Document Document Title
US10931991B2 Methods and systems for selectively skipping through media content
The disclosure provides methods and systems for skipping unwanted portions of media content based on a crowdsourcing feedback model. The media content may include television programming content, video content, and audio content. The unwanted portions of media content include, for example, television commercials, opening and closing credits. An exemplary crowdsourcing feedback model involves receiving and processing a plurality of user seek information records. These records include time markers of the media content indicating when the users started and stopped fast forwarding or when the users started and stopped moving a scrub bar to jump from one portion of the content to another. When collected, the user seek information records are used to train a machine-learning system to calculate start and stop times of unwanted portions of media content. Once the start and stop times are calculated, user devices are enabled to automatically skip these unwanted portions.
US10931986B2 System for addressing on-demand TV program content on TV services platform of a digital TV services provider
Video content is uploaded via the Internet to a video-on-demand (VOD) server identified by a title and a hierarchical address of categories and subcategories for categorizing the title. The VOD server converts and stores the video content at a storage address in a video content database linked to the title. The title is listed in a location of an electronic program guide (EPG) using the same categories and subcategories as in its hierarchical address. Any TV subscriber can access the EPG and navigate through its categories and subcategories to find a title for viewing on the TV. This can enable many new blogging or podcasting-like programs by popular “Hosts” to be self-published on the Internet and readily navigated for display on TV. The EPG can also store TV program addresses as bookmarks and allow them to be shared with other subscribers or with friends and contacts online by sending to their email addresses.
US10931984B2 Consolidating content streams to conserve bandwidth
In one example, a method includes monitoring a delivery of an item of multimedia content to a first user endpoint device in a first stream of data, monitoring a delivery of the item of multimedia content to a second user endpoint device in a second stream of data, consolidating the stream of data and the second stream of data into a third stream of data, sending an first instruction to a source of the first stream of data and a source of the second stream of data to cease delivering the first stream of data and the second stream of data, and sending a second instruction to the source of the first stream of data and the source of the second stream to begin delivering the third stream of data to the first user endpoint device and the second user endpoint device.
US10931979B2 Methods, devices, and systems for decoding portions of video content according to a schedule based on user viewpoint
Aspects of the subject disclosure may include, for example, determining a first viewpoint in response to detecting a user's head movement in viewing video content, determining a capacity of a network, determining a tile schedule for receiving tiles from a server over the network according to the first viewpoint and the capacity of the network, and providing the tile schedule to the server over the network. The server schedules transmitting of the tiles according to the tile schedule and provides the tiles to the client device according to the tile schedule. In addition, embodiments include decoding the tiles according to a decoding schedule, buffering the decoded tiles in a decoded frame buffer, detecting a change in viewpoint from the first viewpoint to a second viewpoint, selecting a portion of the decoded tiles according to the second viewpoint, and presenting the selected tiles. Other embodiments are disclosed.
US10931977B2 Systems, methods, and apparatuses for processing video
Systems, methods, and apparatuses are described for processing video. Video content comprising a plurality of frames may be received. A visual element of a first frame of the plurality of frames positioned in an oblique direction relative to one or more of a first axis and a second axis orthogonal to the first axis may be determined. One or more regions associated with the first frame and comprising the visual element may be determined. One or more encoded regions of the first frame may be generated based on partitioning the one or more regions comprising the visual element.
US10931971B2 Method and apparatus for encoding and decoding 360-degree image
Provided are a method and apparatus for encoding or decoding a 360-degree image. According to an image decoding method and apparatus according to an embodiment, an original 360-degree image is reconstructed by acquiring image data from a bitstream, decoding a projection image of a 360-degree image from the image data, converting the projection image into the 360-degree image, acquiring rotation information of the 360-degree image from the bitstream, and rotating the 360-degree image based on the rotation information.
US10931968B2 Method and apparatus for encoding or decoding video content including regions having looping videos of different loop lengths
A method, apparatus and computer program product are provided in order to create and/or decode video content of a scene that includes regions having looping video of different loop lengths with the video content of the scene being configured to be repeatedly looped, such as in the form of a cinemagraph, without any temporal discontinuity. In the context of a method, the video content of a scene is encoded. The video content includes at least two regions having looping videos of different loop lengths. The method also includes constructing metadata in association with the video content. The metadata comprises information identifying a location of each region within the scene. The metadata further comprises a loop length for each of the at least two regions. The method further includes causing provision of the video content as encoded and the metadata.
US10931966B2 Apparatus for decoding an image
Provided is an apparatus for decoding an image. The apparatus restores a plurality of sub-blocks by applying a scan pattern determined according to the intra prediction mode of the current block on the quantization coefficient sequence and restores the quantized transform block by applying a scan pattern determined according to the intra prediction mode of the current block on the plurality of sub-blocks. Therefore, it is possible to reduce the amount of coding bits and computing resources required to decode a current prediction block.
US10931957B2 Image decryption apparatus and method of the same
The present disclosure discloses an image decryption method that includes steps outlined below. Control information in an image stream is read and decrypted. Image stream packets in the image stream are read according to the control information. According to the control information, pixel data of a first reference frame from a first temporary storage block of a memory module and/or of a second reference frame from a second temporary storage block of the memory module are selectively read. A decryption process is performed according to the image stream packets and selectively according to the pixel data of the first and/or the second reference frame to generate pixel data of a decrypted frame. During the decryption process, the pixel data of the decrypted frame is transmitted to a post-processing circuit and is stored to one of the first and the second temporary storage blocks according to the control information.
US10931949B2 Method of deriving motion information
A method of reconstructing video data using a merge mode can include constructing a merge list using available spatial and temporal merge candidates; determining a merge candidate on the merge list corresponding to a merge index as motion information of a current prediction unit; generating a predicted block of the current prediction unit using the motion information; generating a transformed block by inverse-quantizing a block of quantized coefficients using a quantization parameter; generating a residual block by inverse-transforming the transformed block; and generating a reconstructed block using the predicted block and the residual block, in which when the current prediction unit is a second prediction unit partitioned by asymmetric partitioning, the spatial merge candidate corresponding to a first prediction unit partitioned by the asymmetric partitioning is excluded from the merge list, and a motion vector of the temporal merge candidate is determined depending on a position of the current prediction unit within a largest coding unit (LCU), the quantization parameter is derived per a quantization unit and a minimum size of the quantization unit is adjusted per picture, and when a left quantization parameter of a current coding unit is not available and an above quantization parameter and a previous quantization parameter of the current coding unit are available, a quantization parameter predictor is set as an average of the above quantization parameter and the previous quantization parameter of the current coding unit, and when the above quantization parameter of the current coding unit is not available and the left quantization parameter and the previous quantization parameter of the current coding unit are available, the quantization parameter predictor is set as an average of the left quantization parameter and the previous quantization parameter of the current coding unit.
US10931942B2 Evaluation system and evaluation method
An evaluation system includes an input unit that inputs a test chart image acquired by imaging a test chart including a plurality of characters, an evaluation unit that evaluates performance of an imaging unit using the test chart image, an image generation unit that generates an evaluation image representing an evaluation of the evaluation unit at each position on the test chart image with a color, and a display unit that displays the evaluation image along with the test chart image or in a superimposed manner on the test chart image.
US10931936B2 Plenoptic sub aperture view shuffling for a richer color sampling
A system and method for generating multiple images with rich color acquisition using a plenoptic camera having a main lens disposed in front of a micro array of lenses, a mosaic color filter array and an image sensor, characterized in that it comprises: capturing a first set of images using an ordinary state of an electrically controllable birefringent medium being disposed between said main lens and said micro array of lenses, said ordinary state providing an ordinary ray to each pixel; capturing a second set of images using an extraordinary state of said electrically controllable birefringent medium, said extraordinary state splitting the light from said main lens into an ordinary ray and a extraordinary ray respectively impinging on two adjacent pixels of different colors, said extraordinary ray being shifted by distance of one pixel on said image sensor; performing a weighted subtraction of information about said second set of images from information about said first set of images; and generating a final set of images with rich color information from said weighted subtraction and said first set of images.
US10931931B2 Apparatus, system, and method for generating an image
Described herein is a method of generating an image that includes receiving a set of data corresponding to an object. The method also includes generating a three-dimensional representation of the object using the set of data. The method includes generating properties for the object using the set of data. The method also includes associating the properties with the three-dimensional representation of the object, wherein the three-dimensional representation of the object and the properties for the object are used to produce training data for an object recognition algorithm.
US10931928B2 Image generation from video
An apparatus comprising a store (101) for storing route data for a set of routes in an N-dimensional space where each route of the set of routes is associated with a video item including frames comprising both image and depth information. An input (105) receives a viewer position indication and a selector (107) selects a first route of the set of routes in response to a selection criterion dependent on a distance metric dependent on the viewer position indication and positions of the routes of the set of routes. A retriever (103, 109) retrieves a first video item associated with the first route from a video source (203). An image generator (111) generates at least one view image for the viewer position indication from a first set of frames from the first video item. In the system, the selection criterion is biased towards a currently selected route relative to other routes of the set of routes.
US10931926B2 Method and apparatus for information display, and display device
A method for information display, applied to a see-through near-eye display device, includes: obtaining association information corresponding to a display object; determining a target display area of the display object within a visual field of the see-through near-eye display device; and displaying the association information in a second area within the visual field excluding the target display area, the second area having no display content.
US10931925B2 Monitoring camera having autofocusing function based on composite filtering robust against change in visibility status and video monitoring system employing same
The present invention relates to a monitoring camera having an autofocusing function based on a composite filtering robust against a change in visibility status and a video monitoring system employing the same. The present invention comprises: a hardware filter for blocking one of a visible light band and an infrared light band and allowing the other thereof to pass therethrough; and a software filter for filtering a color image or a black-and-white image generated by an image signal processor (ISP) by removing, from the color image or the black-and-white image, a factor reducing a visibility distance at the front side of a lens part, wherein the filtering band of the hardware filter and whether to perform filtering by the software filter are controlled according to a filtering level corresponding to a current visibility status at the front side of the lens part among a plurality of filtering levels. Therefore, the present invention can provide an image which is always clear enough to enable a target object to be identified regardless of a visibility status at the front of a monitoring camera, and an accurate autofocusing function can be provided constantly regardless of the visibility status in front of the monitoring camera by performing autofocusing using analysis of an image provided through stepwise composite filtering.
US10931921B2 Techniques to provide a micro-broadcast of an event
Techniques to provide a micro-broadcast of an event are described. Video data streams of a live event at a venue may be captured in one or more wireless camera devices. The data streams may be sent to one of a network of wireless access points where they are relayed to a control center. A computer system in the control center may select one of the video data streams to be broadcast as a micro-broadcast. The selected video data stream may then be formatted for the micro-broadcast before a micro-broadcast transmitter broadcasts the formatted selected video data stream.
US10931914B2 Image playback device, display device, and transmission device
The system includes a display device causing a display unit to display video; a data transmission unit that transmits, to the display device, video data generated in a predetermined format based on information decoded from encoded information, and interpolation data for interpolating differences between the predetermined format and a format when decoding from the encoded information; an interpolation data selection unit that selects a kind of interpolation data to be transmitted to the display device, on the basis of priorities for a plurality of kinds of the interpolation data capable of being generated based on the encoded information; and a display processing unit that acquires the video data and the selected kind of the interpolation data in the display device, and causes the display unit to display video resulting from interpolation of the video data based on the interpolation data.
US10931911B2 Creating and disseminating of user generated content over a network
Disclosed herein are methods and systems for creating and disseminating of audio and video content generated by a user over a network. In one aspect of the present disclosure, a request to create audio content over a network is received. In another aspect of the present disclosure a request to create multimedia content comprising audio and video content over a network is received. One embodiment includes presenting the user with a plurality of compositions, receiving a request from the user to add a specific composition, presenting a lyric using text submitted by the user, recording an audio recording generated by the user, wherein the specific composition is playing during the recording of the audio recording, and providing editing capability to the specific composition, the song lyric and audio recording.
US10931908B2 Solid-state imaging device, and camera system using same
A solid-state imaging device includes a first A/D converter circuit and a second A/D converter circuit per column. The first A/D converter circuit performs a first A/D conversion that (i) refines, using a first comparator, a range including a potential of an analog signal through a binary search, and (ii) generates, based on a result of the binary search, a first digital signal being a high-order portion of the digital signal. The second A/D converter circuit performs a second A/D conversion that generates a second digital signal being a low-order portion that is a remainder of the digital signal by measuring a time required for an output of the second comparator to be inverted, the second comparator comparing a quantitative relationship between the analog signal refined and a ramp signal.
US10931906B2 Sensor pixel operating in optical mode and capacitive mode and image sensor including the same
There is provided a sensor pixel, including: a first transistor controlled depending on a mode selection voltage supplied to one end thereof; a second transistor including a gate connected to the other end of the first transistor; and a photoconductor connected to one end of the second transistor, wherein the sensor pixel operates in an optical mode when the first transistor is turned on, and the sensor pixel operates in a capacitive mode when the first transistor is turned off.
US10931905B2 Pixel array included in three-dimensional image sensor and method of operating three-dimensional image sensor
A pixel array in a three-dimensional image sensor includes depth pixels and an ambient light cancellation (ALC) circuit. The depth pixels operate in response to photo control signals having different phases, and generate distance information of an object based on light reflected by the object. The ALC circuit removes an ambient light component from the reflected light, and is shared by the depth pixels. Each depth pixel includes a photoelectric conversion region, a floating diffusion region, a photo gate, and a drain gate. The photoelectric conversion region collects photo charges based on the reflected light. The floating diffusion region accumulates the photo charges. The photo gate is activated in response to one of the photo control signals. The photoelectric conversion region accumulates the photo charges when the photo gate is activated, and the photo charges in the photoelectric conversion region are released when the drain gate is activated.
US10931901B2 Method and apparatus for selectively correcting fixed pattern noise based on pixel difference values of infrared images
A method and a thermal imaging device for correcting fixed pattern noise of in a video sequence of thermal images captured using a thermal imaging system are provided. The method includes receiving a sequence of thermal images captured using a thermal imaging system. The method also includes calculating a thermal image average of a plurality of the received thermal images and calculating pixel difference values between a received thermal image and the thermal image average. The method evaluates the pixel difference values in relation to an updating condition and calculates fixed pattern noise correction terms for the pixel difference values for which the updating condition is fulfilled. The method also includes correcting pixel values of a subsequently received thermal image with the fixed pattern noise correction terms to generate a sequence of thermal images having corrected fixed pattern noise.
US10931898B2 Image sensor having a time calculator and image processing device including the same
Provided are an image sensor and an image processing device including the same. The image sensor includes: a pixel array including a plurality of pixels arranged in rows and columns and configured to generate pixel signals from the plurality of pixels, a time calculator configured to receive zoom information corresponding to digital zooming, and configured to calculate a row processing time available for processing the pixel signals from the plurality of pixels included in a single row based on the zoom information, a timing generator configured to generate at least one control signal based on the row processing time; and an Analog-to-Digital Converter (ADC) configured to generate pixel data by performing sampling on the pixel signals according to the at least one control signal.
US10931897B2 Systems and methods for a digital image sensor
A system, method, and computer program product are provided for generating an image stack. In use, one or more exposure parameters for an image stack are configured. Next, a capture command is received. Further, a pixel array is initialized within an image sensor of the camera module. Moreover, one or more ambient images are sampled within one or more corresponding analog storage planes. Next, if it is determined whether a strobe unit is enabled, where, if it is determined that the strobe unit is enabled, one or more strobe images are sampled within the corresponding analog storage planes.
US10931894B2 Tunable spectral illuminator for camera
A camera includes one or more spectral illuminators, a tunable optical filter optically intermediate the one or more spectral illuminators and a scene, and a sensor array. The one or more spectral illuminators are configured to emit active spectral light. The tunable optical filter is dynamically adjustable to change a selected sub-band of the active spectral light that illuminates the scene. The sensor array includes a plurality of sensors each configured to measure spectral light reflected from the scene in the selected sub-band.
US10931889B1 System and method for providing landscape and portrait oriented images of a common scene on separate feeds with independent image controls
A system and method for providing landscape (horizontal) and portrait (vertical) oriented images of a common scene on separate feeds with independent image controls includes a movable horizontal camera configured to provide a horizontal image on a horizontal image feed, a movable vertical camera configured to provide a vertical image on a vertical image feed, the horizontal and vertical cameras configured to be aligned along a camera axis and mounted to a common support, the horizontal and vertical cameras configured to view the common scene and to provide separate horizontal and vertical image feeds simultaneously, the cameras being independently controlled such that a given camera is moved when a tracked subject exceeds a control range threshold for that camera image, independent of the subject location in the other camera image. In some embodiments, a single high resolution image may be used with independently-controlled horizontal and vertical extracted images.
US10931888B2 Image processing device, image processing method, and camera system
An image processing device includes a transfer function input unit to which each of transfer functions of a plurality of imaging-systems is input, a calculation unit that calculates a target resolution value which is a target value of recovery processing that recovers a plurality of captured images to be output from each of the plurality of the imaging-systems based on each of the input transfer functions and a predetermined criterion, a recovery filter generation unit that generates a recovery filter used for the recovery processing with respect to each of the plurality of imaging-systems based on each of the transfer functions of the plurality of imaging-systems and a target resolution value, and a recovered image generation unit that performs the recovery processing with respect to the captured images acquired from the plurality of imaging-systems by using the recovery filter generated for each of the plurality of imaging-systems to generate recovered images.
US10931885B2 Illumination processing method and apparatus for adjusting light transmittance
An illumination processing method and apparatus relate to the field of video recording technologies, where a liquid crystal panel is disposed between a photosensitive sensor and a lens assembly, and an incident light from the lens assembly reaches the photosensitive sensor after passing through the liquid crystal panel. The method includes determining a highlight region on a first image captured from the photosensitive sensor, and turning down light transmittance of each pixel in an adjustment region on the liquid crystal panel, where the adjustment region corresponds to the highlight region. According to the illumination processing method and apparatus, occurrence of a highlight blooming phenomenon can be avoided as much as possible, thereby avoiding loss of valid image information.
US10931881B2 Sample inspection utilizing time modulated illumination
A system and corresponding method are presented. The system includes an illumination unit including at least one light source configured for emitting coherent illumination of one or more selected wavelength ranges having selected illumination modulation pattern and for directing the coherent illumination onto one or more selected inspection regions; and a collection unit including at least one detector array and imaging optical arrangement configured for collecting interacting light from the one or more selected inspection regions and for generating corresponding one or more sequences of image data pieces at selected sampling rate. The image data pieces are indicative of secondary speckle patterns formed in collected interacting light. The illumination modulation pattern is selected for increasing temporal bandwidth collection of speckle patterns associated with temporal shifts in the one or more inspection regions.
US10931879B2 Device for adjusting a camera angle and use of a device of this type
A device (1) for adjusting a camera angle has a stationary holder (2), a rotary plate (3) mounted pivotably in the holder (2) and an adjusting mechanism (4) for adjusting the position of the rotary plate (3) relative to the holder (2). A camera (8) can be arranged on the rotary plate (3). The adjusting mechanism (4) has an axially fixed adjusting screw (14) and a bushing (15). Rotation of the adjusting screw (14) causes the bushing (15) to carry out a relative movement with respect to the adjusting screw (14). The bushing (15) has a projection (24) that engages in a guide slot (29). The rotary plate (3) moves with respect to the holder (2) as the projection (24) along the guide slot (29).
US10931876B2 Blur correction device and imaging device
To reduce the weight of the movable body while simplifying the structure. Included are: a first movable body that is movable in a first movement direction with respect to a base body; a second movable body that is positioned on an opposite side of the first movable body from the base body and movable in a second movement direction different from the first movement direction with respect to the first movable body; and a first drive body and a second drive body that each apply driving force to the second movable body, in which the first movable body and the second movable body are integrally moved in the first movement direction with respect to the base body by the driving force of at least one of the first drive body or the second drive body, and the second movable body is moved in the second movement direction with respect to the first movable body by the driving force of at least one of the first drive body or the second drive body.
US10931874B2 Burst mode calibration sensing and image mode sensing for imaging systems and methods
Techniques are disclosed for facilitating burst mode calibration sensing and image mode sensing. In one example, a device includes a detector array configured to detect electromagnetic radiation and provide image data frames according to a first frame rate. The device further includes a logic circuit configured to determine whether a threshold delay has elapsed. The device further includes a frame output circuit configured to: provide, based at least on the threshold delay having elapsed, the image data frames according to the first frame rate; and provide, based at least on the threshold delay not having elapsed, the image data frames according to a second frame rate lower than the first frame rate. Related methods and systems are also provided.
US10931872B2 Systems, methods, and apparatuses for optimizing field of view
A method to maximize use of the field of view for an imaging system is provided herein. An imaging device can be part of the imaging system and include a detection unit and an alignment unit. The method includes capturing an initial image of an object and then calculating a rotational angle and zoom factor for the object in order to maximize the object's footprint within the field of view. Once the calculations are complete a computer can instruct the detection and alignment units to reconfigure their orientations relative to the object.
US10931871B2 Pipeline detection method and apparatus, and storage medium
A method including: putting a pre-set detection apparatus in a pipeline to be detected, collecting, every pre-set time, movement information about and pipeline image thereof; at each collection moment, calculating, according to movement information collected, first position where detection apparatus is located; calculating, according to pipeline image photographed, second position where detection apparatus is located; determining, according to first position and second position, position where detection apparatus is located so as to position pipeline according to position at each collection moment. By performing position information extraction by means of inertial navigation and video combined positioning algorithm, accurate positioning of pipeline position is realized, so as to accurately position crack inside pipeline according to photographed image and positioned pipeline position. The pipeline detection method can be widely used for conventional exploration of a liquid pipeline, such as a city drainage pipeline and a tap water pipeline.
US10931864B2 Method and apparatus for managing a camera network
A system that incorporates teachings of the present disclosure may include, for example, receiving location information associated with a mobile communication device, determining a first location of the mobile communication device based on the location information, selecting a first camera from a group of cameras based on the determined first location, receiving at least one first image from the selected first camera that captures at least a portion of the first location, performing image recognition on at least one second image to identify a user associated with the mobile communication device, selecting another camera from the group of cameras based on a determined position of the identified user, and receiving at least another image from the selected other camera. Other embodiments are disclosed.
US10931863B2 Camera control system and method of controlling a set of cameras
A method of controlling cameras from a set of cameras in a geographical region to obtain image streams capturing a topographical area of interest. It includes receiving an area data object defining the topographical area of interest; deriving a centroid of the topographical area of interest from the area data object; determining a subset of target cameras from the set of cameras having a zone of potential coverage comprising the topographical area of interest; computing pan and tilt angles for one or more target cameras of the subset of target cameras; computing for one or more target cameras of the subset of target cameras a zoom factor, the zoom factor calculated by determining a narrowest field of view angle of the target camera that encompasses the entire topographical area of interest; and generating transmission commands for the subset of target cameras.
US10931862B2 Vehicle system for communication with trailer sensor
A vision system for a vehicle towing a trailer includes a camera disposed at a rear portion of the trailer and viewing rearward of the trailer. A trailer antenna is disposed at the trailer and in data communication with the camera, and a vehicle antenna is disposed at the vehicle and in data communication with a control unit disposed at the vehicle. The trailer antenna is operable to transmit signals representative of image data captured by the camera toward a road surface along which the vehicle and trailer are traveling so that the transmitted signals reflect off of the road surface and toward the vehicle antenna disposed at the vehicle. The vehicle antenna receives the reflected RF signals and communicates data to the control unit that are representative of the received reflected signals.
US10931860B2 Display device and electronic apparatus with 3D camera module
Display devices and electronic apparatuses with 3D camera modules are provided. An exemplary device comprises a display and a 3D camera module, wherein the 3D camera module comprises a depth camera module disposed at a backlight side of the display; the depth camera module comprises an edge-emitting laser and an imaging module; the edge-emitting laser is configured for emitting laser light, for the emitted laser light to penetrate the display to reach an object; and the imaging module is configured for receiving laser light reflected by the object that penetrates the display, and obtaining a depth image of the object based on the reflected laser light.
US10931859B2 Light emitter and sensors for detecting biologic characteristics
A bio-sensor device includes a surface for touching by a body part, such as a finger. A light source, such as an array of LEDs, emit light through the surface so as to be reflected and partially absorbed by the body part An array of photodetectors detects light reflected back by the body part and generates signals corresponding to an image of the light reflection, which corresponds to the light absorption pattern in the body part. The light absorption pattern may correlate to a fingerprint, a blood vessel pattern, blood movement within the blood vessels, or other biometric feature. A processor receives the signals from the photodetectors and analyzes the signals to determine a characteristic of the body part. The characteristic may be used to authenticate the user of the bio-sensor device by comparing the detected characteristic to a stored characteristic.
US10931858B2 Multi-plane image sensors for high resolution destination detection and tracking
Certain aspects of the present disclosure provide a method and apparatus for image sensing. Embodiments include a first plurality of light-sensing elements arranged in a first plurality of rows and a first plurality of columns in a first image sensing plane. Embodiments include a first lens element disposed within a position in a central row of the first plurality of rows and in a central column of the first plurality of columns. Embodiments include a second plurality of light-sensing elements arranged in a second plurality of rows in a second image sensing plane, different from the first image sensing plane. In certain embodiments, the first lens element is configured to redirect incident light reflected from a destination onto the second plurality of light-sensing elements in the second image sensing plane for use in guiding a steerable object toward the destination.
US10931853B2 Enhanced color reproduction for upscaling
A method for enhancing color reproduction in an upscaling process, including: converting RGB-formatted data to color-space-separable-formatted data; sending the RGB-formatted data to a neural network for training to generate RGB-predicted data; converting the RGB-predicted data to color-space-separable-predicted data; computing a first loss function by calculating a first difference between the RGB-formatted data and the RGB-predicted data; extracting color-formatted data from the color-space-separable-formatted data; extracting color-predicted data from the color-space-separable-predicted data; computing a second loss function by calculating a second difference between the color-formatted data and the color-predicted data; and adjusting a balance between the first and second loss functions.
US10931851B2 Image stitching with electronic rolling shutter correction
Systems and methods are disclosed for image signal processing. For example, methods may include receiving a first image from a first image sensor; receiving a second image from a second image sensor; determining an electronic rolling shutter correction mapping for the first image and the second image; determining a parallax correction mapping based on the first image and the second image for stitching the first image and the second image; determining a warp mapping based on the parallax correction mapping and the electronic rolling shutter correction mapping, wherein the warp mapping applies the electronic rolling shutter correction mapping after the parallax correction mapping; applying the warp mapping to image data based on the first image and the second image to obtain a composite image; and storing, displaying, or transmitting an output image that is based on the composite image.
US10931850B2 Projector display calibration
Embodiments describing an approach to generating, a calibration slide for a presentation. Receiving, a first image of the calibration slide. Receiving, a second image of the calibration slide, wherein the second image of the calibration slide is associated with the projector component. Analyzing, the first image of the calibration slide and the second image of the calibration slide, wherein the analysis comprises: comparing, display attributes between the first and second image of the calibration slide, and identifying, distortions in the second image of the calibration slide. Responsive to the analysis, calibrating, the display attributes of the presentation based on a preset user threshold of acceptance.
US10931847B2 Optical head, optical head scanning device, and method for driving optical head scanning device
Provided is an optical head that includes a base substrate and a line head. The line head includes a plurality of sub-line heads electrically independent of one another and arranged on the base substrate in parallel with a first direction. Each of the plurality of sub-line heads includes a circuit substrate unit that constitutes a portion of the base substrate, and an optical-element array that includes a plurality of optical elements each arranged on the circuit substrate unit at least in parallel with a second direction that is a direction of a length of each of the plurality of sub-line heads.
US10931846B2 Information processing apparatus and method of notifying verification result of program
An information processing apparatus includes a control unit, a storage unit configured to store a program to be executed by the control unit, a verification unit configured to read the program from the storage unit and to verify the read program, and a light-emitting unit configured to be changed to a predetermined light-emitting state or to be changed from the predetermined light-emitting state based on a result of the verification of the program by the verification unit.
US10931840B2 Information processing apparatus, control method, and storage medium for displaying operation buttons corresponding to operations executed on document data
In an information processing apparatus, in a case where between a timing when a user operation based on a first operation button is executed and a timing when a user operation based on a second operation button is executed, another user operation is executed on document data, a third operation button is added between the first and second operation buttons, and in a display area, a tab is displayed in a state where the third operation button is placed between the first and second operation buttons.
US10931838B2 Information processor, and computer-readable recording medium storing setting control program and setting control method for information processor
A multifunction peripheral according to the present invention includes a plurality of operation modes such as a copy mode and an image scanner mode. The multifunction peripheral has a job program function of registering setting details of an operating condition for an arbitrary operation mode as a job program, and enabling the same state as that at the time of registering the job program to be reproduced by invoking the registered setting when necessary. That is, according to the job program function, the operation mode, setting details, and an operation screen at the time of registering the setting are reproduced. This feature greatly contributes to improving the operability of the multifunction peripheral.
US10931834B2 Information processing apparatus
An information processing apparatus includes a first controller and a second controller. The first controller performs processing dependent on hardware having a function. The second controller is connected to the first controller via a communication path and performs processing not dependent on the hardware. The second controller stores an execution command in a storage device. The execution command is for executing processing and has a format not dependent on the hardware. The first controller includes a converter, a memory controller, and an operation controller. The converter acquires the execution command from the storage device and converts the execution command into a command for controlling the hardware and dependent on the hardware. The memory controller writes the converted command into a memory. The operation controller reads the converted command from the memory and controls operation of the hardware.
US10931831B2 Intercom devices and methods for adaptively adjusting power consumption thereof
A system and method for adjusting power consumption of a power consumer (e.g., an intercom device) may include a power supply, the power consumer connected to the power supply through a transmitting device, and at least one processor. The at least one processor may be configured to obtain a first voltage associated with the power supply and a second voltage associated with the power consumer, and adjust an operation status of the power consumer at least based on the first voltage and the second voltage. The first voltage may be an output voltage of the power supply, and the second voltage may be an input voltage of the power consumer.
US10931823B1 Scheduling agents using skill group weights
Agents are grouped into skill groups based on the skills of each agent. Simulation are performed for a contact center with multiple queues, where agents from the skill groups are assigned to the queues based on the skills of the skill groups and the skills of the queues. After running the simulations, for each skill group and for each interval, the time each agent spent working using each associated skill is determined, and an average time for each skill is calculated for each interval. The average times are used to create a skill group weight for the skill group for each interval. Later, when the schedule engine is determining an agent placement for one or more intervals, the skill group weights for the intervals are used to calculate a score for the queues based on different agent placements. The placement with the best score (e.g., lowest) is implemented.
US10931820B1 Intelligent interactive voice response system for processing customer communications
A method and apparatus of processing multiple user call records via an IVR call processing application is disclosed. One example method may include receiving a call from a user device, obtaining first user information from a user account stored in a user databank. The first information may be associated with a first call record established during a first previously received call from the user device. The method may also include establishing a first confidence level based on the first user information and obtaining second user information from the user account stored in the user databank. The second user information may be associated with a second call record established during a second previously received call from the user device. The method may also include establishing a second confidence level based on the second user information and transmitting an offer to the user device based on the first confidence level and second confidence level.
US10931819B2 Management of media content associated with a user of a mobile computing device
A sender-controlled media (SCM) platform may capture live content by a call-originating device (such as audio, video, and text input by a caller), process the live content to determine an intent, select a visual element based on the intent, and present the visual element on the call-originating device to produce a caller story that can be forwarded to a recipient. In another aspect, when a sender is not a participant of a SCM platform but a recipient is, content pertaining to the sender may be gathered for generating and delivering a SCM data structure. In yet another aspect, an SCM application may interface with phone screen controls so that content in a received SCM data structure can be presented on an electronic display of a phone while a phone call is in progress. Further, the SCM application may monitor user actions for updating the SCM data structure.
US10931817B2 Copper impairment testing and remediation in digital subscriber line (DSL) service
A test instrument connectable to a network to provide copper impairment testing and remediation in a digital subscriber line (DSL) service is provided. The test instrument may comprise a port connectable to a test point in a network. The test instrument may also comprise a processing circuit to perform tests in the following categories: (i) shorts, grounds, and opens, (ii) true length, (iii) balance, and (iv) series fault, wherein the combination of these tests may determine copper impairment. Once tests are conducted, one or more remediation recommendations may be provided based at least in part on failure in one of the test categories. The test results and remediation recommendations may then be presented at an output, such as a display at a test instrument or user device.
US10931810B2 Safety cutoff for a power tool or other device
A cutoff system for a power tool or other device includes a receiver and a transmitter, the receiver being configured to electrically couple to a power source and to a power tool or other device, the transmitter is configured to transmit a communication signal to the receiver, and the receiver is further configured to transmit electrical power from the power source to the power tool or other device only when the receiver receives the communication signal from the transmitter.
US10931807B2 Device for intercom network
The invention relates to, among others, a network device (10, 11, 12) for an intercom network (13) for permitting an audio communication, in particular a duplex audio communication with other users (14a, 14b, 14c, 14d, 14e, 14f) of the intercom network, comprising a housing (33) and a communication module (20a, 20b) arranged therein or thereon, with which a radio link can be established for the transmission of audio signals to another user, wherein the radio link is subject to the DECT protocol. The speciality, among others, consists in that the network device (10, 11, 12) comprises a means (21) for preventing or reducing multipath interferences.
US10931806B2 Remotely managing and controlling system and method
A remotely managing and controlling system and a remotely managing and controlling method are provided to a user for receiving feedback information and control right of the target device through a remote connecting device. To achieve the above goal, a remote control program is proposed and installed in a controlling device, named controlling terminal, and the target device, to determine whether operation modes can be executed through the remote connecting device. The remote connecting device transmits control commands and data to the target device, and receives the feedback information and the control right of the target device. Then, the controlling terminal can control the target device according to the feedback information for increasing the efficiency of data management. Further, the system and the method can receive a location of the target device through a tracing platform, and control the target device for increasing security of data stored in the target device.
US10931805B2 Method and apparatus for controlling application program, and electronic device
Embodiments of the present invention relate to telecommunications technologies, so that in a state in which the electronic device is connected to an external audio device, a manner used by the electronic device to process an audio and video application program can be intelligentized. A sensor is disposed on at least one of the electronic device or the external audio device. The method includes: receiving, by the electronic device, a detection result signal sent by the sensor, where the detection result signal is a signal that carries a detection value obtained by means of detection by the sensor; determining, by the electronic device according to a preset correspondence and the detection value, an action performed by a user on the electronic device or the external audio device; and controlling, by the electronic device, an execution status of an audio and video application program according to the action.
US10931804B2 Schedule processing method and electronic terminal
A schedule processing method includes displaying a 24-hour interval timescale in a first display area in a user interface. The method further includes displaying, in the first display area, an identifier corresponding to each schedule on a day, where a display location of the identifier corresponding to each schedule is associated with time information of each schedule. The user interface includes the first display area and a second display area. The method further includes in response to a detected first view operation performed by a user on a first identifier, displaying, in the user interface, information about a schedule corresponding to the first identifier.
US10931798B2 Apparatus for generating broadcast signal frame for signaling time interleaving mode and method using the same
An apparatus and method for generating a broadcast signal frame for signaling a time interleaving mode are disclosed. An apparatus for generating broadcast signal frame according to an embodiment of the present invention includes a time interleaver configured to generate a time-interleaved signal by performing time interleaving on a BICM output signal; and a frame builder configured to generate a broadcast signal frame including a preamble for signaling a time interleaving mode corresponding to the time interleaver for each of physical layer pipes (PLPs).
US10931796B2 Diffusing packets to identify faulty network apparatuses in multipath inter-data center networks
The techniques described herein describe diffusing packets through multipath inter-data center networks to identify faulty network apparatuses therein. In an implementation, a method of diffusing packets through a multipath inter-data center network to identify a faulty network apparatus in a source data center is disclosed. The method includes diffusing packets through various paths of a network fabric. Diffusing the packets includes sending out bursts of packets with varying packet header parameters to a set of machines in one or more target data centers. The method further include monitoring packet drops from the bursts of packets, issuing tracerts for each of the packet drops to identify corresponding failed routes, and triangulating the failed routes to identify the faulty network apparatus.
US10931791B2 Method and apparatus for processing request
Embodiments of the present disclosure disclose a method and apparatus for processing a request. A specific embodiment of the method includes: receiving a request; determining a type of the request or an object name indicated by the request; acquiring, after determining that a current time is after a validity deadline of locally stored first request control information, the number of control servers in a preset control server set; determining, from the control server set, a target control server based on the acquired number and any one of: the type of the request, the object name indicated by the request; and forwarding the request to the target control server.
US10931784B2 Flexible triggering of triggered code
Methods, systems, and computer program products are described herein for flexible triggering of triggered code (e.g. cloud functions). Flexible triggering may reduce costs, for example, by adjusting triggered code execution to avoid resource scale out (e.g. additional resources and/or power consumption). A specified (e.g. preferred) execution trigger may be modified or replaced, for example, by a flexible trigger configured to provide variable triggering. Triggering may be varied, for example, based on the status of one or more monitored resources in an execution environment. Variable triggering may be constrained by a time window (e.g. before, during and/or after a specified trigger). Flexible triggers may be specified (e.g. trigger type, parameters and constraints), for example, in service level agreements, by tenants and/or by cloud providers.
US10931781B2 Mobile device cache updating
A method and system for automatically updating a cache is provided. The method includes receiving by a database server from a mobile device, a request for modifying data within the database server. A Web service retrieves the request. The data is determined to be currently available within the database server and the request is transmitted to an analytics component of the database server. The analytics component determines if the data should be updated for use in an additional mobile device.
US10931769B2 Location-based method and system for requesting and obtaining images
Technology is disclosed for using geographic information that reflects the current locations for a plurality of image providers to find image providers that are capable of fulfilling image requests from image requesters, where the image requests are associated with various geographic locations. In an example embodiment, the technology can be used to find video footage of news events in a timely and cost-efficient manner.
US10931768B2 Determining active application usage through a network traffic hub
A network traffic hub receives network traffic from a user device running an application. The network traffic hub aggregates the network traffic into augmented netflows. Based on netflow parameters extracted by the network traffic hub, one or more augmented netflows are associated with the application. The network traffic hub determines whether an augmented netflow is a result of the application being in an active state or a passive state based on, for example, the quantity of data within the netflow. If the quantity of data within the augmented netflow is larger than a data threshold, the augmented netflow can be classified as an active usage, and if the data is less than the data threshold, the augmented netflow can be classified as a passive usage. Thus, by classifying network traffic of an application as active or passive, a record of a user's active usage of the application can be recorded.
US10931765B2 Intelligent blending system
A blending system is provided for contextual blending. The blending system may include an ingredient component and a recipe component. The ingredient component may identify ingredients and determine a quantity of each type of ingredient. The recipe component may create a recipe based on the identified ingredients and the determined quantities of the ingredients. The recipe may include instructions for controlling a blender device.
US10931758B2 Utilizing context information of environment component regions for event/activity prediction
Sensor data is received from a physical environment sensor. A component region associated with at least a portion of the sensor data is identified. A physical environment has been defined to include a plurality of component regions. Context information associated with the identified component region is obtained. The context information is utilized in association with a prediction model.
US10931751B2 Method and system for cloning data using a wearable electronic device
A system and method for cloning data using a wearable electronic device. The wearable electronic device includes a transceiver, a sensor, and an electronic processor electrically coupled to the transceiver and the sensor. The electronic processor is configured to establish, via the transceiver, a communications link with an electronic communications device. The electronic transceiver is further configured to transmit, via the transceiver to the electronic communications device, a device authentication key. The electronic processor is further configured to receive, from the sensor, at least one gesture signal. The electronic processor is further configure to, when the at least one gesture signal is received within a pre-determined period, determine at least one gesture from the at least one gesture signal. The electronic processor is further configured to determine a data cloning function based on the at least one gesture.
US10931749B2 Efficient configuration combination selection in migration
Methods and systems for finding a migration target include building a constrained, layered graph from a catalog of possible configuration combinations and a distance function for each layer in the graph; and determining an available path through the graph, said path having a minimum overall distance from a source instance, by performing an optimized search that selectively evaluates available paths through the graph based on cumulative distances of paths through the graph from the source instance.
US10931748B2 Optimistic concurrency utilizing distributed constraint enforcement
Optimistic concurrency is effectuated to manage constraints in a synchronization environment at multiple computing device endpoints in a consistent fashion without utilizing concentrated centralized constraint logic. Implemented data synchronization constraints that identify false violation scenarios may be automatically resolved without user intervention by using an etag system directed by a master component to assist computing device endpoints to maintain data synchronization among them. Data entries defining each file hierarchy component to be synched are generated and shared with the master component and each computing device endpoint in a synchronization environment. Individual computing device endpoints can use the data entries generated locally with those generated by other computing device endpoints to locally resolve identified false violation scenarios.
US10931744B1 Policy controlled service routing
Metadata associated with a workload is determined. The workload is associated with a consumer of a service. One or more policies associated with the metadata are retrieved. An agent is configured to perform policy-controlled service routing of communications comprising the data packets with respect to the workload based on the one or more policies.
US10931740B2 Distributed network diagnostics of enterprise devices utilizing device management
In response to receiving an indication from a client device experiencing a network connectivity error, a grouping of target client devices is identified for purposes of executing a distributed network diagnostic, the grouping being identified based on one or more configuration settings associated with client devices. The client devices in the identified grouping retrieve and execute an instruction. Data generated upon executing the instruction is received from each client device over a device management channel. The data is aggregated and trend data is generated. An instruction is sent to the client device experiencing the network connectivity error, wherein the instruction mitigates the network connectivity error.
US10931738B2 Point of presence management in request routing
A system and method for the management of client computing device DNS queries and subsequent resource requests within a content delivery network service provider domain are provided. The management of the DNS queries can include the selection of computing devices corresponding to various Point of Presence locations for processing DNS queries. Additionally, the management of the content requests can include the selection of computing devices corresponding to resource cache components corresponding to various Point of Presence locations for providing requested content. The selection of the computing devices can incorporate logic related to geographic criteria, performance threshold criteria, testing criteria, and the like.
US10931735B2 Application discovery
The disclosure describes methods or communication protocols that enable second-screen applications, such as smartphones, to discover and launch first-screen applications on first-screen devices, such as Internet enabled high definition televisions. Second-screen devices can search local networks for the presence of discovery servers on first-screen devices. Well-known protocols such as RESTful HTTP services and Universal Plug and Play (UPnP) may be leveraged to implement the discovery servers. Once located, the discovery servers may assist communications and interactions between the first-screen and second-screen devices, allowing a specified application to be launched on the first-screen device and controlled from a local application on the second-screen device. The specified application may be installed if not previously installed, and may also be hosted as a web application on a cloud server accessible outside of the local network, for example on the Internet.
US10931727B2 Transparent intercept for adaptive bitrate splicer
Methods, systems, and computer readable media can be operable to facilitate the intercept and manipulation of content requested by a client device. The methods, systems, and apparatuses described herein enable the interception and redirection of packets based upon a set of rules. Intercepted packets may be redirected away from an origin server and may be forwarded to a splicing device. The splicing device may establish a session with a corresponding origin server, and retrieve content that is requested by the intercepted packet. In embodiments, the splicing device may identify alternate content that is associated with the intercepted packet and/or content that is further associated with a device or subscriber associated with the packet. One or more segments of the requested content, or the entirety of the requested content may be replaced with the alternate content, and the modified content may be output to the client device requesting the content.
US10931726B2 Method and terminal for sharing content
A content sharing method includes: selecting, by a content sharing terminal, content; transmitting, by the content sharing terminal, identification information of the selected content to an external device; and reproducing, by the content sharing terminal, the selected content while the external device is reproducing the selected content based on the identification information.
US10931724B2 System and method for integrated virtual assistant-enhanced customer service
A system for virtual assistant facilitated contact center communications, wherein a virtual assistant at a contact center is used to communicate with a virtual assistant operating on a user device, thereby automating and improving contact center to customer communications. When a service request is received at a virtual assistant at the contact center from a virtual assistant operating on a user device, the virtual assistant at the contact center exchanges messages with one or more internal systems at the contact center to obtain relevant information. If any of the internal systems identifies missing information, the virtual assistant at the contact center queries the virtual assistant on the user device for the missing information.
US10931719B2 Early media handling
A communication device sends a Session Initiation Protocol (SIP) INVITE message to establish a call. In response, the call is forked. For example, in parallel forking, the SIP INVITE may be sent to two different communication devices. The forking causes each communication device to send at least one provisional response message. In this case, first and second SIP provisional response messages are received that include Session Description Protocol (SDP) information for a media stream. A first media stream associated with one of the first or second SIP provisional response messages is received and played. A second media stream associated with the other one of the first or second SIP provisional response messages is received within a first time period. In response to receiving the second media stream within the first time period, the first media stream is discarded and the second media stream is played.
US10931718B2 Local breakout-based data interception method and device
The present disclosure provides a method and a device for data interception based on Local Break Out (LBO). The method includes: receiving, by a local gateway, an interception request to intercept data of an interception target; intercepting, by the local gateway, LBO data of the interception target based on the interception request, to obtain intercepted data; and transmitting, by the local gateway, the intercepted data. The present disclosure can solve the solving the problem in the related art that an interception target cannot be intercepted in an LBO scenario.
US10931714B2 Domain name recognition method and domain name recognition device
The disclosure provides a domain name recognition method and a domain name recognition device. The domain name recognition method includes the following steps. A first string of a first domain name and a second string of a second domain name are obtained. Multiple characters of the first string and the second string are classified into multiple clusters. Multiple vectors corresponding to the clusters are generated, wherein each of the characters corresponds to one of the vectors. A first vector set corresponding to the first string and a second vector set corresponding to the second string are generated. A similarity of the first vector set and the second vector set is calculated.
US10931713B1 Passive detection of genuine web browsers based on security parameters
Techniques to facilitate passive detection of forged web browsers are disclosed herein. In at least one implementation, security information transmitted by a client during Hypertext Transfer Protocol Secure (HTTPS) session establishment between a web server and the client is monitored, and header information transmitted by the client is processed to determine a type of web browser associated with the client. A security signature for the client is generated based on the security information transmitted by the client during the HTTPS session establishment. The security signature for the client is compared with a predetermined signature for the type of web browser associated with the client to determine if the client is a genuine web browser of the type of web browser associated with the client.
US10931707B2 System and method for automatic forensic investigation
Automatic forensic investigation techniques to more effectively differentiate false positives from true positives. An incident is automatically investigated by a processor that communicates instructions to a device on a network and analyzes information received from the device in response to the instructions. In response to analyzing, the processor raises or lowers its level of confidence in the incident. If the processor's level of confidence in the incident is sufficiently high, the processor generates an output that indicates that the security of the network has been compromised. Otherwise, the processor ascertains that the incident is a false positive and may modify a criteria for alert generation.
US10931705B2 Correlated risk in cybersecurity
Computer-implemented methods are provided herein for quantifying correlated risk in a network of a plurality of assets having at least one dependency, where each asset belongs to at least one entity. The method includes generating a dependency graph based on relationships between the assets, at least one dependency, and at least one entity, and executing a plurality of Monte Carlo simulations over the dependency graph. Executing a plurality of Monte Carlo simulations includes generating a seed event in the dependency graph, where the seed event has a probability distribution, and propagating disruption through the dependency graph based on the seed event. The method further includes assessing loss for each of the assets, and aggregating losses for two or more assets to determine correlated risk in the network.
US10931704B2 Entity IP mapping
Systems and methods for mapping IP addresses to an entity include receiving at least one domain name associated with the entity. Embodiments may further include determining one or more variations of the at least one domain name based on analysis of domain name data collected from a plurality of domain name data sources that mention a variation of the at least one domain name. Some embodiments may also include identifying one or more IP addresses pointed to by the one or more variations of the entity's domain name based on analysis of IP address data collected from a plurality of IP address data sources. Additional embodiments include assigning weights to each of the identified one or more IP addresses and creating a mapping of IP addresses to associate with the entity based on analysis of the weighted one or more IP addresses.
US10931702B2 Vulnerability profiling based on time series analysis of data streams
Various systems and methods are described for correlating technology choices with the risk of system vulnerabilities. A system captures and quantifies both observations of technology choices as well as the outputs certain outputs of internal choices and processes across a number of different organizations. A Bayesian estimate of vulnerability is imputed from the choices and observed use of vulnerable technology, further segmented by business type, revenue, and size. Differences between the observation of a particular organization and Bayesian expected value are measured and converted to vulnerability score, the vulnerability score embodying a point-in-time and longitudinal measure of organizational performance, including the likelihood of future compromise due to software vulnerabilities. The vulnerability score can then be further used to price risk, for example in a cyber insurance context.
US10931699B2 Systems and methods for detecting security incidents across cloud-based application services
A method, a system, and an article are provided for identification of security-related activities based on usage of a plurality of independent cloud-based, hosted application platforms. An example method includes: receiving, from the application platforms, activity data and state data for a plurality of users of the application platforms; generating one or more predictive models configured to detect deviations from normal user behavior across the application platforms; providing, as input to the one or more predictive models, the activity data and the state data for at least one of the users; receiving, from the one or more predictive models, an indication that an activity of the at least one of the users deviates from the normal user behavior; and facilitating a remedial action to address the indicated deviation.
US10931697B2 System and method of identifying fraudulent activity from a user device using a chain of device fingerprints
The present disclosure provides systems and methods of selecting candidates for comparison of fingerprints of devices. An exemplary method comprises calculating a digital fingerprint of a device, determining a group of digital fingerprints where the digital fingerprint occurs, calculating vectors of changed features of each digital fingerprint, calculating a probability that the digital fingerprint and each digital fingerprint within the group belong to the same chain, identifying a set of candidates from the group whose probability of belonging to the same chain of fingerprints crosses a value, comparing the calculated digital fingerprint of the device with the fingerprints in the set of candidates, determine that the device correspond to a device in the set of candidates when the comparison results in a match higher than a specified threshold and permitting the user actions, otherwise tracking the user actions with the online service as fraudulent activity.
US10931696B2 Communications methods and apparatus for dynamic detection and/or mitigation of threats and/or anomalies
The present invention relates to methods and apparatus for dynamically detecting and/or mitigating threats in communications systems. Exemplary methods and apparatus of the present invention allow for a combination of automated and operator controlled responses to threats. While an operator is provided an opportunity to provide input on how to respond to a threat, after one or more threats of a given type are identified, the system will automatically take corrective action without waiting for operator input and/or in the absence of operator input following notification of a threat.
US10931695B2 Nonce injection and observation system for detecting eavesdroppers
An entity can disseminate nonces by introducing them into various aspects of network traffic, and then listening for them, thereby detecting eavesdroppers on the Internet. A nonce may be numeric, alphanumeric, or otherwise; nonces are contextually appropriate to how they are disseminated. Preferably, a nonce is disseminated by incorporating it into some aspect of network traffic. For example, a nonce can be placed in a network identifier such as an IP address or domain name label. Correlating the circumstances under which the nonce was disseminated and under which it was observed to “propagate”, intelligence about who is eavesdropping on what portions of the Internet can be derived. Such intelligence can be put to many uses, including reporting on eavesdroppers, routing traffic around eavesdroppers, developing reputation scores, and adopting enhanced obfuscation/privacy/security techniques.
US10931693B2 Computation apparatus and method for identifying attacks on a technical system on the basis of events of an event sequence
A computing device is proposed for detecting attacks on a technical system based on events of an event sequence is provided. The computing device has a receiving unit for receiving the event sequence which includes a plurality of events, wherein an attack is determined by a specific sequence in the events in the received event sequence, and a checking unit for checking the received event sequence based on a main event which is contained in the specific sequence in events, wherein the checking unit is additionally designed to carry out a pattern recognition in the received event sequence based on the specific sequence in events if the main event has occurred. As the checking unit merely checks the received event sequence for the occurrence of a main event, and the more exact pattern recognition is only carried out after the main event occurs, the necessary computing expense can be reduced.
US10931690B1 Thwarting potentially malicious online activity
Thwarting potentially malicious online activity. In one embodiment, a method may include logging legitimate online user activities performed at a browser. The method may also include receiving a suspicious online activity that was performed at a website. The method may further include comparing the suspicious online activity to the logged legitimate online user activities to determine whether the suspicious online activity matches any of the logged legitimate online user activities. The method may also include, in response to determining that the suspicious online activity does not match any of the logged legitimate online user activities, determining that the suspicious online activity is a potentially malicious online activity, and thwarting the potentially malicious online activity by performing a remedial action at the website to protect the website from the potentially malicious online activity.
US10931689B2 Malicious network traffic identification
A method for identifying malicious network traffic communicated via a computer network, the method including: evaluating a measure of a correlation fractal dimension for a portion of network traffic over a monitored network connection; comparing the measure of correlation fractal dimension with a reference measure of correlation fractal dimension for a corresponding portion of network traffic of a malicious network connection so as to determine if malicious network traffic is communicated over the monitored network connection.
US10931687B2 Cyber-attack detection, localization, and neutralization for unmanned aerial vehicles
In some embodiments, an Unmanned Aerial Vehicle (“UAV”) system may be associated with a plurality of monitoring nodes, each monitoring node generating a series of monitoring node values over time that represent operation of the UAV system. An attack detection computer platform may receive the series of current monitoring node values and generate a set of current feature vectors. The attack detection computer platform may access an attack detection model having at least one decision boundary (e.g., created using a set of normal feature vectors a set of attacked feature vectors). The attack detection model may then be executed and the platform may transmit an attack alert signal based on the set of current feature vectors and the at least one decision boundary. According to some embodiments, attack localization and/or neutralization functions may also be provided.
US10931685B2 Malware analysis and recovery
A system and method detects malware by processing notifications from an intrusion detection system and baseline snapshots from an image capture utility. The image capture utility constructs an image of the suspected malware intrusion and links the suspected malware intrusion to the baseline snapshots. The system and method propagates the image of the suspected malware intrusion across multiple networks before it distinguishes malicious code, device state, and files from benign code, device state, and files. Some systems and methods include a malware recovery system that executes machine learning instructions and heuristics to revert a client and/or a remote server to one or more baseline snapshots.
US10931683B2 Automatic token-based secure content streaming method and apparatus
Disclosed are systems and methods for improving interactions with and between computers in secure content access, distribution and download and/or providing systems supported by or configured with personal computing devices, servers and/or platforms. The systems interact to identify and retrieve data within or across platforms, which can be used to improve the quality of data used in processing interactions between or among processors in such systems. The disclosed systems and methods provide systems and methods for automatic token-based secure content streaming.
US10931682B2 Privileged identity management
Aspects of a privileged identity management system and method provide users with the ability to request elevated privileges to perform tasks on computing systems and software applications. The privileged identity management system and method also provides users with the ability to extend the elevated privileges to access privileged features or perform tasks using elevated privileges. The privileged identity management system and method utilize a different device that is readily available to the user in order to provide communications relating to the elevated privileges.
US10931677B1 Graphical user interface and console management system for distributed terminal network
A graphical user interface (GUI) and operator console management system for a distributed terminal network is described. In some embodiments, the terminals may be hardware terminals, kiosks, or clients. In some embodiments, a security analysis may be performed, and security scores may be determined, for visitors requesting operations at terminals based on an operator configuration. Security scores may be determined by a provider, in communication with the operator terminals, based on aggregation of a plurality of factors, wherein each factor may be weighted. The factors may incorporate operator settings or preferences. In one embodiment, the factors include one or more facial recognition factors. The one or more facial recognition factors may be used for biometric authentication. The provider may use the security scores to determine user privileges or permissions for the operations. The provider may deliver instructions or messages to the terminals based on the determinations.
US10931674B2 Detecting whether to implement one or more security measures on a shared resource
A computer system identifies that a user activity on a user device during a first time period corresponds to a first user activity profile. The computer system monitors user activity on a user device during a second time period. The computer system determines that the user activity associated with the second time period does not correspond to the first user activity profile. In response to the determining that the user activity associated with the second time period corresponds to the second user activity profile, the computer system implements one or more security measures.
US10931672B1 Certified transaction authentication system for unilaterally-issued records
Apparatus and associated methods relate to generating persistent transaction records (PTR), each containing fields/parameters determined by a template that gets stored on a centralized blockchain to identify a certified transaction associated with a particular Certified Body and Certified Subject pair, the persistent transaction records being unilaterally issued by the Certified Body. In an illustrative example, the Certified Body may be authenticated by a trusted Certifying Transaction Authority System (CTAS) configured to authenticate parametric data from one or more Certified Bodies and cause the authenticated parameters to be stored on the blockchain in association with the Certified Subject as a PTR. The PTR may be accessible in the decentralized blockchain by, for example, the Certified Body, the Certified Subject, and an authorized 3rd Party. The CTAS may advantageously provide an automated infrastructure for unilateral issuance of trustworthy and immutable records of diverse information (e.g., credentials, experience, rights) relating to Certified Subjects.
US10931669B2 Endpoint protection and authentication
Methods and systems are disclosed for endpoint protection and authentication schemes for a host computer system having an internet isolation system. A first host computer system may include a first memory space and a second memory space. The first memory space may be configured to enable storage and operation of a workspace configured to execute a first set of one or more applications and processes running on an operating system of the first host computer system. The second memory space may be configured to enable storage and operation of a second set of one or more applications and processes associated with an isolated computing environment (e.g., a sandboxed computing environment) configured to run on the operating system. When the first host computer system is connected to a network that is known or associated with a predetermined security policy, the first host computer system may instantiate a predetermined security policy configuration.
US10931665B1 Cross-device user identification and content access control using cookie stitchers
Techniques are disclosed to leverage third party “cookie stitchers” for cross-device user identification, which may be used by a network server to selectively provide content to a user. The techniques include a cookie stitcher associating a user with multiple computing devices, which in turn notifies the network server when the same user requests access to provided content on separate occasions from different computing devices. The cookie stitcher may also have access to a user record regarding the identified user, and may provide this record data to the network server to identify other characteristics about the user. Based upon the particular type of information that is identified, the network server may provide varying degrees of access to content and/or allow the user to interact with one or more applications supported by the network server in different ways.
US10931664B2 Establishing access to a secure network based on user-created credential indicia
In various aspects, code-based indicia contain secured network access credentials. In some aspects, a computer processor receives user input that specifies secured network access credentials, and the computer processor creates or modifies credentials for establishing a secured network connection. In these aspects, the computer processor generates code-based indicia that contain at least part of the secured network access credentials. In other aspects, a computer processor scans the code-based indicia and extracts the network access credentials. In these aspects, the computer processor employs the network access credentials to establish the secured network connection. In additional aspects, a network router apparatus renders the code-based indicia to an active display. In further aspects, a network router apparatus conditions grant of network access to a device on receipt from the device of an answer to a security question included in the secured network access credentials.
US10931663B2 Terminal authenticated access
Two-factor authentication is processed on a transaction terminal before access is provided to a secure resource of the transaction terminal. A first factor authentication is performed to authenticate an identifier and a credential of a user. A unique challenge is sent, in response to a successful first factor authentication, to a secure device interfaced to the transaction terminal. A one-time unique signed response is received from the secure device in response to the unique challenge and a user action that depresses a button on the secure device. The one-time unique signed response is compared against what is expected from the secure device. When the comparison is successful, a user identity for the user is set, a security role is set for the user identity, and the user is granted access to the secure resource with the set security role.
US10931659B2 Federated authentication for information sharing artificial intelligence systems
A system that includes an artificial intelligence (AI) system and an information service system. The information service system includes an authentication engine configured to authenticate the AI system to enable data transfers between the AI system and the information service system. The information service system further includes an AI service engine configured to receive behavior information for the user from the AI system and link the user with a classification type based on the content of the behavior information. The AI service engine is further configured to receive an information request from a user device associated with the user, to send the account information to the user device, to identify general information with a classification type that matches the classification type of the user and a classification type of the private information request, and to send the general information to the user device.
US10931656B2 Cross-region trust for a multi-tenant identity cloud service
Embodiments of a multi-tenant cloud system include a first data center adapted to authenticate a first plurality of registered clients and located in a first geographic area, and a second data center adapted to authenticate a second plurality of registered clients and located in a second geographic area that is different from the first geographic area. The first data center receives a request from a first client of the first plurality of registered clients to access a resource of the second data center and validates the request from the first client and issues a global access token. The second data center receives the request with the global access token. A cloud gate at the second data center, based on the global access token, validates the request and provides the resource to the first client.
US10931655B2 Apparatus and method for supporting bidirectional communication using unidirectional communication
An apparatus and method for supporting bidirectional communication using unidirectional communication. The apparatus for supporting bidirectional communication using unidirectional communication includes an internal network module for performing bidirectional communication with an internal network and communicating with an external network module depending on a communication mode, the external network module for performing bidirectional communication with an external network and communicating with the internal network module depending on the communication mode, and a communication control module for controlling, of first unidirectional communication from the internal network module to the external network module and second unidirectional communication from the external network module to the internal network module, the second unidirectional communication, thus controlling a communication function corresponding to the communication mode, wherein the communication mode includes a unidirectional communication mode, a conditional bidirectional communication mode, and a bidirectional communication mode.
US10931652B2 Data sealing with a sealing enclave
Techniques for securely sealing and unsealing enclave data across platforms are presented. Enclave data from a source enclave hosted on a first computer may be securely sealed to a sealing enclave on a second computer, and may further be securely unsealed for a destination enclave on a third computer. Securely transferring an enclave workload from one computer to another is disclosed.
US10931648B2 Perimeter encryption
Encryption keys for an enterprise are stored at a perimeter device such as a gateway, and rules are applied at the network perimeter to control whether and how these keys are used for cryptographic processing of communications passing through the perimeter device. The encrypted status of communications, e.g. whether and how files are encrypted with the encryption keys, may also be used to assist in selecting appropriate security handling and routing of the communications.
US10931644B2 Methods, network nodes, mobile entity, computer programs and computer program products for protecting privacy of a mobile entity
A method for a first network node may protect confidentiality of a first identifier associated by the first network node with a subscription used by a mobile entity. The communications network comprises a home network of the mobile entity and a serving network serving the mobile entity. The first network node, which is part of the home network may: receive, from a second network node which is part of the serving network, a first request for authentication information for the mobile entity, the first request comprising the first identifier; generate a first pseudonym associated with the first identifier; create a link between the first pseudonym and the first identifier; and send, to the second network node, the first pseudonym in response to the first request for authentication information for use as an identifier for the mobile entity in the serving network. A method for a second network node is also provided.
US10931643B1 Methods and systems of telemedicine diagnostics through remote sensing
A system for telemedicine diagnostics through remote sensing includes a computing device 104 configured to initiate a communication interface between the computing device 104 and a client device 112 operated by a human subject, wherein the secure communication interface includes an audiovisual streaming protocol, receive, from at least a remote sensor at the human subject, a plurality of current physiological data, generate a clinical measurement approximation as a function of the plurality of current physiological data, wherein generating further comprises receiving approximation training data correlating physiological data with clinical measurement data, training a measurement approximation model as a function of the training data and a machine-learning process, and generating the clinical measurement approximation as a function of the current physiological data and the measurement approximation model, and presenting the clinical measurement approximation to a user of the computing device 104 using the secure communication interface.
US10931641B1 Hardware control logic based data forwarding control method and system
The present invention discloses a hardware control logic based data forwarding control method and a corresponding data forwarding control system. The method includes: externally connecting a terminal protection device to a protected host, and taking over all the data interfaces of the protected host; and controlling by a hardware control logic in the terminal protection device the connection and/or disconnection of a physical circuit corresponding to data forwarding when an external device interacts data with the protected host via the terminal protection device, so as to control the data interaction between the external device and the protected host. The present invention realizes the functions of performing control and security protection on various types of data without installing data monitoring and security protection software on the protected host, and achieves the effects of isolating the physical circuit via the hardware control logic and better controlling data forwarding security, thereby comprehensively eliminating the potential security hazards such as Trojan virus implantation and malicious code injection that may be generated by the interfaces.
US10931640B2 Tunneling network traffic using object storage
Methods and systems for managing computer network traffic are provided. A computer implemented method includes tunneling network traffic between a first network and a second network using a data storage system that is shared by the first network and the second network.
US10931638B1 Automated firewall feedback from network traffic analysis
Security rule feedback systems and methods include capturing network traffic data, the network traffic data including a plurality of traffic records. The traffic records are grouped into first and second traffic records having corresponding first and second source address identifiers, first and second source port identifiers, first and second destination address identifiers, and first and second destination port identifiers. Network interfaces associated with the first and second records are identified based on source address identifiers. Security rule populations are associated to the network interfaces. A determination is made as to a direction of network traffic based on the security rule populations. Thereby, dispensable security rules may be identified.
US10931637B2 Outbound/inbound lateral traffic punting based on process risk
Techniques for outbound/inbound lateral traffic punting based upon process risk are disclosed. In some embodiments, a system/process/computer program product for outbound/inbound lateral traffic punting based upon process risk includes receiving, at a network device on an enterprise network, process identification (ID) information from an endpoint (EP) agent executed on an EP device, in which the process ID information identifies a process that is associated with an outbound or inbound network session on the EP device on the enterprise network, and the EP agent selected the network session for punting to the network device for inspection; monitoring network communications associated with the network session at the network device to identify an application identification (APP ID) for the network session; and performing an action based on a security policy using the process ID information and the APP ID.
US10931636B2 Method and system for restricting transmission of data traffic for devices with networking capabilities
A method and a system of restricting data packet transmission of an apparatus at a network node. The network node, during a first time period, updates a whitelist and does not restrict data packet transmission according to the whitelist. After the first time period, the network node determines corresponding destination address of each of the data packets and allows the data packets to be sent to the corresponding destination address if a criteria is satisfactory. The network node does not allow the data packets to be sent to the corresponding destination address if the criteria is not satisfactory. The whitelist is comprised of at least one destination address. The criteria is based on the at least one destination address. The whitelist list is stored in non-transitory computer readable storage medium in the network node.
US10931635B2 Host behavior and network analytics based automotive secure gateway
Systems and methods for an automotive security gateway include an in-gateway security system that monitors local host behaviors in vehicle devices to identify anomalous local host behaviors using a blueprint model trained to recognize secure local host behaviors. An out-of-gateway security system monitors network traffic across remote hosts, local devices, hotspot network, and in-car network to identify anomalous behaviors using deep packet inspection to inspect packets of the network. A threat mitigation system issues threat mitigation instructions corresponding to the identified anomalous local host behaviors and the anomalous remote host behaviors to secure the vehicle devices by removing the identified anomalous local host behaviors and the anomalous remote host behaviors. Automotive security gateway services and vehicle electronic control units operate the vehicle devices according to the threat mitigation instructions.
US10931632B2 Communication apparatus and recording medium
A communication apparatus includes: a transmitting unit that is capable of transmitting data to a designated destination through any of plural communication interfaces; a storage unit in which plural pieces of destination information are stored; and a registration unit that registers a communication interface used for data transmission in advance for each of the plural pieces of destination information stored in the storage unit.
US10931630B2 System and method for connecting using aliases
Systems, methods, and media for connecting using aliases. During operation, such as an API, an operation is called that utilizes a connection to a remote device. When this operation is attempted, information may be requested to complete the connection. The information may include credentials or connection information about a target device for the connection. An appropriate alias is used to request the suitable information.
US10931626B2 Automatic discovery of management server IP address using DHCP for thin client solution
Systems and methods for automatic discovery of a network address of a machine storing a management server application. The system includes a dynamic host configuration protocol (DHCP) server, which may perform internet protocol (IP) address leasing for DHCP clients. When the DHCP server performs IP address leasing to the machine storing the management server application, the DHCP server may configure a first IP address issued to the machine in vendor specific class information. When the DHCP server performs IP address leasing to a computing device functioning as a thin/zero client, the DHCP server may, in the IP address leasing process, send the vendor specific class information requested to the computing device. Thus, the computing device may retrieve the first network address of the machine from the vendor specific class information, and communicate with the management server application using the first network address of the machine.
US10931625B2 Systems and methods for providing DNS services
A system for providing a Domain Name System (DNS) service may include providing an agent for installation on a subscriber device. The subscriber device may be connected to the DNS service via an entry point device. The system includes receiving, from the agent, agent data indicative of a subscriber identifier and a unique identifier associated with the entry point device. The system may then determine, based on the agent data, a current Internet Protocol (IP) address associated with the entry point device and associate the unique identifier with the subscriber identifier. The system may then dynamically map the subscriber identifier to the current IP address and provide DNS service to the subscriber device based on the current IP address.
US10931621B2 Methods and systems for providing life event notifications to one or more users
One or more systems and/or methods for providing a notification of a life event to a user for a contact of the user are provided. A contact database (e.g., an electronic address book, a social media contact list, etc.) associated with the user may be evaluated to identify a contact from a set of contacts of the user. A contact query may be created for the contact. The contact query may be utilized to access data articles within a data store. The data articles may be evaluated to identify life events associated with the contact. In an example, the life event may be at least one of a death event, a birth event, an engagement event, a marriage event, a graduation event, an anniversary event, or the like. A notification may be provided to the user of the life event in response to identifying the life event for the contact.
US10931620B2 Calculating efficient messaging parameters
Methods and systems for creating optimal time limited messages is disclosed. The server system receives a limited time message request from a first member, wherein the message request identifies a second member as the intended recipient and includes an offer. The server system accesses a member profile associated with the second member. The server system determines a message expiration time recommendation based, at least in part, on member profile data of the second member. The server system receives an expiration time selection from the first member. The server system creates a limited time message based on the received message request. The server system transmits the limited time message to the second member.
US10931618B2 Control of notifications to a user of an electronic messaging system
An example method of controlling notifications to a user of an electronic messaging system comprises controlling communication of a notification associated with a thread of the electronic messaging system to the user based on a determined level of interest of the user in a topic of the thread and at least one of: the obtained timing information relating to the timing of the most recent notification associated with the thread; and an obtained measure of similarity between the topic of the thread and a second topic associated with the most recent notification associated with the thread.
US10931617B2 Sharing of bundled content
Non-limiting examples describe sharing of bundled content through an application/service. A first input may be received, through a user interface of the email service. The first input is associated with a selection of a user interface element for sharing of a bundle of emails that comprises a grouping of at least two separate email threads. A second input is received indicating one or more other users for sharing the bundle of emails. The bundle of emails is shared with the one or more other users. Sharing of the bundle of emails creates a sharing permission that enables multi-directional sharing between the user and the one or more other users for current content of the shared bundle of emails and future content added to the shared bundle of emails. The shared bundle of emails is displayed inline with other emails of an email mailbox of the user through the user interface.
US10931613B2 RNA targeting methods and compositions
Provided herein are CRISPR/Cas methods and compositions for targeting RNA molecules, which can be used to detect, edit, or modify a target RNA.
US10931612B2 Integration of social interactions into media sharing
Embodiments for managing social commentary as applicable to social media by a processor. A spectrum of weights is assigned to individual portions of the social commentary as a function of a determined measured characteristic. Those of the individual portions having a higher weight than a predetermined threshold are selected to be displayed through the social media in a hierarchy corresponding to a position in the spectrum of weights, while those of the individual portions having a lower weight than the predetermined threshold are selected to be withheld from display. A deduplication operation is applied to individual portions of the social commentary. Those of the individual portions determined to be repetitive greater than a predetermined number are used to assist in formulating weights of the individual portions.
US10931610B2 Method, device, user terminal and electronic device for sharing online image
The present invention discloses a method, a device, a user terminal and an electronic device for sharing an online image. The method includes: in response to a user's request for sharing an online image, obtaining a local resource of the online image to be shared; generating a sharing setting interface for the user to set editing the image and then sharing the online image, or directly sharing the online image. According to the present invention, a user is allowed to directly edit an online image and then share it with other users without the need of certain cumbersome operations, so as to enhance the user experience.
US10931605B2 Event processing method and apparatus
This application discloses an event processing method and apparatus. A first communication request is received by a server system from a first terminal device. A second communication request is received by the server system from one or more second terminal devices. The first terminal device and the one or more second terminal devices are added to a same communication group by processing circuitry of the server system. A task to be executed at the one or more second terminal devices is sent to the one or more second terminal devices via the same communication group. A task execution result is received that is associated with task execution by the one or more second terminal devices that execute the task. An event object associated with the task is sent by the server system to the one or more second terminal devices that execute the task when the task execution result satisfies a predetermined condition.
US10931596B2 Method, apparatus and system for addressing resources
A method and an apparatus for addressing resources, the apparatus having a first interface to communicate with end-points operationally connected to the apparatus using a binary web service, the end-points including one or more resources; a second interface for receiving requests regarding the resources and for responding to the requests; a component for storing information on sleeping end-points which are non-continuously available and storing a request queue for each sleeping end-point; a component for receiving through the second interface a request regarding a sleeping end-point, adding the request to the request queue of the end-point; communicating with a sleeping end-point regarding the requests after receiving through the first interface a queue request from the end-point; and sending through the first interface responses for the resolved requests.
US10931595B2 Cloud quality of service management
A computer-implemented method of allocating cloud resources is provided that comprises: receiving, by a cloud host, data that identifies, for an application, a relationship between consumption of a first resource type and consumption of a second resource type; determining, by the cloud host, a consumption level of the first resource type of the application; and allocating, by the cloud host, one or more resources of the second resource type based on the identified relationship.
US10931590B2 Packet processing method and system, and network device
A packet processing method includes: receiving, by a first network device, a packet, where the packet includes match object information and match condition information; determining, by the first network device, a to-be-matched network device among one or more network devices according to the match object information, determining, by the first network device, whether device information of the of the to-be-matched network device matches with the match condition information; and performing, by the first network device, forwarding processing or discarding processing on the packet according to a result of the determination.
US10931583B2 Methods of load balancing
A load balancing method is disclosed, the method includes establishing a processing network including a plurality of task-processing processors interconnected therewith, each processor of the plurality having a queue of tasks to be processed, establishing a k-regular graph including nodes and branches connecting the nodes, where k is the degree of the graph, assigning d walkers to the k-regular graph, where each walker is randomly assigned to a node, receiving a new task to be processed, walking from the assigned nodes to new nodes by randomly choosing a new node from one or more available nodes, without backtracking from each of the assigned nodes to a node from which each of the d walkers immediately walked, comparing the queues of the new nodes, determining which queue of the new nodes has the least number of tasks; and assigning the new task to the node with the least number of tasks.
US10931580B2 Packet processing method and network device
Embodiments of the present disclosure provide a packet processing method and a network device, so as to effectively resolve a problem that a quantity of concurrent packet processing policies is limited in a network device due to scarce hardware resources of a packet forwarding chip. A method part in the embodiments of the present disclosure includes: obtaining, by a first network device, identification information; processing, by the first network device, a packet when receiving the packet, where a processed packet includes the identification information, and packets corresponding to different preset policy information include different identification information; and sending, by the first network device, the processed packet to a second network device, so that the second network device matches a corresponding policy for the processed packet based on the identification information.
US10931578B2 Method for processing data in ethernet, device, and system
A data processing method, a related device, and a system are provided. The method executed by a first network device includes receiving PDH frame data; loading the PDH frame data and a stuffing bit into a virtual container to obtain the virtual container that includes the PDH frame data, where the stuffing bit in the virtual container carries information about a clock frequency difference between a clock frequency of the Ethernet and a clock frequency of the PDH frame data; and performing virtual-container PWE3 encapsulation on the virtual container to obtain a virtual-container PWE3 packet. In at least some embodiments, difficulty in recovering the clock frequency of the PDH frame data when the PDH frame data is transmitted in the Ethernet is reduced, clock frequency jitters and drifts caused by the clock frequency recovery are reduced, and user experience is improved.
US10931577B2 Ultra high-speed mobile network based on layer-2 switching
The present invention provides apparatuses, methods, computer programs, computer program products and computer-readable media regarding Ultra High-Speed Mobile Network based on Layer-2 Switching. Certain aspects of the present invention include receiving, at a first gateway, a data packet from a first host served by the first gateway destined to a second host served by a second gateway, the data packet having a header comprising a layer 3 destination address of the second host and a broadcast layer 2 destination address, searching, by the first gateway, a flow table stored in the first gateway for an identity of the second gateway associated with the broadcast layer 2 destination address, if the identity is found in the flow table, replacing the broadcast layer 2 destination address with the identity of the second gateway serving the second host, and transmitting the data packet to the second gateway.
US10931576B2 Software defined networking system for distinguishing packet-in messages
The application provides a switch device and a software defined network (SDN) controller. The switch device includes a storage unit configured to store control flow entries, each control flow entry comprises at least one service field associated with at least one processing action, a receiver configured to receive a data plane packet, and a transmitter configured to transmit, to the SDN controller, a packet-in message, and a processor configured to determine whether at least one information field of the data plane packet or of the packet-in message matches the at least one service field of a control flow entry, and instruct the transmitter to transmit the packet-in message according to the processing action associated with the matched service field, if the at least one information field matches the at least one service field.
US10931575B2 Multi-tenant virtual private network based on an overlay network
According to an example embodiment, a technique for operating a virtual private network (VPN) service in a multi-tenant data center is provided, the technique comprising operating, in the data center, a multi-tenant VPN server to relay data packets between a VPN tunnel that connects the multi-tenant VPN server to a remote network of a tenant and an overlay network service that implements the VPN for said tenant within the data center, wherein the data packets between the multi-tenant VPN server and the overlay network service are carried in a virtual local area network, VLAN, assigned for said tenant, and wherein the multi-tenant VPN server stores a multi-tenant forwarding table that stores a mapping between a tenant and a VLAN assigned for the tenant for a plurality of tenants.
US10931574B2 Universal customer premise equipment
Systems, methods, apparatus and computer-readable medium are described for improving efficiency and robustness for processing network packets at a network device, such as a customer premises equipment (CPE). The network device may include a plurality of physical network interfaces for receiving and transmitting network packets, and one or more processing entities. The one or more processing entities may provide a first router for providing routing functionality, wherein the first router is not virtualized, enable a virtual machine to execute a second router for providing routing functionality and forward a network packet using the first router or the second router from the device. The one or more processors may be configured to execute instructions associated with the first router from user space.
US10931569B2 Internet reachability detection and internet high availability for multi-homed network devices
A method for determining Internet reachability and Internet high availability for a multi-homed device in a network having a plurality of network interfaces includes connecting the multi-homed device to a network interface of interest in the plurality of network interfaces and disabling any functionality of setting a default route entry for the at least one network interface of interest until a determination of Internet reachability is made.
US10931561B2 Dynamic split tunneling
A computing device dynamically excludes/includes traffic from/in a secure tunnel based on the domain name of the destination of the traffic. The computing device establishes a secure tunnel from the computing device, and receives a request to access a remote resource at a domain name. The computing device resolves the domain name at a domain name server and receives a resolved network address associated with the domain name. The computing device determines whether to send the request inside the secure tunnel or outside the secure tunnel by comparing the domain name to a split tunneling policy. Based on the comparison with the split tunneling policy, the computing device sends the request to the resolved network address either outside the secure tunnel or inside the secure tunnel.
US10931560B2 Using route type to determine routing protocol behavior
Some embodiments provide a method for implementing a logical network. Based on logical network configuration data, the method identifies a route for a set of network addresses to add to a routing table of the logical router, and also identifies a route type for the identified route. The method determines whether to include the identified route as a route for the logical router to advertise based on the route type of the identified route. The method distributes a routing table comprising the identified route to a computing device that implements the logical router, where the computing device advertises the identified route when the route type is specified for advertisement.
US10931559B2 Distribution of network-policy configuration, management, and control using model-driven and information-centric networking
A network of routers configure resource nodes connected to the network in accordance with a configuration model including configuration objects that imply resources. A router device among the network of router devices receives, from forwarding paths in the network relative to the router device, originated at the resource nodes and that indicate resources supported by the resource nodes. The router device creates mappings of the resources as advertised to the forwarding paths. The router device receives from the network an Intent request to create a configuration object among the configuration objects, and determines whether the configuration object matches a resource in the mappings. If the configuration object matches a resource in the mappings, the router device generates a new Intent request that identifies the resource, specifically, and forwards the new Intent request along the forwarding path mapped to the resource.
US10931554B2 Flexible ethernet operations, administration, and maintenance systems and methods
A node includes circuitry configured to interface a stream of encoded blocks with the blocks including i) data blocks from one or more clients and ii) overhead blocks, wherein a calendar is utilized for block distribution in the stream of encoded blocks; and circuitry configured to process one or more Operations, Administration, and Maintenance (OAM) fields in the overhead blocks, wherein the OAM fields are associated with the one or more clients in the data blocks.
US10931549B2 Communication device of an industrial automation system and method for configurating the communication device
A communication device of an industrial automation system and method for configuring the communication device, wherein a communication network address assigned to the communication device is independently generated from at least one prefix communicated via router advertisement messages by at least one router assigned within a subnetwork and from a device-specific interface identifier, where the communication device interrogates at at least one server of a name service system, in accordance with a name resolution protocol, which communication network addresses are assigned to its communication device name, the communication network addresses interrogated at the at least one server of the name service system are checked with regard to correspondence to the prefix, and where the communication device assigns to itself only those communication network addresses interrogated at the server of the name service system which have a correspondence to the prefix communicated by the router.
US10931545B2 Policy-based sampling of network flows at a network visibility node
Methods and systems are disclosed for analyzing control signaling messages over a network to inform policy-based sampling of network flows using a network visibility node communicatively coupled to the network. In an illustrative embodiment, session dialog information is extracted from control signaling messages exchanged between subscriber devices initiating a communications session and tracked. A network flow associated with the communications session is selected for sampling at the network visibility node based on the tracked session dialog information. Packets associated with the network flow are then forwarded by the network visibility node to an external tool for processing.
US10931540B2 Continuous data sensing of functional states of networked computing devices to determine efficiency metrics for servicing electronic messages asynchronously
Various embodiments relate generally to data science and data analysis, computer software and systems, and wired and wireless network communications to interface among repositories of disparate data and computing machine-based entities configured to access, track, and/or analyze data, and, more specifically, to a computing and data storage platform to implement computerized tools to continuously (or nearly continuously) sense data describing functional states of remote computing devices and/or user interfaces configured to service electronic messages, according to at least some examples. For example, a method may include receiving a stream of data representing states of user interfaces, analyzing the states of the user interfaces, identifying activity data, identifying a state of an application, detecting an action and classifying a subset of activity data based on the action, and generating data representing a state of an application configured to interact with a digital conversation.
US10931537B2 Method and device for updating a predictive model of a variable relating to a mobile terminal
A method for updating a predictive model of a variable representing the operation of a mobile terminal connected to a communication network by packets is described. A first predictive model is configured to estimate a value of the variable as a function of the value of predictors, linked to the variable by a common operating context. The method can be implemented by the mobile terminal and can include generating a feed message, comprising at least the measured value and the values of the predictors, if the difference between the measured value and the estimated value is greater than or equal to a determined threshold, called the feed threshold, the method can further include transmitting the at least one feed message generated, to an update server connected to the network, receiving an update message, comprising a second predictive model updated on the basis of at least the feed message, coming from the update server, and replacing the first predictive model with the second predictive model.
US10931531B2 Bandwidth-based virtual router redundancy protocol node designation
A first information handling system may determine a first bandwidth of a first connection between the first information handling system and a client information handling system. The first information handling system may also determine a second bandwidth of a second connection between a second information handling system and the client information handling system. The first information handling system may determine that the first bandwidth is greater than the second bandwidth. Based on the determination, the first information handling system may be designated as a VRRP master node based. Based on the designation as the VRRP master node, the first information handling system may control VRRP operation of the first and second information handling systems.
US10931527B2 Autonomous configuration system for a service infrastructure
Various methods and systems for implementing an autonomous configuration system for configuring a service infrastructure are provided. An autonomous configuration system implements a service infrastructure configuration manager to identify discovered configuration data. The discovered configuration data supports circumventing a routing protocol for service infrastructure communications via an edge infrastructure, such that, the service infrastructure is alternatively configured to access remote configuration data based on the discovered configuration data. The discovered configuration data is discovered based an autonomous discovery service (e.g., sniffing service or a casting service). An initial configuration state is configured in the service infrastructure, based on the discovered configuration data. The service infrastructure can communicate with a service provider infrastructure associated with the service infrastructure to access the remote configuration data. The service infrastructure configuration manager accesses the remote configuration data and uses the remote configuration data to configure a final configuration state in the service infrastructure.
US10931524B1 Active wireless network management to ensure live voice quality
A system for managing moderator and audience audio captured by personal mobile devices and broadcast by a public address system in the same venue is disclosed. In various aspects, the system includes a wireless network hub. The wireless network hub transmits and receives wireless data from a plurality of personal mobile devices. A network manager component manages communications of the personal mobile devices with the wireless network hub. The network manager uses measured dynamic network parameters and determines conditions for maintaining voice stream quality according to configurable rules.
US10931523B2 Configuration change monitoring in software-defined networking environments
Example methods and systems for a network management entity to perform configuration change monitoring. One example method may comprise receiving a request to monitor a datapath to which a configuration change is applicable. The datapath may include multiple network elements. The method may also comprise instructing the first host to inject, at a first network element, one or more trace packets for transmission along the datapath to a second network element. The method may further comprise: obtaining state information associated with the configuration change, and detecting that an operating condition associated with the datapath is affected by the configuration change based on the state information.
US10931522B2 Method and apparatus for automatically integrating a medical device into a medical facility network
A method for integrating a medical device into a medical facility network by equipping the medical device with wireless communication device is disclosed. The medical device is provided into a medical treatment area within wireless range of the medical facility network. The medical facility network is configured to detect the medical device upon entry into the medical treatment area, and then recognize or authenticate the medical device. The medical facility network is configured to thereafter transmit an initialization signal to the medical device. A system for integrating medical devices, a medical device capable of integration, and a medical facility network are also disclosed.
US10931521B2 Software defined network system with auto-deployed switch and method for deploying switch
An SDN (Software Defined Networking) system with auto-deployment switches and a method for auto-deploying the switches in said SDN system are proposed. The method includes: actively sending a configuration message out by a controller, with said configuration message having an IP (Internet Protocol) address of the controller and a plurality of parameters; receiving the configuration message by a switch; and building a connection between the switch and the controller according to the IP address of the controller and the plurality of parameters.
US10931518B2 System and method for configuring networks
A system and method for handling queries where the queries and the answers to those queries are transmitted by means of a network which may have significantly variable latencies. The system and method involve copying the queries and calculating a response to each copy of the query and sending each response over the network. The first-received response can then be acted upon. The query may be divided up into sub-queries which are then replicated and sent for determination.
US10931517B2 Methods and systems that synchronize configuration of a clustered application
The current document is directed a distributed application in which a common configuration is maintained across the applications instances. In a disclosed example, a workflow-development-and-process-automation application is distributed across multiple discrete computer systems. In order for the applications instances to function symmetrically within the distributed application, the application instances share a common application configuration. The common configuration is maintained by an application-configuration synchronization subsystem that propagates configuration changes and that monitors the individual configurations of the application instances to ensure that they correspond to one another.
US10931515B2 Method for detecting and processing radio link and apparatus
The embodiments of the present invention disclose a method for detecting and processing a radio link and an apparatus. The method includes: configuring, by a access network device, independent radio link detection parameters for one or more wireless physical layer parameters used by a terminal device; and detecting, by the terminal device, radio links of the one or more wireless physical layer parameters, reporting a detected radio link failure of a wireless physical layer parameter to the access network device, and processing, under scheduling and configuration performed by the access network device, data on the wireless physical layer parameter whose radio link fails.
US10931512B2 Computer readable media, methods, and computer apparatuses for network service continuity management
Provided is non-transitory computer-readable recording media storing instructions that, when executed by at least one processor, cause the at least one processor to perform a continuity management method that includes sending a heartbeat signal to a service server that provides a service over a network, sending a packet to an echo server in response to failing to receive a response signal to the heartbeat signal from the service server, and determining whether to continue the service based on whether a response to the packet is received from the echo server.
US10931510B2 System for synchronizing a set of interconnected avionics devices with communication network of a vehicle
The invention relates to a method for synchronizing interconnected critical devices comprising servers and clients, each critical device being connected to another critical device by a virtual link, each termination of which is associated with a minimum and a maximum value of transmission time for a data packet, the method, implemented periodically, comprising: the reception of a message at a reception instant, said message comprising at least one time reference determined by a transmitter server, for each message received, the estimation of the current time of the transmitter server on the basis of: the time reference, a value of the internal clock of the current critical device at the current instant and at the reception instant, the minimum value and the maximum value of transmission time of the virtual link between the transmitter server and the current critical device.
US10931509B1 Assessing completion of events
A method for assessing completion of events in a network environment is provided. The method includes receiving a first event vector, generating a second event vector, machine matching the first event vector to the second event vector, and generating an output that includes a variable indicating whether an event corresponding to the first event vector is complete. If each of a plurality of first nodes of the first event vector matches a corresponding one of a plurality of the second nodes of the second event vector, the variable indicates that the event corresponding to the first event vector is complete. If at least one of the plurality of the first nodes of the first event vector is mismatched with the corresponding one of the plurality of the second nodes of the second event vector, the variable indicates that the event corresponding to the first event vector is incomplete.
US10931506B2 Network visualization service
A network visualization service may auto-generate graphical, dynamic, and interactive network diagrams of the infrastructure (resource instances, connections, etc.) of clients' virtual private networks as implemented on a provider network. A network diagram may include representations of various virtualized components of a client's virtual private network, as well as relationships among and connections between and among the various components. The diagram may also display logical and/or geographical groupings of the virtual resources in the client's virtual private network. The service may track changes to the virtual private network and update the diagram accordingly. The diagram may provide a user interface via which the client may select particular graphical objects on diagram to display additional information about a respective resource instance or connection and/or to change the client's virtual private network configuration via the network diagram.
US10931502B2 Communication method and apparatus based on relay device, and communication method and apparatus between terminal and base station
The present application discloses a communication method performed by a relay device. The method includes: receiving a first uplink data frame from a terminal, the first uplink data frame comprising information indicating a first period; determining a length of a first preamble according to the first period and a first time length, the first time length being equal to a length of a third preamble plus a second time length; sending a second downlink data frame to the terminal, the second downlink data frame comprising the first preamble; and receiving a first downlink data frame from a base station, the first downlink data frame comprising a second preamble, wherein a length of the second preamble is less than or equal to each of the length of the first preamble and the length of the third preamble.
US10931501B2 Data processing method and apparatus
Provided is a data processing method and apparatus. The method includes: performing an inverse fast Fourier transform (IFFT) on frequency-domain data of L consecutive symbols to obtain time-domain data of the L consecutive symbols, wherein the frequency-domain data of the L consecutive symbols have a subcarrier spacing of fsc, and L≥2; and modulating the time-domain data of the L consecutive symbols with a preset function, where the modulated time-domain data of the L consecutive symbols have a symbol interval of 1/f1, and f1
US10931500B2 Resynchronization signal design
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive a first synchronization signal for synchronizing with a cell, the first synchronization signal transmitted at a first periodicity by a base station serving the cell. The UE may then receive, subsequent to the synchronizing, a second synchronization signal for resynchronizing with the cell. In some cases, the second synchronization signal may be transmitted by the base station according to a second periodicity that is different from the first periodicity. In some cases, the second synchronization signal may include a plurality of repetitions of a first sequence that is based at least in part on a cell identifier of the cell. The UE may communicate over the cell with the base station based at least in part on the resynchronizing.
US10931499B2 Systems and methods for wireless communication
A user equipment may, based on a tuneaway, start suspend a first timer and/or deactivate a first counter and may, based on a tuneback, resume the first timer and/or activate the first counter. The first timer and first counter may be configured to be used to determine that a sufficiently large number of sufficiently closely timed beam failure indications have been received and, in response to that determination, initiate an access procedure. A user equipment may also identify an overlap of a timing of at least one radio access technology event and a timing of a tuneaway gap and may, based on the identified overlap of the timing of at least one radio access technology event and the timing of the tuneaway gap, modify the timing of the at least one radio access technology event or the timing of the tuneaway gap.
US10931498B1 Phase synchronization for round trip delay estimation
Phase variations between a transmitter (TX) waveform and a receiver (RX) waveform produced by a TX Phase-Locked-Loop (PLL) and a RX PLL, respectively, is a source of error in processing delay calibration used, e.g., in Round Trip Time (RTT) estimation. While a TX waveform and a RX waveform have a constant phase delay while in steady state conditions, during transient times, e.g., at start up or reset, the phase delay may vary by as much as ±180°, which at baseband frequencies of 50 MHz, introduces a random delay variations of as much as ±10 nsec, which is undesirable for fine position estimation using RTT. The phase delay variation between the TX waveform and RX waveform may be reduced or eliminated using a phase correction signal generated using the output signals of the TX PLL and RX PLL.
US10931494B2 OFDM transmitter device having a symbol generator for generating non-zero control symbols, and OFDM transmission method including generating non-zero control symbols
An OFDM transmitter and an OFDM receiver respectively transmit and receive N (N≥2, N is an integer) control symbols. For each control symbol, a guard interval time-domain signal is, for example, identical to a signal obtained by frequency-shifting at least a portion of a useful symbol time-domain signal by an amount different from any other symbol, or to a signal obtained by frequency-shifting one or both of a portion and a span of a useful symbol interval time-domain signal different from any other symbol by a predetermined amount.
US10931491B2 Device for generating broadcast signal frame and method for generating broadcast signal frame corresponding to time interleaver for supporting plurality of operation modes
An apparatus and method for generating a broadcast signal frame corresponding to a time interleaver supporting a plurality of operation modes are disclosed. An apparatus for generating broadcast signal frame according to an embodiment of the present invention includes a combiner configured to generate a multiplexed signal by combining a core layer signal and an enhanced layer signal at different power levels; a power normalizer configured to reduce the power of the multiplexed signal to a power level corresponding to the core layer signal; a time interleaver configured to generate a time-interleaved signal by performing interleaving that is applied to both the core layer signal and the enhanced layer signal; and a frame builder configured to generate a broadcast signal frame including a preamble for signaling time interleaver information corresponding to the time interleaver, the time interleaver uses one of time interleaver groups, and the time interleaver performs the interleaving by using one of a plurality of operation modes.
US10931490B2 Waveform coding for multicarrier wake up radio frame
Methods and systems for waking up a wireless receiving device having a wake-up receiver (WUR) circuit. A series of waveform coded symbols each represent a corresponding data bit from a wake-up frame, each of the waveform coded symbols comprising a guard interval followed by first and second sub-symbols of equal duration wherein the corresponding data bit is represented as a different relative energy distribution between the first and second sub-symbols.
US10931478B2 System and method for distributed flow state P2P setup in virtual networks
Systems and methods for virtual network implementation and management based on a peer-to-peer metadata exchange are disclosed. Metadata pertaining to a flow traversing a virtual network overlaying an underlying network is generated in accordance with actions executed to send data packets via the underlying network relative to the virtual network. The metadata is encapsulated in one or more control packets sent to a set of nodes of the underlying network. Each node of the set of nodes maintains a copy of the metadata received in the one or more control packets in a local data store. The metadata is accessed via the local data store when needed to process packets of the flow.
US10931477B2 Layer two network tunnels for Wi-Fi client bridging in a distributed Wi-Fi network
A Wi-Fi network configured for Wi-Fi client bridging using Layer 2 (L2) tunnels includes a plurality of access points each being one or more of a parent node, a child node, and a gateway node in the Wi-Fi network; wherein the plurality of access points are interconnected in a tree via a plurality of backhaul links and wherein each of the plurality of access points are configured to communicate with Wi-Fi client devices via a plurality of client links; and wherein each of the plurality of backhaul links is formed via a Layer 2 (L2) tunnel over a backhaul Wi-Fi interface between each parent node and each child node.
US10931471B2 Systems and methods for avoiding interruptions from network-connected devices during media viewing
Systems and methods are provided herein for preventing interruptions to a media viewing activity caused by operations performed in a household by network-connected devices. A media guidance application may determine that operations are being performed by an IoT device and may cause an interruption to media viewing. The media guidance application may prevent the interruption by delaying or otherwise handling the operation or by notifying another user of the interruption.
US10931463B2 Cryptographic verification of a compressed archive
The authenticity of a compressed archive is verified without decompressing the files and/or directories contained therein and without impeding existing archive reader tools and utilities. A container is produced that includes a signature component and a compressed archive component. The signature component contains a digital signature of the compressed archive and the compressed archive component contains the compressed archive. The signature component and the compressed archive component are constructed as independent components so that existing software tools that operate on a compressed archive can still function in their normal course of operation.
US10931462B2 Domain name management scheme for cross-chain interactions in blockchain systems
Implementations of the present disclosure include obtaining, from a trusted certificate authority (CA) by an owner of a unified blockchain domain name (UBCDN) of a blockchain instance (a UBCDN owner) in a unified blockchain network, a domain certificate of the UBCDN of the blockchain instance; signing the UBCDN of the blockchain instance; and publishing a UBCDN message of the blockchain instance. The UBCDN of the blockchain instance includes a blockchain domain name and a chain identifier of the blockchain instance. The domain certificate of the UBCDN includes the blockchain domain name, a public key of the UBCDN owner, and a digital signature of the CA on the blockchain domain name and the public key of the UBCDN owner. The UBCDN message includes the UBCDN, a digital signature of the UBCDN owner resulting from the signing the UBCDN, and the domain certificate of the UBCDN.
US10931459B2 Onboard computer system, vehicle, management method, and computer program
An onboard computer system includes a first onboard computer configured to store a first public key certificate of a data delivering apparatus, a second onboard computer, and a secure element configured to store a second public key certificate relative to a second secret key used to generate the first public key certificate. The secure element verifies the first public key certificate by use of the second public key certificate. The first onboard computer includes an encryption processor configured to verify a first electronic signature attached to data delivered from the data delivering apparatus by use of the first public key certificate which is successfully verified by the secure element. The data attached with the first electronic signature, which is successfully verified by the encryption processor, is applied to the first onboard computer or the second onboard computer.
US10931457B2 Systems and methods for blockchain-based digital lottery ticket generation and distribution
A method of generating a digital lottery ticket includes receiving a transaction record associated with a ticket issuance request from a computing device, wherein the transaction record includes transaction data including a player entry and a first public key associated with the player entry, generating a first message including digital ticket information, TKD, relating to the player entry, a source field and a destination field, generating a digital signature of the first message using a private key of an issuer server, transmitting the first message and the digital signature to a transaction certification authority (TCA) server for storage on a publicly viewable transaction ledger maintained by the TCA, receiving from the TCA server a second message including a digital ticket number and a transaction ID associated with the first message and the digital ticket number, and transmitting a third message including the transaction ID and the digital ticket number to the computing device.
US10931453B2 Distributed encryption keys for tokens in a cloud environment
Authentication of tokens and associated are used to provide a just-in-time key synchronization for user access to a service in a cloud computing environment which includes a plurality of availability zones with an identity service, a storage system, and a keystore. The encryption keys are distributed by the storage system based on a user access request containing a token with a payload and a current user cryptographic key. The token is then sent to the keystore to authenticate the user. The keystore authenticates the user and sends the token with the current cryptographic key to the storage system. The storage system receives the token with the current cryptographic key and grants access to the user for the service.
US10931448B2 Authentication through secure sharing of digital secrets previously established between devices
Applications executing on phones, tablets and other client devices can be designed to authenticate with network services, but reliably identifying a client device that is not previously known to the service can be difficult. A television receiver or other trusted device that is previously known to the service, however, can act as an intermediary for initially delivering the client's identifying data to the authentication service. After the authentication service has received reliable identifying information about the client from another trusted device, the service is able to directly authenticate the client device in subsequent transactions by requesting and verifying receipt of the same secret identifier.
US10931447B2 Data receiving device, data transmission system, and key generating device
A data receiving device includes: a receiving unit that receives data, a list of individual identifiers, and a MAC generated by the repeater device; a pseudo-random function processing unit that derives a secret key by performing arithmetic by a predetermined pseudo-random function; a MAC generating function processing unit that generates MAC by performing arithmetic by a predetermined MAC generating function; a pseudo-random function processing controller that performs control to generate recursively a secret key corresponding to the individual identifier of each communication device from the first hierarchy to the N-th hierarchy; a MAC generating function processing controller that performs control to generate recursively a MAC corresponding to each communication device from the N-th hierarchy to the first hierarchy; and a comparator that compares the received MAC with the generated MAC corresponding to the communication device of the first hierarchy.
US10931444B2 Key selection method for cryptographic data processing
Some embodiments relate to a data processing method comprising selecting a key from a plurality of previously stored keys, depending on at least on predefined criterion relating to at least one current value of at least one given repository. Other embodiments relate to a reception method comprising receiving second data obtained by applying, to first obtained data, a first cryptographic function using a key selected from a plurality of previously stored keys, depending on at least one predefined criterion relating to a current value of at least one given repository and for obtaining the first data by applying, to the second received data, a second cryptographic function using a second key associated with the selected key. Further embodiments relate to a processing device and a reception device that respectively implement the processing method and the reception method.
US10931442B1 Authentication through a secret holding proxy
Client requests may be directed through a secret holding proxy system such that the secret holding proxy system may insert a secret into a client request before arriving at the destination. The insertion of a secret may include inserting a digital signature, token or other information that includes a secret or information based upon a secret, which may include secret exchange or authentication protocols. The secret holding proxy system may also remove secrets and/or transform incoming messages such that the client may transparently receive the underlying content of the message.
US10931439B2 Data storage method, data query method and apparatuses
A data storage method comprises sending, by a blockchain node associated with a blockchain, data to an encryption device to cause the encryption device to encrypt the data and return the encrypted data to the blockchain node; receiving the encrypted data returned by the encryption device; and sending the encrypted data to other blockchain nodes associated with the blockchain to cause each of the other blockchain nodes to store the encrypted data in the blockchain after performing consensus verification on the encrypted data with success.
US10931434B2 Relay apparatus, communication system, and failure detection method
An object is to provide a relay apparatus capable of detecting a failure that occurs in the relay apparatus. A relay apparatus (10) according to the present disclosure includes a data reception unit (11) configured to receive a synchronizing packet transmitted from a master apparatus (20), the synchronizing packet containing a time value and a time correction value for correcting the time value, an update unit (12) configured to update the time correction value based on a processing time for the synchronizing packet, and a determination unit (13) configured to determine whether or not a failure has occurred in a functional block related to a process for updating the time correction value by using a result of a comparison between a corrected time value and a reference time value, the corrected time value having been corrected by using the updated time correction value.
US10931425B2 Transmission of uplink control information in wireless systems
Future LTE systems will support massive carrier aggregation that necessitates transmission of a large number of acknowledgement signals (HARQ-ACKs) in response to downlink data transmitted over multiple component carriers. Described herein are methods for HARQ-ACK transmission over the PUCCH (physical uplink control channel) that relate to HARQ-ACK codebook size adaptation, DAI (downlink assignment index) design options, HARQ-ACK bit channel coding and interleaving, and, frequency hopping configuration for a new PUCCH format.
US10931419B2 Method and device for transmitting and receiving signals
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). Embodiments of the present disclosure provide a method for transmitting signals. The method includes: determining, by a communication node, that resources of a DRS and resources of other types of reference signals are overlapped; and selecting, by the communication node, at least one type of signal from the DRS and the other types of reference signals according to a predefined mode and transmitting the selected signal. Embodiments of the present disclosure may further disclose a corresponding method and device for receiving signals, a method and device for determining transmission power of the reference signals and a method for transmitting the DRS in a DL transmission burst including the data. With embodiments of the present disclosure, the confusion of the measurement of the DRS and the measurement of other types of reference signals may be solved.
US10931418B2 CDM8 based CSI-RS designs for MIMO
A network node, wireless device, base station, user equipment and corresponding methods are provided. The network node includes processing circuitry configured to: select a first set and second set of reference signal resources in a subframe and aggregate the first set and second set of reference signal resources in the subframe to form a code division multiplexing, CDM, aggregation configuration. The first set and second set of reference signal resources in the subframe satisfy a temporal criterion such that any two resource elements in the first set and second set of reference signal resources have up to a maximum time separation of six OFDM symbols. The first set and second set of reference signal resources in the subframe satisfy a frequency criterion such that any two resource elements in the first set and second set of reference signal resources have up to a maximum frequency separation of six subcarriers.
US10931416B2 Data transmission method, network device, and terminal device
Embodiments of this application provide a data transmission method, a network device, and a terminal device. The method may include detecting, by a network device, a first signal in an uplink signal. The method may also include determining, by the network device, a signal structure of the uplink signal based on a result of detecting the first signal. Furthermore, the method may include receiving, by the network device, the uplink signal based on the signal structure, and/or responding to the uplink signal based on the signal structure. According to the data transmission method in the embodiments of this application, before receiving data, the network device can determine the signal structure, used by the terminal device, of the uplink signal, and then use a corresponding receiving method to avoid complexity and a reliability risk that are caused by completely blind detection performed by the network device, as well as to effectively reduce a delay and signaling overheads.
US10931414B2 Method and system for a repeater network that utilizes distributed transceivers with array processing
A device that comprises a plurality of distributed transceivers, a central processor and a network management engine may be configured to function as relay device, relaying an input data stream from a source device to at least one other device. The relaying may include configuring one or more of the plurality of distributed transceivers to particular mode of relay operation and receiving the input data stream from the source device via at least one of the configured one or more of the plurality of distributed transceivers. The relaying may also include transmitting at least one relay data stream corresponding to the input data stream to the at least one other device, via at least one of the configured one or more of the plurality of distributed transceivers.
US10931413B2 Transmission device, communication system, and transmission method that configure positions of reference signals in frequency and time domains for each of a plurality of layers
A base station (1) according to the present invention includes: a control unit (10) that allocates one or more layers per terminal for transmission to one or more terminals, and configures positions in a frequency domain and a time domain of reference signals of each of the layers on the basis of at least one of information indicating a position of each of the terminals and information indicating condition of each of channel between the transmission device and the one or more terminals; a processing unit (12-1 to 12-N) that arranges the reference signals of each of the layers in the frequency domain and the time domain on the basis of the positions in the frequency domain and the time domain configured by the control unit (10); and a precoding unit (13) and a transmitting unit (14) that perform space-division multiplexing on signals of one or more layers arranged by the processing unit (12-1 to 12-N), and transmit the multiplexed signals.
US10931412B2 Method and apparatus of obtaining feedback of HARQ acknowledgment information
Embodiments of the present disclosure provide a method and apparatus of obtaining feedback of HARQ acknowledgment information. The method comprises allocating to UE an uplink control channel resource for report of HARQ acknowledgment information related to downlink data transmission on an unlicensed carrier. The method also comprises obtaining feedback of the HARQ acknowledgment information from the UE within a predefined deferral window. The predefined deferral window specifies a minimum delay and a maximum delay for report of the HARQ acknowledgment information. The embodiments of the present disclosure may increase the reliability and reduce the latency of HARQ acknowledgment information feedback. In addition, the embodiments of the present disclosure may not only be for LAA scenarios, but also may be extended to standalone LAA access scenarios on unlicensed carriers.
US10931411B2 Uplink ACK resource allocation in new radio
A method and apparatus for enabling an UE to selecting acknowledgement/non-acknowledgement (ACK/NACK) resources from a subset of a gNB resource pool. The example method may receive, from an gNB, a radio resource control (RRC) configuration indicating a UE-specific resource set that is a subset of a gNB resource pool. The UE may determine one or more ACK/NACK resources from the UE-specific resource set for an upcoming physical uplink control channel (PUCCH). In some aspects, the UE may determine the one or more ACK/NACK resources based on receiving, from the gNB, a physical downlink control channel (PDCCH) including a corresponding ACK/NACK resource configuration. In other aspects, the RRC may contain multiple resource subsets and the UE may determine the one or more ACK/NACK resources based on determining a size of a payload for a UCI to be transmitted on the PUCCH. The aspects may thus enable dynamic ACK/NACK resource allocation.
US10931403B2 Communication devices, systems, software and methods employing symbol waveform hopping
Systems, devices, and methods of the present invention facilitate secure communication by altering the set of symbol waveforms that may be in use in particular symbol times defined herein as Symbol Waveform Hopping. SWH may be enabled by selecting two or more modulation formats that have sufficiently comparable communication performance (e.g., occupied bandwidth and signal power efficiency), but characterized by symbol waveform alphabet that include different symbol waveform, so that the overall transmission/communication performance of the system is not significantly affected by switching between modulation formats. Some or all of the symbol waveforms in each alphabet may not be present in other alphabets.
US10931402B2 Distributed storage system data management and security
Secure distributed storage and transmission of electronic content is provided over at least one communication network. At least one data file is received and parsed into a plurality of segments, wherein each one of the segments has a respective size. Thereafter, each of the plurality of segments is divided into a plurality of slices, wherein each one of the slices has a respective size. A plurality of data chunks are encoded, each data chunk comprising a portion of at least two of the slices, wherein no portion comprises an entire slice. The data chunks are packaged with at least metadata, and each of the packages is assigned to respective remote storage nodes. Each of the packages is transmitted to the respectively assigned remote storage node.
US10931401B2 Likelihood generation device
A likelihood generation device includes a similarity detection unit, a likelihood table reference unit, and a similarity processing unit. The similarity detection unit receives a modulation scheme selection signal and a received value, detects a likelihood similarity between information bits included in the received value based on the modulation scheme selection signal, and outputs a likelihood selection signal that specifies likelihood data to be searched for and an operation selection signal that specifies an operation on the likelihood data. The likelihood table reference unit registers, as likelihood data, a small region different from other small regions in the likelihood distribution indicating the likelihood of the information bits, and extracts likelihood data based on the likelihood selection signal from the likelihood table. The similarity processing unit obtains the entire likelihood distribution by performing an operation designated by the operation selection signal on the extracted likelihood data.
US10931396B2 Aggregated-MPDU, method for transmitting response frame thereto, and wireless communication terminal using same
The present invention relates to a method for transmitting an aggregate MPDU and a response frame thereto and a wireless communication terminal using the same, and more particularly, to a wireless communication method and a wireless communication terminal for setting various formats of the aggregate MPDU and the response frame thereto and performing an efficient data communication by using the same. To this end, provided are a wireless communication terminal including: a processor; and a communication unit, wherein the processor receives an aggregate MPDU (A-MPDU) consisting of one or more MAC protocol data units (MPDUs), determines a format of a response frame for the received A-MPDU, and transmits a response frame of the determined format, wherein the format of the response frame for the A-MPDU is determined based on at least one of the number of traffic IDs (TIDs) soliciting an immediate response in MPDU(s) successfully received in the A-MPDU and MPDU delimiter information of the A-MPDU and a wireless communication method using the same.
US10931395B2 Method and apparatus for physical layer security communication in wireless communication system
An operation method of a terminal in a wireless communication system includes receiving a preamble sequence from a base station; estimating a UL channel between the terminal and the base station based on the preamble sequence; determining a first frequency region for transmitting a data signal and a second frequency region for transmitting a jamming signal in an entire frequency region of the UL channel based on a result of estimating the UL channel; and transmitting to the base station a UL control signal including identification information for identifying the first frequency region and the second frequency region.
US10931389B2 Method of operating terminal and base station in wireless communication system and apparatus supporting same
Disclosed herein are a method of operating a terminal and a base station in a wireless communication system and an apparatus supporting the same. According to an embodiment applicable to the present disclosure, a signal to interference noise ratio (SINR) report may be configured for the terminal, and an SINR report reported to the base station by the terminal based on the configuration may be calculated differently based on configuration of an interference measurement resource for the terminal.
US10931386B2 Information transfer using discrete-frequency signals and instantaneous frequency measurement
A method of transmitting information is provided. The method is performed at a system for information transfer. The method includes obtaining a first symbol, in a predefined set of symbols, for transmission; determining a first frequency band, in a first set of frequency bands associated with the predefined set of symbols, that is associated with the first symbol; and transmitting a first signal pulse having a first frequency in the first frequency band. The method includes, after transmitting the first signal pulse, transmitting a control signal associating a second set of frequency bands with the predefined set of symbols. The second set of frequency bands is distinct from the first set of frequency bands. The method includes, after transmitting the control signal, obtaining a second symbol, in the predefined set of symbols, for transmission; determining a second frequency band, in the second set of frequency bands, associated with the second symbol; and transmitting a second signal pulse having a frequency in the second frequency band.
US10931384B1 Closed loop transmitter (Tx) calibration with frequency separation using a digital to time converter (DTC)
A closed loop transmitter (Tx) calibration system is disclosed. The closed loop Tx calibration system comprises a transmitter circuit configured to generate a Tx output signal at a Tx output frequency based on a Tx local oscillator (LO) signal. The closed loop Tx calibration system further comprises a loop back (LPBK) receiver circuit coupled to the transmitter circuit and configured to downconvert the Tx output signal at the Tx output frequency to form an LPBK baseband signal at an LPBK intermediate frequency (IF), based on an LPBK LO signal. In some embodiments, the LPBK IF frequency is different from zero. In some embodiments, the closed loop Tx calibration system further comprises an LO generation circuit configured to generate the Tx LO signal and the LPBK LO signal from a single phase locked loop (PLL) source, based on utilizing a digital to time converter (DTC) circuit.
US10931381B2 Optical receivers with DC cancellation bias circuit and embedded offset cancellation
In optical receivers, cancelling the DC component of the incoming current is a key to increasing the receiver's effectiveness, and therefore increase the channel capacity. Ideally, the receiver includes a DC cancellation circuit for removing the DC component; however, in differential receivers an offset may be created between the output voltage components caused by the various amplifiers. Accordingly, an offset cancellation circuit is required to determine the offset and to modify the DC cancellation circuit accordingly.
US10931375B2 Li-drive
An optical communication access point comprises: an optical communication channel for allowing wireless light communication with a remote device, and a memory for storing content, wherein the content in the memory is accessible by the remote device via the wireless light communication link.
US10931374B1 Vehicle with free-space optical link for log data uploading
The disclosure describes a system that includes a self-driving system for operating a vehicle autonomously, one or more optical transmitters mounted on the vehicle, and one or more computing devices in communication with the self-driving system and the one or more optical transmitters. The one or more computing devices are configured to operate the self-driving system to cause the vehicle to approach a designated location in proximity of a structure on which one or more receivers are mounted and determine that the one or more optical transmitters have an alignment with the one or more receivers. Then, the one or more computing devices are configured to operate the one or more optical transmitters to establish an optical communication link with the one or more receivers and transmit data to the one or more receivers over the optical communication link.
US10931372B2 Dual-mode imaging receiver
A dual-mode imaging receiver (DMIR) can acquire and maintain SOA free-space optical communication (FSOC) links without a precision mechanical gimbal. Unlike other FSOC technologies, a DMIR can operate without precise spatial alignment and calibration of the transmitter's or receiver's spatial encoders (precision pointing) in static (fixed point to point) geometries. Instead, a DMIR uses electronic receive beam selection to acquire and track transmitters with coarse mechanical pointing and a single aperture. And because the DMIR can operate with just one aperture, it does not need a beacon at the transmitter since it does not transition from a wide field-of-view acquisition aperture to a narrow field-of-view detection and decoding aperture even in dynamic geometries.
US10931371B2 Methods, devices, and systems for timing and bandwidth management of ultra-wideband, wireless communication channels
Disclosed herein are methods, devices, and systems for providing timing and bandwidth management of ultra-wideband, wireless data channels (including radio frequency and wireless optical data channels). According to one embodiment, a hub apparatus is disclosed for providing out-of-band bandwidth management for a free-space-optical (FSO) data channel associated with a first device. The hub apparatus includes a processor, a memory coupled with the processor, an FSO transmitter coupled with the processor, and an FSO receiver coupled with the processor. The FSO transmitter may be configured to transmit a control signal comprising timing information and bandwidth management information.
US10931370B2 Quantum interference detection of optical frequency comb offset frequency
A method is presented for determining an offset frequency of a frequency comb. The method includes: generating a beam of light with a waveform that repeats regularly in the time domain and exhibits a frequency comb in the frequency domain; directing the beam of light towards a point of incidence on a material; and detecting oscillation of a photocurrent in the material that is caused by the beam of light. Of note, the beam of light has an optical bandwidth that includes light propagating at a first frequency and at a second frequency, where the first frequency is less than the second frequency and the ratio of the second frequency to the first frequency is n:m, where n=m+i, m is an integer greater than one, and n and i are positive integers. Additionally, the material has a band gap and the band gap is not more than n times the first frequency.
US10931369B2 Methods and apparatus for adaptively detecting signal degradation in an optical communication system using the pre-forward error correction bit error rate
In some embodiments, an apparatus comprises a memory and a processor operatively coupled to the memory. The processor is configured to receive, from a forward error correction (FEC) decoder of an optical transponder, a first plurality of pre-FEC bit error rate (BER) values at a plurality of times to identify a degradation over a first transmission path. The processor is configured to determine, based on the first plurality of pre-FEC BER values, a signal pattern. The processor is configured to adjust, based on the signal pattern, a set of parameters including a first threshold and a second threshold. The processor is configured to send, in response to a second pre-FEC BER value exceeding the second threshold and being below the first threshold, a signal to trigger traffic rerouting to a second transmission path to reduce traffic loss due to the degradation over the first transmission path.
US10931366B2 Distributed sensing over optical fiber carrying live, high-speed data
Aspects of the present disclosure describe optical fiber sensing systems, methods and structures disclosing a distributed fiber sensor network constructed on an existing, live network, data carrying, optical fiber telecommunications infrastructure to detect temperatures, acoustic effects, and vehicle traffic—among others. Of particular significance, sensing systems, methods, and structures according to aspects of the present disclosure may advantageously identify specific network locations relative to manholes/handholes and environmental conditions within those manholes/handholes namely, normal, flooded, frozen/iced, etc.
US10931363B2 Relay device and non-transitory computer readable medium
A relay device is provided with a detection unit, a reply unit, and a transmission unit. The detection unit detects an inability to connect to a wide-area information communication network in a case in which the relay device is multiplexed with another relay device. In a case in which the detection unit detects the inability to connect to the wide-area information communication network, when a request searching for a replacement partner is received from another relay device, the reply unit replies to the other relay device with information indicating that the relay device itself is a replacement candidate. The transmission unit transmits information set in the relay device itself to the other relay device.
US10931360B2 System and method for providing multiple input multiple output (MIMO) detector selection with reinforced learning neural network
A method and system for selecting a symbol detector are herein provided. A method includes extracting a first set of features for a k-th resource element (RE), where k is an integer greater than one, extracting a second set of features from a first RE to a (k−1)th RE, and selecting a symbol detector for the k-th RE using a reinforcement learning (RL) neural network based on the extracted first set of features and the extracted second set of features.
US10931358B2 Data transmission method, terminal device and network device
A method for transmitting information, a terminal device, and a network device are provided, the method includes: transmitting, by a terminal device, first data to a network device at least once; receiving, by the terminal device, first indication information transmitted by the network device, wherein the first indication information is used for indicating one transmission in at least one transmission of the first data; determining, by the terminal device, a transmission parameter of second data according to the first indication information; and transmitting, by the terminal device, the second data to the network device by adopting the transmission parameter of the second data.
US10931357B2 Method and apparatus for receiving CQI information and method and apparatus for transmitting CQI information
The present disclosure provides a method and an apparatus for receiving Channel Quality Indication (CQI) information, as well as a method and an apparatus for transmitting CQI information. The method for receiving CQI information includes: transmitting a higher layer configuration signaling message to a terminal; and receiving CQI information from the terminal. The CQI information is determined based on a CQI table obtained based on the higher layer configuration signaling message. With the above solutions, higher data transmission reliability and lower data transmission rate required for MTC terminals with coverage enhancement and 5G terminals can be achieved.
US10931356B2 Communications methods and apparatus using multiple beams
Methods and apparatus for facilitating the use of a plurality of antenna beams for communications purposes are described. In at least some embodiments beam priority information is periodically exchanged. Multiple timers are used to ensure beam information is exchanged at intervals intended to facilitate reliable beam synchronization and to control switching to one or more alternative beams in a predictable manner in the event beam change information or beam synchronization information is lost. In some but not all embodiments a wideband beam is used to communicate beam synchronization information when synchronization using narrower beams used for normal data communication is lost.
US10931353B2 Method for transmitting or receiving channel state information in wireless communication system and apparatus therefor
Disclosed are a method for transmitting or receiving channel state information in a wireless communication system and an apparatus therefor. Specifically, a method for transmitting channel state information by a terminal in the wireless communication system comprises the steps of: receiving interference measurement restriction information indicating a restriction of interference measurement from a base station; deriving an interference measurement based on a channel state information-interference measurement (CSI-IM) resource in only one first subframe in order to calculate a channel quality indicator (CQI); and reporting the CQI to the base station, wherein the interference restriction information may be independently set for each CSI-IM resource.
US10931341B2 Channel state information extraction method and MIMO receiver using QR decomposition and MMIB metric
The present invention relates to a CSI extraction method in a MIMO receiver used in a wireless communication system, the method including: obtaining an effective channel matrix by matrix multiplication of a precoding matrix and a channel estimation value obtained through a CSI-RS; calculating an upper and a lower bound of a minimum distance for each layer through QR decomposition for the effective channel matrix; and mapping the upper and the lower bound of the minimum distance for each layer to each codeword, and extracting a mean mutual information per bit (MMIB) metric that is a transmission capacity per unit frequency for each codeword. According to the present invention, QR decomposition and a MMIB metric are used to obtain the minimum distance for each layer without a multidimensional search process, whereby the CSI is extracted with fewer operations than the conventional method when the MIMO transmission order is high.
US10931335B2 MIMO communication method, transmitting device, and receiving device
A Multiple Input Multiple Output (MIMO) communication method and system for performing communication between N (N is an integer greater than or equal to 2) transmitting devices each having a transmit antenna and at least one receiving device having N receive antennas by using a multi-user MIMO scheme. The method includes dividing the N transmitting devices into a plurality of sets, and assigning an orthogonal code to each set of transmitting devices as a digital signal sequence to be transmitted by each of the transmitting devices, and arranging the digital signal sequences to be transmitted by the transmitting devices in a frequency axis direction in which an inverse fast Fourier transform is performed, and performing coding.
US10931334B2 Beam recovery method and apparatus
Embodiments of the present disclosure disclose a beam recovery method and apparatus. The method includes: sending, by a terminal device, a beam recovery request to a network device in a first time window using at least one beam, where the beam recovery request is a scheduling request or a beam failure recovery request; and receiving, by the terminal device in the first time window using the at least one beam, a beam recovery request response sent by the network device, where the beam recovery request response is a scheduling request response or a beam failure recovery request response.
US10931332B2 Device and method for transmitting data in wireless power transmission system
The present invention relates to a device and method for transmitting data in a wireless power transmission system. The present specification discloses a wireless power reception device comprising: a power pickup unit configured to receive wireless power from a wireless power transmission device by magnetic coupling with the wireless power transmission device, and convert an AC signal generated by the wireless power into a DC signal; a communication/control unit configured to receive the DC signal from the power pickup unit and perform control of the wireless power; and a load configured to receive the DC signal from the power pickup unit. According to the present invention, a large amount of data can be easily exchanged between a wireless power transmission device and a wireless power reception device by adjusting a transmission time interval of a control error packet (CEP) and a timeout of the CEP.
US10931327B2 Multiple transmit system structure and mobile terminal having the same
A mobile terminal according to the present invention includes a first power amplifier (PA) to amplify and output a first signal of a first transceiver, a power combiner to combine a second signal of the first transceiver with a third signal of the second transceiver, a second power amplifier to amplify and output a fourth signal combined by the power combiner, and a switch to select one of a first transmission signal that is an output signal of the first power amplifier and a second transmission signal that is an output signal of the second power amplifier, wherein the first transceiver operates in a first communication system and the second transceiver operates in a second communication system, whereby a mobile terminal having improved transmission output power characteristics can be provided using the first communication system and the second communication system.
US10931326B2 Casing assembly and mobile terminal
Casing assemblies and a mobile terminal are provided. A casing assembly includes: a rear casing and a wearproof assembly. The rear casing includes an outer surface and an inner surface opposite the outer surface, and the rear casing defines a mounting hole through the outer surface and the inner surface. The wearproof assembly includes a coupling member and a decorative member. The coupling member is coupled to the rear casing passing through the mounting hole, and defines a recess at a side of the coupling member opposite the inner surface. The decorative member is embedded in the recess. The coupling member and the decorative member protrude from the outer surface.
US10931325B2 Antenna assembly for a vehicle
An antenna assembly comprising a base, a modem, a top lid and a housing is disclosed herein. The base is composed of an aluminum material. The modem is disposed on the base. The top lid is for the base, and the top lid comprises at least one antenna element disposed on an exterior surface. The housing covers the top lid and base. The top lid acts as an electro-magnetic barrier for the modem. A communication cable is connected to the modem at one end and extending to and connected to a vehicle internal router with a vehicle modem at the other end.
US10931323B2 Antenna and foldable electronic device including the same
In an embodiment, an electronic device may include a housing including a hinge module, a first housing, and second housing. The first and second housings are rotatably coupled to each other via the hinge module to be in a folded state or an unfolded state. The electronic device may further include a flexible display, at least one conductive pattern disposed in the first housing, at least one conductor disposed at a position in the second housing corresponding to the at least one conductive pattern such that the at least one conductor is capacitively coupled to the conductive pattern when the electronic device is in the folded state, and a wireless communication circuit electrically connected to the at least one conductive pattern in the first housing. Other embodiments are also possible.
US10931320B2 Digital predistortion in varying operating conditions
Disclosed are digital predistortion implementations, including a method that includes obtaining a first set of digital predistortion (DPD) non-linear functions for controlling operation of a digital predistorter of a wireless device operating on a received at least one input signal directed to a power amplification system comprising a transmit chain with at least one power amplifier that produces output with non-linear distortions. The method further includes determining an expanded set of DPD non-linear functions comprising the first set of DPD non-linear functions and additional one or more sets of DPD non-linear functions derived based on the first set of DPD non-linear functions and on operating condition parameters associated with operation of the wireless device, and configuring the digital predistorter with DPD coefficients determined for the expanded set of the DPD non-linear functions based on observed samples of the transmit chain responsive to the at least one input signal.
US10931317B2 Frequency re-bander with UE and doppler correction
Techniques are provided for providing Doppler correction. In particular, embodiments may provide re-banding circuitry having a reference clock, a mixer, and a compensation circuitry for re-banding and for Doppler correction. The compensation circuitry may be configured to adjust a reference frequency of the reference clock based on signals received from a Global Navigation Satellite System (GNSS) receiver. The mixer may be configured to translate communication signals in a first frequency band to a second frequency band based at least in part on the adjusted reference frequency of the reference clock.
US10931311B2 Method for encoding and transmitting PBCH and communication device therefor
A method by which a base station transmits a physical broadcast channel (PBCH) can comprise the steps of: generating the same encoded data bit for each of two symbols of a predetermined subframe for PBCH transmission by using a polar code; and transmitting the generated same encoded data bit from each of the two symbols of the predetermined subframe through the PBCH.
US10931304B1 Sensor content encoding
Disclosed are techniques for encoding a set of sensor content symbols at least in part via applying a processing window of an adjustable size.
US10931301B2 Decompression engine for executable microcontroller code
A code decompression engine reads compressed code from a memory containing a series of code parts and a dictionary part. The code parts each have a bit indicating compressed or uncompressed. When the code part is compressed, it has a value indicating the number of segments, followed by the segments, followed by an index into the dictionary part. The decompressed instruction is the dictionary value specified by the index, which is modified by the segments. Each segment describes the modification to the dictionary part specified by the index by a mask type, a mask offset, and a mask.
US10931296B2 Self-correcting analog counter readout for digital pixels
A digital unit cell, readout circuit for a digital unit cell and a method of operating an analog counter of a digital unit cell is disclosed. The readout circuit includes storage capacitor for storing a voltage remaining at an analog counter at the end of an integration period, and a comparator circuit. The comparator circuit compares a dummy voltage provided from the analog counter during a readout period to the voltage at the storage capacitor, and determines the voltage at the storage capacitor when the dummy voltage falls below the voltage at the storage capacitor.
US10931295B2 ADC reconfiguration for different data rates
A receiver having analog-to-digital converters (ADC) is disclosed. The ADCs may be reconfigured based on the data rate of the receiver. For example, more portions of each time-interleaved ADC may be enabled to support a higher data rate of the receiver and less portions of the ADCs may be used to support a lower data rate of the receiver.
US10931294B2 Apparatus and method for measuring frequency of signal
Provided are an apparatus and a method for measuring a frequency of a broadband signal by using low-speed ADCs having sub-Nyquist sampling rates. A plurality of channels each including a low-speed ADC having a sub-Nyquist sampling rate (e.g. sampling frequency from several MHz to hundreds of MHz) are provided, and the frequency of an input signal corresponding to a combination of frequencies calculated through the respective channels is estimated. Therefore, as the number of channels increases, the range of measurable frequencies may be extended.
US10931293B1 Transform domain analytics-based channel design
Systems and methods are disclosed for improving data channel design by applying transform domain analytics to more reliably extract user data from a signal. In certain embodiments, an apparatus may comprise a channel circuit configured to receive an analog signal at an input of the channel circuit, and sample the analog signal to obtain a set of signal samples. The channel circuit may further apply a filter configured to perform transform domain analysis to the set of signal samples to generate a first subset of samples, the first subset including fewer transitions and having a higher signal to noise ratio (SNR) than the set of signal samples. The channel circuit may detect first bit transform domain representation values from the first subset, and determine channel bit values encoded in the analog signal based on the set of signal samples and using the first bit transform domain representation values detected from the first subset as side information.
US10931290B2 Fast settling ramp generation using phase-locked loop
Aspects of this disclosure relate to reducing settling time of a ramp signal in a phase-locked loop. An offset signal can be applied to adjust an input signal provided to an integrator of a loop filter of the phase-locked loop to cause the settling time to be reduced. Disclosed methods of reducing settling time of a ramp signal can improve settling time of a ramp signal independent of the profile of the ramp signal.
US10931282B2 Self-contained reconfigurable personal laboratory
A personal laboratory includes a self-contained, miniaturized, portable kit that provides for design, testing, and automated assembling, dissembling, and reassembling of a physical system (rather than a simulation) with flexibility as to the variety of configurations of components that may be designed and assembled, and easy integration of complex components. The personal laboratory includes a reconfigurable system, the reconfigurable system includes a plurality of functional components, and a plurality of connectors configured for operatively connect respective functional components to other functional components; a stimulus generator configured to apply a stimulus to the reconfigurable system; and a measurement system configured to measure a response to the applied stimulus generated by the reconfigurable system. In the context of electronic circuits, the reconfigurable system is a reconfigurable circuit, the functional components are circuit elements and the connectors are electrical connectors.
US10931277B2 Power transistor gate-charge harvester for internal supply generation
A gate-charge harvester includes a harvest capacitor that has a first plate and a second plate. The second plate is coupled to a lower rail and the first plate is coupled to send a voltage towards a regulator. The gate-charge harvester also includes a low-side harvest transistor having a first terminal coupled to a gate of a low-side power transistor and a second terminal coupled to the first plate.
US10931275B2 RF switch with compensation
A radio frequency switch includes a first transistor and a second transistor coupled together to establish a switchable RF path, and a first compensation network coupled between the body terminal of the first transistor and the drain terminal of the second transistor, wherein the first compensation network establishes a path for current flowing between the body terminal of the first transistor and the drain terminal of the second transistor in a first direction and blocks current flowing in a second direction opposite to the first direction.
US10931274B2 Temperature-sensitive bias circuit
One illustrative device includes, among other things, an active device comprising a first terminal, a first bias resistor connected to the first terminal, and a first resistor comprising a first phase transition material connected in parallel with the first bias transistor, wherein the first phase transition material exhibits a first low conductivity phase for temperatures less than a first phase transition temperature and a first high conductivity phase for temperatures greater than the first phase transition temperature.
US10931269B1 Early mode protection for chip-to-chip synchronous interfaces
Aspects of the invention include a process for receiving data and a first clock signal of a first chip and a second clock signal of a second chip, the data being received on a data path and the first clock signal being received on a clock signal path, and determining that the first clock signal is arriving before the second clock signal by a difference quantity. Also, the process includes adding delay to the data path and the clock signal path according to the difference quantity.
US10931264B2 Low-power flip flop circuit
A flip-flop circuit configured to latch an input signal to an output signal is disclosed. The circuit includes a first latch circuit; and a second latch circuit coupled to the first latch circuit. In some embodiments, in response to a clock signal, the first and second latch circuits are complementarily activated so as to latch the input signal to the output signal, and the first and second latch circuits each comprises at most two transistors configured to receive the clock signal.
US10931263B2 Filter circuits having a resonator-based filter and a magnetically-coupled filter
Filter circuits having a resonator-based filter and a magnetically-coupled filter are disclosed. A filter circuit is deployed with a resonator-based passband filter connected to a magnetically-coupled filter which mitigates or reduces flyback of the resonator-based filter. The magnetically-coupled filter can be a passband filter with a relatively low insertion loss. The magnetically-coupled filter can be designed to mitigate flyback of the resonator-based filter by attenuating frequency response at selected frequency ranges.
US10931261B2 Filter and multiplexer
A filter includes a resonant circuit defining at least a portion of a signal path connected between a first terminal and a second terminal, an elastic wave resonator including one end that is grounded, a first inductor including one end connected to one end of the resonant circuit and another end connected to another end of the elastic wave resonator, and a second inductor including one end connected to another end of the resonant circuit and another end connected to the other end of the elastic wave resonator. The resonant circuit is an LC series resonant circuit in which a third inductor and first and second capacitors are connected in series with each other.
US10931260B2 Surface acoustic wave elements with varying electrode finger pitch and connection arrangements
A SAW element configured to suppress spurious emissions resulting from non-periodicity of an IDT electrode finger arrangement. In one example, the SAW element is a resonator comprising an IDT electrode including a first plurality of IDT electrode fingers connected to a first busbar and a second plurality of IDT electrode fingers connected to a second busbar, and reflectors having a plurality of reflector fingers. The pluralities of first and second IDT electrode fingers are alternatively connected to each busbar by either normal connections or reversed connections and include regions arranged by at least two different types of pitches. The normal connections are such that either the odd-numbered or even-numbered IDT electrode fingers connect to the first busbar, and the reversed connections are such that the opposite group of IDT electrode fingers connect to the first busbar.
US10931259B1 Acousto-electric amplifier having insertion gain
An acousto-electric amplifier having insertion gain is provided. The acousto-electric amplifier comprises resistive material coupled to sensors such as conductive fingers. The conductive fingers are disposed on piezoelectric material. The piezoelectric material may be disposed on or above the piezoelectric material. Transducers may be used to couple a surface acoustic wave to and from the acousto-electric amplifier. The acousto-electric amplifier amplifies the surface acoustic wave in one propagation direction and attenuates a surface wave in the opposite propagation direction.
US10931251B2 Structure and method of manufacture for acoustic resonator or filter devices using improved fabrication conditions and perimeter structure modifications
A method of manufacture for an acoustic resonator or filter device. In an example, the present method can include forming metal electrodes with different geometric areas and profile shapes coupled to a piezoelectric layer overlying a substrate. These metal electrodes can also be formed within cavities of the piezoelectric layer or the substrate with varying geometric areas. Combined with specific dimensional ratios and ion implantations, such techniques can increase device performance metrics. In an example, the present method can include forming various types of perimeter structures surrounding the metal electrodes, which can be on top or bottom of the piezoelectric layer. These perimeter structures can use various combinations of modifications to shape, material, and continuity. These perimeter structures can also be combined with sandbar structures, piezoelectric layer cavities, the geometric variations previously discussed to improve device performance metrics.
US10931248B2 Distributed envelope tracking amplifier circuit and related apparatus
A distributed envelope tracking (ET) amplifier circuit and related apparatus are provided. The distributed ET amplifier apparatus includes an amplifier circuit configured to amplify a radio frequency (RF) signal based on a modulated voltage. In examples discussed herein, the amplifier circuit is co-located with an ET voltage circuit configured to supply the modulated voltage such that a trace inductance between the amplifier circuit and the ET voltage circuit can be reduced to below a defined threshold. By co-locating the amplifier circuit with the ET voltage circuit to reduce a coupling distance between the amplifier circuit and the ET voltage circuit and thus the trace inductance associated with the coupling distance, it may be possible to reduce degradation in the modulated voltage. As a result, it may be possible to improve efficiency and maintain linearity in the amplifier circuit, particularly when the RF signal is modulated at a higher modulation bandwidth.
US10931246B2 High-frequency amplifier circuitry and semiconductor device
High-frequency amplifier circuitry has a common-source first transistor to amplify a high-frequency input signal, a common-gate second transistor to amplify a signal amplified by the first transistor to generate an output signal, a first inductor connected between a source of the first transistor and a first reference potential node, a second inductor connected between a drain of the second transistor and a second reference potential, a first switch to select whether to connect a first attenuator on an input signal path, a second switch to select whether to connect a first resistor between the input signal path and the first reference potential node, a third switch to select at least one of second resistors connected in parallel to the second inductor, and a fourth switch to select at least one of first capacitors connected in parallel on an output signal path connected to the drain of the second transistor.
US10931243B2 Signal coupling method and apparatus
A signal coupling method and apparatus is disclosed. A coupling network is coupled to convey signals from first functional circuit block to a second functional circuit block. The coupling network includes a first signal path having a first capacitor for providing AC coupling between the first and second functional circuit blocks. The coupling network further includes a second signal path in parallel with the first signal path. The second signal path includes a switched capacitor circuit coupled to receive a first common mode voltage corresponding to the first functional circuit block and a second common mode voltage corresponding to the second functional circuit block.
US10931242B2 Error amplifier
An error amplifier for a pulse width modulation circuit is described. The amplifier includes an operational amplifier configured as an integrator and a feedback loop coupled between a signal output of the operational amplifier and an inverting input of the operational amplifier. The feedback loop comprises a feedback capacitor coupled to the signal output, a feedback resistor coupled to the feedback capacitor, and an integrator resistor coupled to the feedback resistor and the inverting input of the operational amplifier. A junction between the feedback resistor and the integrator resistor is configured to receive an input signal and a junction between the feedback capacitor and the feedback resistor is configured to receive a feedback signal from the pulse width modulation circuit.
US10931241B2 Model-free sample-based approaches for power amplifier linearization in real-time
An apparatus includes at least one processing device configured to obtain samples of an input signal to be amplified and, in real-time, pre-distort at least some of the samples using pre-distortion values from at least one lookup table. The pre-distorted samples are to be converted into an analog signal that is amplified by at least one power amplifier. The pre-distortion values at least partially compensate for a non-linear operation of the at least one power amplifier. The at least one processing device is also configured to compare an output signal generated by the at least one power amplifier to an expected signal to identify errors between the output and expected signals. The at least one processing device is further configured to update one or more pre-distortion values in the at least one lookup table based on the identified errors.
US10931240B2 Amplifier with reduced power consumption and improved slew rate
An amplifier circuit can be configured to receive a differential input signal having a common mode component that can extend to at least one power supply rail for the amplifier circuit. The amplifier circuit can include an input stage, such as having a first differential transistor pair, and the input stage can receive the differential input signal and in response conduct a differential first current to a cascode output stage. The cascode output stage can include or use a cascode control signal that is adjusted in response to the differential input signal. The cascode control signal can be independent of a transconductance of the first differential transistor pair. In an example, the amplifier circuit includes a slew boost circuit configured to source or sink current at an output of the amplifier based on a magnitude and polarity of the differential input signal.
US10931235B2 Sensing sensor
A sensing sensor includes an oscillator circuit, a base, a connection portion, and a temperature changing unit. The oscillator circuit oscillates the piezoelectric resonator. The base includes a base main body in which a depressed portion is provided and a lid portion at one side, supports the piezoelectric resonator at another side, and is for taking the oscillation frequency to an outside of the sensing sensor. The depressed portion houses the oscillator circuit. The lid portion covers the depressed portion. The connection portion is disposed at the one side of the base and connected to a cooling mechanism for cooling the base from the one side. The temperature changing unit is interposed between the piezoelectric resonator and the base, so as to cool and heat the piezoelectric resonator and transfer a heat radiated for cooling the piezoelectric resonator from the other side of the base to the one side.
US10931234B2 Oscillator circuit
A small area oscillator circuit is provided. The oscillator circuit includes first and second constant current sources, a comparator, first and second capacitive elements, and a resistive element. In a first state, the first capacitive element is connected to the first constant current source and the fixed voltage node, the second capacitive element is connected to the second constant current source and the first current source, and resistive element is connected to the second constant current source. In a second state, the first capacitive element is connected to the second constant current source and first constant current source, the second capacitive element is connected to the second constant current source and the fixed voltage node, and the resistive element is connected to the first constant current source.
US10931225B2 Solar module mounting system
Systems and methods for mounting one or more framed solar modules are disclosed. A solar module mounting system can include a plurality of support members configured to support one or more framed solar modules above a mounting surface, such as the ground or the roof of a building. The support members can include rails formed from a rigid material, such as steel. The solar module mounting system can also include a plurality of attachment mechanisms each configured to secure a portion of a framed solar module to a portion of a respective one of the support members.
US10931223B2 Circuit for detecting status of ground connection in an electric motor
A circuit for detecting a status of a ground connection in an electric motor includes a rectifier, a converter, a voltage conditioning circuit, a leakage circuit, and a comparator. The rectifier couples to an AC line within the motor and generates a first DC voltage. The converter steps-down the first DC voltage to a second DC voltage. The voltage conditioning circuit couples to the converter, leakage circuit, and comparator, and generates a reference DC voltage signal and a leakage voltage from the second DC voltage. The leakage circuit includes an impedance coupled to ground, and applies the leakage voltage to the impedance and generates a measurement signal representing a leakage current through the impedance to ground. The comparator couples to the leakage circuit and generates a logic signal, indicating a status of the ground connection, based on a voltage difference between the reference DC voltage signal and the measurement signal.
US10931218B2 Vacuum pump drive with star-delta switchover
A vacuum pump drive comprising at least one electric motor which is connected to the rotor of a vacuum pump via a drive shaft, a frequency converter which is electrically connected to the motor and which supplies a motor input voltage to the motor, and a switchover device with at least one electric switch. The switchover device is designed to connect the motor windings in a star or delta shape depending on the switching position of the switch in order to change the motor characteristic curve. The vacuum pump drive also comprises a measuring device with sensors for detecting physical operating variables of the vacuum pump and a controller which is electrically or optically connected to the switchover device and the measuring device and which is designed to actuate the at least one switch on the basis of the measured value of the operating variable of the vacuum pump in order to produce the star-delta switchover.
US10931217B2 Power system
A power system, including: a synchronous electrical generator having a rotor; and an angle computation unit configured to: determine a rotor angle in a steady state period of the synchronous electrical generator, determine a change in rotor angle in a transient period of the synchronous electrical generator, and estimate the rotor angle in the transient period based on the steady state rotor angle and the change in rotor angle.
US10931216B1 Motor stepper driver having a sine digital-to-analog converter
A stepper driver for a motor includes an H-bridge, a sense transistor coupled to the H-bridge, a voltage-to-current (Vtol) converter, and a sine digital-to-analog converter (DAC). The Vtol converter has a Vtol converter input and a Vtol converter output. The Vtol converter output is coupled to the sense transistor. The sine DAC has a sine DAC digital input, a reference input, and a sine DAC output. The sine DAC output is coupled to the Vtol converter input. The sine DAC includes an R-2R network, an offset control circuit coupled to the R-2R network, and a gain control circuit also coupled to the R-2R network.
US10931213B2 Control apparatus for a synchronous motor
A drive control unit that performs vector control of a synchronous motor determines reference phase angles of 3-phase/DQ converters, and a DQ/3-phase converter. When speed of a synchronous motor is equal to or higher than a predetermined threshold value, the reference phase angle is obtained by adding a correction angle such that D-axis voltage feedback output from 3-phase/DQ converter becomes zero to the detection angle of a position detector. And when the speed of the synchronous motor is less than a predetermined threshold value, the reference phase angle is obtained by adding a low speed load angle set in advance to the detection angle of the position detector. In a vector control operation, a power factor is achieved by controlling the D-axis current to be zero.
US10931211B2 Levitation mechanism for imitation candle devices
The disclosed embodiments relate to devices and methods for facilitating the operations and usage of electronic candle devices. In one exemplary aspect, an imitation candle device is disclosed. The imitation candle device comprises a body including a top surface, the top surface including an opening; a flame element having an upper portion shaped to mimic a flame of a candle and to protrude out of the opening, and a magnetic lower portion; and a magnetic base plate positioned within the body and below the flame element, comprising: a central section operable to repel the magnetic lower portion of the flame element, a peripheral section operable to attract the magnetic lower portion of flame element, and a plurality of light sources to emit light onto the flame element.
US10931209B2 Energy harvester using triboelectricity and apparatus including the same
Example embodiments relate to an energy harvester using triboelectricity, and to an apparatus including the energy harvester. The energy harvester may include a first structure having a first triboelectric material, a second structure having a second triboelectric material, and a closed structure isolating friction surfaces of the first and second triboelectric materials from external environment. The energy harvester may further include a filling material in the closed structure. The filling material may have an electric charge. The filling material may have a viscosity. At least a portion of the closed structure may include an elastic material.
US10931196B2 Load transient and jitter of DC-DC converter
A circuit includes an inductor that receives a switched input voltage to provide an output for driving a load. A driver circuit drives the switched input voltage to the inductor in response to input pulses. A ramp circuit coupled to the inductor generates a ramp signal emulating current of the inductor. A control circuit generates the input pulses to control the driver circuit based on the ramp signal and the output for driving the load. A transient monitoring circuit monitors the output with respect to a predetermined threshold and adjusts the ramp circuit based on the output relative to the predetermined threshold to control the emulated current of the inductor to facilitate jitter and load transient performance.
US10931193B2 Voltage supply circuit and radio-frequency circuit module
A voltage supply circuit includes a level shifter that switches between voltages of two voltage input units and that outputs one of the voltages, a charge pump that transforms a voltage of an input power supply and that applies the transformed voltage to the level shifter, and a charge pump control circuit. The voltage supply circuit controls supply and interruption of a predetermined voltage to a voltage-supplied circuit (RF switch 20). The charge pump control circuit causes the charge pump to perform a continuous operation in an on-mode and to perform an intermittent operation in an off-mode, the off-mode representing a state in which the voltage supply to the voltage-supplied circuit (RF switch 20) is stopped, the on-mode representing a state in which the predetermined voltage is supplied.
US10931191B2 Half bridge circuit driver chip with protection circuit and protection method thereof
A half bridge circuit driver chip and the protection method thereof are provided. The high side voltage detecting circuit connects to a high side signal output terminal and detects the high side turn-on voltage of the high side transistor, so as to obtain a high side turn-on signal. The low side voltage detection circuit connects to a low side signal output terminal and detects a low side turn-on voltage of a low side transistor, so as to obtain a low side turn on signal. When the high side turn-on signal and the low side turn-on signal are received by a protection circuit, a reset signal is generated. The reset signal is sent to the high side driving circuit for turning off the high side transistor and to the low side driving circuit for turning off the low side transistor.
US10931190B2 Systems and methods for mitigating harmonics in electrical systems by using active and passive filtering techniques
Systems and methods of the present disclosure involve passive, hybrid, and active filtering configurations to mitigate current harmonics for various electrical loads. One hybrid filtering configuration is medium voltage (MV) active filtering using a DC-DC converter and a multi-level inverter, and low voltage (LV) passive filtering. Another hybrid filtering configuration is MV passive filtering and LV active filtering using a two-level inverter. An active filtering configuration includes both MV and LV active filtering. The present disclosure also features power distribution unit (PDU) transformers electrically coupled to respective power supplies on the LV side of an electrical system. Each PDU transformer includes primary coils in a delta configuration and secondary coils in a wye configuration. The secondary coils are in series with respective leakage inductance coils. The secondary coils and the leakage inductance coils are integrated together into a single unit or module.
US10931189B1 Rectifier capable of adjusting gate voltage of transistor and alternator including rectifier
An alternator and a rectifier are provided. The rectifier includes a gate driving circuit, a logic circuit, and a comparison circuit. The gate driving circuit generates a gate voltage, and a control terminal of a transistor receives the gate voltage. The gate driving circuit receives a control signal, and adjusts the gate voltage according to the control signal, so as to control a conductivity degree of the transistor. The logic circuit generates the control signal and a switch signal according to a comparison result and selects a selected voltage according to the switch signal. The comparison result is generated by comparing a sensing voltage of a first terminal of the transistor with the selected voltage.
US10931187B2 Voltage generator
A voltage generator for converting a movable magnetic field into electrical voltage. The voltage generator includes an excitation unit, a conversion unit, and a power line unit. The excitation unit includes at least one magnet which is arranged on a body which is rotatably and/or moveably mounted. The at least one magnet generates a magnetic field. The conversion unit functionally cooperates with the excitation unit. The conversion unit includes a support body and a magnetization wire which is magnetized by the magnetic field. The magnetization wire includes, over its cross-section, a magnetically hard part and a magnetically soft part. The magnetization wire is wound around the support body to provide an axial tension. The power line unit functionally cooperates with the conversion unit. The power line unit includes an electric coil which is arranged around the conversion unit. The electric coil includes an electrifiable current conductor wire.
US10931183B2 Asynchronous machine
For an asynchronous machine (1), in particular for use in electric vehicles or hybrid vehicles, comprising a rotor (10) and a stator (20) which surrounds the rotor (10), wherein an external stator yoke (21) with a stator yoke height (h21) is formed on the stator (20) and a large number of radially inwardly projecting stator teeth (22) of the same length are formed on the stator yoke (21), wherein a stator slot (23) is respectively formed between adjacent stator teeth (22), wherein an internal rotor yoke (11) is formed on the rotor (10) and a large number of radially outwardly projecting rotor teeth (12) of the same length are formed by the rotor yoke (11), wherein a rotor slot (13) is respectively formed between adjacent rotor teeth (12), wherein the asynchronous machine is of six-phase design, it is proposed that a total number (N1) of stator slots, which denotes the total number of stator slots (23) formed on the stator (20), is seventy-two.
US10931182B2 Production method for a stator
The invention relates to a method for the production of a component, of an electric machine, such as, for example, a stator, comprising a wire mat which is made of wire, preferably flat wire, comprising the following steps: aligning the wire, twisting the wire in at least some sections about its longitudinal axis, z-shaped angling of the wire, winding the wire, in particular winding the wire helically onto a carrier, transferring the wire mat thus obtained onto a mounting tool.
US10931180B2 Method and apparatus for manufacturing rotor of electric motor
A method and an apparatus for manufacturing a rotor of an electric motor are provided to obtain an electric motor with high efficiency. To this end, a rotor is magnetized by using a magnetizing device. The rotor includes a rotor magnet disposed in the circumferential direction of a rotor shaft, and a position detecting magnet disposed side-by-side with the rotor magnet with respect to the axial direction of the rotor shaft. The magnetizing device includes a rotor-magnet magnetizing yoke and a position-detecting-magnet magnetizing yoke that generate two magnetic fields. The two magnetic fields each have unlike poles arranged alternately in the circumferential direction and have a phase difference relative to each other in the circumferential direction. A phase difference is thus provided between the poles of the rotor magnet and the poles of the position detecting magnet.
US10931177B2 Generator with built-in voltage controller inside a motor having a changeover knife switch configuration and loops
A generator includes: a built-in voltage controller disposed inside the housing of the motor and connected to the stator; a loop changeover switch, wherein one side of the three groups of loop polar phase contact points is connected to the current output unit through three phase lines, and the other side is connected to the current output unit through three loop lines; a three-phase short-circuit changeover switch is in a spaced arrangement with the loop changeover switch and includes three groups of short-circuit polar phase contact points, one side of which is connected to each other through short-circuit wire, and the other side is connected to each phase line; three converted-voltage output lines, wherein one end electrically connected to the loop polar phase contact points of the loop changeover switch is connected to one side of the loop lines; the other end is used to connect to a power device.
US10931172B2 Cooled housing for the stator of a direct drive
In a cooled housing for the stator of a direct drive, cooling ducts extend on an outer peripheral surface of the housing, the cooling ducts being sealed by an annular cover extending around the peripheral surface. The cover includes openings as an inlet and outlet for a cooling medium, and the cover is arranged such that sections of the peripheral surface of the housing remain free.
US10931164B1 Mechanical energy and storage device
The disclosed device is for storing energy by means of a flywheel. The device comprises a solid rotor having embedded permanent magnets along its outer surface, with flywheels attached at each end. The rotor is suspended by magnetic bearings within a housing. The housing comprises electromagnets that are sequentially charged in order to cause the rotor to spin due to the interaction of the electromagnets with the facing permanent magnets on the rotor. The spinning of the rotor causes the flywheels to spin, which results in the storage of rotational energy. The flywheels, which include magnets, turn through sets of coils on either end of the housing, thereby operating as an electrical generator to convert the flywheel rotational energy into electrical energy output from the device.
US10931163B2 Electromechanical actuator with stator teeth dimensioned to operate a saturation bend for electrical flight controls of an aircraft
An electromechanical actuator for electrical flight controls of an aircraft, the actuator comprising a transmission shaft, four electromechanical conversion members, each having a respective stator and rotor secured to the transmission shaft, and four control systems, each dedicated to respective ones of the electromechanical conversion members. The stator has teeth and windings surrounding at least one tooth, whereas the rotor is provided with permanent magnets. Each electromechanical conversion member is a flux-concentrating member and each winding is concentric and has a single layer. The electromechanical actuator is intended in particularly for controlling a hydraulic actuator via a mechanical transmission within an electrical flight control device of an aircraft.
US10931160B2 Actuator
An actuator is provided that is smaller in size and has a simpler structure, as compared with a conventional one. The actuator is composed of a driving mechanism that includes an electric motor, and a housing that houses the driving mechanism. The housing includes an air hole that communicates the inside of the housing with the outside thereof, a filter that covers the air hole, and a motor box that surrounds the electric motor. At least one of members of the motor box acts as a scattering prevention wall that prevents lubricant from scattering to the electric motor. The air hole is formed in a member of the motor box other than said at least one of members of the motor box.
US10931159B2 Electrical insulating structure producing method, electrical insulating structure and rotating electrical machine
A producing method is for an electrical insulating structure covering an outer surface of a to-be-insulated object. The electrical insulating structure producing method comprises: a sheet production step of producing a main insulating sheet in which nanoparticles have been mixed; a cutting step in which the main insulating sheet is cut into main insulation tapes; a taping step of winding each of main insulation tapes on outside of the to-be-insulated object to produce a tape-wound to-be-insulated object in which a main insulated part is formed; a vacuum drawing step of vacuum drawing the tape-wound to-be-insulated object; an impregnation step of injecting a impregnating macromolecular polymer to impregnate the main insulated part in the tape-wound to-be-insulated object, and a solidifying step of raising the temperature of the insulated part to solidify the macromolecular polymer containing the nanoparticles.
US10931158B2 Rotor, rotary electric machine, and compressor
A plurality of magnet holes are arranged in a circumferential direction. Void portions are provided at both ends in the circumferential direction of each magnet hole. Flow holes penetrating in the axial direction are formed, between the magnet holes adjacent in the circumferential direction, on an inner side in a radial direction with respect to the magnet holes. Each core has: first groove portions via which the void portions and the flow holes communicate with each other; and second groove portions via which the void portions and the outer circumferences of the cores communicate with each other and which serve as discharge ports. The end plates have: first holes through which the flow holes are exposed and which serve as intake ports; and tab portions which are located on downstream sides in a rotation direction of the first holes and which assist air intake.
US10931156B2 Magnet module and fan with magnet module
A magnet module is disclosed. The magnet module includes a sintered magnet structure, a magnetic permeable casing and a fixing member. The sintered magnet structure is disposed in the magnetic permeable casing. The fixing member has a plurality of locking units, and the sintered magnet structure and the magnetic permeable casing are fixed by the locking units of the fixing member.
US10931153B2 Wireless electricity transmission system
A wireless electricity transmission system includes: a wireless electricity transmission device and one or more wireless electricity reception devices installed within a vehicle. The wireless electricity transmission device includes an electricity transmission wave generation unit that generates a directional electricity transmission wave using beamforming, and a control unit that transmits query waves in directions and, when a pilot signal including identification information on a query wave having a maximum reception strength is received from the wireless electricity reception device, transmits the electricity transmission wave to the wireless electricity reception device in a direction of the query wave. The wireless electricity reception device includes a reception strength determination unit that determines the query wave having the maximum reception strength, a control unit that transmits the pilot signal including the identification information on the query wave having the maximum reception strength, and a reception unit that receives the electricity transmission wave.
US10931149B2 Wireless power receiver circuits that provide constant voltage or current to an electrical load, and methods
Wireless power receiver circuits and methods for use in wireless power transfer systems are provided for providing a constant current or voltage, depending on which is needed, to an electrical load. The wireless power receiver circuits are configured to shut down the resonant responses of the receiver circuits when electrical power is not needed by the load to reduce power consumption and avoid unnecessary heat dissipation. Additionally, a switching device of the wireless power receiver circuit that is used for shutting down the resonant response can operate at relatively low frequencies, and consequently, can be implemented using relatively low-speed, relatively inexpensive components.
US10931146B2 Methods and apparatuses for wireless transfer of power
Various embodiments are directed to apparatuses and methods related to source circuitry that provide power to other circuitry. The source circuitry including gain circuitry and a source resonator. The gain circuitry provide powers to the source resonator with a gain that is dependent on a coupling rate between the source circuitry and other circuitry. The source resonator is coupled to the gain circuitry and generates a magnetic field in response to the power. The source circuitry is configured and arranged to wirelessly transfer the power to the other circuitry via the magnetic field.
US10931144B2 Apparatus and method for transmitting wireless power
A method and apparatus are provided for determining, by a wireless power transmitter, whether a wireless power receiver is removed from a wireless power network managed by the wireless power transmitter. The method includes transmitting a command signal to report power information of the wireless power receiver at stated periods; determining whether a report signal corresponding to the command signal is received from the wireless power receiver; and determining that the wireless power receiver is removed from the wireless power network, if the report signal is not received after transmitting the command signal a predetermined number of times at the stated periods.
US10931138B2 Sheath for USB charger
A sheath for convenient charging having a left side, a right side and a top side, a first closed end, a second open end and a surrounding bottom portion surrounding at least a portion of the sides and ends of the sheath. At least a portion of the sheath extends above an outer surface of a body, wherein the body has an inner surface, an outer surface and an opening between the inner surface and the outer surface. The sheath is at the opening and the sheath receives a female end of a USB cable having four sides, an operative end, a cord end and a cord. The operative end of the female end of the USB cable is retained in the second open end of the sheath and the cord end of the female end of the USB cable is retained in the first closed end of the sheath to provide the female end of the UBS cable in a flat position with the operative end of the female connector being uncovered and above the outer surface of the body and the cord of the female end goes through the opening between the inner surface and the outer surface and the surrounding bottom portion is attached to a portion of the body.
US10931137B2 Sheath for USB charger
A sheath for convenient charging, comprising: a sheath having at least three sides, a first tapered closed end and a second open end, wherein at least a portion of the sheath extends above an outer surface of a body, wherein the body has an inner surface, an outer surface and a power cable outlet between the inner surface and the outer surface, wherein the sheath is at the power cable outlet and the sheath receives a female end of a USB cable having four sides, an operative end and a cord end, wherein the operative end of the female end of the USB cable is in communication with the second open end of the sheath and the cord end of the female end of a USB cable is in communication with the first tapered closed end of the sheath to provide the female end of the UBS cable in a flat position with the operative end of the female connector being uncovered and above the outer surface of the body.
US10931135B2 Energy harvesting sensor
An energy harvesting sensor node includes an energy harvesting sensor, an energy storage device, and a transceiver. The energy harvesting sensor is configured to extract energy from an external source at a rate proportional to a value of a first parameter of the external source. The energy storage device is configured to store the extracted energy from the energy harvesting sensor at the rate proportional to the value of the first parameter. The transceiver is configured to transmit a plurality of data transmission frames at a frequency proportional to the value of the first parameter.
US10931133B2 Wireless power receiving device, wireless power transmission system, and short-circuit monitoring device
Disclosed herein is a wireless power receiving device that wirelessly receives power transmitted from a wireless power transmitting device. The wireless power receiving device comprises: a power receiving coil that receives an AC power through a magnetic field; a power-receiving-side capacitor that constitutes a resonance circuit together with the power receiving coil; a rectifying circuit that rectifies the AC power received by the power receiving coil by a plurality of bridge-connected semiconductor devices each having a rectifying function; and a short-circuit detection circuit that detects a short circuit in the rectifying circuit based on a first AC voltage which is a voltage between a one-side input line of the rectifying circuit and a stable potential and a second AC voltage which is a voltage between the other-side input line of the rectifying circuit and the stable potential.
US10931128B2 Method and apparatus to predict capacity fade rate of battery
A method and apparatus for predicting a capacity fade rate of a battery are provided. The method includes collecting capacity degradation data of a battery based on a current and a state of charge (SOC) for a predefined number of cycles, generating a capacity fade model based on the capacity degradation data, and estimating a capacity fade rate of the battery using the capacity fade model.
US10931127B2 Modular charging system and wall-mounted charging device and modular power devices
The present invention relates to a modular charging system including a wall-mounted outlet-preserving charger for charging additional accessories such as battery blocks, wireless device chargers, supporting chargers for wearable devices such as watches, and car chargers, each for use independently or in combination with electronic devices. The present invention typically includes a wall charger with one or more electrical outlets on the front face so the use of the wall outlet is not lost. The wall charger of the present invention is suitable for use in any major country and may be adapted to the outlet configuration and voltage of those countries.
US10931122B2 Pre-charging circuitry for multiplexer
A pre-charge circuit is provided for pre-charging the input node of a capacitive component to which the multiplexer output is fed to a charge level that is close to or approximates the signal output level of the multiplexer when its output is next switched. In order to reduce the level shifting burden on the amplifier in the pre-charge circuit, each pre-charge circuit input channel has a respective capacitor that is able to be switched in and out of series with the respective multiplexer channels, such that the respective capacitors track the signal levels on the multiplexer channels. The provision of the corresponding capacitors for each MUX channel reduces the input current to the pre-charge amplifier, and allows for the level shifting burden to be taken by the capacitors, leading to more stable and lower power operation.
US10931117B2 Landfill gas powered datacenter
Arrangements of the present disclosure relate to a system including a datacenter, having an electrical connection configured to receive electrical power generated from landfill gas, a thermal connection configured to receive thermal energy generated as a byproduct of generating the electrical power from the landfill gas, a datacenter load powered by the electrical power, and a cooling plant configured to cool the datacenter load using the thermal energy.
US10931113B2 Power conversion device and power system performing protection control for suppressing received power
A power conversion device which is connected between an electric generation grid and a demand area grid and performs power conversion includes: a power converter which is connected to an electric generation grid and which converts AC power received from the electric generation grid to DC power and transmits the DC power via DC bus; and a control device for controlling the power converter. The control device includes a detection unit for detecting DC current of the DC bus, and a protection control unit for performing protection control for suppressing an amount of power received from the electric generation grid, on the basis of variation in the DC current, thereby continuing operation in the case of disturbance in the demand area grid.
US10931111B2 Power distribution control system with improved responsiveness
A power distribution control system for controlling a plurality of power assets connected to a power grid is provided. The system includes a server which can identify a set of power assets selected from sources, loads, and stores that are to form a string and provide to the string instructions for response to a change in the power grid. The system further includes a router for each of the power assets in the string, for receiving instructions from the server and for controlling the respective power asset. The power assets in the string are selected by the server to have different response times and/or response profiles, such that the string of assets present a collective response to the change, the collective response being defined by the server.
US10931110B2 Devices and methods for capacitor bank power switching circuits
An electronic device is configured to be coupled to a capacitor bank in a power system network. The electronic device includes a first switch, a second switch, and a damping circuit in series with the second switch. The damping circuit includes a passive damping circuit and a thyristor that is in parallel with the passive damping circuit. Related methods and circuits are also described.
US10931109B2 Contingency based load shedding system for both active and reactive power
The present disclosure relates to a computationally efficient technique for determining loads to shed based on both active and reactive power. For example, a monitoring and control system may receive electrical measurements of a power system. The monitoring and control system may determine an active power and a reactive power of each bus in the power system based on the received electrical measurements. The monitoring and control system may send a command to trip at least one breaker to cause the at least one breaker to shed a load based at least in part on both the active power and the reactive power consumed by each bus in the power system.
US10931108B2 Scheduling the activities of daily living (ADLs) with minimum power usage cost on smart grid network
The present invention is a system and method for optimizing power on a smart grid network. The system includes one or more units, such as a smart home, each having a control center with a historical database. The control center is in digital communication with a network component of a smart grid. Historical data including a soft window period and a hard window period representing acceptable start times for one or more flexible ADLs are stored in the historical database. The network component receives historical data for the flexible ADLs from multiple control centers. The network component, which creates a schedule based at least in part on the historical data and transfers energy to the control center according to the schedule. While scheduling, the network component manages peak load, energy tariffs, penalties, forecasting of non-ADL demand, and forecasting of supply over the scheduling horizon among other things.
US10931105B2 Power transmission network
A power transmission network includes converters interconnected via electrical elements, at least one power flow router, and a controller. Each power flow router being operatively connected to the electrical elements, each power flow router configured to selectively control current flow in the electrical elements so as to direct power between two or more of the plurality of converters. The controller configured to selectively control the converters and each power flow router to control power flow in the power transmission network The controller is configured to carry out a mathematical optimisation to determine optimal operating set points of the converters; after carrying out the mathematical optimisation, carry out another mathematical optimisation to determine optimal current flows in the electrical elements; and control the converters in accordance with each determined optimal operating set point, and control the power flow router(s) to achieve each determined optimal current flow in the electrical elements.
US10931103B2 Single-gate-oxide power inverter and electrostatic discharge protection circuit
An electrostatic discharge (ESD) circuit includes: a cascade of NMOS transistors including a first NMOS transistor operatively cascaded to a second NMOS transistor wherein the cascade of NMOS transistors is operatively coupled to a first bus that receives an ESD pulse signal; a first single-gate-oxide ESD control circuit coupled to the first NMOS transistor and configured to turn on the first NMOS transistor during an ESD event, the first single-gate-oxide control circuit coupled between the first bus at a first voltage and a first node at a second voltage, wherein the first voltage is higher than the second voltage; a second single-gate-oxide control circuit operatively coupled to the second NMOS transistor and configured to turn on the second NMOS transistor during an ESD event and to turn off the second NMOS transistor during a normal operation, wherein the second single-gate-oxide control circuit is coupled between the first node at the second voltage and a second bus at a ground voltage, wherein the second voltage is higher than the ground voltage; and a voltage divider circuit operatively coupled to the first bus at the first voltage and the second bus at the ground voltage, wherein the voltage divider circuit is operatively coupled to the first single-gate-oxide ESD control circuit and the second single-gate-oxide ESD control circuit at the first node.
US10931102B2 Hardware control for prevention of dangerous restart in a power tool
A power tool is provided including a power supply interface having a first node and a second node, a power switch circuit, an input unit actuatable by a user, a controller configured to control the power switch circuit to regulate the supply of electric power, and a driver circuit disposed between the controller and the power switch circuit configured to receive control signals from the controller and drive the power switch circuit according. A no-volt prevention circuit is configured to enable a supply of power to at least one of the driver circuit or the controller when the input unit is actuated after the power supply interface is coupled to the power supply, but not when the input unit is actuated before to the power supply interface is coupled to the power supply.
US10931093B2 Disconnect switch for interupption dc circuit between DC power source and load
A disconnecting device for interrupting the direct current between a direct current source, in particular in the direct voltage range between 300 VDc and/or in the nominal current range between 4A and 250A, and a load. The device has at least one protection switch with a protection switch arrangement having a magnetic trigger, and has semiconductor electronics which are connected in parallel to the at least one protection switch and which block the current when the protection switch arrangement is in a current-conducting state and which conducts current at least temporarily when the protection switch arrangement is triggered. A current, in particular an electric arc current generated as a result of an electric arc, is switched, when the protection switch arrangement is triggered, from the at least one protection switch to the semiconductor electronics.
US10931091B2 Misaligned deadend clamp
An electrical connector assembly configured to increase a mechanical hold on a core. The electrical connector assembly includes a connector member, a plurality of housing segments forming a collet having a tubular shape, and a sleeve having a tubular shape configured to slidably encase the outer surfaces of the plurality of housing segments in the collet.
US10931090B2 Mount with clip
A mount can include a bracket and a clip. The bracket can include a foot, a riser attached to the foot, and a connecting feature. The clip can include a connection portion for connecting the clip to the bracket, a retention portion with a curved configuration of at least half of a circle, and a tab portion that extends from the retention portion towards the connection portion.
US10931081B2 Method of producing an optoelectronic lighting device and optoelectronic lighting device
A method of producing an optoelectronic lighting device includes providing a laser chip carrier on which two edge emitting laser chips, arranging a carrier including two optical elements onto the laser chip carrier, forming a respective optical connection by an optical material between a respective laser facet and a respective optical element, singulating the two laser chips by dividing the laser chip carrier between the two laser chips to form two mutually divided laser chip carrier parts, wherein the dividing includes dividing the carrier between the two optical elements to form two mutually divided carrier parts each including one of the two optical elements, such that two singulated laser chips arranged on the respective divided laser chip carrier part are formed, the respective laser facets of which are optically connected to the respective optical element of the respective carrier part by the optical material.
US10931080B2 Laser package with high precision lens
The present disclosure relates to optical systems and methods for their manufacture. An example method includes coupling a first surface of a light-emitter substrate to a reference surface of a carrier substrate. The method also includes registering a mold structure with respect to the reference surface of the carrier substrate. Furthermore, the method includes using the mold structure to form an optical material over at least a portion of the light-emitter substrate. The optical material is shaped according to a shape of the mold structure and includes at least one registration feature. The method also includes coupling an optical lens element to the optical material such that the optical lens element is registered to the at least one registration feature.
US10931079B2 Brillouin sensing system using optical microwave frequency discriminators and scrambler
In a Brillouin sensing system using optical microwave frequency discriminators and a scrambler provided by the present invention, a laser signal outputted by a distributed feedback laser is divided into two paths of optical signals through a coupler, one path of optical signal is modulated by a modulator to act as a pump light signal and then is transmitted to sensing fibers through a circulator; another path of optical signal is modulated by another modulator to act as a detecting light signal and then directly enters the sensing fibers. When the frequency difference between the pump light and the detecting light is equal to the Brillouin frequency shift of a certain region in the fibers, the region produces the stimulated Brillouin scattering effect, so that through determining the frequency shift and power of the Brillouin scattering signal, the temperature and stress of the sensing fibers are obtained.
US10931076B2 Exciting a crystal of a pockels cell
A Pockels cell utilizes high-voltage pulses for a polarization adjustment of electromagnetic radiation passing through the crystal, in particular laser radiation. The polarization adjustment involves applying a sequence of useful voltage pulses (N) to the crystal, each having a useful period duration (TP, N) and a useful pulse width (TN), and induces birefringence of the crystal via electric polarization in the crystal for polarization adjustment of the electromagnetic radiation. A sequence of compensation pulses (K, K1, K2) are applied to the crystal, each having a voltage curve, wherein the sequence is temporally overlaid by the sequence of useful voltage pulses (N) so that the voltage curves of the compensation pulses (K, K1, K2) counteract the inducing of a mechanical vibration in the crystal of the Pockels cell by the useful voltage pulses (N).
US10931072B2 Transmitting device, reception device, and optical-electrical composite cable
It is desirable to provide a technology capable of improving reliability in light transmission and convenience at the time of connecting a transmission device to a cable with a simple circuit configuration. A transmitting device is provided which includes a connector receptacle unit connected to an optical-electrical composite cable, in which the connector receptacle unit includes a first electrode group, a second electrode group provided at a position rotated from the first electrode group by 180 degrees about a center of a main body of the connector receptacle unit as a reference, a first connection unit group for transmitting optical signals, and a second connection unit group for transmitting optical signals provided at a position rotated from the first connection unit group for transmitting optical signals by 180 degrees about the center of the main body of the connector receptacle unit as a reference.
US10931071B2 Wiring module and connection member for wiring module
Provided is a wiring module for installation in a vehicle, including a first conductor plate that is connected to a first output end of a power storage device and formed of a flat electric conductor elongated in a longitudinal direction, and supplying electric power from the power storage device to an electric device. The wiring module further includes a connection member. The connection member is fitted to the first conductor plate. The connection member includes a first fitting portion, a second fitting portion, and a switch. The first fitting portion is fitted to the first conductor plate. The second fitting portion has a first terminal through which electric power is supplied to the electric device. The switch establishes and breaks electrical continuity between the first terminal and the first conductor plate.
US10931069B2 High-density electrical connector
Disclosed herein is an electrical connector, comprising a plug and a receptacle. The plug comprises first electrical contacts electrically isolated from each other and arranged into a first outer contact annulus and a first inner contact annulus concentric with and radially spaced apart from each other. The receptacle comprises second electrical contacts electrically isolated from each other and arranged into a second outer contact annulus and a second inner contact annulus concentric with and radially spaced apart from each other. The plug is selectively connectable with the receptacle. When the plug is selectively connected with the receptacle, each of the first electrical contacts of the first outer contact annulus is in physical contact with a corresponding one of the second electrical contacts of the second outer contact annulus and each of the first electrical contacts of the first inner contact annulus is in physical contact with a corresponding one of the second electrical contacts of the second inner contact annulus.
US10931067B2 Common mode choke
A cable distribution plant is protected from noise where a modem housing encloses a switching power supply and digital electronics, the modem switching power supply for receiving AC mains power via an EMI filter and modem digital electronics for receiving a switching power supply output via an LC filter for filtering noise at the switching power supply frequency wherein multiple filters used with respective modems at subscriber sites protect the head-end from switching power supply harmonic noise otherwise aggregated by the nodes and passed to the head end.
US10931064B2 Electrical connector having conformal pin organizer
An electrical connector includes a housing having contact channels. The housing has a mounting end configured to be mounted to a circuit board. The electrical connector includes signal contacts received in corresponding contact channels. The signal contacts have mating ends and terminating ends configured to be terminated to the circuit board. Each terminating end has a shoulder, a neck extending from the shoulder and a pin extending from the neck. The neck is narrower than the complaint pin and the shoulder. The electrical connector includes conformal pin organizers coupled to the mounting end of the housing. Each conformal pin organizer has a signal opening receiving the terminating end of the corresponding signal contact. The conformal pin organizer has opening edges extending along the signal opening. The conformal pin organizers are positioned along the terminating ends such that the opening edges engage the necks of the corresponding terminating ends.
US10931062B2 High-frequency electrical connector
An electrical connector comprises an insulative shell having a floor; a first plurality of contacts extending through the floor, wherein the first plurality of contacts are disposed in a plurality of columns; a second plurality of contacts extending through the floor, wherein the second plurality of contacts are interspersed with the first plurality of contacts within the plurality of columns; and a conductive member adjacent the floor. The conductive member comprises a first plurality of openings, wherein the first plurality of contacts extend through the openings of the first plurality of openings; a second plurality of openings, wherein the second plurality of contacts extend through the openings of the second plurality of openings; and a first plurality of tabs, extending into openings in the insulative shell.
US10931055B2 Multifunction connector
An electrical connector includes a unitary base elongated along a longitudinal direction. A first tongue extends forwardly from the base and has a uniform thickness along the longitudinal direction. The first tongue comprises a plurality of spaced apart first contacts. A second tongue extends forwardly from the base and comprises a plurality of spaced apart second contacts. The first and second tongues define a gap therebetween that extends from a front edge of one of the first and second tongues toward the unitary base.
US10931053B2 Expandable electrical device cover
An enclosure for providing access to an electrical outlet includes a base with an aperture configured to couple to the electrical outlet and a lid coupled to the base. The lid selectively covers the aperture and includes a frame and an expandable section. The expandable section is moveable relative to the frame and selectively increases the volume of the lid.
US10931052B2 Connectors with contacts bonded to tongue for improved structural integrity
Connector tongues that may provide a high signal quality or signal integrity to allow high speed data transfers, may be reliably manufactured, and may be durable and have good wear performance.
US10931051B2 Connector and receptacle
A connector comprises an adapter and a first receptacle adapted to be assembled onto a first end of the adapter. The adapter includes an outer contact, an inner contact, and an insulator between the outer contact and the inner contact. The first receptacle includes a first outer terminal in electrical contact with a first end of the outer contact, a first inner terminal in electrical contact with a first end of the inner contact, and a first insulative body between the first outer terminal and the first inner terminal. The first outer terminal includes a plurality of first elastic contact structures. Each of the first elastic contact structures has an elastic arm and a first contact point formed on the elastic arm. The first contact point is adapted to elastically electrically contact an inner wall of the first end of the outer contact.
US10931050B2 High-frequency electrical connector
An electrical connector with improved high frequency performance. The connector has conductive elements, forming both signal and ground conductors, that have multiple points of contact distributed along an elongated dimension. The ground conductors may be formed with multiple beams of different length. The signal conductors may be formed with multiple contact regions on a single beam, with different characteristics. Signal conductors may have beams that are jogged to provide both a desired impedance and mating contact pitch. Additionally, electromagnetic radiation, inside and/or outside the connector may be shaped with an insert electrically connecting multiple ground structures and/or a contact feature coupling ground conductors to a stiffener. The conductive elements in different columns may be shaped differently to reduce crosstalk.
US10931046B2 Circuit device
An ECU (1) includes a circuit board (10), a connector (20) fixed to the circuit board (10), and a resin portion (50) covering the circuit board (10) and the connector (20). The connector (20) includes a connector housing (21) having a terminal holding wall (22) that separates the internal space from the external space, and terminal fittings (41) extend through the terminal holding wall (22). The connector housing (21) includes a surrounding wall (27) disposed on the lateral surface of the terminal holding wall (22) to surround the terminal fittings (41). A potting material (28) is disposed inside the surrounding wall (27) and separates the terminal holding wall (22) from the resin portion (50). This can prevent a melted resin from entering a hood (24) through press fitting holes (23) at the time of forming the resin portion (50) by mold forming.
US10931044B2 Board-to-board connector and board-to-board connector assembly
The disclosure relates to a board-to-board connector including a body, multiple terminals and a pair of metal fittings. The body has an accommodating recess. The terminal is disposed on the body and a portion of each of the terminals extends to the accommodating recess. The metal fittings are disposed on the body and beside the accommodating recess. The terminals are located between metal fittings. Each of the metal fittings has at least one limiting portion that extends to the accommodating recess. The limiting portion leans against a corner of the accommodating recess so that the metal fittings and the body generate a two-dimensional limitation. A board-to-board connector assembly is also provided.
US10931041B2 Cable connector having a slider for compression
A coaxial cable connector is attachable to a coaxial cable. The connector may include a connector body, a coupler, and a slider. The connector body may include a forward end and a rearward end. The rearward end may be configured to receive a portion of a coaxial cable, and the connector body may be configured to receive at least a portion of the post. The coupler may be configured to be rotatably coupled to the forward end of the connector body, and the slider may be configured to receive the connector body. The slider may be configured to move relative to the connector body in a rearward direction from a first position to a second position and to compress a portion of the coaxial cable between the connector body and a post as a result of the slider being moved from the first position to the second position.
US10931036B2 Fluidic wire connectors
A connector to connect to a liquid metal wire includes a hollow conduit configured to connect to a tubular wire casing, and further includes a reservoir including a solid metal conductor. The reservoir is to receive liquid metal to substantially fill a volume of the reservoir such that the liquid metal extends into the tubular wire casing. The tubular wire casing, filled with the liquid metal, becomes the liquid metal wire.
US10931035B2 Parasitic elements for isolating orthogonal signal paths and generating additional resonance in a dual-polarized antenna
An antenna system may include a dual-polarized antenna element having a first dipole and a second dipole in a same lateral plane, the first dipole having a first and a second dipole arm, the second dipole comprising a third and a fourth dipole arm, the first dipole being co-located with the second dipole, and the first dipole having an orthogonal polarization to the second dipole. The antenna system may further include parasitic elements, each comprising at least two branches, the at least two branches including a first branch and a second branch oriented at an angle and forming an apex. A first branch of a first parasitic element may be positioned at a first coupling distance parallel to the first dipole arm of the first dipole, and a second branch may be positioned at a second coupling distance parallel to the third dipole arm of the second dipole.
US10931032B2 Split diamond antenna element for controlling azimuth pattern in different array configurations
An antenna system includes unit cells arranged as an array of unit cells, each unit cell including at least one dual-polarized antenna element for operation in a first radio frequency (RF) range, and least one configured as an expanded diamond antenna element with first and second pairs of co-polarized radiating elements, the first and second pairs of co-polarized radiating elements having orthogonal polarizations. The unit cell for the at least one expanded diamond antenna element may have rectangular bounds, where first and second radiating elements of the first pair of co-polarized radiating elements are disposed in first opposite corners across a first diagonal of the rectangular bounds and within the rectangular bounds, and where first and second radiating elements of the second pair of co-polarized radiating elements are disposed in second opposite corners of the four corners across a second diagonal of the rectangular bounds and within the rectangular bounds.
US10931031B2 Compact antenna having three-dimensional multi-segment structure
A GNSS compact antenna comprising a conducting ground plane and a driven element for exciting right hand circularly polarized waves having a multi-segment structure such that the area around the driven element is divided into elementary cells with conductors and circuit elements arranged therein. The antenna includes a set of circuit elements connecting the neighboring elementary cells and the driven element. Each elementary cell has a horizontal conductor over the ground plane, and each elementary cell can have a vertical conductor and a circuit element connecting the horizontal and vertical conductors. The horizontal conductor comprises a set of characteristic points to which circuit elements, connecting neighboring elementary cells or any elementary cell and the driven element, are connected. Both the impedance of each circuit elements and the design of each elementary cell can be different, but the antenna has four-fold rotational symmetry relative to the vertical axis.
US10931027B2 Method for array elements arrangement of l-shaped array antenna based on inheritance of acquired character
A method for array elements arrangement of an L-shaped array antenna based on inheritance of acquired character. The method relates to the field of array elements design for L-shaped array antenna. In order to solve the problem that the arrangement of the current L-shaped array antenna system has a weak local ability, the invention firstly encodes for the J_K array, then calculates a fitness of each chromosome in the population, randomly selects two parent chromosomes according to a overwriting probability of inheritance of acquired character, calculates a percentage of gene delivery, performs a overwriting operation to generate a new population, repeats the overwriting operation to generate the final new population; calculates the fitness of each chromosome in the population, repeats the iteration until a predetermined termination condition is met, and obtains the optimal population gene; then determines the array elements arrangement of the L-shaped array antenna according to the optimal population gene.
US10931024B2 Linear-to-CP polarizer with enhanced performance in VICTS antennas
A linear-to-circular polarizer includes a meanderline polarizer having a plurality of meanderline conductor patterns, and a gridline polarizer having a plurality of conductors arranged in a grid pattern. The gridline polarizer is spaced apart from the meanderline polarizer by a first prescribed distance and the gridline polarizer is spaced apart from a planar antenna aperture of a planar antenna by a second prescribed distance.
US10931023B2 MIMO coupler array with high degrees of freedom
This invention presents embodiments of a coupler array to couple the RF signals between the antenna array of a MIMO base station and a MIMO RF channel emulator. The embodiments enable testing of a large scale MIMO wireless communication system without the need of connecting a large number of RF cables to the antenna ports of the MIMO base station.
US10931021B2 Antenna lens array for tracking multiple devices
A radio frequency antenna array uses multiple lenses, and mechanically movable elements, to provide ground-based and sky-based coverage for multiple object communication and tracking. The antenna array includes at least two spherical lenses, where each spherical lens has at least two associated RF elements. A third lens is added, along with at least two additional RF elements to narrow and track the overlapped beams from the first and second lenses. Each lens also includes a sub-controller configured to adjust a phase of the signals produced by the RF elements. The antenna includes a control mechanism configured to enable a user to move the RF elements along their respective tracks, and automatically configure the phase shifter to modify a phase of the output signals from the elements based on the relative positions between the RF elements. The overlapped beams track independent targets, such as satellites, across an area.
US10931018B2 Multi-feed dielectric antenna system with core selection and methods for use therewith
In accordance with one or more embodiments, an antenna system includes a dielectric antenna having a feed-point, wherein the dielectric antenna is a single antenna having a plurality of antenna beam patterns. At least one cable having a plurality of conductorless dielectric cores is coupled to the feed-point of the dielectric antenna, each of the plurality of conductorless dielectric cores corresponding to one of the plurality of antenna beam patterns. A core selector switch couples electromagnetic waves from a source to a selected one of the plurality of conductorless dielectric cores, the selected one of the plurality of conductorless dielectric cores corresponding to a selected one of the plurality of antenna beam patterns.
US10931014B2 High gain and large bandwidth antenna incorporating a built-in differential feeding scheme
An antenna and a base station including the antenna. The antenna includes a sub-array that includes first and second unit cells and a feed network. The first and second unit cells comprise first and second patches, respectively, having quadrilateral shapes. The feed network comprises a first transmission line terminating below first corners of the first and second patches, respectively; a second transmission line terminating below third corners of the first and second patches, respectively; a third transmission line terminating below a second corner of the first patch and a fourth corner of the second patch; and a fourth transmission line terminating below a fourth corner of the first patch and a second corner of the second patch. The first corners are opposite the third corners on the respective first and second patches and the second corners are opposite the fourth corners on the respective first and second patches.
US10931012B2 Device with programmable reflector for transmitting or receiving electromagnetic waves
Aspects of the subject disclosure may include, a system for generating electromagnetic signals that resonate in a cavity having a plurality of reflectors resulting in resonating electromagnetic signals and combining the resonating electromagnetic signals to form an electromagnetic wave that traverses a reflector and couples onto a physical transmission medium. One or more of the reflectors is implemented via a programmable substrate. Other embodiments are disclosed.
US10931005B2 Hearing device incorporating a primary antenna in conjunction with a chip antenna
An ear-worn electronic device is adapted to be worn at, by, in or on an ear of a wearer. The device comprises a housing configured to be supported at, by, in or on the wearer's ear. A processor is disposed in the housing. A speaker or a receiver is coupled to the processor. A radio frequency transceiver is disposed in the housing and coupled to the processor. An antenna arrangement is disposed in or on the housing and coupled to the transceiver. The antenna arrangement comprises a primary antenna and a chip antenna connected to the primary antenna. The primary antenna serves as a counterpoise for the chip antenna and feeds the chip antenna.
US10931002B1 Light transmitting wearable device with transparent and translucent components
A wearable electronic device is described. The wearable electronic device uses a light within a housing of the electronic device to illuminate an optically connected band, such as a watch band which provides interactive displays and features to a user. The positioning of the light source within the housing allows for the interactive display in the connected band without increasing the size and/or complexity of the electronic device itself.
US10931000B1 Antenna module and electronic device including the same
An antenna module includes a first antenna unit including at least one first patch antenna pattern, at least one first feed via, and at least one first dielectric layer, a second antenna unit including at least one second patch antenna pattern, at least one second feed via, and at least one second dielectric layer, a first connection portion, a first rigid substrate electrically connecting the first connection portion to the first antenna unit and having a first surface on which the first antenna unit is disposed, a base connection portion, a flexible substrate having a first surface on which the first connection portion is disposed and a second surface on which the base connection portion is disposed, and an IC electrically connected to the flexible substrate through the second surface of the flexible substrate or the first rigid substrate.
US10930995B2 Power divider/combiner
Provided is a power divider/combiner capable of improving reflection characteristics and isolation characteristics. The power divider/combiner is formed by a multilayer board, and a strip conductor is arranged in an inner layer of the multilayer board and a chip resistor is arranged on an outer surface of the multilayer board. The power divider/combiner includes vias, which connect the strip conductor and the chip resistor, and includes stubs mounted between input/output terminals and the vias. With this configuration, it is possible to adjust induction mainly during an odd mode of an even/odd mode operation and to consequently improve reflection characteristics of the input/output terminals and isolation characteristics between the input/output terminals.
US10930991B1 Method and/or apparatus for frictionless wideband high-power radio-frequency power transmission across a freely moving interface
An apparatus includes a radio frequency (“RF”) translational joint. The RF translational joint includes a first coaxial line. The RF translational joint includes a first constant impedance coaxial transition connected to the first initial coaxial line. The RF translational joint includes a coax-to-stripline transition. The RF translational joint includes a stripline section connected to the first constant impedance coaxial transition via the coax-to-stripline transition. The RF translational joint includes a stripline-to-coax transition. The RF translational joint includes a second constant impedance coaxial transition connected to the stripline section via the stripline-to-coax transition. The RF translation joint includes a second coaxial line connected to the second constant impedance coaxial transition.
US10930990B2 Device having at least one subset of stripline sections on opposite sides of an electrically conductive structure and configured to have positive coupling
A device includes at least one electrically conductive structure and at least one stripline. The stripline includes stripline sections that are connected to one another in a series connection between a first terminal and a second terminal. A first subset of the stripline sections is arranged on a first side of the conductive structure and a second subset of the stripline sections is arranged on a second side of the conductive structure. The device also includes at least one conductive connection between the first subset of the stripline sections and the second subset of the stripline sections, wherein the at least one conductive connection is isolated from the at least one electrically conductive structure.
US10930989B2 Structural body, laminated structure of structural body, and antenna structure
It has been difficult to suppress electromagnetic wave that propagates within a suspended substrate. The structure according to the present invention is provided with: a first conductor plane and a second conductor plane that are disposed parallel to each other; a dielectric plane that is disposed between the first and second conductor planes via a hollow region so as to be parallel to the first and second conductor planes; a first transmission line disposed on a surface that is of the dielectric plane and that opposes the first conductor plane; and a second transmission line disposed on a surface that is of the dielectric plane and that opposes the second conductor plane, wherein the first transmission line and the second transmission line are electrically connected to each other.
US10930987B2 Microfabricated air bridges for planar microwave resonator circuits
The present invention provides a process and structure of microfabricated air bridges for planar microwave resonator circuits. In an embodiment, the invention includes depositing a superconducting film on a surface of a base material, where the superconducting film is formed with a compressive stress, where the compressive stress is higher than a critical buckling stress of a defined structure, etching an exposed area of the superconducting film, thereby creating the at least one bridge, etching the base material, thereby forming a gap between the at least one bridge and the base material, depositing the at least one metal line on at least part of the superconducting film and at least part of the base material, where the at least one metal line runs under the bridge.
US10930985B2 Battery module and method of manufacturing the same
A battery module and a method of manufacturing the same are provided. The battery module includes a case providing an internal space, a plurality of battery cells disposed in the internal space of the case, and at least one cooling unit interposed between the battery cells to be in surface contact with the battery cells and dissipating heat generated by the battery cells externally.
US10930983B2 Battery with sensor
The present invention relates to a battery (100) comprising an electrode material (102a), an electrolyte material (104), a battery charge sensor (106, 206, 306) comprising a plasmonic sensing element (108, 208, 308) having a sensing volume (110, 210, 310) within the battery (100, 200, 401) and which upon illumination with electromagnetic radiation exhibits a localized surface plasmon resonance condition being dependent on a charge state of the battery (100, 200, 401). A system and a method for determining a charge state of a battery are further provided.
US10930982B2 Lithium ion battery charge/discharge control device
A device that controls charging and discharging of a lithium ion battery (3) that starts an engine starter (1), includes: a voltage sensor (S1) that detects the voltage of the lithium ion battery; a current sensor (S2) that detects the current of the lithium ion battery; and a control section (30) that controls charging and discharging of the lithium ion battery. The control section (30) calculates capacity degradation rates of a cathode and anode of the lithium ion battery based on detected values of the voltage sensor and the current sensor at the time when a first time has elapsed, and at the time when a second time longer than the first time has elapsed, from startup of the engine starter, and limits the charging and discharging of the lithium ion battery based on comparison results between the capacity degradation rates and determination criterion values.
US10930979B2 Energy storage device and method of manufacturing energy storage device
An energy storage device includes: an electrode assembly, wherein electrodes each including a covered portion which is covered by an active material layer and a non-covered portion which extends from the covered portion and is not covered by the active material layer are stacked on each other such that the covered portions overlap with each other and the non-covered portions overlap with each other, and the electrode assembly having a non-covered stacked portion where the non-covered portions are stacked on each other; a protective plate being brought into face contact with the non-covered stacked portion from one side in a stacking direction of the non-covered stacked portion; a current collector including a bonding portion which is brought into face contact with the non-covered stacked portion from an other side in the stacking direction, and an enlarged width portion extending from the bonding portion.
US10930978B2 Multifunctional ion pouch battery cell frame
A lithium ion pouch battery cell includes a rigid frame forming a skeleton of the cell and defining an aperture, an anode, a separator, and a cathode disposed within the aperture. The anode and cathode each include a current collector with an exposed tab portion, and a pair of terminals, integrated into the frame, each having an exterior portion and an interior portion bonded to one of the current collectors.
US10930976B2 Electrolyte solution and lithium ion battery
An electrolyte solution is used for a lithium ion battery. The electrolyte solution contains at least a solvent and lithium salt. The solvent contains at least methoxymethyl formate.
US10930974B2 Electrolyte composition containing methyl 2-methyl-1,3-dioxolane-2-carboxylate, and electrochemical cells comprising the same
An electrolyte composition and an electrochemical cell including the electrolyte composition are disclosed, including: at least one aprotic organic solvent; at least one conducting salt; methyl-2-methyl-1,3-dioxolane-2-carboxylate; and optionally one or more additives. A use of methyl-2-methyl-1,3-dioxolane-2-carboxylate in an electrolyte composition for electrochemical cells is disclosed. An electrochemical cell is also disclosed, in which the electrochemical cell is a lithium battery.
US10930972B2 Metal-phosphorous sulfide additives for solid state batteries
A composite material of formula (I) is provided: (LPS)a(MPS)b  (I) wherein each of a and b is a mass % value from 1% to 99% such that a+b is 100%; (LPS) is a material selected from the group consisting of Li3PS4, Li7P3S11, Li10GeP2S11, and a material of formula (II): xLi2S.yP2S5.(100−x−y)LiX  (II) wherein X is I, Cl or Br, each of x and y is a mass % value of from 33.3% to 50% such that x+y is from 75% to 100% and the total mass % of Li2S, P2S5 and LiX is 100%; and (MPS) is a material of formula (III): mLi2S.nMS.oP2S5.(100−m−n−o)LiX  (III) wherein MS is a transition metal sulfide or a semi metal sulfide, X is I, Cl or Br, each of m, n and o is a mass % value greater than 0 such that (m+n+o) is from 75% to 100% and the total mass % of Li2S, P2S5 and LiX is 100%. Solid state batteries containing the composite material are also provided.
US10930964B2 Fuel cell stack
A fuel cell stack includes a pair of end plates disposed on opposing sides of a fuel cell stacked body in a first direction, a coupling bar that bridges between the end plates, a fastening member that connects the end plates and the coupling bar in the first direction, and a cylindrical knock disposed inside an end plate side mounting hole and a coupling bar side mounting hole of the end plates and the coupling bar in the first direction, and being externally fitted to the fastening member inside the end plate side mounting hole and the coupling bar side mounting hole. A first seal member in close contact with at least an inner circumferential surface of the end plate side mounting hole and the fastening member is disposed in a portion located between the cylindrical knock and the fastening member inside the end plate side mounting hole.
US10930961B2 Multi-acid polymers from multifunctional amino phosphonic acids and sulfonyl halide precursors and methods of making the same
Multi-acid polymers are produced having the formula R—SO2—NH—R′—(SO3H)n and made from a polymer precursor in sulfonyl fluoride form or sulfonyl chloride form The R is one or more units of the polymer precursor without sulfonyl fluoride or sulfonyl chloride, R′ is the portion of the amino sulfonic acid without the SO3H and NH, n is one or more, and the multi-acid polymer has two or more proton conducting groups. A method of making the multi-acid polymers includes reacting an amino acid having multiple sulfonic acids with a polymer precursor in sulfonyl fluoride form or sulfonyl chloride form in a mild base condition to produce the multi-acid polymer having two or more proton conducting groups.
US10930958B2 Fuel cell system
The fuel cell system includes: a fuel cell unit including first and second fuel cells connected to each other in parallel; a supply system that supplies a reactant gas to the fuel cell unit; a required output power obtainment unit configured to obtain required output power to the fuel cell unit; a supply system control unit configured to control the supply system such that output power of the fuel cell unit is the required output power; a determination unit configured to determine whether or not a predetermined condition is satisfied; and a performance obtainment unit configured to obtain output power performance of the first fuel cell.
US10930956B2 Low flow control method and system for fuel cell
A low flow control method for a fuel cell includes: determining whether or not the fuel cell enters a low flow control mode, dividing a low flow control operation into a plurality of low flow control stages upon determining that the fuel cell enters the low flow control mode, and controlling a power generation quantity of the fuel cell according to the low flow control stages.
US10930953B2 Fuel cell system and method of controlling fuel cell system
A control unit of a fuel cell system acquires a service operating point, repeats a process of calculating a distance between the service operating point and a surging region, while transferring an operating point of a turbo compressor from a first operating point to a second operating point outside the surging region, sets opening degrees of a pressure adjusting valve and a bypass valve such that the turbo compressor operates at a required operating point, when the distance exceeds a threshold, and corrects at least one of the opening degrees of the pressure adjusting valve and the bypass valve such that the at least one of the opening degrees becomes larger than an opening degree set such that the turbo compressor operates at the required operating point, when the distance is equal to or shorter than the threshold.
US10930950B2 Closed anode fuel cell startup method
A process for starting a PEM fuel cell module includes blowing air through the cathode side of the module using external power. An amount hydrogen is released into the anode side of the module under a pressure greater than the pressure of the air on the cathode side, while the anode is otherwise closed. Cell voltages in the module are monitored for the appearance of a charged state sufficient to start the module. When the charged state is observed, the module is converted to a running state.
US10930949B2 Power delivery system and method
Systems and methods for operating an electric energy storage device are described. The systems and methods may reduce a voltage potential between a ground reference and terminals of an electric energy storage device. By lowering the voltage potential, a possibility of unintentionally discharging the electrical energy storage device to ground may be reduced.
US10930948B2 Fuel cell system and method for controlling fuel cell system including power recovery mechanism
A fuel cell system includes a fuel cell configured to be supplied with an anode gas and a cathode gas and generate electric power, a compressor configured to supply the cathode gas to the fuel cell, a turbine configured to be supplied with a cathode discharged gas discharged from the fuel cell and generate power, an electric motor connected to the compressor and the turbine and configured to perform power running and regeneration, a combustor disposed between the fuel cell and the turbine and configured to mix and combust the cathode gas and the anode gas, a cooler configured to cool the cathode gas that is supplied from the compressor to the fuel cell, a bypass passage configured to supply the cathode gas from an upstream side of the cooler to the combustor by bypassing the cooler and the fuel cell, and a bypass valve disposed in the bypass passage.
US10930947B2 Recirculation device of a fuel cell
The invention relates to a supply circuit of the cathode (250) of at least one electrochemical cell (200) of the PEMFC type, which further comprises a membrane (290) separating an anode (210) and said cathode (250), with this circuit comprising: a supply channel (220) comprising an inlet (282) and making it possible to convey a fluid (90) in contact with the cathode (250); a discharge channel (280) that makes it possible to remove gases from the cell, a recirculation channel (100, 100′), comprising: a first opening (102) connected to the outlet (284) of the discharge channel (280); a second opening (104) connected to the inlet (282) of the supply channel (280), by the intermediary of a connector (80); a third opening (106) and means for removing (140) that allow at least one portion of the fluid (90) to be removed from the recirculation channel by the third opening (106), the recirculation channel (100, 100′) and/or the supply channel further comprising at least one compressor (C1, C2), which makes it possible to control the flow rates and/or the proportion of the fluids to be mixed in the connector.
US10930940B2 Stainless steel sheet for fuel cell separators, and production method therefor
A stainless steel sheet for fuel cell separators comprises: a predetermined chemical composition; and Cr-containing fine precipitates at a steel sheet surface, wherein an average equivalent circular diameter of the fine precipitates is 20 nm or more and 500 nm or less, and a number of the fine precipitates existing per 1 μm2 at the steel sheet surface is three or more.
US10930936B2 Apparatus and method for manufacturing continuous reactor type core-shell catalyst electrode
An apparatus and a method for manufacturing a continuous reactor type core-shell catalyst electrode, which may manufacture a large amount of continuous reactor type core-shell catalyst electrodes by improving coating efficiency of shell metal by using reaction chambers disposed in a circular shape or in a line are provided. The apparatus for manufacturing a continuous reactor type core-shell catalyst electrode includes: a main body; reaction chambers which are disposed plurally in a circular shape inside the main body, store reaction solution inside thereof, are equipped with a movable member and counter electrodes, and are coupled with a reference electrode to a lateral portion thereof; a palladium sheet which is moved by the movable member and immersed in the reaction solution as the movable member moves downward; a power supply which applies a voltage to the electrodes.
US10930928B2 Magnesium metal devices and methods of making the same
The present disclosure relates to a device that includes a first electrode, where the first electrode includes magnesium metal having a first surface, and a first coating in physical contact with the first surface and covering substantially all of the first surface, where the first coating has a first thickness, and the first coating is configured to transport a plurality of magnesium ions through the first thickness, such that a first portion of the plurality of magnesium ions are reversibly depositable as elemental magnesium onto the first surface.
US10930919B2 Method of manufacturing battery electrode and electrode manufacturing apparatus
A method of manufacturing an electrode, comprising the steps of: forming a first layer by intermittently applying a layer to a current collecting foil with thickness of 40 μm or more and 300 μm or less; and forming a second layer, wherein the second layer is formed both on a region where the first layer has been formed on the current collecting foil and an exposed region where the current collecting foil is exposed without being formed the first layer; wherein in the step of forming of second layer, providing a gap of 40 μm or more between a applying part of application apparatus and the current collecting foil, based on a positional information of the first layer, from during applying a layer to the exposed region to during applying a layer to the first layer.
US10930918B2 Secondary battery
A secondary battery includes an electrode assembly; a case accommodating the electrode assembly; a cap plate sealing the case; an injection opening in the cap plate; and an exhaustion opening in the cap plate and being spaced from the injection opening.
US10930917B2 Electric vehicle battery cell having multiple stack structures
Provided herein are systems, apparatuses, and methods of powering electric vehicles. A battery pack can be disposed in an electric vehicle to power the electric vehicle. A housing can be arranged in the battery pack and can have a first polarity terminal. A capping element can be mechanically coupled with the housing and can have a second polarity terminal. A battery cell array can be arranged within a cavity in the housing. The battery cell array can have a first polarity terminal electrically coupled with the housing. The battery cell array can have a second polarity terminal electrically coupled with the capping element.
US10930914B2 Nonaqueous secondary battery porous film composition, nonaqueous secondary battery porous film, and nonaqueous secondary battery
A composition for a non-aqueous secondary battery porous membrane including inorganic particles and a particulate polymer, wherein a volume-average particle diameter d0 of the inorganic particles is 0.1 μm or more and 1.0 μm or less, a weight ratio between the inorganic particles and the particulate polymer is within a range of 95:5 to 50:50, and a volume-average particle diameter d1 of the particulate polymer and the volume-average particle diameter d0 of the inorganic particles satisfy d1/d0>1; and a non-aqueous secondary battery including the same.
US10930912B2 Composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, non-aqueous secondary battery, and method of producing electrode for non-aqueous secondary battery
Provided is a composition for a non-aqueous secondary battery functional layer capable of forming a functional layer for a non-aqueous secondary battery that has excellent adhesiveness after immersion in electrolyte solution and can cause a non-aqueous secondary battery to display excellent cycle characteristics and output characteristics. The composition for a non-aqueous secondary battery functional layer contains organic particles and a binder for a functional layer. The organic particles have an electrolyte solution elution amount of at least 0.001 mass % and not more than 5.0 mass %.
US10930906B2 Battery module
A battery module includes: a cell stack body that is constituted by a plurality of cells stacked in a front-rear direction; a pair of end plates disposed on a front surface and rear surface of the cell stack body; and a pair of side frames disposed on the left surface and right surface of the cell stack body. The end plates each includes: an inner wall extending along the cell stack body; an outer wall spaced from the inner wall and facing the inner wall; a plurality of connection walls connecting the inner wall and the outer wall with each other; and a plurality of hollow portions formed by the inner wall, the outer wall, and the connection walls and extending in an up-down direction. A thickness of the connection walls is thinner than a thickness of the inner wall.
US10930899B2 Electrochemical cell and apparatus containing the cell
An electrochemical cell includes an annular electrode composite body; and an annular liquid-tight housing formed as a hollow cylinder and including an annular interior space, wherein the housing is arranged around a central aperture or recess, the housing has a height of 5 mm to 40 mm and an external diameter of 6 mm to 20 mm, and the annular electrode composite body is arranged in the annular interior space.
US10930898B2 Power storage device and method of manufacturing power storage device
A power storage device includes an electrode assembly, an accommodation case accommodating the electrode assembly, an external terminal provided on an outer surface of the accommodation case, a collector terminal connecting the electrode assembly and the external terminal, and a welding portion connecting the collector terminal and the external terminal. The external terminal includes an opposed surface opposed to the outer surface and an outer surface located opposite to the opposed surface. The external terminal has an insertion hole extending from the opposed surface toward the outer surface and a step portion located around an opening in the insertion hole located on a side of the outer surface. The collector terminal includes a contact surface in contact with a surface of the step portion. The welding portion is formed to weld the surface of the step portion and the contact surface.
US10930896B2 Package method of OLED element and OLED package structure
The present invention provides a package method of an OLED element and an OLED package structure. In the package method of the OLED element, according to the present invention, by manufacturing a circle of the retaining wall at the periphery of the OLED element, and then forming the laminated film covering the OLED element in the region surrounded by the retaining wall, and the laminated film comprises the few first barrier layers and the few buffer layers which are alternately stacking, and ultimately, forming the second barrier layer which completely covers the buffer layer and the top of the retaining wall on the outermost buffer layer of the laminated film, the OLED package structure of extremely strong sealing can be obtained. In the package method, a protective shield of extremely strong sealing for the OLED element is formed with the retaining wall and the outermost second barrier layer.
US10930890B2 Organic optoelectronic component
An organic optoelectronic component includes an organic functional layer stack between a first electrode and a second electrode including a light-emitting layer formed to emit radiation during operation of the component; a coupling-out layer arranged above the first electrode and/or the second electrode which is in a beam path of the radiation of the light-emitting layer; and a protective layer above the coupling-out layer, wherein the coupling-out layer includes a structured layer and a planarization layer arranged thereabove and the structured layer has a structured surface structured at least in places, the planarization layer planarizes the structured surface of the structured layer, the protective layer cannot be removed without at least partially destroying the coupling-out layer, and adhesion of the structured layer to the planarization layer is smaller than adhesion of the protective layer to the planarization layer.
US10930889B2 Light-emitting device, display apparatus, and illumination apparatus
A light-emitting device includes: a first electrode; a second electrode; and an organic layer that is provided between the first electrode and the second electrode and is formed by stacking a first light-emitting layer and a second light-emitting layer in order from the first electrode side, in which light emitted from the organic layer is reflected by an interface between the first light-emitting layer and the first electrode, passes through the second electrode, and is emitted to the outside of the light-emitting device, a first light-transmitting layer, a second light-transmitting layer, and a third light-transmitting layer are provided on a side of the second light-emitting layer opposite to the first light-emitting layer in order from the second light-emitting layer side, and predetermined conditions are satisfied.
US10930888B2 High-efficiency QLED structures
A light-emitting layer structure that maximizes constructive interference for light emission by varying a phase shift introduced by reflective electrodes. The light-emitting layer structure includes a first and second optical cavity including a first and second reflective electrode; a first and second partially transparent electrode; and a first and second emissive layer (EML) disposed between the first and second reflective electrodes and the first and second partially transparent electrodes, wherein the first EML emits light having a first wavelength; wherein the first reflective electrode introduces a first phase shift, depending on the first wavelength, on reflection of light emitted by the first EML; and wherein the second EML emits light having a second wavelength and the second reflective electrode introduces a second phase shift, depending on the second wavelength, on reflection of light emitted by the second EML, and the first phase shift is different from the second phase shift.
US10930887B2 Flexible organic light emitting display device having a dam in a folding region
A flexible organic light emitting display (OLED) device includes a flexible substrate having a display area, a non-display area at a periphery of the display area and a folding region; at least one organic emitting diode on the flexible substrate in the display area; an encapsulation film covering the organic emitting diode; and a dam on the flexible substrate. The dam laterally surrounds the display area and includes: a first dam in the folding region; and a second dam outside the folding region, wherein the average thickness of the first dam is smaller than the average thickness of the second dam.
US10930886B2 Method for manufacturing OLED display screen and OLED display screen
The present disclosure provides a method for manufacturing an OLED display screen and an OLED display screen. The method includes: providing a base substrate; forming OLED devices on the base substrate; forming a protection layer on the OLED devices; forming a cavity extending through the protection layer and a function layer of the OLED devices in a region where a through hole is to be formed; and forming a film encapsulation layer with the film encapsulation layer covering a lateral wall of the function layer of the OLED devices that defines the cavity.
US10930875B2 Organic light-emitting display apparatus and method of manufacturing the same
An organic light-emitting display apparatus including: a first electrode of a first group; a first organic functional layer covering the first electrode of the first group and including a first emission layer; a second electrode of the first group covering the first organic functional layer; a first electrode of a second group separate from the first electrode of the first group; a second organic functional layer separate from the first organic functional layer, covering the first electrode of the second group, having a larger area than the first organic functional layer, and including a second emission layer; a second electrode of the second group covering the second organic functional layer; and a common electrode integrally and commonly disposed on the second electrode of the first group and the second electrode of the second group.
US10930865B2 Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
The complexes disclosed herein are cyclometalated metal complexes of Formula (I) that are useful for full color displays and lighting applications.
US10930864B2 Organic electroluminescent materials and devices
The present invention includes novel metal complexes of 5H-benzimidazo[1,2-a]benzimidazole (“BimBim”) and related ligands. The novel ligands may coordinate to one or two metal centers. The metal complexes of the present invention comprising these ligands may be useful as emissive materials and n-dopants in OLED devices.
US10930863B2 Organometallic compound, organic light-emitting device including organometallic compound, and diagnostic composition including organometallic compound
An organometallic compound represented by Formula 1: wherein, in Formula 1, groups and variables are the same as described in the specification.
US10930860B2 Organic electroluminescent element
An organic EL device includes a pair of electrodes and an organic compound layer between pair of electrodes. The organic compound layer includes an emitting layer including a first material, a second material and a third material, in which singlet energy EgS(H) of the first material, singlet energy EgS(H2) of the second material, and singlet energy EgS(D) of the third material satisfy a specific relationship.
US10930859B2 Phenanthroquinazoline-core compounds
Provided is a composition comprising one or more phenanthroquinazoline-core compounds having structure (I) wherein each of R1 and R2 is independently a substituted or unsubstituted phenyl group.
US10930856B2 Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
A novel organic compound is provided. In particular, a novel organic compound which can improve the element characteristics of a light-emitting element is provided. A novel light-emitting element with high emission efficiency, low driving voltage, and high reliability is provided. An organic compound including an amine skeleton and a benzo[b]naphtho[1,2-d]furan skeleton is provided. A light-emitting element including the organic compound is provided.
US10930855B2 Light-emitting element, light-emitting device, electronic device, lighting device, lighting system, and guidance system
An object is to provide a light-emitting element with a favorable lifetime.A light-emitting element which includes a first electrode, a second electrode, and an EL layer and in which the EL layer includes a hole-injection layer and first to fourth layers; the hole-injection layer includes an organic acceptor and is positioned between the first electrode and the first layer; the first layer includes a first hole-transport material; the second layer includes a second hole-transport material and is positioned between the first layer and the third layer; the third layer includes a third hole-transport material; the fourth layer includes a host material and a light-emitting material and is positioned between the third layer and the second electrode; the HOMO level of the second hole-transport material is deeper than the HOMO level of the first hole-transport material; the HOMO level of the host material is deeper than the second hole-transport material HOMO level; the HOMO level of the third hole-transport material is deeper than or equal to the HOMO level of the host material; a difference between the HOMO level of the second hole-transport material and the HOMO level of the third hole-transport material is less than or equal to 0.3 eV; and the second hole-transport material is a triarylamine compound having a structure where a dibenzofuran skeleton or a dibenzothiophene skeleton is bonded to nitrogen of an amine directly or via a divalent aromatic hydrocarbon group.
US10930853B2 Organic light-emitting device
An organic light-emitting device includes: a first electrode; a second electrode facing the first electrode; an emission layer between the first electrode and the second electrode; a hole transport region between the first electrode and the emission layer; and an electron transport region between the emission layer and the second electrode, wherein the hole transport region includes a first compound, the emission layer includes a second compound as a fluorescent host and a third compound as a fluorescent dopant, and the electron transport region includes a fourth compound and a fifth compound including, as a ring-forming moiety, a nitrogen-containing heterocyclic group including *═N—*′, wherein the first compound, the fourth compound, and at least one selected from the second compound and the third compound each independently include at least one group selected from groups represented by Formulae A to D:
US10930852B2 Light-emitting device
A light-emitting element includes a light-emitting layer including a guest, an n-type host and a p-type host between a pair of electrodes, where the difference between the energy difference between a triplet excited state and a ground state of the n-type host (or p-type host) and the energy difference between a triplet excited state and a ground state of the guest is 0.15 eV or more. Alternatively, in such a light-emitting element, the LUMO level of the n-type host is higher than the LUMO level of the guest by 0.1 eV or more, or the HOMO level of the p-type host is lower than the HOMO level of the guest by 0.1 eV or more.
US10930848B2 Variable resistance memory device and method of manufacturing the same
A method of manufacturing a variable resistance memory device includes: forming an array of memory cells on a substrate, each memory cell including a variable resistance structure and a switching element; and forming a sidewall insulating layer covering a sidewall of the switching element. The forming the sidewall insulating layer includes: a preliminary step of supplying a silicon source to an exposed sidewall of the switching element; and a main step of performing a process cycle a plurality of times, the process cycle comprising supplying the silicon source and supplying a reaction gas, A time duration of the supplying the silicon source in the preliminary step is longer than a time duration of the supplying the silicon gas in the process cycle in the main step.
US10930846B2 Methods of forming silicon-containing dielectric materials and methods of forming a semiconductor device comprising nitrogen radicals and oxygen-containing, silicon-containing, or carbon-containing precursors
A method of forming a silicon-containing dielectric material. The method includes forming a plasma comprising nitrogen radicals, absorbing the nitrogen radicals onto a substrate, and exposing the substrate to a silicon-containing precursor in a non-plasma environment to form monolayers of a silicon-containing dielectric material on the substrate. Additional methods are also described, as are semiconductor device structures including the silicon-containing dielectric material and methods of forming the semiconductor device structures.
US10930845B2 Memory device and method of manufacturing the same
A memory device includes: a memory layer that is isolated for each memory cell and stores information by a variation of a resistance value; an ion source layer that is formed to be isolated for each memory cell and to be laminated on the memory layer, and contains at least one kind of element selected from Cu, Ag, Zn, Al and Zr and at least one kind of element selected from Te, S and Se; an insulation layer that isolates the memory layer and the ion source layer for each memory cell; and a diffusion preventing barrier that is provided at a periphery of the memory layer and the ion source layer of each memory cell to prevent the diffusion of the element.
US10930844B2 Three-terminal oxygen intercalation neuromorphic devices
Variable-resistance devices and methods of forming the same include a variable-resistance layer, formed between a first terminal and a second terminal, that varies in resistance based on an oxygen concentration in the variable-resistance layer. An electrolyte layer that is stable at room temperature and that conducts oxygen ions in accordance with an applied voltage is positioned over the variable-resistance layer. A gate layer is configured to apply a voltage on the electrolyte layer and the variable-resistance layer and is positioned over the electrolyte layer.
US10930843B2 Process for manufacturing scalable spin-orbit torque (SOT) magnetic memory
A method of fabricating a magnetic storage device includes depositing a first conductive material. The method further includes electrically isolating distinct instances of the first conductive material to form a first wire extending along a first direction. The method further includes depositing, on the distinct instances of the first conductive material, a set of device layers. The method further includes electrically isolating distinct instances of the device layers to form spin orbit torque magnetic random access memory (SOT-MRAM) devices positioned on distinct instances of the first conductive material. The method further includes depositing, on the distinct instances of the device layers, a layer of a second conductive material and electrically isolating a plurality of distinct instances of the layer of the second conductive material to form a plurality of second wires extending along a second direction. The second direction is different from the first direction.
US10930839B2 Magnetoresistive random access memory having a ring of magnetic tunneling junction region surrounding an array region
A semiconductor device includes a substrate having an array region defined thereon, a ring of magnetic tunneling junction (MTJ) region surrounding the array region, a gap between the array region and the ring of MTJ region, and metal interconnect patterns overlapping part of the ring of MTJ region. Preferably, the ring of MTJ region comprises an octagon and the ring of MTJ region includes a first MTJ region and a second MTJ region extending along a first direction, a third MTJ region and a fourth MTJ region extending along a second direction, a fifth MTJ region and a sixth MTJ region extending along a third direction, and a seventh MTJ region and an eighth MTJ region extending along a fourth direction.
US10930835B2 Thermoelectric module sheet and thermoelectric module assembly including the same
The present disclosure relates to a thermoelectric module sheet that includes a base substrate, a plurality of thermoelectric elements laminated on a surface of the base substrate, and a plurality of electrodes, each of which is laminated on at least one surface of at least one of the plurality of thermoelectric elements to electrically connect the plurality of thermoelectric elements by a predetermined connecting method.
US10930834B2 Synthesis of N-type thermoelectric materials, including Mg—Sn—Ge materials, and methods for fabrication thereof
Discussed herein are systems and methods for fabrication of MgSnGe-based thermoelectric materials for applications from room temperature and near room temperature to high temperature applications. The TE materials may be fabricated by hand or ball milling a powder to a predetermined particle size and hot-pressing the milled powder to form a thermoelectric component with desired properties including a figure of merit (ZT) over a temperature range. The TE materials fabricated may be disposed in thermoelectric devices for varying applications.
US10930828B2 Non-rotationally symmetric lens for non-rotationally symmetric light source resulting in rotationally symmetric beam pattern
A light source includes a light-emitting diode or device (LED) and an optic mounted over the LED. The LED emits a first radiation pattern that is non-rotationally symmetric about a first axis. The optic collects the first radiation pattern and projects a second radiation pattern that is rotational symmetric about a second axis and has a peak intensity that is angled from the second axis.
US10930825B2 Two step phosphor deposition to make a matrix array
A method of fabricating closely spaced pcLEDs arranged in a matrix array of perpendicular rows and columns comprises an initial phosphor deposition step in which phosphor is deposited at alternating locations (pixels) in the matrix array in a checkerboard pattern, so that the locations in the array at which phosphor is deposited are not adjacent to each other. In a subsequent phosphor deposition step phosphor is deposited at the alternating locations at which phosphor was not deposited in the first deposition step. In between the two phosphor deposition steps, reflective or scattering structures may be fabricated on sidewalls of the phosphor pixels to optically isolate pcLEDs in the resulting array from each other.
US10930821B2 Wavelength conversion member and light emitting device
Provided is a wavelength conversion member capable of suppressing excessive heating of a phosphor layer and a light emitting device using the same. The wavelength conversion member 10 includes: a heat dissipation substrate 11; a phosphor layer 12 provided on the heat dissipation substrate 11; and a bonding material layer 13 provided between the heat dissipation substrate 11 and the phosphor layer 12, wherein the bonding material layer 13 includes a thermally conductive porous body 14 and a bonding material 15 and the thermally conductive porous body 14 is impregnated with the bonding material 15.
US10930819B2 Light emitting device and fluidic manufacture thereof
Light emitting devices and methods for their manufacture are provided. According to one aspect, a light emitting device is provided that comprises a substrate having a recess, and an interlayer dielectric layer located on the substrate. The interlayer dielectric layer may have a first hole and a second hole, the first hole opening over the recess of the substrate. The light emitting device may further include first and second micro LEDs, the first micro LED having a thickness greater than the second micro LED. The first micro LED and the second micro LED may be placed in the first hole and the second hole, respectively.
US10930818B2 Light emitting device
A light emitting device includes: a plurality of light emitting stacked layers, including a first surface and a second surface, wherein the second surface is electrically opposite to the first surface; a mesa structure; and a current blocking (CB) layer disposed on the first surface; a transparent conductive layer disposed on or above the first surface; and a first pad electrode, disposed on the transparent conductive layer and on the first surface; wherein a sidewall of the CB layer comprises a first surface section and a second surface section having different slopes.
US10930817B2 Light-emitting device
A light-emitting device includes an emission structure, a current block layer on the emission structure, a reflective layer on the current block layer, a protection layer that covers the reflective layer, and an electrode layer on the protection layer.
US10930812B1 Method for fabricating a photovoltaic device using computer-controlled system
A fully automated fabrication method and system utilizing a single additive manufacturing platform to fabricate solar cell panels without human-touch labor. The system includes a computer and a robotic arm having a machine vision device and a tool changer to which tools are releasably secured. In an exemplary embodiment, the fabrication method uses pre-fabricated substrates wherein the computer controls the robotic arm to deposit an adhesive layer on a pre-fabricated substrate and thereafter place solar cells on the adhesive layer. The solar cells become bonded to the substrate when the adhesive layer cures. The computer then controls the robotic arm to print electrical connections and electrical bus bars on the substrate with electrically conductive ink in order to electrically connect the solar cells. After the electrically conductive ink cures, the computer controls the robotic arm to spray an encapsulating material over the solar cells and substrate.
US10930809B2 Photovoltaic devices with increased efficiency and methods for making the same
A photovoltaic device with increased efficiency and a method for making the same. The present invention provides a photovoltaic device including: a transparent substrate; a transparent conductive electrode layer disposed on the transparent substrate; an n-type layer disposed on the transparent conductive electrode layer; a chalcogen absorber layer disposed on the n-type layer; a p-type molybdenum trioxide (MoO3) interlayer disposed on the chalcogen absorber layer; and a conductive layer disposed on the interlayer. A photovoltaic device having a superstrate configuration with the order of the layers reversed is also provided. The present invention further provides methods for making the photovoltaic devices according to the present invention.
US10930805B2 Photoelectric conversion module
A photoelectric conversion module includes a photoelectric conversion panel, and a frame attached to an outer edge of the photoelectric conversion panel. The photoelectric conversion panel includes a first substrate, a photoelectric conversion layer disposed on the first substrate, a second substrate that covers the photoelectric conversion layer, and a seal that is disposed over peripheral portions of the first substrate and the second substrate so as to seal the first substrate and the second substrate, and that also covers a portion of the photoelectric conversion layer. An insulating material made of a different material from the seal is provided between the seal and the frame.
US10930801B2 Transaction card for transferring solar power
A transaction card is provided for communicating data relating to a transaction. The transaction card includes a solar layer, a transaction card layer, and a power transfer layer. The solar layer includes at least one solar panel capable of converting light into electricity, the transaction card layer supports the solar layer and includes a magnetic strip, and the power transfer layer includes circuitry capable of receiving electricity from the solar layer.
US10930800B2 Modular photovoltaic system
A modular photovoltaic system adapted for collecting light rays from a solar light source to generate electrical current, the system having a light-tracking solar collector adapted to collect the light rays, an edge-lit photovoltaic array, and a transport conduit adapted to transport the light rays to the edge-lit photovoltaic array. The edge-lit photovoltaic array has a plurality of edge-lit photovoltaic panels, each having a transparent diffusing pane positioned between two backing panels with inwardly directed photovoltaic surfaces. Each edge-lit photovoltaic panel perpendicularly contacts a lateral light distributor attached to the transport conduit, causing the transparent diffusing pane to illuminate the photovoltaic surfaces to generate electrical current. The light-tracking solar collector is adapted to rotate to remain oriented toward the solar light source.
US10930799B2 Semiconductor die with buried capacitor, and method of manufacturing the semiconductor die
A semiconductor body includes a front side and a back side and is configured to support an electronic circuit. A buried region is provided in the semiconductor body at a location between the electronic circuit and the back side. The buried region includes a layer of conductive material and a dielectric layer, where the dielectric layer is arranged between the layer of conductive material and the semiconductor body. A conductive path extends between the buried region and the front side to form a path for electrical access to the layer of conductive material. A capacitor is thus formed with the layer of conductive material providing a capacitor plate and the dielectric layer providing the capacitor dielectric. A further capacitor plate is provided by the semiconductor body, or by a further layer of conductive material in the buried region.
US10930786B2 Thin film transistor, manufacturing method, array substrate, display panel, and device
A thin film transistor (TFT), a manufacturing method, an array substrate, a display panel, and a device is disclosed. The TFT includes a hydrogen-containing buffer layer located on a substrate; an oxide semiconductor layer located on the buffer layer, wherein the oxide semiconductor layer includes a conductor region and a semiconductor region; a source or drain located on the conductor region, and electrically connected to the conductor region; and a gate structure located on the semiconductor region.
US10930779B2 Method of forming a vertical transistor pass gate device
A semiconductor device including a fin structure present on a supporting substrate to provide a vertically orientated channel region. A first source/drain region having a first epitaxial material with a diamond shaped geometry is present at first end of the fin structure that is present on the supporting substrate. A second source/drain region having a second epitaxial material with said diamond shaped geometry that is present at the second end of the fin structure. A same geometry for the first and second epitaxial material of the first and second source/drain regions provides a symmetrical device.
US10930777B2 Laterally double diffused metal oxide semiconductor (LDMOS) device on fully depleted silicon on insulator (FDSOI) enabling high input voltage
The present disclosure relates to semiconductor structures and, more particularly, to an LDMOS device on FDSOI structures and methods of manufacture. The laterally double diffused semiconductor device includes a gate dielectric composed of a buried insulator material of a semiconductor on insulator (SOI) technology, a channel region composed of semiconductor material of the SOI technology and source/drain regions on a front side of the buried insulator material such that a gate is formed on a back side of the buried insulator material. The gate terminal can also be placed at a hybrid section used as a back-gate voltage to control the channel and the drift region of the device.
US10930776B2 High voltage LDMOS transistor and methods for manufacturing the same
A semiconductor device is provided. The semiconductor device comprises a substrate, a gate, a first doped region and a second doped region. The gate is over the substrate. The first doped region and the second doped region are in the substrate. The first doped region and the second doped region are of a same conductivity type and separated by the gate. The length of the first doped region is greater than a length of the second doped region in a direction substantially perpendicular to a channel length defined between the first doped region and the second doped region.
US10930769B2 Semiconductor device and manufacturing method thereof
In a method of manufacturing a negative capacitance structure, a dielectric layer is formed over a substrate. A first metallic layer is formed over the dielectric layer. After the first metallic layer is formed, an annealing operation is performed, followed by a cooling operation. A second metallic layer is formed. After the cooling operation, the dielectric layer becomes a ferroelectric dielectric layer including an orthorhombic crystal phase.
US10930765B2 Method of manufacturing FinFET device with non-recessed STI
A method of manufacturing a semiconductor device includes providing a semiconductor structure having a substrate and a semiconductor fin on the substrate, forming a dummy gate structure on the semiconductor fin, forming a first dielectric layer on the semiconductor structure exposing an upper surface of the dummy gate structure, removing the dummy gate structure and a portion of the semiconductor fin below the dummy gate structure to form a trench that divides the semiconductor fin into a first portion and a second portion spaced apart from each other, and forming a second dielectric layer on the semiconductor structure filling the trench. The method provides a semiconductor device having a non-recessed trench isolation structure.
US10930763B2 Method and device for forming metal gate electrodes for transistors
A semiconductor device includes a first transistor and a second transistor. The first transistor includes: a first source and a first drain separated by a first distance, a first semiconductor structure disposed between the first source and first drain, a first gate electrode disposed over the first semiconductor structure, and a first dielectric structure disposed over the first gate electrode. The first dielectric structure has a lower portion and an upper portion disposed over the lower portion and wider than the lower portion. The second transistor includes: a second source and a second drain separated by a second distance greater than the first distance, a second semiconductor structure disposed between the second source and second drain, a second gate electrode disposed over the second semiconductor structure, and a second dielectric structure disposed over the second gate electrode. The second dielectric structure and the first dielectric structure have different material compositions.
US10930762B2 Multiple work function nanosheet field effect transistor using sacrificial silicon germanium growth
A method of forming a semiconductor device that includes forming a stack of nanosheets composed of a semiconductor material; and forming a sacrificial layer of a work function adjusting material on the semiconductor material of the stack of nanosheets. In a following step, the work function adjusting material is mixed into the semiconductor material on at least a channel surface of nanosheets. The sacrificial layer is removed. An interfacial oxide layer is formed including elements from the semiconductor material and the work function adjusting layer on said at least the channel surface of the stack of nanosheets. A gate structure including a gate dielectric is formed on the interfacial oxide that is present on the channel surface of the nanosheets.
US10930760B2 Fabrication of vertical field effect transistor structure with strained channels
A method of forming a vertical fin field effect transistor (vertical finFET) with a strained channel, including forming one or more vertical fins on a substrate, forming a sacrificial stressor layer adjacent to the one or more vertical fins, wherein the sacrificial stressor layer imparts a strain in the adjacent vertical fins, forming a fin trench through one or more vertical fins and the sacrificial stressor layer to form a plurality of fin segments and a plurality of sacrificial stressor layer blocks, forming an anchor wall adjacent to and in contact with one or more fin segment endwalls, and removing at least one of the plurality of the sacrificial stressor layer blocks, wherein the anchor wall maintains the strain of the adjacent fin segments after removal of the sacrificial stressor layer blocks adjacent to the fin segment with the adjacent anchor wall.
US10930759B2 Fabrication of vertical field effect transistor structure with strained channels
A method of forming a vertical fin field effect transistor (vertical finFET) with a strained channel, including forming one or more vertical fins on a substrate, forming a sacrificial stressor layer adjacent to the one or more vertical fins, wherein the sacrificial stressor layer imparts a strain in the adjacent vertical fins, forming a fin trench through one or more vertical fins and the sacrificial stressor layer to form a plurality of fin segments and a plurality of sacrificial stressor layer blocks, forming an anchor wall adjacent to and in contact with one or more fin segment endwalls, and removing at least one of the plurality of the sacrificial stressor layer blocks, wherein the anchor wall maintains the strain of the adjacent fin segments after removal of the sacrificial stressor layer blocks adjacent to the fin segment with the adjacent anchor wall.
US10930758B2 Space deposition between source/drain and sacrificial layers
A method for manufacturing a semiconductor device includes forming a plurality of fins on a semiconductor substrate. In the method, sacrificial spacer layers are formed on the plurality of fins, and portions of the semiconductor substrate located under the sacrificial spacer layers and located at sides of the plurality of fins are removed. Bottom source/drain regions are grown in at least part of an area where the portions of the semiconductor substrate were removed, and sacrificial epitaxial layers are grown on the bottom source/drain regions. The method also includes diffusing dopants from the bottom source/drain regions and the sacrificial epitaxial layers into portions of the semiconductor substrate under the plurality of fins. The sacrificial epitaxial layers are removed, and bottom spacers are formed in at least part of an area where the sacrificial epitaxial layers were removed.
US10930757B2 Method of manufacturing MOS transistor spacers
A method of manufacturing a MOS transistor includes forming a conductive first gate and forming insulating spacers along opposite sides of the gate, wherein the spacers are formed before the gate.
US10930754B2 Replacement metal gate structures
Replacement metal gate structures with improved chamfered workfunction metal and self-aligned contact and methods of manufacture are provided. The method includes forming a replacement metal gate structure in a dielectric material. The replacement metal gate structure is formed with a lower spacer and an upper spacer above the lower spacer. The upper spacer having material is different than material of the lower spacer. The method further includes forming a self-aligned contact adjacent to the replacement metal gate structure by patterning an opening within the dielectric material and filling the opening with contact material. The upper spacer prevents shorting with the contact material.
US10930753B2 Trench isolation for advanced integrated circuit structure fabrication
Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin comprising silicon, the fin having a lower fin portion and an upper fin portion. A first insulating layer is directly on sidewalls of the lower fin portion of the fin, wherein the first insulating layer is a non-doped insulating layer comprising silicon and oxygen. A second insulating layer is directly on the first insulating layer directly on the sidewalls of the lower fin portion of the fin, the second insulating layer comprising silicon and nitrogen. A dielectric fill material is directly laterally adjacent to the second insulating layer directly on the first insulating layer directly on the sidewalls of the lower fin portion of the fin.
US10930750B2 Method for forming a qubit device
The disclosed technology is directed to a method of forming a qubit device. In one aspect, the method comprises: forming a gate electrode embedded in an insulating layer formed on a substrate, wherein an upper surface of the substrate is formed from a group IV semiconductor material and the gate electrode extends along the substrate in a first horizontal direction; forming an aperture in the insulating layer, the aperture exposing a portion of the substrate; forming, in an epitaxial growth process, a semiconductor structure comprising a group III-V semiconductor substrate contact part and a group III-V semiconductor disc part, the substrate contact part having a bottom portion abutting the portion of the substrate and an upper portion protruding from the aperture above an upper surface of the insulating layer, the semiconductor disc part extending from the upper portion of the substrate contact part, horizontally along the upper surface of the insulating layer to overlap a portion of the gate electrode; forming a mask covering a portion of the disc part, the portion of the disc part extending across the portion of the gate electrode in a second horizontal direction; etching regions of the semiconductor structure exposed by the mask such that the masked portion of the disc part remains to form a channel structure extending across the portion of the gate electrode; and forming a superconductor source contact and a superconductor drain contact on the channel structure at opposite sides of the portion of the gate electrode.
US10930749B2 Semiconductor devices having a gate isolation layer and methods of manufacturing the same
Semiconductor devices are provided. A semiconductor device includes a channel region that protrudes from a substrate. The semiconductor device includes a gate line on the channel region. Moreover, the semiconductor device includes a gate isolation layer that is between a first portion of the gate line and a second portion of the gate line. The gate isolation layer is in contact with the gate line and includes a gap that is in the gate isolation layer. Related methods of manufacturing a semiconductor device are also provided.
US10930748B2 Semiconductor device
A semiconductor device includes: a semiconductor (10 μm≤tsi≤30 μm); a metal layer (30 μm≤tag≤60 μm) comprising Ag; a metal layer (10 μm≤tni≤35 μm) comprising Ni; and transistors. The transistors include a source electrode and a gate electrode on the semiconductor layer. The metal layer functions as a common drain region for the transistors. The ratio of the lengths of the longer side and the shorter side of the semiconductor layer is at most 1.73. The ratio of the surface area and the perimeter length of each electrode included in the source electrode is at most 0.127. The cumulative surface area of the source electrode and the gate electrode is at most 2.61 mm2. The length of the shorter side of the source electrode is at most 0.3 mm, and 702<2.33×tsi+10.5×tag+8.90×tni<943 is satisfied.
US10930746B2 Differential type sensing circuit with differential input and output terminal pair
A differential type non-volatile memory circuit comprising a differential sensing circuit, a differential data line pair, a memory cell array, and a differential bit line pair is provided. The differential sensing circuit has a differential input terminal pair and a differential output terminal pair. The differential data line pair is electrically connected to the differential input terminal pair of the differential sensing circuit. The memory cell array has at least one differential non-volatile memory cell configured to store data. The differential bit line pair is electrically connected between the memory cell array and the differential data line pair. When logic states of the differential output terminal pair start to be different in a read operation phase of the memory cell array, the differential sensing circuit and the differential data line pair are disconnected.
US10930744B2 Semiconductor device
According to one embodiment, a semiconductor device includes an oxide semiconductor layer, a first electrode, a second electrode, and a control electrode. The oxide semiconductor layer includes tin and tungsten. An average coordination number of oxygen atoms to tin atoms is greater than 3 but less than 4. The first electrode is electrically connected to a first end portion of the oxide semiconductor layer. The second electrode is electrically connected to a second end portion of the oxide semiconductor layer on a side opposite to the first end portion. The control electrode opposes a portion of the oxide semiconductor layer between the first end portion and the second end portion.
US10930740B2 Multi-direction channel transistor and semiconductor device including the multi-direction channel transistor
Provided are a multi-direction channel transistor having a gate having an increased effective width and a multi-direction channel, and a semiconductor device including the multi-direction channel transistor, wherein the multi-direction channel transistor includes at least one fin on an active region on a substrate and disposed adjacent to a recess extending in a first direction; a gate line extending in a second direction crossing the first direction and covering at least a portion of the at least one fin and the recess; source/drain regions on the active region at both sides of the gate line; and a channel region in the active region under the gate line between the source/drain regions, wherein the first direction is diagonal to the second direction, and a dielectric film under the gate line has substantially the same thickness on both the at least one fin and the recess.
US10930737B2 Transistor cell
A GaN field effect transistor (FET) including a plurality of transistor cells. A gate metal layer of a transistor cell includes a gate-drain overhang (width 0.2 um to 2.5 um) and a gate-source overhang (width 0.3 um to 1 um), and a widening at each narrow edge of the transistor cell, wherein the width of the widening of gate metal layer (150) is of 2-5 um. A metal (1) layer of the transistor sell extends beyond metal (0) layer. A last metal layer includes a drain plate and a source plate, each having a trapezoid form. More than two vias are located at a widening for connecting the gate metal layer to the gate bus. More than six vias distributed along the longitudinal dimension of the transistor cell connect metal (1) layer to metal (0) layer. A plurality of type 2 vias connect metal (1) layer to the last metal layer.
US10930734B2 Nanosheet FET bottom isolation
A technique relates to a semiconductor device. A rare earth material is formed on a substrate. An isolation layer is formed at an interface of the rare earth material and the substrate. Channel layers are formed over the isolation layer. Source or drain (S/D) regions are formed on the isolation layer.
US10930726B2 Display substrate and preparation method thereof, display panel, and display device
Provided are a display substrate and a preparation method thereof, a display panel, and a display device. The display substrate includes a substrate and a plurality of pixel units on the substrate. The pixel unit comprises a plurality of functional layers that are sequentially arranged in a direction away from the substrate. At least one of the plurality of functional layers, which is close to the substrate, constitutes a vertical thin film transistor (VTFT). At least one of the plurality of functional layers, which is away from the substrate, constitutes an organic light-emitting transistor (OLET). An orthographic projection region of the OLET on the substrate and an orthographic projection region of the VTFT on the substrate at least partially overlap.
US10930716B2 Electroluminescent display device with flatness improvement of emission layer
An electroluminescent display device includes a substrate, an electrode on the substrate, a first bank layer for covering an end of the electrode and exposing the electrode, a second bank layer on the first bank layer, and an emission layer on the exposed electrode, wherein the first bank layer includes a first pattern portion for covering the end of the electrode, and a second pattern portion upwardly extending from the first pattern portion.
US10930715B2 Flexible display device and method for manufacturing the device
A flexible display device and a method for manufacturing a flexible display device are provided. A flexible display device includes: a support substrate having a first thickness and including a first material, the support substrate further including first and second main faces opposite to each other, a buffer substrate on the first main face of the support substrate, the buffer substrate having a second thickness smaller than the first thickness, and the buffer substrate including a second material more flexible than the first material, a thin-film transistor array on the buffer substrate, such that the buffer substrate is between the thin-film transistor array and the support substrate, and a sealing substrate fixed above the thin-film transistor array, the thin-film transistor array being between the buffer substrate and the sealing substrate.
US10930714B2 Display device
A display device includes an organic light emitting display panel defining a display area for displaying an image and a non-display area adjacent the display area, and including a base layer, a circuit layer on the base layer, a light emitting device layer on the circuit layer, and a thin film sealing layer on the light emitting device layer and divided into a first thin film sealing area, and a second thin film sealing area adjacent the first thin film sealing area, and a touch detection unit including a first sensor part on the first thin film sealing area of the thin film sealing layer, and a second sensor part on the second thin film sealing area of the thin film sealing layer, wherein an upper surface of the thin film sealing layer that faces the touch detection unit includes a first upper surface in the first thin film sealing area, and a second upper surface in the second thin film sealing area and protruding away from the base layer.
US10930713B2 Display panel and display apparatus having the same
A display panel, including a light source configured to emit blue light; and a quantum dot color filter layer including: a red light converter including a red quantum dot particle configured to convert the blue light into red light, a green light converter including a green quantum dot particle configured to convert the blue light into green light, a light transmitting portion configured to transmit the blue light, and a white light generator including a first region and a second region, wherein the first region comprises a plurality of yellow quantum dot particles configured to convert the blue light into yellow light, wherein the second region transmits the blue light.
US10930710B2 Display with nanostructure angle-of-view adjustment structures
A display may have an array of pixels. Each pixel may have a light-emitting diode such as an organic light-emitting diode or may be formed from other pixel structures such as liquid crystal display pixel structures. The pixels may emit light such as red, green, and blue light. An angle-of-view adjustment layer may overlap the array of pixels. During operation, light from the pixels passes through the angle-of-view adjustment layer to a user. The viewing angle for the user is enhanced as the angular spread of the emitted light from the pixels is enhanced by the angle-of-view adjustment layer. The angle-of-view adjustment layer may be formed from holographic structures recorded by applying laser beams to a photosensitive layer or may be formed from a metasurface that is created by patterning nanostructures on the display using printing, photolithography, or other patterning techniques.
US10930708B2 OLED display substrate and method for manufacturing the same, display device
An OLED display substrate, a method for manufacturing the same, and a display device are provided. The OLED display substrate includes multiple sub-pixels, and at least one sub-pixel includes: an anode, a cathode, and a light-emitting layer between the anode and the cathode. The anode includes: a light-reflective layer and a first transparent conductive layer covering the light-reflective layer, and the first transparent conductive layer is located between the light-reflective layer and the light-emitting layer. First vertical distances between first surfaces of the first transparent conductive layers of the subpixels of different colors facing the respective cathodes and the respective cathodes are the same, and second vertical distances between the first surfaces of the first transparent conductive layers of the subpixels of different colors and second surfaces of the respective light-reflective layers facing the respective cathodes are different.
US10930707B2 Memory device with a split pillar architecture
Methods, systems, and devices for memory device with a split pillar architecture are described. A memory device may include a substrate arranged with conductive contacts in a pattern and openings through alternative layers of conductive and insulative material that may decrease the spacing between the openings while maintaining a dielectric thickness to sustain the voltage to be applied to the array. After etching material, an insulative material may be deposited in a trench. Portions of the insulative material may be removed to form openings, into which cell material is deposited. Conductive pillars may extend perpendicular to the planes of the conductive material and the substrate, and couple to conductive contacts. The conductive pillars and cell material may be divided to form a first and second storage components and first and second pillars.
US10930705B2 Crystallized silicon vertical diode on BEOL for access device for confined PCM arrays
A method is presented for integrating an electronic component in back end of the line (BEOL) processing. The method includes forming a first electrode over a semiconductor substrate, forming a first electrically conductive material over a portion of the first electrode, forming a second electrically conductive material over the first electrically conductive material, where the first and second electrically conductive materials define a p-n junction, depositing a phase change material over the p-n junction, and forming a second electrode over the phase change material.
US10930702B2 Magnetic memory devices
A magnetic memory device may include magnetic tunnel junction patterns on a substrate, a conductive line extending between the substrate and the magnetic tunnel junction patterns and in contact with bottom surfaces of the magnetic tunnel junction patterns, and a bottom pattern located between the conductive line and the substrate and in contact with a bottom surface of the conductive line. The material of the conductive line may have a first lattice constant, and the material of the bottom pattern may have a second lattice constant that is less than the first lattice constant of the conductive line. Alternatively or additionally, the bottom pattern includes a metal nitride, and a nitrogen content of the bottom pattern is higher than a metal element content of the metal element.
US10930699B2 Method and apparatus for image sensor packaging
A backside illuminated image sensor having a photodiode and a first transistor in a sensor region and located in a first substrate, with the first transistor electrically coupled to the photodiode. The image sensor has logic circuits formed in a second substrate. The second substrate is stacked on the first substrate and the logic circuits are coupled to the first transistor through bonding pads, the bonding pads disposed outside of the sensor region.
US10930695B2 Semiconductor device and method of manufacturing the same
An imaging device includes a first semiconductor element including at least one bump pad that has a concave shape. The at least one bump pad includes a first metal layer and a second metal layer on the first metal layer. The imaging device includes a second semiconductor element including at least one electrode. The imaging device includes a microbump electrically connecting the at least one bump pad to the at least one electrode. The microbump includes a diffused portion of the second metal layer, and first semiconductor element or the second semiconductor element includes a pixel unit.
US10930692B2 Increased optical path for long wavelength light by grating structure
Some aspects of the present disclosure relate to a method. In the method, a semiconductor substrate is received. A photodetector is formed in the semiconductor substrate. An interconnect structure is formed over the photodetector and over a frontside of the semiconductor substrate. A backside of the semiconductor substrate is thinned, the backside being furthest from the interconnect structure. A ring-shaped structure is formed so as to extend into the thinned backside of the semiconductor substrate to laterally surround the photodetector. A series of trench structures are formed to extend into the thinned backside of the semiconductor substrate. The series of trench structures are laterally surrounded by the ring-shaped structure and extend into the photodetector.
US10930691B2 Imaging element, method of manufacturing imaging element, imaging device, and method of manufacturing imaging device
There is provided a method of manufacturing an imaging device including a plurality of imaging elements in an imaging area, where each imaging element includes a photoelectric conversion unit in a substrate and a wire grid polarizer arranged at a light-incident side of the photoelectric conversion unit. The method generally includes forming the wire grid polarizer that includes a plurality of stacked strip-shaped portions, where each of the plurality of stacked strip-shaped portions includes a portion of a light-reflecting layer and a portion of a light-absorbing layer. The light-reflecting layer may include a first electrical conducting material that is electrically connected to at least one of the substrate or the photoelectric conversion unit. The light-absorbing layer may include a second electrical conducting material, where at least a portion of the light-absorbing layer is in contact with the light-reflecting layer.
US10930690B2 Photoelectric conversion apparatus, photoelectric conversion system, and movable body
A photoelectric conversion apparatus includes a plurality of pixels each including a photoelectric conversion portion, a charge holding portion, a floating diffusion, and first and second transistors disposed in a common active region. The active region includes a partial region which includes a first region extending in a first direction, a second region connected to the first region and extending in a second direction, and a third region connected to the second region and extending in a third direction. In a planar view, the partial region of a first pixel is disposed between a gate of the first transistor of the first pixel and the charge holding portion of a second pixel, and between a gate of the second transistor of the first pixel and the charge holding portion of the second pixel. A light-shielding member is disposed in a region overlapping the partial region.
US10930689B2 Photoelectric conversion apparatus and equipment
A photoelectric conversion apparatus includes a semiconductor layer including a photoelectric conversion portion, a charge holding portion configured to hold electric charge generated from the photoelectric conversion portion, and a charge detection portion to which the electric charge held by the charge holding portion is transferred. A gate electrode of a transistor and a light shielding film including a first portion covering the charge holding portion and a second portion covering an upper surface of the gate electrode are disposed above the semiconductor layer. The distance between the second portion of the light shielding film and the upper surface of the gate electrode is greater than the distance between the first portion of the light shielding film and the semiconductor layer.
US10930685B2 Image sensor including a shield structure
Disclosed is an image sensor comprising a first substrate including a plurality of pixels, a photoelectric conversion region in the first substrate at each of the pixels, a first capacitor on the first substrate, and a shield structure spaced apart from and surrounding the first capacitor.
US10930677B2 Alternative designs for addressing contacts that enhance bend ability of TFT backplanes
Various designs are provided to mitigate or solve limitation on the bendability of an active matrix backplanes: including breaking large rigid silicon chips (ICs) into smaller rigid ICs, changing the orientation of rigid ICs, changing the placement of the ICs on the array, thinning the ICs to the point where the Si is flexible, and replacing the ICs with high quality TFT processing which can be done on flexible substrates.
US10930667B2 Semiconductor device and manufacturing method of the same
A semiconductor device includes a substrate including a cell region and a peripheral region, a cell stacked structure stacked on the substrate in the cell region, a channel layer in one structure penetrating the cell stacked structure, a driving transistor formed in the peripheral region, and a plug structure coupled to the driving transistor and including a stacking structure of at least two contact plugs shorter than the channel layer, wherein each of the contact plugs is arranged at a same height as a part of the cell stacked structure.
US10930666B2 Semiconductor device and method of manufacturing the same
A semiconductor device may include a first cell structure, a second cell structure, a pad structure, a circuit, and one or more openings. The pad structure may be disposed between the first cell structure and the second cell structure, and may be electrically coupled to the first and second cell structures. The pad structure may have a plurality of stepped structures. The circuit may be disposed under the pad structure. The one or more openings may pass through the pad structure, and may expose the circuit. The one or more openings may be disposed between the plurality of stepped structures.
US10930665B2 Semiconductor device
A semiconductor device of an embodiment includes a control circuit arranged on a substrate, a first conductive layer arranged on the control circuit and containing a first element as a main component, a multilayer structure arranged on the first conductive layer and configured such that multiple second conductive layers and multiple insulating layers are alternately stacked on each other, a memory layer penetrating the multilayer structure and reaching the first conductive layer at a bottom portion, a first layer arranged between the control circuit and the first conductive layer and containing the first element as a main component, and a second layer arranged between the control circuit and the first layer and containing, as a main component, a second element different from the first element.
US10930664B2 Semiconductor devices including channel structures
A semiconductor device may include a substrate and a stacked structure in which a plurality of insulating layers and a plurality of interconnection layers are alternately stacked on the substrate. An isolation region may cross the stacked structure in a first direction. A plurality of first structures may extend into the stacked structure in a second direction perpendicular to the first direction. A plurality of first patterns may extend into the stacked structure in the second direction in the isolation region. Bottoms of the plurality of first patterns may be farther from an upper surface of the substrate than bottoms of the plurality of channel structures.
US10930662B2 Method for forming staircase structure of three-dimensional memory device
Disclosed is a method for forming a staircase structure of 3D memory devices, comprising (i) forming a stack of layers on a substrate; (ii) removing a portion of the stack to form a lower region and a upper region; (iii) forming a mask to cover the lower region and the upper region of the stack; (iv) forming a first opening in the mask to expose a first portion of the stack in the lower region and a second opening in the mask to expose a second portion of the stack in the upper region; (v) forming a photoresist layer to cover the stack and the mask; (vi) using a same set of trim-etch processes to pattern the photoresist layer to form a set of staircases in the first opening and the second opening; (vii) removing the photoresist layer and the mask; and repeating (iii), (iv), (v), (vi) and (vii) sequentially.
US10930659B2 Methods of improving adhesion of photoresist in a staircase structure and methods of forming a staircase structure
Methods of improving adhesion between a photoresist and conductive or insulating structures. The method comprises forming a slot through at least a portion of alternating conductive structures and insulating structures on a substrate. Portions of the conductive structures or of the insulating structures are removed to form recesses in the conductive structures or in the insulating structures. A photoresist is formed over the alternating conductive structures and insulating structures and within the slot. Methods of improving adhesion between a photoresist and a spin-on dielectric material are also disclosed, as well as methods of forming a staircase structure.
US10930657B2 Semiconductor device and method of manufacturing the same
Provided herein may be a semiconductor device. The semiconductor device may include a stack. The semiconductor device may include channel layers including channel patterns passing through the stack, dummy channel patterns passing through the stack, and a coupling pattern which may be disposed below the stack and couples the channel patterns with the dummy channel patterns. The semiconductor device may include a bit line which is disposed on the stack and coupled with the channel patterns. The semiconductor device may include a well pick-up line which is disposed on the stack and coupled with the dummy channel patterns.
US10930656B2 Memory device
A memory device may be provided that includes: a substrate; a coupling layer which is located on the substrate and has electrical conductivity; a meta-atomic layer which is located on or under the coupling layer; a memory layer which is located on the meta-atomic layer; and an electrode layer which is located on the memory layer and has electrical conductivity. The memory layer is composed of a material which produces spontaneous polarization at a voltage equal to or higher than a predetermined voltage. Through this, the memory device can be electrically driven and can continuously maintain modulated optical characteristics. Also, the memory device according to the embodiment of the present invention can modulate optical characteristics by multiple electrical inputs.
US10930654B2 Semiconductor devices
Semiconductor devices are provided. The semiconductor devices may include an active pattern on a substrate. The active pattern may include a first source/drain region and a second source/drain region. The semiconductor devices may also include a bit line electrically connected to the first source/drain region, a first connection electrode electrically connected to the second source/drain region, and a capacitor on the first connection electrode. The capacitor may include a first electrode, a second electrode, and a dielectric pattern between the first and second electrodes. A lower portion of the dielectric pattern may overlap a top surface of the first connection electrode, and the first electrode may extend on an upper portion of a sidewall of the first connection electrode.
US10930638B2 Semiconductor device having overlapping resistance element and capacitor
The disclosure provides a semiconductor device that can reduce the area of the circuit elements formed thereon. The semiconductor device includes a first conductivity type region formed on a substrate and formed with a resistance element surrounded by an insulating film; a second conductivity type region laminated in contact with an upper surface of the resistance element; a capacitor formed on the resistance element via an interlayer insulating layer; a via electrically connecting a terminal of the resistance element and a terminal of the capacitor in series; and a power supply line and a ground line electrically connected to the other terminal of the resistance element and the other terminal of the capacitor respectively.
US10930637B2 Transient voltage suppressor
A transient voltage suppressor is provided, comprising a heavily doped substrate connected to a first node, a first doped layer formed on the heavily doped substrate, a second doped layer formed on the first doped layer, a first heavily doped region and a second heavily doped region formed in the second doped layer and coupled to a second node, and a plurality of trenches arranged in the heavily doped substrate, having a depth not less than that of the first doped layer for electrical isolation. The heavily doped substrate, the second doped layer, and the second heavily doped region belong to a first conductivity type. The first doped layer and the first heavily doped region belong to a second conductivity type. By employing the proposed present invention, pn junctions of the transient voltage suppressor can be controlled beneath the surface, thereby reducing the junction capacitance effectively.
US10930627B2 Semiconductor package device and method of manufacturing the same
A semiconductor device package includes a first semiconductor device having a first surface, an interconnection element having a surface substantially coplanar with the first surface of the first semiconductor device, a first encapsulant encapsulating the first semiconductor device and the interconnection element, and a second semiconductor device disposed on and across the first semiconductor device and the interconnection element.
US10930623B2 Micro-transfer printable electronic component
A micro-transfer printable electronic component includes one or more electronic components, such as integrated circuits or LEDs. Each electronic component has device electrical contacts for providing electrical power to the electronic component and a post side. A plurality of electrical conductors includes at least one electrical conductor electrically connected to each of the device electrical contacts. One or more electrically conductive connection posts protrude beyond the post side. Each connection post is electrically connected to at least one of the electrical conductors. Additional connection posts can form electrical jumpers that electrically connect electrical conductors on a destination substrate to which the printable electronic component is micro-transfer printed. The printable electronic component can be a full-color pixel in a display.
US10930622B2 Prepackaged stair-stacked memory module in a chip scale system in package, and methods of making same
A pre-packaged stair-stacked memory module is mounted on a board with at least one additional component. A stair-stacked memory module includes a plurality of memory dice that are stacked vertically with respect to a processor die. A spacer is used adjacent to the processor die to create a bridge for the stair-stacked memory module. Each memory die in the stair-stacked memory module includes a vertical bond wire that emerges from a matrix for connection. The matrix encloses the stair-stacked memory module and at least a portion of the processor die. The matrix might also enclose the at least one additional component.
US10930621B2 Die stacking for multi-tier 3D integration
Various die stacks and methods of creating the same are disclosed. In one aspect, a method of manufacturing is provided that includes mounting a first semiconductor die on a second semiconductor die of a first semiconductor wafer. The second semiconductor die is singulated from the first semiconductor wafer to yield a first die stack. The second semiconductor die of the first die stack is mounted on a third semiconductor die of a second semiconductor wafer. The third semiconductor die is singulated from the second semiconductor wafer to yield a second die stack. The second die stack is mounted on a fourth semiconductor die of a third semiconductor wafer.
US10930619B2 Multi-wafer bonding structure and bonding method
A multi-wafer bonding structure and bonding method are disclosed. The multi-wafer bonding structure includes a first unit and a second unit, a metal layer of each wafer in the first unit electrically connected to an interconnection layer of the first unit, a first bonding layer in the first unit electrically connected to the interconnection layer of the first unit, a second bonding layer in the second unit electrically connected to a metal layer of the second unit, and the first bonding layer being in contact with the second bonding layer to achieve an electrical connection, thereby achieving the electrical connection among the interconnection layer of the first unit, the first bonding layer, the second bonding layer and the metal layer of each wafer.
US10930618B2 Semiconductor package having chip stack
A semiconductor package includes a substrate, a master chip on the substrate, a first slave chip on a top surface of the master chip and partially exposing the top surface of the master chip, the first slave chip having a same size as the master chip and having a same storage capacity as the master chip, and a first chip connector on the exposed top surface of the master chip and coupled to the master chip and the first slave chip.
US10930616B2 Semiconductor module, method for manufacturing semiconductor module, and power conversion apparatus
A semiconductor module includes a substrate, a semiconductor element, and a wire. The semiconductor element is joined onto the substrate and has a surface electrode. Both ends of the wire are bonded to the substrate such that the wire passes over the surface electrode of the semiconductor element. The wire is electrically connected to the surface electrode.
US10930612B2 Copper paste for pressureless bonding, bonded body and semiconductor device
A copper paste for pressureless bonding is a copper paste for pressureless bonding, containing: metal particles; and a dispersion medium, in which the metal particles include sub-micro copper particles having a volume average particle diameter of greater than or equal to 0.01 μm and less than or equal to 0.8 μm, and micro copper particles having a volume average particle diameter of greater than or equal to 2.0 μm and less than or equal to 50 μm, and the dispersion medium contains a solvent having a boiling point of higher than or equal to 300° C., and a content of the solvent having a boiling point of higher than or equal to 300° C. is greater than or equal to 2 mass % on the basis of a total mass of the copper paste for pressureless bonding.
US10930611B1 Solder joints for board level reliability
An integrated circuit assembly having an improved solder connection, and methods for fabricating the same are provided that utilize platelets within the solder connections to inhibit solder connection failure, thus providing a more robust solder interface. In one example, an integrated circuit assembly is provided that includes a package substrate having a first plurality of contact pads exposed on a first surface of the package substrate and a second plurality of contact pads exposed on a second surface of the package substrate. The second plurality of contact pads have a pitch that is greater than a pitch of the first plurality of contact pads. Interconnect circuitry is disposed in the package substrate and couples the first and second pluralities of contact pads. At least a first contact pad of the second plurality of contact pads includes a solder ball disposed directly in contact with a palladium layer.
US10930609B2 Method of forming a solder bump structure
A method of the present invention includes preparing a substrate having a surface on which a electrode pad is formed, forming a resist layer on the substrate, the resist layer having an opening on the electrode pad, filling conductive paste in the opening of the resist layer; sintering the conductive paste in the opening to form a conductive layer which covers a side wall of the resist layer and a surface of the electrode pad in the opening, a space on the conductive layer leading to the upper end of the opening being formed, filling solder in the space on the conductive layer and removing the resist layer.
US10930606B2 Electronic device comprising a discrete transistor assembled on a printed circuit board
An electronic device including: a discrete transistor including a semiconductor chip encapsulated in a package made of an insulating material leaving access to a first pad of connection to a first conduction terminal of the transistor; and a printed circuit board (320) including first (125) and second (129) separate connection pads, wherein the transistor is assembled on the printed circuit board so that the first connection pad (105) of the transistor is in contact with the first (125) and second (129) connection pads of the printed circuit board.
US10930605B2 Contact pad for semiconductor device
A device and method of manufacture is provided that utilize a dummy pad feature adjacent contact pads. The contact pads may be contact pads in an integrated fan-out package in which a molding compound is placed along sidewalls of a die and the contact pads extend over the die and the molding compound. The contact pads are electrically coupled to the die using one or more redistribution layers. The dummy pad features are electrically isolated from the contact pads. In some embodiments, the dummy pad features partially encircle the contact pads and are located in a corner region of the molding compound, a corner region of the die, and/or an interface region between an edge of the die and the molding compound.
US10930604B2 Ultra-thin multichip power devices
A multi-chip module (MCM) includes a molded body portion having a first outer surface and a second outer surface. A conductive layer defines at least a portion of the first outer surface A conductive connection layer portion is disposed outside of the second outer surface of the molded body portion. A first semiconductor die and a second semiconductor die are disposed between the conductive layer and the conductive connection layer, and first molding portion is disposed between the first semiconductor die and the second semiconductor die. The first molding portion extends between the first outer surface and the second outer surface of the molded body portion. A conductive pillar is electrically coupled to the conductive layer defining at least a portion of the first outer surface and the conductive connection layer portion disposed outside of the second outer surface.
US10930599B2 Semiconductor device and manufacturing method thereof
A method of manufacturing a semiconductor device comprises forming an integrated circuit, surrounding the integrated circuit with an inner seal ring, and surrounding the inner seal ring with a closed-loop outer seal ring. The inner seal ring includes a plurality of metal layers in a stacked configuration, first and second seal portions separated from each other, and third and fourth seal portions spaced apart from the first and second seal portions and separated from each other.
US10930595B2 Standard cells having via rail and deep via structures
The present disclosure relates to a semiconductor device and a manufacturing method, and more particularly to forming via rail and deep via structures to reduce parasitic capacitances in standard cell structures. Via rail structures are formed in a level different from the conductive lines. The via rail structure can reduce the number of conductive lines and provide larger separations between conductive lines that are on the same interconnect level and thus reduce parasitic capacitance between conductive lines.
US10930592B2 Wafer level fan-out application specific integrated circuit bridge memory stack
A packaged assembly and a method of producing the packaged assembly is disclosed. The packaged assembly includes a redistribution layer (RDL), an integrated circuit (IC), one or more memory modules, and an interposer comprising a plurality of vias from a list of through-silicon-vias (TSVs), through-mold-via (TMVs), and plated-through-hold-via (PTHs). In some implementations, the IC is electrically and mechanically attached to a first side of the RDL. In some implementations, the one or more memory modules and the interposer are disposed on a second side of the RDL. The packaged assembly also includes a mold having a mold material encapsulating the IC, the one or more memory modules, the interposer, and the RDL to form the packaged assembly. In some implementations, the IC is electrically conductively connected an external circuit board via a series of electrical connections between the IC, the RDL, the vias, and the external circuit board.
US10930591B2 Trench MOSFET with self-aligned body contact with spacer
Trench MOSFET with self-aligned body contact with spacer. In accordance with an embodiment of the present invention, a plurality of gate trenches are formed into a semiconductor substrate. A body contact trench is formed into the semiconductor substrate in a mesa between the gate trenches. Spacers are deposited on sidewalls of the body contact trench. An ohmic body contact is implanted into the semiconductor substrate through the body contact trench utilizing the spacers to self-align the implant. A body contact trench extension may be etched into the semiconductor substrate through the body contact trench utilizing the spacers to self-align the etch, prior to the implant.
US10930587B2 Semiconductor memory device
A semiconductor memory device includes a substrate defined with a cell array region and a connection region which extends in a first direction from the cell array region; an electrode structure including a bottom electrode structure which includes plurality of bottom electrodes stacked on the substrate to be separated from one another and a top electrode structure which includes plurality of top electrodes stacked on the bottom electrode structure to be separated from one another and has a stepped structure which includes plurality of stepping surfaces, in the connection region; and plurality of recess holes formed to a first depth from stepping surfaces of the stepped structure, and having bottom surfaces which expose the bottom electrode structure, wherein the first depth is substantially same as a height of the top electrode structure, and distances of the bottom surfaces of the recess holes from the substrate are different from one another.
US10930584B2 Electronic component and three-terminal capacitor
In an electronic component, a first ground land and a first hot land are provided on a mounting surface of a first substrate. A semiconductor chip is mounted on a first surface and a first ground land and a first hot land are provided on a second surface of a second substrate, and the second surface faces the mounting surface of the first substrate. A three-terminal capacitor is between the first substrate and second substrates. The first ground land of the first substrate and a first ground electrode of the three-terminal capacitor are connected to each other with a solder bump interposed therebetween, the first hot land of the first substrate and a first hot electrode of the three-terminal capacitor are connected to each other with a solder bump interposed therebetween, the first ground land of the second substrate and a second ground electrode of the three-terminal capacitor are connected to each other with a solder bump interposed therebetween, and the first hot land of the second substrate and a second hot electrode of the three-terminal capacitor are connected to each other with a solder bump interposed therebetween.
US10930578B2 Circuit device
A plate-shaped conductor is placed on an upper surface of a plate-shaped heat dissipation member with an insulation member interposed therebetween. A heat insulation member is placed at a location that is different from a location where the conductor is placed, on the upper surface of the heat dissipation member. An FET is electrically connected to the conductor. When current flows through the FET, the FET generates heat. A microcomputer that outputs a control signal for controlling operation of the FET is connected to an upper surface of the circuit board and is located opposite to the heat insulation member with the circuit board interposed therebetween.
US10930573B2 Circuit module and manufacturing method therefor
A circuit module includes a flat substrate, a frame substrate, a first electronic component, and a first sealing member. First connection electrodes are disposed at a peripheral portion of one main surface of the flat substrate. Second connection electrodes are disposed on one main surface of the frame substrate at locations corresponding to the first connection electrodes. Each of the first connection electrodes and a corresponding one of the second connection electrodes are connected to each other via a first connection member. The first electronic component is sealed by the first sealing member. The first electronic component and the first sealing member are disposed in a cavity defined by the one main surface of the flat substrate and an inner surface of the frame substrate. The first sealing member is separated from the inner surface of the frame substrate.
US10930571B2 Test structure and evaluation method for semiconductor photo overlay
A method for detecting overlay misalignment of a semiconductor device uses a test structure that includes a sensor structure and a via-chain structure. The sensor structure is disposed in a first layer on a semiconductor substrate and includes a plurality of first conductive lines extending in a first direction. Each first conductive line is separated from an adjacent first conductive line in a second direction by a first space. The via-chain structure is in a second layer above the first layer and between the first layer and the second layer. The via-chain structure includes at least one second conductive line disposed in the second layer and at least one via electrically connected to each second conductive line and extending toward the first layer. The at least one via is disposed in the first space between the adjacent first conductive lines of the sensor structure.
US10930566B2 Complementary metal oxide semiconductor replacement gate high-k metal gate devices with work function adjustments
An electrical device that includes a p-type semiconductor device having a p-type work function gate structure including a first high-k gate dielectric, a first metal containing buffer layer, a first titanium nitride layer having a first thickness present on the metal containing buffer layer, and a first gate conductor contact. A mid gap semiconductor device having a mid gap gate structure including a second high-k gate dielectric, a second metal containing buffer layer, a second titanium nitride layer having a second thickness that is less than the first thickness present, and a second gate conductor contact. An n-type semiconductor device having an n-type work function gate structure including a third high-k gate dielectric present on a channel region of the n-type semiconductor device, a third metal containing buffer layer on the third high-k gate dielectric and a third gate conductor fill present atop the third metal containing buffer layer.
US10930564B2 Metal gate structure cutting process
A method includes providing a structure having first and second fins over a substrate and oriented lengthwise generally along a first direction and source/drain (S/D) features over the first and second fins; forming an interlayer dielectric (ILD) layer covering the S/D features; performing a first etching process at least to an area between the S/D features, thereby forming a trench in the ILD layer; depositing a dielectric material in the trench; performing a second etching process to selectively recess the dielectric material; and performing a third etching process to selectively recess the ILD layer, thereby forming a contact hole that exposes the S/D features.
US10930561B2 SiC substrate processing method
An SiC substrate processing method includes a separation layer forming step of setting a focal point of a laser beam having a transmission wavelength to SiC inside an SiC substrate and next applying the laser beam to the SiC substrate to thereby form a separation layer inside the SiC substrate, the SiC substrate having a first surface and a second surface opposite to the first surface; a first plate attaching step of attaching a first plate to the first surface of the SiC substrate; a second plate attaching step of attaching a second plate to the second surface of the SiC substrate; and a separating step of applying an external force to the separation layer after performing the first plate attaching step and the second plate attaching step, thereby separating the SiC substrate into a first SiC substrate and a second SiC substrate along the separation layer.
US10930555B2 Contact over active gate structure
Methods of forming and processing semiconductor devices which utilize a three-color process are described. Certain embodiments relate to the formation of self-aligned contacts for metal gate applications. More particularly, certain embodiments relate to the formation of self-aligned gate contacts utilizing selective deposition of overlapping masks in a three-color process.
US10930553B2 Forming self-aligned vias and air-gaps in semiconductor fabrication
A semiconductor device includes a first trench on a mandrel line through a top mask layer and stopping at a middle mask layer; and a second trench on a non-mandrel line through the top mask layer and stopping at the middle mask layer. A spacer material is removed from a structure resulting from etching the first trench and the second trench. The device includes a first via structure, formed using a removable material, in the first trench; a second via structure, formed using a removable material, in the second trench; an air-gap formed in a third trench created at a location of the spacer; a fourth trench formed by etching, to remove the first via structure and a first portion of a bottom mask layer under the first via structure; and a self-aligned line-end via on the mandrel line formed by filling the fourth trench with a conductive metal.
US10930552B2 Method of semiconductor integrated circuit fabrication
A method of fabricating a semiconductor integrated circuit (IC) is disclosed. The method includes providing a substrate and depositing a conductive layer on the substrate. A patterned hard mask and a catalyst layer are formed on the conductive layer. The method further includes growing a plurality of carbon nanotubes (CNTs) from the catalyst layer and etching the conductive layer by using the CNTs and the patterned hard mask as an etching mask to form metal features.
US10930544B2 Method of manufacturing semiconductor device having buried gate electrodes
A method of manufacturing a semiconductor device, which has buried gate electrodes, includes: forming a plurality of gate trenches in a substrate having a plurality of active regions defined by a device isolation film, the plurality of gate trenches crossing the plurality of active regions and extending parallel to each other in a first horizontal direction; selectively forming a first gate insulating layer on an exposed surface of the substrate; forming a second gate insulating layer on exposed surfaces of both the first gate insulating layer and the device isolation film; and forming a plurality of gate insulating layers by partially removing the first gate insulating layer and the second gate insulating layer, and forming a plurality of buried gate electrodes.
US10930543B2 Thermal processing susceptor
In one embodiment, a susceptor for thermal processing is provided. The susceptor includes an outer rim surrounding and coupled to an inner dish, the outer rim having an inner edge and an outer edge. The susceptor further includes one or more structures for reducing a contacting surface area between a substrate and the susceptor when the substrate is supported by the susceptor. At least one of the one or more structures is coupled to the inner dish proximate the inner edge of the outer rim.
US10930540B2 Electrostatic chuck assembly having a dielectric filler
Embodiments include an electrostatic chuck assembly having an electrostatic chuck mounted on an insulator. The electrostatic chuck and insulator may be within a chamber volume of a process chamber. In an embodiment, a ground shield surrounds the electrostatic chuck and the insulator, and a gap between the ground shield and the electrostatic chuck provides an environment at risk for electric field emission. A dielectric filler can be placed within the gap to reduce a likelihood of electric field emission. The dielectric filler can have a flexible outer surface that covers or attaches to the electrostatic chuck, or an interface between the electrostatic chuck and the insulator Other embodiments are also described and claimed.
US10930539B2 Electrostatic chuck heater
An electrostatic chuck heater is such that a sheet heater formed by embedding a heater wire in a resin sheet is disposed between an electrostatic chuck and a support pedestal. The heater wires are provided one for each of many zones of the resin sheet, and are composed of copper wires routed unicursally from their first ends to their second ends so as to extend throughout the zones.
US10930536B2 Workpiece stocker with circular configuration
An improved stocker configuration for storing workpieces in a fabrication facility is disclosed, employing workpiece compartments arranged stationarily around a robot handling assembly. The robot handler can be designed with three degrees of freedom, to improve speed, throughput and minimum particle generation. In addition, the stocker storage area is stationary with the movable components are the robot assembly, thus further contributing to the cleanliness of the storage stocker. The stocker configuration can be open storage area for fast access, space saving and ease of clean air purging. The stocker configuration can provide highly dense workpiece storage, utilizing a circumferential edge gripper robot handling assembly.
US10930533B2 Substrate processing apparatus, substrate processing system and method of manufacturing semiconductor device
Described herein is a technique capable of capable of managing a substrate processing apparatus efficiently. According to one aspect of the technique described herein, there is provided a substrate processing apparatus including: a process chamber where a substrate is processed; a position information acquisition part configured to acquire position information of the process chamber; a memory device configured to store the position information; and an information controller configured to cause the position information acquired by the position information acquisition part to be stored in the memory device and the position information stored in the memory device to be outputted.
US10930532B2 Object detection system
An object detection system utilizes a teach cycle performed with a low-pressure blow-off (i.e. positive pressure) instead of vacuum (negative pressure). During the teach operation, the positive pressure is enabled and the nozzle is lowered to the object. An air sensor detects pressure or flow at the nozzle tip. A rise in pressure or drop in flow is detected as the nozzle makes contact with the object (i.e. just before or just after actual physical contact is made). The height of the object is stored as the taught height to be used subsequently in repetitive operations by the machine. This teaching method is particularly useful for very small objects because the positive pressure does not lift the object.
US10930531B2 Adaptive control of wafer-to-wafer variability in device performance in advanced semiconductor processes
Systems and methods for controlling device performance variability during manufacturing of a device on wafers are disclosed. The system includes a process platform, on-board metrology (OBM) tools, and a first server that stores a machine-learning based process control model. The first server combines virtual metrology (VM) data and OBM data to predict a spatial distribution of one or more dimensions of interest on a wafer. The system further comprises an in-line metrology tool, such as SEM, to measure the one or more dimensions of interest on a subset of wafers sampled from each lot. A second server having a machine-learning engine receives from the first server the predicted spatial distribution of the one or more dimensions of interest based on VM and OBM, and also receives SEM metrology data, and updates the process control model periodically (e.g., wafer-to-wafer, lot-to-lot, chamber-to-chamber etc.) using machine learning techniques.
US10930527B2 Method for controlling temperature of furnace in semiconductor fabrication process
A method for processing semiconductor wafers in a furnace is provided. The method includes forming a thin film on each of the semiconductor wafers in a furnace. The furnace includes a first end thermal zone, a middle thermal zone and a second end thermal zone arranged in sequence. The method further includes controlling the temperature of the furnace in a first thermal mode during the formation of the thin film. The method also includes supplying a purging gas into the furnace after the formation of the thin film. In addition, the method includes controlling the temperature of the furnace in a second thermal mode during the supply of the purging gas. The temperature distributions of the furnace are different in the first and second thermal modes.
US10930524B2 Semiconductor component and method of manufacture
In accordance with an embodiment, a semiconductor component includes a support having a side in which a device receiving structure and an interconnect structure are formed and a side from which a plurality of leads extends. A semiconductor device having a control terminal and first and second current carrying terminals and configured from a III-N semiconductor material is mounted to the device receiving structure. A first electrical interconnect is coupled between the first current carrying terminal of the semiconductor device and a first lead. A second electrical interconnect is coupled between the control terminal of the semiconductor device and a second lead.
US10930523B2 Method for manufacturing resin-sealed power semiconductor device
It is an object of the present invention to provide a method for manufacturing a resin-sealed power semiconductor device that facilitates the separation of a suspension lead from a mold resin and a lead frame. A method for manufacturing a resin-sealed power semiconductor device according to the present invention includes the following steps: (a) sealing a semiconductor element and a lead frame, to prepare a sealed body in which a terminal lead and a suspension lead that are included in the lead frame project outward from a side of the mold resin; (b) punching a portion of the suspension lead, the portion projecting from the mold resin, with a first punch in a first direction, to separate the suspension lead from the mold resin; and (c) punching the projecting portion of the suspension lead with a second punch in a second direction.
US10930522B2 Semiconductor layer, oscillation element, and semiconductor layer manufacturing method
A semiconductor layer of the present invention is a semiconductor layer including: a pn junction at which an n-type semiconductor (Al2O3 (n-type)) and a p-type semiconductor (Al2O3 (p-type)) are joined, the n-type semiconductor (Al2O3 (n-type)) having a donor level that is formed by causing an aluminum oxide film (Al2O3) to excessively contain aluminum (Al), the p-type semiconductor (Al2O3 (p-type)) having an acceptor level that is formed by causing an aluminum oxide film (Al2O3) to excessively contain oxygen (O).
US10930516B2 Semiconductor device and semiconductor device manufacturing method
The present invention aims to improve the accuracy and stability when removing an insulating film at a bottom of a TSV to allow a through hole to open toward a connection target electrode. A semiconductor device manufacturing method including: forming a through hole in a semiconductor substrate by using anisotropic etching performed from a first surface side of the semiconductor substrate; forming a thin film being an insulating film on an entire inner surface of the through hole; forming a carbon-containing thin film using plasma deposition on the first surface including an opening edge portion of the through hole; engraving an inner bottom of the through hole by using anisotropic plasma etching with the carbon-containing thin film as a mask; removing the carbon-containing thin film by ashing; and forming a through-substrate electrode in the through hole.
US10930511B2 Copper electrodeposition sequence for the filling of cobalt lined features
In one example, an electroplating system comprises a first bath reservoir, a second bath reservoir, a clamp, a first anode in the first bath reservoir, a second anode in the second bath reservoir, and a direct current power supply. The first bath reservoir contains a first electrolyte solution that includes an alkaline copper-complexed solution. The second bath reservoir contains a second electrolyte solution that includes an acidic copper plating solution. The direct current power supply generates a first direct current between the clamp and the first anode to electroplate a first copper layer on the cobalt layer of the wafer submerged in the first electrolyte solution. The direct current power supply then generates a second direct current between the clamp and the second anode to electroplate a second copper layer on the first copper layer of the wafer submerged in the second electrolyte solution.
US10930508B2 Replacement metal gate formation of PMOS ultra-low voltage devices using a thermal implant
Disclosed are methods of forming devices. One method may include providing a first set of fins and a second set of fins extending from a substrate, and providing a dummy oxide over the first set of fins and the second set of fins. The method may further include performing a thermal implant to the second set of fins, wherein the thermal implant is an angled ion implant impacting the dummy oxide. The method may further include removing the dummy oxide from the first set of fins and the second set of fins, and forming a first work function (WF) metal over the first set of fins and a second WF metal over the second set of fins.
US10930505B2 Methods for integrated circuit design and fabrication
The present disclosure provides a method of patterning a target material layer over a semiconductor substrate. The method includes steps of forming a spacer feature over the target material layer using a first sub-layout and performing a photolithographic patterning process using a second sub-layout to form a first feature. A portion of the first feature extends over the spacer feature. The method further includes steps of removing the portion of the first feature extending over the spacer feature and removing the spacer feature. Other methods and associated patterned semiconductor wafers are also provided herein.
US10930503B2 Geometric control of bottom-up pillars for patterning applications
Processing methods comprising selectively replacing a first pillar material with a second pillar material in a self-aligned process are described. The first pillar material may be grown orthogonally to the substrate surface and replaced with a second pillar material to leave a substantially similar shape and alignment as the first pillar material.
US10930502B2 Blocking structures on isolation structures
A semiconductor device includes a semiconductor substrate, a plurality of isolation structures on the semiconductor substrate, and a plurality of blocking structures disposed directly over the isolation structures. The blocking structures have a lower reflectivity than the isolation structures.
US10930496B2 Method for fabricating heteroepitaxial semiconductor material on a mica sheet
A method for fabricating heteroepitaxial semiconductor material on a mica sheet is disclosed. Firstly, a mica substrate is provided. Then, at least one semiconductor film is deposited on the mica substrate to form a flexible substrate whose flexibility is applied to various applications, such as wearable devices, portable photoelectric equipment, or improving the speed and bandwidth of commercial and military systems, such that the flexible substrate has the competitiveness in the market.
US10930495B2 Integrated circuits with doped gate dielectrics
Examples of an integrated circuit with a gate structure and a method for forming the integrated circuit are provided herein. In some examples, a workpiece is received that includes a substrate having a channel region. A gate dielectric is formed on the channel region, and a layer containing a dopant is formed on the gate dielectric. The workpiece is annealed to transfer the dopant to the gate dielectric, and the layer is removed after the annealing. In some such examples, after the layer is removed, a work function layer is formed on the gate dielectric and a fill material is formed on the work function layer to form a gate structure.
US10930492B2 Method for producing SiC epitaxial wafer and apparatus for producing SiC epitaxial wafer
A method for producing a SiC epitaxial wafer using an apparatus including a mounting plate having a recessed accommodation portion and a satellite disposed in the recessed accommodation portion, and configured so that a SiC substrate is placed on an upper surface thereof. The method includes supplying a dopant carrier gas to an outer circumference of the SiC epitaxial wafer from between the recessed accommodation portion and the satellite.
US10930487B2 Double bend ion guides and devices using them
Certain configurations of devices are described herein that include a DC multipole that is effective to doubly bend the ions in an entering particle beam. In some instances, the devices include a first multipole configured to provide a DC electric field effective to direct first ions of an entering particle beam along a first internal trajectory at an angle different from the entry trajectory of the particle beam. The first multipole may also be configured to direct the ions in the first multipole along a second internal trajectory that is different than the angle of the first internal trajectory of the particle beam.