Document Document Title
US10917339B2 System and method for user customization and automation of operations on a software-defined network
In general, techniques are described for defining and executing device-independent commands on a network having a plurality of network devices. In some examples, a controller includes a graphical user interface. The controller displays, via the graphical user interface, network devices that support a device-independent command selected from one or more device-independent commands, wherein each device-independent command performs one or more operations on supported network devices. The controller receives, via the graphical user interface, user input selecting two or more of the displayed network devices and performs the one or more operations of the selected device-independent command on the selected network devices. In some examples, performing includes executing tasks associated with each network device, wherein the tasks, when executed, perform the one or more operations on each respective network device.
US10917337B1 Time to live (TTL) handing for segment routing ping/traceroute
An improved traceroute mechanism for use in a label-switched path (LSP) is provided by (a) receiving, by a device in the LSP, an echo request message, wherein the echo request includes a label stack having a least one label, and wherein each of the at least one label has an associated time-to-live (TTL) value; (b) responsive to receiving the echo request, determining by the device, whether or not the device is a penultimate hop popping (PHP) device for the outermost label of the label stack; and (c) responsive to determining that the device is the PHP device for the outermost label of the label stack, (1) generating an echo reply message corresponding to the echo request message, wherein the echo reply message is encoded to indicate that the device is the PHP device for the outermost label of the label stack, and (2) sending the echo reply message back towards a source of the echo request message. Responsive to receiving the echo reply message by the ingress of the LSP defined by the outermost label of the label stack, the ingress may (a) determine whether or not the received echo reply message was sourced from the PHP of the LSP defined by the outermost label of the label stack, and (b) responsive to a determination that the received echo reply message was sourced from the PHP of the LSP defined by the outermost label of the label stack, (1) generate a next echo request in which the TTL value associated with the outermost label in the label stack is increased and in which the TTL value associated with a next to outermost label, if any, in the label stack is incremented, and (2) send the next echo request message on the LSP defined by the outermost label of the label stack.
US10917334B1 Network route expansion
Technologies are provided for expanding computer network route advertisements. A route expansion server can be configured to receive route advertisements from a router, generate an expanded route advertisement that includes additional network route information, and transmit the expanded route advertisement to another router. The route expansion server can receive a route advertisement from a network zone edge router, comprising a network address prefix. The route expansion server can look up one or more additional network address prefixes associated with the edge router and generate an expanded route advertisement message that indicates that the edge router is a potential next hop for the network address prefix and the one or more additional network address prefixes. The route expansion server can transmit the expanded route advertisement message to another router. In at least some embodiments, the route expansion server can generate different expanded route advertisement messages for different routers.
US10917332B1 Machine learning for a decentralized content fabric
Disclosed are examples of systems, apparatus, devices, computer program products, and methods implementing aspects of machine learning for a decentralized content-centric system. In some implementations, predicted scores are obtained for a subset of fabric nodes of an overlay network. The scores can be based on prior training. A top scoring fabric node of the subset is identified as an egress node for communicating with a client. Also obtained are predicted scores for egress-origin segments defining paths in the overlay network between the egress node and origin nodes of the fabric nodes. The origin nodes store a content object part associated with digital content. One or more of the egress-origin segments is identified as being top scoring and is configured to be processed to identify one of the origin nodes for providing the content object part.
US10917329B2 Communication device and communication method
A communication device belonging to a first cluster among a plurality of clusters includes a memory, a processor, and a network connection device. The memory stores identification information of another cluster that has information being retrievable by a terminal connecting to the communication device in a summary of data held by the other cluster. The processor performs, upon receiving a combination of identification information of a second cluster that holds retrieval-target data and identification information of the retrieval-target data from the terminal that accessed the summary, a control to request target data identified by the combination. The network connection device forwards the target data to the terminal.
US10917325B2 Deriving test profiles based on security and network telemetry information extracted from the target network environment
Systems and methods for deriving test profiles for validating network devices based on security and network telemetry information extracted from the target network environment is provided. According to one embodiment, security and network telemetry information are extracted by a test generator during a monitoring period from one or more network devices running within a target network environment. Performance related parameters and data associated with the performance related parameters are then determined for the target network environment. A test profile is generated for validating a network device under test proposed to be installed within the target network environment based on any or a combination of the performance related parameters, the data associated with the performance related parameters, the security and network telemetry information and a set of capabilities of the network device under test.
US10917323B2 System and method for managing a remote office branch office location in a virtualized environment
A system and method for transmitting data from a local management system of a remote office branch office site in a virtual computing system to a central management system includes assigning, by the local management system, an initial priority to each piece of data, identifying data requested by the central management system since a previous data transmission, and updating the initial priority of each piece of data to an updated priority. The data requested by the central management system is prioritized higher than other data. The system and method also include combining, by the local management system, at least a portion of the data starting with data having a highest priority, into a data packet until the data packet achieves a computed data packet size, transmitting the data packet to the central management system, and updating the initial priority with the updated priority for future data transmissions.
US10917322B2 Network traffic tracking using encapsulation protocol
A first encapsulation protocol processing component (EPPC) at a particular device of a virtualized computing service establishes a network packet tracking session with a second EPPC at another device. The first EPPC tags at least some encapsulation packets (which contain baseline packets generated at or directed to guest virtual machines) sent to the second EPPC as tracked packets. The first EPPC obtains network metrics corresponding to the tracked packets of the session from the second EPPC, prepares network health updates based on the metrics, and send the updates to a network health management service associated with the virtualized computing service.
US10917320B2 Edge HMI module server system and method
Some embodiments include a system and method of receiving, by an edge computing device, from a server processor of a cloud platform coupled to a network, human-machine-interface logic associated with a local display of data received from a device of a distributed environment coupled to the network. Further, the system and method includes configuring the edge computing device as a human-machine-interface, coupling a data ingester and establishing a data connection to the distributed environment of the network, operating the data ingester to discover the device and receive data from the device, and processing a local graphical visualization of at least one update to the network.
US10917317B2 Enterprise slice management
Techniques that provide enterprise slice management are described herein. In one embodiment, a method includes providing an enterprise service template to an enterprise, the enterprise service template comprising parameter input fields for indicating enterprise devices associated with the enterprise, services to be provided to the enterprise devices using a mobile network, and service options associated with the services; determining one or more mobile network services to be provided to a plurality of enterprise devices and one or more service options associated with the one or more mobile network services; identifying, based on the one or more mobile network services, an enterprise slice to provide the one or more mobile network services; and provisioning the enterprise slice based on the one or more mobile network services, the plurality of enterprise devices, and the one or more service options associated with the one or more mobile network services.
US10917314B1 Distributed health management using peer leases
Techniques for distributed node management are described. In some implementations, distributed node management includes determining a host of a distributed system to be unhealthy; requesting a plurality of leases from peers in the distributed system, each lease to guarantee the lease providing peer will not undergo voluntary maintenance; upon receiving the requested plurality of leases, reporting the host as unhealthy to a load balancer of the distributed system, the load balancer to balance traffic of the host and not direct traffic to the unhealthy host; and reporting the host as healthy to the load balancer of the distributed system after a predetermined period of time.
US10917313B2 Managing service levels provided by service providers
A method and system for managing at least one service level of a service provided by a service provider to a customer of the service provider under a service level agreement. The service level agreement is a contract between the service provider and the customer. Measurement data and at least one adjudication element associated with a service level of the at least one service level are adjudicated in accordance with the at least one adjudication element such that the adjudication generates a respective adjudicated data point for each data point of the measurement data. The measurement data includes at least one data point measured on a respective resource that provides the service. A modification history chain is generated by: initially establishing the modification history chain as being empty; and adding an identification of each adjudicated element applied to each data point of the measurement data to the modification history chain.
US10917308B2 Virtualized network service management and diagnostics
A device monitors, for a software-defined networking wide area network (SD-WAN) deployment, a set of virtualized network services of the SD-WAN deployment, and applies a set of diagnostic tests to evaluate the set of virtualized network services. The device detects, based on monitoring the set of virtualized network services and in connection with applying the set of diagnostic tests, an event associated with a virtualized network service. The device analyzes, using an analytics model of SD-WAN operation, the event to identify an issue associated with the virtualized network service, and determines, based on the analytics model of SD-WAN operation, a recommendation relating to remediating the issue. The device generates an abstraction layer user interface to represent the set of virtualized network services and to convey the recommendation relating to remediating the issue, and implements, after providing the abstraction layer user interface, the recommendation to remediate the issue.
US10917307B2 Transparent middlebox graceful entry and exit
Middleboxes include a processor configured to determine a degree of mismatch between a sequence number in a first connection between the middlebox and a client device and a sequence number in a second connection between the middlebox and a server device. A network control module is configured to delay acknowledgment signals from the middlebox on a connection to decrease the degree of mismatch between sequence numbers and to establish a direct connection between the client device and the server device without mediation by the middlebox upon a determination that the degree of mismatch between sequence numbers is zero.
US10917306B2 Device provisioning
The disclosure relates to provisioning end devices, such as wireless end devices. In one aspect, a wireless end device may be provisioned with a backend system without requiring a user to enter information to connect the wireless end device to a local wireless network. Moreover, the wireless end device may be provisioned with a single user action. In one example, the single action may be a single click on an activation portal. The single action may trigger the backend system to detect the wireless end device with the help of one or more gateways at one or more premises, and to associate the wireless end device with a user account. The backend system may also facilitate configuring the wireless end device to connect to the proper or desired network at a premises.
US10917304B2 Task monitoring system
A system and method for task monitoring that communicates with a device to determine the occurrence of a parameter and changing a rate of transfer based on the occurrence of the parameter.
US10917302B2 Learning robust and accurate rules for device classification from clusters of devices
In various embodiments, a device classification service obtains traffic telemetry data for a plurality of devices in a network. The service applies clustering to the traffic telemetry data, to form device clusters. The service generates a device classification rule based on a particular one of the device clusters. The service receives feedback from a user interface regarding the device classification rule. The service adjusts the device classification rule based on the received feedback.
US10917301B2 Wireless network slice distributed ledger
A wireless communication network implements a wireless network slice that has a slice configuration. A slice controller signals a Network Function Virtualization (NFV) Management and Orchestration (MANO) to implement a Network Service Descriptor (NSD) for the slice based on the slice configuration. The NFV MANO signals an NFV Infrastructure (NFVI) to execute Virtual Network Functions (VNFs) for the slice based on the NSD. The NFVI executes the VNFs, and the VNFs handle user data for wireless user devices that use the slice. The VNFs generate and transfer slice data responsive to handling the user data. The wireless user devices generate and transfer slice data responsive to using the slice. Wireless access points generate and transfer slice data responsive to serving the user devices. A distributed ledger receives the slice data, forms a consensus for the slice data, and stores the slice data in a distributed ledger format.
US10917300B2 Method for obtaining standard configuration template of network device, and computing device
A method for obtaining a standard configuration template of a network device and a computing device includes obtaining configuration commands of a plurality of network devices, erating a command template set including a plurality of different command templates, generating a correlation matrix based on the command template set, clustering the plurality of network devices based on the correlation matrix to obtain at least two categories of network devices, dividing the correlation matrix into a plurality of submatrixes based on a clustering result, performing singular value decomposition on each submatrix to obtain a non-zero singular value, and using, as a standard configuration template of a corresponding category, a command template in the command template set that makes a contribution greater than a threshold to the non-zero singular value.
US10917297B2 Application service configuration system
A service configuration system for an application service can receive network data from computing devices of clients of the application service. The system can determine, from the network data, that a network latency for a subset of the computing devices crosses outside a latency range, and determine whether the subset of computing devices utilize a common network service provider. Based on determining that the subset of computing devices utilize a common network service provider, the system can transmit a set of configuration signals to the subset of computing devices, which modify a set of default application configurations of the designated application to compensate for the network latency.
US10917293B2 Controller for bulk onboarding
In one embodiment, a system, apparatus and method is described, the system including a local controller by executed by a processor of an Internet of Things (IoT) device, the local controller being operative to perform, at least one of a push or a pull operation with at least one other IoT device, to request extended control functionality from a central controller, to receive extended control functionality from the central controller, to exercise said extended control functionality over the least one other IoT device, to receive an instruction from the central controller retracting control functionality and, in response to receiving said instruction, to retract said control functionality, and to receive a command to delete itself from the IoT device. Related systems, apparatus, and hardware are also described.
US10917291B2 RAID configuration
A method and a device for configuring RAID are provided. When a RAID configuration is required, an Integrated Fast Intelligent Scalable Toolkit (IF) start command is sent to each server to perform a RAID configuration in a batch manner. Each server completes the start of the IF based on the received IF start command and sends a RAID configuration command to an Agent in the IF for RAID configuration.
US10917287B2 Recording medium recording communication control program, communication control apparatus, and communication control method
A non-transitory computer-readable recording medium having stored therein a communication control program for causing a computer to execute a process includes: receiving, from each of a plurality of base stations, communication result between the respective base stations and a communication terminal; storing, when the received communication result indicates that transmission of a message from a first base station to a specific communication terminal is failed, the message in a storage in association with identification information on the specific communication terminal; and referring, when the received communication results indicates that communication is established between a second base station and the specific communication terminal, to the storage, transmitting the message stored in association with the identification information on the specific communication terminal to the second base station, and requesting the second base station to transmit the message to the specific communication terminal.
US10917280B2 Method and apparatus for transmitting and receiving reference signals in a wireless communication system
The present invention relates to a method and a device for a terminal performing phase tracking in a wireless communication system. According to the present invention, a method and a device may be provided, the method comprising: receiving, from a base station, configuration information associated with a phase tracking reference signal (PTRS); and on the basis of the configuration information, receiving a first demodulation reference signal (DMRS) and the PTRS, wherein the PTRS is mapped to at least one OFDM symbol according to a particular pattern and at a predetermined symbol interval, and phase tracking for data demodulation is performed on the basis of at least one of the first DMRS or the PTRS.
US10917278B2 Frequency-domain transmitters and receivers which adapt to different subcarrier spacing configurations
5G, New Radio (NR), numerology, receiver issues. The numerology scheme here consists in keeping the bandwidth constant but varying the subcarrier spacing (ie different tone spacing B for data and K*B for control channels), and correspondingly the symbol duration. Control symbols have a wider subcarrier separation but smaller symbol duration (In the case of beamforming reference signals, it would enable to train K beams in one symbol time period). Receiver issues: Embodiment 1 uses different Rx chains for data and control channels with different FFT sizes (size differing by factor K). Embodiment 2 uses a common identical FFT size (the one of the data channel) for both control and data: For the control channel, either repeat each control symbol K times prior to FFT and performs down-sampling afterwards and repeat it for each control symbol, or performs joint processing and FFT for all K control symbols jointly by either time domain linear combination or post FFT frequency processing.
US10917272B2 Non-transitory computer-readable information storage media for variable header repetition in a wireless OFDM network
A non-transitory computer-readable information storage media for use within a wireless OFDM network that causes to be transmitted or received a first packet type and a second packet type. The first packet type has a header field with two parts with each part comprising a different set of header bits. The two parts of the header field are transmitted or received using two OFDM symbols. The second packet type has a header field with four parts with the first and second parts comprising the same first set of header bits and the third and the fourth part comprising the same second set of header bits. The four parts of the header field are transmitted or received using four OFDM symbols. The second packet type provides more reliable transmission or reception than the first packet type.
US10917267B2 Method and system for split voltage domain receiver circuits
Methods and systems for split voltage domain receiver circuits are disclosed and may include amplifying complementary received signals in a plurality of partial voltage domains. The signals may be combined into a single differential signal in a single voltage domain. Each of the partial voltage domains may be offset by a DC voltage from the other partial voltage domains. The sum of the partial domains may be equal to a supply voltage of the integrated circuit. The complementary signals may be received from a photodiode. The amplified received signals may be amplified via stacked common source amplifiers, common emitter amplifiers, or stacked inverters. The amplified received signals may be DC coupled prior to combining. The complementary received signals may be amplified and combined via cascode amplifiers. The voltage domains may be stacked, and may be controlled via feedback loops. The photodetector may be integrated in the integrated circuit.
US10917266B2 Transceiver, a SUDAC, a method for signal processing in a transceiver, and methods for signal processing in a SUDAC
A transceiver of a user equipment includes a receiving stage, a frontend channel estimator, a frontend channel equalizer, a backend channel estimator, and a backend channel equalizer. The receiving stage is configured to receive an inbound signal from a SUDAC, which enables a relay communication including a frontend communication using extremely-high frequencies and a backend communication using ultra-high frequencies. The inbound signal includes a data portion, a backend control portion and a frontend control portion, the frontend control portion including a frontend evaluation signal and a configuration signal. The frontend and the backend channel estimators are configured to perform channel estimations based on the frontend evaluation signal and the backend control portion, respectively, wherein the frontend and backend channel equalizers are configured to equalize distortions, caused by using the extremely-high and ultra-high frequencies, respectively, based on the channel estimation of the frontend and backend channel estimators, respectively.
US10917265B2 Communication apparatus and communication system
To obtain a communication apparatus capable of reducing the consumption of electric power.A communication system according to the present disclosure includes a transmitter that generates a first signal including communication data and sends the first signal through a communication terminal in a first operation mode, and that generates a second signal including a predetermined first signal pattern and having a transition rate lower than the first signal and sends the second signal through the communication terminal in a second operation mode, and a controller that sets an operation mode for the transmitter to either of a plurality of operation modes including the first operation mode and the second operation mode.
US10917263B1 Universal configurable device gateway
A method and an apparatus for providing a configurable, object-oriented, protocol-neutral interface between a physical device and a server. The method includes coupling an application gateway with the physical device, where the application gateway includes a protocol gateway module configured for physical communication with the physical device, and an object adapter module configured for virtual communication between the physical device and a client application running on a server. The method further includes configuring a service starter to launch and bind the object adapter module with the protocol gateway module, configuring the protocol gateway module to define the physical interface between the physical device and the protocol gateway, and establishing communication between the protocol gateway module and the physical device, such that the physical device is exposed as a network device on the server.
US10917259B1 Computing device interaction with surrounding environment
In some examples, a computing device may receive an indication that a first user and a second user are located in a zone of an interior space or other surrounding environment. Settings of one or more controllable devices may be controlled based on user profiles including implicit or explicit user preferences, such as for controlling lighting, ambient temperature, entertainment, security, etc., in the zone. When there is conflict between the user preferences, the conflict may be resolved, such as by determining a hierarchy between the users, by averaging the preferred settings, or based on other techniques. Further, a portable computing device may be associated with a user and may provide sensor information. The sensor information may include biometric sensor information that is indicative of a bodily condition of the user and that can be used for determining a context of the user or the zone.
US10917254B2 System and method of utilizing an interference mitigating protocol in mesh networks
A system and method for implementing a dynamic interference mitigating protocol in a mesh network is described. The system includes a first of a plurality of nodes in a mesh network to function as an originator station, a second of the plurality of nodes in the mesh network to function as a target station and a third of the plurality of nodes in the mesh network to function as a coordinating node. A setup message may be transmitted across the plurality of nodes to determine or implement an assigned path between the originator station and the target station. All nodes in the plurality of nodes may be reactivated after the high density data packets are received at the target station.
US10917248B2 Providing quality of service for certificate management systems
An example system receives certificate requests from clients. Each request can indicate a number of computerized devices needing certificates; a timestamp indicating when the request was transmitted; and a client identifier. The system includes a Quality of Service (QoS) manager that: distributes the requests from the clients across client queues, each of the client queues corresponding to a particular client; and divides requests into smaller subgroups of entries corresponding to a subset of the computerized devices needing certificates. The system can also transmit retrieved entries from the client queues to a certificate management service.
US10917246B2 System and method for blockchain-based cross-entity authentication
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for blockchain-based cross-entity authentication are provided. One of the methods includes: obtaining, from a blockchain, a blockchain transaction comprising an authentication request by a first entity for authenticating a user, wherein the authentication request comprises a decentralized identifier (DID) of the user; in response to determining that the first entity is permitted to access authentication information of the user endorsed by a second entity, obtaining an authentication result of the user by the second entity in response to the obtained blockchain transaction, wherein the authentication result is associated with the DID; generating a different blockchain transaction comprising the authentication result; and transmitting the different blockchain transaction to a blockchain node for adding to the blockchain.
US10917240B2 Cryptographic key management to prevent data exfiltration
A cryptographic key management service receives a request, associated with a principal, to use a cryptographic key to perform a cryptographic operation. In response to the request, the service determines whether a rate limit specific to the principal is associated with the cryptographic key. If the rate limit is associated with the cryptographic key, the service generates a response to the request that conforms to the rate limit. The service provides the response in response to the request.
US10917237B2 Attestable and destructible device identity
Implementations described herein disclose a device identity management system using a trusted platform module (TPM) of a device. The device identity management system provides one or more computer executable instructions to receive a secret random number at a trusted platform module (TPM) of a device, generate a hash of an existing device identity stored in a non-volatile (NV) identity index using the secret random number, and store the hash as the device identity in the NV identity index.
US10917236B1 Systems and methods for quantum session authentication
Systems, apparatuses, methods, and computer program products are disclosed for session authentication. An example method includes receiving, by decoding circuitry and over a quantum line, a set of qbits generated based on a first set of quantum bases. The example method further includes decoding, by the decoding circuitry and based on a second set of quantum bases, the set of qbits to generate a decoded set of bits. The example method further includes generating, by session authentication circuitry, a session key based on the decoded set of bits.
US10917234B2 Blockchain for on-chain management of off-chain storage
An example operation may include one or more of splitting an encrypted file into a plurality of file fragments, distributing the file fragments to a plurality of storing peers for storing the file fragments off-chain, splitting an encryption key used to encrypt the file into a plurality of key fragments, encrypting each key fragment using a public key of a different storing peer, and storing the respectively encrypted key fragments on the distributed ledger such that each encrypted key fragment is associated with the encrypted file.
US10917226B2 Techniques and apparatuses for time division multiplexing for dual-rat communication
Certain aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive scheduling information for a transmission associated with a particular radio access technology (RAT) of a 4G RAT or a 5G RAT, wherein the scheduling information identifies a particular resource of one of a first set of resources for the 4G RAT or a second set of resources for the 5G RAT, wherein one or more resources of the first set of resources are guaranteed for the 4G RAT based at least in part on a reference 4G time division duplexing (TDD) configuration, and wherein the one or more resources of the first set of resources and the second set of resources do not overlap in a time domain; and transmit or receive the transmission using the particular resource. Numerous other aspects are provided.
US10917225B2 Method for mitigating self-interference in FDR communication environment
Disclosed are a method and a base station for mitigating self-interference in which, in a resource region for transmitting a plurality of downlink control channels, an overlap region is configured, the overlap region being a resource region from which the effects of self-interference due to an uplink communication of a terminal must be removed, and the information regarding the overlap region is transmitted to a terminal connected to a base station and communicating via FDR.
US10917220B2 Block acknowledgment for multi-user transmissions in WLAN systems
In wireless communications for multi-users, a station may generate a first frame and transmit the first frame to an access point. The first frame may include media access control protocol data units (MPDUs). Each MPDU is associated with a traffic identifier (TID). In one aspect, a TID of one of the MPDUs is different from a TID of another one of the MPDUs. In response to receiving the first frame, the access point may generate a second frame based on the first frame. The second frame may include an indication that all of the MPDUs having TIDs are received. The access point may transmit the second frame to the station. Other methods, apparatus, and computer-readable media are also disclosed.
US10917219B2 Multiplexing code block group level and transport block level feedback
Methods, systems, and devices for multiplexing code block group (CBG) level and transport block (TB) level feedback are described. An example method includes receiving a set of TBs, generating a bit sequence providing CBG-level feedback on a first subset of the TBs and TB-level feedback on at least a second subset of the TBs, and transmitting the bit sequence. Another example method includes transmitting a set of TBs, receiving a bit sequence providing CBG-level feedback on a first subset of the TBs and TB-level feedback on at least a second subset of the TBs, and retransmitting at least one CBG for each TB in the first subset of TBs and the second subset of TBs based at least in part on the bit sequence.
US10917216B2 Method of transmitting configuration information, method of detecting control channel resources, and devices therefor
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE).The present invention relates to a method of transmitting configuration information, a method of detecting control channel resources, and devices therefor. The transmission method comprises: configuring, for each coreset, control channel resources on a time unit of a scheduling unit (SU); transmitting configuration for the resources of control channel on the time unit of the SU, wherein control channel resources belong to the coreset containing a plurality of continuous or discontinuous frequency-domain physical resource blocks available to transmit a downlink control channel. The detection method comprises: receiving configuration for the resources of control channel on a time unit of an SU; performing blind detection of a downlink control channel for a user on the time unit of the SU according to the configuration information. The present invention can flexibly configure control channel resources and reduce blind detection of a control channel by a terminal, thereby attaining reduction of power consumption caused by blind detection of the control channel by the terminal and load equalization.
US10917213B2 System and method of UE-centric radio access procedure
A method and system for operating a user equipment (UE) wherein a first set of radio access procedures are supported when the UE is in a first operating state, and a second set of radio access procedures are supported when the UE is in a second operating state.
US10917207B2 Method and device for configuring and acquiring transmission parameters of physical layer
Provided herein are method and device for configuring and acquiring transmission parameters of physical layer, the method comprising: dividing transmission resources into N resource groups, where N is greater than or equal to 1; determining first type of transmission parameter of the physical layer, the first type of transmission parameter of the physical layer comprises at least one of: indication information on definitions of basic resource units, indication information on aggregation of time interval units of physical layers, information on parameter configuration of basic transmission structures, information on numerology parameter configuration, indication information on mapping of channel or signals, indication information on resource allocation methods, indication information on available bandwidths in frequency domain of resource groups, indication information on transmission powers of resources, and configuration information of measurement pilots; notifying receiving terminal of the first type of transmission parameters of the physical layer corresponding to the N resource groups.
US10917204B2 Multi-user multiplexing of orthogonal time frequency space signals
A method for performing downlink transmissions from a transmitting device to multiple user devices using transmission resources from a multi-dimensional grid of resources is described. The method includes logically partitioning the transmission resources into multiple segments, assigning, to a given user device of the multiple user devices, transmission resources of one or more of the multiple segments, and performing, using at least some of the assigned transmission resources for the given user device, a downlink transmission using an orthogonal time frequency space (OTFS) transformation on data or signals to be transmitted to the given user device.
US10917203B2 Estimate bit error rates of network cables
Embodiments use Bayesian techniques to efficiently estimate the bit error rates (BERs) of cables in a computer network at a customizable level of confidence. Specifically, a plurality of probability records are maintained for a given cable in a computer system, where each probability record is associated with a hypothetical BER for the cable, and reflects a probability that the cable has the associated hypothetical BER. At configurable time intervals, the probability records are updated using statistics gathered from a switch port connected to the cable. In order to estimate the BER of the cable at a given confidence level, embodiments determine which probability record is associated with a probability mass that indicates the confidence level. The estimate for the cable BER is the hypothetical BER that is associated with the indicated probability mass. Embodiments store the estimate in memory and utilize the estimate to aid in maintaining the computer system.
US10917202B2 Method and device for transmitting data unit, and method and device for receiving data unit
In the present invention, a transmitting device receives, at a packet data convergence protocol (PDCP) layer, a PDCP service data unit (SDU) from an upper layer. The transmitting device generates, at the PDCP layer, a PDCP protocol data unit (PDU) containing the PDCP SDU. The transmitting device submits, at the PDCP layer, the PDCP PDU to a lower layer. If the PDCP SDU includes a transmission control protocol (TCP) ACK packet, the PDCP layer generates a PDCP control PDU as the PDCP PDU.
US10917201B2 Decoding partial radio transmissions
According to some embodiments, a method in a radio network element of providing hybrid automatic repeat request (HARQ) feedback comprises receiving, from a wireless transmitter, a first set of coded bits. The first set of coded bits comprises a partial subset of coded bits to be received during a transmission time interval (TTI). The radio network element decodes the first set of coded bits; determines a first decoding indicator based on the success or failure of the decoding of the first set of coded bits; and communicates the first decoding indicator to the wireless transmitter. Particular embodiments communicate the first decoding indicator to the wireless transmitter within four TTI of receiving the first set of coded bits. Particular embodiments estimate a decoding indicator for the entire TTI based on the success or failure of the decoding of the first set of coded bits.
US10917200B2 Communication system and vehicle
A communication circuit unit of an FI-ECU receives a signal from an AT-ECU. An arithmetic processing unit determines transmitted data at a control cycle ΔTn, transmits a communication data signal including the transmitted data to the AT-ECU at a time point t2 after the start point of the current control cycle ΔTn, and retransmits it at a time point t3 where a state, in which an ACK signal from the AT-ECU has not been received, has continued for a predetermined period of time. When the current control cycle ΔTn is ended in a state in which the ACK signal has not been received, at a time point t5 after the start point of the next control cycle ΔTn, the arithmetic processing unit transmits the communication data signal including a newest value of the transmitted data determined at the start point of the next control cycle ΔTn to the AT-ECU.
US10917198B2 Transfer protocol in a data processing network
In a data processing network comprising one or more Request Nodes and a Home Node coupled via a coherent interconnect, a Request Node requests data from the Home Node. The requested data is sent, via the interconnect, to the Request Node in a plurality of data beats, where a first data beat of the plurality of data beats is received at a first time and a last data beat is received at a second time. Responsive to receiving the first data beat, the Request Node sends an acknowledgement message to the Home Node. Upon receipt of the acknowledgement message, the Home Node frees resources allocated to the read transaction. In addition, the Home Node is configured to allow snoop requests for the data to the Request Node to be sent to the Request Node before all beats of the requested data have been received by the Request Node.
US10917193B2 Method and apparatus for transmitting and receiving control information in wireless communication system
Methods, a Base Station (BS), and a User Equipment (UE) in a wireless communication system for transmitting and receiving control information are provided. The method for transmitting control information by a BS in a wireless communication system includes receiving information related to a signal transmitted by a second BS that the second BS which is a neighboring BS of the first BS, determining whether a second UE using an identical resource to that used by a first UE included in a cell of the first BS exists within a cell of the second BS based on the received information, when the second UE exists, generating control information for controlling a signal transmitted to the second UE by the second BS based on the received information, and transmitting the generated control information to the first UE through a control channel.
US10917190B2 Method and system for CWDM MUX/DEMUX designs for silicon photonics interposers
Methods and systems for CWDM MUX/DEMUX designs for silicon photonics interposers are disclosed and may include an optical transceiver including a silicon photonics interposer, a polarization splitter, a lens array, and a prism with a coarse wavelength division multiplexing (CWDM) coating and a high reflectivity (HR) coating. The polarization splitter, lens array, and prism are coupled to the silicon photonics interposer. An input optical signal of a plurality of different wavelengths and polarizations may be received. Signals of different polarization may be spatially separated using the polarization splitter and signals of a first wavelength range may be reflected into the lens array using the CWDM coating while signals in a second wavelength range may be passed through. Signals of the second wavelength range may be reflected to the lens array using the HR coating, and optical signals may be coupled into the silicon photonics interposer using the lens array.
US10917187B2 Apparatus and method for mitigating interference in network distribution
A residential gateway connecting an access network to an in-home network includes an access network transceiver configured for a first communication with an access network component via a wireline and an in-home network transceiver configured for a second communication with an in-home network component via the same wireline or at least one further wireline. The residential gateway further includes synchronization circuitry configured to synchronize a timing between the first and the second communication and interference mitigation circuitry configured to mitigate interference between the first and the second communication based on the synchronized timing.
US10917184B2 Computing and reporting a relevance metric for a positioning beacon beam
Disclosed are techniques for computing and reporting a relevance metric for a positioning beacon beam. In an aspect, a first node receives, from a second node, a plurality of beams, determines a relevance metric for each of one or more beams of interest from the plurality of beams, wherein the relevance metric for each beam of the one or more beams of interest is based on a time of arrival at the first node of the beam and a signal strength of the beam, and sends, to the second node, a report identifying each of the one or more beams of interest and including the relevance metric for each of the one or more beams of interest.
US10917182B2 Method and apparatus for mitigating interference in wireless communication system
A method for a terminal mitigating interference in a wireless communication system according to an embodiment of the present invention comprises the steps of: receiving a first message having a previously configured pattern from a serving base station communicating cooperatively to control interference with at least one adjacent base station; triggering a common reference signal (CRS) interference mitigation function of the terminal in response to the first message in order to mitigate interference due to a CRS transmitted from the at least one adjacent base station; and cancelling interference due to the CRS on the basis of the CRS interference mitigation function, and receiving data.
US10917180B2 Controlling vibration output from a computing device
Systems, apparatuses, and methods are described for controlling vibrations output by one or more computing devices. A plurality of computing devices may form an ad hoc group using vibration signals. A computing device may suspend generation of a tactile vibration and/or sound as a notification of a received communication or other event.
US10917179B2 Coherent aperture combining using machine learning
An optical system for responding to distortions in incident light in a free space optical communication system includes a machine learning output storing at least an indication of multiple images and corresponding positioning or orientation attributes for one or more optical elements; a sensor configured to generate an image; and a component configured to adjust the one or more optical elements based on the generated image. Various other methods, systems, and apparatuses are also disclosed.
US10917176B2 Communication system and method for an optical local area network
An optical local area network includes a passive optical distribution fabric interconnecting a plurality of nodes including a first node and a plurality of remaining nodes, a hub that includes the first node and a control module, and a client network adapter coupled to each of the remaining nodes for responding to the control module. The control module controls timing for each of the client network adapters to transmit signals over the passive optical distribution fabric and distribution of signals to each of the nodes.
US10917172B2 Pluggable optical module, optical communication system, and control method of pluggable optical module
A light source outputs a light. A branching unit branches the light output from the light source into a first branched light and a local oscillation light. A modulator modulates the first branched light to output an optical signal. A receiver causes the local oscillation light to interfere with an optical signal to receive the optical signal. An EDFA amplifies the optical signal output from the modulator. An excitation light source outputs an excitation light exciting the EDFA to the EDFA. An optical attenuator attenuates optical power of the optical signal amplified by the EDFA. A control unit controls attenuation of the optical signal in the optical attenuator. The control unit adjusts the attenuation of the optical signal and adjusts an output of the excitation light from the excitation light source.
US10917163B2 Integrated mixed-signal RF transceiver with ADC, DAC, and DSP and high-bandwidth coherent recombination
An integrated analog to digital converting and digital to analog converting (ADDA) RF transceiver for satellite applications capable of flexibly processing high-bandwidth and low-bandwidth RF input signal(s). The RF transceiver may selectively distribute high-bandwidth RF input signals among one or more DSP pipelines for parallel processing of the RF input signals, and the RF transceiver may coherently recombine the processed signals from the one or more DSP pipelines to generate an RF output signal. The ADDA RF transceiver includes one or more ADCs, DSPs, and DACs, all on one or more ASICs, FPGAs, or modular electronic devices in a single semiconductor package. Further, the RF transceiver is radiation tolerant at the module, circuit, and/or system level for high availability and reliability in the ionizing radiation environment present in the space environment.
US10917160B2 Wireless base station, and wireless communication method
Radio base station 10 configured to perform MIMO transmission with user terminals 20 includes: beam selecting section 100 configured to select at least one used beam from among a plurality of beams based on beam-selection reference parameters to be computed based on beam information transmitted by user terminals 20; and user terminal selecting section 102 configured to select, from among at least one of user terminals 20 which has selected the at least one used beam, at least one of user terminals 20 to be a target for the at least one used beam.
US10917157B2 Precoding and feedback channel information in wireless communication system
The present invention relates to precoding and feedback channel information in wireless communication system. A method includes receiving a first Precoding Matrix Index (PMI) and a second PMI from a terminal; mapping one or two codewords into layers; precoding symbols mapped into the layers using a first precoding matrix derived from the first PMI and a second precoding matrix derived from the second PMI; and transmitting the precoded symbols to the terminal, wherein the reception of the first PMI is less frequent than the reception of the second PMI.
US10917152B2 Terminal apparatus, base station apparatus, and communication method
This terminal apparatus is provided with: a receiver configured to receive at least a first physical signal and/or a second physical signal, wherein the first physical signal is generated during a first period, the first physical signal corresponds to a first beam during the first period, the second physical signal corresponds to the first beam in a case that the second physical signal is generated during the first period, and the second physical signal corresponds to a second beam in a case that the second physical signal is generated during a second period.
US10917151B2 Electronic device and method in wireless communication system, and wireless communication system
An electronic device at a base station end includes a processing circuit, the processing circuit being configured to: configure, in response to request signalling from a user equipment, an aperiodic beam-forming reference signal relevant to a first beam group for the user equipment, wherein the first beam group is determined by a base station according to channel state information periodically fed back by the user equipment; generate downlink control information, so as to indicate that the user equipment feeds back beam selection information according to the aperiodic beam-forming reference signal; determine, according to the beam selection information, one or a plurality of candidate beams and one or a plurality of corresponding second pre-coding codebooks; and determine an effective pre-coding codebook based on the one or multiple second pre-coding codebooks.
US10917147B2 Transmutable MIMO wireless transceiver
A multiple-input multiple-output (MIMO) wireless transceiver with “N” transmit and receive chains and a bandwidth evaluation circuit, a chain partitioning circuit and a switchable radio frequency ‘RF’ filter bank. The bandwidth evaluation circuit evaluates both the utilization of the WLAN(s) and any remaining communications channels and determines whether to operate the MIMO chains synchronously as a single radio or asynchronously as multiple radios. The chain partitioning circuit either partitions subsets of the MIMO chains for asynchronous operation as distinct radios or combines all MIMO chains for synchronous operation as a single radio. The switchable RF filter bank is responsive to a partitioning of subsets of the chains into distinct radios to add RF filters to a RF portion of the chains to isolate each radio from one another, and responsive to a combining of all MIMO chains into a single radio to remove all RF filters.
US10917144B2 One-shot wideband delay measurement with sub-sample accuracy for parallel receivers and/or generators, and alignment procedure
Systems and methods are described for using a single wideband pilot signal to reduce a timing misalignment between receivers in a multiple-input multiple-output (MIMO) radio system. The multiple generators of the MIMO radio system may be aligned using a second wideband pilot signal subsequent to performing the receiver alignment. The calibration kit of the MIMO radio system may be aligned using a third wideband pilot signal prior to performing the receiver alignment. Alignment may be achieved to subsample precision by determining time delays from the rate of change of the phase shift of the wideband pilot signals.
US10917137B2 NFC antenna in a mobile device
An electronic device includes a back cover, a display, a middle frame sandwiched between the display and the back cover, and a near field communications (NFC) antenna incorporated within the middle frame. An electronic board is positioned within the middle frame, and includes an NFC controller and a matching network coupled to the NFC controller. The matching network is configured to match impedances between the NFC antenna and the NFC controller.
US10917136B2 Method and apparatus for configuring a communication interface
Aspects of the subject disclosure may include, for example, a system for exchanging electrical signals and guided electromagnetic waves between customer premises equipment and service provider equipment to provide uplink and/or downlink communication services. Other embodiments are disclosed.
US10917134B2 RFID systems
A system for the distribution of RFID signals to a remote antenna or a remote antenna network comprising: a central control module to generate signals and control the protocol operations; cable, in particular twisted pair cable, connecting the central module to one or more antenna subsystems carrying substantially baseband representations of the reader to tag modulation and tag to reader modulation.
US10917131B2 Case, having soft protective cover and hard protective frame, for electronic devices
A case for an electronic device including a soft protective cover having a back panel to cover a back portion of the electronic device, side walls extending from the back panel to cover side portions of the electronic device, and an upper ledge; and a hard protective frame having a disconnected side and two facing sides. The disconnected side includes a first end portion and a second end portion. Each of the first and second end portions includes a first side and a second side; the second side tapers towards the upper ledge.
US10917127B2 Radio frequency transmitter
A radio frequency transmitter includes a digital-to-analog converter, a passive network, two buffers, a frequency mixer, and a power amplifier. Two output ends of the digital-to-analog converter are respectively coupled to two input nodes of the passive network, and the two output ends of the digital-to-analog converter are respectively coupled to input ends of the two buffers. Output ends of the two buffers are respectively coupled to two input ends of the frequency mixer. An output end of the frequency mixer is coupled to an input end of the power amplifier. An output end of the power amplifier is coupled to an antenna. The passive network is configured to perform filtering processing on an input current signal, and convert the current signal into a voltage signal.
US10917121B2 Decompression apparatus and control method thereof
A decompression apparatus is provided. The decompression apparatus includes a memory configured to store compressed data decompressed and used in neural network processing of an artificial intelligence model, a decoder configured to include a plurality of logic circuits related to a compression method of the compressed data, decompress the compressed data through the plurality of logic circuits based on an input of the compressed data, and output the decompressed data, and a processor configured to obtain data of a neural network processible form from the data output from the decoder.
US10917119B2 Data storage system and associated data storing method for reducing data error rate
A data storage system includes a processing circuit, a calculating circuit and an encoding circuit. The processing circuit receives a data byte from a host. The calculating circuit generates a cyclic redundancy check code according to an LBA, and combines the cyclic redundancy check code and the data byte into a data sector so that the data sector includes LBA-related information. The encoding circuit encodes the data sector to generate an error checking and correcting code, and combines the data sector and the error checking and correcting code into a storage data, so that the storage data includes the LBA-related information without including the LBA. Via the data sector and the storage data, the data storage system performs cyclic redundancy checking as well as error checking and correcting without storing the LBA for reducing 1-bit errors; and the LBA-related information does not include part or all of the LBA.
US10917115B2 Polar coding method and apparatus
Example polar coding methods and apparatus are described. One example method includes determining a sequence used to code to-be-coded bits. Polar coding is performed on the to-be-coded bits by using the sequence to obtain coded bits. The sequence is used to represent a reliability order of N polarized channels, N is a mother code length of a polar code, and N is a positive integer power of 2.
US10917112B2 Apparatus and methods for error detection coding
A first error-detecting code (EDC) is computed based on a first segment of a block of information that is to be encoded, and a second EDC is computed based on at least a second segment of the block of information. The first EDC is masked with a first masking segment and the second EDC with a second masking segment to generate a first masked EDC and a second masked EDC. The first masking segment and the second masking segment are associated with a target receiver of the block of information. A codeword is generated based on a code and an input vector that includes the first segment, the first masked EDC, the second segment, and the second masked EDC. This type of coding could be useful to support early termination of blind detection at a decoder, for example.
US10917111B2 Error correction code unit and error correction method
An error correction code (ECC) unit includes an error correction code (ECC) encoder configured to perform error correction code (ECC) encoding for each of a first data group and a second data group sharing at least one data with the first data group; and an error correction code (ECC) decoder configured to perform error correction code (ECC) decoding for each of the first data group and the second data group. The ECC decoder performs the ECC decoding for the second data group when the ECC decoding for the first data group fails, and does not perform the ECC decoding for the second data group when the ECC decoding for the first data group succeeds.
US10917108B2 Signal processing apparatus and signal processing method
The present technology relates to a signal processing apparatus, a signal processing method, and a program that make it possible to cope with an output of a PCM signal using one DSD signal. A distribution apparatus includes an extraction section that, in a case where a PCM signal having a predetermined sampling frequency is generated from a DSD signal, extracts a predetermined number of samples from the DSD signal around samples at a predetermined interval determined by the predetermined sampling frequency, and a filtering section that generates the PCM signal having the predetermined sampling frequency by filtering the extracted predetermined number of samples. The present technology is applicable to, for example, a distribution apparatus, etc., that distributes the PCM signal to a client apparatus.
US10917105B1 Successive approximation analog-to-digital converter with nonlinearity compensation
Successive-approximation-register (SAR) analog-to-digital conversion technique continues to be one of the most popular analog-to-digital conversion techniques, due to their versatility, which allows providing high resolution output or high conversion rates. In addition, SAR analog-to-digital converters (ADC) have a modest circuit complexity that results in low-power dissipation. A SAR ADC is, typically, composed of a single comparator, a bank of capacitors and switches, in addition to, a control digital logic. However, the comparator input capacitance is input-signal dependent, and hence introduces non-linearity to the transfer characteristics of the ADC. A simple technique is devised to significantly reduce this non-linearity, by pre-distorting the sampled-and-held input signal using the same comparator input capacitance.
US10917103B2 Analog-to-digital converter device and method for calibrating clock skew
An analog-to-digital converter (ADC) device includes ADC circuitries, a calibration circuitry, and a skew adjusting circuitry. The ADC circuitries convert an input signal according to interleaved clock signals, in order to generate first quantized outputs. The calibration circuitry performs at least one calibration operation according to the first quantized outputs to generate second quantized outputs. The skew adjusting circuitry analyzes time difference information within even-numbered sampling periods of the clock signals, in order to generate adjustment signals. The adjustment signals are for reducing a clock skew in the ADC circuitries.
US10917101B2 Analog to digital conversion circuit with very narrow bandpass digital filtering
An analog to digital conversion circuit includes an analog to digital converter (ADC) circuit operable to convert an analog signal having an oscillation frequency into a first digital signal having a first data rate frequency, where the analog signal includes a set of pure tone components. The analog to digital conversion circuit further includes a digital decimation filtering circuit operable to convert the first digital signal into a second digital signal having a second data rate frequency. The analog to digital conversion circuit further includes a digital bandpass filter (BPF) circuit operable to convert the second digital signal into an outbound digital signal having a third data rate frequency, where the digital bandpass filter circuit is set to produce a bandpass region approximately centered at the oscillation frequency of the analog signal and having a bandwidth tuned for filtering a pure tone.
US10917097B1 Circuits and methods for transferring two differentially encoded client clock domains over a third carrier clock domain between integrated circuits
A method for transferring first and second encoded client clock signals over a carrier clock domain between integrated circuits, including in a first integrated circuit encoding a phase change of the first client clock signal from a last recorded phase onto the carrier clock signal in first bit positions, encoding a phase change of the second client clock signal from a last recorded phase onto the carrier clock signal in second bit positions different from the first bit positions, and transmitting the carrier clock signal with the encoded phases of the first client clock signal and the second client clock signal over a single wire from the first integrated circuit to a second integrated circuit.
US10917094B2 Stripe based self-gating for retiming pipelines
Systems, apparatuses, and methods for implementing stripe-based self-gating and change detect signal propagation for retiming pipelines are disclosed. A circuit includes one or more stripes, with each stripe including a plurality of stages of registers, with each stage only receiving input signals from the preceding stage. For a given stripe, the first stage of registers are self-gated to reduce power consumption by only clocking a group of registers when any of their input signals change. The self-gating signals of the first stage of registers are combined together to create a change detect signal which is passed through a register and provided to a second stage of registers as a clock-enable signal. Accordingly, the second stage registers are only clocked when the change detect signal indicates a change will be forwarded from the first stage. This reduces power consumption for the second stage without causing the area increase associated with self-gating circuitry.
US10917093B1 Self-adaptive termination impedance circuit
A memory system includes a memory device with a termination circuit providing a termination impedance for a data signal in the memory device. The device also includes a calibration circuit configured to set the termination impedance to a predetermined value. The device further includes an impedance adjustment circuit configured to adjust the termination impedance based on a feedback signal indicating a change in the termination impedance due to at least one of a change in a temperature of the memory device or a change in voltage of a voltage bus in the memory device.
US10917091B2 Galvanic isolation circuit and system and a corresponding method of operation
An oscillator is coupled to a first side of a galvanic barrier for supplying thereto an electric supply signal. The oscillator is configured to be alternatively turned on and off as a function of a PWM drive signal applied thereto. A receiver circuit coupled to the galvanic barrier receives therefrom a PWM power control signal. A signal reconstruction circuit coupled between the receiver circuit block and the oscillator provides to the oscillator a PWM drive signal reconstructed from the PWM power control signal. The signal reconstruction circuit includes a PLL circuit coupled to the receiver circuit block and configured to lock to the PWM control signal from the receiver circuit block. A PLL loop within the PLL circuit is sensitive to the PWM drive signal applied to the oscillator. The PLL loop is configured to be opened as a result of the power supply oscillator being turned off.
US10917090B1 Multi-channel multiplexer
A circuit includes a first switch assembly having a first input node and a first output node, and a second switch assembly having a second input node and a second output node. The circuit further includes a third switch assembly an operational amplifier, and a buffer. The third switch assembly has a third input node and a third output node. The third input node is coupled to the second output node, and the third output node is coupled to the first output node. The buffer has a buffer input and a buffer output. The buffer input is coupled to an input stage of the operational amplifier. The buffer output is coupled to the third switch assembly.
US10917089B2 Stacked MOSFET circuits and methods of operating stacked MOSFET circuits
Example MOSFET circuits include a first metal-oxide-semiconductor field-effect transistor (MOSFET) having a gate, a source and a drain, and a second MOSFET coupled in series with the first MOSFET. The second MOSFET has a gate, a source and a drain. The MOSFET circuit also includes a controller configured to supply a same control signal to the gate of the first MOSFET and the gate of the second MOSFET to turn on or turn off the first MOSFET and the second MOSFET when a drain-source voltage of the first MOSFET and a drain-source voltage of the second MOSFET are substantially zero. Other MOSFET circuits and methods of operating MOSFET circuits are also disclosed.
US10917087B2 Control circuit for power switch
A circuit for controlling a first plurality of transistors connected in parallel and a second plurality of transistors connected in parallel, includes: a first plurality of stages, a respective one of the first plurality of stages being configured to supply a first control signal to a respective one of the first plurality of transistors; and a second plurality of stages, a respective one of the second plurality of stages being configured to supply a second control signal to a respective one of the second plurality of transistors. An output current of the respective one of the first plurality of stages is regulated based on a difference between a first value representative of a sum of output currents of each stage of the first plurality of stages and a second value representative of a sum of set points assigned to the first plurality of stages.
US10917083B2 Drive circuit for semiconductor element
A drive circuit includes: a signal generation circuit; a comparator; a comparator; and a short circuit determination unit. The signal generation circuit is configured to generate, as an output signal, a differential amplification signal of a voltage detection signal indicating a gate voltage of a semiconductor element and a delay signal of the voltage detection signal. The comparator is configured to compare a value of the differential amplification signal with a first reference voltage value. The comparator is configured to compare a voltage value indicating a gate current with a second reference voltage value. The short circuit determination unit is configured to determine whether or not the semiconductor element is in a short-circuited state, based on a result of comparison by each of the comparators, and generate a determination signal indicating a determination result.
US10917081B1 Adjustable soft shutdown and current booster for gate driver
An apparatus controls a high-power drive device external to a package of a gate driver circuit. A first circuit charges the control node over a first length of time in response to a first signal through the first node indicating an absence of a fault condition and a first level of a control signal. A second circuit discharges the control node over a second length of time in response to a second signal through the second node indicating the absence of the fault condition and a second level of a control signal. A third circuit includes a current amplifier and is configured as a soft shutdown path to discharge the control node over a third length of time in response to the first signal through the first node indicating a presence of the fault condition. The third length of time is different from the second length of time.
US10917079B2 Variable stream pulse width modulation
An example device includes splitter logic to split an input sample having a predetermined number of bits into a first segment of most significant bits and a second segment of least significant bits. Pulse logic generates a pattern of pulses that correlate to the values of the most significant bits. Edge mover logic determines edge adjustment data based on the values of the least significant bits, the edge adjustment data representing an adjustment to at least one edge in the pattern of pulses. Combiner logic generates an enhanced pulse stream by adjusting at least one edge in the pattern of pulses based on the edge adjustment data.
US10917072B2 Split ladder acoustic wave filters
Filter devices and methods of fabricating filter devices. A filter device includes a first chip and a second chip. The first chip has a first material stack and contains one or more series resonators of a ladder filter circuit. The second chip has a second material stack and contains one or more shunt resonators of the ladder filter circuit. The first material stack and the second material stack are different.
US10917071B2 Multiplexer, radio-frequency front-end circuit, and communication apparatus
A quadplexer includes a first filter and a second filter whose passband has frequencies higher than the first filter. The first filter has a ladder filter structure including series resonators disposed on a first path and parallel resonators disposed on a path connecting the first path and ground. A series resonator that is closest to a common terminal among the series resonators includes an IDT electrode that excites elastic waves, and a reflector that reflects the elastic waves excited by the IDT electrode. A distance between the IDT electrode and the reflector is greater than or equal to about 0.44λ and less than about 0.5λ where λ is a wavelength of the elastic waves that is defined by an electrode cycle of the IDT electrode.
US10917067B2 RF signal amplifier with combined active and passive port
The present invention is directed to a bi-directional RF signal amplifier that includes both an active communications path and a passive communications path. The circuitry is simplified and the housing size is reduced by having one port which functions as part of the active communications path when the bi-directional RF signal amplifier is powered, and that functions as part of the passive communications path when the bi-directional RF signal amplifier is unpowered.
US10917064B2 Method and apparatus for detecting RF field strength
A power detector for use in an RF receiver. The detector includes a power reference generator and a power quantizer. The power reference generator develops a power reference current, voltage, or signal as a function of a power transferred via a received RF signal. The power quantizer is responsive to the power reference current, voltage, or signal to develop a digital field power value indicative of the power reference current, voltage, or signal.
US10917052B2 Dual device semiconductor structures with shared drain
Transistors may be manufactured with a shared drain to reduce die area consumed by circuitry. In one example, two transistors can be manufactured that include two body regions that abut a shared drain region. The two transistors can be independently operated by coupling terminals to a source and a gate for each transistor and the shared drain. Characteristics of the two transistors can be controlled by adjusting feature sizes, such as overlap between the gate and the shared drain for a transistor. In particular, two transistors with different voltage requirements can be manufactured using a shared drain structure, which can be useful in amplifier circuitry and in particular Class-D amplifiers.
US10917051B2 Wireless architectures and digital pre-distortion (DPD) techniques using closed loop feedback for phased array transmitters
Methods and architectures for closed loop digital pre-distortion (DPD) in a multi-stream phased array communication system include sampling outputs, from transmit antennas or dedicated analog detectors, of a plurality of RF power amplifiers operating in transmission of multi-stream transmission, correcting or normalizing the detected outputs, summing the outputs into a combined DPD feedback signal and selecting pre-distortion vectors to be used in altering the output of the PAs.
US10917049B2 Class-E power oscillator
A class-E power oscillator (PO) is disclosed. The class-E PO includes a first inductor, a switch, a first capacitor, a resonant circuit, and a feedback network. The first inductor is coupled in series to a first power supply. The switch is connected between the first inductor and a primary common node. The first capacitor is connected between the first inductor and the primary common node. The resonant circuit includes a second inductor, a second capacitor, and a resistor. The second inductor is connected between the first inductor and the primary common node. The second capacitor is connected between the first inductor and the primary common node, and is coupled in series to the second inductor. The resistor is connected between the first inductor and the primary common node, and is coupled in series to the second inductor. The feedback network is connected between the switch and a feedback node. The feedback node is located between the second inductor and the second capacitor. The feedback network is configured to periodically turn the switch on and off based on a resonance frequency of the resonant circuit.
US10917045B2 Deployment test apparatus of a folded solar panel
Provided is a deployment test apparatus including a fixing frame configured to fix a first portion of a target object in which the first portion is hingedly coupled to a second portion, a rotation axis module including a rotary shaft and disposed on one side of the fixing frame, a rotary arm radially extending from the rotary shaft in an upper portion of the fixing frame, and a support module connected to the rotary arm to clamp the second portion of the target object to be floated, wherein when deploying the target object, the deployment test apparatus is configured to reduce an external force applied to the target object.
US10917041B2 Waterproof and electricity-insulating support structure for solar panels
A waterproof and electricity-insulating support structure for solar panels includes a base frame having a top portion with two side portions disposed at two sides of the top portion. Each of the side portions connects with a bottom portion to be fixed on a steel frame forming a roof. A fastening member is fixed to the top portion of the base frame to form an assembling space for solar panels therebetween. A plurality of rubber strips for waterproofing and insulating from electricity are disposed between the side portions and the solar panels and between the fastening member and the solar panels.
US10917040B2 Photovoltaic module mount
Mounting components of photovoltaic (PV) modules and PV module assemblies are described, including PV module couplings and PV module mounting chassis. In an example, a PV module includes a PV module coupling having a toe portion extending from a PV module frame, and a PV module mounting chassis includes a toe slot to receive the toe. The toe and toe slot construction allows for the PV module frame to be assembled to the PV module mounting chassis without using tools, and thus, permits a PV module assembly to be quickly constructed during installation of a PV module system. Furthermore, the toe and toe slot construction accommodates thermal expansion and other environmental loads seen after installation, while providing a grounding connection for the PV module assembly.
US10917038B2 Pneumatic actuator system and method
An actuator that includes a bottom plate, a top-plate, and a first and second hub assembly extending between the bottom and top plates. The actuator can further include a first and second bellows disposed on opposing sides of the hub assemblies, the first and second bellows each extending between and coupled to the top plate and bottom plate. The actuator can also include a plurality of washers disposed between the top and bottom plates, with each of the washers coupled to the first and second hub assembly, a first set of the plurality of washers surrounding the first bellows and a second set of the plurality of washers surrounding the second bellows.
US10917037B2 Solar tracker assembly
The disclosure relates to a solar tracker assembly, particularly for solar collectors, with a table structure for supporting the solar collectors, particularly solar collector panels and/or solar collector assemblies, and with an assembly for carrying the table structure, wherein the table structure is rotatable relative to the assembly base at least about one axis of rotation. For allowing the table for supporting respective solar panels to have sufficiently large dimensions in order to accommodate an increased number of solar collectors in an easy way and, at the same time, to enable the table to be positioned at a precise angle with reduced effort, it is suggested that at least a portion of the table structure and/or a portion of the assembly base is formed as a truss structure.
US10917034B1 Deployable solar panels for high-altitude balloons
Aspects of the disclosure relate to high altitude or stratospheric balloon systems. For instance, a stratospheric balloon system may include a an upper structure, a lower structure, a platform associated with the lower structure, a stack of solar panels positioned on the platform, each solar panel coupled to an adjacent solar panel, at least one tension element connected, at a first end thereof, to the upper structure and, at a second end thereof, to the platform, and a first flexible tension member coupled, at a first end thereof, to the upper structure and to foremost solar panel of the stack of solar panels. Solar panels may be stacked in a “Z-fold” configuration with either solar cells of the adjacent solar panels facing one another or the frames of the adjacent solar panels facing one another. In this configuration, the adjacent solar panels are connected by a hinge system.
US10917032B2 Modular sloped roof solar mounting system
A mounting system for supporting a plurality of photovoltaic modules on a sloped support surface, such as a sloped roof, is disclosed herein. The mounting system may include one or more support surface attachment devices, each support surface attachment device configured to attach one or more photovoltaic modules to a support surface; and one or more module coupling devices, each module coupling device configured to couple a plurality of photovoltaic modules to one another.
US10917029B2 Pi source inverter-converter for hybrid electric vehicles
A system for reducing a resonant oscillation on a direct current bus is disclosed. The system includes a battery, a first capacitor connected in parallel with the battery, and an inductor connected in series with the first capacitor. The system also includes a first element connected in series with the inductor, a second element connected in parallel with the inductor and the first element, and a second capacitor connected in series with the first element. The system also includes an electric machine connected to the second capacitor. During a re-generation mode for charging the battery, a re-generation current flows from the electric machine to the battery, passing through the first element and the inductor and bypassing the second element. Additionally, during a motor mode, a motor current flows from the battery to the electric machine, passing through the second element and bypassing the first element and the inductor.
US10917025B2 Power generating element converting vibration energy into electric energy
A power generating element according to the present invention includes a pedestal formed in a frame shape in plan view, a vibrating body provided inside the pedestal, at least three first bridge supporting portions, each of the first bridge supporting portions extending along a first extending axis and configured to arrange the vibrating body to be supported on a pedestal, and a charge generating element. The first extending axes of a pair of the first bridge supporting portions adjacent to each other form a predetermined angle in a circumferential direction with the vibrating body defined as a center in plan view. At least one first electrode layer of the charge generating element is arranged on each of the first bridge supporting portions.
US10917024B2 Vibration-type drive apparatus, robot, image forming apparatus, and image pickup apparatus that inhibit undesired vibration
A vibration-type drive apparatus, which increases productivity and also prevents undesired vibration from occurring during operation, includes an elastic body, a vibrating body having an electro-mechanical energy conversion element mounted on the elastic body, a driven body that is brought into pressure contact with the vibrating body, and a pressurizing member that brings the driven body into pressure contact with the vibrating body. Relative positions of the vibrating body and the driven body change due to vibrations excited in the vibrating body. The pressurizing member has a positioning portion, and the driven body has a fitting-receiving portion that is to be fitted onto the positioning portion. During operation, the positioning portion and the fitting-receiving portion are not in contact with each other.
US10917023B2 Power conversion system and method for pre charging DC-Bus capacitors therein
The present invention discloses a power conversion system and a method for pre-charging DC-Bus capacitors therein. The power conversion system comprises a plurality of power modules, each including a power input end; a charging input end; a power output end; at least one power conversion unit, each of the power conversion unit including at least one DC-Bus capacitor and being electrically connected to the power input end and the power output end; and a pre-charging unit electrically connected to the charging input end for receiving direct current and electrically connected to the DC-Bus capacitor for pre-charging the DC-Bus capacitor. The power input ends of the plurality of power modules are connected in series and then electrically connected to an AC power source, and the power output ends of the plurality of power modules are connected in parallel.
US10917020B2 Multi output DC/DC converter and method for controlling the same
A multi output DC/DC converter includes a transformer having a primary side winding connected to an input side and a secondary side winding connected to an output side; a rectifying diode for rectifying an output of the secondary side winding; an output inductor having a first end connected to the rectifying diode; and a first output switching element and a second output switching element each having first ends connected to a second end of the output inductor, where a second end of the first output switching element and a second end of the second output switching element become first and second output stages outputting different voltages, respectively.
US10917019B2 Quasi-single stage power converter topology
A power converter includes an unfolder with an input connection with three terminals that connect to a three-phase AC power source and that has an output connection with a positive terminal, a negative terminal and a neutral terminal. The unfolder unfolds the bipolar AC voltages into two unipolar piece-wise sinusoidal DC voltages offset from each other by a half of a period. The power converter includes a three-input converter that produces a DC voltage output across output terminals. The three-input converter includes a positive input connection connected to the positive terminal, a negative input connection connected to the negative terminal and a neutral input connection connected to the neutral terminal. The three-input converter includes switches that selectively connect a voltage to the positive, negative and neutral input connections across a primary transformer winding of a transformer. A secondary transformer winding is connected to the output terminals through a rectification section.
US10917018B2 Auxiliary winding ground fault detection for isolated DC/DC converter
A flyback converter is provided with a controller that is configured to analyze the reflected feedback voltage waveforms to determine the presence of a ground connection fault for the auxiliary winding.
US10917015B2 Multiphase converter system and control method
A multiphase operation control method comprises configuring a plurality of power phases of a power converter to operate in an interleaved manner by passing a token sequentially among the plurality of power phases, turning on a first power phase after the first power phase possesses the token and receives a trigger signal from a control circuit of the first power phase, passing the token to a second power phase after the first power phase finishes, passing the token sequentially until a last power phase of the plurality of power phases possesses the token and forwarding the token to the first power phase after the last power phase finishes.
US10917013B2 Augmented multi-stage boost converter
A boost converter may include a first stage comprising a first dual anti-wound inductor constructed such that its windings generate opposing magnetic fields in its magnetic core, and a second stage comprising a second dual anti-wound inductor constructed such that its windings generate opposing magnetic fields in its magnetic core. The boost converter may also include control circuitry for controlling the first stage and the second stage to have a plurality of phases comprising a first phase wherein a first coil of the first dual anti-wound inductor and a second coil of the second dual anti-wound inductor are coupled in parallel between a power supply and a ground voltage and a second phase wherein the first coil of the first dual anti-wound inductor and the second coil of the second dual anti-wound inductor are coupled in series between the power supply and the ground voltage.
US10917008B2 Output stage circuit of power conversion circuit
An output stage circuit of a power conversion circuit includes a first power switch, a driving circuit, a first current source, a second current source and a combining circuit. The first power switch is coupled to a second terminal of a bootstrap capacitor. The driving circuit is coupled to the first terminal of the bootstrap capacitor and the first power switch and provides a control signal to the first power switch. The first current source generates a first current according to the control signal. The second current source generates a second current according to a reference voltage which is a first voltage at the first terminal or a second voltage at the second terminal. The combining circuit, coupled to the driving circuit, the first current source and the second current source, generates a switch operation indicating signal to the driving circuit according to the first current and second current.
US10917006B1 Active burst ZVS boost PFC converter
A power converter can be configured to convert an AC input voltage into a regulated DC output voltage while maintaining the input current in phase with the rectified AC input voltage. A control circuit of the power converter may be configured to selectively enable switching of at least one switching device of the power converter responsive to a determination that the input voltage is greater than a threshold voltage and to selectively disable switching of the at least one switching device responsive to a determination that the rectified AC input voltage is less than the threshold voltage. The control circuit may be configured to selectively enable and disable switching using an active burst mode signal having a frequency lower than a switching frequency of the converter. The control circuit may be still further configured to operate at least one switching device of the converter in a zero voltage switching condition.
US10917005B2 Methods and apparatus to start converters into a pre-biased voltage
Methods, apparatus, systems and articles of manufacture are disclosed to start converter into a pre-biased voltage. The disclosed methods, apparatus, systems and articles of manufacture provide an apparatus comprising: an error amplifier including a feedback network and a differential difference amplifier (DDA), the DDA coupled to a power converter, a voltage generator, and the feedback network coupled to the third input of the DDA, the fourth input of the DDA, and the output of the DDA; a multiplexer coupled to the voltage generator, the second input of the DDA, and the first input of the DDA; a first switch coupled in parallel to the feedback network; a second switch coupled to a delay cell and an oscillator; and a trigger including an output, the trigger coupled to the voltage generator, the power converter, and the output of the trigger coupled to the multiplexer, first switch, and the second switch.
US10917004B2 Snubber circuit and power conversion system using same
A snubber circuit includes a clamp circuit and a voltage conversion circuit. The clamp circuit is configured to absorb electrical energy of a main circuit from a pair of secondary-side voltage points on a secondary side of the main circuit to clamp a secondary-side voltage. The main circuit is of insulating type and is configured to perform electric power conversion. The voltage conversion circuit which is of insulating type is electrically connected to a pair of primary-side voltage points on a primary side of the main circuit and is configured to subject, to direct-current conversion, the direct-current voltage generated by the clamp circuit and output the direct-current voltage to the pair of primary-side voltage points. The voltage conversion circuit includes a transformer, a first capacitance component electrically connected to a primary winding wire of the transformer, and a second capacitance component electrically connected to a secondary winding wire of the transformer.
US10917001B2 Adaptive resonant frequency converter
A resonant power converter has a main switch, a resonant tank coupled across the main switch, and a signal processing circuit coupled to the main switch and the resonant tank. The signal processing circuit generates a driving signal for driving the main switch ON and OFF at a switching frequency. The resonant tank includes circuit components designed to have a resonant frequency that is tuned to a designed switching frequency of the main switch. The signal processing circuit includes a zero voltage switching (ZVS) circuit, a signal generator, a detection circuit, and a latch oscillator. The signal processing circuit is configured to adjust the switching frequency of the driving signal to be tuned to the actual resonant frequency of a resonant tank under very high switching frequency conditions, 1 MHz and greater, thereby accounting for the influence of parasitics at very high switching frequencies and achieving resonance of the circuit.
US10916997B2 Line start two-speed brushless motor
An electric motor is disclosed that includes a stator winding defining a plurality of poles, with the winding being controllable to switch between a first number of poles and a second number of poles. A rotor rotatable within the stator includes a first group of magnetic flux barriers being without permanent magnet material and a second group of magnetic flux barriers at least partially filled with a permanent magnet material. A method of operating a line-start electric motor is also disclosed.
US10916996B2 Method of manufacturing rotational electric machine rotor
A method of manufacturing a rotational electric machine rotor includes: forming a rotor shaft having a non-circular sectional outer shape; forming a rotor core by stacking a predetermined number of magnetic body thin plates each including a center hole having a non-circular shape corresponding to the non-circular sectional outer shape of the rotor shaft; and forming a protruding part for fixing the rotor core and the rotor shaft to each other by inserting the rotor shaft into the non-circular center hole of the rotor core and squashing the rotor shaft extending out of an axial-direction end face of the rotor core by using a predetermined swaging jig to expand the rotor shaft outward beyond an outer periphery of the non-circular section along the axial-direction end face of the rotor core.
US10916993B2 Method for heat transfer across rotary joint
A torque motor includes a large area rotor, a stator surrounding at least a portion of the rotor, and a small air gap separating the rotor from the stator to allow frictionless thermal coupling between the rotor and the stator. Heat from the rotor is transferred to the stator by conduction. The stator contacts an inner surface for a housing of the torque motor for conductively coupling to a cold environment air flow exterior to the torque motor housing. The air gap may have a dimension of about 0.002 to 0.003 inches. The stator may be conductively coupled to the torque motor housing by one of a thermal gap pad or high conductivity thermal gap filling compound. Heat conduction from the rotor to the stator preferably occurs without rotation of the rotor.
US10916991B2 DC-DC converter in a non-steady system
Multiphase electromagnetic machines, such as free-piston engines or compressors, may require, or supply, a pulsed power profile from or to a DC bus, respectively. The pulsed power profile may include relatively large fluctuations in instantaneous power. Sourcing, sinking, or otherwise exchanging power with an AC grid, via an inverter, may be accomplished by using an energy storage device and a DC-DC converter coupled to a DC bus. The energy storage device may aid in smoothing the pulsed power profile, while the DC-DC converter may aid in reducing fluctuations in voltage across a DC bus due to energy storage in the energy storage device.
US10916984B2 Axial flux rotor and axial flux electric machine
An axial flux rotor for use in a motor with a stator is provided. The rotor includes a body including an outer periphery defined by outside radius OR. The body further has a central opening defined by inner radius IR and a plurality N of rotor poles defining an axis of rotation of the body. The body has first and second opposed faces. The rotor also includes a plurality of spaced apart axially imbedded magnets extending from the first face. At least one of the axially imbedded magnets has a minimum depth defined by defined by the equation D min = π * ( OR + IR ) 2 * N * BrA * BrS , wherein BrS is the Remanent Flux Density of Surface Mounted Magnet, wherein OR is the outside radius of the body, wherein IR is the inner radius of the body, wherein N is the number of rotor poles, and wherein BrA is the Remanent Flux Density of Axially Imbedded Magnet.
US10916981B2 Permanent magnet rotating device having minimized cogging torque, permanent magnet generator using same, and permanent magnet motor
The inventive concept relates to a permanent magnet rotating device having a minimized cogging torque, a permanent magnet generator using the same, and a motor, and more particularly, an objective of the inventive concept is to minimize a cogging torque of a permanent magnet rotating device including a stator and a rotor used in a motor or a generator by a simple combination of the number of poles and the number of slots and a proper arrangement of permanent magnets without using various conventional methods for reducing cogging torque while increasing costs. Through the inventive concept, cogging torque is minimized when a combination of the number of poles and the number of slots are adjusted, the width of lower ends of slots and a spacing distance between the permanent magnets are made the same, and a proper winding method and a pitch are applied.
US10916980B2 Rotor with first and second rotating body stacked vertically having core surfaces axially arranged with different curvature radiuses
A rotor includes a rotor core having a cylindrical shape with a central axis as a center thereof and magnets arranged in a circumferential direction. The rotor core includes an inner side core portion positioned farther inward than the magnet in a radial direction, a first outer side core portion positioned farther outward than the magnet in the radial direction and disposed on a first side in an axial direction, and a second outer side core portion positioned farther outward than the magnet in the radial direction and disposed on a second other side in the axial direction. A distance between the central axis and an outer side surface of the first outer side core portion changes in the circumferential direction, a distance between the central axis and an outer side surface of the second outer side core portion changes in the circumferential direction. In a plan view, a first top portion positioned at an outermost position of the first outer side core portion in the radial direction and a second top portion positioned at an outermost position of the second outer side core portion in the radial direction are located at positions different from each other in the circumferential direction.
US10916970B2 Wireless power transfer system, wireless power transmitting device, and wireless power receiving device
A wireless power transfer system includes a power transmitting device and a power receiving device. When an abnormality occurs in the power transmitting device during power transmission to the power receiving device, the power transmitting devise stops power transmission. When power transmission is stopped, the power receiving device transitions to a sleep state which requires less power consumption than an operating state. When a first sleep time has elapsed since the transition to the sleep state, the power receiving device automatically starts up and sends the power transmitting device a request for resuming power transmission. When power transmission is stopped due to an abnormality in the power transmitting device, the power transmitting device resumes power transmission in response to receiving from the power receiving device a request for resuming power transmission as a trigger.
US10916963B2 Rechargeable aluminum ion battery
A rechargeable battery using a solution of an aluminum salt as an electrolyte is disclosed, as well as methods of making the battery and methods of using the battery.
US10916962B2 Dual energy store and dual charging source vehicle power supply system and vehicle drive system
A vehicle power supply system that includes an alternator; a first electrical storage device that is charged by the alternator; a power generator that generates power in conjunction with traveling of the vehicle; a second electrical storage device that is charged by the power generator; a charge path used to charge the second electrical storage device with power from the power generator; a first power feed path for feeding power to the actuator from the first electrical storage device; a second power feed path for feeding power to the actuator from the second electrical storage device; a third power feed path for feeding power to the control load from the first electrical storage device; a fourth power feed path for feeding power to the control load from the second electrical storage device; a first switch and a second switch.
US10916958B2 Optimized adaptive charging method for strobe
A notification appliance is disclosed that includes a light engine for generating light flashes at a predetermined interval, an energy store for supplying energy to the light engine to generate the light flashes at the predetermined intervals and a charge controller for charging the energy store to a full charge level required to generate the light flashes. The charge controller controlling an input current to charge the energy store to reach the full charge level at the predetermined interval.
US10916953B2 Housing for an electricity charging station and method for producing same
A housing for an electricity charging station includes a base frame having a mounting rack, a cover connected to the base frame, two doors hinged on the base frame, a base connected to the base frame, two faceplates inserted into the base and two cable panels embedded in the base. A corresponding electricity charging station and a corresponding method for producing or assembling such a housing.
US10916951B2 Device to be charged and charging method
The present disclosure provides a device to be charged and a charging method. The device to be charged includes: a charging interface; a first charging circuit, coupled with the charging interface, configured to receive an output voltage and an output current of an adapter via the charging interface and to directly apply the output voltage and the output current of the adapter to both ends of a plurality of battery cells coupled in series in the device to be charged, so as to perform a direct charging on the plurality of battery cells. With the present disclosure, heat generated in the charging process can be reduced while ensuring the charging speed.
US10916948B2 Power control apparatus and power control method
A power control apparatus has a switch configured to interrupt power supply from a system power when the switch has detected a drop of voltage from the system power below a threshold, a first power controller configured to receive a voltage drop signal supplied from the switch unit, a first power storage unit connected to the first power controller, a second power controller configured to receive a discharge start signal supplied from the first power controller, a second power storage unit connected to the second power controller, and a rotary machine generator that receives an operation control signal supplied from the second power controller or the second power storage unit.
US10916947B2 System and method for direct current power transmission
A modular substation (10) for subsea applications includes a plurality of modular DC/AC converters (32) configured for converting DC electrical power transmitted along a DC transmission link (24) into AC electrical power for supplying to a plurality of subsea loads (56). The plurality of modular DC/AC converters (32) is configured to couple in series to the DC transmission link (24) and couple in parallel to an AC distribution network (52). At least a first modular DC/AC converter (32) is configured to be selectively electrically and mechanically disconnected from the DC transmission link (24) and the AC distribution network (52) to facilitate maintenance of the first modular DC/AC converters (32) while the AC distribution network (52) continues to supply AC electrical power to at least one of the plurality of subsea loads (56). The modular substation (10) also comprises protection and bypass circuits (26) intended to isolate faulty DC/AC converters (32) and to facilitate safe maintenance and repair.
US10916944B2 Solar and/or wind inverter
A solar and/or wind inverter that uses an ultracapacitor for grid stabilization. The ultracapacitor may be directly tied to, and placed between, a power source and an inverter. The ultracapacitor may supply power to a grid via the inverter during a reduction of power or a loss in power from the grid.
US10916938B2 ESD-protective surface-mount composite component
An ESD-protective surface-mount composite component that includes a surface-mount inductor and a thin-film component. The surface-mount inductor includes a body, a first outer conductor and a second outer conductor individually formed at both ends of the body in a first direction, and a third outer conductor formed at an intermediate position of the body in the first direction. The thin-film component includes a flat plate-like body, an ESD protection element formed inside the body, a first terminal conductor connected to the ESD protection element and formed on a front surface of the body, and a second terminal conductor connected to the ESD protection element and formed on the front surface of the body. The first terminal conductor is joined to the first outer conductor, and the second terminal conductor is joined to the third outer conductor.
US10916935B2 Leakage current detection and interruption (LCDI) device with ignition containment features
A Leakage Current Detection and Interruption (LCDI) device, for use as a safety device for a load cable. The LCDI circuit card assembly incorporates a load input cavity having fire retardant materials surrounding the load input terminals, a separated containment cavity structure for a first Metal Oxide Varistor (MOV), and a contact actuator which encases the switch or contact arm at the source input section of the LCDI. The circuit design incorporates redundant safety features for containment of spurious ignitions.
US10916933B2 Power control device
A power control device includes: an output voltage controller configured to control an output voltage based on a feedback voltage corresponding to the output voltage; and an overvoltage protector configured to continue or stop the operation of the output voltage controller based on a first detection result of whether the output voltage has exceeded an output voltage threshold value and a second detection result of whether the feedback voltage has fallen to or below a feedback voltage threshold value.
US10916932B2 Protection of power transformers
A method of protecting a power transformer including: monitoring an external fault indication signal; carrying out locally a fault determination; carrying out locally an inrush current determination; and issuing a final trip signal to protect the power transformer if the external fault indication signal identifies that a fault has occurred and the locally carried out fault determination confirms that a fault has occurred; or the external fault indication signal identifies that a fault has occurred and the locally carried out fault determination identifies that no fault has occurred but after a predetermined delay the locally carried out inrush current determination confirms the absence of an inrush current.
US10916931B2 Temperature sensing and fault detection for paralleled double-side cooled power modules
In accordance with an embodiment, a method includes: monitoring a temperature difference between two double-side cooled (DSC) power modules of a plurality of DSC power modules arranged in stacks of DSC power modules; comparing the temperature difference with a first temperature threshold; detecting a cooling pipe system blockage when the temperature difference is above the first temperature threshold; and after detecting the cooling pipe system blockage, disabling gate driver circuits coupled to the plurality of DSC power modules or operating the DSC power modules in a low-power mode. Each stack includes a plurality of DSC power modules. Each DSC power module has a top surface and a bottom surface, which are each thermally coupled with one or more cooling channels of a cooling pipe system. The two DSC power modules are thermally coupled with a same cooling channel of the one or more cooling channels.
US10916929B2 Circuit breaker and method for emitting a warning upon a threshold being exceeded
A circuit breaker, for interrupting an electrical circuit including electrical conductors, includes an energy converter, a primary side being formed by a conductor and a secondary side being connected to a power supply; a sensor for determining the level of the electric current of an electrical conductor; and a controller, connected to the power supply and the sensor, to cause an interruption of the electrical circuit when current limit values or current/time period limit values are exceeded. The secondary side of the energy converter is connected to the input of a measurement circuit, the output of the energy converter being connected to the controller. The measurement circuit determines an amount of energy and delivers this to the controller, the controller comparing the amount of energy with the level of the current determined by the sensor and emitting a warning signal when a first threshold value is exceeded.
US10916928B2 Lightning protection systems and methods
A portable lightning protection system including a multi-section conductive mast assembly including at least a base mast section and a top mast section; an air terminal attachable to the top mast section; and a base assembly attachable to the base mast section via a hinge assembly, wherein the hinge assembly is configured to allow the base mast section to hinge from a substantially vertical position to a substantially horizontal position relative to the base assembly. A catenary lightning protection system including at least two lightning protection systems, each lightning protection system may include a multi-section conductive mast assembly including at least a base mast section and a top mast section; an air terminal attachable to the top mast section; a base assembly attachable to the base mast section; and may further include a catenary wire connected between the at least two lightning protection systems.
US10916924B2 Recessed equipment boxes and related assemblies and methods
An equipment box assembly includes a housing including a back wall, a bottom wall, a top wall, and first and second sidewalls defining a cavity. At least one mounting feature is on each of the first and second sidewalls. The housing is sized to fit between first and second adjacent studs with the first sidewall mounted to the first stud using the at least one mounting feature on the first sidewall and with the second sidewall mounted to the second stud using the at least one mounting feature on the second sidewall.
US10916923B2 Extendable cable distribution device and method for manufacturing extendable cable distribution device
An extendable cable distribution device in accordance with an embodiment of the present disclosure can include a main block for receiving the end portion of a composite cable supplied from the outside, and providing the passage through which the received composite cable is distributed; at least one sub-block located to be detachable at one side of the main block, and for guiding the distribution direction of a part of the composite cable distributed while passing through the main block; and a connector located on the outer circumferential surface of the at least one sub-block, and electrically connected with at least part of the distributed cable. According to an embodiment of the present disclosure, it is possible to provide the cable distribution device capable of distributing the supplied composite cable and rotating the distributed cable depending upon the direction extended to the outside. In addition, according to an embodiment of the present disclosure, when the distributed cable is added, it is possible to simply extend the cable by the number or in the direction desired by an installer by additionally mounting the modular sub-block.
US10916920B2 Holding arrangement and arrangement of at least two stack spark gaps
A holding arrangement for multiple electrodes, with at least two holding frames, which can be stacked flat one on top of another. With the holding arrangement, a large number of electrodes, which also form more than one stack spark gap, can be arranged especially simply relative to one another, such that, in the individual holding frames, in each case at least two recesses for accommodating one electrode per recess are formed next to one another, whereby the contour of the individual recesses is matched to the outside dimensions of the individual electrodes, and in that the individual holding frames can be connected to one another.
US10916913B2 Method of manufacturing light emitting device using shrink fitting
A method of manufacturing a light emitting device includes: providing a first support member having an outer circumferential lateral surface and a first through-hole penetrating from an upper surface to a lower surface; disposing a light-transmissive member containing a fluorescent material in the first through-hole; providing a second support member having an inner circumferential lateral surface and a second through-hole penetrating from an upper surface to a lower surface, an inner dimension of the second support member being smaller than an outer dimension of the first support member at room temperature; and performing shrink fitting, which comprises heating the first support member and the second support member to increase the inner dimension of the second support member to be greater than the outer dimension of the first support member, thereafter disposing the first support member in the second support member.
US10916909B2 Ultra-wideband Raman amplifier with comb source
Disclosed are fiber amplifiers with multiple pumping sources including multiple optical sources or an optical comb source with multiple spectral lines. A comb source may include generating a plurality of evenly spaced or nearly evenly spaced spectral lines. The optical comb source may pump a fiber by propagating optical energy at the multiple spectral lines through the fiber. The comb source may cause gain in the fiber at in a band of wavelengths different from the spectral lines of the comb source. A weak signal injected into the fiber that propagates in the fiber will experience optical gain in the fiber producing an amplified signal at the wavelength within a band of wavelengths different from the comb source wavelengths. When the bandwidth of the multiple bands of gain is wide, the amplifier may be referred to as an ultra-wideband amplifier.
US10916905B2 External electrical power distribution apparatus
An external electrical power distribution apparatus and method for adding electrical power distribution to the exterior of a building are disclosed. The external electrical power distribution apparatus includes a base configured to be mounted to a support structure on one side and further configured such that an electrical device can be mounted on a different side than the side mounted to the support structure. The base includes electrical power distribution outlets housed within it, and the housing also includes electrical wiring for providing electrical power to the electrical device and electrical power distribution outlets.
US10916901B2 Electrical connectors with electrical bonding features
Receptacles are provided for mating with plugs to establish electrical connections. The receptacles include a shell having a body, and a flange attached to the body. The flange has a projection extending therefrom. The receptacle also has an electrically-insulating insert positioned at least in part within the body; and one or more electrical contacts positioned at least in part within the insert. The receptacle is configured for mounting on a panel. The projection contacts a mounting surface of the panel, to establish a localized contact area that provides bonding between the receptacle and panel.
US10916897B1 Battery mounted fuse holder
A wiring harness assembly for serviceably housing an electrical fuse includes at least one electrical cable, a wiring harness plug mounted to the cable and including a first electrical connector, a first terminal having a mounting end for receiving an energized stud and at least one first fuse contacting end, at least one second terminal including a second electrical connector and a second fuse contacting end, and a terminal housing including a main body defining a first cavity and a receptacle defining a second cavity, wherein the first fuse contacting end of the first terminal and the second fuse contacting end of the second terminal are positioned within the first cavity, and wherein the receptacle is configured to receive the wiring harness plug including the first electrical connector with the first and second electrical connectors engaging each other in electrical communication.
US10916895B2 Double-shielded high-speed docking connector
A double-shielded high-speed docking connector is disclosed in this invention. The connector includes a shell, a positioning seat and a row of frame assemblies. The frame assembly includes an insulating body, two columns of signal terminals supported by the insulating body and arranged to be multiple differential pairs, a first shielding member mounted on one side of the insulating body, and a second shielding member mounted on the other side of the insulating body and connected with the first shielding member. The double-shielded high-speed docking connector of the present invention can not only reduce crosstalk between the signal terminals of adjacent differential pairs, but also effectively reduce signal interference of adjacent frame assemblies by disposing two shielding members on each frame assembly.
US10916892B2 Shielded, electronic connector
The present disclosure relates to a shielded electric connector for connecting or distributing shielded electric lines or plug connectors with one another, and to methods for producing the shielded electric connector. Connector elements belong to a line or to a plug connector. Shielding sleeves or shielding housings of the lines and/or of the plug connectors are surrounded by a shielding housing, which consists of a cast metal body that has been cast in situ onto annular regions of the shielding sleeves or shielding housings in order to produce a local anchoring means with low electric contact resistance.
US10916882B2 Cable tether system
A cable tether system includes a base member and at least one elongate member extending away from the base member. The elongate member is configured to surround at least a portion of a first cable. A second elongate member can be configured to surround at least a portion of a second cable. The base member can include one or more engagement portions that couple with one or more engagement portions on the first and second elongate members.
US10916881B2 High voltage wet-mate connection assembly
A high voltage wet-mate connection assembly (1) with electrically non-connected and connected modes, comprising a receptacle part (100) and a stab part (200). The stab part has an axially movable connection body (250) moving between non-connected and connected positions. The assembly has a connected mode metal encapsulation (50) encapsulating the contact location (40) at a shield distance from the contact location when in the connected position. The connected mode metal encapsulation (50) is in electrical contact with a main receptacle conductor (109), thereby having the same electric potential as the main receptacle conductor (109).
US10916875B2 Connector and connector assembly
A connection to which a mating connector, moving from one side to another side in a first direction, may be able to be inserted, and may include an inner housing, an outer housing surrounding the inner housing, and a plurality of terminals connecting these housings. The terminals may each include an inner fixed portion fixed to the inner housing, an outer fixed portion fixed to the outer housing, and an elastic portion that is connected to both the inner fixed portion and the outer fixed portion and is elastically deformable. The outer fixed portion may include a first base portion connected to the elastic portion and a first engaging portion that extends in a direction crossing the first direction from the first base portion and is engaged with the outer housing.
US10916874B2 Connector with displacement restricting member for locking to the connector housing and to restrict displacement of the terminal unit
When a terminal unit (U) is mounted into an accommodation recess (8 of a connector housing (1), a rear part thereof projects from the connector housing (1). A displacement restricting member (2) including positioning portions (16) is mounted on the projecting part. Since the positioning portions (16) are fit into receiving portions (15) of the connector housing (1) while being position in a direction intersecting with an inserting direction, a situation where the projecting part of the terminal holding member (H) is deformed is avoided even if a second wire (25) is swung.
US10916872B2 Plate-like conductive member connection structure and plate-like conductive path
It is aimed to provide a plate-like conductive member connection structure and a plate-like conductive path capable of reducing the number of connecting components. A plurality of plate-like conductive members (11) having conductivity and insulating members (13) configured to cover the plate-like conductive members (11) are provided, and the plurality of plate-like conductive members (11) are connected to each other by terminal portions (12) respectively provided on the plate-like conductive members (11). According to this configuration, since the plate-like conductive members (11) can be connected without using a connecting component such as a wire, the number of connecting components can be reduced.
US10916871B2 Connection device
A connection device connecting a plurality of PCB connectors with a printed circuit board includes a first positioning rib, a second positioning rib, and an elastic member between the first positioning rib and the second positioning rib. A distance between the first positioning rib and the second positioning rib is adjustable by deformation of the elastic member.
US10916868B2 Press-fit contact pin
An electrically conductive contact and a method of forming the same from a length of wire are disclosed. The contact has a pin section connected to a fastening section. The fastening section is adapted for press-fitting into the hole of a substrate and includes a solid tip, a neck connected to the pin section, first and second arcuate side surfaces, and first and second major surfaces through which an enlarged slot extends. Each of the first and second major surfaces is at least partially flattened.
US10916867B2 Resin molded product
A resin molded product has a terminal body (10) in which plate-like terminals (20) and a housing (40) made of synthetic resin are integrally fixed. Each terminal (20) includes a bend (22), terminal bodies (21) and wire-side connecting portions (23) continuous with both ends of the terminals (20). Molded portions (62) embed parts of the terminal bodies (21) and the wire-side connecting portions (23) together with inner curved surfaces (30) of the bends (22). Flat side surfaces (25) of the terminal bodies (21) and flat side surfaces (27) of the wire-side connecting portions (23) are exposed from and adjacent to the molded portions (62) on both sides of the terminal bodies (21) and both sides of the wire-side connecting portions (23), and flat surfaces (32) are exposed from the molded portions (62) on both side surfaces (22A) of the bend (22).
US10916866B1 Coaxial cable connector
A coaxial cable connector includes a hexagonal body on an outer portion of nut of a coupling head; an opening spring washer combined with a sleeve of the coupling head; an inner tube shaft threaded through the coupling head and assembled with a joint seat; the inner tube shaft set with a center through-hole and including a tapered bevel disposed in a front portion and a clamping layer which is disposed in an inner hole of a tail portion, and a colored flat tire ring. The joint seat is threaded through the inner tube shaft to an end surface layer of the tail portion, and an isolation net of the coaxial cable is turn back onto an outer cover to the tapered bevel. A contraction ring is combined with a chamfer and a bevel of the sleeve to form a gapless tightness.
US10916864B2 Electrical conduction path
An electrical conduction path that includes a first conductor; a tubular first insulator that encloses the first conductor; a tubular second conductor that encloses the first insulator, and has shape retainability; a branch conductor that is flexible so as to be deformable into a compact elongated shape and into an expanded tubular shape, the branch conductor deformed into the expanded tubular shape enclosing an outer circumferential surface of the second conductor; and a fixing member that fixes the branch conductor to the outer circumferential surface of the second conductor.
US10916861B2 Three-dimensional antenna array module
An apparatus comprising at least a plurality of antenna modules mounted on a printed circuit board (PCB) is disclosed. The PCB includes a plurality of holes embedded with a heat sink. Each antenna module comprises an antenna substrate. Each antenna module further comprises a plurality of three-dimensional (3-D) antenna cells that are mounted on a first surface of the antenna substrate. Each antenna module further comprises a plurality of packaged circuitry that are mounted on a second surface of the antenna substrate. The plurality of packaged circuitry are electrically connected with the plurality of 3-D antenna cells. Furthermore, each antenna module is mounted on the plurality of holes via a corresponding packaged circuitry of the plurality of packaged circuitry.
US10916860B2 Compact high-gain pattern reconfigurable antenna
A pattern reconfigurable antenna includes a radiator, a first parasitic element, a second parasitic element, a ground plane, a first switch and a second switch. The radiator includes a feed portion and a radiating portion that are interconnected. The first and second parasitic elements are symmetrically located at two opposite sides of the radiating portion, and are closely adjacent to and spaced apart from the radiating portion. The ground plane is located at another side of the radiating portion, and is spaced apart from the first and second parasitic elements. Each of the first and second switches is connected between the ground plane and a respective one of the first and second parasitic elements, and is operable to establish connection between the same.
US10916854B2 Antenna structure with integrated coupling element and semiconductor package using the same
An antenna structure includes a radiative antenna element disposed in a first conductive layer, a reflector ground plane disposed in a second conductive layer under the first conductive layer, a feeding network comprising a transmission line disposed in a third conductive layer under the second conductive layer, and at least one coupling element disposed in proximity to a feeding terminal that electrically couples one end of the transmission line to the radiative antenna element. The coupling element is capacitively coupled with the feeding terminal.
US10916847B2 Multi-band antenna
A multi-band antenna includes a ground plane and an antenna element. The antenna element includes a first radiation portion and a second radiation portion. A first end of the first radiation portion is coupled to a feeding point, and a second end of the first radiation portion is a first open end. A first end of the second radiation portion is coupled to a ground plane, and a second end of the second radiation portion is a second open end. The second radiation portion is not electrically connected to the first radiation portion, and a coupling distance exists between the second radiation portion and the first radiation portion. The antenna element operates in a first band through the first radiation portion and operates in a second band through the second radiation portion. The frequency in the first band is lower than the frequency in the second band.
US10916846B2 Antenna with multiple coupled regions
A device includes a plurality of antennas, including one or more active antennas, the antennas being configured in one of a plurality of possible configurations to achieve operation in WAN, LTE, WiFi, or WiMax bands, or a combination thereof. In some embodiments, a passive antenna is utilized with lumped loading to fix the antenna tuning state. A primary and auxiliary radiator can be included in the device and configured for WAN/LTE bands, while additional antennas can be incorporated for WiFi and WiMax bands. Various antenna configurations incorporate the antenna having multiple coupled regions.
US10916842B2 Isolators for antenna systems and related antenna systems
An isolator for an antenna system includes a printed circuit board based parasitic element, where the parasitic element has a functional portion and a first connecting portion, and the functional portion has a printed electrically-conducting segment, and the first connecting portion is configured to engage a base board of the antenna system. The isolator further includes at least one support element configured as a second printed circuit board component, where the support element has a second connecting portion, and the second connecting portion is configured to engage the base board of the antenna system, and the support element is configured to support the parasitic element.
US10916841B2 Techniques to increase antenna-to-antenna isolation suitable for enhanced MIMO performance
Techniques for providing multi-antenna devices with increased antenna-to-antenna isolation as well as methods of operating and manufacturing the same are disclosed. A multi-antenna device may include a support structure, one or more radio devices coupled to a first antenna that is coupled to the support structure at a first location, a second antenna coupled to the support structure at a second location and communicatively coupled to the one or more radio devices, and a conductive structure coupled to the support structure so that it shifts an electric field null of the first antenna from an original location toward the second location during communications using the first antenna, thereby increasing isolation between the first antenna and the second antenna. The conductive structure may have a length of approximately one half of the wavelength (e.g., of 2.4 gigahertz or 5 gigahertz) of a frequency band used for the communications.
US10916840B2 Electronic device with multi-piece antenna structure for increased strength and connection stability
An electronic device which is simple to manufacture includes a carrier frame and an outer frame. The carrier frame and the outer frame are both made of metal. The carrier frame serves as a ground terminal. A portion of the outer frame serves as an antenna of the electronic device. The antenna includes a feeding portion and a grounding portion. The feeding portion connects to a feed source. The grounding portion is attached to the carrier frame, and it is fixed to the carrier frame by welding process.
US10916839B2 Electronic equipment
Improved communication performance is achieved in the case where a metal housing section with an insulation-treated surface is also used as a radio wave emission section. Electronic equipment according to the present technology includes a metal housing section, an antenna board, and an electrical coupling section. The metal housing section has an insulation-treated surface and constitutes at least part of the housing. The antenna board is located inside the metal housing section and has electrical circuitry formed thereon for controlling supply of power to an antenna. The electrical coupling section has a metal plate in contact with the metal housing section and performs electrical coupling between the antenna board and the metal housing section through capacitive coupling via the metal plate.
US10916836B2 Vehicular antenna assembly including GNSS antenna and SDARS antenna with reflector
According to various aspects, disclosed are exemplary embodiments of vehicular antenna assemblies. In an exemplary embodiment, a vehicular antenna assembly generally includes a first satellite antenna configured to be operable for receiving first satellite signals, and a second satellite antenna configured to be operable for receiving second satellite signals different than the first satellite signals received by the first satellite antenna. A reflector is positioned generally between the first and second satellite antennas. The reflector is configured to be operable for reflecting the first satellite signals generally towards the first satellite antenna.
US10916833B2 Antenna using coupling and electronic device including the same
An electronic device is provided. The electronic device includes a housing including a segment part used to insulate a portion of the housing and an antenna disposed at a position corresponding to the segment part.
US10916831B2 Protective shell
A protective shell is provided for an electronic device with a built-in antenna. The protective shell includes a plate body, a first penetrating part and an auxiliary grounding element. The first penetrating part is located on the plate body in correspondence with the built-in antenna of the electronic device. The first penetrating part is made of insulating material. The auxiliary grounding element is disposed on the plate body in correspondence with a ground wire of the built-in antenna of the electronic device.
US10916828B2 Radio antenna element arm retaining clip
A clip for securing a radiating arm to a printed circuit boards of a radio frequency antenna element of a base station antenna. The radiating arm may be configured to receive signals or radiate signals from a feed network associated with the at least one RF antenna member. The radiating arm can be secured to the printed circuit board without the use of solder or adhesives.
US10916827B2 Wireless module
A wireless module including: a substrate that includes a first surface and a second surface on the back side of the first surface; a plurality of signal terminals that are provided on the first surface and the second surface, input and output signals; an antenna provided on the first surface; a signal processing circuit that is provided on the second surface, is connected between the signal terminals and the antenna, and performs various signal processings on signals input from the signal terminals and the antenna; wherein the signal terminals are arranged in horizontal symmetry on the first surface and the second surface, arranged at the same positions of the first surface and the second surface, and connected to a single signal line in the substrate.
US10916823B1 Broadband transition from stripline to substrate integrated waveguide
A device having a stripline to substrate integrated waveguide (SIW) transition structure has a substrate having a top surface and a bottom surface. A first metal ground layer is formed on the top surface of the substrate. A second metal ground layer is formed on the bottom surface of the substrate. A set of metallic vias are used to connect both ground layers. The stripline to SIW transition structure is embedded within the substrate between the first metal ground layer and the second metal ground layer. The stripline to SIW transition structure has a first transmission line embedded within the substrate. An impedance transformer is coupled to one end of the first transmission line. A coupling structure is coupled to the impedance transformer. The coupling structure has a pair of transmission lines. The pair of transmission lines diverge outward and upward from the impedance transformer. An isolation device is used to isolate EM fields from bifurcation of the pair of transmission lines and EM fields located at the end of these transmission lines. At least one terminating via is attached to terminal ends of the pair of transmission lines. Sidewalls are formed on each side of the stripline to SIW transition structure.
US10916822B2 Antenna device and method for producing antenna device
An antenna device includes an antenna body, a circuit board, a joint, a transmission line conductor, and a line conductor. The antenna body includes a magnetic body and a conducting wire wound around the magnetic body in a spiral shape. The joint is disposed on the circuit board and coupled to an end of the conducting wire. The transmission line conductor is coupled to the joint. The line conductor is coupled to one of the end of the conducting wire and the transmission line conductor. At least one of a pattern and a length of the line conductor is changeable to adjust an equivalent impedance value of the antenna body.
US10916821B2 Metamaterial waveguides and shielded bridges for quantum circuits
Metamaterial waveguides and shielded bridges are employed to improve the scalability and routing of quantum computing circuits. A metamaterial waveguide includes a signal conductor that has a periodic array of lumped element resonators distributed along and electrically coupled to a signal conductor. The periodic array of lumped element resonator pairs defines a bandgap within an operating bandwidth of the waveguide. Qubits can communicate within the operating bandwidth of the waveguide and communications via the waveguide can be controlled by changing a center frequency of the qubits. A shielded bridge is used to cross over high frequency communications and control CPW's in a quantum computing circuit. The shielded bridge includes a signal bridge that is elevated and extends over a separate CPW, and a ground bridge positioned between the signal bridge and the separate CPW.
US10916816B2 Internal battery thermal management system for secondary batteries
A low temperature (e.g., lower than 0° C.) or a high temperature (e.g., higher than 50° C.) can degrade battery performance, especially within lithium ion (Li-ion) batteries, and even accelerate the capacity fading. To ensure a long term and safe operation of Li-ion batteries, the battery thermal management (BTM) system becomes a crucial part to control the temperature of each discrete battery or every battery within a battery pack. Within the prior art a phase change material (PCM) has been employed combined with a graphite matrix. However, the graphite lowers the latent heat of entire BTM system and increases the manufacturing cost. Embodiments of the invention provide sealed mandrels or elements which immobilize the PCM without impacting the latent heat of the entire BTM system and increasing manufacturing costs.
US10916813B2 Battery management apparatus and method for calibrating a state of charge of a battery
Disclosed is a battery management apparatus and method for calibrating the state of charge (SOC) of a lithium iron phosphate (LFP) battery. The battery management apparatus according to an embodiment of the present disclosure calculates, when going into calibration mode, an average voltage value of voltage values received from a voltage measuring unit for a predefined time, calculates an average current value of current values received from a current measuring unit for the predefined time, calculates an average internal resistance value of the LFP battery for the predefined time based on the average voltage value and the average current value, determines if the average internal resistance value is equal to or larger than a preset reference resistance value, and when the average internal resistance value is equal to or larger than the reference resistance value, calibrates the current SOC to a preset reference SOC.
US10916810B2 Lithium secondary battery including nonaqueous electrolyte having lithium-ion conductivity
A lithium secondary battery comprises an electrode group and a nonaqueous electrolyte having lithium-ion conductivity. A negative electrode current collector has a first surface facing outward of winding of the electrode group and a second surface facing inward of the winding of the electrode group. At least the first surface or the second surface includes a first region and a second region that is closer to an innermost circumference of the winding of the electrode group than the first region. Protrusions include outer-circumference-side protrusions disposed on the first region and inner-circumference-side protrusions disposed on the second region. A first average height of the outer-circumference-side protrusions is larger than a second average height of the inner-circumference-side protrusions.
US10916808B2 Sulfide solid-state battery and sulfide solid-state battery system provided with same
One aspect of the present invention provides a sulfide solid-state battery provided with: a negative electrode collector containing copper; a negative electrode mix layer disposed on the negative electrode collector, and containing a negative electrode active material; a positive electrode mix layer containing a positive electrode active material; a sulfide solid electrolyte layer sandwiched between the negative electrode mix layer and the positive electrode mix layer, and having a protruding portion that protrudes from a peripheral edge of the negative electrode mix layer and extends up to the negative electrode collector; and a reference electrode disposed in the protruding portion.
US10916807B2 Lithium air battery that includes nonaqueous lithium ion conductor
A lithium air battery includes: a negative electrode configured to occlude and release lithium ions; a positive electrode configured to use oxygen in air as a positive electrode active material; and a nonaqueous lithium ion conductor disposed between the negative electrode and the positive electrode. The nonaqueous lithium ion conductor contains a compound.
US10916806B2 Electrolyte for lithium secondary battery, and lithium secondary battery comprising electrolyte
The present invention relates to an electrolyte for a lithium secondary battery, and a lithium secondary battery comprising the electrolyte, the electrolyte comprising a non-aqueous organic solvent; lithium salt; and an additive comprising a compound which contains a difluorophosphite (—OPF2) group which is expressed by a particular chemical formula.
US10916805B2 Nonaqueous electrolyte compositions
Electrolyte compositions comprising fluorinated acyclic carboxylic acid esters, fluorinated acyclic carbonates, and/or fluorinated acyclic ethers; co-solvents; and certain film-forming chemical compounds are described. The electrolyte compositions are useful in electrochemical cells, such as lithium ion batteries where they provide the improved performance of a combination of high capacity and high cycle life.
US10916801B2 Manufacturing method of electrode body and electrode body
A method of manufacturing an electrode body includes a charging step, a first laminating step, and a second laminating step to manufacture the electrode body by laminating positive and negative electrode plates by interposing a separator therebetween. In the charging step, one of the positive and negative electrode plates is a first electrode plate and an other one is a second electrode plate, and one of the first electrode plate and the separator is charged to a potential enough to generate an attraction force between the first electrode plate and the separator. The first laminating step includes bringing the first electrode plate and the separator, at least one of which is charged, into direct contact to attach each other to form a laminated body. In the second charging step, the second electrode plate is laminated on the laminated body to form the electrode body.
US10916800B2 Apparatus of reactive cathodic arc evaporator for plating lithium-compound thin film and method thereof
An apparatus is provided for plating a lithium (Li)-compound thin film. In the thin film, Li is obtained through thermal evaporation, and titanium (Ti) or other metal by using arc plasma. The elements converted into gas phase are co-deposited in a plasma environment with a reaction gas (oxygen) to be activated as excited atoms or molecules for reaction. In the end, all of the constituent elements are deposited on a substrate to form the Li-compound thin film. Thus, reaction efficiency is high with a fast deposition rate. The composition ratio of each element is independently determined to control its yield according to the requirement. Hence, the present invention greatly enhances the fabrication rate with lowered production cost for applications in the thin-film battery industries.
US10916795B2 Battery module assembly and manufacturing method therefor
A battery module assembly, according to one embodiment of the present invention, comprises: a battery module including a base substrate and at least one battery cell, wherein a plurality of unit battery modules formed to surround a cell cover are stacked on the base substrate; and a battery case which is coupled to the base substrate, and which includes a first case surrounding the front surface of the battery module and a second case combined with the first case and surrounding a rear surface of the battery module. The present invention can effectively provide coupling reliability with an inner sensing membrane which is coupled to the battery module, and can seal the inside of the battery case by tightly combining the first case and the second case in a lateral direction.
US10916791B2 Fuel cell vehicle
A fuel cell vehicle includes a front compartment and a metallic dash panel in a front side of the vehicle. The front compartment houses a fuel cell stack, a gas-liquid separator, and a fuel gas pump. The dash panel is disposed between the front compartment and a cabin to partition them. The fuel gas pump is mounted to a lower portion of a stack frame in a state of projecting from the stack frame toward the dash panel side. The gas-liquid separator is mounted to a lower portion of the fuel gas pump in a state of projecting from the stack frame and the fuel gas pump toward the dash panel side. The fuel gas pump is made of metal, and the gas-liquid separator is made of resin.
US10916789B2 Alkaline exchange membrane fuel cells system having a bi-polar plate
The invention relates to a system and method of operating alkaline exchange membrane fuel cells in a bipolar configuration. The system (400) may include a first fuel cell (300A) and a second fuel cell (300B) adjacent to the first fuel cell. Each of the first and second fuel cells may include: a cathode configured to generate hydroxide ions from water, oxygen and electrons, an anode configured to generate water and electrons from the hydroxide ions and hydrogen received from a hydrogen source, and an alkaline exchange membrane configured to transfer the hydroxide ions from the cathode to the anode, and to transfer water from a vicinity of the anode to a vicinity of the cathode. The first fuel cell (300A) and a second fuel cell (300B) are connected by a porous bipolar plate (430A) positioned inbetween. A pressure profile across the first bi-polar plate may drop from higher level near the anode of the first fuel cell (300A) to lower level near the cathode of the second fuel cell (300B) so that water may be transferred from the anode of the first fuel cell (300A) to the cathode of the second fuel cell (300B).
US10916788B2 Hydrogen supply system low pressure state estimator
Methods, systems, and devices of a control system for gas flow. The control system controls gas flow through a fuel cell stack of a vehicle. The control system includes two or more components including one or more actuators and a fuel cell. The control system includes an electronic control unit connected to the two or more components. The control system is configured to determine initial values and previous timestep values. The control system is configured to determine or estimate a total pressure of the gas flow in each of the two or more components based on the initial values and the previous timestep values. The control system is configured to control the one or more actuators based on the total pressure of the gas flow in each of the two or more components.
US10916783B2 Separator for fuel cell, method of fabricating the same, and fuel cell electrode assembly
Provided is a method of manufacturing a separator for a fuel cell comprising: accumulating fibers obtained by electrospinning a spinning solution in which a polymer and a solvent are mixed to obtain a first support having first pores in a three-dimensional network structure; electrospraying a spraying solution in which a first ion exchange resin and a solvent are mixed to spray droplets of the first ion exchange resin on the first support body; accumulating fibers obtained by electrospinning a spinning solution in which a polymer and a solvent are mixed on the first support to form a second support having second pores in a three-dimensional network structure; and electrospraying a spraying solution in which a second ion exchange resin and a solvent are mixed to spray droplets of the second ion exchange resin on the second support body and fill the second ion exchange resin in the second pores.
US10916781B2 Composition for manufacturing electrode of membrane-electrode assembly for fuel cells and method for manufacturing electrode of membrane-electrode assembly for fuel cells using the same
Described herein is a composition for manufacturing an electrode of a membrane-electrode assembly for fuel cells and a method for manufacturing an electrode of a membrane-electrode assembly for fuel cells including the same. More particularly, described herein is a composition for manufacturing an electrode of a membrane-electrode assembly for fuel cells which can improve porosity in the electrode and thereby mass transport capability of reactive gases by mixing a second carbon having lower crystallinity than a first carbon to produce an electrode and applying a voltage to the electrode to remove only the second carbon, and a method for manufacturing an electrode of a membrane-electrode assembly for fuel cells including the same.
US10916772B2 High capacity sodium-ion battery positive electrode material
A positive electrode active material for a sodium ion battery includes a sodium complex oxide of the formula Na4(M1aM21−a)2O5 having an orthorhombic crystal structure, wherein M1 and M2 are each independently Ti, Cr, Fe, Co, Ni, Mn, V, or a combination there of provided that M1 and M2 are different from each other; and 0≤a≤1.
US10916770B2 Silicon based materials for and methods of making and using same
An electrochemically active material includes silicon and a transition metal. At least 50 mole % of the transition metal is present in its elemental state, based on the total number of moles of transition metal elements present in the electrochemically active material. An electrochemically active material includes silicon and carbon. At least 50 mole % of the carbon is present in its elemental state, based on the total number of moles of carbon present in the electrochemically active material.
US10916769B2 Cathode, electrochemical device and electronic device comprising same
The present application relates to a cathode, an electrochemical device and an electronic device including the same. The cathode includes: a cathode current collector, a first cathode active material layer, a second cathode active material layer and an insulating layer; where the first cathode active material layer covers a first portion of a first surface of the cathode current collector, and the insulating layer covers a second portion of the first surface of the cathode current collector that is different from the first portion, where a first distance exists between the insulating layer and the first cathode active material layer in a longitudinal direction of the cathode current collector. By providing a gap between the active material layer in a two-layer structure and the insulating layer in the cathode, the potential problem of the overlapping of the active material layer in a two-layer structure and the insulating layer on the cathode is alleviated, thereby ensuring that the electrochemical device cannot catch fire and lead to failure in the event of being punctured, and further ensuring the mechanical safety performance of the electrochemical device.
US10916768B2 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
A positive electrode active material for a nonaqueous electrolyte secondary battery contains silicon and lithium nickel complex oxide having a layered rock-salt structure and is composed of secondary particles formed of aggregated primary particles. Lithium nickel complex oxide contains 80 mol % or more of nickel, based on the total amount of metal excluding lithium, silicon content is 0.6 mass % or less based on the total amount of the positive electrode active material, and a porosity of the positive electrode active material is 0% or more and 1% or less.
US10916767B2 Carbon-coated ternary positive electrode material, preparation method therefor, and lithium ion battery
A method for preparing a carbon-coated ternary positive electrode material has steps of preparing a ternary positive electrode material precursor, and preparing a suspension of the ternary positive electrode material precursor. Lithium acrylate is added to the suspension of the ternary positive electrode material precursor according to the molar ratio of Li:(Ni+Co+Mn) being 1.03-1.05:1. Ammonium persulphate is added to the lithium acrylate-containing suspension of the ternary positive electrode material precursor, so that the lithium acrylate undergoes a polymerisation reaction and a suspension of a lithium polyacrylate-coated ternary positive electrode material precursor is obtained. The suspension of the lithium polyacrylate-coated ternary positive electrode material precursor is dried to obtain spherical particles. The lithium polyacrylate-coated ternary positive electrode material precursor particles are sintered to obtain a carbon-coated ternary positive electrode material.
US10916760B2 Secondary battery and method of manufacturing same
A method of manufacturing a secondary battery including an electrode body having a positive electrode plate (40) having a positive electrode tab (4c), a negative electrode plate (5) having a negative electrode tab (5c), and a separator, in which the positive electrode tab (4c) is connected to a positive electrode collector in a curved state and the negative electrode tab (5c) is connected to a negative electrode collector in a curved state, and in which, as the positive electrode plate (4), one provided with a cutaway (4e) at a base of the positive electrode tab (4c) in a region where a positive electrode active material mixture layer (4a) is formed on a positive electrode core body is used.
US10916754B2 Separator having porous coating layer, method for manufacturing the same and electrochemical device having the same
A separator includes a porous substrate having a plurality of pores; and a porous coating layer formed on at least one surface of the porous substrate and made of a mixture of a binder and a plurality of inorganic particles, wherein the binder includes a crosslinked binder. This separator may improve high temperature cycle performance, discharge characteristics and thermal resistance of an electrochemical device since the separator exhibits improved insolubility and impregnation to electrolyte and improved thermal resistance.
US10916753B2 Lithium metal—seawater battery cells having protected lithium electrodes
Active metal and active metal intercalation electrode structures and battery cells having ionically conductive protective architecture including an active metal (e.g., lithium) conductive impervious layer separated from the electrode (anode) by a porous separator impregnated with a non-aqueous electrolyte (anolyte). This protective architecture prevents the active metal from deleterious reaction with the environment on the other (cathode) side of the impervious layer, which may include aqueous or non-aqueous liquid electrolytes (catholytes) and/or a variety electrochemically active materials, including liquid, solid and gaseous oxidizers. Safety additives and designs that facilitate manufacture are also provided.
US10916752B2 Lithium secondary battery and manufacturing method thereof
Disclosed is a lithium secondary battery provided with a separator, having improved thermal stability by including a micro-particle coating layer manufactured using Furan-based polymers, for example, polymers having polymer unit including furanyl or furoyl. The lithium secondary battery includes a cathode, an anode, an electrolyte, and a separator disposed between the cathode and the anode and including a coating layer including a micro-particle. The micro-particle includes the second polymer which may include cross-linked first polymer.
US10916741B1 Metallized current collector devices and materials
Energy storage devices, battery cells, and batteries of the present technology may include a first current collector and a second current collector. At least one of the first current collector and the second current collector may be a non-metal current collector. The battery cell may include a seal between an edge region of the first current collector and an edge region of the second current collector. The seal may contact a first surface of the first current collector and a first surface of the second current collector. The battery cell may also include a metal material coupled with the non-metal current collector on a second surface of the non-metal current collector opposite the first surface.
US10916730B2 Manufacturing method of the display device
A display device includes a display region arranged above a substrate, a first light emitting element emitting light of a first color, a second light emitting element emitting light of a second color, and a third light emitting element emitting light of a third color arranged in the display region, and a first optical path length adjustment film, a second optical path length adjustment film, and a third optical path length adjustment film in the display region.
US10916728B2 Display device
A display device includes: a substrate including a display area and a non-display area around the display area; a light-emitting element disposed in the display area; an encapsulating layer sealing the light-emitting element; and a dam disposed in the non-display area. The dam includes a first layer and a second layer on the first layer, the first layer includes a first portion with a first height and a second portion with a second height that is less than the first height, and the second layer covers a lateral surface of the first portion.
US10916725B2 Organic light-emitting diode display panel, method for fabricating the same and display device
An organic light-emitting diode display panel, a method for fabricating the same and a display device are provided. The display panel is divided into a visible area and a non-display area, and includes: a base substrate, a plurality of organic light-emitting diode elements on the base substrate, an encapsulation layer on sides of the organic light-emitting diode elements away from the base substrate, a touch electrode layer on the side of the encapsulation layer away from the organic light-emitting diode elements, a peripheral circuit on the touch electrode layer away from the encapsulation layer, a circular polarizer on the sides of the touch electrode layer and the peripheral circuit away from the encapsulation layer, and an adhesive layer between the touch electrode layer and the circular polarizer.
US10916723B2 Organic light emitting display device including discharging hole
An organic light emitting display device may include a base substrate including an emission area at which light is emitted and a peripheral area which is adjacent to the emission area; an encapsulation substrate disposed on the base substrate; a common layer between the base substrate and the encapsulation substrate, the common layer disposed in both the emission area and the peripheral area; between the base substrate and the common layer, each of: a planarization layer; a pixel electrode in the emission area; and a pixel defining layer; and a discharging hole disposed corresponding to the pixel defining layer, the discharging hole extending through the common layer.
US10916721B2 Non-blocked phosphorescent OLEDs
An organic light emitting diode (OLED) architecture in which efficient operation is achieved without requiring a blocking layer by locating the recombination zone close to the hole transport side of the emissive layer. Aryl-based hosts and Ir-based dopants with suitable concentrations result in an efficient phosphorescent OLED structure. Previously, blocking layer utilization in phosphorescent OLED architectures was considered essential to avoid exciton and hole leakage from the emissive layer, and thus keep the recombination zone inside the emissive layer to provide high device efficiency and a pure emission spectrum.
US10916720B2 Organic photoelectric conversion device and production method thereof
An organic photoelectric conversion device having an anode, a cathode, an active layer disposed between the anode and the cathode, and a hole injection layer disposed between the anode and the active layer, wherein the anode is an electrode containing an electrically conductive nanosubstance and the hole injection layer is a layer showing a of 80% or more in measurement of the residual film rate after a water rinse treatment.
US10916719B2 Flexible display
Disclosed is a flexible display that is slim for flexibility, is controlled in stiffness, and has improved reliability owing to a structure of a non-folding portion thereof.
US10916718B2 Flexible array substrate, method for manufacturing same, and display panel
A flexible array substrate, a method for manufacturing the same, and a display panel are provided. The flexible array substrate adopts a structure of a double-layer metal layer to enclose an organic layer in a bending area, which can improve bending stress of a metal trace during bending and reduce probability of fracture; and the metal trace adopting the double-layered design reduces abnormality of a circuit caused by breakage of the metal trace in the bending area and improves product quality.
US10916715B2 Organometallic compound and organic light-emitting device including the same
An organometallic compound and an organic light-emitting device including the same are provided. The organometallic compound has Formula 1: wherein M is a third row transition metal, L1 is a ligand represented by Formula 2A and n1 is 1, 2, or 3, L2 is a ligand represented by Formula 2B and n2 is 0, 1, or 2. When n1 is two or more, two or more L1(s) are identical to or different from each other. When n2 is two or more, two or more L2(s) are identical to or different from each other. Details about Formula 2A and Formula 2B are provided.
US10916714B2 Organometallic compound and organic light-emitting device including the same
An organometallic compound and an organic light-emitting device including the same are provided. The organometallic compound may be represented by Formula 1, wherein L1 is a ligand represented by Formula 2A and L2 is a ligand represented by Formula 2B. Further details about the compounds are presented in the disclosure. M(L1)n1(L2)n2,   wherein M is iridium.
US10916703B2 Masks, method to inspect and adjust mask position, and method to pattern pixels of organic light-emitting display device utilizing the masks
A method for pixel patterning and pixel position inspection of an organic light-emitting display device includes: forming, on a substrate using a first mask, a thin film layer of a first color corresponding to a first pixel pattern and a first pixel positioning pattern for inspecting a position of a first pixel; shifting, by a determined pitch, the first mask from a position associated with forming the thin film layer of the first color; aligning the shifted first mask with respect to the substrate; and forming, on the substrate using the shifted first mask, a thin film layer of a second color corresponding to the first pixel pattern and another first pixel positioning pattern for inspecting a position of a second pixel.
US10916700B2 Memory device with memory cell pillar having resistive memory layer with wedge memory portion and body memory portion, and method of fabricating the same
A method of fabricating a memory device may include forming a first conductive line extending over a substrate in a first direction, forming a memory cell pillar on the first conductive line, and forming a second conductive line extending over the memory cell pillar in a second direction that intersects the first direction, such that the first and second conductive lines vertically overlap with the memory cell pillar interposed between the first and second conductive lines. The memory cell pillar may include a heating electrode layer and a resistive memory layer. The resistive memory layer may include a wedge memory portion and a body memory portion. The wedge memory portion may contact the heating electrode layer and may have a width that that changes with increasing distance from the heating electrode layer. The body memory portion may be connected to the wedge memory portion.
US10916699B2 Resistive memory crossbar array employing selective barrier layer growth
A method is presented for protecting resistive random access memory (RRAM) stacks within a resistive memory crossbar array. The method includes forming a plurality of conductive lines within an interlayer dielectric (ILD), forming a barrier layer over at least one conductive line of the plurality of conductive lines, the barrier layer directly contacting an entire upper surface of the at least one conductive line, and forming a RRAM stack including a bottom electrode, a high-k dielectric layer, and a top electrode over the barrier layer.
US10916697B2 Memory device and method of manufacturing the same
Some embodiments relate to a memory device. The memory device includes a programmable metallization cell random access memory (PMCRAM) cell. The programmable metallization cell comprises a dielectric layer disposed over a bottom electrode, the dielectric layer contains a central region. A conductive bridge is formable and erasable within the dielectric layer and the conductive bridge is contained within the central region of the dielectric layer. A metal layer is disposed over the dielectric layer. A heat dispersion layer is disposed between the bottom electrode and the dielectric layer.
US10916695B2 Electronic device and method for fabricating the same
Provided is an electronic device including a semiconductor memory. The semiconductor memory may include: a variable resistance element that exhibits different resistance states for storing data; and a lower contact plug coupled to the variable resistance element and disposed under the variable resistance element, and wherein a width of the lower contact plug increases from a top surface of the lower contact plug to a bottom surface of the lower contact plug.
US10916692B2 Piezoelectric detection circuit, method and display device
The present disclosure relates to piezoelectric detection circuits, methods and display devices. A piezoelectric detection circuit is provided that may comprise: a piezoelectric device to convert a pressure into a direct current (DC) signal and to convert a sound wave into an alternating current (AC) signal; a comparison circuit configured to output the direct current signal to a signal processor in a case where the piezoelectric device outputs DC signal, and to output the alternating current signal to the mixer in a case where the piezoelectric device outputs AC signal; the mixer configured to perform a mixing process on the AC signal to generate a mixed signal; and the signal processor configured to process the mixed signal output from the mixer or the direct current signal output from the comparison circuit, to detect the pressure or the sound.
US10916690B2 Electrical leads for trenched qubits
Techniques for forming quantum circuits, including connections between components of quantum circuits, are presented. A trench can be formed in a dielectric material, by removing a portion of the dielectric material and a portion of conductive material layered on top of the dielectric material, to enable creation of circuit components of a circuit. The trench can define a regular nub or compensated nub to facilitate creating electrical leads connected to the circuit components on a nub. The compensated nub can comprise recessed regions to facilitate depositing material during evaporation to form the leads. For compensated nub implementation, material can be evaporated in two directions, with oxidation performed in between such evaporations, to contact leads and form a Josephson junction. For regular nub implementation, material can be evaporated in four directions, with oxidation performed in between the third and fourth evaporations, to contact leads and form a Josephson junction.
US10916682B2 Micro light-emitting device and display apparatus
A micro light-emitting device includes an epitaxial structure, a first type pad, a current commanding structure and an insulating layer. The epitaxial structure includes a first type semiconductor layer, a light-emitting layer and a second type semiconductor layer. The first type pad is disposed on the epitaxial structure and electrically connected to the first type semiconductor layer. The current commanding structure is disposed on the epitaxial structure and electrically connected to the second type semiconductor layer. An orthogonal projection area of the current commanding structure on the second type semiconductor layer is smaller than a surface area of a surface of the second type semiconductor layer. The insulating layer contacts a portion of the current commanding structure and a portion of the surface of the second type semiconductor layer. The insulating layer has an opening exposing at least a portion of the portion of the current commanding structure.
US10916681B2 Semiconductor stacking structure, and method and apparatus for separating nitride semiconductor layer using same
A semiconductor stacking structure according to the present invention comprises: a monocrystalline substrate which is disparate from a nitride semiconductor; an inorganic thin film which is formed on a substrate to define a cavity between the inorganic thin film and the substrate, wherein at least a portion of the inorganic thin film is crystallized with a crystal structure that is the same as the substrate; and a nitride semiconductor layer which is grown from a crystallized inorganic thin film above the cavity. The method and apparatus for separating a nitride semiconductor layer according the present invention mechanically separate between the substrate and the nitride semiconductor layer. The mechanical separation can be performed by a method of separation of applying a vertical force to the substrate and the nitride semiconductor layer, a method of separation of applying a horizontal force, a method of separation of applying a force of a relative circular motion, and a combination thereof.
US10916678B2 Method of substrate lift-off for high-efficiency group III-V solar cell for reuse
A method of is provided as a process of substrate lift-off. The present invention is mainly used for a group III-V solar cell, which has the highest power generation efficiency. An original sacrificial layer is changed into an AlAs oxide layer, which is transformed into an AlOx sacrificial layer after wet oxidation. The sacrificial layer is then soaked in an oxide-relief solution for etching. Thus, the lift-off process of a GaAs substrate can be harmlessly processed to the complex group III-V solar cell. The GaAs substrate can be recycled to be effectively further reused in photovoltaic devices with reduced cost.
US10916677B2 Optocoupler
An optocoupler having a transmitter unit and a receiver unit being electrically isolated from each other and optically coupled with each other and integrated into a shared housing. The receiver unit includes an energy source that has a first electrical contact and a second electrical contact. The transmitter unit includes at least one first transmitter diode having a first optical wavelength and a second transmitter diode having a second optical wavelength. The first optical wavelength differing from the second optical wavelength by a difference wavelength, and the energy source of the receiving unit including two partial sources. The energy source being designed as a current source or as a voltage source, and the first partial source including a first semiconductor diode, and the second partial source including a second semiconductor diode. Each partial source having multiple semiconductor layers for each partial source being arranged in the shape of a stack.
US10916675B2 High efficiency multijunction photovoltaic cells
Multijunction photovoltaic cells having at least three subcells are disclosed, in which at least one of the subcells comprises a base layer formed of GaInNAsSb. The GaInNAsSb subcells exhibit high internal quantum efficiencies over a broad range of irradiance energies.
US10916672B2 Method of making a photovoltaic cell, the photovoltaic cell made therewith, and an assembly including the same
A method of making a photovoltaic cell includes providing a metal oxide substrate. The substrate is at least translucent to light. The substrate is directed through a deposition chamber. A semiconductor is deposited over a first major surface of the substrate. The semiconductor includes a polycrystalline p-type layer. The semiconductor is exposed to a chlorine-containing compound or a chlorine molecule. A second electrode layer is provided over the semiconductor.
US10916669B2 Photonic lock based high bandwidth photodetector
The technique introduced herein decouples the traditional relationship between bandwidth and responsivity, thereby providing a more flexible and wider photodetector design space. In certain examples of the technique introduced here, a photodetector device includes a first mirror, a second mirror, and a light absorption region positioned between the first and second reflective mirrors. For example, the first mirror can be a low-reflectivity mirror, and the second mirror can be a high-reflectivity mirror. The light absorption region is positioned to absorb incident light that is passed through the first mirror and reflected between the first and second mirrors. The first mirror can be configured to exhibit a reflectivity that causes an amount of light energy that escapes from the first mirror, after the light being reflected back by the second mirror, to be zero or near zero.
US10916666B2 Semiconductor device
Provided is a semiconductor device including: a semiconductor layer of a first conductivity type provided on the semiconductor substrate; a first main electrode provided on the semiconductor layer; a second main electrode provided on a main surface of the semiconductor substrate, opposite to a side on which the first main electrode is provided; an electric field limiting region of a second conductivity type provided in an outside terminal end region on an outer peripheral side of the semiconductor device, a first protective film covering at least the electric field limiting region; a protective metal film provided on a portion from an outside end edge portion of the first protective film to a front surface of the semiconductor layer; and a second protective film provided covering portions on an end edge portion of the first main electrode, the first protective film, and the protective metal film.
US10916665B2 Magnetic field sensor integrated circuit with an integrated coil
A magnetic field sensor includes a lead frame, a semiconductor die having a first surface in which a magnetic field sensing element is disposed and a second surface attached to the lead frame, and a non-conductive mold material enclosing the die and at least a portion of the lead frame. The sensor may include a ferromagnetic mold material secured to a portion of the non-conductive mold material. Features include a multi-sloped taper to an inner surface of a non-contiguous central region of the ferromagnetic mold material, a separately formed element disposed in the non-contiguous central region, one or more slots in the lead frame, a molded ferromagnetic suppression device spaced from the non-conductive mold material and enclosing a portion of a lead, a passive device spaced from the non-conductive mold material and coupled to a plurality of leads, and a ferromagnetic bead coupled to a lead. Also described is a coil secured to the non-conductive mold material and a lead having at least two separated portions with a passive component coupled across the two portions.
US10916663B2 Oxide semiconductor film and semiconductor device
An oxide semiconductor film which has more stable electric conductivity is provided. The oxide semiconductor film comprises a crystalline region. The oxide semiconductor film has a first peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.4 nm−1 and less than or equal to 0.7 nm−1 in a region where a magnitude of a scattering vector is greater than or equal to 3.3 nm−1 and less than or equal to 4.1 nm−1. The oxide semiconductor film has a second peak of electron diffraction intensity with a full width at half maximum of greater than or equal to 0.45 nm−1 and less than or equal to 1.4 nm−1 in a region where a magnitude of a scattering vector is greater than or equal to 5.5 nm−1 and less than or equal to 7.1 nm−1.
US10916657B2 Tensile strain in NFET channel
A method of forming a semiconductor structure includes forming a fin in a film stack disposed over a top surface of a substrate, the film stack comprising a first semiconductor layer, a second semiconductor layer and a channel layer. The method also includes forming an oxide layer disposed over the top surface of the substrate surrounding the fin, the oxide layer covering sidewalls of the first semiconductor layer and the second semiconductor layer, performing a channel release to remove the second semiconductor layer, and performing an oxidation to form a non-uniform thickness of an additional oxide layer along a length of the fin, the non-uniform thickness providing a vertical compressive strain that induces lateral tensile strain in the channel layer. The channel layer comprises an n-type field-effect transistor (NFET) channel.
US10916653B2 Transient-insensitive level shifter
In a described example, an apparatus includes at least one latch coupled to a first positive supply voltage and to a first negative supply voltage, the latch having a first inverter and a second inverter coupled to one another back to back, to output a first voltage corresponding to a first latch state and a second voltage corresponding to a second latch state responsive to a first set signal and a first reset signal. An isolation circuit is coupled to a second positive supply voltage and to a second negative supply voltage and is coupled to receive a second set signal, and a second reset signal. The second positive supply voltage is independent of the first positive supply voltage. The isolation circuit outputs the first set signal and the first reset signal and includes less than two pairs of drain extended metal oxide semiconductor (DEMOS) transistors.
US10916651B2 Body contact in fin field effect transistor design
A method for forming the semiconductor device that includes forming a gate opening to a channel region of a fin structure; and forming a dielectric layer on the fin structure, in which an upper portion of the fin structure is exposed. A metal is formed within the gate opening. The portions of the metal directly contacting the upper surface of fin structure provide a body contact. The combination of the metal within the gate opening to the channel region of the fin structure and the dielectric layer provide a functional gate structure to the semiconductor device.
US10916644B2 Semiconductor device
A semiconductor device includes a first electrode, a second electrode disposed at a position opposing the first electrode, and a semiconductor body provided between the first electrode and the second electrode. The semiconductor body includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a third semiconductor layer of the second conductivity type; the second semiconductor layer is provided between the first semiconductor layer and the first electrode; and the third semiconductor layer is selectively provided inside the first semiconductor layer and disposed at a position separated from the second semiconductor layer. The first electrode is electrically connected to the second semiconductor layer and includes an extension portion; and the extension portion pierces the second semiconductor layer, extends in a first direction toward the second electrode, and is connected to the third semiconductor layer.
US10916643B2 Semiconductor device, method for controlling semiconductor device, and control circuit for semiconductor device
To provide a semiconductor device in which an IGBT having two gate terminals is driven by one control signal, and a continuous ON state and an ON state twice for one on-pulse signal are avoided. A semiconductor device includes: a control signal input terminal; an IGBT having a first gate terminal and a second gate terminal; a delay unit configured to delay an input signal for a delay time; and a logical product unit configured to calculate a logical product of a first input terminal and a second input terminal. The control signal input terminal is connected to an input terminal of the delay unit and a second input terminal of the logical product unit. An output terminal of the delay unit is connected to the first gate terminal of the IGBT and a first input terminal of the logical product unit. An output terminal of the logical product unit is connected to the second gate terminal of the IGBT.
US10916642B2 Heterojunction bipolar transistor with emitter base junction oxide interface
The present disclosure relates to semiconductor structures and, more particularly, to a heterojunction bipolar transistor having an emitter base junction with a silicon-oxygen lattice interface and methods of manufacture. The device includes: a collector region buried in a substrate; shallow trench isolation regions, which isolate the collector region buried in the substrate; a base region on the substrate and over the collector region; an emitter region composed of a single crystalline of semiconductor material and located over with the base region; and an oxide interface at a junction of the emitter region and the base region.
US10916639B1 Semiconductor device structure and method for preparing the same
The present application discloses a semiconductor device structure and a method for preparing the same. The method includes forming a ring structure over a substrate; performing an etching process to form an annular semiconductor fin under the ring structure; forming a lower source/drain region on the surface of the substrate in contact with a bottom portion of the annular semiconductor fin; forming an inner gate structure in contact with an inner sidewall of the annular semiconductor fin and forming an outer gate structure in contact with an outer sidewall of the annular semiconductor fin; and forming an upper source/drain region on an upper portion of the annular semiconductor fin.
US10916638B2 Vertical fin field effect transistor devices with reduced top source/drain variability and lower resistance
A method of forming a fin field effect device is provided. The method includes forming one or more vertical fins on a substrate and a fin template on each of the vertical fins. The method further includes forming a gate structure on at least one of the vertical fins, and a top spacer layer on the at least one gate structure, wherein at least an upper portion of the at least one of the one or more vertical fins is exposed above the top spacer layer. The method further includes forming a top source/drain layer on the top spacer layer and the exposed upper portion of the at least one vertical fin. The method further includes forming a sacrificial spacer on opposite sides of the fin templates and the top spacer layer, and removing a portion of the top source/drain layer not covered by the sacrificial spacer to form a top source/drain electrically connected to the vertical fins.
US10916634B2 Method of fabricating a flash memory
A method of fabricating a semiconductor device includes forming a memory gate and a hard mask layer on the memory gate, forming a select gate on a sidewall of the memory gate and the hard mask layer, performing a selective oxidation process to form an oxide layer on the hard mask layer and the select gate, wherein a portion of the oxide layer on the select gate is thicker than a portion of the oxide layer on the hard mask layer, and removing the oxide layer on the hard mask layer and the hard mask layer to expose a top surface of the memory gate.
US10916630B2 Nanosheet devices with improved electrostatic integrity
Semiconductor devices and methods of forming the same include forming spacers on respective sidewalls above a stack of alternating channel layers and sacrificial layers, leaving an opening between the spacers. The stack is etched, between the spacers, to form a central opening in the stack that separates the channel layers into respective pairs of channel structures. The sacrificial material is etched away to expose top and bottom surfaces of the channel structures. A gate stack is formed on, between, and around the channel structures, including in the central opening between pairs of channel structures.
US10916624B2 Semiconductor integrated circuit and method of manufacturing the same
A semiconductor integrated circuit includes: an n−-type support layer; a p-type well region provided in an upper portion of the support layer; a p+-type circuit side buried layer provided inside the well region; an n+-type first and second terminal regions provided in an upper portion of the well region and above the circuit side buried layer; a p-type body region provided in an upper portion of the support layer; a control electrode structure provided in a gate trench; a p+-type output side buried layer provided inside the body region so as to be in contact with the control electrode structure; and an n+-type output terminal region provided in an upper portion of the body region and above the output side buried layer, wherein an output stage element having the output terminal region is controlled by a circuit element including the first and second terminal regions.
US10916609B2 Array substrate and method for manufacturing array substrate
An array substrate and a method of manufacturing the same are provided. The array substrate sequentially includes a flexible substrate, a buffer layer, an active layer, a first gate insulating layer, a first gate metal layer, a second gate insulating layer, a second gate metal layer, an inter-insulating layer, a first organic filling layer, a source-drain wiring layer, a planarization layer, an anode layer, a pixel defining layer, and a supporting layer from bottom to top; the first organic filling layer is convex upward on the inter-insulating layer, making the source-drain wiring layer covering thereon disposed to be convex. The method of manufacturing the array, substrate is sequentially to manufacture the layers from bottom to top, wherein the convex first organic filling layer disposed on the inter-insulating layer of the array substrate is used to raise a drain thereon.
US10916605B2 Display substrate, method of manufacturing the same, and display device
A display substrate, a method of manufacturing the same and a display device are provided. The display substrate includes: a base substrate including an emission area and a transmission area; an electroluminescent device on the base substrate, the electroluminescent device including a first electrode in the emission area; a thin film transistor for controlling the electroluminescent device, the thin film transistor including an active layer; and a conductive member on the base substrate. The conductive member electrically connects the first electrode of the electroluminescent device with the active layer, the conductive member includes a contact portion in contact with the active layer, and the contact portion is located in the transmission area.
US10916600B2 Flexible touch control display screen and method for manufacturing same
The present disclosure provides a flexible touch control display screen and a method for manufacturing same. The flexible touch control display screen includes a flexible substrate, a TFT layer, an OLED display layer, and a film encapsulation layer. A metal bridge, a first inorganic layer, a second metal layer, and a protective layer are sequentially formed on the film encapsulation layer. The first inorganic layer includes a plurality of channels formed by patterning the first inorganic layer, as well as a touch control sensing electrode and a touch control driving electrode disposed thereon.
US10916599B2 Array substrate, display apparatus and luminance calibration method therefor
An array substrate includes a plurality of sub-pixels and at least one light photosensitive detection assembly, and each photosensitive detection assembly corresponds to at least one sub-pixel. The at least one photosensitive detection assembly includes: a photosensitive element and a signal reading element coupled to the photosensitive element and a first reading signal line, the photosensitive element is configured to detect a luminance of a corresponding sub-pixel, and output a light detection signal according to the luminance of the corresponding sub-pixel. The signal reading element is configured to read the light detection signal output by the photosensitive element, and output a first detection signal to the first reading signal line according to the light detection signal.
US10916597B2 Display device
A display device according to an embodiment of the present invention includes: a flexible substrate having a plurality of pixels, each of the plurality of pixels comprising a display element, the plurality of pixels being arranged in a display area; and an at least one actuator which is provided so as to fit a backside of the substrate and bends the substrate, wherein the at least one actuator is provided with a layer to shift from a flexible state to a state to have a predetermined shape and vice versa by being driven electrically, and the at least one actuator does not overlap the display element in a plan view.
US10916595B2 Display device
A display device includes a substrate, a first insulating layer disposed on the substrate, a through portion passing through the substrate and the first insulating layer, a display unit disposed on the first insulating layer and including a plurality of pixels surrounding at least a portion of the through portion, and a dummy pixel unit. Each pixel includes a light-emitting element including a pixel electrode and an opposite electrode facing each other, and an emission layer disposed between the pixel electrode and the opposite electrode. The dummy pixel unit includes a plurality of dummy pixels disposed between the through portion and the display unit, and including a metal pattern including a same material as the pixel electrode. The dummy pixels are disposed adjacent to the display unit.
US10916594B2 Display device including a plurality of color filters and a plurality of light emitting layers
A plurality of light emitting layers are divided into a plurality of groups in response to light emitting colors. Each of the plurality of groups includes a group corresponding to the plurality of light emitting layers. Transmitted light colors of a plurality of filter layers are respectively the same type of colors as the light emitting colors of the plurality of light emitting layers. Each of the plurality of light emitting layers includes a central area and a peripheral area having mutually different light emitting characteristics within a range corresponding to a plurality of contact areas. Each of the plurality of filter layers includes a filter opening at the center, and is provided at least obliquely upward in an outward direction of the peripheral area.
US10916592B2 Organic light-emitting diode display device
An organic light-emitting diode display device includes a substrate having a plurality of pixels; first electrodes disposed on the substrate, each of which is connected to a respective one of the pixels; organic emissive layers disposed on the first electrodes; a second electrode disposed on the organic emissive layers; a touch sensing unit disposed on the second electrode; and color filters disposed on the touch sensing unit, each of which is disposed above a respective one of the pixels.
US10916591B2 Pixel structure, display panel, display apparatus, and mask plate
A pixel structure, the pixel structure comprising a plurality of pixels arranged in an array, each pixel comprising three sub-pixels of different colours arranged in two adjacent rows; the plurality of pixels also comprise a plurality of first pixels and a plurality of second pixels, the plurality of first pixels and the plurality of second pixels being arranged alternately along the row direction; along the row direction, one sub-pixel of each first pixel is positioned in the same row as two sub-pixels of the adjacent second pixel, and the other two sub-pixels of each first pixel are positioned in the same row as the other sub-pixel in the adjacent second sub-pixel; and two sub-pixels positioned in different rows in each first pixel are respectively adjacent to the sub-pixels of the same corresponding colour in an adjacent second pixel.
US10916588B2 Display panel, and display device including the same
A display panel including a glass substrate having an opening area, and a display area at least partially surrounding the opening area; a thin film transistor on the display area including a semiconductor layer and a gate electrode; a display element electrically connected to the thin film transistor; a multi-layer including an insulating layer and a lower insulating layer. The insulating layer is between the glass substrate and the display element and the lower insulating layer is between the glass substrate and the insulating layer; and a thin-film encapsulation layer covering the display element including an inorganic encapsulation layer and an organic encapsulation layer. The multi-layer includes a first groove between the opening area and the display area. A first width of a portion of the first groove in the lower insulating layer is greater than a second width of a portion of the first groove in the insulating layer.
US10916584B2 Semiconductor device including a data storage pattern and a method of manufacturing the same
A semiconductor device including: first conductive lines on a substrate and extending in a first direction; second conductive lines on the first conductive lines and extending in a second direction; data storage structures between the first and second conductive lines, wherein each of the data storage structures includes a lower data storage electrode, a data storage pattern, and an upper data storage electrode, wherein a width of an upper portion of the lower data storage electrode is smaller than a width of a lower portion of the lower data storage electrode, a width of an upper portion of the data storage pattern is greater than a width of a lower portion of the data storage pattern, and the width of the upper portion of the lower data storage electrode is different from the width of the lower portion of the data storage pattern.
US10916581B2 Multilayered magnetic free layer structure containing an ordered magnetic alloy first magnetic free layer for spin-transfer torque (STT) MRAM
A multilayered magnetic free layer structure is provided that includes a first magnetic free layer and a second magnetic free layer separated by a non-magnetic layer in which the first magnetic free layer is composed of an ordered magnetic alloy. The ordered magnetic alloy provides a first magnetic free layer that has low moment, but is strongly magnetic. The use of such an ordered magnetic alloy first magnetic free layer in a multilayered magnetic free layer structure substantially reduces the switching current needed to reorient the magnetization of the two magnetic free layers.
US10916568B2 Manufacturing method of display substrate, array substrate and display device
A manufacturing method of a display substrate, an array substrate and a display device are provided. The method includes forming a first wire, a first insulation layer, a first and second metal layer, and a photoresist layer; forming a photoresist retained pattern above the first wire; forming a second and first metal layer retained pattern under the photoresist retained pattern; forming a second insulation layer with a thickness less than or equal to a sum of thicknesses of the first and second metal layer; the second insulation layer forming a fracture region at a boundary between a part covering the first insulation layer and another part covering the second metal layer retained pattern; removing the first and second metal layer retained patterns by a wet etch process to expose the first insulation layer; and forming a contact hole exposing the first wire.
US10916566B2 Semiconductor device and method for manufacturing the same
It is an object to manufacture and provide a highly reliable display device including a thin film transistor with a high aperture ratio which has stable electric characteristics. In a manufacturing method of a semiconductor device having a thin film transistor in which a semiconductor layer including a channel formation region is formed using an oxide semiconductor film, a heat treatment for reducing moisture and the like which are impurities and for improving the purity of the oxide semiconductor film (a heat treatment for dehydration or dehydrogenation) is performed. Further, an aperture ratio is improved by forming a gate electrode layer, a source electrode layer, and a drain electrode layer using conductive films having light transmitting properties.
US10916563B2 Semiconductor device including word line cut
A semiconductor device includes a substrate having a cell region and an extension region, channel structures disposed in the cell region and extending in a first direction substantially perpendicular to an upper surface of the substrate, gate electrode layers surrounding the channel structures and stacked to be spaced apart from each other in the first direction and to extend in a second direction substantially perpendicular to the first direction, and word line cuts cutting the gate electrode layers in the first direction and continuously extending in the second direction. At least one of the word line cuts is an extension word line cut with an extension portion having an area that is different from those of the remaining word line cuts located at the same level as the at least one word line cut in a predetermined region extending in the second direction.
US10916554B2 Three-dimensional semiconductor memory device
Provided are a three-dimensional semiconductor memory device and a method of fabricating the same. The device may include a substrate including a peripheral circuit region and a cell array region, peripheral gate stacks provided on the peripheral circuit region of the substrate, and an electrode structure provided on the cell array region of the substrate. The electrode structure may include a lower electrode, a lower insulating layer covering the lower electrode, and upper electrodes and upper insulating layers, which are vertically and alternately stacked on the lower insulating layer. The lower insulating layer may be extended from the cell array region to the peripheral circuit region to cover the peripheral gate stacks, and a top surface of the lower insulating layer may be higher on the peripheral circuit region than on the cell array region.
US10916553B2 3D vertical NAND memory device including multiple select lines and control lines having different vertical spacing
Some embodiments include apparatuses, and methods of forming and operating the apparatuses. Some of the apparatuses include a pillar including a length, a memory cell string and control lines located along a first segment of the pillar, and select lines located along a second segment of the pillar. The control lines include at least a first control line and a second control line. The first control line is adjacent the second control line. The first control line is separated from the second control line by a first distance in a direction of the length of the pillar. The select lines include at least a first select line and a second select line. The first select line is separated from the second select line by a second distance in the direction of the length of the pillar. The second distance is less than the first distance.
US10916550B2 Memory devices with gate all around transistors
A memory structure and a system-on chip (SOC) device are provided. A memory structure according to the present disclosure includes a first static random access memory (SRAM) macro comprising first gate-all-around (GAA) transistors and a second SRAM macro comprising second GAA transistors. The first GAA transistors of the first SRAM macro each includes a first plurality of channel regions each having a first channel width (W1) and a first channel thickness (T1). The second GAA transistors of the second SRAM macro each comprises a second plurality of channel regions each having a second channel width (W2) and a second channel thickness (T2). W2/T2 is greater than W1/T1.
US10916548B1 Memory arrays with vertical access transistors
An apparatus can have first and second memory cells. The first memory cell can have a first storage device selectively coupled to a first digit line at a first level by a first vertical transistor at a second level. The second memory cell can have a second storage device selectively coupled to a second digit line at the first level by a second vertical transistor at the second level. A third digit line can be at a third level and can be coupled to a main sense amplifier. A local sense amplifier can be coupled to the first digit line, the second digit line, and the third digit line. The second level can be between the first and third levels.
US10916547B2 Floating body memory cell having gates favoring different conductivity type regions
A method for fabricating floating body memory cells (FBCs), and the resultant FBCs where gates favoring different conductivity type regions are used is described. In one embodiment, a p type back gate with a thicker insulation is used with a thinner insulated n type front gate. Processing, which compensates for misalignment, which allows the different oxide and gate materials to be fabricated is described.
US10916544B2 Gate-all-around quantum well complementary inverter and method of making the same
The present invention provides a Gate-All-Around nano-sheet complementary inverter, comprising: P-type semiconductor transistors and N-type semiconductor transistors, wherein the P-type semiconductor transistors comprise P-type semiconductor nano-sheet channels, a first gate dielectric layer fully surrounding the P-type semiconductor nano-sheet channels, a first gate electrode layer fully surrounding the first gate dielectric layer, a first source region and a first drain region, connected to two ends of the P-type semiconductor nano-sheet channel respectively, the N-type semiconductor transistors comprise N-type semiconductor nano-sheet channels, a second gate dielectric layer fully surrounding the N-type semiconductor nano-sheet channels, a second gate electrode layer fully surrounding the second gate dielectric layer, a second source region and a second drain region, connected to two ends of the N-type semiconductor nano-sheet channel respectively; and a common electrode fully surrounding the first gate electrode layer and the second gate electrode layer; wherein the P-type semiconductor nano-sheet channels and the N-type semiconductor nano-sheet channels are laterally aligned, and the width of the P-type semiconductor nano-sheet channel is greater than that of the N-type semiconductor nano-sheet channel The structure of the disclosed device is compact enough to increase the density and improve the performance and simple enough to produce.
US10916541B2 Semiconductor device
Between a source electrode (25) of a main device (24) and a current sensing electrode (22) of a current detection device (21), a resistor for detecting current is connected. Dielectric withstand voltage of gate insulator (36) is larger than a product of the resistor and maximal current flowing through the current detection device (21) with reverse bias. A diffusion length of a p-body region (32) of the main device (24) is shorter than that of a p-body (31) of the current detection device (21). A curvature radius at an end portion of the p-body region (32) of the main device (24) is smaller than that of the p-body (31) of the current detection device (21). As a result, at the inverse bias, electric field at the end portion of the p-body region (32) of the main device (24) becomes stronger than that of the p-body region (31) of the current detection device (21). Consequently, avalanche breakdown tends to occur earlier in the main device 24 than the current detection device (21).
US10916540B2 Device including PCM RF switch integrated with group III-V semiconductors
There are disclosed herein various implementations of a semiconductor device including a group III-V layer situated over a substrate, and a phase-change material (PCM) radio frequency (RF) switch situated over the group III-V layer. The PCM RF switch couples a group III-V transistor situated over the group III-V layer to one of an integrated passive element or another group III-V transistor situated over the group III-V layer. The PCM RF switch includes a heating element transverse to the PCM, the heating element underlying an active segment of the PCM. The PCM RF switch is configured to be electrically conductive when the active segment of the PCM is in a crystalline state, and to be electrically insulative when the active segment of the PCM is in an amorphous state.
US10916538B2 Semiconductor device and manufacturing method therefor, solid-state imaging element, and electronic equipment
The present technology relates to a semiconductor device and a manufacturing method therefor, a solid-state imaging element and electronic equipment that make it possible to suppress breakdown of a side wall insulating film by charge damage to suppress short-circuiting. The semiconductor device according to an aspect of the present technology includes a first semiconductor substrate on which a given circuit is formed, a second semiconductor substrate, and through electrodes that electrically connect the first semiconductor substrate and the second semiconductor substrate to each other. The through electrode is formed such that a through-hole is opened through a protection diode structure formed in the first semiconductor substrate, an insulating film is deposited on a side wall of the through-hole, and an electrode material is then filled inside the through-hole in which the insulating film is deposited. The present technology can be applied, for example, to a CMOS image sensor.
US10916536B2 ESD protection device for a MEMS element
An ESD protective device for a MEMS element is described as having at least one first line; at least one n-region connected to the first line; at least one insulating region connected to the n-region; at least one p-region connected to the insulating region; at least one second line connected to the p-region; the n-region, the insulating region, and the p-region being situated on a substrate.
US10916534B2 Semiconductor device
A semiconductor device includes a first fin pattern and a second fin pattern in a NMOS region, each extending lengthwise along a first direction and separated by a first trench and a third fin pattern and a fourth fin pattern in a PMOS region, each extending lengthwise along the first direction in parallel with respective ones of the first fin pattern and the second fin pattern and separated by a second trench. First and second isolation layers are disposed in the first and second trenches, respectively. A first gate electrode extends lengthwise along a second direction transverse to the first direction and crosses the first fin pattern. A second gate electrode extends lengthwise along the second direction and crosses the second fin pattern. Spaced apart third and fourth gate electrodes extend lengthwise along the second direction on the second isolation layer.
US10916532B2 Micro LED display panel and method for making same
A micro LED display panel includes a back plate, a plurality of micro LEDs on the back plate, a first partition wall on a side of the back plate having the plurality of micro LEDs, an insulating layer on the back plate, and a common electrode on the insulating layer and covering the plurality of micro LEDs. The first partition wall divides the back plate into a plurality of light-emitting regions independent from each other. Each of the light-emitting regions is provided with one of the micro LEDs. The insulating layer is located in each of the light-emitting regions and surrounds each of the micro LEDs.
US10916523B2 Microdevice transfer setup and integration of micro-devices into system substrate
This invention relates to integrating pixelated micro-devices into a system substrate. Defined are methods of transferring a plurality of micro-devices into a receiver substrate where a plurality of micro-devices is arranged in one or more cartridges that are aligned and bonded to a template. Further, defining the transfer process, the micro-devices may be selected, identified as defective and a transfer adjustment made based on defective micro-devices.
US10916522B2 Semiconductor device and method for manufacturing same
A method for manufacturing a semiconductor device includes: a first bonding process including bonding, at a first bonding point, a tip of a wire held by a capillary; a first lifting process including moving the capillary upward; a first reverse process including moving the capillary in a direction that includes a component in a first direction that is from a second bonding point toward the first bonding point; a second lifting process including moving the capillary upward; a second reverse process including moving the capillary in the first direction; a third lifting process including moving the capillary upward; a forward process including moving the capillary toward the second bonding point; and a second bonding process including bonding the wire at the second bonding point. A movement distance of the capillary in the first lifting process is not less than a movement distance of the capillary in the second lifting process.
US10916520B2 Semiconductor device, and method of manufacturing the same
A semiconductor device includes a substrate, a semiconductor element, a ground pad, an insulating coating member, a conductive bonding member, and a conductive cap. The inner peripheral end of a bottom of the conductive cap is disposed at a side close to the inner periphery of the insulating coating member relative to the outer peripheral end of the insulating coating member. The bottom has a shape in which the distance between the main surface and itself decreases continuously from its outer peripheral end toward its inner peripheral end.
US10916519B2 Method for manufacturing semiconductor package with connection structures including via groups
A method includes placing a package component over a carrier, encapsulating the package component in an encapsulant, and forming a connection structure over and electrically coupling to the package component. The formation of the connection structure includes forming a first via group over and electrically coupling to the package component, forming a first conductive trace over and contacting the first via group, forming a second via group overlying and contacting the first conductive trace, wherein each of the first via group and the second via group comprises a plurality of vias, forming a second conductive trace over and contacting the second via group, forming a top via overlying and contacting the second conductive trace, and forming an Under-Bump-Metallurgy (UBM) over and contacting the top via.
US10916518B2 Electrical binding structure and method of forming the same
An electrical binding structure is provided, which includes a substrate, a contact pad set, and a combination of a micro device and an electrode. The contact pad set is on the substrate in which the contact pad set includes at least one contact pad, and the at least one contact pad is conductive. The combination is on the contact pad set. Opposite sides of the electrode are respectively in contact with the micro device and the contact pad set in which at least the contact pad set and the electrode define at least one volume space. A vertical projection of the at least one volume space on the substrate is overlapped with a vertical projection of one of the contact pad set and the electrode on the substrate, and is enclosed by a vertical projection of an outer periphery of the micro device on the substrate.
US10916515B2 Systems and methods using an RF circuit on isolating material
A device is disclosed that includes a wafer/chip, a first layer, a first device, an isolation mold and a second device. The first layer is formed over the chip and has non-isolating characteristics. The first device is formed over the first layer. In one example, it is formed only over the first layer. The isolation mold is formed over the chip. The isolation mold has isolating characteristics. The second device is formed substantially over the isolation mold.
US10916512B2 Capacitor metal guard ring for moisture ingression prevention
A semiconductor die includes at least one electronic component. an at least partially moisture permeable material disposed on or about the at least one electronic component, at least one opening defining at least one path for moisture to migrate from an environment external to the die into the at least partially moisture permeable material, and a moisture impermeable shield disposed between the at least one electronic component and the at least one opening.
US10916509B2 Substrate, method of sawing substrate, and semiconductor device
A method of dividing a substrate includes preparing a substrate including a crystalline semiconductor layer having a scribe lane region and device regions, a dielectric layer on the crystalline semiconductor layer, and a partition structure in physical contact with the dielectric layer and provided on the scribe lane region of the crystalline semiconductor layer, forming an amorphous region in the crystalline semiconductor layer, and performing a grinding process on the crystalline semiconductor layer after the forming of the amorphous region. The amorphous region is formed in the scribe lane region of the crystalline semiconductor layer.
US10916508B2 Semiconductor device package with radiation shield
A semiconductor device includes a substrate and a semiconductor chip. The semiconductor chip includes a semiconductor element on a first surface thereof. The semiconductor chip is provided on the substrate such that a second surface thereof, which is opposite to the first surface, faces an upper surface of the substrate. A metal layer is provided between the second surface of the semiconductor chip and the upper surface of the substrate. A metal material, in which the range of α rays is shorter than for single-crystal silicon, is used in the metal layer.
US10916507B2 Multiple chip carrier for bridge assembly
A multiple chip carrier assembly including a carrier having a first surface and a second surface is attached to a plurality of chips is described. The plurality of chips include a first chip and a second chip. Each of the chips has first surface with a first set of solder balls for connecting to a package and a second set of solder balls for connecting to a high signal density bridge element. A second surface of each chip is bonded to the first surface of the carrier. A package has a first surface which is connected to the first sets of solder balls of the first and second chips. A high signal density bridge element having high signal density wiring on one or more layers is connected to the second sets of solder balls of the first and second chips. The bridge element is disposed between the first surface of the package and the first surfaces of the first and second chips.
US10916497B2 Apparatuses and methods for protecting transistor in a memory circuit
A semiconductor device may include a multi-level wiring structure comprising a first-level wiring layer, a second-level wiring layer and an insulating layer between the first-level wiring layer and the second-level wiring layer. The device may also include a bond pad, a first wiring extending from the bond pad, and a second wiring overlapping at least in part with the first wiring through the insulating layer to be capacitively coupled to the first wiring. The first wiring and the second wiring may each be formed respectively as the first-level wiring layer and the second-level wiring layer. The device may also include a protection circuit configured to be DC coupled to the second wiring. The first-level wiring layer may include a redistribution layer (RDL).
US10916490B2 Semiconductor device
Provided is a semiconductor device including a semiconductor chip; a frame member having a chip placement surface on which the semiconductor chip is provided; and a first suspension lead and a second suspension lead connected to the frame member and provided on any side of the frame member, wherein M1≤L1+L2 is satisfied, where L1 is a distance from an arrangement position of the first suspension lead to a corner of the chip placement surface close to the first suspension lead, L2 is a distance from an arrangement position of the second suspension lead to a corner of the chip placement surface close to the second suspension lead, and M1 is a distance from the arrangement position of the first suspension lead to the arrangement position of the second suspension lead.
US10916489B1 Memory core chip having TSVS
Disclosed herein is an apparatus that includes a memory cell army, a plurality of TSVs penetrating a semiconductor chip, an output circuit configured to output a data to the TSVs, an input circuit configured to receive a data from the TSVs, a pad supplied with a data from outside, and a control circuit configured to write the data to the memory cell array, read the data from the memory cell array, and transfer the data from the memory cell array to the input circuit via the output circuit and the TSVs.
US10916488B2 Semiconductor package having thermal conductive pattern surrounding the semiconductor die
Semiconductor packages are provided. One of the semiconductor package includes a semiconductor die, a thermal conductive pattern, an encapsulant and a thermal conductive layer. The thermal conductive pattern is disposed aside the semiconductor die. The encapsulant encapsulates the semiconductor die and the thermal conductive pattern. The thermal conductive layer covers a rear surface of the semiconductor die, wherein the thermal conductive pattern is thermally coupled to the semiconductor die through the thermal conductive layer and electrically insulated from the semiconductor die.
US10916487B2 Method for manufacturing a semiconductor device assembly with through-mold cooling channel formed in encapsulant
Semiconductor device assemblies having stacked semiconductor dies and thermal transfer devices that include vapor chambers are disclosed herein. In one embodiment, a semiconductor device assembly includes a first semiconductor die having a base region, at least one second semiconductor die at the base region, and a thermal transfer device attached to the first and second dies. The thermal transfer device includes an encapsulant at least partially surrounding the second die and a via formed in the encapsulant. The encapsulant at least partially defines a cooling channel that is adjacent to a peripheral region of the first die. The via includes a working fluid and/or a solid thermal conductor that at least partially fills the channel.
US10916484B2 Electronic device including redistribution layer pad having a void
An electronic device is disclosed. In one example, the electronic device includes a solder ball, a dielectric layer comprising an opening, and a redistribution layer (RDL) comprising an RDL pad connected with the solder ball. The RDL pad including at least one void, the void being disposed at least in partial in an area of the RDL pad laterally outside of the opening of the dielectric layer.
US10916480B2 Magnetic wall utilization type analog memory device, magnetic wall utilization type analog memory, nonvolatile logic circuit, and magnetic neuro device
A magnetic wall utilization type analog memory device includes a magnetization fixed layer having a magnetization oriented in a first direction, a non-magnetic layer provided on one side of the magnetization fixed layer, a magnetic wall driving layer provided on the magnetization fixed layer with the non-magnetic layer interposed therebetween, a first magnetization supplying part which is configured to supply magnetization oriented in the first direction to the magnetic wall driving layer and a second magnetization supplying part which is configured to supply magnetization oriented in a second direction reversed with respect to the first direction, wherein at least one of the first magnetization supplying part and the second magnetization supplying part is a spin-orbit torque wiring which comes into contact with the magnetic wall driving layer and extends in a direction intersecting the magnetic wall driving layer.
US10916476B2 Semiconductor devices with various line widths and method of manufacturing the same
Provided are semiconductor devices having various line widths and a method of manufacturing the semiconductor device. The semiconductor device includes: a substrate including a first region and a second region, a plurality of first gate lines extending in a first direction in the first region and each having a first width in a second; a plurality of second gate lines extending in the first direction in the second region and each having a second width that is different from the first width in the second direction and a pitch that is the same as a pitch of the plurality of first gate lines; a spacer layer covering opposite side walls of each of the plurality of first gate lines and each of the plurality of second gate lines; and a first base layer arranged between the substrate and the spacer layer in the first region.
US10916474B2 Method of reducing residual contamination in singulated semiconductor die
A method for processing electronic die includes providing a substrate having a plurality of electronic die formed as part of the substrate and separated from each other by spaces. The method includes placing the substrate onto a first carrier substrate. The method includes plasma etching the substrate through the spaces to form singulation lines adjacent the plurality of electronic die. The method includes exposing the plurality of electronic die to solvent vapors, such as heated solvent vapors, under reduced pressure to reduce the presence of residual contaminants resulting from the plasma etching step.
US10916468B2 Semiconductor device with buried local interconnects
Embodiments of the present invention provide methods for fabricating a semiconductor device with buried local interconnects. One method may include providing a semiconductor substrate with fins etched into the semiconductor substrate; forming a first set of spacers along the sides of the fins; depositing a tungsten film over the top surface of the substrate; etching the tungsten film to form a buried local interconnect; forming a set of gates and a second set of spacers; forming a source and drain region adjacent to the fins; depositing a first insulating material over the top surface of the substrate; and creating contact between the set of gates and the source and drain region using an upper buried local interconnect.
US10916467B2 Apparatus having on-chip fail safe logic for I/O signal in high integrity functional safety applications
A packaged integrated circuit (IC) chip that provides input/output (I/O) signal fail safe verification is disclosed. The packaged IC chip includes a first processing unit, a first control peripheral coupled to receive a first processed signal from the processing unit and to provide an output signal, and compare logic. The compare logic is coupled to receive the output signal and a comparison signal, to compare the output signal and the comparison signal, and to provide an error signal responsive to a difference between the output signal and the comparison signal.
US10916463B2 Substrate processing apparatus, substrate processing method and recording medium
An apparatus includes first load ports 2A and 2B and second load ports 2C and 2D provided in a left-right direction; a processing unit D2; an inspection module 4 provided between the first load ports 2A and 2B and the second load ports 2C and 2D; a first substrate transfer mechanism 5A provided at one side of the inspection module 4 in the left-right direction, and configured to transfer a substrate W into the processing unit D2 and a transfer container C on the first load ports 2A and 2B; a second substrate transfer mechanism 5B provided at the other side thereof, and configured to transfer the substrate W into the inspection module 4 and a transfer container C on the second load ports 2C and 2D; and a transit unit 51 for transferring the substrate W between the first and the second substrate transfer mechanisms 5A and 5B.
US10916462B2 Laser marking focus feedback system having an intensity indication of reflected radiation passed through an objective lens, a beam splitter and a pinhole
A method of focusing includes irradiating an object by directing radiation output by a radiating source through an objective lens, measuring a first intensity of reflected radiation that is reflected from the object, adjusting a distance between the objective lens and the object, measuring a second intensity of reflected radiation, and analyzing the first intensity of reflected radiation and the second intensity of reflected radiation to determine a focal distance between the objective lens and the object. The distance between the objective lens and the object is adjusted to the focal distance and the irradiating intensity is increased to mark the object. In another example, measuring the first intensity of reflected radiation is performed by directing reflected radiation from the object through the objective lens, a beam splitter, a focusing lens, and a pinhole and onto a sensor that outputs a signal indicative of sensed radiation intensity.
US10916457B2 Heating device and semiconductor manufacturing apparatus
A heating device is provided. The heating device includes a conveyance member that conveys a substrate between a heating position and a non-heating position, a support member that is provided on the conveyance member and that supports the substrate, a heater provided at the heating position and operable to heat a first surface of the substrate, and a heat reflecting plate attached to the conveyance member in facing relation to a second surface of the substrate opposite to the first surface.
US10916456B2 Substrate liquid processing apparatus and substrate liquid processing method
A substrate liquid processing apparatus includes a placing unit which places thereon a substrate; a liquid processing unit which processes the substrate by immersing the substrate in a processing liquid with a posture in which a plate surface of the substrate is perpendicular to a horizontal direction; a transfer unit which transfers the substrate between the placing unit and the liquid processing unit; and a rotating unit which rotates the substrate, after being subjected to a first processing by the liquid processing unit, around an axis perpendicular to the plate surface, and in a direction different from that when the first processing is performed. Further, the transfer unit transfers the substrate, after being subjected to the first processing, to the rotating unit and transfers the rotated substrate to the liquid processing unit. The liquid processing unit performs a second processing by immersing the rotated substrate in the processing liquid.
US10916455B2 Flattening method and flattening apparatus
A flattening method, by utilizing the advantages of the CARE method and making up for the disadvantages, can perform removal processing of a surface of a workpiece at a sufficient processing rate and can provide a processed surface having enhanced flatness without leaving damage in the processed surface. A flattening method comprises at least two surface removal steps and at least two cleaning steps, the final surface removal step being a catalyst-referred etching step comprising immersing a workpiece in a processing solution containing at least one of hydrohalic acid, hydrogen peroxide water and ozone water, and bringing a surface of a catalyst platen into contact with or close proximity to a surface to be processed of the workpiece to process the surface, said catalyst platen having in a surface a catalyst selected from the group consisting of platinum, gold, a ceramic solid catalyst, a transition metal, glass, and an acidic or basic solid catalyst.
US10916454B2 Method of stripping a photoresist, and method of manufacturing a semiconductor device
A method of reducing resist residue on a semiconductor substrate includes introducing ozone gas into a chemical solution effective to dissolve resist residue adhered to the semiconductor substrate. The chemical solution is circulated through a processing tank where the semiconductor substrate is immersed in the chemical solution and through a first circulation path having a first pump and a first filter. After dissolution of the resist in the processing tank, the chemical solution is circulated through a second circulation path having a second pump and a second filter and returned to the processing tank. The first filter is cleaned by circulating the chemical solution through a third circulation path that includes the first pump and the first filter while introducing ozone gas into the chemical solution. The third circulation path is a closed loop path that excludes the processing tank, the second pump and the second filter.
US10916453B2 Lithographic apparatus, method of transferring a substrate and device manufacturing method
A lithographic apparatus includes a substrate table, a post-exposure handling module, a substrate handling robot and a drying station. The substrate table is configured to support a substrate for an exposure process. The post-exposure handling module is configured to handle the substrate post-exposure. The substrate handling robot is configured to transfer the substrate from the substrate table along a substrate unloading path into the post-exposure handling module. The drying station is configured to actively remove liquid from a surface of the substrate. The drying station is located in the substrate unloading path. The drying station is located in the post-exposure handling module. The post-exposure handling module may be a substrate handler.
US10916445B2 Method for preparing a p-type semiconductor layer, enhanced device and method for manufacturing the same
A method for preparing a p-type semiconductor layer, an enhanced device and a method for manufacturing the same disclosed relate to the technical field of microelectronics. The method for preparing a p-type semiconductor layer includes: preparing a p-type semiconductor layer; preparing a protective layer on the p-type semiconductor layer, in which the protective layer is made of AlN or AlGaN; and annealing the p-type semiconductor layer under protection of the protective layer. In this way, the protective layer can protect the p-type semiconductor layer from volatilization and to form high-quality surface morphology in the subsequent high-temperature annealing treatment of the p-type semiconductor layer.
US10916443B2 Spacer-damage-free etching
A method of patterning a semiconductor device is disclosed. A tri-layer photoresist is formed over a plurality of patterned features. The tri-layer photoresist includes a bottom layer, a middle layer disposed over the bottom layer, and a top layer disposed over the middle layer, the top layer containing a photo-sensitive material. The top layer is patterned via a photolithography process, the patterned top layer including an opening. The opening is extended into the bottom layer by etching the bottom layer and continuously forming a protective layer on etched surfaces of the bottom layer and on exposed surfaces of the patterned features. The bottom layer is removed. At least some portions of the protective layer remain on the exposed surfaces of the patterned features after the bottom layer is removed.
US10916441B2 Method for producing semiconductor chips
A surface side is irradiated with an SF6 gas plasma to etch a semiconductor wafer which has been peeled off in street portions, and divide the semiconductor wafer into a plurality of individual semiconductor chips. A removing agent is subsequently supplied from the surface side. At that time, it is preferable that the semiconductor wafer divided into the plurality of chips is rotated at high speed. Accordingly, a mask material layer remaining on the surface is removed by the removing agent. Moreover, the removing agent is preferably an organic solvent, and more preferably, methyl ethyl ketone, ethanol, and ethyl acetate, or a combination of these.
US10916440B2 Process and apparatus for processing a nitride structure without silica deposition
Techniques are provided to remove the growth of colloidal silica deposits on surfaces of high aspect ratio structures during silicon nitride etch steps. A high selectivity overetch step is used to remove the deposited colloidal silica. The disclosed techniques include the use of phosphoric acid to remove silicon nitride from structures having silicon nitride formed in narrow gap or trench structures having high aspect ratios in which formation of colloidal silica deposits on a surface of the narrow gap or trench through a hydrolysis reaction occurs. A second etch step is used in which the hydrolysis reaction which formed the colloidal silica deposits is reversible, and with the now lower concentration of silica in the nearby phosphoric acid due to the depletion of the silicon nitride, the equilibrium drives the reaction in the reverse direction, dissolving the deposited silica back into solution.
US10916438B2 Method of multiple gate oxide forming with hard mask
Methods for fabricating an integrated circuit having a plurality of gate dielectrics. The methods are provided to include: forming one or more isolation trenches and a first active region and a second active region in a substrate; depositing hard mask material on the substrate; removing a first portion of the hard mask material over the first active region; forming a first oxide layer having a first thickness over the first active region; removing a second portion of the hard mask material over the second active region; and forming a second oxide layer having a second thickness over the first and second active regions such that a thickness of oxide formed over the first active region comprises a sum of the thickness of the first oxide layer and the second oxide layer, and a thickness of oxide formed over the second active region comprises the second thickness.
US10916437B2 Methods of forming micropatterns and substrate processing apparatus
Provided herein is a method of forming micropatterns, including: forming an etching target film on a substrate; forming a photosensitivity assisting layer on the etching target film, the photosensitivity assisting layer being terminated with a hydrophilic group; forming an adhesive layer on the photosensitivity assisting layer, the adhesive layer forming a covalent bond with the hydrophilic group; forming a hydrophobic photoresist film on the adhesive layer; and patterning the photoresist film.
US10916435B2 Surface treatment composition, method of producing surface treatment composition, method of treating surface, and method of producing semiconductor substrate
The present invention provides a means for sufficiently removing organic residues remaining on the surface of an object to be polished which contains silicon nitride, silicon oxide, or polysilicon and has been polished. The present invention relates to a surface treatment composition including a polymer compound having a sulfonic acid (salt) group and water, wherein the surface treatment composition has a pH value of less than 7 and the surface treatment composition is used for decreasing an organic residue on a surface of an object to be polished which contains silicon nitride, silicon oxide, or polysilicon and has been polished.
US10916433B2 Methods of forming metal silicide layers and metal silicide layers formed therefrom
Methods for forming low resistivity metal silicide interconnects using one or a combination of a physical vapor deposition (PVD) process and an anneal process are described herein. In one embodiment, a method of forming a plurality of wire interconnects includes flowing a sputtering gas into a processing volume of a processing chamber, applying a power to a target disposed in the processing volume, forming a plasma in a region proximate to the sputtering surface of the target, and depositing the metal and silicon layer on the surface of the substrate. Herein, the first target comprises a metal silicon alloy and a sputtering surface thereof is angled with respect to a surface of the substrate at between about 10° and about 50°.
US10916431B2 Robust gate cap for protecting a gate from downstream metallization etch operations
Embodiments of the invention describe a method of forming an integrated circuit. The method includes forming an active semiconductor device region over a substrate. A first contact structure is formed over the active semiconductor device region, wherein the first contact structure includes a first contact liner material and a first contact body material. A conductive gate structure is formed over the active semiconductor device region, and a first gate cap material is formed on the conductive gate structure. The first contact liner material includes a first etch selectivity responsive to a first etch composition, the first contact body material includes a second etch selectivity responsive to the first etch composition, and the first gate cap material includes a third etch selectivity responsive to the first etch composition. The first etch selectivity is greater than each of the second and third etch selectivies.
US10916426B2 Formation of crystalline, layered transition metal dichalcogenides
Embodiments of the present disclosure relate to forming a two-dimensional crystalline dichalcogenide by positioning a substrate in an annealing apparatus. The substrate includes an amorphous film of a transition metal and a chalcogenide. The film is annealed at a temperature from 500° C. to 1200° C. In response to the annealing, a two-dimensional crystalline structure is formed from the film. The two-dimensional crystalline structure is according to a formula MX2, M includes one or more of molybdenum (Mo) or tungsten (W) and X includes one or more of sulfur (S), selenium (Se), or tellurium (Te).
US10916417B2 Pre-processing method, method for forming metal silicide and semiconductor processing apparatus
A pre-processing method, a method for forming a metal silicide and a semiconductor processing apparatus are disclosed by the present invention. In the pre-processing method, a plasma etching process is performed on a semiconductor structure including a substrate. A first conductive portion and an isolation spacer covering a side surface of the first conductive portion are formed on a surface of an active area in the substrate. In the plasma etching process, a bias voltage applied to a surface of the semiconductor structure is adjusted by adjusting power outputs of two RF sources and is not lower than 150 V. In the metal silicide formation method, after a semiconductor structure including a first conductive portion and a second conductive portion is pre-processed in the manner as described above, a metal film is deposited thereon and annealed to result in the formation of the metal silicide.
US10916410B2 Plasma processing apparatus
A plasma processing apparatus includes a processing chamber, a high frequency power supply and a load variation stabilization circuit. The high frequency power supply is configured to supply a high frequency power to the processing chamber and generate plasma inside the processing chamber. The load variation stabilization circuit is connected in parallel with the processing chamber at a connection portion provided between the high frequency power supply and the processing chamber. The load variation stabilization circuit is configured to suppress variation in a load impedance when viewing a downstream side from the connection portion.
US10916407B2 Conditioning remote plasma source for enhanced performance having repeatable etch and deposition rates
Embodiments of the present disclosure generally relate to methods for conditioning an interior wall surface of a remote plasma generator. In one embodiment, a method for processing a substrate is provided. The method includes exposing an interior wall surface of a remote plasma source to a conditioning gas that is in excited state to passivate the interior wall surface of the remote plasma source, wherein the remote plasma source is coupled through a conduit to a processing chamber in which a substrate is disposed, and the conditioning gas comprises an oxygen-containing gas, a nitrogen-containing gas, or a combination thereof. The method has been observed to be able to improve dissociation/recombination rate and plasma coupling efficiency in the processing chamber, and therefore provides repeatable and stable plasma source performance from wafer to wafer.
US10916405B2 Atom probe inspection device, field ion microscope, and distortion correction method
According to one embodiment, an atom probe inspection device includes one or more processors configured to change a two-dimensional position of a detected ion, detect two-dimensional position information of the ion and a flying time of the ion, identify a type of an element of the ion, generate first information under a first condition and second information under a second condition, and generate a reconstruction image of the sample from the first information and the second information.
US10916403B2 Ion beam apparatus including slit structure for extracting ion beam
An ion beam apparatus includes a source part generating plasma therein, a process part in which a process using an ion beam is performed, and a slit structure provided between the source part and the process part and extracting the ion beam from the plasma. The slit structure includes at least one electrode structure. The electrode structure has a slit penetrating the electrode structure and extending in a first direction. The ion beam is irradiated onto a substrate at an incident angle through the slit. The incident angle of the ion beam is adjusted by rotating the electrode structure on a rotation axis parallel to the first direction.
US10916402B2 Electron beam irradiation device and electron beam irradiation method
An electron beam irradiation device includes: an electron beam generation part; a housing part that provides a vacuum space in which the electron beam generation part is accommodated; an electron beam guide part in which a base end side is connected to the housing part and communicates with the vacuum space, in which a tip end side is provided with a long tubular member capable of being inserted into a container via a mouth portion of the container, and in which the electron beams pass through an inside; an electron beam emission window which is provided on the tip end side of the electron beam guide part; and an adjustment part that adjusts a trajectory of the electron beams in the electron beam guide part. The adjustment part is disposed on the base end side of the electron beam guide part on an outside of the vacuum space.
US10916398B2 Electromagnetic relay
An electromagnetic relay includes a mobile component movable at time of energization and de-energization of a coil, and a fixed component immovable at the time of energization and de-energization of the coil. A damping space is provided between the mobile component and the fixed component and changes in volume with the movement of the mobile component. A gap provided between the mobile component and the fixed component serves as a passage that allows gas to flow into or out of the damping space when the damping space changes in volume. A size of the gap is set such that a pressure is generated in the damping space to cause a damping force acting on the mobile component when the damping space changes in volume.
US10916394B2 Gas circuit breaker
A gas circuit breaker includes a gas suppresser composed of a protruded portion which is formed on a horizontal surface facing an exhaust cylinder of a shaft guide and which forms a gap between itself and the exhaust cylinder and an enlarged portion which is adjacent to the protruded portion and where a gap to the exhaust cylinder is enlarged so that the shaft guide, which operates along an inner circumferential surface of the exhaust cylinder, which is provided to an inner circumferential portion of a movable side main conductor and is provided to outer circumferences of an exhaust shaft and an operation rod, and couples the operation rod with the exhaust shaft, is axially adjacent to a sliding member that slides along the exhaust cylinder with no space to the exhaust cylinder and suppresses discharge of heated and pressurized insulating gas.
US10916391B1 Arc flash detection systems and components thereof
A system including ruggedized optic fiber cable assembly for use with an arc detection relay to protect electrical components from faults resulting in an arc flash. The cable assembly includes a pair of ruggedized ST connectors located at opposite ends of a ruggedized optical fiber cable. The cable includes an optical fiber core surrounded by a transparent gel layer and a transparent jacket surrounding the gel layer. Each ST connector includes a boot formed of a resilient material to provide shock absorption for the portion of the optical fiber cable extending through it. An accessory electronic cable is also provided, as are couplers, adapters for mounting the couplers onto walls, and sleeves with air pockets to enhance the ruggedness of the cable at points of stress, e.g., bends.
US10916387B2 Module cover for a key module for a key, key module for a key, and method for producing a key
A module cover comprising a through-hole for a passage of a key tappet of the key, a light injection region for injecting light from a light source into the module cover, a first light output region for outputting a first portion of the light, and a second light output region for outputting a second portion of the light out of the module cover. The first light output region and the second light output region, and a first light directing portion and a second light directing portion, are arranged on different sides of the through-hole. The first light directing portion directs a first portion of the light to the first light output region and a second portion of the light to the second light directing portion, and the second light directing portion directs at least part of the second portion of the light to the second light output region.
US10916384B2 Fibrous electrode and supercapacitor using same
The present disclosure relates to a fibrous electrode and a supercapacitor including the same. In the fibrous electrode, a carbon nanotube sheet is spirally wound on a surface of an elastic fiber. Thus, the fibrous electrode may maintain a fiber shape, and an electrical connection structure in the carbon nanotube sheet may not be damaged by deformation of the elastic fiber. That is, the fibrous electrode may be reversibly changed to maintain excellent electrical conductivity. In addition, the fibrous electrode has a fiber shape having a diameter of hundreds of micrometers, and thus the fibrous electrode may be light and may have excellent durability and excellent life span characteristics.
US10916383B2 Multilayered graphene and methods of making the same
The present invention relates in part to a method of fabricating graphene structures from graphene oxide by reducing the graphene oxide on a patterned substrate. The invention also relates in part to graphene structures produced using said method and electrodes and capacitors comprising said graphene structures.
US10916381B2 Modulating electron transfer dynamics at hybrid interfaces via self-assembled multilayers
Forward and back electron transfer at molecule oxide interfaces are pivotal events in dye-sensitized solar cells, dye-sensitized photoelectrosynthesis cells and other applications. Disclosed herein are self-assembled multilayers as a strategy for manipulating electron transfer dynamics at these interfaces. The multilayer films are achieved by stepwise layering of bridging molecules, linking ions, and active molecule on an oxide surface. The formation of the proposed architecture is supported by ATR-IR and UV-Vis spectroscopy. Time-resolved emission and transient absorption establishes that the films exhibit an exponential decrease in electron transfer rate with increasing bridge length. The findings indicate that self-assembled multilayers offer a simple, straight forward and modular method for manipulating electron transfer dynamics at dye-oxide interfaces.
US10916372B2 Method for producing rare-earth magnets, and rare-earth-compound application device
When a slurry 41 obtained by dispersing a rare-earth-compound powder in a solvent is applied to sintered magnet bodies 1, and dried to remove the solvent in the slurry and cause the surfaces of the sintered magnet bodies to be coated with the powder, and the sintered magnet bodies coated with the powder are heat treated to cause the rare-earth element to be absorbed by the sintered magnet bodies, the sintered magnet bodies having had the slurry applied thereto are dried by being irradiated with near infrared radiation having a wavelength of 0.8-5 μm, to remove the solvent in the slurry, and cause the surfaces of the sintered magnet bodies to be coated with the powder. As a result, the rare-earth-compound powder can be uniformly and efficiently applied to the surfaces of the sintered magnet bodies.
US10916369B2 Inductor for high frequency and high power applications
The present invention relates to an inductor (10) for high frequency and high power applications. The inductor (10) comprises at least one wire conductor (20), and a coil zone (30). Windings of the at least one wire conductor comprises the at least one wire conductor being wound around the coil zone to form a substantially torus shape centred around an axis extending in an axial direction of the torus shape. At an outer extent of the coil zone, outer windings of the at least one wire conductor are substantially at a first radial distance from the axis. At an inner extent of the coil zone, inner windings of the at least one wire conductor are substantially at a second radial distance from the axis and substantially at a third radial distance from the axis respectively. When an inner winding of the at least one conductor is at the second radial distance the next inner winding of the at least one conductor is at the third radial distance.
US10916367B2 Circuit device and power conversion device
A printed circuit board includes at least one of a first coil pattern disposed on a first main surface and a second coil pattern disposed on a second main surface. The first coil pattern includes a first portion arranged between a first core portion and a second core portion. The second coil pattern includes a third portion arranged between the first core portion and the second core portion. A first heat transfer member is mounted on at least one of the first portion and the third portion. Therefore, temperature increase of at least one of the first portion and the third portion can be suppressed.
US10916366B2 Inductor and method of manufacturing the same
An inductor includes a body including an insulating portion formed of a plurality of layers and a magnetic portion surrounding the insulating portion and external electrodes disposed on external surfaces of the body, and a method of manufacturing the same. A coil portion is embedded in the insulating portion, and has a structure in which coil patterns formed on a plurality of layers are stacked while being connected to each other.
US10916362B2 Feedthrough device and signal conductor path arrangement
Feedthrough device (50; 150), for forming a hermetic seal around signal conductors in a signal conductor group (60; 160) with a group width. The device comprises a slotted member (52; 152) and a base (62; 162). The base defines a through hole (65) that extends entirely through the 5 base along a feedthrough direction (X), and is adapted to accommodate the slotted member. The slotted member defines first and second surfaces (53, 54; 153, 154) on opposite sides associated with the feedthrough direction, and a side surface (55, 56; 155, 156) facing transverse to the feedthrough direction. The slotted member comprises a slot (58; 158), which extends along the feedthrough direction through the slotted member, and opens into the first and second surfaces and 10 into a longitudinal opening (59; 159) along the side surface. The slot extends transversely into the slotted member up to a slot depth at least equal to the signal conductor group width.
US10916360B2 Method for manufacturing an electrical wire
There is provided a method for manufacturing an electrical wire. The electrical wire includes a rod-like conductor having a shape corresponding to a predetermined wiring route and also having rigidity to enable the rod-like conductor to maintain the shape, and an insulation sheath covering the rod-like conductor. The method includes: preparing a plurality of rod-like preliminary conductors having the rigidity so as to correspond to a plurality of sub routes into which the wiring route is divided; processing at least one of the plurality of preliminary conductors into a shape conforming to the corresponding sub routes; connecting the plurality of preliminary conductors together to form the rod-like conductor; and forming the insulation sheath to cover the rod-like conductor.
US10916359B2 Electric wire conductor, covered electric wire, and wiring harness
An electric wire conductor having both flexibility and a space-saving property, a covered electric wire, and a wiring harness containing such an electric wire conductor. The electric wire conductor contains a plurality of elemental wires twisted together, and has a non-circular portion in which a cross section intersecting an axial direction of the wire strand has a non-circular shape. The cross section of the non-circular portion has a continuous vacancy capable of accommodating two or more of the elemental wires. Further, a covered electric wire contains the electric wire conductor and an insulator covering the electric wire conductor. Furthermore, a wiring harness contains the covered electric wire.
US10916356B2 Reflective optical element
For a working wavelength in the range from 1 nm to 12 nm, a reflective optical element has, on a substrate, a multilayer system that includes at least two alternating materials having a different real part of the refractive index at the working wavelength. The multilayer system includes a first alternating material from the group formed from thorium, uranium, barium, nitrides thereof, carbides thereof, borides thereof, lanthanum carbide, lanthanum nitride, lanthanum boride, and a second alternating material from the group formed from carbon, boron, boron carbide, or lanthanum as first alternating material and carbon or boron as second alternating material. It has, on the side of the multilayer system remote from the substrate, a protective layer system including a nitride, an oxide and/or a platinum metal.
US10916354B2 Sunlight shielding member
The object of the invention is to obtain a solar radiation shielding member that has a good visible light transmittance and shows no redness when viewed from the front and when obliquely viewed, without impairing the solar radiation transmittance. A solar radiation shielding member, wherein a first dielectric film, a first metal film, a second dielectric film, a second metal film, a third dielectric film, a third metal film, and a fourth dielectric film are stacked on a transparent substrate; the first dielectric film comprises at least two dielectric layers containing a layer having a refractive index of 2.4 or greater, and the first dielectric film as a whole has a refractive index in a range of 1.8-2.0; the second dielectric film has an optical film thickness of 165-201 nm; the third dielectric film has an optical film thickness of 147-182 nm; the fourth dielectric film has an optical film thickness of 75-120 nm; a geometric film thickness of the first metal film, the second metal film, and the third metal film is 30-40 nm in total; a geometric film thickness of the second metal film is in a range of 1.01-1.55 relative to a geometric film thickness of each of the first metal film and the third metal film.
US10916352B2 Nuclear reactor having a layer protecting the surface of zirconium alloys
A layer protecting the surface of zirconium alloys used as materials for nuclear reactors is formed by a homogenous polycrystalline diamond layer prepared by chemical vapor deposition method. This diamond layer is 100 nm to 50 μm thick and the size of the crystalline cores in the layer ranges from 10 nm to 500 nm. Maximum content of non-diamond carbon is 25 mol %, total content of non-carbon impurities is maximum up to 0.5 mol %, RMS surface roughness of the polycrystalline diamond layer has a value less than 40 nm and thermal conductivity of the layer ranges from 1000 to 1900 W⊙m−1⊙K−1. Coating of the zirconium alloys surface with the described polycrystalline diamond layer serves as a zirconium alloys surface protection against undesirable changes and processes in the nuclear reactor environment.
US10916350B2 Systems and methods for quantifying the impact of biological perturbations
Systems and methods are described for quantifying the response of a biological system to one or more perturbations. First and second datasets corresponding to a response of a biological system to first and second treatments are received. A plurality of computational network models that represent the biological system are provided, each model including nodes representing a plurality of biological entities and edges representing relationships between the nodes in the model. A first set of scores is generated, representing the perturbation of the biological system based on the first dataset and the plurality of models, and a second set of scores representing the perturbation of the biological system based on the second dataset and the plurality of computational models. One or more biological impact factors are generated based on each of the first set and second set of scores that represent the biological impact of the perturbation on the biological system.
US10916349B2 Method for determining vascular access risk in a hemodialysis patient population
A method for determining risk of an adverse event, such as thrombosis or a required intervention, associated with a vascular access includes receiving hemodialysis treatment data associated with the vascular access, deriving a plurality of selected risk factors from the hemodialysis treatment data, evaluating the plurality of selected risk factors over a time period, assigning raw scores to each selected risk factor based on its values over the time period, summing the raw scores for the plurality of selected risk factors to determine a cumulative raw score, and correlating the cumulative raw score with a level of risk of an adverse event associated with the vascular access.
US10916348B2 Machine learning to identify locations of brain injury
The present disclosure provides systems and methods that include or otherwise leverage a machine-learned brain injury location model to predict locations of brain injury in a patient based on test data associated with the patient, such as, for example, behavioral test data. For example, the machine-learned brain injury location model can be trained on training data associated with a corpus of patients, where the training data includes sets of example test data (e.g., behavioral test data) respectively labeled with ground truth brain injury locations.
US10916343B2 Reduce discrepancy of human annotators in medical imaging by automatic visual comparison to similar cases
A method comprising using at least one hardware processor for automatically receiving, using a user interface associated with the hardware processor(s), an annotation for a medical image of a patient, the medical image associated with a suspected disease of the patient and metadata of the patient. The hardware processor(s) are configured for performing a search query in real time on a database for the annotation. The hardware processor(s) are configured for receiving at least one result of the search query. The hardware processor(s) are configured for retrieving at least one other medical image comprising at least one other annotation, wherein the at least one other medical image is associated with the at least one result. The hardware processor(s) are configured for displaying, on the user interface, the at least one other medical image and the at least one other annotation.
US10916341B2 Automated report generation based on cognitive classification of medical images
Methods and systems for automatically triaging an image study of a patient generated as part of a medical imaging procedure. One system includes a computing device including an electronic processor. The electronic processor is configured to receive, from a cognitive system applying a model developed using computer vision and machine learning techniques based on deep learning methodology to classify image studies, a classification assigned to the image study using the model, and automatically generate a structured report for the image study based on the classification assigned by the model, the structured report accessible by a radiologist via a structured reporting system.
US10916340B2 System and methodology for filling prescriptions
An overall pharmacy system and methodology begins with bulk medications and supplements introduced into the work flow, individually packaged and assembled into med pass orders per patient and delivered to the long-term care (LTC) facility or other institution for patient consumption. The process according to one embodiment of this invention begins by converting bulk medications and supplements to packaged unit doses and ultimately individually packaged med pass bags for each patient on a 24-hour schedule. The various safeguards and measures built into this system increase patient safety eliminate waste and increase labor efficiency by reducing and/or minimizing the disposal of unused medications and supplements. The design of the overall system and its individual components allows for physical control of each unit dose package from start to finish without any unit dose package “free fall” in the system. This process is automated and does not rely upon manual sorting. The med pass bags are consolidated into the final shipping container and do not require manual sorting and packing.
US10916333B1 Artificial intelligence system for enhancing data sets used for training machine learning-based classifiers
A regression model is generated to map observation records of a first dimensionality to a second dimensionality. Using a set of transformed records obtained from the first regression model, a Gaussian mixture model of the distribution of observation records of the second dimensionality is trained. Using a Gaussian distribution obtained from the Gaussian mixture model, a recommended modification of a proposed training set of a classifier is obtained.
US10916332B2 Methods and systems for generating a virtual progeny genome
Methods and systems for assessing the probabilities of the expression of one or more traits in progeny are described.
US10916331B2 Predicting drug-target interactions and uses for drug repositioning and repurposing
Described herein are methods of predicting drug-target interactions and methods of using the information for drug repurposing. The methods described herein combine different descriptors, including, for example, atom pair similarity, shape, topology and chemical signatures, physico-chemical functional descriptors, contact points of the ligand and the target protein, chemical similarity, and docking score.
US10916324B2 Data state synchronization involving memory cells having an inverted data state written thereto
An example apparatus includes a memory comprising a plurality of managed units corresponding to respective groups of resistance variable memory cells and a controller coupled to the memory. The controller is configured to cause performance of a cleaning operation on a selected group of the memory cells and generation of error correction code (ECC) parity data. The controller may be further configured to cause performance of a write operation on the selected group of cells to write an inverted state of at least one data value to the selected group of cells and write an inverted state of at least one of the ECC parity data to the selected group of cells.
US10916322B2 Testing memory cells by allocating an access value to a memory access and granting an access credit
A method for testing memory cells under test of an integrated circuit includes allocating an access value to a memory access and granting an access credit. If the access value of the memory access does not exceed the access credit, the memory access is performed and the access credit is reduced by the access value. The memory access is performed to one memory cell or at bit level to a plurality of memory cells. A processor is connectable to a memory having a plurality of memory cells. The processor is configured to test memory cells of a protected memory area of the memory by performing memory accesses at bit level, control a counting register in such a way that a value stored in the counting register is modified according to a number of performed memory accesses, and test memory cells of the protected memory area of the memory only if the value stored in the counting register lies within a permissible value range.
US10916320B2 Shift register unit, driving method thereof, gate drive circuit, and display device
A shift register unit includes a first output control circuit, a first output circuit, a second output control circuit, a second output circuit, a reset circuit, and a node set circuit. The node set circuit is configured to periodically transfer a first voltage having an inactive level to a first node within the shift register unit during being enabled.
US10916319B2 Pulse output circuit, shift register and display device
A pulse is inputted to TFTs 101 and 104 so that the TFTs would turn ON and then potential of a node a rises. When the potential of the node α reaches (VDD−VthN), the node α became in a floating state. Accordingly, a TFT 105 then turns ON, and potential of an output node rises as a clock signal reaches the level H. On the other hand, potential of a gate electrode of the TFT 105 further rises due to an operation of capacitance 107 as the potential of the output node rises, so that the potential of the output node would be higher than (VDD+VthN). Thus, the potential of the output node rises to VDD without voltage drop caused by a threshold of the TFT 105.
US10916318B2 Magnetic storage device
A magnetic storage device of an embodiment includes: a first magnetic part including a first portion and a second portion and extending in a first direction from the first portion to the second portion; a layered part which is stacked on the first magnetic part in a second direction intersecting with the first direction; a first electrode electrically connected with the first portion; and a second electrode electrically connected with the second portion. The layered part includes a first layer and a second layer which is disposed between the first layer and the first magnetic part, the second layer includes a metal oxide, and the first layer includes at least one selected from the group consisting of a metal nitride and a metal carbide.
US10916316B2 Managed NAND performance throttling
Apparatus and methods are disclosed, including a memory device or a memory controller configured to determine that a condition has occurred that indicates a performance throttling operation, implement a performance throttling responsive to the determined condition, responsive to implementing the performance throttling, set a performance throttling status indicator in an exception event status attribute, receive a command from a host device across a memory device interface, perform the command, prepare a response to the command, the response including a flag indicating that the performance throttling status indicator is set in the exception event status attribute, and send the response to the host device. Methods of operation are disclosed, as well as machine-readable medium and other embodiments.
US10916315B2 Nonvolatile memory device
A nonvolatile memory device includes a first memory cell array, a first bi-directional multiplexer, a first register, a second register, a first I/O pad and a second I/O pad. The first memory cell array stores first data. The first bi-directional multiplexer receives the first data and distributes the first data into first sub-data and second sub-data. The first register stores first sub-data from the first bi-directional multiplexer. The second register stores second sub-data from a second bi-directional multiplexer. The first I/O pad outputs the first sub-data from the first register to outside. The second I/O pad outputs the second sub-data from the second register to the outside.
US10916313B2 Apparatus and methods including establishing a negative body potential in a memory cell
Apparatus configured to establish a negative potential in a body of a memory cell during an access operation of another memory cell, and methods of operating such an apparatus, as well as apparatus configured to establish a negative potential in a body of a memory cell in response to a timer, or before a sensing operation of the memory cell.
US10916312B2 Memory system performing read of nonvolatile semiconductor memory device
According to one embodiment, a memory system includes a nonvolatile semiconductor memory device, a voltage generation unit and a control unit. The nonvolatile semiconductor memory device includes a memory cell array having a plurality of blocks each including a plurality of memory cells, and a voltage generation unit configured to change a read level of the memory cell. The control unit controls write, read, and erase of the nonvolatile semiconductor memory device. The control unit changes the read level between a start of use of the nonvolatile semiconductor memory device and a timing after an elapse of a time.
US10916309B2 Semiconductor memory device and operating method thereof
A semiconductor memory device includes a memory cell array including a plurality of memory blocks, a voltage generator suitable for applying an erase voltage to a source line of at least one memory block selected from among the plurality of memory blocks during an erase operation, a read and write circuit suitable for applying an initial setting voltage to bit lines of at least one memory block during the erase operation, and a control logic suitable for controlling the voltage generator and the read and write circuit to apply the initial setting voltage to the bit lines before applying the erase voltage to the source line.
US10916304B2 Semiconductor storage device having alternately stacked bit lines and word lines, and first and second connection wirings to bit line contacts, that extend in opposite directions with respect thereto
A semiconductor storage device includes first, second, and third wiring layers, each including a plurality of first wirings, fourth and fifth wiring layers, each including a plurality of second wirings, wherein the fourth wiring layer is between the first and second wiring layers and the fifth wiring layer is between the second and third wiring layers, memory cells formed at intersections of the first and second wirings of adjacent wiring layers, first and second contacts electrically connected to a first wiring of the first wiring layer and a first wiring of the second wiring layer, respectively, in the hook-up region, a sixth wiring layer including a first connection wiring electrically connected to the first contact and a second connection wiring electrically connected to the second contact and separated from the first connection wiring, and first and second drive circuits electrically connected to the first and second connection wirings, respectively.
US10916299B2 Semiconductor storage device and operation method thereof
A semiconductor storage device comprises a memory cell, a write word line and a read word line connected to the memory cell, first and second write bit lines connected to the memory cell, first and second read bit lines connected to the memory cell, a precharge circuit, and a sense amplifier circuit. The precharge circuit is configured to charge, before reading from the memory cell, the first read bit line to a first potential and the second read bit line to a second potential lower than the first potential. The sense amplifier circuit is configured to amplify a difference in potential between the first read bit line and the second read bit line during the reading from the memory cell and output a signal corresponding to the difference in potential as a read value.
US10916295B2 Memory arrays with vertical thin film transistors coupled between digit lines
In the examples disclosed herein, a memory array can have a first group of memory cells coupled to a first digit line at a first level and a second group of memory cells coupled to a second digit line at the first level. A third digit line can be at a second level and can be coupled to a main sense amplifier. A first vertical thin film transistor (TFT) can be at a third level between the first and second levels can be coupled between the first digit line and the third digit line. A second vertical TFT can be at the third level and can be coupled between the second digit line and the third digit line. A local sense amplifier can be coupled to the first and second digit lines.
US10916294B2 Apparatuses and methods for concentrated arrangement of amplifiers
Apparatuses and methods for concentrated arrangement of amplifiers. An example apparatus may include a first amplifier circuit including a first and second transistors. The first width different from the second width, the first length different from the second length. The apparatus further including a second amplifier circuit including a third and fourth transistors. The first transistor including a first gate electrode and the third transistor having a third gate electrode each having a first length and a first diffusion region and a third diffusion region, respectively, each having a first width, and the second transistor including a second gate electrode and the fourth transistor having a fourth gate electrode each with a fourth length and a second diffusion region and a fourth diffusion region, respectively, each having a second width. The first and third transistors are collectively arranged and the second and fourth transistors are collectively arranged.
US10916286B2 Assisted write method for MRAM testing and field applications
A method of writing to a magnetic random access memory cell includes applying an alternating current signal to the magnetic random access memory cell having a first magnetic orientation, and applying a direct current pulse to the magnetic random access memory cell to change the magnetic orientation of the magnetic random access memory cell from the first magnetic orientation to a second magnetic orientation. The first magnetic orientation and the second magnetic orientation are different.
US10916285B2 Semiconductor storage device, information processing apparatus, and reference potential setting method
A semiconductor storage device is provided, the semiconductor storage device including: a resistance element configured to generate a reference potential to be supplied to a sense amplifier; and a switch unit having at least two states including a state in which the reference potential to be supplied to the sense amplifier is generated by injection of a current to the resistance element, and a state in which a reference potential generated outside the semiconductor storage device is supplied to the sense amplifier.
US10916277B2 Memory device and operating method thereof
A memory device includes a memory cell array including a plurality of memory blocks and a storage block storing a plurality of pieces of option parameter information; a parameter determining circuit outputting a parameter information signal by measuring a skew of the memory device; a peripheral circuit performing a read operation on the storage block; and a control logic controlling the peripheral circuit to perform the read operation on a selected piece of option parameter information, among the plurality of pieces of option parameter information, in response to the parameter information signal, and setting an option parameter according to the selected piece of option parameter information.
US10916276B2 Nonvolatile memory and memory system
According to one embodiment, a nonvolatile memory includes a memory cell array including a first storage region and a second storage region, an input/output circuit configured to communicate with a memory controller, and a control circuit. The control circuit is configured to, upon receiving a first command from the memory controller, execute a first training operation related to the input/output circuit, and upon receiving a second command from the memory controller, store a first result of the first training operation in the first storage region.
US10916274B2 Power management integrated circuits and semiconductor memory modules including power management integrated circuits
A power management integrated circuit includes first pads, second pads, a third pad, and a fourth pad that are configured to be connected with an external device, a regulation block that receives first voltages from the first pads, converts the first voltages to second voltages, and outputs the second voltages to the second pads, a communication block that receives a command through the third pad and outputs an internal information request received together with the command responsive to the command, and a logic block that controls an operation of the regulation block, receives the internal information request from the communication block, and outputs internal state information to the fourth pad based on the internal information request.
US10916268B2 Aluminum alloy substrate for magnetic recording medium and method for manufacturing the same, substrate for magnetic recording medium, magnetic recording medium, and hard disc drive
This substrate for a magnetic recording medium has a metal structure made of an Al alloy having a composition including Si in a range of 28.0% by mass to 32.0% by mass, Cu in a range of 2.5% by mass to 4.0% by mass, and Mg in a range of 0.8% by mass to 1.5% by mass with a remainder being Al, primary-crystal Si particles having a maximum diameter of 0.5 μm or more and an average particle diameter of 2 μm or less are dispersed in the metallic structure, a diameter of the substrate is in a range of 53 mm to 97 mm, and a thickness of the substrate is in a range of 0.2 mm to 0.9 mm.
US10916265B2 Multi-layer actuator electrode configuration for resonance improvement
A piezoelectric actuator assembly is described. The piezoelectric actuator assembly includes a first, second and third active piezoelectric layers. The first layer includes a top surface and a bottom surface. The second layer includes a top surface and a bottom surface over the top surface of the first layer. The third layer includes a top surface and a bottom surface over the top surface of the second layer. The first and second layers can define a first effective electrode length. Similarly, the second and third layers can define a second effective electrode length configured to be longer than the first effective electrode length.
US10916256B2 Method and apparatus for sinusoidal encoding and decoding
An audio signal encoding method is provided that comprises collecting audio signal samples, determining sinusoidal components in subsequent frames, estimating amplitudes and frequencies of the components for each frame, merging the obtained pairs into sinusoidal trajectories, splitting particular trajectories into segments, transforming particular trajectories to the frequency domain by way of a digital transform performed on segments longer than the frame duration, quantization and selection of transform coefficients in the segments, entropy encoding, outputting the quantized coefficients as output data, wherein segments of different trajectories starting within a particular time are grouped into Groups of Segments, and the partitioning of trajectories into segments is synchronized with the endpoints of a Group of Segments.
US10916253B2 Spoken microagreements with blockchain
Method, system, and apparatus for storing conversation data of a conversation onto a blockchain network, the conversation data comprising terms of an agreement, the method comprising: receiving audio data of a conversation between two or more participants; creating a transcript of at least some of the audio data; accessing a database comprising a plurality of words or phrases. The method, system, and apparatus are also for obtaining, from the database, predefined one or more words associated with a predefined topic; searching the transcript for the predefined one or more words; filtering the transcript based on the predefined one or more words; and storing the conversation data onto a first block of a blockchain stored on the blockchain network, wherein the conversation data comprises the filtered transcript.
US10916249B2 Method of processing a speech signal for speaker recognition and electronic apparatus implementing same
A method of processing a speech signal for speaker recognition in an electronic apparatus includes: obtaining a speech signal of a first user; extracting a speech feature comprising a feature value from the speech signal; comparing the speech feature extracted from the speech signal of the first user with a predetermined reference value; selecting a first user feature that corresponds to the speech feature of the first user compared with the reference value; generating a recommended phrase used for speaker recognition based on the first user feature; and outputting the recommended phrase.
US10916247B2 Voice control system, control method, and non-transitory computer-readable storage medium storing program
It is determined whether a first voice instruction received by a first voice control device and a second voice instruction received by a second voice control device are repetitive instructions. Output by an output apparatus is restricted if it is determined that the first voice instruction and the second voice instruction are repetitive instructions.
US10916246B2 Information processing device, in-vehicle device, and storage medium
An information processing device enables a user to register a wake-up-word for activating a predetermined function by voice recognition. The information processing device includes a receiving unit configured to receive, from a user, an input word for registering a wake-up-word, and a determination unit configured to determine whether the input word received by the receiving unit satisfies conditions for an accuracy of voice recognition.
US10916241B1 Theme detection for object-recognition-based notifications
In certain embodiments, speech is converted to text for theme identification by natural language processing. Notification data is generated based on detected themes and the notification data may include rules for notification presentation on a client device. The notification data may include parameters for processing image data captured by an augmented reality device to detect one or more objects. The objects may be associated with the theme and detection thereof within captured image data, and in accordance with other rules, may cause the augmented reality device to present a notification with contextual relevance to a current environment of a user utilizing the augmented reality device.
US10916240B2 Mobile terminal and method of operating the same
A terminal includes a memory configured to store voice data and a processor configured to measure reliability of learnable data stored in the memory, to classify the learnable data into learning data or adaptive data according to the measured reliability, to generate a learning model by performing unsupervised learning with respect to the learning data, to generate an adaptive model using the adaptive data, and to evaluate recognition performance of each of the learning model and the adaptive model.
US10916239B2 Method for beamforming by using maximum likelihood estimation for a speech recognition apparatus
Provided is a method for beamforming by using maximum likelihood estimation in a speech recognition apparatus, including: (a) receiving an input signal (Xn,k) at a time frame n and a frequency k where noise is mixed: (b) determining a probability density function for a target signal (Yn,k) obtained by removing the noise from the input signal satisfies a complex generalized Guassian distribution or a complex gamma distribution where an average value is zero in a time-frequency domain; (c) estimating a variance (λn,k) of the target signal so as to maximize log likelihood for the probability density function; (d) estimating a filter (wk) maximizing a cost function so as to maximize the log likelihood for the probability density function; and (e) repeatedly performing the estimation of the steps (c) and (d) until the filter (wk) coverages, and finally acquiring a final filter (wk).
US10916234B2 Multiband frequency targeting for noise attenuation
Embodiments include systems with active sound canceling properties, fenestration units with active sound canceling properties, retrofit units with active sound canceling properties and related methods. In an embodiment a system can include a sound cancellation device include a sensing element to detect vibration of a transparent pane and/or a sound input device configured to detect sound incident on the transparent pane, as well as a vibration generator configured to vibrate the transparent pane and a sound cancellation control module. The sound cancellation control module can evaluate the detected vibration of the transparent pane at two or more discrete frequency bands. The sound cancellation control module can cause the vibration generator to vibrate the transparent pane causing destructive interference with sound waves at the two or more discrete frequency bands. Other embodiments are also included herein.
US10916228B1 Musical instrument with vibrating rods to generate sound
A musical instrument with vibrating rods to generate a sound is provided. The musical instrument includes an acoustic housing having a main body with a first opening and a second opening, a plurality of rods coupled to the acoustic housing and extending beyond the first opening in the main body of the acoustic housing, and a plurality of electromagnetic pickups coupled to the acoustic housing and extending beyond the first opening in the main body of the acoustic housing. The vibration of any one of the plurality of rods enables a corresponding one of the plurality of electromagnetic pickups to generate an electrical signal corresponding to the sound.
US10916226B2 Display device
A display device includes a body; a roller rotatably installed in the body; a flexible display configured to be wound or unwound from the roller in response to a rotation of the roller; and a controller configured to detect a type of a content to be displayed, and change a screen size of the flexible display according to the detected type of the content by winding or unwinding of the flexible display.
US10916224B2 Head-up display device
A head-up display (HUD) device displays a first virtual image in an area in which the first virtual image can be displayed, and displays a second virtual image in an area in which the second virtual image can be displayed. The HUD device includes: a rotation driving unit which changes an angle formed between the area in which the first virtual image can be displayed, and the area in which the second virtual image can be displayed; and a control unit which performs virtual image angle adjustment processing for adjusting the angle using the rotation driving unit, and, when performing the virtual image angle adjustment processing, virtual image position changing processing in which the position of the second virtual image in the area in which the second virtual image can be displayed is changed to inhibit deviation in the relative positional relationship between the first and second virtual images.
US10916222B2 Method, apparatus, and virtual reality device for displaying virtual reality scene
The present disclosure provides a method, an apparatus, and a virtual reality device for displaying a virtual reality scene. The method comprises: acquiring pose information of a user and transmitting the pose information to a target device; receiving static picture data corresponding to the pose information transmitted by the target device through a first transmission channel and storing the static picture data; and generating a display picture according to the static picture data and displaying the display picture.
US10916218B2 Organic light emitting diode display
Provided is an organic light emitting display. The organic light emitting display can include a gate driving circuit configured to supply a gate signal through each of a plurality of gate lines connected to a display panel, and a luminance control unit between the gate driving circuit and the display panel and electrically connected to the plurality of gate lines and a power supply line. A gate signal is supplied to the pixels in a distributed manner during a plurality of refresh periods. Therefore, it is possible to reduce a luminance decrease in the pixels during the entire refresh period.
US10916215B2 Video frame rate compensation through adjustment of vertical blanking
Systems and methods are configured to adjust the timing of source frame compression in response to fluctuations in a variable frame rate at which source frames are rendered.
US10916205B2 Display device and driving method thereof
A display device includes a display unit which includes pixels and gate lines and data lines connected to the pixels, a data driver connected to the data lines, and a signal controller which outputs a first frequency data control signal to the data driver at a predetermined frame frequency and outputs a second frequency data control signal to the data driver in synchronization with a vertical synchronization signal received from a graphics processing unit, wherein the data driver outputs a first data voltage to the data lines in accordance with the first frequency data control signal, and stops the output of the first data voltage and outputs a second data voltage to the data lines when the second frequency data control signal is inputted while outputting the first data voltage to the data lines.
US10916202B2 High voltage sensing circuit, display driver integrated circuit and display apparatus including the same
A high voltage sensing circuit included in a display driver integrated circuit includes a plurality of channels, a plurality of sampling capacitors, an amplifier and a feedback capacitor. The plurality of channels receives a plurality of input voltages. The plurality of sampling capacitors are connected to the plurality of channels, respectively, to simultaneously sample the plurality of input voltages. The amplifier is configured to sequentially receive each of a plurality of sampled input voltages to sequentially generate a respective plurality of sensing voltages. The feedback capacitor is connected between an input terminal and an output terminal of the amplifier, and is shared by the plurality of channels. The amplifier and the feedback capacitor are configured such that each of the plurality of sampled input voltages is sequentially scaled to the respective one of the plurality of sensing voltages by the amplifier and the feedback capacitor.
US10916201B2 Scan circuit, display panel, and display device
A scan circuit, a display panel, and a display device are provided. The scan circuit includes a switch control circuit in addition to a gate driver circuit with forward and backward scan functions, where the switch control circuit is configured to transmit a second scan signal to a corresponding row of pixels, and a first scan signal to its next row of pixel in a scan direction when the gate driver circuit outputs a drive signal at each of the signal output terminals. In this way, no matter whether the gate driver circuit performs forward or backward scanning, the switch control circuit controls the gate driver circuit to transmit firstly the first scan signal and then the second scan signal to the corresponding row of pixels.
US10916197B1 Pixel compensation circuit and display panel
The present application discloses a pixel compensation circuit and a display panel. By adopting a double-gate structure transistor as a driving transistor, a top gate and a bottom gate can respectively regulate channels to realize a dynamic adjustment of a threshold voltage of the driving transistor. Detection of the threshold voltage by a diode-connect mode can be realized by controlling the driving transistor. Real-time compensation of the threshold voltage can be realized, and compensation of a positive drift and a negative drift of the threshold voltage can also be realized, which effectively improves uniformity of image display under a same grayscale.
US10916193B2 Pixel driving circuit, display device, and driving method
The present disclosure provides a pixel driving circuit, a display device, and a driving method. The pixel driving circuit comprises a driving transistor, a light emitting element, a first capacitor, a second capacitor, a write circuit, and a first switch transistor. The write circuit is configured to write a reference level to a second terminal of the first capacitor during a vertical blanking stage, and write a data level to a second terminal of the second capacitor during a effective display stage. The first switch transistor is configured to write a voltage of a first voltage terminal and a threshold voltage of the driving transistor to a first terminal of the first capacitor during the vertical blanking stage and is turned off during the effective display stage.
US10916190B2 Driving circuit, display panel, and display device including phototransistors
A driving circuit, a display panel, and a display device are provided. The display panel comprises a plurality of common electrodes; a plurality of phototransistors, two or more phototransistors among the plurality of phototransistors being disposed in an area corresponding to each of the plurality of common electrodes; a plurality of photo-control lines electrically connected to a gate electrode of at least one phototransistor among the plurality of phototransistors; a plurality of photo-driving lines electrically connected to a first electrode of at least one phototransistor among the plurality of phototransistors, and a plurality of read-out lines, each of the plurality of read-out lines being electrically connected to a single common electrode among the plurality of common electrodes, and electrically connected to second electrodes of all of the phototransistors disposed in the area corresponding to the single common electrode to which each of the plurality of read-out lines are electrically connected. According to the present disclosure, an increase in non-open areas is minimized and the magnitude of the output signal of the phototransistor detected through the read-out line is increased, thereby improving photosensing performance.
US10916189B2 Scan driver and display device using the same
A scan driver comprises a level shifter configured to output varied clock signals that have different frequencies for at least two consecutive periods; and a shift register operating based on the varied clock signals output from the level shifter and outputting scan signals.
US10916186B2 Display apparatus, electroluminescent display panel and method of acquiring and displaying image by display apparatus
Embodiments of the present disclosure disclose a display apparatus, an electroluminescent display panel and a method of acquiring and displaying an image by the display apparatus. The display apparatus includes an electroluminescent display panel; and a camera. The electroluminescent display panel includes: a substrate; and a plurality of pixel units disposed in a display area on the substrate and each including at least two sub-pixels. The display area has an image acquiring region including the sub-pixels, at least one of the sub-pixels in the image acquiring region has an opaque display zone and a transparent zone, and the camera is disposed on a side, facing away from the pixel units, of the substrate of the electroluminescent display panel.
US10916184B2 Array substrate and driving method thereof, display panel, display device
Embodiments of the present disclosure provide an array substrate and a driving method thereof, a display panel as well as a display device. The array substrate comprises: m rows and n columns of subpixels, wherein m and n are positive integers; a plurality of gate lines, wherein if m is an even number, when i<(m+1)/2, the ith gate line is connected to the subpixels in the (2i−1)th row and the 2ith row, and wherein if m is an odd number, when i<(m+1)/2, the ith gate line is connected to the subpixels in the (2i−1)th row and the 2ith row and when i=(m+1)/2, the ith gate line is connected to the subpixels in the mth row, wherein i is a positive integer less than or equal to (m+1)/2; and a plurality of data lines, wherein each column of subpixels corresponds to two data lines coupled to the subpixels.
US10916180B2 Display panel and manufacturing method thereof
A display panel and a manufacturing method are provided. The display panel includes an array substrate, gate signal lines, and gate driving circuits. The array substrate includes a display area and a non-display area around the display area. The display area has a geometric center and an outline between the display area and the non-display area. The gate signal lines are disposed in the display area, and each gate signal line intersects the outline of the display area to form at least one intersection point. The gate driving circuits are disposed in the non-display area and respectively electrically connected to the gate signal lines, and each gate driving circuit has a positioning line. For a gate driving circuit and at least one intersection point that correspond to the same gate signal line, the positioning line is aligned with a line segment that connects the intersection point and the geometric center.
US10916179B2 Display screen and electronic device
Embodiments of the present disclosure provide a display screen and an electronic device. The display screen includes a functional area. The functional area is configured to achieve a function of the electronic device and includes a plurality of pixel points. The plurality of pixel points defines a gap area therebetween. The display screen further includes a signal emitter received in the gap area.
US10916178B2 Gate driver on array circuit and driving method thereof, and display device
A Gate Driver on Array circuit and a driving method thereof, and a display device. The Gate Driver on Array circuit includes at least one group of shift registers, each group of shift registers includes a plurality of shift registers in cascade, the plurality of shift registers including a first shift register, a second shift register connected after the first shift register, and a third shift register connected after the second shift register, wherein the third shift register is provided with an initializing terminal connected to an output terminal of the first shift register.
US10916176B2 System and method for display power reduction
A display driver includes a plurality of source amplifiers configured to drive a plurality of source lines of a display panel, and an amplifier control system configured to control the source amplifiers. Each of the source amplifiers is configured to drive a source line with a drive voltage corresponding to a grayscale value specified by an image data associated with each of the source amplifiers. The amplifier control system is configured to control execution and stopping of an amplifying operation of each of the source amplifiers based on the image data associated with each of the source amplifiers is a grayscale value corresponding to black portions of the display panel.
US10916167B2 Gate driving device and display device having the same
A gate driving device of a display device may include a voltage generator, a gate controller and a gate driver. The voltage generator may generate a gate driving voltage that varies between a gate-on voltage and a gate-off voltage. The gate controller may generate gate clock signals based on the gate driving voltage and gate control signals. The gate driver may generate a gate signal based on the gate clock signals. The gate control signals may include a first control signal and clock control signals, each varying between a high level and a low level. The gate controller may output the gate clock signals having a voltage level of the gate-off voltage when the first control signal and the clock control signals are each provided to the gate controller at the low level, thereby avoiding a display defect due to voltage ramping that may otherwise occur.
US10916163B1 Large-scale infinity optics window for use in small facility packaging applications
A display system useful for achieving a wide field of view infinity effect. The system includes a frame assembly adapted for mounting on a wall of viewing space. The system includes a display element with a display surface. The system includes a magnifying lens supported within the frame assembly with a rear surface facing the display surface and with a front surface facing the viewing space. The rear surface of the magnifying lens is parallel to the display surface of the display element and is separated from the display surface by a separation distance less than a focal length of the magnifying lens, e.g., a value such that a ratio of the separation distance to the focal length is in the range of 0.169 to 0.254. The magnifying lens may be a Fresnel lens in the form of a planar plastic sheet manufactured to provide a flat spherical lens.
US10916158B2 Classroom teaching cognitive load measurement system
The invention provides a classroom cognitive load detection system belonging to the field of education informationization, which includes the following. A task completion feature collecting module records an answer response time and a correct answer rate of a student when completing a task. A cognitive load self-assessment collecting module quantifies and analyzes a mental effort and a task subjective difficulty by a rating scale. An expression and attention feature collecting module collects a student classroom performance video to obtain a face region through a face detection and counting a smiley face duration and a watching duration of the student according to a video analysis result. A feature fusion module fuses aforesaid six indexes into a characteristic vector. A cognitive load determining module inputs the characteristic vector to a classifier to identify a classroom cognitive load level of the student.
US10916153B2 Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment
A real-time virtual reality welding system including a programmable processor-based subsystem, a spatial tracker operatively connected to the programmable processor-based subsystem, at least one mock welding tool capable of being spatially tracked by the spatial tracker, and at least one display device operatively connected to the programmable processor-based subsystem. The system is capable of simulating, in virtual reality space, a weld puddle having real-time molten metal fluidity and heat dissipation characteristics. The system is further capable of displaying the simulated weld puddle on the display device in real-time.
US10916151B2 En route product delivery by unmanned aerial vehicles
An unmanned aerial vehicle (UAV) rendezvous with and transfers a product to a receiving vehicle that is en route to a destination-location. The UAV is dispatched with the product along a flight path that intercepts with a predetermined route that the receiving vehicle is expected to travel along toward the destination-location. Once the UAV is within the vicinity of the receiving vehicle, the UAV approaches the receiving vehicle and utilizes cargo release equipment to transfer the product to the receiving vehicle. In one example, the UAV flies above the receiving vehicle at a synchronized velocity and drops the product through an opening in the roof of the receiving vehicle. In another example, the UAV flies above the receiving vehicle and suspends the product adjacent to a side-window opening of the receiving vehicle to enable an occupant of the receiving vehicle to reach out and retrieve the product.
US10916150B2 Computer-assisted aerial surveying and navigation
Computer-implemented methods, systems, and program products are provided that assist in aspects of aerial surveying, including selective display of planned flight path segments, marking of ground conditions, monitoring coverage of a planned flight path, and providing guidance information for aircraft navigation, including speed and turns.
US10916149B2 Method and system for optimization of aircraft operations using uplink weather data
Methods and systems are provided for optimizing aircraft operations using uplink weather data to identify predicted turbulent conditions. The method comprises uploading current weather data to a flight management system (FMS) of an aircraft. Areas of turbulence are identified according to the uploaded weather data including areas of turbulence along the client flight trajectory stored in the FMS of the aircraft. An optimal turbulence penetration speed is planned for each identified area of turbulence. The estimated time of arrival (ETA) and minimum and maximum estimate time of arrival (ETA min/max) for the aircraft is recalculated based on the optimal turbulence penetration speeds. The recalculated ETA and ETA min/max is automatically transmitted to an air traffic control (ATC) authority with the FMS of the aircraft.
US10916147B2 Methods and systems for detecting turbulence
Methods and systems for detecting turbulence are provided. One method includes collecting data by a plurality of sensors of an antenna system of an in-flight entertainment (IFE) system of an aircraft, the plurality of sensors collecting aircraft rotation data, aircraft acceleration data, data indicating change in magnetic flux, and data indicating atmospheric pressure and temperature; detecting a change in position of the aircraft by a computing device of the IFE system based on the collected data; identifying turbulence by the computing device based on the detected change in position matching a signature indicative of turbulence; transmitting at least one data packet with a turbulence profile by the computing device to a ground based computing system, the turbulence profile including data from the plurality of sensors used for identifying turbulence; and using the turbulence profile by the ground-based computing system for modifying a route of another aircraft.
US10916146B2 Vehicle convoy control system and method
A convoy management system and method determine determining an inter-vehicle spacing in a convoy formed from two or more vehicles traveling together along one or more routes. Controllers onboard the two or more vehicles are instructed to automatically change movement of at least one of the vehicles in the convoy to maintain the inter-vehicle spacing. The inter vehicle spacing is dynamically changed during movement of the convoy along the one or more routes.
US10916144B2 Anti-collision control device and method therefor
Provided is an anti-collision control device of a vehicle, and a method therefore. Particularly, provided is a method and apparatus for avoiding a collision by previously sensing a risk of collision with a neighboring vehicle when a vehicle is located in a blind spot of the neighboring vehicle.
US10916142B2 Reporting road event data and sharing with other vehicles
Example systems and methods allow for reporting and sharing of information reports relating to driving conditions within a fleet of autonomous vehicles. One example method includes receiving information reports relating to driving conditions from a plurality of autonomous vehicles within a fleet of autonomous vehicles. The method may also include receiving sensor data from a plurality of autonomous vehicles within the fleet of autonomous vehicles. The method may further include validating some of the information reports based at least in part on the sensor data. The method may additionally include combining validated information reports into a driving information map. The method may also include periodically filtering the driving information map to remove outdated information reports. The method may further include providing portions of the driving information map to autonomous vehicles within the fleet of autonomous vehicles.
US10916137B2 Traffic mitigation system
A device may determine driving routes and transit times for vehicles and drivers. The device may include memory and processing to determine one or more indications of desired departure times and routes for a first user and a second user of a group of users, the routes including a road segment used by the first user and the second user. The device may determine a first signal received from a computer of a first vehicle and a second signal received from a computer of a second vehicle, wherein the first signal indicates traffic associated with the first vehicle, and wherein the second signal indicates traffic associated with the second vehicle. The device may determine a first suggested departure time associated with the first user and a second suggested departure time associated with the second user The device may to send indications of the first and second suggested departure times.
US10916136B2 Geo-tagged vehicle-to-vehicle communication system
Systems and methods for providing geo-tagged vehicle-to-vehicle communication to a follower vehicle during off-road caravanning. In some embodiments, verbal instructions spoken by a leader driver are captured by the vehicle-to-vehicle communication system, tagged with geospatial location information, and broadcast to follower vehicles. Follower vehicles can receive the broadcast verbal instructions, and the system can cause the verbal instructions to be reproduced when the follower vehicle is determined to be within a threshold distance of the geospatial location where the leader driver gave the verbal instructions. The verbal instructions can be accompanied by visual data, such as images and videos. The system can add navigation and landmark markers in the visual data to enhance a leader driver's geo-tagged instructions. A message path can formed from several verbal instructions spoken by the leader driver.
US10916132B2 Vehicle dash cam sign reading
A dash cam on a vehicle for reading signage and updating navigation of the vehicle. A detour is detected from a route using a navigation system in a vehicle. A video recording from a dash cam on the vehicle which is continuously recording as the vehicle is operated is reviewed, and the reviewing of the video recording is based on a time of the detour from the route. Signage of a road diversion on the video at a location of the detour is detected. The signage is assessed to determine a route change based on the road diversion, and the route change includes avoiding the location of the detour or a detour area. The navigation system is updated with the route change based on the signage and the road diversion. The updated navigation includes the avoiding of the location of the detour or the detour area.
US10916127B2 Intelligent telematics system for defining vehicle ways
Disclosed are systems and methods relating to determining geographic locations of vehicle ways which are employed by vehicles for movement and/or parking. A classifier may be defined for identifying portions of the vehicle ways via machine learning techniques and processing of historical telematic data.
US10916126B2 Driving assistance apparatus, imaging apparatus, imaging system, driving assistance system, vehicle, and driving assistance method
A driving assistance apparatus includes a communication interface and a processor. The communication interface acquires information related to the position of a vehicle and road information related to a road. The processor determines whether the road is passable based on the acquired information.
US10916125B2 Systems and methods for cooperative smart lane selection
Systems and methods for cooperative smart lane selection are described. According to one embodiment, a computer-implemented method for cooperative smart lane selection includes receiving vehicle data for a plurality of vehicles. Each vehicle in the plurality of vehicles is travelling along a road segment having a plurality of lanes. The road segment is parsed into a plurality of inter-lane zones including a buffer zone and an implementation zone downstream of the buffer zone. Each inter-lane zone includes the lanes of the plurality of lanes. The computer-implemented method includes integrating the vehicle data into the plurality inter-lane zones by lane of the plurality of lanes. The computer-implemented method also includes calculating flow factors for the lanes in the implementation zone. The computer-implemented method further includes selecting a lane from the plurality of lanes based on the flow factors and controlling a host vehicle based on the flow factors.
US10916122B2 Sensor relay apparatus and sensor relay system
In a sensor relay apparatus (10), a communication control unit (13) receives sensor data from a sensor terminal (ST) via a terminal module (11) when a transmission data amount related to the sensor data to be transmitted from the sensor terminal (ST) is equal to or greater than a determination threshold. This can reduce the overhead time taken at the time of the transmission of the sensor data.
US10916121B2 Virtual maintenance manager
A user interface for a security system includes a processing circuit, the processing circuit including a processor and memory coupled to the processor, the memory having instructions stored thereon that, when executed by the processor, cause the processing circuit to receive, from a user via a user device, a user request for information relating to the security system, determine, using natural language processing, an intent and one or more entities associated with the user request, the intent describing a purpose of the user request and the one or more entities describing a type or source of security system data, generate a response to the user request based on the intent and the one or more entities, wherein the response is a graphical display of security system data, and send the response to the user device.
US10916116B2 Apparatus and method for detection of hazardously energized objects
A method and apparatus for detecting and identifying hazardous objects in electric fields. In one embodiment, the apparatus comprises two or more sensor probes mounted on a mobile vehicle and spaced apart from one another, wherein each sensor probe of the two or more sensor probes generates a signal corresponding to an electrical field; a processor, coupled to the two or more sensor probes, for processing the signals from the two or more sensor probes to generate at least one processed signal based on a distance between at least two sensor probes of the two or more sensor probes; and an indicator, coupled to the processor for providing, based on the at least one processed signal, an indication of a hazardously energized object in the electric field.
US10916115B1 Wearable device adapted for fall detection and transmission of automated notifications for emergency assistance
A wearable safety device is provided. The wearable safety device is adapted to detect wearer fall events and shock events and transmit automated notifications if such events have been detected. The wearable safety device utilizes an accelerometer or equivalent components to determine a rate of fall associated with a fall event and determine a magnitude of shock associated with a shock event. The accelerometer, transmission component and a microprocessor coupled to both is dimensioned and adapted to be woven between two layers of fabric by conductive thread, thereby enabling an ever present, wearable device to detect when the wearer has dangerously fallen and proactively request assistance.
US10916114B1 Exit-code-based RFID loss-prevention system
Methods and systems are described for authorizing an item with an RFID tag to leave a facility. In one embodiment, a mobile device receives or determines an exit code (EC) to write into the tag in response to providing authorizing information. The EC may be based on information stored in the tag such as the tag's item identifier or other tag information (collectively an item identifier or II), a ticket value, other information such as the OC, a mobile identity or location, or any other suitable information. Upon verification of the EC, the tagged item is allowed to leave the facility. In another embodiment, the mobile device stores an item identifier (II) associated with the tag and provides authorizing information. Upon verifying the authorizing information and confirming that the stored II corresponds to the tagged item's II, the tagged item is allowed to leave the facility.
US10916112B2 Multi-voltage power supply system for merchandise security
The present invention provides a multi-voltage power supply system for merchandise security, including a sensor configured to be connected to a plurality of merchandise, respectively, and an alarm including at least one interface for connecting the sensor, wherein the alarm is configured to be able to receive power and a safety signal from the sensor; the sensor is configured to be connectable to a power adapter via a power interface and to power the connected merchandise and/or alarm. In the present invention, the sensor is connected to an external power adapter, and the external power adapter supplies power to the sensor, and then the sensor supplies power to other components in a merchandise or an security system, such as the alarm, thereby reducing the input ports of the external power source and enabling the display of the security system more concise.
US10916111B2 Security system and method for merchandise security
The present invention provides a system and method of merchandise security. The system includes a security device, comprising at least a first communication interface, configured to be capable of simultaneously communicating with one or more controllers. A controller, comprising at least a second communication interface configured to be capable of communicating with one or more security devices simultaneously. The method uses a controller with system identity number to initialize the security device which directly or indirectly attached to the merchandise, and to operate the initialized device. The present invention can realize communication between the security device and the controller through a wireless channel, in the communication process, through the generation of the system identity number, the security device can simultaneously implement the point-to-point communication and a point-to-surface communication.
US10916103B2 Location-based wagering via remote devices
Location based wagering method sand systems. An online wagering service can be invoked via a mobile device. A determination can then be made regarding the location of the mobile device and a jurisdiction (e.g., state, county, city, etc.) associated with that location. The mobile device and hence a user can be authorized to access the online wagering service based on the location of the mobile device. Based on the location, it can also be determined if use of the online wagering service is allowed in the jurisdiction along with prescribed limitations of use in that jurisdiction. Wagering options are then presented via the mobile device, which conform to the laws and/or regulations of the jurisdiction.
US10916101B2 System and method for a media platform
A method performed by one or more processing devices for conducting a networked contest is provided. The method describes receiving an input from a contestant, extracting a first set of variable rules based on the contestant input, authorizing the contestant for a contest, presenting a media to a consumer, wherein the media is generated by the contestant, receiving an input from the consumer, extracting a second set of variable rules based on the consumer input, responsive to the presented media, receiving a casted vote from the consumer if each of the contestant and the consumer are authorized based on the variable rules sets. A system for conducting a contest is also provided herein.
US10916099B2 Gaming system and method with guaranteed symbol generation
Gaming systems and methods for providing a sequence of a quantity of plays of a game wherein each play of the game is guaranteed to result in the generation of a guaranteed minimum quantity of a designated symbol.
US10916097B2 Systems, apparatuses and methods for modifying award payouts through fluctuating adjustments
Systems and methods for facilitating variation and adjustment of payouts during participation of a gaming feature. From the player's perspective, gaming payout enhancements may involve fluctuating beneficial and non-beneficial adjustments. One embodiment involves providing an initial award modifier, and a plurality of selectable items. Some of the selectable items have a positive or negative modifier adjustment value associated therewith, and at least one of the selectable items includes an awarded value that also terminates further modifier adjustment. The player selects the selectable items, and an accumulated modifier is adjusted based on the positive or negative modifier adjustment values associated with the selected items. Adjustment of the accumulated modifier value is discontinued in response to player selection of the awarded value and the termination of modifier adjustment. The accumulated modifier at the time of termination of modifier adjustment is applied to the awarded value to provide a modified awarded value.
US10916096B2 Electronic gaming system having visual cue indicia with a special symbol characteristic
A gaming system is described that comprises a symbol selector that selects a defined number of symbols from a set of symbols for display in a symbol display area, the set of symbols including at least one special symbol. The system also includes an outcome determiner that determines whether a winning outcome is determined to exist based on the displayed symbols, and a prize allocator that awards a prize if a winning outcome is determined to exist. If a defined condition exists during the game, the system displays visual cue indicia associated with a special symbol at a defined display location. Prior to displaying the selected symbols, the system displays a succession of symbols at the defined display location and subsequently displays a selected symbol at the defined display location. A winning outcome is determined to exist if a special symbol is selected and displayed at the defined display location.
US10916093B2 Pre-authorized casino credit instrument
A casino credit access instrument comprises a source of funds for a player, such as for placing wagers to play casino-style games or to purchase other goods or services. The instrument defines a period of timed during which credit may be accessed up to a predetermined amount, defines a redemption period during which any accessed credit may be re-paid, and defines settlement terms if the instrument is not redeemed. Credit may be granted based upon financial collateral, which collateral may be executed upon to settle the instrument. The instrument provides a convenient source of funding for player at low risk to the casino or other lender.
US10916091B2 Gaming system and method providing a plurality of different player-selectable wager alternatives when a credit balance is less than a designated wager amount and greater than or equal to a lowest eligible credit balance
Various embodiments of the present disclosure provide a gaming system and method providing a plurality of different player-selectable wager alternatives if a credit balance of a player is less than a designated wager amount (such as a cost to cover a play of a wagering game or a maximum wager amount for the play of the wagering game) and greater than or equal to a lowest eligible credit balance (such as 1 credit). Generally, selecting one of the different wager alternatives when the player's remaining credit balance is less than the designated wager amount and greater than or equal to the lowest eligible wager amount enables the player to utilize the player's remaining credit balance (or any suitable portion thereof) in a manner that is different than, separate from, and in addition to wagering on one or more plays of the wagering game.
US10916088B1 Servicing and mounting features for gaming machine display screens and toppers
Various gaming machine design features and functionalities are described herein relating to gaming machine display screens, access doors and toppers. In some embodiments, the gaming machine may include a main door support assembly which includes a stabilizing strut between flat components arranged into parallel planes forming a four-bar linkage, and facilitates an upward and outward movement of the main door assembly from a closed position. In some embodiments, the gaming machine may include a topper assembly which is configurable in a hands-free intermediate service position and a final installed position.
US10916087B2 Skillfull regulated casino games and gaming machines having progress indicator configured to enable previously unavailable games, wagering opportunities and/or wagering styles
A computer-implemented method of operating a regulated gaming machine may comprise accepting funds from a player and correspondingly establishing player game credits. A game and a progress indicator may be provided, with the game comprising a plurality of enabled in-game assets and at least one previously unavailable in-game asset. Each of the plurality of enabled in-game assets may be configured to generate a wagering opportunity when interacted with by the player. Game play may be enabled by receiving at least one player interaction, via a user interface of the regulated gaming machine, with at least some of the enabled plurality of in-game assets. For each generated wagering opportunity, it may be determined determining whether the received player interaction(s) resulted in a successful or an unsuccessful interaction with the enabled in-game asset with which the player interacted. At least for each successful interaction, a wagering event may be generated, each of which resulting in a first random award of player game credits to the player. The progress indicator may be updated when one or more predetermined conditions are detected during game play. When the progress indicator reaches a predetermined level during game play, one or more previously unavailable games and the previously unavailable in-game asset(s) may be enabled, such that successful interactions therewith generate previously unavailable wagering events and corresponding second random awards to the player.
US10916085B2 Modular bank note recycling device
A modular valuable media recycling device is presented. The valuable media recycling device includes a media infeed module, a validator module, an escrow module, a plurality of media feeder/stacking modules, and a plurality of cassette modules. When a module handles a valuable media item along a media transport path, the module's identifier and security information are passed as a message to a next module that is to handle the media item in a processing path for the media item. Each module independently validates the authenticity of the message received from a previous module. The number of media feeder/stacking modules and cassette modules are scalable based on the transaction terminal that the modular valuable media recycling device is integrated into.
US10916084B2 Touch-type control system, control device and monitor device for merchandise security
The present invention provides a touch-type control system, a control device and a monitor device for merchandise security, including a controller and a monitor device, where the monitor device has an identifiable communication interface capable of communicating with the controller, and is configured to communicate with the controller via the identifiable communication interface and be initialized by a controller in communication therewith. The controller further comprises a touch-type communication interface for communicating with the monitor device, and is configured to be capable of controlling the monitor device initialized by the controller via the touch-type communication interface. In the system, the controller can communicate with the monitor device by means of a touch manner, thereby identifying, controlling and powering the monitor device, thereby solving the problem of the unification of power supply and data in the system.
US10916080B2 Systems and methods for using motion pattern of a user for authentication
Systems and methods for using accelerations derived from a motion pattern for multi-factor authentication, the method including receiving, filtering, and determining an identifying pattern from acceleration data representative of the user and using the identifying pattern for secured access authentication.
US10916078B2 Integrated access control system
Disclosed embodiments provide an integrated access control system. The integrated access control system includes both credential reader functionality and door controller functionality in the same package. In embodiments, the circuitry is miniaturized to fit within a standard “single gang” box such as those used for a standard light switch or receptacle. In this way, the integrated access control system of disclosed embodiments installs easily and unobtrusively in standard sized openings. To operate in a confined area such as a single gang box enclosure, a variety of thermal management and power management techniques are employed to provide reliable operation.
US10916077B2 User privacy protection on autonomous driving vehicles
In one embodiment, one or more first data items associated with a planned trip of a user riding in an autonomous driving vehicle (ADV) are displayed on a display device within the ADV. Each of the first data items is associated with a user selectable option to indicate whether the user wishes or allows the ADV to store each of the first data items in a persistent storage device. User inputs are received via a user interface such as touch screen of the display device, including a first selection indicating that the user wishes to store a first subset of the first data items. In response to the first selection, the first subset of the data items is stored in the persistent storage device of the ADV.
US10916074B2 Vehicle wheel impact detection
Data describing operation of a vehicle is provided to a deep neural network. A vehicle wheel impact event is determined based on output of the deep neural network. Alternatively or additionally, it is possible to determine the wheel impact event based on output of a threshold based algorithm that compares vehicle acceleration and the velocity to one or more thresholds.
US10916072B2 Self-maintaining autonomous vehicle procedure
Systems and methods provide for enabling an autonomous vehicle to automatically and dynamically monitor and maintain itself. The autonomous vehicle can analyze diagnostic data captured by one or more of its sensors. Based on the analysis of the diagnostic data, the autonomous vehicle can determine that it needs maintenance and, based on that determination, send the analysis of the diagnostic data to a routing service. The autonomous vehicle can receive instruction from the routing service to dynamically route the autonomous vehicle in accordance with a maintenance action.
US10916071B2 Maintenance induction for aircraft
An apparatus for predicting structural degradation and performing maintenance induction for a plurality of in-service aircraft is provided. The apparatus identifies maintenance requirements for the plurality of in-service aircraft and receives fatigue metric values on historical usage and structural health condition of the plurality of in-service aircraft. The apparatus predicts levels of structural degradation to the plurality of in-service aircraft based on the fatigue metric values and assigns maintenance priorities to the plurality of in-service aircraft based on the levels of structural degradation. The apparatus generates an instruction to route an aircraft of the plurality of in-service aircraft to a maintenance facility for maintenance based on a maintenance priority of the maintenance priorities assigned to the aircraft.
US10916070B1 Systems and methods for weather-related vehicle damage prevention
A computer-implemented method for providing covered parking to vehicles is provided. The method may include transmitting a location identifier of a covered parking location and a communication address of a covered parking location (CPL) computing device to a vehicle computing device and/or an insurance computing device. The method may further include transmitting a signal to the vehicle computing device indicating a number of available parking spots of the covered parking location when the vehicle computing device contacts the CPL computing device, receiving a request from the vehicle computing device to reserve a parking spot of the covered parking location, determining whether to accept the request, and transmitting a response to the vehicle computing device. Accepting the request causes the CPL computing device to permit a vehicle associated with the vehicle computing device access to the covered parking location.
US10916063B1 Dockable billboards for labeling objects in a display having a three-dimensional perspective of a virtual or real environment
A system and method that allows a user to view objects in a three-dimensional environment, where one or more of the objects have a data display (e.g., a data billboard, etc.) that shows data about the object. To enhance user experience and to provide relevant contextual data as the user navigates through the three-dimensional environment, the system calculates a location for the user and a location for each object and determines if a relationship between the user frame of reference and each object location satisfies a first criterion. If the first criterion is satisfied, the system is configured to move the data display to the bottom of a viewing area of the three-dimensional environment (e.g. docking the data display to the bottom of the viewing area, etc.). The system may also arrange the data displays in the same order as the objects are perceived by the user in the three-dimensional environment.
US10916058B2 Augmented reality devices for hazardous contaminant testing
Aspects of the disclosure relate to augmented reality devices for generating a composite scene including a real-world test environment and an augmented reality overlay visually representing a test area of the environment. Some devices can include wearable displays for displaying an overlay to a user, and other devices can include projectors for illuminating the test environment with the overlay.
US10916055B2 Plane sweep for multi-level navigation meshes
A computer implemented method includes obtaining a navigation mesh representing a multi-level structure. The navigation mesh has multiple polygons defined by vertices and segments extending between vertices. Some of the polygons overlap. A first status data structure is created in response to a sweep line first encountering a first vertex corresponding to a first contiguous interval of polygons, wherein the first data structure includes at least two segments having the vertex in common. A second status data structure is created in response to the sweep line encountering a second vertex having two different segments in common corresponding to a second contiguous interval of polygons. The method continues to sweep the mesh with the sweep line while keeping the first and second statuses isolated for each contiguous interval of polygons.
US10916046B2 Joint estimation from images
Techniques are disclosed for estimating poses from images. In one embodiment, a machine learning model, referred to herein as the “detector,” is trained to estimate animal poses from images in a bottom-up fashion. In particular, the detector may be trained using rendered images depicting animal body parts scattered over realistic backgrounds, as opposed to renderings of full animal bodies. In order to make appearances of the rendered body parts more realistic so that the detector can be trained to estimate poses from images of real animals, the body parts may be rendered using textures that are determined from a translation of rendered images of the animal into corresponding images with more realistic textures via adversarial learning. Three-dimensional poses may also be inferred from estimated joint locations using, e.g., inverse kinematics.
US10916045B2 Device, program, and information processing method
The present invention is designed so that, even when a CG model moves with a tempo, it is possible to realize natural movement. The device according to one aspect of the present invention has a control section that exerts control so that specific data, which corresponds to a case where a predetermined parameter has a specific value, is generated using a plurality of pieces of data corresponding to respective cases where the predetermined parameter has different values, and a playback section that reproduces a predetermined computer graphics (CG) model based on the specific data.
US10916043B2 Apparatus, method and computer program for generating a template for arranging at least one object at at least one place
Methods and apparatus for generating a template for arranging at least one object at least one place, wherein the at least one object is characterized by at least one feature, wherein the methods and apparatus facilitate: providing at least one initial object, arranging the at least one initial object at the at least one place, and generating the template by assigning to the at least one place the at least one feature of the at least one initial object, which has been arranged at the least one place.
US10916041B2 Method for depth image di coding
A method for point cloud encoding includes generating, for a 3D point cloud, first and second frames representing the 3D point cloud at different depths, wherein the first and second frames each include a set of patches representing a cluster of points of the 3D point cloud. The method also includes encoding the first frame. After encoding the first frame, the method includes decoding the first frame. The method further includes generating a third frame representing a difference between corresponding points of the second frame and the decoded first frame. The method additionally includes encoding the third frame. The method also includes generating a compressed bitstream including the encoded first frame and the encoded third frame. The method further includes transmitting the compressed bitstream.
US10916039B2 Background foreground model with dynamic absorption window and incremental update for background model thresholds
Techniques are disclosed for creating a background model of a scene using both a pixel based approach and a context based approach. The combined approach provides an effective technique for segmenting scene foreground from background in frames of a video stream. Further, this approach can scale to process large numbers of camera feeds simultaneously, e.g., using parallel processing architectures, while still generating an accurate background model. Further, using both a pixel based approach and context based approach ensures that the video analytics system can effectively and efficiently respond to changes in a scene, without overly increasing computational complexity. In addition, techniques are disclosed for updating the background model, from frame-to-frame, by absorbing foreground pixels into the background model via an absorption window, and dynamically updating background/foreground thresholds.
US10916035B1 Camera calibration using dense depth maps
This disclosure is directed to calibrating sensor arrays, including sensors arrays mounted on an autonomous vehicle. Image data from multiple cameras in the sensor array can be projected into other camera spaces using one or more dense depth maps. The dense depth map(s) can be generated from point cloud data generated by one of the sensors in the array. Differences determined by the comparison can indicate alignment errors between the cameras. Calibration data associated with the errors can be determined and used to calibrate the sensor array without the need for calibration infrastructure.
US10916032B2 Image processing apparatus, image processing program, image processing method, and image forming apparatus including the image processing apparatus
According to the present disclosure, for example, when a line of a character as an object is to be thickened, an enlargement process is performed. Then, a correction process is performed to deform the line of the character into a moderate thickness. Moreover, when a line of a character as an object is to be thinned, a reduction process is performed. Then, a correction process is performed to deform the line of the character into a moderate thickness. Also for a hollow character as an object, a similar contour process is performed to deform the line of the hollow character into a moderate thickness.
US10916026B2 Systems and methods of determining stereo depth of an object using object class information
Systems, methods, and other embodiments described herein relate to a method of determining stereo depth of an object. One method includes obtaining an image captured with a stereo camera arrangement. The stereo camera arrangement can be installed in one of a vehicle and a robotic apparatus, for example. The image captures a portion of the environment associated with the stereo camera arrangement. The method can further include identifying an object in the image, determining an object class for the object, determining a size parameter of the object, determining a size parameter of the object class, determining a maximum disparity for the object with the size parameter of the object and the size parameter of the object class, and determining a stereo depth of the object based on the maximum disparity.
US10916025B2 Systems and methods for forming models of three-dimensional objects
A 3D imaging system is proposed in which an object is successively illuminated in at least three directions and at least three images of the object are captured by one or more energy sensors. A set of images is produced computationally showing the object from multiple viewpoints, and illuminated in the at least three directions simultaneously. This set of images is used stereoscopically to form an initial 3D model of the object. Variations in the brightness of the object provides features useful in the stereoscopy. The initial model is refined using photometric data obtained from images in which the object is illuminated in the at least three directions successively.
US10916020B2 Method and device for identifying light source
The present disclosure provides a method and device for identifying a light source. The method includes as follows. M stripe sets in an image may be detected. A first energy spectrum data corresponding to each of M stripe sets may be obtained. A second energy spectrum data corresponding to each light source in a database may be obtained. The database may include K light sources, and the energy spectrum data corresponds to an identity of the light source. A correlation coefficient between the second energy spectrum data and the first energy spectrum data may be calculated to obtain M*K correlation coefficients. The identity of each stripe set corresponding to the light source in the database may be determined according to the M*K correlation coefficients. With this disclosure, the tracking of the light source emitted by a controller can be achieved.
US10916017B2 Method and apparatus for detecting motion deviation in a video sequence
Detection of motion deviation in a video sequence is provided. Change grids each comprise elements generated by storing in each element of the change grid an indication of whether there is change between corresponding elements of at least two images. A current direction grid is generated from a pair of change grids by searching for movement of a corresponding segment identified in each change grid, the movement occurring between the locations of the segment in each of the pair of change grids and, storing in elements of the current direction grid a vector corresponding to the movement of the segment. A vector stored in an element of the current direction grid is compared with a reference vector. It is determined whether there is motion deviation in the video sequence in accordance with the comparison.
US10916014B2 Distinguishing virtual objects from one another
A system includes a processor and memory storing instructions executable by the processor. The instructions include determining whether a currently-evaluated point is part of a segment. This may include: determining feature vectors for the currently-evaluated point and for each of a plurality of previously-evaluated points tagged to the segment; using the feature vectors to determine a probability score; and determine whether the score is greater than a threshold.
US10916012B2 Image processing apparatus and image processing method
An image processing apparatus includes an acquisition unit configured to acquire a tomographic image of at least a retina and a vitreous body of a subject's eye, and a detection unit configured to detect, based on an intensity value of the tomographic image, an outer edge of the vitreous body in a region located on a vitreous body side of a region regarding the retina in the tomographic image.
US10916007B2 Magnetic resonance imaging apparatus and magnetic resonance imaging method
According to one embodiment, an MRI apparatus includes a data acquisition unit and an image generation unit. The data acquisition unit acquires MR data from an object. The MR data correspond to a sampling region asymmetric in a wave number direction in a k-space. The image generation unit generates amplitude image data, in a real space, based on first k-space data after zero padding to a non-sampling region of the MR data and generates MR image data by data processing of the amplitude image data or convolution processing of the amplitude image data. The data processing converts the amplitude image data into second k-space data, performs filtering of the second k-space data and converts the second k-space data after the filtering into real space data. The convolution processing uses a function in the real space. The function is derived by converting a window function for the filtering.
US10916003B2 Image quality scorer machine
An image quality scorer machine accesses a candidate image to be analyzed for visual quality. The image quality scorer machine generates a visual quality score of the candidate image by first generating a prediction of a similarity score for the candidate image. The predicted similarly score of the candidate image may be generated by a process including inputting the candidate image into a neural network that has been trained to detect a set of image features in the candidate image and then to generate a corresponding predicted similarity score based on degrees to which the image features in the set are present in the candidate image. The image quality scorer machine derives the visual quality score based on the predicted similarity score outputted by the neural network. Accordingly, the image quality score machine may provide or store the generated visual quality score of candidate image for subsequent usage.
US10916001B2 Facilitating sketch to painting transformations
Methods and systems are provided for transforming sketches into stylized electronic paintings. A neural network system is trained where the training includes training a first neural network that converts input sketches into output images and training a second neural network that converts images into output paintings. Similarity for the first neural network is evaluated between the output image and a reference image and similarity for the second neural network is evaluated between the output painting, the output image, and a reference painting. The neural network system is modified based on the evaluated similarity. The trained neural network is used to generate an output painting from an input sketch where the output painting maintains features from the input sketch utilizing an extrapolated intermediate image and reflects a designated style from the reference painting.
US10916000B2 Apparatus and method for dynamic range transforming of images
An image processing apparatus comprises a receiver (201) for receiving an image signal comprising an encoded image. Another receiver (1701) receives a data signal from a display (107) where the data signal comprises a data field that comprises a display dynamic range indication of the display (107). The display dynamic range indication comprises at least one luminance specification for the display. A dynamic range processor (203) is arranged to generate an output image by applying a dynamic range transform to the encoded image in response to the display dynamic range indication. An output (205) outputs an output image signal comprising the output image to the display. The transform may furthermore be performed in response to a target display reference indicative of a dynamic range of display for which the encoded image is encoded. The invention may be used to generate an improved High Dynamic Range (HDR) image from e.g. a Low Dynamic Range (LDR) image, or vice versa.
US10915998B2 Image processing method and device
In a rectangular region detection mechanism, a to-be-processed image information is received, where the to-be-processed image information comprises at least two images, and where the at least two images comprise a same plurality of first feature points. A plurality of first edge line segments in one of the at least two images are detected. Four first edge line segments from the plurality of first edge line segments are determined. Locations of photographed points corresponding to the plurality of first feature points in a region formed by the four first edge line segments are determined based on location information of the plurality of first feature points. The region is determined as a rectangular region when the photographed points corresponding to the plurality of first feature points in the region are coplanar.
US10915997B2 Imaging device and imaging lens
An imaging device of the disclosure includes an imaging lens; an imaging element that converts an optical image formed on an image forming surface by the imaging lens, into an electric signal; and a computing device that corrects distortion aberration of an image picked up by the imaging element. The imaging lens includes, in order from object side, a front-group lens system having positive refractive power, and a rear-group lens system having negative refractive power, a lens surface on a closest side to the image of the rear-group lens system being concave on an image side near an optical axis and convex on the image side around a periphery, and the following conditional expression is satisfied: 5(%)
US10915995B2 Methods and apparatus to generate masked images based on selective privacy and/or location tracking
Examples to selectively generate a masked image include: a convolutional neural network detector to detect a first feature and a second feature in an image captured by a camera; a feature recognizer to determine the first feature is a displayable feature and the second feature is a non-displayable feature by comparing the first and second features of the image to reference feature images stored in a memory; and a blur generator to generate the masked image to display the displayable feature and mask the non-displayable feature.
US10915994B2 Image forming apparatus
An image forming apparatus includes an image forming device to form a correction image, an image density detector to detect image densities of a plurality of areas in the correction image, and circuitry to correct an image formation condition of the image forming device based on detected image densities of the plurality of areas. The circuitry replaces a detected image density of an area of interest selected from the plurality of areas with an average value of detected image densities of two or more areas including adjacent areas adjacent to the area of interest and corrects the image formation condition of the image forming device based on the detected image densities of the plurality of areas after replacement when a difference between the detected image density of the area of interest and at least one of the detected image densities of the adjacent areas exceeds a predetermined threshold.
US10915990B2 Systems and methods for denoising medical images with deep learning network
Methods and systems are provided for selectively denoising medical images. In an exemplary method, one or more deep learning networks are trained to map corrupted images onto a first type and a second type of artifacts present in corresponding corrupted images. Then the one or more trained learning networks are used to single out the first and second types of artifacts from a particular medical image. The first type of artifacts is removed to a first extent and the second type of artifacts is removed to a second extent. The first and second extents may be different. For example, one type of artifacts can be fully suppressed while the other can be partially removed form the medical image.
US10915989B2 Apparatus and method of processing image data using IFFT
A method and apparatus for processing image data are provided. An image data processing apparatus includes: a receiver configured to receive image data that represents a current frame; and a processor configured to perform an inverse fast Fourier Transform (IFFT) computation with respect to a first region of the current frame, and to obtain an IFFT computation result with respect to a second region of the current frame by using a result of the IFFT computation with respect to the first region.
US10915987B2 X-ray diagnostic apparatus and display method
According to an X-ray diagnostic apparatus, an X-ray tube radiates X-rays. An X-ray collimator adjusts an irradiation region of the X-rays. An X-ray detector includes a first detector and a second detector having a smaller detection area than a detection area of the first detector. The X-ray detector is able to detect the X-rays radiated with the first detector and the second detector at the same time. Processing circuitry generates a synthesized image obtained by synthesizing a first X-ray image generated based on an output from the first detector that detected the X-rays radiated in the irradiation region adjusted, and a second X-ray image generated based on an output from the second detector that detected the X-rays radiated in the irradiation region adjusted, the synthesized image having an image size corresponding to an aspect ratio of the irradiation region. The processing circuitry causes a display to display the synthesized image.
US10915985B2 System and method for rendering perspective adjusted views of a virtual object in a real world environment
A method for rendering perspective adjusted views of a virtual object in a real world environment is provided. A registration code is generated for a first device and includes a static portion for device identification and a dynamic portion for a location and orientation of the first device. The dynamic portion of the registration code changes based on time passage and movement of the first device. A distance and orientation of the first device is determined with respect to a second device based on a location and orientation of the second device at a particular time and the registration code, which is captured by the second device at the particular time. The second device captures the registration code via the first device or a different device. A display of a virtual object is perspective adjusted based on the distance and orientation of the devices.
US10915982B2 Computer system, graphics processing unit, and graphics processing method thereof that are capable of switching different rendering modes
A graphics processing unit (GPU) is provided. The GPU includes a command stream parser (CSP). The CSP receives a command list from a display driver and parses commands in the command list to determine a rendering mode of the GPU and perform a graphics rendering pipeline for graphics processing according to the rendering mode. When the CSP determines that at least a specific CSP command is not included in the command list, the CSP determines that the rendering mode is a first rendering mode. When the CSP determines that the specific CSP command is included in the command list, the CSP determines that the rendering mode is a second rendering mode. In the second rendering mode, the CSP divides a rendering target into tiles, obtains first drawing commands from the command list according to the specific CSP command, and executes the first drawing commands for each tile.
US10915975B1 News alerts based on user analytics
A system gathers information on important and influential people and builds a social graph. The system regularly sends news alert messages to users. This can help users nurture their relationship with persons they are connected to, by providing them with updates on news and other events that happen to persons they are connected to. The watch can be customized with a variety of options, such as including related entities, organizing news alerts with user data, and other options.
US10915968B1 System and method for proactively managing alerts
A system and method for managing alerts analyzes financial data received from multiple sources according to financial rules associated with a client consumer. Financial data not meeting one or more conditions of the financial rules is organized and presented to a financial professional managing the financial data on behalf of the client consumer. Some conditions of some financial rules are learned, based on events relating to the financial data. Some financial rules are performed for more than one client, while others are specific to a particular client.
US10915963B2 Investment strategy rule generation method and an investment strategy rule device using the same
An investment strategy rule generation method including the following steps is provided. Firstly, an investment strategy rule generator generates an investment strategy model according to an investment history trend. Then, a total investment return of each of N candidate investment rules is obtained by the investment strategy rule calculator, wherein each of the N candidate investment rules includes a candidate market direction rule. The obtaining step includes: performing an investment simulation in each of multiple time points in a time window of a time interval. Then, the total investment return under the operation of the investment simulations over the time interval is calculated by the investment strategy rule calculator. Then, the candidate investment rule corresponding to the best of the total investment returns is used as an investment strategy rule of the investment strategy model by the investment strategy rule calculator.
US10915960B1 User interface for qualitative risk profile determination
Examples of a system and method may generally provide a graphical user interface for qualitative risk profile determination. A method may include providing a graphical user interface including a plurality of related qualitative graphs. The method may include receiving a selection from a user of one of the plurality of related qualitative graph and automatically determining a risk profile for the user. The risk profile may be provided on the graphical user interface.
US10915959B2 System and method for spend management and investment of funds
A transaction management method and system are providing for managing disposition of funds for system users based on account activity. The method stores account data for the system users and instructions and at least a downloadable mobile application, The method receives through an interface over a network, an indication of account activity by the system user and determines a type of account activity. The method further identifies identifying a spending category for the account activity and performs an accounting for the spending category to determine if the account activity is indicative of system user underspending. The method further includes investing calculated underspending. An investment card may be utilized.
US10915955B2 Exchange-traded TBA options
A computer-implemented method for creating an option on a TBA mortgage backed security, including determining an option position is marked to market daily, where the option position is long or short, determining the option position increased in value by an increased amount on a given day and adding the increased value to a customer's margin account, determining the option position decreased in value by a decreased amount on the given day and subtracting the decreased value from the customer's margin account, and when funds in the margin account are below a predetermined margin requirement, requesting the customer deposit additional funds in the margin account, receiving a request to exercise the option on the TBA mortgage backed security from a customer owning the option on the TBA mortgage backed security.
US10915952B2 Manipulating trading tools
Trading tools may be manipulated by allowing assembly, disassembly, and configuration of different trading tools. The assembly of different trading tools may generate combined trading tools. The combined trading tools may enable interoperability between the trading tools therein. Customization of the combined trading tools may be enabled by enabling a user to rearrange predefined areas displayed within the trading tools within the combined trading tools. The customization of the combined trading tools may enable customization of different functionality within the combined trading tools. The trading tools within a combined trading tool may include a tab tool for enabling multiple instances of another trading tool to which the tab tool is attached. Each instance of a trading tool may be associated with a respective tab for enabling a user to toggle between the multiple instances of the trading tool.
US10915951B2 Method and apparatus for generating and operating a swaps trading platform
Methods and apparatuses for generating and operating a swaps execution facility (SEP) compliant swaps trading platform. A swaps trading platform is generated, where the generated swaps trading platform is configured to operate in accordance with a plurality of predefined rules associated with swaps execution facility (SEP) requirements. One or more communication channels are established with respective one or more clearinghouses for transmission of clearinghouse information concerning one or more trade requests. One or more communication channels are established with respective one or more swaps data repository (SDR) providers for transmission of SDR information concerning the one or more trade requests.
US10915950B2 Recommending shared products
An electronic device obtains credit information of a user, where the credit information of the user is derived at least in part from a usage history of the user for a shared product. The electronic device inputs the credit information of the user to a recommendation model for calculation, where the recommendation model is a machine learning model. The electronic device derives, based on the recommendation model, a shared product use probability. The electronic device recommends the shared product to the user based on the shared product use probability.
US10915948B1 Default sharing between frequently used line of business products
Systems and methods related facilitating default sharing between frequently used line of business products according to one or more example embodiments are shown. Such systems and methods make use of sharing of information between the line of business products. In some embodiments, this sharing of the data between line of business products facilitates a universal portal that may be personalized and/or customized in function and appearance. In some embodiments, the universal portal is an application on a user device that, at least, provides access to other applications running on the user device in a consolidated manner as well as additional functions present in the universal portal itself. In some embodiments, visual aspects of the presentation of applications and functionality are changed in the universal portal based on information that has been shared between different line of business products.
US10915947B2 Digital media lending system and method
A digital media lending system and computer implemented method is disclosed. The system includes a usage restriction system operable to apply usage restrictions to digital media items and a user interface arranged to receive a user input by a user requesting loan of a digital media item. The usage restriction system is arranged to apply usage restrictions to the requested digital media item in dependence on historic activities of the user.
US10915945B2 Method and apparatuses for intelligent TV startup based on consumer behavior and real time content availability
In one aspect, while watching TV through a computer game application, a user can purchase an advertised using a “hot key” on the game controller item and the purchase and download happens in background so when the user is done with TV she can play a newly purchased game or otherwise use the purchase. The purchase and viewing are all done within a single application. The purchase feature may be enabled only for a master profile in the computer game system so that other users such as children cannot purchase products through the computer game application.
US10915942B2 Method, apparatus, and computer readable medium for providing a digital unwrapping trigger
Provided herein are systems, methods and computer readable media for facilitating delivery of a digital notification of a physical product to inform a recipient of the identity of the physical product. A digital notification may inform the recipient of the identity of a physical product ordered for the recipient by a sender. A digital unwrapping trigger may be utilized to ensure that the recipient is authorized to view the identity of the digital product. For example, the digital notification may not identify the identity of the physical product until a particular date has passed (e.g., a holiday or birthday), until the recipient performs a certain task, or until the recipient meets a certain goal. In response to the trigger occurring, the digital notification may be enabled for viewing of the identity of the physical product. The physical delivery of the product may be coordinated with delivery of the digital notification.
US10915940B2 Method, medium, and system for analyzing user sentiment to dynamically modify communication sessions
A computer system analyzes user sentiment to dynamically modify a communication session. One or more user interactions are captured during a communication session, wherein a machine learning model is updated based on the captured user interactions. A likelihood score of a user terminating the communication session before performing one or more desired actions is calculated. In response to determining that the likelihood score is above a threshold value, one or more queries are presented, during the communication session, to the user, wherein the one or more queries are selected using the machine learning model. Received user feedback is analyzed to determine a user sentiment. The communication session is dynamically modified based on to the user feedback and the user sentiment. Embodiments of the present invention further include a method and program product for analyzing user sentiment to dynamically modify a communication session in substantially the same manner described above.
US10915938B2 Including instructions upon item procurement
Approaches presented herein enable providing a user with a procurement context notification. More specifically, a selection of an item for procurement by a user through an e-commerce enabled website is obtained. The item, including a use for the item, is identified. A web pointer to web accessible media provided by a third party source that describes the use for the identified item is then retrieved from a browsing history of the user. A description of this web accessible media is generated based on content from the web accessible media. The description and/or the web pointer are attached to a procurement confirmation document, which is then sent to the user. The confirmation document with the attached description and web pointer can be a physical document for inclusion with a physical package containing the item to be transported to the user.
US10915937B1 Systems and methods for transferring a gift using an information storage and communication system
Systems and methods for using an information wallet system to deliver a gift and receive, redeem, or re-gift the gift are disclosed. The information wallet system's storage is securely maintained by a financial institution computing system (i.e. a bank) and receives and holds purchase transaction information. Purchase information transaction may be received from a user computing device or an entity computing system, such as a merchant computing system. In one embodiment, a user may purchase a gift through an online website or at a brick and mortar location and direct the gift to be deposited into the information wallet storage of a recipient. A recipient may then continue to hold the gift, redeem the gift, or re-gift the gift to another party.
US10915929B1 Detecting user interaction and delivering content using interaction metrics
Systems, methods, and computer-readable media are disclosed for detecting user interactions and delivering content using interaction metrics. In one embodiment, an example method may include receiving a bid request for an available content delivery slot, the bid request comprising context information, determining first candidate content for the available content delivery slot, and determining a first base bid value for the first candidate content. Example methods may include determining a predicted conversion rate for an impression of the first candidate content served at the available content delivery slot, determining an estimated revenue for serving the impression at the available content delivery slot, determining a first bid modifier using the predicted conversion rate and the estimated revenue, and sending a response to the bid request comprising a first bid amount, wherein the first bid amount is based at least in part on the first base bid value and the first bid modifier.
US10915924B1 Advertising futures marketplace methods and systems
Methods and systems provide information products relating to past, present and future advertising transactions (i.e., contracts to place advertisements in various media) to enable a marketplace in advertising products. Information regarding a plurality of advertising transactions are gathered. Data is analyzed to determine its attributes. Some attribute values are transformed and the attribute values are stored in a database. Attributes are organized or indexed according to a taxonomy of attributes to provide indexes to advertising transaction records. Indexes and benchmarks for various selected types of advertising transactions can be generated by selecting certain records from the database and aggregating the data or otherwise synthesizing information products, such as benchmarks and market entities for the selected types of advertising transactions. Information products may be published and syndicated as market indexes and benchmarks.
US10915922B2 System and method in a virtual universe for identifying spam avatars based upon avatar multimedia characteristics
A system and method in a virtual universe (VU) system for identifying spam avatars based upon the avatars' multimedia characteristics may have a table that stores multimedia characteristics of known spam avatars. It further may have an analysis unit that compares the multimedia characteristics of avatars against the multimedia characteristics of known spam avatars to determine if the avatar has known spam avatar characteristics. It may further have a scoring system to calculate a spam score based upon the similarities of the comparison and identifying the avatar as a spam avatar based upon the calculated spam score. It may further compare the calculated spam score with a spam score threshold wherein the avatar is identified as a spam avatar if the calculated spam score is equal to or greater than the calculated spam score. Multimedia characteristics include graphics, audio, movement, interactivity, voice, etc.
US10915920B2 Method and digital signage player for managing distributed digital signage content
A method and digital signage player for managing display of a distributed digital signage content. The digital signage player stores the distributed digital signage content, and a local placement target for the distributed digital signage content. The digital signage player displays the distributed digital signage content in accordance with the local placement target. The digital signage player exchanges messages with a neighbor digital signage player, for increasing the local placement target of the distributed digital signage content at the request of the neighbor digital signage player. The neighbor digital signage player also displays the distributed digital signage content in accordance with its own placement target, which needs to be decreased. The digital signage player ultimately increases the local placement target of the distributed digital signage content based on the messages exchanged with the neighbor digital signage player.
US10915918B2 Systems and methods for providing augmented reality experiences
Systems and methods herein are related to augmented reality (AR) experiences in connection with items offered by entities. One exemplary method includes receiving, at a computing device, an AR search request from a user where the AR search request includes a search criteria and a location. The computing device then searches in a memory for at least one entity consistent with the search criteria and the location. In turn, the computing device returns an AR search response to the user, at an application of a communication device associated with the user. The AR search response includes an AR quotient indicative of a level of an AR experience at the at least one entity, thereby permitting the user to identify the level of the AR experience at the at least one entity prior to deciding to visit the at least one entity.
US10915917B2 System and method for targeted marketing and consumer resource management
Systems and methods are provided for providing targeted marketing to goods and services provides and consumer resource management services to consumers. An example system and method for targeted marketing comprises collecting transaction data from point-of-sale (POS) terminals and using a consumer identifier in the transaction data to access stored information about the consumer. This information may be used to target offers and advertisement to the consumer. In an example system for consumer resource management, a consumer may configure a consumer account on the enterprise infrastructure via a web-site. The consumer may use the consumer account to purchase and configure gift cards that may be used for purchasing goods and services. A universal transaction identifier may be associated with the consumer account and used to purchase goods and services from more than one selected goods and services providers.
US10915916B2 Devices, methods and computer-readable media for redemption of merchant offers
Devices, computer-implemented methods, and computer-readable media for the redemption of merchant offers, such as online coupons, are provided. In some embodiments, online coupons may be provided in a native application of a mobile user device. When a user selects to use an online coupon, a coupon code box having a coupon code associated with the selected coupon may visually move from a first location to a second location of the native application, and a merchant website may be displayed in the native application. Additionally, in some embodiments, a user may drag-and-drop a coupon code box to an input field of a merchant webpage. Movement of a visual copy of the coupon code box may be animated along the drag path. Upon a drop of the coupon code box, a value of the coupon code may be entered into the input field.
US10915915B1 Systems and methods for identifying financial transaction opportunities for individualized offers
Systems and methods for identifying financial transaction opportunities for individualized offers are disclosed. In one embodiment a method for offering rewards to a customer of a financial institution may include (1) a server comprising at least one computer processor identifying a customer spending opportunity for a customer to use a financial instrument issued by a financial institution to conduct a transaction involving the customer spending opportunity; (2) the server determining an incentive to offer the customer for using the financial instrument issued by the financial institution to conduct the transaction involving the customer spending opportunity; and (3) the server communicating the incentive to an electronic device associated with the customer.
US10915911B2 System to determine a price-schedule to distribute media content
Disclosed, is a geo-fence valuation system to: access usage data at a server system, the usage data collected from a set of client devices located within a geo-fenced area, and wherein the usage data comprises data objects, wherein each data object includes at least a device identifier of a source device of the usage data, and location data; identify one or more data types of the location data, wherein the data types indicate a level of precision of the location data; determine a geodensity of the geo-fenced area based on the usage data, wherein the geodensity indicates at least a number of client devices located within the geo-fenced area; and augments the geodensity of the geo-fence based on the one or more data types of the location data.
US10915910B2 Passive analysis of shopping behavior in a physical shopping area using shopping carts and shopping trays
Shopping related data is obtained by using a weight sensor on a shelf to determine a reduction in weight of product on the shelf, and noting the time, and then detecting weight added to a near-by located shopping cart using a sensor, and noting the time. This data is communicated to a processor, which determines a probability that a product has been moved from the shelf to the cart if the reduction in weight upon the shelf is the same weight as the increase in weight upon the cart. Using this data, it is possible to determine a time interval during which a shopper considered purchasing the product.
US10915908B2 Interactive error user interface
In various example embodiments, a system and method for a proactive customer support system are provided. In some example embodiments, outgoing communications from an application server to a client device are monitored for error messages, outgoing error messages are detected, an error type for an error message is determined, an issue ticket including the error message and the error type is generated, and instructions are transmitted that cause a customer service device to display the issue ticket. In some example embodiments, the system additionally assigns a priority score and ranks open error tickets based on their respective error messages. In some example embodiments, the system provides a help message to the client device based on the error message, receives an information request from the client device, determines a reply message based on the information request, and transmits instructions to the client device to display the reply message.
US10915902B2 Method and apparatus for authenticating and processing secure transactions using a mobile device
A method and apparatus for processing secure transactions of a requested service at a merchant point of sale (POS) using a customer mobile device and a virtual payment gateway (VPG) server, the method comprising an authentication and a transaction. The activation establishes a mobile device transport key (mTK) at the mobile device and a server, and assigns a mobile application identifier (MAID) to a mobile application of the mobile device. The transaction is based on generating a mobile device transport session key (msTK) derived from a server generated session ID and the mobile device transport key (mTK) generated during activation. The transaction of the requested service is initiated by the customer mobile device and is processed without storing confidential data such as financial account data or financial account identification data at the POS and/or the customer mobile.
US10915897B2 Token management for enhanced omni-channel payments experience and analytics
Methods and systems related to the use of tokenization services in payment processing systems are disclosed. The methods and systems include token translation services, token maps used as the basis for customer data models, specific approaches for securing the token maps and associated data, and the efficient storage of the token maps and associated data to facilitate enhanced payments experiences and analytics. One method includes transmitting a tokenization request with an encrypted payment account number from a POS to a tokenization service, receiving a token from the tokenization service in response to the tokenization request, salting the token with data to produce a salted token, encrypting the salted token using a secure processor on the POS, mapping the encrypted salted token to the payment account number in a map, and storing the map and the encrypted salted token in a memory on the secure processor on the POS.
US10915895B1 Managing electronic cryptocurrencies
A method and system are configured for performing a transfer of digital currency from an owner of the digital currency to a recipient of the digital currency. The transfer of digital currency includes transferring a sequence of digitally signed transactions from the owner to the recipient. The method and system are further configured for recording the performed transfer of digital currency to a block chain public ledger, generating a digital contract for the recipient that converts the transferred digital currency from an intangible asset type to a financial asset type, and storing the generated digital contract along with electronic credentials associated with accessing the digital currency in a holding account for the recipient.
US10915894B2 Systems and methods for distributed data mapping
A method for conducting a transaction may include: receiving, at a user device from a transaction system, a request for a data element for conducting the transaction; in response to receiving the request, determining a data map corresponding to the requested data element, the data map including containing a plurality of pointers, each pointing to a respective one of a plurality of data fragments located on a respective one of a plurality of different data storage locations, such as a plurality of different data storage systems; retrieving, using the data map, the plurality of data fragments from the plurality of data storage locations; assembling the data element using the retrieved data fragments; and providing, by the user device to the transaction system, the data element to conduct the transaction. A method for processing the data map may include: fragmenting the data element into the plurality of data fragments; storing the plurality of data fragments at the plurality of data storage locations; generating the data map; and storing the data map separate from the plurality of data storage locations.
US10915890B2 Token identity devices
Disclosed embodiments include methods, systems, and computer-readable media configured to provide wearable devices storing tokens associated with digital versions of physical documents/cards. The wearable devices may further transfer tokens securely to interested parties without Bluetooth® or other network connectivity beyond NFC radio. In some embodiments, a token vault operator system may receive a request to establish a token vault account for a user, authenticate an identity of the user based at least on the received request, and generating a token vault ID associated with the user. The token vault operator system may further configure access to data sets generated for and associated with the token vault ID, generate tokens associated with the token vault ID, each token corresponding to one of the one or more data sets, and provide the generated plurality of tokens associated with the token vault ID to at least one user device.
US10915880B2 System and method for distributed payment products
A method for generating and distributing a plurality of financial child products to a group of recipients that can then be used for payment transactions by each recipient. The method includes receiving a selection of a core account that provides financial backing for the financial child products, and receiving a list of recipients that defines the group of recipients to which the financial child products are distributed. The method further includes generating the financial child products, where each financial child product is structured with one or more control parameters that define user restrictions for the financial child product, and causing the financial child products to be distributed to at least one recipient included in the list of recipients. Advantageously, since creating, distributing, and redeeming of the financial child products is performed using existing legacy networks, financial institutions only need to minimally modify legacy payment processing infrastructure to support these distributed payment products.
US10915879B1 Image processing
An image of a check may be presented for payment in a banking system in place of the physical paper check. The check to be deposited can be collected from a depositor using a scanner. A web site, accessed through a depositor's web browser, can be used to drive the process of collecting the check, but in some contexts (e.g., in less popular computing environments, such as those that do not run the most popular operating systems), it is economically infeasible to obtain the certificates that would be used to allow a program executing in the web browser to control the scanner. Thus, a depositor can be instructed to capture and upload images of the check in the form of files, where the image files are then presented for payment through a banking system.
US10915878B2 Releasee cash-release tool and methods of use
Disclosed is cash-release system and methods of use for releasing a cash balance of an account associated with a releasee from a secure facility. One embodiment includes a ticket/card printer/dispenser and a cash-release station operating at the secure facility and a network operations center operating remotely to the secure facility. The network operations center may include an operations processor that is coupled with the ticket dispenser and the cash-release station via a secure communications network, wherein the operations processor implements a cash-release management module to retrieve identity information for and the account balance of the releasee from an accounts-management and records system associated with the secure facility, to dispense an encoded ticket/card providing or linking to the identity information and the account balance, and to operate a cash-release station to read the encoded ticket, verify the identity information, and dispense the account balance to the releasee. Other embodiments are disclosed.
US10915876B2 Application program interface for conversion of stored value cards
A service uses a system of servers and specialized interfaces to facilitate transfer of value from a gift card to an open loop card of a user. The service may support user-facing interfaces that interact with customers. The service may also support an API-based interface with a gift card processor to obtain gift card value, effect the value transfer, and confirm that the gift card value has been depleted. The service may also include a programmatic interface to various transaction processor services such as associating the transferred value with a personal account number of the user, a merchant associated with the original gift card, transaction monitoring, and messaging services that provide status information to the user.
US10915874B2 System and process for tokenization of digital media
A system and process for converting a digital media file into a digital token is disclosed. The embodiments modify a digital media file so that a set of rules are attached to the digital media file creating a digital token, which can be used to persist the digital media file through a network. In an exemplary embodiment, the network is a distributed ledger or blockchain based network that securely tracks distribution of the digital media file. The digital token may have a value added to it or value may intrinsically exist as the digital token is persisted through the network. The value associated with distribution of the digital media file may be used to reward the owner of the digital media file, distributors of the token, or as an incentive program for commercial transactions and non-commercial transactions.
US10915870B2 Concepts for maintaining updated electronic task-management records reflecting planned shipment activities
Computer-implemented methods, apparatus, and computer program products are provided. In one embodiment, shipment information/data corresponding to a proposed shipment from a customer computing device is received. The shipment information/data may be generated based on a task-management record from user input provided from a shipper. The shipment information/data also identifies a destination location and a desired delivery date for the proposed shipment. In one embodiment, updated shipment information/data is generated and causes the customer computing device to generate updated task-management records via a task-management software application based at least in part on one or more tender dates.
US10915864B2 Database management system utilizing a mobile electronic device
A private networked database system utilizing mobile devices offers centralized access, reconciliation, and sharing of data, for example consumer immunization information. The system provides technical features not previously available, including bidirectional data transmission and replication across government-controlled databases located in multiple states.
US10915858B2 System and method for taking an inventory of containers for beverages
A computer based system for taking the physical inventory of liquids dispensed in full and partially full containers. A database stores images of containers and their associated volumes. The containers to be inventoried are identified by a user and input to a computer at a graphical user interface (GUI) input/output. A computer causes the display of an image of the container and a sliding level indicator at the GUI. The level indicator is slidable along the image. The computer calculates a volume of liquid remaining in the container as a function of the position of the level indicator along the image of the container.
US10915856B2 Package management system with accelerated delivery
The disclosure provides a system for delivering packages in a location to multiple recipients by a service provider comprising, a plurality of lockers, each having a locking portion, a delivery code that associates one or more packages with a designated recipient and designates the number of lockers to be opened for that designated recipient, a central control unit comprising a first input device for reading a delivery code and open the number of lockers designated in the delivery code, a second input device adapted to read each package identifier. When the first input device reads the delivery code, the number of designated lockers is unlocked, and when the second input device reads a package, the package information is transmitted to the central control unit, and the service provider places the read package in the interior space of an unlocked locker and closes the associated door.