plurality of transmission target assemblies. The transmission target assembly includes a tungsten target and a diamond substrate. The substrate includes a first transmission surface and a second transmission surface opposite first transmission surface. The substrate further includes a first side surface and a second side surface disposed between the first and second transmission surfaces. The target covers the first transmission surface of the substrate. The transmission target assembly further includes a base. The base surrounds the first and second side surfaces of substrate, exposing a collimator surface of the second transmission surface and the target. The transmission target assembly is configured to transmit x-ray generated by the target through the target and the substrate.
US11289291B2 Gas circuit breaker
A gas circuit breaker includes: a fixed arc contact disposed on an axis of motion, whose tip is directed to one side in a first direction that is parallel to the axis of motion; a movable arc contact that can reciprocate along the axis of motion between a position when in contact with the tip of the fixed arc contact and a position when separated from the tip of the fixed arc contact; and a first permanent magnet and a second permanent magnet as a permanent magnet whose magnetic poles are aligned in a second direction that is a direction perpendicular to the first direction. The fixed arc contact has a shape that is gradually widened in a direction away from the axis of motion from the tip toward another side in the first direction.
US11289289B2 Emergency stop switch
The problem to be addressed is to provide a highly safe and compact switch that is adapted to improvements in portability, weight reduction and size reduction of machines, or the like. An operating part has a button covering the upper part of a cylindrical housing that receives a downward pushing operation and a rotational operation. A contact unit part has contacts which open by being coupled to the downward pushing operation of the button. A twisting coil spring is disposed on the interior of the button, one end being joined to the housing, and the other end being joined to the button. A latch part disposed to the interior of the twisting coil spring, has a plunger coil spring that expands and contracts in a direction perpendicular to the direction of the downward pushing operation, and when a downward pushing operation is performed on the button, causes a sliding rod to slide along an inner wall of the housing while being displaced in the direction of the downward pushing operation.
US11289286B2 Key structure
A key structure includes a base plate, a key cap, a supporting member, a link member, and a buffer member. The base plate includes a body portion and a protrusion portion protruding upward from the body portion. The body portion has an accommodating hole, the accommodating hole corresponds to the protrusion portion, and the protrusion portion has an opening. The key cap is disposed above the base plate. The supporting member is disposed between the key cap and the base plate. The link member includes a main body portion and an end portion. The main body portion is pivotally connected to the key cap, and the end portion is disposed at the opening of the protrusion portion. The buffer member is located below the end portion, and the end portion leans against the buffer member.
US11289276B2 Porous metal foil and capacitor anodes made therefrom and methods of making same
A porous metal foil and porous metal wire are described. Capacitor anodes made from either or both of the porous metal foil and porous metal wire are further described as well as methods to make same.
US11289272B2 Multilayer ceramic electronic component
A multilayer ceramic electronic component includes a ceramic element body formed by alternately laminating dielectric layers and internal electrode layers. The dielectric layers include a main component containing barium titanate and a sub-component containing boron oxide and/or lithium oxide. The internal electrode layers include a main component of copper and/or silver. A coverage ratio of the internal electrode layers to the dielectric layers is 98% or less.
US11289271B2 Electronic component
A conductive resin layer includes a first region positioned on the end surface, a second region positioned on the side surface, and a third region positioned on a ridge portion between the end surface and the side surface. In a case where a maximum thickness of the first region is T1 (μm) and a maximum thickness of the second region is T2 (μm), the maximum thickness T1 and the maximum thickness T2 satisfy a relation of T2/T1≥0.11. In a cross-section along a thickness direction of the third region, a total area of the voids in the third region is in a range of 3.0 to 11.0% of an area of the third region.
US11289268B2 Transmission coil for wireless power supply, transmission antenna, wireless power transmitter, and charger
A transmission coil used in a wireless power transmitter includes a first coil, a second coil electrically connected in series with the first coil, and a tap provided at a connection node of the first coil and the second coil, the first coil and the second coil being stacked to at least partially overlap with each other. A transmission antenna includes the transmission coil, a first capacitor and a second capacitor connected in series with the transmission coil, and a switch provided in parallel to a series connection circuit of the second coil of the transmission coil and the second capacitor. A wireless power transmitter includes the transmission antenna and a bridge circuit that drives the transmission antenna. A charger includes the wireless power transmitter.
US11289267B2 Ignition coil including a center iron core and side iron cores
Obtain an ignition coil in which a magnet is provided at a magnet holding portion which is formed between a first side iron core and a second side iron core, and intervening components which are configured by using a non-magnetic material, are included at facing portions which are provided at end portions of separated surfaces of the first side iron core and separated surfaces of the second side iron core, in a state where the magnet holding portion is formed by using the first side iron core and the second side iron core, and are faced at a surface which is vertical with respect to an axis direction of the side iron cores, and the intervening components have a thickness which is less than a distance between the separated surfaces of the first side iron core and the separated surfaces of the second side iron core.
US11289264B2 Inductor
An inductor includes a body in which a plurality of insulating layers on which a plurality of coil patterns are arranged are stacked, and first and second external electrodes disposed on an external surface of the body, wherein the plurality of coil patterns are connected through coil connecting portions and include coil patterns disposed on an outer side and coil patterns disposed on an inner side thereof, a coil pattern disposed on the inner side adjacent to the coil pattern disposed on the outer side includes two coil connecting portions spaced apart from each other and facing each other in a length direction of the body, and a dummy electrode pattern is further disposed in a void portion between two coil connecting portions.
US11289258B2 Inductance element, high-frequency transformer element, impedance conversion element, and antenna device
In a high-frequency transformer element includes a primary coil including first coil conductors and a secondary coil including second coil conductors are disposed in a multilayer body that includes a plurality of insulating layers. A magnetic-field cancellation conductor pattern is disposed in the multilayer body, is adjacent to some conductors of the first coil conductors in a lamination direction of the insulating layers, is arranged along a surface of the insulating layers, and allows a high-frequency current to flow in a direction opposite a high-frequency current flowing in the first coil conductors.
US11289254B2 Insulator-coated soft magnetic powder, powder magnetic core, magnetic element, electronic device, and vehicle
An insulator-coated soft magnetic powder includes a core particle including a base portion containing a soft magnetic material and an oxide film that is provided on a surface of the base portion and that contains an oxide of an element contained in the soft magnetic material, and an insulating particle that is provided on a surface of the core particle and that has an insulating property, wherein an average particle diameter after heat treatment after being subjected to a heat treatment of heating at 1000° C. is 90% or more and 110% or less of an average particle diameter before heat treatment before being subjected to the heat treatment.
US11289246B2 Vibrator device, electronic apparatus, and vehicle
A vibrator device includes an intermediate substrate that includes a frame having a first surface and a second surface opposite to the first surface and a vibration element and is formed of quartz crystal, a first substrate that is bonded to the first surface of the frame and is formed of the quartz crystal or glass, a second substrate that is bonded to the second surface of the frame and is formed of the quartz crystal or the glass, and a functional element that is disposed on the first substrate and includes a functional layer, in which the functional element includes a portion overlapping the vibration element in plan view.
US11289244B2 Electronic component for limiting the inrush current
An electronic component is disclosed. In an embodiment, an electronic component includes at least one NTC element and at least two electrically conductive contact elements, wherein the NTC element is electrically conductively connected to a respective contact element via a connection material, and wherein a coefficient of thermal expansion of the contact elements is adapted to a coefficient thermal expansion of the NTC element.
US11289242B2 Method and apparatus for producing an extrudate
A method for producing an elongated article with a sheath. The sheath is extruded with a predetermined wall thickness in an extrusion unit. Following the extrusion unit in a feeding direction, a part of the still moldable material is built up with the aid of a molding unit during a molding process such that a molded part forms integrally on the sheath. The molding unit is moved according to the following working cycle: the molding unit is accelerated from a starting position in the feeding direction, then it is advanced in the direction of the elongated article and the molded part is formed, the molding unit is withdrawn from the elongated article, and the molding unit is decelerated and moved from an end position, counter to the feeding direction, back in the direction of the starting position.
US11289240B2 Power cable with an overmolded probe for power transfer to a non-thermal plasma generator and a method for constructing the overmolded probe
A transfer module for transferring power to a non-thermal plasma generator includes a power cable; a first epoxy; a second epoxy; an interface between the first epoxy and the second epoxy; and a well; the power cable including a conductor for conducting electrical power and an insulation layer for surrounding a portion of the conductor; the first epoxy being located within the well to surround the insulation layer; the second epoxy being located within the well to surround the conductor located within the well; the second epoxy being located outside the well to surround the conductor located outside the well.
US11289239B2 Electric wire, cable harness and flying object
There is provided an electric wire having a conductor total cross-sectional area of 2 mm2 or less and high reliability. The electric wire includes: a twisted wire conductor (2) including a plurality of strand conductors (21 to 27) twisted together with each other and having a total cross-sectional area of the plurality of strand conductors of 2 mm2 or less; and a covering member (3) made from a resin material having a flexural modulus of 0.6 GPa or more and covering the twisted wire conductor so that an inner wall thereof is in contact with an outer peripheral surface of the twisted wire conductor, wherein the twisted wire conductor (2) has, on an outer peripheral surface thereof, recesses having a maximum depth of 5% or less of a maximum diameter of the twisted wire conductor in a cross section perpendicular to a length direction of the twisted wire conductor and containing boundaries of the plurality of strand conductors.
US11289233B2 Method for collecting uranium by treatment process of washing waste liquid generated in uranium hexafluoride cylinder washing process
Disclosed are a method and a device for recovering uranium (U) using a process for chemically treating washing wastewater of a uranium hexafluoride (UF6) cylinder. The method and the device are provided to separate uranium (U) from the wastewater released during a process of washing the uranium hexafluoride (UF6) cylinder and to release a filtrate that satisfies atomic energy licensing standards and environmental regulation standards using evaporation and condensation. Accordingly, an independent technology and process for treating the wastewater released during the process of washing the uranium hexafluoride (UF6) cylinder are ensured, which provides easier maintenance and greatly reduces costs compared to the purchase and operation of apparatuses manufactured by foreign makers.
US11289229B2 Nuclear fuel storage system with integral shimming
A nuclear fuel storage system includes an outer canister and fuel basket positioned therein. The basket is formed by orthogonally arranged and interlocked slotted plates which collectively define exterior side surfaces of the basket and a grid array of open cells each configured to hold a fuel assembly. At least some slotted plates comprise cantilevered plate extensions protruding laterally beyond the side surfaces of the basket to define various shaped peripheral gaps between the basket and canister. The plate extensions are configured to engage the shell of the canister. Vertically elongated reinforcement members are inserted in the peripheral gaps and fixedly coupled to the basket. Reinforcement members may comprise elongated reinforcement plates and/or tubular shimming members which may be fixedly coupled to the slotted plate extensions. The reinforcement members structurally strengthen the fuel basket. The plate extensions further act as fins to enhance heat dissipation from the basket.
US11289227B2 Spent nuclear fuel canister
A canister for storing spent nuclear fuel includes an elongated shell, baseplate enclosing the bottom end of the shell, and removable top lid bolted to the shell. The shell may have a dual thickness comprising a lower portion with first thickness and upper portion with greater second thickness by comparison. The upper portion is formed by an annular boss defining a fastening portion of the shell including plural threaded bores for engaging the lid bolting. The fastening portion may protrude radially outwards or inwards in different embodiments. The lid has a mounting flange receiving the bolts and is seated on the top end of shell. The mounting flange does not protrude radially beyond the outer surface of the fastener portion to minimize the diameter of the canister for placement inside an outer radiation shielded overpack or cask for transport/storage. The shell may optionally include cooling fins.
US11289226B2 Nuclear waste capsule container system
Capsule systems and methods for long-term storage and/or disposal of high-level nuclear waste in deep geologic formations are described. Such systems and methods may include waste-capsules constructed substantially from granite or similar igneous rock material into which the nuclear waste material is placed before capsule insertion into a geologically deep wellbore.
US11289225B2 Radiation protection device for inspection facilities
A radiation protection device for an opening for inspection objects on a radiation tunnel is provided. The radiation protection device is formed from a plurality of radiation protection curtains arranged one behind the other at a distance in a transport direction, wherein a first radiation protection curtain includes a first shielding radiation protection curtain section covering only a first area of the opening and second shielding radiation protection curtain sections of at least one second radiation protection curtain arranged behind the first radiation protection curtain in the transport direction cover the area of the opening not covered by the first radiation protection curtain.
US11289223B2 Power plant chemical control system
Chemical control system for a power plant including at least one coolant electrochemical indication sensor of a flow type electrically connected to the measurement data processing and transmission unit with its outlet connected to a central computer (CPC) controlling the actuator for injection of hydrogen and chemical reagents. The hydraulic inlet of the electrochemical sensor in use of the system is connected by a sampling tube to the power plant process circuit and its hydraulic outlet is hydraulically connected to the first heat exchanger and the first throttling device with a coolant supply circuit in series. The sampling tube is configured to pass a coolant sample to the coolant electromechanical sensor and the coolant supply circuit contains tubes and valves configured to reverse the flow of the coolant sample through the first throttling device.
US11289222B2 Method and device for unlatching control rod drive shafts in pressurized water reactors
An unlatching tool configured for actuating a movable section of a control rod drive shaft in a pressurized water reactor includes a base; a gripper assembly configured for gripping the movable section of the control rod drive shaft; a rod movably connecting the gripper assembly to the base; and a mechanical actuator fixed to the base and configured for rotating the rod to raise and lower the gripper assembly. A method for actuating a movable section of a control rod drive shaft includes installing an unlatching tool on the control rod drive shaft; latching the unlatching tool to a stationary section of the control rod drive shaft; and raising a rod connected to a gripper assembly to cause the gripper assembly to grip the movable section and move the movable section upward.
US11289217B2 Intercooler for nuclear facility
A plurality of heat transfer pipes; a first header and a second header to which both ends of each of the heat transfer pipes that are disposed in parallel are fixed, respectively; a plurality of plate-shaped fins through which each of the heat transfer pipes is penetrated and that are provided at intervals in a direction in which the heat transfer pipes extend between the first header and the second header; and a fan that circulates an airflow between the plate-shaped fins are included. The first header and the second header are formed to be sectioned into multiple rows, the heat transfer pipes are disposed densely in an sectioned area of the first header and the second header, and the heat transfer pipes are disposed sparsely in an area between the sectioned areas of the first header and the second header.
US11289213B2 Control rods for light water reactors
A control rod for a nuclear fuel assembly is described herein that includes a neutron absorbing material having a melting point greater than 1500° C. that does not form a eutectic with a melting point less than 1500° C., and may further include a cladding material having a melting point greater than 1500° C. The cladding material is selected from the group consisting of silicon carbide, zirconium, a zirconium alloy, tungsten, and molybdenum. The absorbing material is selected from the group consisting of Gd2O3, Ir, B4C, Re, and Hf. The metal cladding or the absorbing material may be coated with an anti-oxidation coating of Cr with or without a Nb intermediate layer.
US11289212B2 Fission reactor with segmented cladding bodies having cladding arms with involute curve shape
Plurality of layers form a nuclear fission reactor structure, each layer having an inner segment body, an intermediate segment body, and an outer segment body (each segment body separated by an interface). The layers include a plurality of cladding arms having involute curve shapes that spirally radiate outward from a radially inner end to a radially outer end. Chambers in the involute curve shaped cladding arm contain fuel compositions (and/or other materials such as moderators and poisons). The design of the involute curve shaped cladding arms and the composition of the materials conform to neutronic and thermal management requirements for the nuclear fission reactor and are of sufficiently common design and/or have sufficiently few variations as to reduce manufacturing complexity and manufacturing variability.
US11289209B2 Lower end fitting locating pins
A nuclear reactor has a core installed on a lower core plate and formed from multiple fuel assemblies, each fuel assembly including a structural cage assembly. The structural cage assembly has an upper end fitting, mid grids, and a lower end fitting (LEF). The LEF positions the fuel assembly using four locating pins located at each corner of the LEF. The pins position the fuel assembly laterally by mating with receiving holes in the lower core plate. The locating pins have a chamfered tip with a flat end. The chamfered tip allows for a greater positioning margin when installing the fuel assembly in the core by guiding the pins into holes in the lower core plate, and the flat tip provides strength and stability in case the assembly is inadvertently rested on the tip of the pin instead of the LEF pads.
US11289202B2 Method and system to improve clinical workflow
Described herein are systems and methods for classifying clinical episodes in order to more accurately generate alerts for those episodes that warrant them. In some embodiments, alerts are only generated for those episodes that are new or different from previous episodes, where the previous episodes have been found to be not significant enough to warrant an alert.
US11289201B2 System, method and computer readable medium for dynamical tracking of the risk for hypoglycemia in type 1 and type 2 diabetes
A system, method and non-transient computer readable medium for tracking hypoglycemia risk in patients with diabetes exercise. A system may include a digital processor configured to execute instructions to receive an input from each available data source of a plurality of intermittently available data sources; determine a plurality of probability signals for impending hypoglycemia, wherein each probability signal is based on one or more of the inputs from the available data sources or a lack of input from an unavailable data source; wherein a probability signal for each unavailable data source is assigned a value corresponding to a zone of uncertainty; and determine an aggregate risk of hypoglycemia based on the plurality of intermittently data sources by aggregating the plurality of probability signals.
US11289200B1 Authorized user modeling for decision support
In some examples, authorized user profiles and generic models are generated using historical interaction data of authorized users. The authorized user profiles provide an experience profile for authorized users. The generic models are data models used to model authorized user actions. The authorized user profiles and generic models are used to generate support elements. The support elements are presented to authorized users and feedback is collected. Based on the feedback, the authorized user profiles and generic models are updated.
US11289199B2 Wellness analysis system
A wellness analyzer is in communications with sensors that generate real-time physiological data from a patient. The wellness analyzer is also in communications with databases that provide non-real-time information relevant to a medical-related assessment of the patient. In a diagnostic mode, a monitor layer inputs the sensor data and adjunct layers input the database information. Adjunct layer logic blocks process the database information so as to output supplemental information to the monitor. Monitor logic blocks process the sensor data and the supplemental information so as to generate a wellness output. In a simulation mode, a simulator generates at least one parameter and the monitor generates a predictive wellness output accordingly.
US11289198B2 Systems and methods for generating alimentary instruction sets based on vibrant constitutional guidance
A method for generating an alimentary instruction set identifying a list of supplements, comprising receiving information related to a biological extraction and physiological state of a user and generating a diagnostic output based upon the information related to the biological extraction and physiological state of the user. The generating comprises identifying a condition of the user as a function of the information related to the biological extraction and physiological state of the user and a first training set. Further, the generating includes identifying a supplement related to the identified condition of the user as a function of the identified condition of the user and a second training set. Further, the method includes generating, by an alimentary instruction set generator operating on a computing device, a supplement plan as a function of the diagnostic output, said supplement plan including the supplement related to the identified condition of the user.
US11289189B2 Systems and methods for auto-generation of telemedicine clinics
The present disclosure provides systems and methods for automatically generating telemedicine platforms for providers. A marketplace of healthcare services and associated pricing and other terms is made available to employers, individuals, and/or health insurance companies. Employers and/or health insurance companies can select a subset of options from the marketplace to create a customizable sub-marketplace of healthcare services to offer to their employees or insureds. Providers may modify their offerings in the marketplace to fit within guidelines established by the employers or health insurance companies to be automatically included in the sub-marketplace of healthcare services.
US11289187B2 Multimodal biomarkers predictive of transdiagnostic symptom severity
The method for evaluating mental health of a patient includes displaying a series of inquiries from mental health questionnaires on a display device. Each inquiry of the series of inquiries includes text and a set of answers. A series of selections is received from a user interface. Each selection of the series of selections is representative of an answer of the set of answers for each corresponding inquiry in the series of inquiries. Unprocessed MRI data are received. The unprocessed MRI data correspond to a set of MRI images of a biological structure associated with a patient. Using a machine learning model, the series of selections and the unprocessed MRI data are processed. The series of selections being processed corresponds to the series of inquiries. A symptom severity indicator for a mental health category of the patient is outputted.
US11289177B2 Computer method and system of identifying genomic mutations using graph-based local assembly
Computer-implemented methods and systems for performing a local assembly of a genomic region of interest include the de novo or assisted creation of a directed graph, such as a directed acyclic graph (DAG), from a plurality of obtained nucleotide sequence reads. First and second sequence reads are aligned to each other to define at least one node of the DAG. Successive alignments of the remaining sequence reads to the then-defined DAG are performed to extend nodes and/or add nodes to the DAG. Graph-aware alignment techniques that produce alignment scores or indicators are employed in defining the nodes of the DAG from the sequence reads. The created DAG represents and describes in detail the genomic region of interest and can be used to perform variant calls.
US11289176B2 Determination of copy number variations using binomial probability calculations
This invention relates to a binomial calculation of copy number of data obtained from a mixed sample having a first source and a second source.
US11289174B2 Stacked semiconductor device and semiconductor system including the same
A stacked semiconductor device including a plurality of semiconductor chips that are stacked and transfer signals through a plurality of through-electrodes, wherein at least one of the semiconductor chips comprises a first clock generation circuit suitable for generating first and second test clocks by dividing or buffering an external clock according to an operating information signal for indicating a high-speed test operation and a low-speed test operation; a first latch circuit suitable for latching a test control signal according to the first and second test clocks to generate first and second latched signals; and an input signal control circuit suitable for generating first and second internal control signals by re-latching the second latched signal according to the first test clock, and re-latching the first latched signal according to the second test clock.
US11289169B2 Cycled background reads
A method for processing blocks of flash memory to decrease raw bit errors from the flash memory is provided. The method includes identifying one or more blocks of the flash memory for a refresh operation and writing information regarding the identified blocks, to a data structure. The method includes issuing background reads to the identified blocks, according to the data structure, as the refresh operation. The method may be embodied on a computer readable medium. In some embodiments the background reads may be based on a time based refresh responsive to an increase in raw bit error count in the flash memory over time.
US11289167B2 Information processing system including host device and memory system
A memory system of an embodiment includes a memory device including a first set of cell transistors and a second set of cell transistors; and a controller configured to transmit to the memory device a first instruction and transmit to the memory device a second instruction after reception of a first request without receiving the first request again. The first instruction instructs parallel reads from the first and second sets of cell transistors, and the second instruction instructs a read from the first set of cell transistors.
US11289163B2 Multi-decks memory device including inter-deck switches
Some embodiments include apparatuses and methods of forming such apparatuses. One of the apparatus includes first memory cells located in different levels in a first portion of the apparatus, second memory cells located in different levels in a second portion of the apparatus, a switch located in a third portion of the apparatus between the first and second portions, first and second control gates to access the first and second memory cells, an additional control gate located between the first and second control gates to control the switch, a first conductive structure having a thickness and extending perpendicular to the levels in the first portion of the apparatus, a first dielectric structure between the first conductive structure and charge-storage portions of the first memory cells, a second dielectric structure having a second thickness between the second conductive structure and a sidewall of the additional control gate, the second thickness being greater than the first thickness.
US11289162B2 Analog content addressable memory utilizing three terminal memory devices
An analog content addressable memory cell includes a match line, a high side, and a low side. The high side encodes a high bound on a range of values and includes a first three terminal memory device. The first three terminal memory device includes a first gate that sets a high voltage bound of the first three terminal memory device. Specifically, an input voltage applied at the first gate of the first memory device, if higher than the high voltage bound, turns the first memory device ON which discharges the match line. Similarly, the low side encodes a lower bound on a range of values and includes a second three terminal memory device. The second three terminal memory device includes a second gate that sets a low voltage bound of the second three terminal memory device. Specifically, an input voltage applied at the second gate of the second memory device, if lower than the low voltage bound, turns the first memory device ON which discharges the match line.
US11289156B2 Ballistic reversible superconducting memory element
A reversible memory element is provided. The reversible memory element comprises a reversible memory cell comprising a Josephson junction and a passive inductor. A ballistic interconnect is connected to the reversible memory cell by a bidirectional input/output port. A polarized input fluxon propagating along the ballistic interconnect exchanges polarity with a stationary stored fluxon in the reversible memory cell in response to the input fluxon reflecting off the reversible memory cell.
US11289155B2 Semiconductor memory device with write assist control
According to one embodiment, there is provided a semiconductor memory device including a bit cell, a pair of bit lines and an assist circuit. The pair of bit lines are electrically connected to the bit cell. The assist circuit is configured to be connected to the bit lines and including one or more capacitive elements. A ratio between a parasitic capacitance value of each of the bit lines and a capacitance value of the assist circuit is adjustable.
US11289147B2 Sensing techniques for a memory cell
Methods, systems, and devices for sensing techniques for a memory cell are described to enable a latch to sense a logic state of a memory cell. A transistor coupled with a memory cell may boost a first voltage associated with the memory cell to a second voltage via one or more parasitic capacitances of the transistor. The second voltage may be developed on a first node of a sense component, and the second voltage may be shifted to a third voltage at a first node of the sense component by applying a voltage to a shift node coupled with a capacitor of the sense component. Similar boosting and shifting operations may be performed to develop a reference voltage on a second node of the sense component. The sense component may sense the state of the memory cell by comparing with the reference voltage.
US11289142B2 Nonvolatile memory sensing circuit including variable current source
The present invention is directed to a nonvolatile memory device including a plurality of memory slices, each memory slice including one or more memory sectors and a read circuit for sensing the resistance state of a magnetic memory cell in the memory sectors. The read circuit includes a first input node through which a reference current passes; a second input node through which a read current from the memory sectors passes; a sense amplifier configured to compare input voltages and having first and second input terminals; a reference resistor connected to the first input node at one end and the first input terminal at the other end; a variable current source connected to the reference resistor at one end and ground at the other end; and a second current source connected to the second input node at one end and ground at the other end.
US11289140B2 Sub-wordline driver
A sub-wordline driver for a semiconductor memory device is disclosed. The sub-wordline driver includes a selection controller and a plurality of driving circuits. The selection controller selectively outputs any one of a first-group wordline selection signal and a second-group wordline selection signal in response to a selection signal and a wordline drive signal. The plurality of driving circuits selectively output any one of a plurality of sub-wordline drive signals in response to a main wordline drive signal, the wordline drive signal, the first-group wordline selection signal, and the second-group wordline selection signal.
US11289134B2 Non-volatile memory reading circuits and methods for reducing sensing delay periods
Devices, systems, and methods for reducing sensing delays for a non-volatile memory reading circuit may include operations for pre-charging a plurality of bit lines coupling a memory array having multiple bit cells with a sensing amplifier. Upon receiving a read request identifying a given bit cell in the memory array, the addressed bit line is decoupled from a bias voltage. The addressed bit line corresponds to the given bit cell and is selected from the plurality of bit lines. With the decoupling from the bias voltage, the addressed bit lines are coupled to the sensing amplifier. After a sensing circuit delay, data stored in the given bit cell is provided to the sensing amplifier via the addressed bit lines coupled to the sensing amplifier. The data stored in the given bit cell may then be interpreted by the sensing amplifier and a corresponding data output signal is generated.
US11289133B2 Power state based data retention
There is provided an apparatus comprising power state determination circuitry to determine a power state of a processing circuit; and control circuitry to issue a control signal relating to an item of data stored in a first storage circuitry. When the power state of the processing circuit is a predetermined state, the control circuitry issues a further control signal to a second storage circuitry to indicate whether the item of data is to be retained by the second storage circuitry.
US11289130B2 Memory device
A memory device includes a periphery wafer, a memory array chip stack, and a plurality of first conductive contacts. The periphery wafer has a functional surface. The memory array chip stack is disposed on the periphery wafer and has a functional surface, in which the functional surface of the periphery wafer faces toward the functional surface of the memory array chip stack, and a first side of the memory array chip stack is in a staircase configuration. The first conductive contacts are on the first side of the memory array chip stack, and between and interconnecting the functional surface of the periphery wafer and the functional surface of the memory array chip stack.
US11289129B2 Electronic device, storage device, and disk device
An electronic device according to one embodiment includes a housing, a first substrate, a second substrate, a first wireless communication device and a second wireless communication device. The first substrate is located inside the housing. The second substrate is located outside the housing and attached to the housing. The first wireless communication device is included in the first substrate. The second wireless communication device is included in the second substrate and wirelessly communicates with the first wireless communication device.
US11289128B2 Video production system
A system may perform operations including displaying a graphical user interface (GUI) on a display screen of a web client; displaying a first content prompt on a prompt screen comprised in the GUI, wherein the prompt screen is disposed on the GUI at least one of proximate or adjacent to a camera of the web client; recording a first video clip while displaying the first content prompt; displaying a second content prompt on the prompt screen in response to the recording the first video clip being completed; recording a second video clip while displaying the second content prompt; and/or concatenating the first video clip and the second video clip into a video.
US11289124B2 Magnetic tape device, magnetic tape, and magnetic tape cartridge
A magnetic tape device, a magnetic tape, and a magnetic tape cartridge, in which the magnetic tape is caused to run between a winding reel and a cartridge reel in a state where a tension is applied in a longitudinal direction of the magnetic tape and a maximum value of the tension is 0.50 N or more, the magnetic tape after running in a state where the tension is applied is wound around the cartridge reel by applying a tension of 0.40 N or less in the longitudinal direction, and a center line average roughness Ra measured regarding a surface of a back coating layer of the magnetic tape with an atomic force microscope is in a range of 5 to 13 nm.
US11289123B2 Magnetic recording tape having embedded servo sectors on data tracks
An external servo writer configured to write a plurality of embedded servo sectors on a magnetic tape to define a plurality of data tracks is disclosed. A first part of the plurality of embedded servo sectors is written while controlling an actuator to first move a head vertically along a width of the magnetic tape. A second part of the plurality of embedded servo sectors is written while controlling the actuator to second move the head vertically along the width of the magnetic tape.
US11289121B2 Suspension assembly, head suspension assembly and disk device with the same
According to one embodiment, a suspension assembly includes a support plate, a trace member on the support plate and a drive element mounted on the trace member. The trace member includes a metal plate, and a multilayered member on the metal plate. The multilayered member includes a first insulating layer, a conductive layer stacked on the first insulating layer, a second insulating layer stacked on the conductive layer. The multilayered member includes a mount portion on which the drive element is mounted, and a branching portion arranged along the mount portion with a gap therebetween. At least one portion of the branching portion is formed into a thin portion having a thickness less than other portions of the multilayered member.
US11289119B1 Notched leading-edge shield for assisted magnetic recording head
A recording head has a near-field transducer proximate a media-facing surface of the recording head. A write pole has a leading edge proximate to and facing the near-field transducer at the media-facing surface. A magnetic shield faces the leading edge of the write pole at the media-facing surface and is magnetically coupled to the write pole. The magnetic shield has a notch centered over the near-field transducer.
US11289118B1 Spintronic device having negative interface spin scattering
Aspects of the present disclosure generally relate to a magnetic recording head of a magnetic media drive. In one example, a magnetic recording head includes a main pole, a trailing shield, and spintronic device disposed between the main pole and the trailing shield. The spintronic device comprises a negative polarization layer (NPL) disposed on the main pole, the NPL comprising FeTi, FeV, FeCr, or FeN, an interface layer disposed on the NPL, the interface layer comprising V, Cr, or Ru, a spacer layer disposed on the interface layer, and a spin torque layer (FGL) disposed on the spacer layer. When current is applied to the spintronic device, the NPL and a first interface disposed between the NPL and the interface layer have a negative spin polarization while the FGL and a second interface disposed between the FGL and the spacer layer have a positive spin polarization.
US11289112B2 Apparatus for tracking sound source, method of tracking sound source, and apparatus for tracking acquaintance
Provided is a sound source tracking apparatuses including a vibration unit including vibrators configured to vibrate in response to an ambient sound, the ambient sound including individual sounds, and a processor configured to separate the ambient sound into individual sounds, to determine a target individual sound having a target tone color among the individual sounds, and to obtain a relative location of a target sound source that generates the target individual sound.
US11289108B2 System and method for processing audio data
An encoder operable to filter audio signals into a plurality of frequency band components, generate quantized digital components for each band, identify a potential for pre-echo events within the generated quantized digital components, generate an approximate signal by decoding the quantized digital components using inverse pulse code modulation, generate an error signal by comparing the approximate signal with the sampled audio signal, and process the error signal and quantized digital components. The encoder operable to process the error signal by processing delayed audio signals and Q band values, determining the potential for pre-echo events from the Q band values, and determining scale factors and MDCT block sizes for the potential for pre-echo events. The encoder operable to transform the error signal into high resolution frequency components using the MDCT block sizes, quantize the scale factors and frequency components, and encode the quantized lines, block sizes, and quantized scale factors for inclusion in the bitstream.
US11289105B2 Encoding/decoding apparatus for processing channel signal and method therefor
An encoding/decoding apparatus and method for controlling a channel signal is disclosed, wherein the encoding apparatus may include an encoder to encode an object signal, a channel signal, and rendering information for the channel signal, and a bit stream generator to generate, as a bit stream, the encoded object signal, the encoded channel signal, and the encoded rendering information for the channel signal.
US11289104B2 Apparatus and method for encoding or decoding an audio signal with intelligent gap filling in the spectral domain
An apparatus for decoding an encoded audio signal, includes a spectral domain audio decoder for generating a first decoded representation of a first set of first spectral portions, the decoded representation having a first spectral resolution; a parametric decoder for generating a second decoded representation of a second set of second spectral portions having a second spectral resolution being lower than the first spectral resolution; a frequency regenerator for regenerating every constructed second spectral portion having the first spectral resolution using a first spectral portion and spectral envelope information for the second spectral portion; and a spectrum time converter for converting the first decoded representation and the reconstructed second spectral portion into a time representation.
US11289100B2 Selective enrollment with an automated assistant
Techniques are described herein for dialog-based enrollment of individual users for single- and/or multi-modal recognition by an automated assistant, as well as determining how to respond to a particular user's request based on the particular user being enrolled and/or recognized. Rather than requiring operation of a graphical user interface for individual enrollment, dialog-based enrollment enables users to enroll themselves (or others) by way of a human-to-computer dialog with the automated assistant.
US11289097B2 Information handling systems and methods for accurately identifying an active speaker in a communication session
The present disclosure provides various embodiments of methods for intelligent active speaker identification and information handling systems (IHSs) utilizing such methods. In general, the methods disclosed herein may be used to accurately identify an active speaker in a communication session with an application or an IHS, regardless of whether the active speaker is alone, in a group environment, or using someone else's system or login to participate in the communication session. The methods disclosed herein may use voice processing technology and one or more voice identification databases (VIDs) to identify the active speaker in a communication session. In some embodiments, the disclosed methods may display the identity of the active speaker to other users or participants in the same communication session. In other embodiments, the disclosed methods may dynamically switch between user profiles or accounts during the communication session based on the identity of the active speaker.
US11289094B2 System and method for assisting pilot through clearance playback
Systems and methods are provided for playback clearance assistance, the system includes a processing system configured to: in response to receipt of a voice clearance communication comprising a clearance message, decode the clearance message to identify features contained within the clearance message related to a command instruction or clearance data for a flight; determine, at least one applicable clearance message amendment solution for use to amend the clearance message from a set of applicable clearance message amendment solutions wherein the applicable clearance amendment solution is determined based on keywords retrieved from a plurality of databases comprising at least contextual and prior clearance message data; and apply the applicable clearance message amendment solution to append keywords to the clearance message to generate an appended clearance message that reduces ambiguity in the clearance message resulting from at least missing value data, non-standard terminology or incomplete message information.
US11289093B2 Apparatus, system, and method of display control, and recording medium
A system includes: a server including first circuitry and a memory that stores, for each event, voice data recorded during the event, text data converted from the voice data, and time information indicating a time when the text data was generated; and a display control apparatus communicably connected with the server, including second circuitry to based on information on the event stored in the memory, control a display to display text data in an order according to the time when the text data was generated, and a graphical control region that sets playback position in a total playback time of the voice data, and in response to selection of particular text data from the text data being displayed, control the display to display the graphical control region at a location determined based on a time when the particular text data was generated.
US11289091B2 Contextual voice-based presentation assistance
Examples are disclosed that relate to methods and computing devices for providing voice-based assistance during a presentation. In one example, a method comprises receiving content of a slide deck, processing the content of the slide deck, and populating a contextual knowledge graph based on the content of the slide deck. A voice input is received from a presenter. Using the knowledge graph, the voice input is analyzed to determine an action to be performed by a presentation program during the presentation. The action is translated into one or more commands executable by the presentation program to perform the action, and the one or more commands are sent to a client device executing the presentation program.
US11289088B2 Vehicle-based remote control system and method
A remote control system of a vehicle is configured to control a remote device via a first electronic device. The first electronic device is configured to control the transmission of a semi-generic user voice command and the voice command is updated based on one or more spoken words generating an updated voice command. The remote control system comprises a second electronic device in communication with the first electronic device. A controller is configured to prompt the first electronic device to cause the updated voice command to be accessed and transmitted to a remote device controller located remotely from the vehicle in response to the input from a user-input mechanism of the second electronic device. The remote device controller processes the updated voice command, generates a control command based on the updated voice command, and executes the control command.
US11289087B2 Context-based device arbitration
This disclosure describes, in part, context-based device arbitration techniques to select a voice-enabled device from multiple voice-enabled devices to provide a response to a command included in a speech utterance of a user. In some examples, the context-driven arbitration techniques may include determining a ranked list of voice-enabled devices that are ranked based on audio signal metric values for audio signals generated by each voice-enabled device, and iteratively moving through the list to determine, based on device states of the voice-enabled devices, whether one of the voice-enabled devices can perform an action responsive to the command. If the voice-enabled devices that detected the speech utterance are unable to perform the action responsive to the command, all other voice-enabled devices associated with an account may be analyzed to determine whether one of the other voice-enabled devices can perform the action responsive to the command in the speech utterance.
US11289085B2 Automatic turn delineation in multi-turn dialogue
A method of automatically delineating turns in a multi-turn dialogue between a user and a conversational computing interface. Audio data encoding speech of the user in the multi-turn dialogue is received. The audio data is analyzed to recognize, in the speech of the user, an utterance followed by a silence. The utterance is recognized as a last utterance in a turn of the multi-turn dialogue responsive to the silence exceeding a context-dependent duration dynamically updated based on a conversation history of the multi-turn dialogue and features of the received audio, wherein the conversation history includes one or more previous turns of the multi-turn dialogue taken by the user and one or more previous turns of the multi-turn dialogue taken by the conversational computing interface.
US11289083B2 Electronic apparatus and method for controlling thereof
An electronic apparatus, based on a text sentence being input, obtains prosody information of the text sentence, segments the text sentence into a plurality of sentence elements, obtains a speech in which prosody information is reflected to each of the plurality of sentence elements in parallel by inputting the plurality of sentence elements and the prosody information of the text sentence to a text to speech (TTS) module, and merges the speech for the plurality of sentence elements that are obtained in parallel to output speech for the text sentence.
US11289081B2 Refrigerator
In a refrigerator, when a door switch detects opening of a door of the refrigerator, a voice recognition control unit determines whether voice data acquired by a voice acquisition unit satisfies a predetermined voice recognition start condition. In a case where the voice recognition start condition is satisfied, the recognition control unit controls the voice recognition unit to perform voice recognition. However, in a case where the voice recognition start condition is not satisfied, the recognition control unit controls the voice recognition unit not to perform voice recognition.
US11289080B2 Security tool
A memory stores a first voice record of a first user and a second voice record of a second user. A processor receives from a device of the first user a recording of a voice conversation between the first and second users and compares the recording with the first and second voice records to determine that the voice conversation is between the first and second users. The processor also determines that the first and second users intend to conduct a transaction with each other and determines a transaction amount for the transaction. The processor further communicates, to the device of the first user, a message, receives, from the device of the first user, a confirmation of the transaction in response to the message, and in response to the confirmation, initiates the transaction.
US11289075B1 Routing of natural language inputs to speech processing applications
Devices and techniques are generally described for using user feedback to determine routing decisions in a speech processing system. In various examples, first data representing a first utterance may be received. Second data representing a first semantic interpretation of the first utterance may be determined. A first intent data processing application may be selected for processing the second data. Feedback data may be determined related to the first intent data processing application processing the second data. Third data representing a semantic interpretation of a second utterance may be received, wherein the first semantic interpretation is the same as the second semantic interpretation. A second intent data processing application may be determined for processing the third data based at least in part on the feedback data.
US11289073B2 Device text to speech
Systems and processes for generating speech from text are provided. An example method of generating speech from text includes, at an electronic device having at least one processor and memory, obtaining text; generating a plurality of segments of a spectrogram using a first neural network, each spectrogram segment of the plurality of spectrogram segments representing a portion of the text; generating, based on the plurality of spectrogram segments, a plurality of speech segments using a second neural network; and providing the plurality of speech segments as a speech output.
US11289070B2 System and method for identifying a speaker's community of origin from a sound sample
A system and method for determining a target speaker's community of origin from a sound sample of the target speaker is provided. An indexed database of morpheme data from speakers from various communities of origin is provided. Indexed morphemes from a target speaker are extracted. The extracted indexed morphemes from the target speaker are compared against the morpheme data in the indexed database to determine the target speaker's community of origin.
US11289066B2 Voice synthesis apparatus and voice synthesis method utilizing diphones or triphones and machine learning
A voice synthesis method includes: sequentially acquiring voice units comprising at least one of diphone or a triphone in accordance with synthesis information for synthesizing voices; generating statistical spectral envelopes using a statistical model built by machine learning in accordance with the synthesis information for synthesizing the voices; and concatenating the sequentially acquired voice units and modifying a frequency spectral envelope of each voice unit in accordance with the generated statistical spectral envelope, thereby synthesizing a voice signal based on the concatenated voice units having the modified frequency spectra.
US11289065B2 Assemblies for generation of sound
The invention provides assemblies for production of sound using a plurality of configurations, including in one embodiment, surfaces that may be fixed or moveable relative to each other. These surfaces may be electromagnetic, electrostatic, piezoelectric, transducer implemented, thermally activated, permanently magnetized, or activated by any other means, including but not limited to mechanical activation. The surfaces may in a variety of configurations be free floating, constrained, levitated or combinations thereof. The surfaces themselves may be foldable, rollable, expandable, specialized or any combinations thereof.
US11289064B2 Systems and methods for vibrational and acoustic damping with baffle structure
An acoustical/vibrational noise reduction system may include a plurality of divider walls spaced from each other, generally parallel to each other, and generally parallel to a direction of transmission of acoustical and vibrational noise from a source of acoustical and vibrational energy and an information handling resource. The acoustical/vibrational noise reduction system may also include a plurality of baffle fins mechanically coupled to the plurality of divider walls, generally perpendicular to the plurality of divider walls, and substantially non-parallel to the direction of transmission of acoustical and vibrational noise from the source of acoustical and vibrational energy and the information handling resource.
US11289062B2 Fundamental frequency detection using peak detectors with frequency-controlled decay time
Methods and digital circuits provide frequency correction to frequency synthesizers. Dual switched-capacitor voltage detectors connected to an input signal periodically sample the voltage of the input signal, and then determine a fundamental frequency of the input signal from the output of the dual switched-capacitor voltage detectors. The sample period of the dual switched-capacitor voltage detectors is proportional to a time period between a previous pair of voltage peaks detected in the input signal, thereby eliminating harmonic components in the original signal which might otherwise cause errors in frequency estimation without causing unwanted sluggishness in the transient response of the frequency detection process. The time period between the previous pair of detected voltage peaks is used to create a decay signal that initiates a capacitor decay time for each voltage detector. Two additional digital methods of extracting the fundamental frequency as well as an envelope of an analog audio signal are also described, one utilizing a sliding sample rate, and the other utilizing a fixed sample rate.
US11289061B2 Variable wind guitar pickup
A process for making a variable wind guitar pickup and a variable wind guitar pickup made by the process is provided. The pickup is capable of many sounds by changing the number of windings using a selector switch such as a five-position or six-position selector switch.
US11289057B2 Music notation using a disproportionate correlated scale
Methods and systems of music notation for visually representing music that provide a visual scale representing a range of an auditory scale of a portion of a musical composition spanning at least four and a half steps. The visual scale may comprise a plurality of whole-step segments each representing one whole step in the auditory scale. Each whole-step segment may be approximately a first height. The visual scale may also comprise one or more half-step segments each representing one half step in the auditory scale. Each half-step segment may be approximately a second height. A first ratio representing the first height divided by the second height may be significantly greater than a second ratio representing the whole step divided by the half step.
US11289050B2 Controller and display device including the same
Disclosed is a display device including a display panel having a plurality of pixels, the display panel including a first display area having first resolution and a second display area having second resolution, the second resolution being lower than the first resolution, and a controller configured to generate border information of pixels provided in a border area located within a predetermined range from the border between the first display area and the second display area, to correct an image that is displayed in the border area based on the border information, and to perform control such that the corrected image is displayed on the display panel.
US11289045B2 Display rescan
A method and apparatus for updating pixel elements of a display device. The display device comprises a pixel array including a plurality of pixel elements and one or more light sources to illuminate the pixel array at a first instance of time. A data driver is configured to receive a frame of display data corresponding to an image to be displayed on the pixel array at a first instance of time. The data driver scans each row of the pixel array, during a pixel adjustment period prior to the first instance of time, to drive a plurality of first voltages onto the plurality of pixel elements, respectively, based on the received frame. The data driver further rescans a subset of rows of the pixel array, during the pixel adjustment period, to drive second voltages onto respective pixel elements in the subset of rows based on the received frame.
US11289040B2 Driving circuit and driving method of liquid crystal display
A driving circuit and a driving method of a liquid crystal display are provided. By controlling a reset signal of a timing controller through a switching transistor, a GOA signal is recovered when reading compensation parameters is completed, and the GOA signal is turned off when the reset signal is restarted. Therefore, the timing controller is not affected by the GOA signal output by a pulse width modulator when performing SPI communication with a flash memory. In addition, this reduces communication time, thereby improving speed of optical compensation debugging of a production line.
US11289039B2 Gate-driving unit circuit having pre-pull down sub-circuit, gate driver on array circuit, driving method, and display apparatus thereof
The present application discloses a gate-driving unit circuit. The gate-driving unit circuit includes an input sub-circuit coupled to an input terminal and a pull-up node, and configured to charge a pull-up node to a turn-on voltage level. Additionally, the gate-driving unit circuit includes a pre-pull-down sub-circuit coupled to a pull-down node, a pre-pull-down node, and a reference voltage terminal, and configured to pull down voltage levels at the pull-down node and the pre-pull-down node to a turn-off voltage level before the pull-up node is charged to the turn-on voltage level. Therefore, potential charging delay in the pull-down node caused by a transistor threshold voltage shift is avoided. The gate-driving unit circuit further includes a pull-down sub-circuit, a pull-down control sub-circuit, a noise-reduction sub-circuit, a reset sub-circuit, and an output sub-circuit to couple with the input sub-circuit and the pre-pull-down sub-circuit to output a gate-driving signal.
US11289035B2 Methods for obtaining backlight intensity and compensation value, and display device
A method for obtaining a backlight intensity may improving data processing speed of a display device. The method includes: dividing image data into N sets of data; calculating a backlight intensity of each backlight block according to a corresponding set of data; for each group of pixels, calculating a backlight intensity corresponding to a first pixel according to a backlight intensity of each effective backlight block corresponding to the first pixel and a backlight diffusion weight of the effective backlight block corresponding to the first pixel; calculating backlight intensities corresponding to second to Mth pixels in the Tth group of pixels according to the backlight intensities corresponding to first pixels in the Tth group of pixels and a (T+1)th group of pixels; and for a Nth group of pixels, setting the backlight intensity corresponding to the first pixel as backlight intensities corresponding to second to Mth pixels.
US11289032B2 Display device
A display device includes: a display panel including pixel rows to which line images are written; and a red, a green, and a blue light source. A display period of a frame image includes six subframe periods, each including a writing period and a lighting period. The line image of a color component corresponding to a combination of light emitted during the lighting period of a preceding period of two consecutive subframe periods, and light emitted during the lighting period of a subsequent period is written during the writing period of the preceding period. The subframe periods includes a first and a second subframe period provided alternately and consecutively, the first subframe period includes the writing period during which the line image is written to a first pixel row, and the second subframe period includes the writing period during which the line image is written to a second pixel row.
US11289028B2 Organic light emitting display device and driving method for the same
The present disclosure describes an organic light emitting display device including: a display panel including data lines, gate lines, emission lines, and pixels, a data driver applying data signals to the data lines, and a gate driver applying gate signals and emission signals to the gate lines and the emission lines, respectively. At least one of the pixels may be operated in a first period in which a data voltage is applied, a second period in which the data voltage is remained and a driving current is provided according to the data voltage, and a third period in which the data voltage is remained and light emitting is not performed, where a ratio between lengths of the second and third periods can be adjusted. The at least one pixel may receive a preset voltage in the second period and the third period.
US11289026B2 Pixel circuit, driving method thereof, display substrate and display device
The present disclosure provides a pixel circuit, including: a pixel driving circuit coupled to a gate line and a data line and configured to generate a driving current based on a data signal provided by the data line in response to a gate driving signal provided by the gate line and output the driving current through a current output terminal; and a shunt circuit coupled to the gate line and a first control signal line, and configured to control connection/disconnection between a first signal input terminal and a first signal output terminal in response to the gate driving signal and a first control signal provided by the first control signal line. The current output terminal is coupled to a first terminal of a light emitting device and the first signal input terminal, and the first signal output terminal is coupled to a to-be-charged pixel circuit.
US11289016B2 Display device and driving method therefor
Discussed is a display device including a plurality of semiconductor light-emitting devices applied to sub-pixels included in each pixel of a display panel; and a driving unit for driving the plurality of semiconductor light-emitting devices on the basis of a digital pulse width modulation (PWM) signal, wherein the driving unit further includes: a current sensing unit for sensing the value of a current flowing through at least one of the plurality of semiconductor light-emitting devices; and a current compensation unit for compensating for the current deviation between the plurality of semiconductor light-emitting devices on the basis of the current value sensed by the sensing unit.
US11289013B2 Pixel circuit and display device having the same
A pixel circuit including a compensation circuit, a writing circuit, a light emitting element, and a power supplying circuit is provided. The compensation circuit comprises a first node, and provides a driving current to the light emitting element according to a voltage of the first node and a system high voltage. The writing circuit provides a data voltage to the compensation circuit according to a first control signal so that the compensation circuit sets the voltage of the first node. The power supplying circuit selectively couples the compensation circuit to the light emitting element, and provides the system high voltage and a system low voltage to the compensation circuit, in which the system low voltage is configured to reset the voltage of the first node. The first control signal and the second control signal are opposite to the first emission signal and the second emission signal, respectively.
US11289012B2 Micro light emitting diode display panel and driving method thereof
A micro light emitting diode display panel including a plurality of pixels and a control element is provided. One of the pixels include a first sub-pixel. The first sub-pixel includes two micro light emitting diodes having different light wavelengths and controlled independently. The control element controls driving currents to the two micro light emitting diodes according to a gray level of the first sub-pixel, wherein a ratio of the driving current of the micro light emitting diode with larger light wavelength to the driving current of the micro light emitting diode with smaller light wavelength increases as the gray level of the first sub-pixel increases. A driving method of the micro light emitting diode display panel is also provided.
US11289010B2 Pixel circuit with photo-sensing function, a driving method, and a display apparatus
The present application discloses a pixel driving circuit with touch-sensing function. The driving circuit includes a first drive-control sub-circuit, a display-drive sub-circuit, a second drive-control sub-circuit, and an emission-control sub-circuit connected in series to generate a drive-current to drive a light-emission device in the subpixel under control of an emission-control signal in a respective one of multiple emission duty periods of a cycle time for displaying one frame of image. The drive circuit also includes a data-input sub-circuit and a charge sub-circuit to set a first voltage to the control terminal of the display-drive sub-circuit. Additionally, the drive circuit includes a photo-sensing sub-circuit configured to reset a photo-sensing device integrated with the light-emission device in the subpixel for touch sensing in a touch-sensing period before entering any one of the multiple emission duty periods of the cycle time.
US11289004B2 Pixel driving circuit, organic light emitting display panel and pixel driving method
A pixel driving circuit, an organic light emitting display panel and a pixel driving method. The pixel driving circuit includes: a switching sub-circuit, a driving sub-circuit, a storage capacitor and a charge eliminating sub-circuit; the charge eliminating sub-circuit has a control terminal connected to a first scanning signal line, and other terminals connected to the first terminal of the driving sub-circuit, a cathode of the organic light emitting element (OLED) and a reference voltage terminal respectively, and can enable a potential between the anode and the cathode of the organic light emitting element to be reversed under control of the first scanning signal line.
US11289002B2 System and method for a six-primary wide gamut color system
Systems and methods for a multi-primary color system for display. A multi-primary color system increases the number of primary colors available in a color system and color system equipment. Increasing the number of primary colors reduces metameric errors from viewer to viewer. A six-primary color system includes Red, Green, Blue, Cyan, Yellow, and Magenta primaries. The systems of the present invention maintain compatibility with existing color systems and equipment and provide systems for backwards compatibility with older color systems.
US11289000B2 System and method for a multi-primary wide gamut color system
Systems and methods for a multi-primary color system for display. A multi-primary color system increases the number of primary colors available in a color system and color system equipment. Increasing the number of primary colors reduces metameric errors from viewer to viewer. One embodiment of the multi-primary color system includes Red, Green, Blue, Cyan, Yellow, and Magenta primaries. The systems of the present invention maintain compatibility with existing color systems and equipment and provide systems for backwards compatibility with older color systems.
US11288999B2 Display device
Disclosed is a display device for increasing an aperture ratio of a transmissive part. The display device includes data lines overlapping with one or more of the pixels emitting light to display an image. Each pixel includes subpixels arranged within the pixel along a same direction as the data lines. The display device further includes transmissive parts arranged in the first direction and corresponding to adjacent pixels. In addition to the data lines overlapping the pixels, the display device may include power lines and reference voltage lines parallel with the data lines and overlapping with the pixels. The display device may include scan lines and sensing lines arranged to cross the transmissive parts and data lines. As a result, the number of lines crossing the transmissive parts is reduced, thereby increasing an aperture ratio of the transmissive parts.
US11288998B2 Display device having a first display area and a second display area having a transmission area
A display device includes: a substrate including a first display area and a second display area including a transmission area; first pixels in the first display area; and second pixels in the second display area, wherein a distance between a first sub-pixel from among the first pixels, the first sub-pixel being adjacent to a boundary area between the first display area and the second display area, and a second sub-pixel from among the second pixels, the second sub-pixel being adjacent to the boundary area, is set to a certain value.
US11288995B2 Pixel data optimization method, pixel matrix driving device and display apparatus
A pixel data optimization method, a pixel matrix driving device and a display apparatus are provided. The method includes: obtaining a first pixel data set; obtaining a second pixel data set according to the first pixel data set; obtaining an initial amplitude difference according to pixel data of each two adjacent rows of pixels in the second pixel data set; and obtaining pixel output data of n rows*M columns of pixels according to the initial amplitude difference and a preset threshold. By comparing the initial amplitude difference obtained from the pixel data of each two adjacent rows of pixels with the preset threshold, a pixel grayscale value to be final displayed of each pixel can be adjusted according to a comparison result, so that an energy consumption and an overheating phenomenon of the pixel matrix driving device can be improved, and a visual effect can be improved.
US11288994B2 Source driver and operation method thereof
A source driver adapted to drive a display panel is provided. The source driver includes an output buffer and a slew rate adjustment circuit. An input terminal of the output buffer receives a driving voltage. An output terminal of the output buffer outputs an output signal adapted to drive the display panel. The slew rate adjustment circuit dynamically adjusts a slew rate of a rising edge of the output signal according to a first setting and dynamically adjusts a slew rate of a falling edge of the output signal according to a second setting independent of the first setting, such that the adjustment to the slew rate of the rising edge of the output signal is independent of the adjustment to the slew rate of the falling edge of the output signal.
US11288991B1 Closed loop controller for laser beam scanning display with high tolerance to mirror resonance frequency variation
The techniques disclosed herein provide methods, devices, and systems to compensate the drive waveform to a slow-scan mirror in a laser beam scanning (LBS) display device. The slow-scan controller generates the drive waveform, which is combined with feedback and coupled to the input of a notch filter in the control loop. Ripple in the slow-scan mirror trajectory, which occurs as a consequence of mismatches between the notch frequency of the notch filter and the resonance of the slow-scan mirror, is effectively suppressed in real time by an adaptive notch compensator. Consequently, the described compensation scheme allows for relaxed notch filter design criteria with high tolerance and mitigation of ripple is achieved at reduced cost. The parameters, logic and blocks of the adaptive notch compensator scheme may be time-domain or frequency domain solutions that are implemented, in hardware, software or combinations thereof.
US11288990B1 Display apparatus and method incorporating per-pixel shifting
A display apparatus including: image renderer having array of pixels; liquid-crystal device comprising: liquid-crystal structure, wherein portions of liquid-crystal structure are arranged in front of corresponding pixels of said array; and control circuit including circuit elements employed to electrically control corresponding portions of liquid-crystal structure to shift light emanating from corresponding pixels to corresponding target positions; and processor(s) configured to: generate individual drive signals for circuit elements, based on corresponding target positions to which light emanating from corresponding pixels are to be shifted upon passing through corresponding portions of liquid-crystal structure; and send individual drive signals to control circuit to drive circuit elements to address corresponding portions of liquid-crystal structure separately, whilst displaying output image frame via image renderer.
US11288989B2 Source driver for driving and sensing display panel and calibration method thereof
A source driver and a calibration method thereof are provided. The source driver for driving and sensing a display panel of the disclosure includes a sensing circuit, an analog-to-digital converter circuit and a digital arithmetic circuit. The sensing circuit is configured to receive a reference signal through a sensing channel when the source driver is operated in a calibration mode. The analog-to-digital converter circuit is coupled to the sensing circuit, and configured to convert the reference signal to a digital reference signal. The digital arithmetic circuit is coupled to the analog-to-digital converter circuit, and configured to obtain a calibration parameter according to the digital reference signal. The source driver calibrates a sensing path for sensing a display panel according to the calibration parameter when the source driver is operated in a sensing mode.
US11288975B2 Artificially intelligent music instruction methods and systems
Apparatus and associated methods relate to comparing a musical score model to a captured performance of the musical score, calculating a degree of similarity between the musical score model and the captured performance based on the comparison, and automatically evaluating the captured performance based on the degree of similarity and musical score degree of difficulty determined as a function of the musical score entropy. In an illustrative example, a musician may be learning to play the musical score. The musical score may be modelled, for example, based on pitch, volume, and rhythm, permitting comparison to the captured performance of the musical score. In some examples, the musical score degree of difficulty may be adapted based on the captured performance evaluation. Some embodiments may generate musical scores based on the captured performance evaluation. Various examples may advantageously provide corrective instruction based on the degree of difficulty and the captured performance evaluation.
US11288974B2 Speech development system
A control circuit is positioned within a stuffed animal. A microphone is coupled to the stuffed animal to record babbling of an infant or speech delayed toddler to electronic memory. A transceiver positioned in the stuffed animal is operationally coupled to the control circuit. A database comprising sounds grouped according to defined stages of speech development is accessible by the control circuit through the transceiver. A vocal analyzer is positioned within the stuffed animal and the vocal analyzer is electrically coupled to the control circuit. The vocal analyzer analyzes the babbling of the infant or speech delayed toddler that is stored in the electronic memory. The vocally analyzer assigns selected words and phrases in the database stored in the electronic memory to a response sequence. A speaker is coupled to the stuffed animal to emit the words and phrases corresponding to the response sequence for the purposes of education.
US11288970B2 System and methods for monitoring unmanned traffic management infrastructure
A system and method for reliably and efficiently monitoring and arbitrating the performance of one or more UTM infrastructure systems are provided herein. The method for monitoring and arbitrating a plurality of UTM infrastructure networks involves monitoring and arbitrating a plurality of unmanned traffic management (UTM) infrastructure networks comprising integrating a UTM arbitration system between the plurality of UTM infrastructure networks, wherein the UTM arbitration system is operably configured to simultaneously monitor the UTM infrastructure networks; monitoring information and/or data associated with one or more UTM systems associated with the UTM infrastructure networks; detecting the presence or absence thereof of one or more inconsistencies in the data and/or information associated with the one or more UTM systems; and initiating a reconciliation activity in response to detecting the presence of at least one inconsistency in the data and/or information associated with the one or more UTM systems.
US11288969B2 System and method for unmanned aerial system (UAS) modernization for avoidance and detection
A computer-implemented method for securing unmanned aerial system (UAS) operations includes receiving a UAS flight plan for a UAS and a UAS operation, the UAS flight plan including a flight profile and flight path for the UAS; determining a mission type for the UAS operation requires use of dummy aircraft information; and assigning a dummy UAS identification for the UAS. Generating dummy airframe information, including dummy airframe characteristics and performance data, for the UAS, includes generating dummy airframe information that corresponds to airframe information for an actual civil aircraft that could follow the received UAS flight plan. The method further includes causing the UAS to broadcast the dummy UAS identification and the dummy airframe information with an automatic dependent surveillance-broadcast signal during at least a portion of the UAS operation.
US11288967B2 Systems to identify a vehicle
A system that provides a safety rating for a driver or a vehicle to a rider of the vehicle. Information including diagnostic information such as sensor information and location information is used to determine the safety rating. By having a high safety rating, the rider of the vehicle has some level of assurance that the vehicle will arrive at a designated location.
US11288966B2 Information notification apparatus of straddle type vehicle, straddle type vehicle, and information notification method
An information notification apparatus is mounted on a straddle type vehicle and is capable of performing information notification mutually with a vehicle existing on the periphery of the straddle type vehicle. The information notification apparatus comprises: a plurality of detection units, having detection areas of different characteristics, configured to detect relative information representing a relative relationship with the vehicle; and a detection control unit configured to control, based on vehicle speed information of the straddle type vehicle, switching of a detection unit used for the information notification in the plurality of detection units.
US11288964B2 Driving assistance device and driving assistance method
A driving assistance device that detects an object in a traveling direction of a vehicle and to assist avoiding a collision of the vehicle with the object, including: a decision unit that decides whether there is a possibility of the own vehicle colliding with the detected object; a creation unit that creates an action plan for the own vehicle to avoid colliding with the detected object; a transmission unit that transmits the action plan to another vehicle; a receiving unit that receives, from the other vehicle that received the action plan, a response including information on whether it is possible for the other vehicle to take an action to avoid colliding with the own vehicle; a determination unit that determines an action based on the action plan and the response from the other vehicle; and an execution unit that executes the action determined by the determination unit.
US11288961B2 Vehicle control apparatus and vehicle control method
A driving assist ECU acquires, based on an image, positions of at least two specific points of an object that are different in a lateral direction with respect to a vehicle traveling direction. The driving assist ECU also performs collision avoidance control for avoiding a collision with the object based on a movement track of the object obtained from a history of the positions of the specific points, and calculates, for each of the specific points, a movement direction of each of the specific points based on the history of the position of each of the specific points. The driving assist ECU then changes how to perform the collision avoidance control based on a difference between the movement directions at the respective specific points.
US11288951B2 Identification of anomaly on a detector
A method, system and devices assisting detection of a cover/cap. The method includes monitoring detection chamber readings from a plurality of detectors and identifying an anomaly in the detection chamber readings. Further, the one or more detectors from the plurality of detectors each having an anomaly are determined from the detection chamber readings. An alert is executed based on the anomaly in the detection chamber readings.
US11288949B2 Methods and apparatus for providing notifications in a media system
A system to convey user alert messages is disclosed. The system may have a alert service coupled between alert providers and a number of households. After receiving in the alert service an alert message from an alert provider, the alert service may alter the alert message to identify the household designated to receive the alert message. The alert service sends a notification to a home media system within the household designated to receive the alert message.
US11288939B2 Wireless device for ambient energy harvesting
Embodiments of the present disclosure generally relate to a wireless identification tag configured to harvest ambient energy and transmit an identification signal intermittently, and system and methods for use thereof. In one implementation, the tag may include a transmitter configured to transmit a first signal to a first receiver in a first frequency, and to transmit a second signal to a second receiver in the first frequency. The tag may also include an energy storage component configured for collecting and storing ambient energy and for powering transmission of the transmitter. The tag may also include a circuit configured to monitor energy stored in the energy storage component, and to prevent the transmitter from transmitting the first signal to the first receiver when the energy stored in the energy storage component is insufficient to transmit the second signal to the second receiver.
US11288938B2 Fusion splicing device, theft sensing system of fusion splicing device, and theft sensing method of fusion splicing device
A fusion splicer is capable of sensing whether or not the fusion splicer is in a stolen state in cooperation with a theft sensing device. The fusion splicer includes an authentication processing unit that authenticates the theft sensing device, a storage unit that stores identification information of the theft sensing device subjected to authentication processing, a decision unit that decides whether or not the fusion splicer is in a stolen state based on a communication condition with respect to the theft sensing device, a locking unit that locks at least a part of functions of the fusion splicer when it is decided that the fusion splicer is in a stolen state, a releasing unit that temporarily releases the locked function of the fusion splicer, and an input unit that receives an input of a release ID for releasing the locked state.
US11288937B2 Security camera system with multi-directional mount and method of operation
A security camera system includes a base unit and sensor modules for generating image data. The base unit includes several mounting sockets arranged at different elevational and azimuthal directions around the base unit, and the sensor modules attach, for example, magnetically, to the mounting sockets. Each mounting socket includes a socket ID, which is used to stitch together the image data from different sensor modules. The security camera system is capable of automatic detection of the location of the sensor modules, as the socket IDs for the mounting sockets to which the sensor modules are attached are identified by various means including readable indicia and reader modules including optical codes and readers, membrane switches, optical sensors, and radio-frequency identification tags and readers.
US11288932B2 Image processing system and method for detecting errors in an ATM terminal
A system is configured for detecting errors in an ATM. The system includes a processor that receives a withdrawal request from a user to receive cash from a cash dispenser of the ATM. Currency denominations and a number of bills for each currency denomination needed to fulfill the withdrawal request is determined. The system sends signal commands to cassettes of the ATM to dispense bills to fulfill the withdrawal request. A camera is positioned in a pathway of the bills being dispensed from the cassettes to the cash dispenser. The camera captures images of bills being dispensed from the cassettes and sends them to the processor. The processor generates an alert if a number of bills dispensed from at least one cassette does not match a corresponding number of bills expected to be dispensed from the at least one cassette.
US11288929B2 Card game with counting
Various embodiments include determining a value of a statistic describing cards that have been dealt from a deck, and modifying the rules of a game based on the statistic.
US11288926B2 Method and apparatus for a wager game with a re-buy bonus feature
The present invention relates to gaming systems and methods where a wager game may trigger a bonus round. A player may qualify for the bonus round at random or through satisfaction of some predetermined criteria. The player then participates in the bonus round, which may award bonus points at random or require the player to demonstrate skill, knowledge, or strategy to earn bonus points. Although a limited number of attempts in the bonus round may be awarded, the player has an option to re-buy attempts to continue enjoying the bonus round. Upon the satisfaction of certain criteria, which may include, but are not limited to, completion of the game or a decision by the player to end the bonus round, the player is returned to the original wager game.
US11288922B2 Credit card gambler points program with manual or automated entries or wagers
The present disclosure relates generally to managing rewards associated with use of a credit account and comprising receiving an electronic message indicating use of a credit account to make a purchase and indicating a value of the purchase. An accumulated rewards value comprising a portion available for wagering and a portion unavailable for wagering can be updated by incrementing the portion unavailable for wagering based on the value of the purchase. The portion unavailable for wagering can be decremented and the portion available for wagering can be incremented based on the value of the purchase. An electronic message indicating an amount of a wager placed by the user on a gaming event can be provided and the portion of the accumulated rewards value available for wagering can be decremented based on the amount of the wager.
US11288921B2 Fraud prevention system and information processing device
In a fraud-prevention system used with gaming machines, fraud is detected using information as to amounts of value added to a gaming machine and the amount of time between adding the value and cashing out. Sequential instances of adding large amounts of value followed quickly by cashing out may be used to trigger a fraud alert, particularly where such behavior is repeated at multiple different machines in sequential order within a predetermined period of time.
US11288919B2 Systems and methods for generating multidimensional data structures based on fantasy sports account activity
Systems and methods for generating a multidimensional data structure based on fantasy sports account activity are described herein. Processors can maintain user profiles, each user profile having player lineups associated with fantasy sports contests. The processors can identify, for a first user profile, player lineups of the first user profile and respective contests for which the player lineups were entered. Each player lineup including players having players attributes. Each contest having contest attributes. The processors can generate, for the first user profile, a multidimensional data structure including a plurality of features. Each feature can have a respective value that is based on the player attributes corresponding to the players included in the player lineups and the contest attributes corresponding to the contests for which the player lineups were entered. The processors can then provide content selected using the generated multidimensional data structure to a device associated with the user profile.
US11288915B2 Electronic gaming machine and method for determining concatenated prize values
An electronic gaming machine includes a display device, and a processor configured to execute instructions stored in a memory. When executed, the instructions cause the processor to select a first plurality of symbols for a first level of play of a feature game, where each of the first plurality of symbols are selected from a plurality of feature symbols including at least one number symbol and at least one designated symbol. The instructions also cause the processor to control the display device to display the first plurality of symbols in a first row of symbol positions, and in response to determining that the first plurality of symbols include at least two number symbols, concatenate the at least two number symbols to determine a first prize value equal to the concatenated value of the at least two number symbols.
US11288910B1 Illusion machine
The present disclosure relates to an ensemble comprising four distinct modules and focuses on the illusionist market. It is an illusion machine that creates the illusion of randomness, when it is actually a deterministic event. The first module includes an element that is in fact a set of elements (spheres or the like) and comprises elements printed in 3D, or by another form of production. The second module consists of an element very similar to the first one, with the difference that it comprises a magnetic core (or any material allowing a similar effect). The ensemble also comprises a third module, a ball globe that should not be completely made of ferromagnetic metal. The fourth module is the trap for the elements. In the proposed device, a trap is used, which is also printed as an integer object, without the need for joint welds, with a built-in magnet.
US11288901B2 Vehicle impact detection
Detection of an impact to a vehicle is based on data received from one of (a) one or more infrastructure sensors included in an infrastructure element or (b) the vehicle. Verification of the impact is determined by determining that data received from the other of the infrastructure sensors or the vehicle (a) detects the impact and is verified or (b) does not detect the impact and is unverified. A message is transmitted to the vehicle including the verification of the impact and one of (a) a request to operate to a predetermined location based on the impact being verified or (b) a notification to continue a current operation based on the impact being unverified.
US11288900B2 Method of enhanced component failure diagnosis for suggesting least probable fault
A method and system of diagnosing and suggesting least probable faults for an exhibited vehicle failure. The method includes initiating a vehicle health management (VHM) algorithm to monitor a state of health (SOH) for at least one vehicle component at each vehicle operating event over a predetermined time period. The VHM algorithm determines at least one of a Green SOH, a Yellow SOH, and a Red SOH designation with a confidence level for the at least one vehicle component; calculating a number of Green SOH designations (Ncalculated) over the predetermined time period; and upon an exhibited vehicle failure, providing a least probable cause indication for the at least one component when a set of conditions are met. The set of conditions includes (i) Ncalculated is equal to or greater than a predetermined number of Green SOH designations and (ii) no Yellow SOH and Red SOH designations are present.
US11288891B2 Operating a fingerprint sensor comprised of ultrasonic transducers
In a method for operating a fingerprint sensor comprising a plurality of ultrasonic transducers, a first subset of ultrasonic transducers of the fingerprint sensor are activated, the first subset of ultrasonic transducers for detecting interaction between an object and the fingerprint sensor. Subsequent to detecting interaction between an object and the fingerprint sensor, a second subset of ultrasonic transducers of the fingerprint sensor are activated, the second subset of ultrasonic transducers for determining whether the object is a human finger, wherein the second subset of ultrasonic transducers comprises a greater number of ultrasonic transducers than the first subset of ultrasonic transducers.
US11288886B2 People-gathering analysis device, movement destination prediction creation device, people-gathering analysis system, vehicle, and recording medium
The disclosure provides a people-gathering analysis device including: a position information acquisition unit (112) that acquires position information of a moving body (150); a moving-body outside information acquisition unit (111) that acquires information about the area outside the moving body (150); and a people-gathering information calculation unit (113) that calculates people-gathering information indicating the gathering of people by referring to the position information of the moving body (150) acquired by the position information acquisition unit (112), and the information about the area outside the moving body (150) acquired by the moving-body outside information acquisition unit (111).
US11288884B2 UAV real-time path planning method for urban scene reconstruction
A method for urban scene reconstruction uses the top view of a scene as priori information to generate a UVA initial flight path, optimizes the initial path in real time, and realizes 3D reconstruction of the urban scene. There are four steps: (1): to analyze the top view of a scene, obtain the scene layout, and generate a UAV initial path; (2): to reconstruct the sparse point cloud of the building and estimate the building height according to the initial path, combine the scene layout to generate a rough scene model, and adjust the initial path height; (3): to use the rough scene model, sparse point cloud and the UAV flight trajectory to obtain the scene coverage confidence map and the details that need close-ups, optimize the flight path in real time; and (4): to obtain high resolution images, reconstruct them to obtain a 3D model of the scene.
US11288883B2 Autonomous task performance based on visual embeddings
A method for controlling a robotic device is presented. The method includes capturing an image corresponding to a current view of the robotic device. The method also includes identifying a keyframe image comprising a first set of pixels matching a second set of pixels of the image. The method further includes performing, by the robotic device, a task corresponding to the keyframe image.
US11288882B2 Deposit detection device and deposit detection method
A deposit detection device according to an embodiment includes a detection module, a determination module, and an identification module. The detection module detects a deposit region corresponding to a deposit adhering to an imaging device, based on brightness information of an image captured by the imaging device. The determination module determines whether variation in brightness information in a predetermined region of the image is within a predetermined range, in a period after a vehicle is stopped in a state in which the deposit region is detected by the detection module. The identification module identifies brightness information serving as a determination criterion of the deposit region when the determination module determines that the variation in brightness information is within a predetermined range.
US11288874B2 System and method for the robust implementation of AR applications on vehicles
A system and method robustly displays augmented reality (AR) applications on a vehicle. The system has a mobile terminal that is configured to execute an AR application on the vehicle, wherein the AR application includes a display of AR contents on the vehicle using a three-dimensional grid. The mobile terminal has at least one sensor that is configured to capture physical sensor data relating to a position of the mobile terminal. The mobile terminal has a capture unit that is configured to capture a predefinable fixed point on the vehicle. The mobile terminal further includes a computing unit that is configured to evaluate the physical sensor data and the captured fixed point and to display the AR contents on the vehicle in a contact-analog manner.
US11288866B2 Method and system for generating a new anatomy
Methods, systems, and techniques for generating a new anatomy use a processor to obtain a skin mesh of the new anatomy that is in correspondence with a skin mesh of a template anatomy; after obtaining the skin mesh, transfer a fascia mesh of the template anatomy to the new anatomy; and after the fascia mesh is transferred, generate a fat displacement field defining fat of the new anatomy. The displacement field includes multi-dimensional displacement vectors, and each of the displacement vectors relates a vertex of the skin mesh of the new anatomy to a corresponding vertex of the fascia mesh of the new anatomy. A new anatomy may also be generated by interpolating from anatomies in a database.
US11288865B2 Method for generating a 3D physical model of a patient specific anatomic feature from 2D medical images
There is provided a method for generating a 3D physical model of a patient specific anatomic feature from 2D medical images. The 2D medical images are uploaded by an end-user via a Web Application and sent to a server. The server processes the 2D medical images and automatically generates a 3D printable model of a patient specific anatomic feature from the 2D medical images using a segmentation technique. The 3D printable model is 3D printed as a 3D physical model such that it represents a 1:1 scale of the patient specific anatomic feature. The method includes the step of automatically identifying the patient specific anatomic feature.
US11288860B2 Information processing apparatus, information processing method, program, and movable object
There is provided methods and apparatus for estimating a position of a movable object. A dynamic reference image is generated based on an environment and a reference image extracted from a map. A position of the movable object is estimated based on the dynamic reference image and an observation image of an area around the movable object.
US11288859B2 Real-time feature preserving rendering of visual effects on an image of a face
Embodiments provide techniques for rendering augmented reality effects on an image of a user's face in real time. The method generally includes receiving an image of a face of a user. A global facial depth map and a luminance map are generated based on the captured image. The captured image is segmented into a plurality of segments. For each segment in the plurality of segments, a displacement energy of the respective segment is minimized using a least square minimization of a linear system for the respective segment. The displacement energy is generally defined by a relationship between a detailed depth map, the global facial depth map and the luminance map. The detailed depth map is generated based on the minimized displacement energy for each segment in the plurality of segments. One or more visual effects are rendered over the captured image using the generated detailed depth map.
US11288857B2 Neural rerendering from 3D models
According to an aspect, a method for neural rerendering includes obtaining a three-dimensional (3D) model representing a scene of a physical space, where the 3D model is constructed from a collection of input images, rendering an image data buffer from the 3D model according to a viewpoint, where the image data buffer represents a reconstructed image from the 3D model, receiving, by a neural rerendering network, the image data buffer, receiving, by the neural rerendering network, an appearance code representing an appearance condition, and transforming, by the neural rerendering network, the image data buffer into a rerendered image with the viewpoint of the image data buffer and the appearance condition specified by the appearance code.
US11288853B2 Systems and methods of providing enhanced product visualization on a graphical display
Systems and methods of providing enhanced product visualization on a graphical display include generating a visual frame having a first set of frame dimensions and comprising an inner border and an outer border; receiving a selection of a graphical object to be displayed at least within the outer border of the visual frame on the graphical display; identifying a set of object dimensions of the graphical object; determining an appropriate proportion between the set of frame dimensions and the set of object dimensions such that the graphical object is displayable at least within the outer border of the visual frame on the graphical display; manipulating the set of frame dimensions and/or the set of object dimensions such that the graphical object is displayable within the outer border of the visual frame; and displaying the graphical object at least within the outer border of the visual frame.
US11288850B1 Identifying primitives and vertices to be rendered when rendering an output in a graphics processing system
There is disclosed a method of processing an input set of indices that may contain one or more primitive restarts to determine which indices correspond to complete primitives. A modified version of the set of indices can then be written out that contains complete primitives. In particular this is done by determining, for each index in the set of indices, the index position of the start of a sequence of indices for a sequence of primitives that the index is part of, and then determined from this whether or not the index position corresponds to the start of a complete primitive.
US11288847B2 Double scatter simulation for improved reconstruction of positron emission tomography data
Methods for simulating, and correcting for, doubly scattered annihilation gamma-ray photons in both time-of-flight (TOF) and non-TOF positron emission tomography scan data are disclosed.
US11288844B2 Compute amortization heuristics for lighting estimation for augmented reality
Systems, methods, and computer program products are described that implement obtaining, at an electronic computing device and for at least one image of a scene rendered in an Augmented Reality (AR) environment, a scene lighting estimation captured at a first time period. The scene lighting estimation may include at least a first image measurement associated with the scene. The implementations may include determining, at the electronic computing device, a second image measurement associated with the scene at a second time period, determining a function of the first image measurement and the second image measurement. Based on the determined function, the implementations may also include triggering calculation of a partial lighting estimation update or triggering calculation of a full lighting estimation update and rendering, on a screen of the electronic computing device and for the scene, the scene using the partial lighting estimation update or the full lighting estimation update.
US11288842B2 Method and system for re-projecting and combining sensor data for visualization
There is provided a system and method of re-projecting and combining sensor data of a scene from a plurality of sensors for visualization. The method including: receiving the sensor data from the plurality of sensors; re-projecting the sensor data from each of the sensors into a new viewpoint; localizing each of the re-projected sensor data; combining the localized re-projected sensor data into a combined image; and outputting the combined image. In a particular case, the receiving and re-projecting can be performed locally at each of the sensors.
US11288836B2 Apparatus and method for managing feature point map
Provided are an apparatus and method for managing a feature point map. The method includes generating an initial travel path through which an environmental information collecting entity moves, determining the generated initial travel path as a travel path for detection and controlling the environmental information collecting entity along the determined travel path for detection, receiving environmental information from the environmental information collecting entity, extracting feature point information from the environmental information, generating a feature point map from the feature point information, and storing the feature point map.
US11288827B2 Measurement device of shovel
A measurement device of a shovel, wherein the measurement device is installed in the shovel including a lower travelling body that performs traveling operation; an upper turning body pivotably mounted on the lower traveling body; a boom that is attached to the upper turning body, the boom being included in an attachment; and an arm that is attached to the boom, the arm being included in the attachment, wherein the measurement device measures a landform in a vicinity of the shovel at a plurality of positions based on an output of a device that captures information on a distance to a surrounding measurement target, the device being located above the lower traveling body.
US11288825B2 Method of operating measurement device, measurement device, measurement system, three-dimensional shape restoration device, and recording medium
In a measurement device, an image acquisition unit acquires a first image generated by imaging an object to be measured in a first imaging state and acquires one or more second images generated by imaging the object in one or more second imaging states. A specified point setting unit sets a specified point on the first image. A three-dimensional (3D) shape restoration unit restores a 3D shape of the object by using a plurality of images including the second image determined to include a point corresponding to the specified point. A reference dimension setting unit sets a reference dimension on the first image or the 3D shape. A measurement unit measures the object on the basis of the 3D shape, the specified point, and the reference dimension.
US11288824B2 Processing images to obtain environmental information
A system for processing images captured by a movable object includes one or more processors individually or collectively configured to process a first image set captured by a first imaging component to obtain texture information in response to a second image set captured by a second imaging component having a quality below a predetermined threshold, and obtain environmental information for the movable object based on the texture information. The first imaging component has a first field of view and the second imaging component has a second field of view narrower than the first field of view.
US11288823B2 Logo recognition in images and videos
Methods, apparatus, systems and articles of manufacture of logo recognition in images and videos are disclosed. An example method to detect a specific brand in images and video streams comprises accepting luminance images at a scale in an x direction Sx and a different scale in a y direction Sy in a neural network, and training the neural network with a set of training images for detected features associated with a specific brand.
US11288822B2 Method and system for training image-alignment procedures in computing environment
The present subject matter refers a method for training image-alignment procedures in a computing environment. The method comprises communicating one or more images of an object to a user and receiving a plurality of user-selected zones within said one or more through a user-interface. An augmented data-set is generated based on said one or more images comprising the user-selected zones, wherein such augmented data set comprises a plurality of additional images defining variants of said one or more communicated images. Thereafter, a machine-learning based image alignment is trained based on at-least one of the augmented data set and the communicated images.
US11288821B2 Adaptive system and method for automatic tracking of at least one target in at least one video stream
A system includes at least one dynamically configurable tracking device, receiving a video stream and, adapted for detection and automatic tracking of at least one target by analysis of the video stream; a calculator of a metric performance value of the tracking device; a configuration parameter corrector of the tracking device as a function of the metric performance value; and a dynamic configurator of the tracking device by applying the corrected configuration parameter. It further includes at least one device for measurement of at least one value representative of a demand for hardware resources by the tracking device, and the calculator is adapted to calculate the metric performance value starting from the measured value.
US11288820B2 System and method for transforming video data into directional object count
The present invention is a computer-implemented system and method for transforming video data into directional object counts. The method of transforming video data is uniquely efficient in that it uses only a single column or row of pixels in a video camera to define the background from a moving object, count the number of objects and determine their direction. By taking an image of a single column or row every frame and concatenating them together, the result is an image of the object that has passed, referred to herein as a sweep image. In order to determine the direction, two different methods can be used. Method one involves constructing another image using the same method. The two images are then compared, and the direction is determined by the location of the object in the second image compared to the location of the object in the first image. Due to this recording method, elongation or compression of the objects can occur because of acceleration or deceleration of the objects and can be uniquely utilized to determine the speed or movement path of the objects. The second method of determining direction involves comparing the object in the image to an established marker. The transformations can also be used to produce labeled data for training machine learning models: bounding-boxes provided in sweep image can be transformed to bound boxes in video, and boxes in video can be transformed into boxes in the sweep image.
US11288818B2 Methods, systems, and computer readable media for estimation of optical flow, depth, and egomotion using neural network trained using event-based learning
A method for prediction of an indication of motion using input from an event-based camera includes receiving events captured by an event-based camera, wherein each of the events represents a location of a change in pixel intensity, a polarity of the change, and a time. The method further includes discretizing the events into time discretized event volumes, each of which contain events that occur within a specified time range. The method further includes providing the time discretized event volumes as input to an encoder-decoder neural network trained to predict an indication of motion using a loss function that measures quality of image deblurring; generating, using the neural network, a prediction of the indication of motion. The method further includes using the prediction of the indication of motion in a machine vision application.
US11288814B2 System and method of object detection based on image data
A system and method of detecting objects are provided. The method includes generating first edge information from first image data representing an object based on a first mode of image capture, generating second edge information from second image data representing the object based on a second mode of image capture, the second mode being different from the first mode, fusing the first edge information with the second edge information to generate fused edge information, generating an object detection hypothesis based on the fused edge information, and validating the object detection hypothesis based on the fused edge information, the first edge information, and/or the second edge information.
US11288812B2 Automatic segmentation process of a 3D medical image by one or several neural networks through structured convolution according to the anatomic geometry of the 3D medical image
This invention concerns an automatic segmentation method of a medical image making use of a knowledge database containing information about the anatomical and pathological structures or instruments, that can be seen in a 3D medical image of a×b×n dimension, i.e. composed of n different 2D images each of a×b dimension.Said method being characterised in that it mainly comprises three process steps, namely:a first step consisting in extracting from said medical image nine sub-images (1 to 9) of a/2×b/2×n dimensions, i.e. nine partially overlapping a/2×b/2 sub-images from each 2D image;a second step consisting in nine convolutional neural networks (CNNs) analysing and segmenting each one of these nine sub-images (1 to 9) of each 2D image;a third step consisting in combining the results of the nine analyses and segmentations of the n different 2D images, and therefore of the nine segmented sub-images with a/2×b/2×n dimensions, into a single image with a×b×n dimension, corresponding to a single segmentation of the initial medical image.
US11288808B2 System and method for n-dimensional image segmentation using convolutional neural networks
Disclosed are systems and methods for image segmentation using convolutional networks. Image data comprising an image hypervolume can be received. The image hypervolume can be provided to a trained convolutional neural network (CNN). The CNN can output a segmentation of the image hypervolume.
US11288807B2 Method, electronic device and storage medium for segmenting image
The disclosure relates to a method, an electronic device and a storage medium for segmenting an image. The method includes: obtaining an image to be segmented; determining a first face result by detecting a face in the image and a first key-point result by detecting one or more key-points of the face in the image; determining a first face region in the image based on the first face result and the second face result; and segmenting a hair region from the first face region by an image segmentation model, wherein the image segmentation model is trained based on sample images, label mask images and a probability distribution map of hair, and the label mask image comprises a hair region of the sample image, and the probability distribution map of hair comprises a probability distribution of hair in the sample images.
US11288805B2 Verifying and/or improving the consistency of labels within the scope of medical image processing
A computer-implemented method and a data processing apparatus provide and apply a trained probabilistic graphical model for verifying and/or improving the consistency of labels within the scope of medical image processing. Also provided are a computer-implemented method for verifying and/or improving the consistency of labels within the scope of medical imaging processing, a data processing apparatus embodied to verify and/or improve the consistency of labels within the scope of medical image processing, and a corresponding computer program product and a computer-readable medium.
US11288804B2 Brain tumor image segmentation method, device and storage medium
A brain tumor image segmentation method and device are disclosed. The disclosed method includes acquiring a basic white matter template generated based on brain magnetic resonance images of a plurality of healthy samples, collecting corresponding low, mid and high b-value diffusion weighted images of the brain of a patient, segmenting out a tumor region including the tumor body and the edema on each image based on the signal distribution of each image in a first set image group of the patient, removing the normal white matter region from the tumor region according to the basic white matter template and the high b-value diffusion weighted image, and classifying the value of the voxel in each image in a second set image group and a second apparent diffusion coefficient image obtained through calculations to obtain a tumor body region and an edema region.
US11288802B2 Systems and methods for displaying augmented anatomical features
A method, user device, and system for displaying augmented anatomical features is disclosed. The method includes detecting a target individual, displaying a visual representation of the body, and determining an anatomical profile of the target individual based on a plurality of reference markers. The method further includes displaying, on the display, a graphical representation of the inner anatomical features onto the visual representation of the body so as to assist in the identification of the inner anatomical features. In another aspect, an initial three-dimensional representation of the body is mapped and a preferred anatomical profile is determined based upon the reference markers. The initial three-dimensional representation of the body is modified to be the shape of the preferred anatomical profile and displayed.
US11288800B1 Attribution methodologies for neural networks designed for computer-aided diagnostic processes
Introduced here are diagnostic platforms able to attribute an output produced by a neural network to its input, as well as communicate the relationship between the output and input in a comprehensible manner. Neural networks are increasingly being used for critical tasks, such as detecting the presence/progression of medical conditions. Accordingly, the importance of explaining how these neural networks produce outputs has grown in importance. By explaining how outputs are produced by a neural network, a diagnostic platform can build trust with medical professionals responsible for interpreting the outputs, identify possible modes of neural network failure, and identify the latent variable(s) responsible for producing a given output.
US11288799B2 Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
The disclosure herein relates to systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking. In some embodiments, the systems, devices, and methods described herein are configured to analyze non-invasive medical images of a subject to automatically and/or dynamically identify one or more features, such as plaque and vessels, and/or derive one or more quantified plaque parameters, such as radiodensity, radiodensity composition, volume, radiodensity heterogeneity, geometry, location, and/or the like. In some embodiments, the systems, devices, and methods described herein are further configured to generate one or more assessments of plaque-based diseases from raw medical images using one or more of the identified features and/or quantified parameters.
US11288798B2 Recognizing pathological images captured by alternate image capturing devices
Systems and methods are provided for recognizing pathological images captured by alternate image capturing devices. In embodiments, a computer-implemented method includes: obtaining, by a computing device, a classifier generated based on a plurality of standardized training pathology images associated with a known classification and generated by a first type of device; receiving, by the computing device, an alternate pathology image captured by a second type of device; standardizing, by the computing device, the alternate pathology image; determining, by the computing device, a classification of the alternate pathology image based on applying the generated classifier; and outputting, by the computing device, information regarding the determined classification to aid in diagnosis of a medical condition represented by the alternate pathology image.
US11288797B2 Similarity based per item model selection for medical imaging
Embodiments may include techniques to choose a model based on a similarity of computed features of an input to computed features of several models in order to improve feature analysis using Machine Learning models. A method of image analysis may comprise extracting a training feature vector corresponding to each of the plurality of machine learning models from each validation image from a plurality of machine learning models trained using a plurality of validation images, extracting from a new image a new feature vector corresponding to each of the plurality of machine learning models, comparing each new feature vector corresponding to each machine learning model with the training feature vector corresponding to each of the plurality of machine learning models, and selecting and outputting an inference for the new image generated by the machine learning model for which the new feature vector and the training feature vector are most similar.
US11288795B2 Assessing risk of breast cancer recurrence
The subject disclosure presents systems and computer-implemented methods for assessing a risk of cancer recurrence in a patient based on a holistic integration of large amounts of prognostic information for said patient into a single comparative prognostic dataset. A risk classification system may be trained using the large amounts of information from a cohort of training slides from several patients, along with survival data for said patients. For example, a machine-learning-based binary classifier in the risk classification system may be trained using a set of granular image features computed from a plurality of slides corresponding to several cancer patients whose survival information is known and input into the system. The trained classifier may be used to classify image features from one or more test patients into a low-risk or high-risk group.
US11288794B2 Device and method for blood analysis by image processing
The present application describes a new device and method of use thereof, which allows identifying certain antigens and antibodies present in the blood. The device of the present invention is a closed device consisting of two parts, wherein the upper part has a chamber surrounded by LEDs illuminating the analysis plate, which is supported by the rotating platform. In turn, the rotating platform is connected to a motor that will promote the rotation thereof for mixing reagents with blood. After a period of time, the camera will capture and send the resulting image to a computer program that will analyze the sample, using image processing techniques.
US11288793B2 Method for deterministic image inspection of printed products of a machine for processing printing substrates
A method for inspecting printed products of a machine for processing printing substrates includes recording and digitizing produced printed products by using at least one image sensor and analyzing the printed products by using a computer to find potential defects. Defects in the printed products are detected by the computer by comparing the recorded and digitized printed image with a digital reference image, analyzing occurring deviations, and marking defective printed products in a manner suitable for removal. The computer spatially subdivides every digitized printed image into regions with deviations, calculates the time required to analyze every one of the regions, and terminates the analysis of a digitized printed image when the time required to analyze the regions exceeds a predefined value of time per digitized printed image.
US11288790B2 Display panel inspection method and apparatus
A display panel inspection method and a apparatus are provided, and the method includes the steps of: capturing a grayscale image while a predetermined light source is irradiating a display panel, and the grayscale image including plural pixel electrode images corresponsive to plural pixel electrodes in the display panel respectively; obtaining a grayscale range of the respective pixel electrode image; calling a predetermined correspondence between a predetermined grayscale range and a pixel electrode type; and identifying the pixel electrode type of the respective pixel electrode image according to the predetermined correspondence and the grayscale range.
US11288777B2 Image processing device, image processing method, and program
Image processing methods and apparatus are described. The image processing method comprises receiving input of a visible-ray image and an infrared-ray image obtained by photographing a same subject, estimating, based on the visible-ray image, the infrared-ray image and motion information, a blur estimate associated with the visible-ray image, and generating, based on the estimated blur estimate, a corrected visible-ray image.
US11288770B2 Apparatuses and methods for performing artificial intelligence encoding and artificial intelligence decoding on image
An artificial intelligence (AI) decoding apparatus includes a memory storing one or more instructions, and a processor configured to execute the stored one or more instructions, to obtain image data corresponding to a first image that is encoded, obtain a second image corresponding to the first image by decoding the obtained image data, determine whether to perform AI up-scaling of the obtained second image, based on the AI up-scaling of the obtained second image being determined to be performed, obtain a third image by performing the AI up-scaling of the obtained second image through an up-scaling deep neural network (DNN), and output the obtained third image, and based on the AI up-scaling of the obtained second image being determined to be not performed, output the obtained second image.
US11288769B2 System and method for stitching images using non-linear optimization and multi-constraint cost function minimization
The present disclosure provides a system and a method for stitching images using non-linear optimization and multi-constraint cost function minimization. Most of conventional homography based transformation approaches for image alignment, calculate transformations based on linear algorithms which ignore parameters such as lens distortion and unable to handle parallax for non-planar images resulting in improper image stitching with misalignments. The disclosed system and the method generates initial stitched image by estimating a global homography for each image using estimated pairwise homography matrix and feature point correspondences for each pair of images, based on a non-linear optimization. Local warping based image alignment is applied on the initial stitched image, using multi-constraint cost function minimization to mitigate aberrations caused by noises in the global homography estimation to generate the refined stitched image. The refined stitched image is accurate and free from misalignments and poor intensities.
US11288767B2 Course profiling and sharing
Systems and methods for unmanned aerial vehicle (UAV) course profiling are provided. A plurality of images may be captured by a UAV flying along a course at a first location. A profile may be constructed for the course based on the images captured by the UAV. The constructed course profile is transmitted over a communication network to a virtual reality system at a second location. The virtual reality system may generate a virtual environment corresponding to the course based on the constructed course profile, and a second UAV at the second location may fly along the virtual course.
US11288762B2 Vacancy processing
An example operation may include one or more of receiving, by a destination processing node, a notification from a transport regarding a probable vacancy, determining, by the destination processing node, a probable time of availability and a location of the vacancy based on the notification, querying, by the destination processing node, a plurality of transports in a proximity of the vacancy, and assigning the location of the vacancy to a specific transport of the plurality of the transports.
US11288761B2 Decentralized system for verifying participants to an activity
A computerized system for verifiably that individual is associated with an event comprising: a computer system in communication with an immutable storage; a set of computer readable instructions included in the computer system configured for: creating a first event record using a first data capture device wherein the first event record includes a first location, a first time and a first set of metadata wherein the first set of metadata includes a first digital representation of an individual, creating a subsequent event record using a second data capture device wherein the subsequent event record includes a second location, a second time and a second set of metadata wherein the second set of metadata includes a subsequent digital representation of a second individual; and, determining a timespan between the first time and the second time and determining if the timespan is consistent with the individual traveling from the first location to the second location.
US11288758B2 Data payment and authentication via a shared data structure
The disclosed embodiments relate generally to complex data stream control and entitlement. Specifically, the disclosed embodiments provide systems and methods for ensuring that only authenticated/verified participants receive data streams. A third party, e.g., a party other than the data provider or the data recipient, who is nevertheless associated with both the data provider and the data recipient, may be involved in controlling whether data streams from the data provider can reach the data recipient. Thus, a third party may logically sit between the data provider and the data recipient, and may decide whether the data recipient should receive data streams. The disclosed embodiments implement data generation, flow, control and permissioning between multiple entities via digital assets accessed and manipulated on a shared data structure.
US11288756B1 Automatically determining market rental rates for properties
A facility for determining a market rental rate for a distinguished home located in a distinguished geographic area is described. The facility receives home attributes for the distinguished home. The facility obtains a market rental rate for the distinguished home by applying to the received home attributes a valuation model for homes in the distinguished geographic area that has been trained using rental listing price and home attribute data from homes recently listed for rental in the distinguished geographic area. The facility reports the obtained market rental rate for the distinguished home.
US11288753B2 Apparatus and method for validating transactional data
The invention creates a single use authentication code from (1) predefined unencrypted data from at least one tax form, (2) primary keys, and (3) a secondary key generated from metadata correlated to the input of the unencrypted data, the above elements being used by a data encryption circuit having a polynomial integer encryption (PIE) engine, to generate the authentication code. The authentication code is translated into at least one symbol, using, for example, barcode technology, and applied to a tax document or form or otherwise encoded into electronic documents. (4) the IRS SENTENAL Key/Code alphanumeric characters are stored from the previous year(s), and applied in the preamble of the secure authentication transmission; and/or in the subsequent year of tax filing form(s).
US11288750B1 Method and system for automatically detecting vehicle collisions for insurance claims
A system and method for automatically detecting a vehicle collision and taking action in response to the vehicle collision is disclosed. The vehicle collision can be detected by analyzing information from sensors onboard a vehicle, in a mobile device disposed within the vehicle or from roadway sensors. When a collision is detected, an insurance provider can automatically open a new insurance claim. The provider may also use sensed information to detect damaged components of a vehicle and provide information about the damaged components to a vehicle repair facility.
US11288745B2 Trading orders with decaying reserves
In various embodiments, an apparatus includes a processor and a memory. The memory is communicatively coupled to the processor. The memory stores software instructions that, when executed by the processor, cause the processor to receive a trading order for a particular quantity of a trading product. The trading order specifies that a first portion of the particular quantity is a displayed quantity and that a second portion of the particular quantity is a reserved quantity. The trading order specifies at least one of a decay rule, a decay interval, a decay rate, decay quantity, and one or more conditions. The software instructions, when executed by the processor, cause the processor to cause the reserved quantity to decay based at least in part on at least one of the decay rule, the decay interval, the decay rate, and the decay quantity, and one or more conditions.
US11288742B2 Hybrid cross-margining
A hybrid cross-margining system is disclosed. The disclosed provides for both joint accounts, maintained by multiple exchanges, as well as non-joint accounts, whereby the system recognizes both intra-account offsets within the joint account and inter-exchange offsets between the joint account and accounts maintained by another exchange to minimize the margin requirement of the associated market participant with respect to the positions reflected in these accounts.
US11288740B2 Securing distributed electronic wallet shares
Methods and systems are provided for securing distributed shares of an electronic wallet. An example method includes provisioning a plurality of devices each hosting an e-wallet share with enhanced privacy identification (EPID) private keys for the e-wallet share. A signature is posted for the e-wallet share to a blockchain. A determination is made as to whether the e-wallet share is compromised, and, if so, posting a revocation list comprising the signature for the e-wallet share to a blockchain.
US11288739B2 Central limit order book automatic triangulation system
The disclosed embodiments relate to systems and methods for triangulation of options and futures. An exchange receives a volatility quoted order. The system attempts to match the order within a volatility order book. If there is a match, the system attempts to mitigate the risk of the order by implying an order into the futures market. If there is not a match, the system implies an order into a premium quoted option order book. The exchange automatically maintains the order based on changes in the underlying futures market and a stored quoting model.
US11288738B1 Systems and methods for structuring the financing of high cost therapies
Presented herein are systems and methods for structuring the financing of high cost therapies such as GCTs to address the issues of high-upfront cost (affordability), uncertain durability of the treatment, and portability/transferability of the liability. In certain embodiments, the systems and methods described herein involve a combination of (a) a uniquely-designed, multi-year structured loan that facilitates portability, (b) a performance-based guarantee of efficacy in the form of a value based agreement that may be tied to the tenure of the loan, and (c) securitization of the loan.
US11288736B1 Blockchain-based shared appreciation note
Blockchain-based systems and methods related to creating and distributing cryptographically secure, digital tokens representing equity in assets corresponding to loan agreements. The system may comprise a transaction interface portal configured to collect and manage information pertaining to the origination of a loan agreement or a token transaction agreement. The system may include an underwriting smart contract configured to autonomously verify the value of an asset corresponding to a loan origination based at least partially on information not originating on the blockchain. The system may deliver tokens through a programmable escrow wallet configured to deliver tokens to buyers upon the satisfaction of encoded regulatory criterion. The system may be configured to determine the price of one or more tokens before delivery and adjust the price based at least on the appreciating value of the assets corresponding to the loan agreements and the number of tokens retired by the system.
US11288735B1 Systems and methods for selling virtual items on multiple online sales platforms simultaneously, the virtual items being useable within an online game
Systems and methods for selling virtual items on multiple online sales platforms simultaneously are disclosed. Exemplary implementations may: receive a sales request that indicates the selling user will be offering for sale a particular virtual item through at least two online sales platforms simultaneously; assign ownership of the particular virtual item temporarily to a holding account; generate sales listings of the particular virtual item for publications on the at least two online sales platforms; effectuate the publications of the sales listings; receive indications of offers to purchase the particular virtual item; determine an accepted offer that is accepted; notify the at least two online sales platforms of whether the offers have been accepted or denied; identify a buyer's account of the buying user; effectuate assignment of the ownership of the particular virtual item to the buyer's account.
US11288727B2 Content creation suggestions using failed searches and uploads
Content creation suggestion techniques are described. In one or more implementations, techniques are implemented to generate suggestions that are usable to guide creative professionals in the creation of content such as images, video, sound, multimedia, and so forth. A variety of techniques are usable to generate suggestions for the content professionals. In a first such example, suggestions are based on shared characteristics of images obtained by users of a content sharing service, e.g., licensed by the users. In another example, suggestions are generated by the content sharing service based on keywords used to locate the images. In a further example, suggestions are generated based on data described communications performed using social network services. In yet another example, recognition of failure of search is used to generate suggestions. A variety of other examples are also contemplated and described herein.
US11288724B2 Method of customizing stability in articles of footwear
The disclosed method provides a way to manufacture a style of an article of footwear in bulk, while providing customization for heel stability for individual customers. Moreover, the disclosed method provides a way to customize articles of footwear for a customer on an ongoing basis, such that the heel stability of the articles of footwear is refined until a tailored fit is achieved for the same customer. Generally, the method may include providing a user/customer with an article of footwear, getting evaluation information about the stability of the article of footwear from a survey (e.g., asking the user to rate the stability of the article of footwear in a smartphone app), modifying the next article of footwear provided to the user/customer according to the evaluation information, and iterating through this process to give the user an article optimized for stability.
US11288721B2 System and method for a delayed purchase based on input from another
A system and method for providing a delayed purchase based on input from another is described. One embodiment receives a selection of a product. A selection of at least one other person and at least one condition is also received. The at least one condition to be met before a purchasing of the product can be completed, the at least one condition to be met via a response received from the at least one other person. The method further receives a prior authorization for a purchase of the product. The system then monitors the at least one condition and the response received from the at least one other person to determine when the at least one condition is met and automatically purchases the product when the at least one condition is met.
US11288712B2 Visual item identification and valuation
Items are identified and valuated based at least in part on an image that shows a depiction of the one or more items. The image is analyzed to identify the items, such as by a categorization. The items are valuated based upon the description, category, and/or additional information from the user about the items. The valuation is also based upon information from a valuation database. The identification and valuation may then be used for any of numerous purposes.
US11288709B2 Training and utilizing multi-phase learning models to provide digital content to client devices in a real-time digital bidding environment
The present disclosure includes systems, methods, and non-transitory computer readable media that train and utilize multi-phase learning models to predict performance during digital content campaigns and provide digital content to client devices in a real-time bidding environment. In particular, one or more embodiments leverage organizational structure of digital content campaigns to train two learning models, utilizing different data sources, to predict performance, generate bid responses, and provide digital content to client devices. For example, the disclosed systems can train a first performance learning model in an offline mode utilizing parent-level historical data. Then, in an online mode, the disclosed systems can train a second performance learning model utilizing child-level historical data and utilize the first performance learning model and the second performance learning model to generate bid responses and bid amounts in a real-time bidding environment.
US11288708B2 System and method for personalized preference optimization
A system and method is provided for using biometric data from an individual to determine at least one emotion, mood, physical state, or mental state (“state”) of the individual, which is then used, either alone or together with other data, to provide the individual with certain web-based data. In one embodiment of the present invention, a Web host is in communication with at least one network device, where each network device is operated by an individual and is configured to communicate biometric data of the individual to the Web host. The Web host is then configured to use the biometric data to determine at least one state of the individual. The determined state, either alone or together with other data (e.g., interest data), is then used to provide the individual with certain content (e.g., web-based data) or to perform a particular action.
US11288707B2 Advertising for a user device in a standby mode
A method includes making a determination at a user device to transition the user device to a standby mode. The method includes sending a message from the user device to a server of a service provider in response to the determination, where the service provider provides a service to the user device. The method includes receiving, in response to the message, a content stream at the user device. The method includes sending video content generated from the content stream to a display device while the user device is in the standby mode. The method also includes, in response to a time in the standby mode exceeding a threshold, transmitting a second message to the server from the user device. In response to the second message, receipt of the content stream ceases.
US11288706B2 System and method for location based dynamic redirection of advertiser affiliate links for online advertising
A system and method is provided for dynamically managing advertiser affiliate links for online marketing. A global redirect server accepts a visitor's web browser request for a product or non-product webpage associated with an affiliate network advertiser URL, and returns a corresponding product or non-product webpage to the visitor that is corrected for the visitor's geographic region if such a webpage exists, or returns the originally requested webpage if it does not. The server determines the visitor's geographic region based upon request metadata, and can generate a corrected webpage that affords analytic and commission tracking even if no corresponding affiliate network exists in the determined geographic region. The server includes a database for locating products within the determined geographic region that are comparable to the product of the product webpage request, in the event that the exact product is not available in the geographic region.
US11288705B2 Detour based content selections
Methods, systems, and apparatus, for detour based content selection. In one aspect, a method includes receiving, at a data processing apparatus, location data for a plurality of users, the location data describing, for each user, locations of a user device of the user; determining, from the location data, route data for the plurality of users, the route data describing, for each user, a route traveled by the user; determining, by the data processing apparatus, for at least one or more of the users, a detour from the route traveled by the user to a retail location of the offeror; determining, by the data processing apparatus, for each of the at least one or more of the users, whether the user is eligible for an offer of the offeror based on the detour; and for each user eligible for an offer, enabling the offeror to provide an offer to the user.
US11288703B2 Systems and methods for offering products using linked transactions
The disclosed embodiments include methods, systems, and articles of manufacture for providing offers for linked transactions. Transaction data corresponding to a first product physically purchased using a financial service account and product identification data identifying the first purchased product are received. The transaction data and the product identification data are associated. A consumer that purchased the first product is determined based on at least the transaction data. Follow-on purchase to offer for sale to the consumer based on the product identification data is determined and a follow-up purchase offer to purchase the follow-on product is generated. The consumer is provided with the follow-on purchase offer to enable the consumer to purchase the follow-on product in an electronic commerce purchase transaction.
US11288702B1 Exploration in a real time messaging platform
A real-time messaging platform allows advertiser accounts to pay to insert candidate messages into the message streams requested by account holders. To accommodate multiple advertisers, the messaging platform controls an auction process that determines which candidate messages are selected for inclusion in a requested account holder's message stream. Selection is based on a bid for the candidate message, the message stream that is requested, and a variety of other factors that vary depending upon the implementation. The process for selection of candidate messages generally includes the following steps, though any given step may be omitted or combined into another step in a different implementation: targeting, filtering, prediction, ranking, and selection.
US11288699B2 Digital advertising platform with demand path optimization
A digital advertising system includes at least one processor configured to execute a plurality of functional modules including an analytics module to receive and analyze client attributes associated with a website visitor and a requested website to define an analytics event. The analytics module ingests and enriches data within the analytics event and provides it to a machine learning module that generates prediction models for potential bids. A management platform receives the bidding prediction and generates candidate configs. An optimization module receives the candidate configs and applies weights and additional features to select a config and generate an optimized script for the selected config. A deployment module receives the optimized script and delivers the script to the website visitor.
US11288698B2 Architecture and methods for generating intelligent offers with dynamic base prices
Methods and apparatus for generating intelligent offers with base prices are provided. In one embodiment, a promotion generator receives a current product base price, and also receives or calculates a remaining promotional program budget, a remaining promotional program duration, and a minimum discounted price for the product using the current product base price and any available previous base price data for the promoted product, creating or updating a predictive model of future product base prices.
US11288695B1 High value action selection using a machine learning model
Systems and methods are provided for using a machine learning model to analyze customers data for each of a number of customers interacting with electronic commerce, and determining whether the customers are high value customers. For the high value customers, one or more high value actions are then determined by the machine learning model, the one or more high value actions representing actions previously performed by or with respect to the customers and that correlate with a likelihood of the customers reaching high value customers status. Non-high value customers may then be prompted to perform the high value action which may elevate the non-high value customers to high value customers status.
US11288694B2 Providing single-use offers
Provided is a process, including: obtaining an offer issued by a merchant, the offer being redeemable on-line, at the merchant's website, in-store, at a physical location of the merchant, or both; obtaining a plurality of single-use offer codes associated with the offer; receiving a request for a single-use offer code, the request having a phone number; sending to the phone number, via a text messaging service, a text message comprising a uniform resource identifier (URI) to a select single-use offer code of the plurality single-use offer codes; and sending the single-use offer code to a consumer user device in response to a user selection of the URI.
US11288688B2 Customer clustering using integer programming
Methods and apparatus are disclosed regarding an e-commerce system that clusters customers based on demographic data and purchase history data for the customers. In some embodiments, the e-commerce system solves an Integer Program that accounts for the demographic data and purchase history data in order to identify a hyperplane that splits a selected cluster of customers.
US11288687B2 Triggering and conducting an automated survey
Systems and methods for initiating and conducting an automated survey are disclosed herein. According to some implementations, a processing device of a computer may receive a notification of an occurrence of a trigger event after the occurrence of the trigger event, initiate an automated survey to be offered to the customer, conduct the automated survey with the customer, and receive survey result information from the customer in response to the automated survey.
US11288686B2 Identifying micro users interests: at a finer level of granularity
This invention teaches how one can identify user interests based upon portions of content i.e. at a finer level of granularity than known until now. Existing computer technology could identify that a user was interested in animals if he viewed a page about animals. The instant invention allows a user to select/generate/reference/isolate a portion of content, and s/he can do this without having to install additional software to his/her browser/device. Thus, we can now know if a specific user is interested in cats, and another in dogs based upon the content portions s/he chose to reference/interact with. A profile of a user's interests can be developed across a multitude of documents. This profile of the user's interests can then be leveraged for commerce such as: better, targeted, contextual advertising; developing analytics; and far superior insights into user interests can be obtained.
US11288685B2 Systems and methods for assessing the marketability of a product
Embodiments of the present invention generally relate to systems and methods for psycho-physiological mood mapping. More specifically, the present invention relates to systems and methods for monitoring various parameters such as, but not limited to, facial muscle activity, heart rate changes, skin conductance changes, electrical charges across scalp, eye tracking, and behavior analysis and analyzing the data of such parameters via a 3D mood map. This data analysis may be used for many purposes including, without limitation, assessing the marketability of a product.
US11288683B2 Methods and products for product tracing and authentication using conductive inks
Example embodiments of a product authentication method may include triggering a first authentication process in response to sensing a conductive ink in proximity to a computing device having a set of sensors and performing a second authentication process. The first authentication process may include initiating an application on the computing device when the set of sensors senses the conductive ink. And the second authentication process may be performed by the application on the computing device and may include sending a code to a remote server and receiving a validity determination from the remote server.
US11288681B2 System, device, and method of performing data analytics for generating sales tasks for sales representatives
A system is provided for interpreting conversation profile records and generating sales task. The system includes a data store having a plurality of data items including conversation profile data and consumer product data and a resource management module configured to evaluate the data items and create a plurality of sales representative tasks and assign to each task at least one of a customer, a product, a sales representative, at least one action plan queue, and a priority level according to the evaluation. The evaluation of the data items can include identifying patterns between the data items.
US11288680B2 Selective presentation of real-time contact options based on user and system parameters
Embodiments for presenting real-time contact options are described herein. In example embodiments, as system identifies a number of user devices actively viewing a web page that includes a real-time contact option. The system then determines whether the number of user devices actively viewing the web page that includes the real-time contact option exceeds a predetermined limit. If the number of user devices actively viewing the web page that includes the real-time contact option exceeds the predetermined limit, the system prevents presentation, to a further user device, of the real-time contact option on the web page. Conversely, if the number of user devices actively viewing the web page that includes the real-time contact option does not exceed the predetermined limit, the system causes presentation of the web page with the real-time contact option to the further user device.
US11288675B1 Method and system for improving security of financial transactions
A system and method for improving the security of financial transactions is disclosed. The system and method include an account management tool where customers (or account holders) can manage financial control settings, which include controls to set limits on the frequency of financial transactions and/or maximum transaction amounts. Based on these user-selected control settings, a financial account provider can deny transactions that exceed limits determined from the financial control settings. The system and method include a setting for geographic location, so that a user may build a customized list of geographic regions where transactions are allowed or prohibited. The system and method also include a setting for companies or merchants, so that a user may build a customized list of companies or merchants where transactions are allowed or prohibited.
US11288674B2 System, method, and computer program product for determining fraud rules
Methods for generating fraud detection rules based on transaction data may include receiving historical transaction data, associating tags with each transaction, generating decision trees having root nodes and child nodes operably connected to the respective root nodes, determining at least one primary rule and at least one set of secondary rules associated with the at least one primary rule based on relationships between features of the transactions, assigning primary rules and sets of secondary rules to the at least one decision tree to populate the tree, extracting a plurality of rule sets including at least one primary rule and one or more secondary rules, determining an ordering of the plurality of rule sets; and determining a subset of rule sets from the ordered plurality of rule sets against which subsequently received transactions are compared against to determine if the subsequent transactions are fraudulent.
US11288672B2 Machine learning engine for fraud detection following link selection
A machine learning engine for fraud detection following link selection may be trained using artificial intelligence techniques and used according to techniques discussed herein. A buyer account may be used to establish and generate a digital gift card having a particular value specified by the buyer. The digital gift card may then be conveyed to another account, such as an email address. The digital gift card may be provided with an online electronic process for redemption and use of the value, for example, by selecting a link and navigating to the process. When the claimer account attempts to utilize the value of the gift card by navigating to the process or otherwise engaging in the electronic process through a device, a risk and fraud analysis engine may execute to determine, based on real-time data of the claimer account, the buyer account, and/or device, whether the digital gift card was generated fraudulently or is being used fraudulently.
US11288667B2 Electronic device and method for controlling wireless communication connection thereof
Various embodiments of the disclosure relate to an electronic device and a wireless communication connection control method thereof. The method may include: receiving and storing at least one first account information stored in at least one server from a first electronic device via the wireless communication circuit; broadcasting a beacon signal including an indicator indicating that a WiFi access is granted based at least in part on account information related to the server via the wireless communication circuit; receiving at least one second account information from a neighboring electronic device which has received the beacon signal; determining whether the second account information is related to the first account information, based at least in part on data to be exchanged with the server via the wired communication interface; and upon determining that the second account information is related to the first account information, granting the neighboring electronic device an access to the access point in order to use the Internet, without having to request for credential information from the neighboring electronic device. Various other embodiments are also possible.
US11288663B1 Blockring service, system, and method thereof
A blockring service system may include a processor and memory, wherein the processor is configured to: receive a blockring request from the at least one user node; parse the request to derive blockring parameters; generate a blockring having a plurality of blocks connected by bonds based on the blockring parameters; and send the blockring to the at least one user node for distribution.
US11288661B2 Snap mobile payment apparatuses, methods and systems
The SNAP MOBILE PAYMENT APPARATUSES, METHODS AND SYSTEMS (“SNAP”) transform real-time-generated merchant-product Quick Response codes via SNAP components into virtual wallet card-based transaction purchase notifications. In one embodiment, the SNAP obtains a snapshot of a QR code presented on a display screen of a point-of-sale device from a mobile device. The SNAP decodes the QR code to obtain product information included in a checkout request of the user, and merchant information for processing a user purchase transaction with a merchant providing the QR code. The SNAP accesses a user virtual wallet to obtain user account information to process the user purchase transaction with the merchant. Using the product information, merchant information and user account information, the SNAP generates a card authorization request, and which the SNAP provides to a payment network for transaction processing. Also, the SNAP obtains a purchase receipt confirming processing of the user purchase transaction.
US11288658B2 System and method for automatic device connection following a contactless payment transaction
Contactless payment data can be received from a mobile device via a contactless payment terminal. Responsive to receiving the contactless payment data from the mobile device, a token can be communicated to the mobile device via the contactless payment terminal, the token configured to be processed by the mobile device to initiate a particular communication functionality by the mobile device.