Document Document Title
US10798504B2 Bimodal hearing stimulation system and method of fitting the same
A system includes a first device for neural stimulation of a patient's ipsilateral ear and a second hearing stimulation device, wherein the stimulation mode of the second stimulation device is different from that of the first stimulation device. The system further includes a fitting device for adjusting the first stimulation device and the second stimulation device. The fitting device includes a graphical user interface configured to present an acoustic level audiogram representation of aided acoustic and electric behavioral values for the first and second stimulation devices.
US10798501B2 Augmented hearing device
The present invention relates to an augmented hearing device comprising a receiver of a first type being adapted to generate sound signals in a first and in a second frequency range, a receiver of a second type being adapted to generate sound signals in a third frequency range, said third frequency range being between the first and second frequency ranges, and an input port for receiving signals to be reproduced as sound signals via at least one of the receivers. The input port may be arranged to receive wireless input signal, such as Bluetooth input signals. The present invention further relates to a method for operating a hearing device.
US10798498B2 Rate matching algorithm and independent device synchronization
Hearing aid systems where a data streaming device streams data to a hearing aid and methods of maintaining synchronization when converting a sampling rate are disclosed. A hearing system comprises a hearing aid, a sampling rate converter, a buffer, an RDWiff signal, and a control circuit. The hearing aid receives data from a data transmission device, and the data received has a first sampling rate. The sampling rate converter is in the hearing aid and converts the sampling rate of the received data to a sampling rate suitable for use by digital signal processing circuitry in the hearing aid. The buffer receives data from the sampling rate converter. The RWDiff signal indicates the difference between the rate at which data is read from and written to the buffer. The control circuit compares the RWDiff signal to a predetermined RWIdeal quantity and generates an adjustment signal.
US10798494B2 Hearing apparatus
A method of operating a hearing apparatus and hearing apparatus having at least one of a first microphone or a second microphone which generate a first microphone signal and a second microphone signal respectively, the first microphone and the second microphone being arranged in at least one of a first hearing device and a second hearing device, a third microphone which generates a third microphone signal, the third microphone being arranged in an external device, and a signal processing unit, wherein in the signal processing unit the third microphone signal and at least one of the first microphone signal or the second microphone signal are processed together thereby producing an output signal with an enhanced signal to noise ratio compared to the first microphone signal and/or the second microphone signal.
US10798493B2 Micro-electro-mechanical systems (MEMS) device and method for fabricating the MEMS
A Micro-Electro-Mechanical Systems (MEMS) device includes a substrate, a dielectric supporting layer, a diaphragm, a backplate. The substrate has a substrate opening corresponding to a diaphragm region. The dielectric supporting layer is disposed on the substrate, having a dielectric opening corresponding to the substrate opening to form the diaphragm region. The diaphragm within the dielectric opening is held by the dielectric supporting layer at a periphery. The backplate is disposed on the dielectric supporting layer, having a plurality of venting holes, connecting to the dielectric opening. The backplate includes a conductive layer and a passivation layer covering over the conductive layer at a first side opposite to the diaphragm, wherein a second side of the conductive layer is facing to the diaphragm and not covered by the passivation layer.
US10798490B2 Sounding device with multi-layered voice coil having layers of differing heights
The present disclosure provides a sounding device including a holder, a vibration system fixed to the holder, and a magnetic circuit system configured to drive the vibration system to vibrate and sound. The vibration system includes a diaphragm fixed to the holder and a voice coil that drives the diaphragm to vibrate. The magnetic circuit system has a magnetic gap in which the voice coil is inserted. The voice coil includes voice coil wire layers that are formed by winding a voice coil wire and include an intermediate layer, an outer layer, and an inner layer. Ends of the voice coil wire layers away from the diaphragm are aligned. A height of the outer layer and a height of the inner layer are smaller than a height of the intermediate layer. The intermediate layer is glued and fixed to the diaphragm.
US10798488B2 Device for reproducing sound
The present invention relates to a first device for reproducing sound, said first device having a housing and including: —at least one loudspeaker element for reproducing sound, —first signal processing means for processing a first input signal, to provide a processed signal for reproduction by said least one loudspeaker element. The first device further includes: —means for, in use, detecting if there is a presence of at least one second device for reproducing sound, and, —said processing means being arranged to process said first input signal based on the result of said detection of presence, so as to provide a processed signal being dependent on said detection of presence to said at least one loudspeaker element. The invention also relates to a system for reproducing sound.
US10798474B2 Waterproof sound-transmissive cover, waterproof sound-transmissive cover member and acoustic device
The waterproof sound-transmissive cover is characterized by providing a frequency response curve with a difference between a maximum sound pressure level and a minimum sound pressure level of 13.0 dB or less in the range of frequencies from 3 kHz to 8 kHz, and an insertion loss at 1 kHz of less than 14.0 dB, and said cover comprising: a porous film having (1) a water pressure resistance measured according to JIS L1092 water penetration test method B (high pressure method) of 20 kPa or more, and air permeability measured according to JIS L1096 method A (Frazier type method) of 3.0 cc/cm2·sec or more, and (2) a tensile strength measured according to ASTM standards D412 of 5.5N or more.
US10798467B2 Personalized content ranking using content received from different sources in a video delivery system
In some embodiments, a method generates combinations of ad campaign content and media program campaign content and ranks the combinations of ad campaign content and media program content. The ranking is based on ad campaign content being shown with the media program campaign content. The method selects one or more of the combinations of ad campaign content and media program campaign content based on the ranking. Then, display of the one or more of the combinations of ad campaign content and media program campaign content is caused where the one or more of the combinations of ad campaign content and media program campaign content include ad campaign content shown with media program campaign content in a same area of a display.
US10798464B1 Streaming delivery of client-executable code
Disclosed are various embodiments for streaming of executable code to clients. A bundle of executable code to be executed in a client device is identified. A plurality of segments of the bundle of executable code are requested from a server via a network. Individual segments are independently verified as they are received via the network. Processing of data in a first segment of the plurality of segments is commenced before a second segment of the plurality of segments is received.
US10798440B2 Methods and systems for synchronizing data streams across multiple client devices
A server system includes one or more processors, a clock, and memory. The memory stores one or more programs configured for execution by the one or more processors. The server system receives a program manifest (e.g., a playlist) for a video from a content delivery network. The video includes a plurality of video segments. The server system parses the program manifest to identify a timeline for the video, then determines the current playback position for the video and a corresponding initial timestamp according to the clock. The server system periodically updates the current playback position for the video according to the clock and the initial timestamp. Over a span of time the server system receives requests from a plurality of client devices to view the video. For each request from a respective client device, the server system sends the current playback position to the respective client device.
US10798438B2 Determining audience state or interest using passive sensor data
This document describes techniques and apparatuses for determining an audience's state or interest using passive sensor data. The techniques receive sensor data that measures an audience during presentation of a media program. The techniques, based on this sensor data, then determine a state or interest of the audience members during the media program.
US10798432B2 Method and system for processing HEVC coded video in broadcast and streaming applications
Embodiments of the present disclosure specify methods and systems for processing a video stream. For example, a video stream may be received at a video processing device. The video stream may comprise video usability syntax elements. The video usability syntax elements may comprise at least a first flag indicative of whether HRD parameters are present for one of fixed frame rate processing or low delay mode processing. The video usability syntax elements may also comprise at least a second flag indicative of whether the video stream comprises field-coded video sequences.
US10798429B2 System for inserting supplemental content within a media stream
An example includes receiving a request for supplemental content; determining a type of supplemental content insertion to be performed to insert the supplemental content within the media stream; identifying a break of the media stream based on a characteristic of the media stream and the type of supplemental content insertion; determining location information identifying a location associated with a media client accessing the media stream; identifying the supplemental content for the break based on the location associated with the media client; generating an instruction file associated with the type of supplemental content insertion and the supplemental content, where the instruction file is to include supplemental content information for inserting the supplemental content in the break of the media stream; and sending the instruction file to the media client to enable the media client to access the supplemental content that is to be inserted within the media stream.
US10798427B2 System and method for providing failover of storage for digital cinema broadcasting
The present invention relates to a system and method for providing a failover of storage for media content, including media content used for broadcasting in cinema. One embodiment of the invention stores copies of digital cinema packages (“DCPs”) to both a central storage facility as well as a local storage facility. When a server module reading DCPs in central storage module encounters abnormalities, it switches reading operations to the local storage module, at the same frame location from which interruption occurred. The present invention provides a multi-layered storage system for cinema broadcasting of a movie to decrease likelihood of interruptions during a broadcast that may be caused by failure of the central storage facility.
US10798426B2 Systems and methods for sharing video data via social media
Disclosed are efficient and user-friendly systems or methods configured to capture and share video data in real time, at a later date, or a combination thereof in an authorized manner via social media. In certain aspects, these systems and methods include capturing video, for example, from a “Jumbotron” during a sporting event or other live venue event in an authorized manner (e.g., abiding by applicable copyright laws) and sharing this captured footage with other via social media.
US10798421B2 Method for encoding and decoding image information
The present invention relates to a method for encoding and decoding image information and to an apparatus using same, and the method for encoding the image information, according to the present invention, comprises the steps of: generating a recovery block; applying a deblocking filter to the recovery block; applying a sample adaptive offset (SAO) to the recovery block to which the deblocking filter is applied; and transmitting the image information including information on the SAO which is applied, wherein in the step of transmitting, information for specifying bands that cover a scope of a pixel value, to which a band off set is applied, is transmitted when the band offset is applied during the step of applying the SAO.
US10798411B2 Moving picture coding method, moving picture coding apparatus, moving picture decoding method, and moving picture decoding apparatus
Obtaining one or more motion vector predictor candidates includes: (a1) generating a motion vector predictor candidate, based on motion vectors of first adjacent blocks adjacent to a block to be processed in a first direction; and (a2) generating a motion vector predictor candidate, based on motion vectors of second adjacent blocks adjacent to the block to be processed in a second direction, and step (a2) includes: determining whether the first adjacent blocks include an inter-predicted block; and searching for a motion vector on which scaling processing can be performed from among the motion vectors of the second adjacent blocks when it is determined that the first adjacent blocks do not include an inter-predicted block, and executing, when the motion vector on which scaling processing can be performed is obtained in the search, scaling processing on the motion vector obtained in the search.
US10798410B2 Method, system and apparatus for intra-refresh in video signal processing
A video codec for encoding a sequence of video frames divides a video frame area into number of row segments. The Video encoder selects a different set of row segments in each video frame in a set of video frames and encodes the selected set of row segments by intra-prediction. As a result, the selected part of the frame is intra-refreshed. The video codec limits the maximum value of the vertical global motion vector GMVy to zero and video codec adjust the number of row segments in the select set of row segments based on the height of the search range configured for the motion estimation. As a result, the video codec may not refer to an un-refreshed portion in the previous frame for encoding an already refreshed area of the current frame.
US10798409B2 Image encoding/decoding apparatus and method
Provided is an image encoding/decoding apparatus and method. The image encoding apparatus may include a motion vector prediction unit to perform a prediction with respect to an arbitrary motion vector of a current block within an image, using at least one of vector information of a motion vector corresponding to an adjacent block and vector information of a previous motion vector of the current block, and a differential determination unit to determine differential information of a motion vector of the current block based on the motion vector predicted in the motion vector prediction unit and an actual motion vector of the current block.
US10798407B2 Methods and apparatus for inter prediction with a reduced above line buffer in video coding
A method and apparatus for controlling a motion vector buffer for encoding or decoding of a video sequence includes identifying a set of motion vectors associated with an above coding tree unit (CTU), wherein each motion vector is associated with a P×Q grid, and the set of motion vectors is associated with an N×M grid. A motion vector is determined based on the set of motion vectors. The motion vector, in the motion vector buffer, is accessed based on a candidate block including a position associated with the N×M grid. A current CU can search from each 4×4 position for a current block. When the search range is beyond the current CTU, the motion vector (MV) data from the last row of the above CTU is used.
US10798404B2 Systems and methods of performing improved local illumination compensation
Techniques and systems are provided for processing video data. For example, video data can be obtained for processing by an encoding device or a decoding device. Bi-predictive motion compensation can then be performed for a current block of a picture of the video data. Performing the bi-predictive motion compensation includes deriving one or more local illumination compensation parameters for the current block using a template of the current block, a first template of a first reference picture, and a second template of a second reference picture. The templates can include neighboring samples of the current block, the first reference picture, and the second reference picture. The first template of the first reference picture and the second template of the second reference picture can be used simultaneously to derive the one or more local illumination compensation parameters.
US10798394B2 Low complexity affine merge mode for versatile video coding
In some aspects, the disclosure is directed to methods and systems for reducing memory utilization and increasing efficiency during affine merge mode for versatile video coding by utilizing motion vectors stored in a motion data line buffer for a prediction unit of a second coding tree unit neighboring a first coding tree unit to derive control point motion vectors for the first coding tree unit.
US10798393B2 Two pass chunk parallel transcoding process
In one embodiment, a method receives a first chunk in a plurality of chunks from a video. The plurality of chunks are sent to a plurality of transcoding units for transcoding in parallel. The method transcodes the first chunk at a first transcoding unit to generate a first transcoded sub-bitstream. Then, first statistical information is received from one or more second chunks being transcoded by other transcoding units. The first statistical information from the one or more second chunks is compared to second statistical information from the first chunk and it is determined whether to perform a second transcoding process based on the comparing. When the second transcoding process is to be performed, the method performs the second transcoding process with the first chunk to generate a second transcoded bitstream and outputs the second transcoded bitstream. When the second transcoding process is not to be performed, the method outputs the first transcoded sub-bitstream.
US10798389B2 Method and apparatus for content-aware point cloud compression using HEVC tiles
A method includes receiving a data cloud including a plurality of data points. The method further includes identifying each data point including a region-of-interest (ROI) and dividing the data cloud into a ROI cloud and one or more non-ROI clouds. The method includes performing a patch generation process on the ROI cloud, the patch generation process including generating a ROI patch from each data point including the ROI. The method includes performing a patch packing process on the ROI cloud, the patch packing process including: (i) mapping each ROI patch to a two dimensional (2D) map, (ii) determining whether at least two ROI patches from the plurality of ROI patches are located in more than one tile of the map, and (iii) in response to the determination that at least two ROI patches are located in more than one tile, moving each of the ROI patches to a tile.
US10798388B2 Video coding device, method, and apparatus and inter-frame mode selection method and apparatus therefor
An initial value of a current depth Depth is 1, and an inter-frame mode selection method includes: S701: if calculation of a coding overhead of coding a coding unit CUDepth is to be skipped, invoking S703 to S705; and if the calculation is not to be skipped, invoking S702 to S705; S702: determining a current optimum coding mode and coding overhead of the coding unit CUDepth; S703: dividing the coding unit CUDepth into multiple coding subunits having a depth Depth+1, and recursively performing S701 to S705 until the depth of the coding subunit reaches a preset maximum depth or satisfies a division stopping condition; S704: comparing a sum of coding overheads of the multiple coding subunits with the current coding overhead of the coding unit CUDepth; and S705: determining that a mode corresponding to the smaller one in S704 is an optimum coding mode.
US10798386B2 Video compression with generative models
A processing system having at least one processor may obtain a sequence of frames of a video, and detect a correlation between visual properties of a first frame of the sequence of frames and a second frame of the sequence of frames, where the second frame comprises a next frame following the first frame in the sequence of frames. The processing system may then generate a first difference vector comprising a difference between a latent space representation of the second frame and a latent space representation of the first frame in response to detecting the correlation between the visual properties, where the latent space representation of the first frame and the latent space representation of the second frame are generated via an autoencoder, and store the first difference vector in a first encoding block.
US10798384B2 Reducing context coded and bypass coded bins to improve context adaptive binary arithmetic coding (CABAC) throughput
Techniques for context-adaptive binary arithmetic coding (CABAC) coding with a reduced number of context coded and/or bypass coded bins are provided. Rather than using only truncated unary binarization for the syntax element representing the delta quantization parameter and context coding all of the resulting bins as in the prior art, a different binarization is used and only part of the resulting bins are context coded, thus reducing the worst case number of context coded bins for this syntax element. Further, binarization techniques for the syntax element representing the remaining actual value of a transform coefficient are provided that restrict the maximum codeword length of this syntax element to 32 bits or less, thus reducing the number of bypass coded bins for this syntax element over the prior art.
US10798383B2 Method for decoding a digital image, coding method, devices, terminal and associated computer programs
A method for decoding a stream having first and second portions portion and representing an image divided into blocks. The method includes a sequence test having a predetermined non-zero number of bits, including two at the power of the predetermined number (2N) iterations of the following substeps, for a current block: obtaining a sequence distinct from sequences already tested; decoding and reconstructing a version of the current block from the obtained sequence and from coded data in the first portion; evaluating a likelihood measurement associated with the reconstructed block; decoding information characteristic of a first sequence including the predetermined number of binary symbols from the second portion; selecting a sequence from the sequences tested, based on the likelihood measurements and the decoded information, the selected sequence being identified as the first sequence; and decoding and reconstructing the current block from the first sequence and the first portion.
US10798382B2 Sub-block transform
A method of and an apparatus for controlling intra and/or inter prediction for decoding of a video sequence are provided. The method includes determining whether a width or a height of a coding unit is a power of two, and based on the width or the height of the coding unit being determined to not be a power of two, splitting the coding unit into sub-blocks, each of the sub-blocks having a width or a height that is a power of two and maximized, so that a number of the sub-blocks is minimized. The method further includes applying the intra and/or inter prediction on the sub-blocks into which the coding unit is split.
US10798381B2 Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
An image coding method includes: generating a first flag indicating whether or not a motion vector predictor is to be selected from among one or more motion vector predictor candidates; generating a second flag indicating whether or not a motion vector predictor is to be selected from among the one or more motion vector predictor candidates in coding a current block to be coded in a predetermined coding mode, when the first flag indicates that a motion vector predictor is to be selected; and generating a coded signal in which the first flag and the second flag are included in header information, when the first flag indicates that a motion vector predictor is to be selected.
US10798373B2 Display correction apparatus, program, and display correction system
Display characteristics are calculated using a first captured image for determining ambient light characteristics and a second captured image including the ambient light characteristics and the display characteristics by removing the ambient light characteristics from the second captured image, and display correction is performed based on the display characteristics. This can provide a device that saves time and effort such as moving a color-measurement device when correcting the display characteristics of one or more display devices and that is able to perform display configuration even if a large portion is illuminated by ambient illumination.
US10798362B2 Parallax correction device and method in blended optical system for use over a range of temperatures
A blended optical device includes a first objective with a first axis and a first image position adjustment means for adjusting the position of a first image. An electronic control circuitry is configured to control the first adjustment means to adjust a position of the first image. A second objective includes a second axis and a variable focus mechanism, and a blender configured to form a blended image from the first image and a second image. The electronic control circuitry is configured to receive data from the second objective regarding a range to a target of the second objective as a function of the focus setting, and to adjust the position of the first image so that the blended image is corrected for parallax errors.
US10798360B2 Information processing system, method for controlling same, and program
In a system, first and second detection devices are provided in mutually different places in a real space and each configured to image the real space and obtain three-dimensional information including data of a distance to a predetermined point on an object provided in the real space and direction information as to a direction of a predetermined part of the object. The system generates information related to relative positions and installation directions of the first and second detection devices on the basis of: the data of the distance to the predetermined point on the object and the direction information regarding the object, the data of the distance and the direction information being obtained by the first detection device; and the data of the distance to the predetermined point on the object and the direction information regarding the object, the data of the distance and the direction information being obtained by the second detection device.
US10798356B2 White balance processing method, electronic device and computer readable storage medium
The present disclosure provides a white balance processing method. The white balance processing method includes the following. Each image of the plurality of successive frame images is processed to determine color temperature corresponding to a main light source. It is determined whether a variation of primary color temperature is greater than or equal to a predetermined threshold. The variation of primary color temperature refers to a difference between the color temperature of the main light source in a second frame image subjected to the color temperature variation and the color temperature of the main light source in a first frame image subjected to the color temperature variation. The white balance process is performed on the second frame image subjected to the color temperature variation according to the color temperature of the main light source in the first frame image subjected to the color temperature variation when the variation of primary color temperature is less than the predetermined threshold.
US10798355B2 Color night vision cameras, systems, and methods thereof
Disclosed are improved methods, systems and devices for color night vision that reduce the number of intensifiers and/or decrease noise. In some embodiments, color night vision is provided in system in which multiple spectral bands are maintained, filtered separately, and then recombined in a unique three-lens-filtering setup. An illustrative four-camera night vision system is unique in that its first three cameras separately filter different bands using a subtractive Cyan, Magenta and Yellow (CMY) color filtering-process, while its fourth camera is used to sense either additional IR illuminators or a luminance channel to increase brightness. In some embodiments, the color night vision is implemented to distinguish details of an image in low light. The unique application of the three-lens subtractive CMY filtering allows for better photon scavenging and preservation of important color information.
US10798351B2 Apparatus, method and system for location based touch
The embodiments of the disclosure provide apparatus, method and system for location based touch, which can implement location based touch on the image of the projection display apparatus without the requirement of operation of the computing device by the user. A computing device comprises a receiving circuitry configured to receive first coordinate information, wherein the first coordinate information indicates the location of first optical sensor on a projection screen, and the first optical sensor is one or more of a plurality of optical sensors; a determining circuitry configured to determine second coordinate information corresponding to the first coordinate information on a screen of the computing device according to the first coordinate information and coordinate mapping relationship between a projection image and the screen of the computing device; and a performing circuitry configured to perform a touch operation corresponding to the second coordinate information within the screen of the computing device according to the second coordinate information.
US10798350B2 Split aperture projector/camera
Described examples include an optical apparatus having a first lens, a first optical element having a first aperture, a second lens, and a second optical element having a second aperture. The optical apparatus includes a third lens having a first portion to receive projected light from the first lens through the first aperture and to project the projected light onto a target. Also, the third lens has a second portion to receive reflected light reflected from the target and to provide the reflected light to the second lens through the second aperture.
US10798349B2 Projecting apparatus
A projecting apparatus includes an illuminating system and a first sensing module. The illuminating system includes a light source module and a filter element. The first sensing module is disposed beside the filter element, and includes a first light emitter and a first light sensor. The first light emitter emits a first sensing light. Outside the transmission path of the light beam, a first and a second filter regions of the filter element are sequentially cut into a transmission path of the first sensing light. When the first filter region is cut into the transmission path of the first sensing light, the first light sensor generates a first sensing signal, and when the second filter region is cut into the transmission path of the first sensing light, the first light sensor generates a second sensing signal, and the first sensing signal is different from the second sensing signal.
US10798348B2 Light source apparatus, projection type display device and light source control method
A light source apparatus, includes a first solid-state light source and processing circuitry. The first solid-state light source is configured to output first light. The processing circuitry is configured to control a power source to supply first current to the first solid-state light source, determine whether to change the supply of the first current to the first solid-state light source to maintain a brightness level of the first light output by the first solid-state light source at a first brightness level or within a first brightness level range, and control the power source to change the supply of the first current to the first solid-state light source to output the first light at the first brightness level or within the first brightness level range in response to a determination that the supply of the first current is determined to be changed.
US10798343B2 Augmented video system providing enhanced situational awareness
A facility, comprising systems and methods, for providing enhanced situational awareness to captured image data is disclosed. The disclosed techniques are used in conjunction with image data, such as a real-time or near real-time image stream captured by a camera attached to an unmanned system, previously captured image data, rendered image data, etc. The facility enhances situational awareness by projecting overlays onto captured video data or “wrapping” captured image data with previously-captured and/or “synthetic world” information, such as satellite images, computer-generated images, wire models, textured surfaces, and so on. The facility also provides enhanced zoom techniques that allow a user to quickly zoom in on an object or area of interest using a combined optical and digital zoom technique. Additionally, the facility provides a digital lead indicator designed to reduce operator-induced oscillations in commanding an image capturing device.
US10798339B2 Telepresence management
A telepresence apparatus includes a first computer assembly configured to interface with a first memory assembly configured to tangibly store programmed coded instructions. The programmed coded instructions are configured to urge the first computer assembly to compute whether to suspend transmission of an aspect of a telepresence data unit to the second computer assembly via the communication network depending on a match made between a user gesture signal and a predetermined user gesture.
US10798337B2 Communication device, communication system, and non-transitory computer readable medium storing program
A communication device includes a reproduction section that reproduces a voice and/or a video received from an utterer device, a detection section that detects feature information indicating a psychological state of an audience listening to the voice and/or watching the video of the utterer reproduced by the reproduction section, an estimation section that estimates the psychological state of the audience based on the feature information detected by the detection section, an extraction section that extracts a factor changing the psychological state, from contents of the voice or the video which are being reproduced at a time point at which the psychological state of the audience, which is estimated by the estimation section is changed, and a transmission section that transmits the psychological state of the audience, which is estimated by the estimation section, and the factor extracted by the extraction section in association with each other, to the utterer device.
US10798336B2 Cable connection element for reducing signal transmission loss
A cable connection element for reducing signal transmission loss includes a front clad, a base and a connection terminal. The connection terminal has a first core-holding portion formed on a front end thereof, a second core-holding portion formed on a rear end thereof, a core-clamping portion formed between the first and second core-holding portions, and a pin formed on a rear end of the second core-holding portion. The second core-holding portion is fixed inside the base. The front clad is connected with the base to enclose the first core-holding portion therein. When a core of a cable penetrates the front clad, the core is held by the core-clamping portion and is electrically connected therewith, such that signals from the core can be transmitted to the pin through the core-clamping portion and the second core-holding portion. Accordingly, signal transmission loss arising from capacitance effect can be improved.
US10798328B2 Image sensor including pixel circuits
A circuit includes sensing unit, first and second group of switches, capacitor, and readout circuit. The sensing unit is configured to receive light and generate sensing voltage at sensing node in response to the light. The first group of switches is coupled to the sensing node, and configured to generate first transfer voltage to first node and generate first auxiliary voltage to second node. The second group of switches is coupled to the sensing node, and configured to generate second transfer voltage to third node and generate second auxiliary voltage to fourth node. The capacitor is coupled to the first group of switches, and configured to store charges generated from the sensing unit. The readout circuit is configured to read at least one of the first transfer voltage and the first auxiliary voltage, and read at least one of the second transfer voltage and the second auxiliary voltage.
US10798325B2 Electronic device with image sensor that includes photoelectric converting sections that start to store eletrical charge at different timings
An image sensor is provided, the image sensor including: an imaging unit that has a first imaging region and a second imaging region, and outputs: a first pixel signal generated according to light incident on the first imaging region; and a second pixel signal generated according to light incident on the second imaging region; a first ramp generating unit that generates a first ramp signal; a second ramp generating unit that generates a second ramp signal; a first signal converting unit that converts the first pixel signal into a first digital image signal based on a result of comparison between the first pixel signal and the first ramp signal; and a second signal converting unit that converts the second pixel signal into a second digital image signal based on a result of comparison between the second pixel signal and the second ramp signal.
US10798321B2 Bit-depth efficient image processing
A computer-implemented method for bit-depth efficient image processing includes a step of communicating at least one non-linear transformation to an image signal processor. Each non-linear transformation is configured to, when applied by the image signal processor to a captured image having sensor signals encoded at a first bit depth, produce a nonlinear image that re-encodes the captured image at a second bit depth that may be less than the first bit depth, while optimizing allocation of bit depth resolution in the nonlinear image for low contour visibility. The method further includes receiving the nonlinear image from the image signal processor, and applying an inverse transformation to transform the nonlinear image to a re-linearized image at a third bit depth that is greater than the second bit depth. The inverse transformation is inverse to the nonlinear transformation used to produce the nonlinear image.
US10798319B2 Camera device and method for capturing a surrounding region of a vehicle in a situation-adapted manner
A camera device includes an optronics system and an image capture control unit, for acquiring a sequence of images of a surrounding region of a vehicle. The optronics system includes a wide-angle optical system and a high-resolution image acquisition sensor. The optronics system and the image capture control unit are configured to generate a reduced-resolution binned image of the entire capture region of the optronics system, or to capture an unbinned high-resolution image of a subregion of the capture region, respectively for each individual image of the sequence of images, depending on a current traffic and/or surrounding situation. A height and a width of the subregion are set depending on the current situation. A size of the subregion is set such that the pixel count of the high-resolution image of the subregion is no greater than the pixel count of the reduced-resolution image of the entire capture region.
US10798315B2 Removal of interference of absorbers from intensity data
A method for thermal imaging includes extracting pixel intensity data from a plurality of images corresponding to electromagnetic radiation emitted from one or more targets, creating an array for each image pixel in the plurality of images, wherein each pixel array represents a distribution of intensity data from corresponding pixels in each of the images, removing from each pixel array an amount of intensity data such that a remaining amount of intensity data represents an approximate equivalent to a distribution of intensity data uncontaminated by interference; and generating a thermal image representing the one or more targets based on the remaining amount of intensity data in each pixel array.
US10798314B2 Imaging apparatus and display method
An imaging apparatus includes an exposure time setting circuit; an imaging sensor; a microcomputer that includes a synthesis process setting unit; an image processing circuit that includes an image synthesis circuit; and a display. The imaging sensor repeats exposure and output of an image signal at a specified time interval; the synthesis process setting unit sets, in the image synthesis circuit, a synthesis processing method for making brightness of a synthesized image generated by the image synthesis circuit to be specified brightness; the image synthesis circuit generates a synthesized image to be an image corresponding to an exposure time set by the exposure time setting circuit, by synthesizing a plurality of images based on image signals repeatedly output by the image sensor according to a synthesis processing method set by the synthesis process setting unit; and the display displays an image based on the synthesized image.
US10798307B2 Information processing device, information processing method, and program
The present disclosure relates to an information processing device, an information processing method, and a program that enable appropriate imaging with the front camera of a smartphone or the like in the dark.An LCD backlight that is a white light emitting unit is made to emit intense light as white light, and an infrared light emitting unit that emits infrared light for capturing a live view image is turned off. In such a situation, an imaging unit captures a visible light image. The present disclosure can be applied to imaging devices.
US10798305B2 Control apparatus, imaging system, control method, and recording medium
A control apparatus includes: a display control unit configured to control a display unit to display part or all of an image in a first region on a display screen displayed by the display unit, the image indicating an imaging range which an imaging apparatus can image by changing the imaging range; a change control unit configured to change a position or size of an image to be displayed in the first region by the display control unit, on the image indicating the range which an imaging apparatus can image; and an output unit configured to output an instruction to cause the imaging apparatus to image an imaging range corresponding to a range indicating an image displayed in a second region which is a part of the first region.
US10798299B2 Digital photographing apparatus, methods of controlling the same, and computer-readable storage medium to increase success rates in panoramic photography
Digital photographing apparatus, methods of controlling the same, and computer-readable storage medium to increase success rates in panoramic photography are disclosed. A method of controlling a digital photographing apparatus is provided that includes initiating panoramic photography, and providing a capture guide when an image is captured during the panoramic photography.
US10798292B1 Techniques to set focus in camera in a mixed-reality environment with hand gesture interaction
An adjustable-focus PV (picture/video) camera in a mixed-reality head-mounted display (HMD) device operates with an auto-focus subsystem that is configured to be triggered based on location and motion of a user's hands to reduce the occurrence of auto-focus hunting during camera operations. The HMD device is equipped with a depth sensor that is configured to capture depth data from the surrounding physical environment to detect and track the user's hand location, movements, and gestures in three-dimensions. The hand tracking data from the depth sensor may be assessed to determine hand characteristics—such as which of the user's hands or part of a hand is detected, its size, motion, speed, etc.—within a particular region of interest (ROI) in the field of view of the PV camera. The auto-focus subsystem uses the assessed hand characteristics as an input to control auto-focus of the PV camera to reduce auto-focus hunting occurrences.
US10798290B2 Image capturing apparatus for controlling whether to execute function assigned to operation member, and control method thereof
An image capturing apparatus having a viewfinder, comprises a plurality of operating members to which functions are allowed to be assigned, a detecting unit configured to detect when an eye of a user is close to the viewfinder, and a control unit configured to, in a case where an operating member operated while the detecting unit detects that the eye is close is an operating member which is disposed in a prescribed location and a specific function is assigned to the operating member, forgo executing the function assigned to the operating member, and in other cases, execute the function assigned to the operating member.
US10798288B2 Multi-camera electronic device and control method thereof
A multi-camera electronic device and a control method thereof are proposed. The method includes the following steps. At least one camera of the electronic device is used for scene detection to generate photographing analysis information. All the photographing analysis information is collected, and joint photographing information including a joint target is generated through a communication process among all the cameras. An individual photographing parameter of each camera is generated according to the joint photographing information. Each camera is controlled to capture an image of the scene by using its individual photographing parameter to respectively generate a corresponding output image.
US10798283B2 Information apparatus, control method, and computer readable recording medium determining state information of the information apparatus across a power switch and transmitting such state information to an external, portable information terminal
An information apparatus for communicating with a portable information terminal includes a processor including hardware. The processor determines state information regarding a state of the information apparatus when the power state is switched, by the power switch, from the on state to the office state. The processor also determines whether the manually set parameter has been changed before and after the power state is switched from the on state to the off state, based on the use history information of a manually set parameter in the information apparatus. Finally, the information apparatus transmits, to the portable information terminal, the state information indicating that the set parameter in the information apparatus has been changed when the processor determines that the set parameter has been changed while keeping the processor energized after the power state is switched from the on state to the off state.
US10798282B2 Mining detection system and method
A device for detecting proximity to an active alternating current (AC) voltage source is provided. The device includes a housing, at least one antenna configured to generate a signal in response to exposure to electromagnetic radiation, signal processing circuitry configured to process the signal generated by the at least one antenna, a microprocessor configured to determine, from the processed signal, whether the alert device is proximate to the active AC voltage source, a communication device configured to generate a signal in response to a determination that the alert device is proximate the active AC voltage source, and an interference reduction device configured to discharge an accumulated charge on the alert device to reduce electromagnetic interference from sources other than the active AC voltage source.
US10798281B2 Apparatus and method for disabling a driver facing camera in a driver monitoring system
Various examples of a driver monitoring apparatus and a method of disabling a driver facing camera are disclosed. A driver monitoring controller receives video images of a driver and transmits control messages to a driver facing camera. The driver monitoring controller receives a signal indicating that the driver desires to disable the driver facing camera. The driver monitoring controller receives messages indicating a vehicle state. The control logic of the driver monitoring controller disables the driver facing camera by transmitting a control message to disable the driver facing camera in response to a control input indicating the driver desires to disable the driver facing camera and a vehicle state message indicating a vehicle state does not meet a predetermined condition. The control logic of the driver monitoring controller enables the camera automatically in response to a vehicle state message indicating the vehicle state meets the predetermined condition.
US10798279B2 Mobile device case for capturing digital images
A mobile device case for coupling around a mobile device that includes a miniature camera module has defined therein a lens attachment aperture shaped both to permit light from an object to be captured as a digital image to travel along the optical path of the miniature camera module to a built-in image sensor of the miniature camera module of the mobile device, and to facilitate stable coupling of an auxiliary lens in optical alignment with the miniature camera module. The case comprises electric circuit components positioned to balance an attached auxiliary lens approximately at a grip location.
US10798278B2 Ultraviolet mirror device and method therefor using portable terminal
Disclosed are an ultraviolet mirror device and a method therefor. The ultraviolet mirror device of the present invention relates to a device that can generate an image obtained by capturing an image of skin in the ultraviolet region. The device can be connected to a portable terminal having a display unit, so as to be used as an ultraviolet mirror. To this end, the ultraviolet mirror device includes an ultraviolet filtering unit provided in a front portion or a rear portion of the lens unit to allow ultraviolet light to pass therethrough and thus enter the image sensor; and an image processing unit providing the portable terminal with multiple digital images generated at a predetermined frame rate per second by the image sensor and thus allowing a moving image to be regenerated in the display unit.
US10798275B2 Holding apparatus for a vehicle
A holding apparatus (50) for a vehicle has a first element (51) attachable to the vehicle (1), a second element (52) movably connected with the first element (51) via a bearing mechanism, an image capture unit (10, 10A, 10B) attached to the second element (52) and configured to capture a capture area around the vehicle (1), and a signal unit (20) configured to detect the position of the first element (51) relative to the second element (52). The signal unit (20) has a signal device (22) adapted to output a signal (S) and a signal transmitter (21) configured to operate the signal device (22) dependent on a position of the first element (51) to the second element (52) such that it outputs a signal (S).
US10798272B2 Artillery shell-shaped information gathering device
Provided is a shell-type monitoring apparatus. The shell-type monitoring apparatus includes a body, a gas storage provided in the body and configured to store a gas, a variable volume portion provided on the gas storage in the body and having a volume that varies depending on an amount of gas supplied from the gas storage, a photographing unit provided on the body and configured to move in the body, and a moving flow path provided in the body and configured to supply the gas in the variable volume portion to the photographing unit and thereby move the photographing unit.
US10798271B2 Detecting errors in the timing between subtitles and shot changes
In various embodiments, a subtitle timing application detects timing errors between subtitles and shot changes. In operation, the subtitle timing application determines that a temporal edge associated with a subtitle does not satisfy a timing guideline based on a shot change. The shot change occurs within a sequence of frames of an audiovisual program. The subtitle timing application then determines a new temporal edge that satisfies the timing guideline relative to the shot change. Subsequently, the subtitle timing application causes a modification to a temporal location of the subtitle within the sequence of frames based on the new temporal edge. Advantageously, the modification to the subtitle improves a quality of a viewing experience for a viewer. Notably, by automatically detecting timing errors, the subtitle timing application facilitates proper and efficient re-scheduling of subtitles that are not optimally timed with shot changes.
US10798269B2 System comprising a server for providing a service to an image forming apparatus, and authentication thereof
A communication system including an image processing apparatus configured to, in response to receiving acquisition instruction information from a server via indirect communication, receive authentication information from an information processing terminal device via near-field wireless communication, transmit the received authentication information to the server via the indirect communication, and in response to receiving communication instruction information, which indicates a method for data communication with a service providing apparatus, from the server via the indirect communication, perform data communication with the service providing apparatus in accordance with the received communication instruction information.
US10798266B2 Image processing apparatus, printing apparatus, and image processing method for performing halftone processing on divided images
A plurality of halftone processing units are provided for processing each of a plurality of pieces of image data corresponding to a plurality of divided images to generate dot data representing presence or absence of dot formation. At least two halftone processing units simultaneously perform at least a part of halftone processing for at least two pieces of image data. In the halftone processing, complex error diffusion method processing of matching at least a part of dot data obtained by performing halftone processing using an error diffusion method for an error diffused gradation value of each pixel of a divided image with a determination result of a dither method, is performed.
US10798264B2 Image scanning apparatus and method for scanning thereof
An example image scanning apparatus includes a lighting unit to irradiate light onto a manuscript using an LED light source, a scan unit to generate a scan image by scanning image information of manuscript using light reflected by the manuscript, and a processor to control the lighting unit to irradiate light on each unit pixel by a predetermined duty during a movement process of the manuscript in a sub-scan direction.
US10798254B2 Service design center for device assisted services
A technique involves modular storage of network service plan components and provisioning of same. A subset of the capabilities of a service design system can be granted to a sandbox system to enable customization of service plan offerings or other controls.
US10798250B2 Management server, communication system, notification method and program
Included are an outgoing call detection unit configured to detect an outgoing call from a first communication terminal to a second communication terminal, a connection control unit configured to cause the outgoing call detected by the outgoing call detection unit to arrive at the second communication terminal, a call duration measurement unit configured to measure a time from when a phone call is started, which is a duration of the phone call, between the first communication terminal and the second communication terminal, and a notification unit configured to transmit, when the duration measured by the call duration measurement unit exceeds a predetermined duration before the phone call ends, a predetermined notification to a third communication terminal.
US10798248B2 System and method for provisioning temporary telephone numbers
Systems, methods, and computer program products for provisioning a temporary disposable number are described. A user can be provided with a pool of available temporary disposable numbers that have a limited shelf life. The user can select one of the available temporary disposable numbers while submitting a permanent phone number associated with a communications device (e.g., mobile phone, home phone, business phone, etc.). Prior to activating the selected temporary disposable number, the temporary disposable number is linked to the permanent phone number. After activation, when an incoming call to the temporary disposable number is received, the permanent phone number is identified to be associated with the temporary disposable number being called. The incoming call is then forwarded to the communications device on which the permanent phone number is established.
US10798245B2 Method and apparatus for facilitating agent conversations with customers of an enterprise
In a method and apparatus for facilitating agent interactions with customers of an enterprise, one or more intents corresponding to an input provided by a customer during a conversation with a Virtual Agent (VA) are predicted. A confidence score corresponding to each intent is computed that is indicative of an ability of the VA to provide an effective response to the input. The confidence score corresponding to each intent is compared with a predefined threshold score. If the confidence score is less than the predefined threshold score, the conversation is deflected from the VA to a human agent to respond to the input of the customer. The conversation is deflected from the human agent to the VA for a subsequent input if a respective confidence score of at least one intent predicted for the subsequent input is greater than or equal to the predefined threshold score.
US10798242B2 Call volume reduction based upon a propensity to call in connection with a reason code
Devices, computer-readable media and methods for delivering customer service content associated with a reason code are disclosed. Examples of the present disclosure may include a processor of a telecommunication network identifying a reason code associated with calls from customers to a customer call center and determining a set of shared traits among the customers. The shared traits may be based upon first network event data and first customer account data associated with the customers. The processor may further determine a customer with a propensity to call score that exceeds a threshold and with a customer profile that matches the set of shared traits. The customer profile may be based upon second network event data and second customer account data associated with the customer. The processor may further deliver a customer service content associated with the reason code to the customer via a communication modality that is determined for the customer.
US10798237B2 Automated individual security
A controller monitors for an activation condition through a monitoring interface of a wearable aerial device. In response to detecting the activation condition through the monitoring interface, the controller triggers the wearable aerial device to release from an aesthetic attachment proximate to a user and hover a distance above the user of a height above a selected height threshold. The controller analyzes a recording of content by the wearable aerial device to assess a particular threat level associated with the content from among multiple threat levels. The controller, in response to the particular threat level exceeding a threat threshold, automatically sends a communication to one or more emergency contacts.
US10798235B2 Modular mobile device side bar/buttons
A mobile device having an internal frame and a sidebar configured to be coupled to the internal frame. The sidebar can include at least one button positioned in a button configuration on an exterior face of the sidebar and a sidebar contact positioned on an interior face of the sidebar. The sidebar can be positioned to interface with a frame contact when the sidebar is coupled to the internal frame. The frame can be operably coupled to a controller for a mobile device such that coupling the sidebar contact to the frame contact operably connects the at least one button of the sidebar to the controller. The sidebar can be exchanged with or decoupled from the frame and replaced with a second sidebar having a different button configuration from the original sidebar.
US10798234B1 Stationery storage capable of sound amplification of mobile phone
A stationery storage capable of sound amplification of a mobile phone, including: a container, having an accommodation space in communication with the outside, one side of the container having an inclined surface, a bottom of the inclined surface extended outward with a groove, one side of the groove protruded with a plurality of spaced cover bodies, and a passage in communication with the groove formed between each cover body and the groove, where the accommodation space provides the accommodation of articles, the groove provides the placement of a smart mobile device, and the sound amplification of the smart phone is carried out through each passage.
US10798233B2 Mobile phone station
A mobile phone stations is disclosed. In general, in one aspect, the mobile phone station connects to a smartphone for sending and receiving data therebetween. Further, the mobile phone station includes a dial pad for placing outgoing calls via the smartphone and answering incoming calls received at the smartphone. Also, the mobile phone station includes a charging mechanism for charging the smartphone. In use during an active call at the smartphone, the mobile phone station allows a user to seamlessly switch between two or more of a handset, a speakerphone, and a headset without requiring any user interaction with the smartphone.
US10798231B2 Light-emitting device having multiple curved regions
A light-emitting device or a display device that is less likely to be broken is provided. Provided is a light-emitting device including an element layer and a substrate over the element layer. At least a part of the substrate is bent to the element layer side. The substrate has a light-transmitting property and a refractive index that is higher than that of the air. The element layer includes a light-emitting element that emits light toward the substrate side. Alternatively, provided is a light-emitting device including an element layer and a substrate covering a top surface and at least one side surface of the element layer. The substrate has a light-transmitting property and a refractive index that is higher than that of the air. The element layer includes a light-emitting element that emits light toward the substrate side.
US10798229B2 Method for transmitting a data message to an electronic receiving device, related electronic transmitting device and computer program
The message transmission method for transmitting a data message to at least one electronic receiving device, is implemented by a transmitting device. The transmitting device and the one or more receiving device(s) are connected via an avionics network, with the transmitting device and/or the receiving device being an avionics device. The transmission method includes the generation of a message, the message comprising a message header and one or more data packet(s); and the transmission of the message to the one or more receiving device(s). Each packet comprises one or more data cluster(s), each duster containing an identifier field, a size field and a payload data field, and each cluster is adapted to include one or more other data cluster(s), the one or more other data cluster(s) thus then forming the payload data field of said cluster.
US10798228B2 Method, apparatus and computer program product for processing data
Data is received at a buffer used by a protocol processing stack which protocol processes the received data. The received data is made available to, for example, an application, before the protocol processing of the data is complete. If the protocol processing is successful the data made available to the application is committed.
US10798224B2 Methods and apparatus for preventing packet spoofing with user space communication stacks
Methods and apparatus for efficient data transfer within a user space network stack. Unlike prior art monolithic networking stacks, the exemplary networking stack architecture described hereinafter includes various components that span multiple domains (both in-kernel, and non-kernel). For example, unlike traditional “socket” based communication, disclosed embodiments can transfer data directly between the kernel and user space domains. Direct transfer reduces the per-byte and per-packet costs relative to socket based communication. A user space networking stack is disclosed that enables extensible, cross-platform-capable, user space control of the networking protocol stack functionality. The user space networking stack facilitates tighter integration between the protocol layers (including TLS) and the application or daemon. Exemplary systems can support multiple networking protocol stack instances (including an in-kernel traditional network stack).
US10798221B2 Information display method, terminal, and server
Embodiments of the present invention provide an information display method, terminal, and server. In one embodiment, the information display method includes obtaining, by a terminal, content information of at least one content source. The at least one content source corresponds to at least two pieces of account information stored in the terminal. The method further includes integrating, by the terminal, the content information into content display information; and displaying, by the terminal, the content display information.
US10798220B2 Method, device and system for invoking local service assembly by browser
A method, an apparatus and a system for invoking a local service component by a browser are provided. The method includes receiving, by a client terminal, a connection request based on a cross-domain communication protocol initiated by a browser terminal; performing, by the client terminal, validity verification of the connection request; and if the connection request passes the validity verification, establishing, by the client terminal, a communication connection with the browser terminal based on the cross-domain communication protocol to allow the browser terminal to invoke a local service component. The present disclosure can achieve an invocation of a local service component by most mainstream browsers, and has a better security of communications.
US10798218B2 Environment isolation method and device
The present application discloses an environment isolation method. First, a pre-configured full address in a routing address pool in a Remote Procedure Call (RPC) client terminal is automatically refreshed according to a preset cycle. The RPC client terminal stops automatic refresh in the routing address pool after receiving an environment isolation instruction sent by an environment isolation device, and replaces a current address in the routing address pool with a combined address. When subsequently receiving a service call request sent by a user, the RPC client terminal generates a valid target address based on the combined address in the routing address pool, sends the service call request to an RPC server terminal corresponding to the target address, and returns to the user a service processing result returned by the RPC server terminal.
US10798217B2 Systems and methods for protecting an identity in network communications
In some embodiments, a method includes sending a first data unit, received from a source device, to a destination device via a first data unit path. The first data unit path includes (1) a first virtual machine and a second virtual machine that are included in a first network, and (2) a third virtual machine that is included in a second network. Furthermore, the first data unit path includes the first virtual machine, the second virtual machine, and the third virtual machine in a first order. The method includes sending a second data unit, received from the source device, to the destination device via a second data unit path from the source device to the destination device. The second data unit path includes each of the first virtual machine, the second virtual machine, and the third virtual machine in a second order different from the first order.
US10798214B2 Methods and systems for personalizing user experience based on personality traits
An electronic device associated with a media-providing service assigns one or more characteristics of media items to at least one respective personality trait of a plurality of personality traits. The media items are provided by the media-providing service. The electronic device assigns one or more user behaviors to a first personality trait and tracks behavior of a user. The electronic device determines that a tracked behavior of the user corresponds to a first user behavior of the one or more user behaviors and assigns the first personality trait to the user based at least in part on determining that the tracked behavior of the user corresponds to the first user behavior. The electronic device provides personalized content to the user in accordance with a determination that the degree to which the tracked behavior of the user corresponds to the first user behavior satisfies a threshold.
US10798212B2 Message processing apparatus and methods
An apparatus for processing messages is provided. The apparatus includes a computer processor and a data storage device, the data storage device having a message transform module and a message provision module including non-transitory instructions operative by the processor to receive a producer message from a message producer, the producer message being structured according to a producer message schema, the producer message schema defining a plurality of producer message fields, transform the producer message to obtain a subscriber message, wherein transforming the producer message includes applying a subscriber message transform including a set of rules for converting a message from the producer message schema to a subscriber message schema associated with a message subscriber, the subscriber message schema defining a plurality of subscriber message fields, and provide the subscriber message to the message subscriber.
US10798208B2 Availability data caching in meeting systems
Availability data caching in, meeting services is provided. In some examples, a list of users whose data is to be cached locally for a user may be determined based on factors such as their relevance to the user, a likelihood of a meeting being requested with the users, a history of common meetings, and similar factors. What type of user data to cache, for how long, at which granularity level, and similar parameters may be determined as well. User data for users from the list may be retrieved on-demand or on a regular basis from server associated with those users and stored at a server or other computing device for the user for fast access when the user requests to schedule a meeting.
US10798201B2 Redirecting USB devices via a browser-based virtual desktop infrastructure application
USB devices can be redirected via a browser-based virtual desktop infrastructure (VDI) application. To enable redirection of USB devices even when native drivers cannot be installed on the client terminal, the browser-based VDI application can include a proxy that employs a suitable API to access the USB device. The proxy can function as an intermediary for adapting the representation of the USB device that exists within the browser to the USB request block (URB) data structures by which the server-side components communicate with USB devices.
US10798192B2 Methods and apparatus to improve usage crediting in mobile devices
Methods, apparatus, systems and articles of manufacture are disclosed to identify a first request, from a first device, the first request having a first source port number. Examples disclosed herein determine whether a second request, having a second source port number, is within a threshold number of ports from the first source port number. Examples disclosed herein group the first and the second requests as a first session when the second source port number is within the threshold number of ports from the first source port number, and identify an application associated with the first session when a user agent of the first request matches a first application pattern associated with the first application, the first application pattern including a wildcard in a location corresponding to a numerical value in the user agent.
US10798189B1 Systems and methods for providing or requesting avionics simulation data using API adapter
Systems and methods are disclosed for providing or requesting data for simulating avionics systems. For example, a method for providing data for simulating avionics systems may include: receiving, from a client device, a first message requesting information usable by the client device to simulate a functionality of an avionics system, the first message being in a web services data format; converting the first message to an avionics protocol data format to obtain a first converted message; providing the first converted message to a server application; receiving, from the server application, a second message including the requested information, the second message being in the avionics protocol data format; converting the second message to the web services data format to obtain a second converted message; and providing, to the client device, the second converted message.
US10798187B2 Secure service chaining
In one embodiment, secure service chaining can be implemented efficiently for content delivery systems. An orchestrator can determine a service chain for processing a request from a client for content. The orchestrator can determine a capability identifying nodes of the service chain. The orchestrator can then transmit, to the client, a redirect message having the capability, wherein the redirect message redirects the request to a first node of the service chain. The nodes of the service chain can verify the capability and carry out the service chain. Service functions can be applied to the traffic flow associated with delivering the content to the user.
US10798185B2 Systems and methods for automated session identifier propagation
This application relates generally to automated systems and methods for identifier propagation across uniform resource locator requests. In an embodiment, a system includes at least one processor operatively coupled with a datastore, the at least one processor configured to receive, from a user device, a request message comprising a request component uniform resource locator. The at least one processor is further configured to produce a redirect uniform resource locator in response to the request message not comprising a session identifier, where the redirect uniform resource locator comprises a current session identifier appended to the request component uniform resource locator. The at least one processor is further configured to send, to the user device, a redirection instruction comprising the redirect uniform resource locator, where the redirection instruction indicates that a resource requested by the request message has been temporarily moved to the redirect uniform resource locator.
US10798181B2 Storage medium containing a program, information processing device, and processing method for deploying an application generated to a cloud environment
To provide a system for easily deploying a generated application in a cloud environment, a non-transitory computer-readable storage medium contains a program, which is executable by a device to generate an application, the program causing the information processing device to function as: a first module to acquire definition information for generating the application; a second module to generate the application based on the definition information acquired by the second module; a third module to acquire connection information to be used for connecting to a cloud environment; a fourth module to acquire history information on the application; and a fifth module to connect to the cloud environment by using the connection information acquired by the third module, and deploy the application generated by the second module in the cloud environment based on the history information on the application acquired by the fourth module.
US10798178B2 Selecting a user plane function (UPF) for layer 2 networks
A network function (NF) entity in a communication network receives User Plane Function (UPF) registration information for a plurality of UPFs, the registration information including a respective network attribute for each UPF. The NF entity associates each UPF with a corresponding network based on the respective network attribute, and map one or more User Equipment (UE) to the corresponding network based on a security policy to create a UE-to-network table. The NF further receives a request to establish a session for a subsequent UE, the request including a subsequent UE identifier, and determine an access permission for the subsequent UE to access the corresponding network based on the subsequent UE identifier and the UE-to-network table. The NF selects one UPF from the plurality of UPF to service the session for the subsequent UE based on the access permission, and an association between the one UPF and the corresponding network.
US10798177B2 HVAC controller with integrated wireless network processor chip
A controller in a building management system (BMS) includes an integrated wireless network processor chip. The integrated wireless network processor chip includes a wireless radio, a processor, and memory. The wireless radio is configured to exchange data communications with one or more BMS devices controlled by the controller. Both the processor and memory are in communication with the wireless radio and located on the same chip as the wireless radio. The memory includes communication stacks configured to facilitate communications using a building automation and control network communications protocol and a Wi-Fi communications protocol. The integrated wireless network processor chip receives data from the BMS devices via the wireless radio, formats the data using the processor, stores the data in the memory, and sends the data via the wireless radio without requiring any additional processing or communications components outside the integrated wireless network processor chip.
US10798173B2 System and method for facilitating a data exchange amongst communication devices connected via one or more communication networks
The present subject matter discloses a system and a method for facilitating data exchange amongst communication devices connected via one or more communication networks. In accordance with the system and method, data may be received from one or more IoT devices of a plurality of IoT devices. The data may be associated with a first user. The data may be converted into normalized data, wherein the normalized data may comprise data of various formats. Based upon the normalized data, useful information may be extracted. The useful information may be matched with a first set of rules defined by a second user to obtain matched data. One or more products may be generated based on the matched data and a second set of rules defined by the first user. The one or more data products may be sent to the second user via a network.
US10798171B2 Sensor data advertisement via network identifier in shared spaces
Systems and methods for communicating with a plurality of networked sensors include identifying at least one class of networked sensors of the plurality of networked sensors, broadcasting a virtual network identifier to advertise the availability of the at least one class of networked sensors, directing a device attempting to access a network identified by the virtual network identifier to a splash page where a user can subscribe to information from the one or more classes of network sensors, and providing sensor data from the network sensors to a subscribed user.
US10798165B2 Tenant data comparison for a multi-tenant identity cloud service
Embodiments replicate resources in a multi-tenant cloud system. Embodiments receive a master resource, associated with a master account of the cloud system to be replicated, where the master resource includes a master JavaScript Object Notation (“JSON”) object and includes a plurality of master attributes. Embodiments generate a master resource metadata JSON by calculating hash values for each of the master attributes to generate master attribute level hashes and by calculating an aggregate of all of the hash values to generate a master resource level hash. Embodiments store each master attribute of the master JSON object in a separate column of a master database table associated with the master account and store the master resource metadata JSON is in a separate hash column of the master database table. Embodiments replicate the master JSON object to create a replicated JSON object including a plurality of replicated attributes.
US10798160B2 Resource management in a cloud environment
Resource management in a cloud environment is disclosed. One example is a system including at least one processor and a memory storing instructions executable by the at least one processor to receive an action trigger indicative of a status of a user from a source application, wherein the source application includes a mobile application, a biometric application or a geo-fencing application, retrieve an activity status for a resource of a plurality of resources in a hybrid cloud environment, and provide, based on the action trigger and the activity status, a recommendation for deployment or non-deployment of the resource to achieve resource efficiency.
US10798151B2 Brokering for application hosting computing resources of multiple vendor-specific provisioned computing environments
In certain embodiments, a computer-implemented method includes accessing, using one or more processing units, application parameters associated with an application. The application parameters define constraints for hosting the application using one or more of a plurality of provisioned computing environments available over a computer network from multiple computing resources vendors. Each vendor is associated with a corresponding vendor-specific provisioned computing environment that includes computing resources available to be provisioned for use by a multiple entities distinct from the vendors. The method includes accessing, using the one or more processing units, vendor-specific data for the vendor-specific provisioned computing environments. The method includes determining, using the one or more processing units, from among the vendor-specific provisioned computing environments and based on the application parameters and the vendor-specific data for the provisioned computing environments, a first vendor-specific provisioned computing environment for hosting the application.
US10798147B2 Constraint based controlled seeding
In one example, a peer-to-peer network may use partial seeding to increase the number of seed devices available to a peer device acting as a leeching device. A catalog service may maintain an active peer list for a peer-to-peer network describing active peer devices. The catalog service may track a data file composed of a set of sub-pieces for the peer-to-peer network. The catalog service may identify a device constraint for a peer device of the peer-to-peer network describing a characteristic of the peer device impacting an ability of the peer device to store a sub-piece of the data file. The catalog service may assign a seed sub-piece of the data file based on the device constraint to the peer device when executing a seed client to provide the seed sub-piece to a leeching client on the peer-to-peer network. The catalog service may direct the peer device to retain a persistent sub-piece on the peer device as the seed sub-piece for the peer device until a release event.
US10798143B2 Selection of resolutions for seamless resolution switching of multimedia content
Systems and methods for the selection of resolutions for seamless resolution switching of multimedia content in accordance with embodiments of the invention are disclosed. In one embodiment of the invention, a source encoder includes a processor configured by a source encoder application to receive multimedia content, where the multimedia content comprises video data having a primary resolution and a primary sample aspect ratio and encode the video data as a set of alternative streams, where a plurality of the streams in the set of alternative streams have different maximum bitrates and resolutions, the resolution of each of the plurality of streams comprises a width and height that are both an integer number of pixels, and both the width and height of each of the plurality of streams is a common fraction of the width and height of the corresponding primary resolution.
US10798141B2 Multiplexing data
Multiple data streams are transmitted from a transmitting device via an end-to-end or process-to-process channel to a receiving device. At the transmitting device a media data stream is generated. A maximum packet size for another data stream is determined based on a determined end-to-end or process-to-process bandwidth and using playout information pertaining to the media data, which conveys a desired playout rate of the media data. At the transmitting device, based on the determined maximum packet size, a plurality of data packets of the other data stream is generated, each having a packet size no more than the determined maximum. The media and other data streams are multiplexed onto the channel at the transmitting device, thereby transmitting both of the data streams from the transmitting device to the receiving device via the same channel.
US10798135B2 Switch controller for separating multiple portions of call
An example method includes providing third party access to listen to a call and the ability to inject audio into an isolated audio portion of the call by using a switch controller within a mobile virtual network operator (MVNO) platform. The switch controller can to separate a call into multiple audio portions. The example method can further include collecting and warehousing call metadata and providing access to isolated audio portions via an external database, web object, API, etc.
US10798133B2 Data processing systems for data-transfer risk identification, cross-border visualization generation, and related methods
In particular embodiments, a Cross-Border Visualization Generation System is configured to: (1) identify one or more data assets associated with a particular entity; (2) analyze the one or more data assets to identify one or more data elements stored in the identified one or more data assets; (3) define a plurality of physical locations and identify, for each of the identified one or more data assets, a respective particular physical location of the plurality of physical locations; (4) analyze the identified one or more data elements to determine one or more data transfers between the one or more data systems in different particular physical locations; (5) determine one or more regulations that relate to the one or more data transfers; and (6) generate a visual representation of the one or more data transfers based at least in part on the one or more regulations.
US10798131B2 Universal data privacy control management system
A universal opt-in/opt-out client allows a user to connect to the APIs for various different sites which have the user's data. The universal client orchestrates opting out on any of the site lists provided by default, or sites which the user selects. The universal client enables the user to select total or partial opt-ins or opt-outs with granular control, on one or more web or decentralized sites, where the user may wish to allow some uses of data and access to data but would also like to restrict others. When a user is calibrating their privacy and data settings, a company or site may provide reasons and incentives for the user to allow access to certain data. This allows users to have simultaneous global control over their personal data while enabling the user to receive compensation for the use of their personal data, and allowing companies to have access to better data.
US10798124B2 System and method for detecting slowloris-type attacks using server application statistics
A system and computer-implemented method to detect a slowloris-type network attack, wherein the method includes receiving data gathered by a server of a network over time, the data received including data about timing of requests from a plurality of clients received by the server, tracking the data about timing of requests over time, determining one or more characteristics about distribution of the data tracked, tracking the one or more characteristics to determine whether there is an increase in time for reading, by the server, a larger portion of requests tracked, identifying a change in the characteristics that indicates the presence of a slowloris-type network attack, and performing an action, in response to the change, to at least one of generate an alert about the slowloris-type network attack, request mitigation of the slowloris-type network attack, and mitigate the slowloris-type network attack.
US10798120B2 Dynamic detection of firewall misconfigurations
An automated scanning service can be configured to dynamically determine potential firewall misconfigurations in a shared resource environment. The scanning service can interrogate one or more application programming interfaces (APIs) to determine the state of the relevant firewall ports. For each firewall port in a permitted state, a test or trace can be run to determine whether the corresponding host port is open. Similarly, information can be obtained indicating which host ports for the allocation are open, and a determination can be made as to whether the corresponding firewall ports are permitted. Once the determinations are made, any mismatch in port state can be reported as a potential misconfiguration.
US10798119B2 Command interception
A system and method for intercepting commands issued to a host server. An agent is installed on the host server and configured to intercept commands issued to the host server and to transmit indications of said commands to a collector for logging and evaluation. The collector includes rules for determining whether a command issued to the host is to be blocked. Collector rules may be informed by supplementary information from third party information systems. The agent queries the collector for whether a command is to be blocked, and also include rules for blocking commands without evaluation by the collector. Indications of intercepted commands are stored by the collector in databases accessible by an administrator for monitoring activity on the host server and for configuring rules for blocking commands issued to the server.
US10798116B2 External malware data item clustering and analysis
Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyses (also referred to herein as “summaries” or “conclusions”) of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures.
US10798114B2 System and method for consistency based anomaly detection in an in-vehicle communication network
A system and method for providing security to a network may include monitoring, by a processor, traffic on a first and second network portions of an in-vehicle communication network; determining whether or not a first message detected on the first network portion is anomalous based on at least one of: an attribute of a second message detected on the second network portion and an absence of a second message from the second network portion over a predefined time period; and, if it is determined the first message is anomalous then performing at least one action.
US10798111B2 Detecting intrusion attempts in data transmission sessions
A computer-implemented method includes identifying a data transmission session associated with a display-oriented data transmission scheme; identifying an outbound data stream associated with the data transmission session; and determining one or more protected fields associated with the outbound data stream. The computer-implemented method further includes determining a client attempt to write to at least one of the one or more protected fields; and in response to determining said client attempt, determining an intrusion detection report. A corresponding computer program product and computer system are also disclosed.
US10798108B2 Apparatus and method for a multi-entity secure software transfer
A method and a system embodying the method for a multi-entity secure software transfer are disclosed, the method operating by: configuring a communication interface controller at each trusted hardware entity of a first hardware entity and a second hardware entity to disallow all external access except a communication link configuration access; establishing the communication link between the first hardware entity and the second hardware entity; configuring write access from the second hardware entity to only a first storage at the first hardware entity; and writing the secure software received from the second hardware entity via the communication link to the first storage at the first hardware entity.
US10798103B2 Adaptive device enrollment
Examples described herein include systems and methods for dynamically determining enrollment requirements and enrolling a user device into a management system. The systems and methods can differ based on the type and version of operating system executing on the user device. With some operating systems, enrollment can be completed through a single application that performs other functionality, such providing single-sign-on access to enterprise resources. With other operating systems, enrollment can be completed by pausing the first application and requiring installation of an agent application to complete enrollment. The determination of how and when to enroll a user device can be done automatically and can be based on an organizational group to which the user belongs.
US10798100B1 Managing membership in a private data exchange
Systems and methods for managing membership in a private data exchange are provided herein. In one embodiment, the method comprises adding a new member to a data exchange, wherein the data exchange comprises a set of listings, each listing comprising data from one or more datasets stored on a cloud computing service. An account type is assigned to the new member, the account type comprising at least one of a consumer type, provider type, or exchange administrator type. Each of the account types associated with one or more rights with respect to the set of listings, such that the new member has a set of rights based on the account type. The set of rights of the new member are then modified with respect to one or more listings from the set of listings based on a set of visibility and access rules for each of the set of listings.
US10798099B2 Enhanced value component predictions using contextual machine-learning models
The present disclosure generally relates to systems and methods that intelligently generate reassignment value conditions for reassigning access rights. The systems and methods include executing a trained contextual machine-learning model to generate predictions of value components of the reassignment value condition, which once satisfied, enables an access-right requestor to have an assigned access right reassigned to the access-right requestor.
US10798096B2 Methods to authorizing secondary user devices for network services and related user devices and back-end systems
Methods are provided to authorize a secondary user device for a network service provided over a network. Responsive to receiving a request from a primary user device, a voucher may be transmitted over the network to the primary user device. A request for an authorization waiver may be received from the secondary user device over the network, wherein the request for the authorization waiver includes the voucher that was transmitted to the primary user device. Responsive to receiving the request from the secondary user device including the voucher, an authorization waiver may be transmitted to the secondary user device. Related methods of operating primary and secondary user devices are also discussed.
US10798094B2 Blockchain-based account management
This disclosure relates to account management. In one aspect, a method includes receiving a permission query message from a service system. Verification information is obtained from a first client based on the permission query message. The verification information is associated with an identity of the current user. In response to determining that the verification information is valid, proxy permission information for the current user is obtained from a blockchain. The proxy permission information includes at least operation permission information of the current user for the enterprise account. The proxy permission information is sent to the service system. The proxy permission information configured to be usable by the service system to determine whether to authorize the current user to perform an operation on the enterprise account.
US10798093B2 GTLD domain name registries RDAP architecture
Provided is a method for providing Registration Data Access Protocol (“RDAP”) responses. The method includes obtaining, at a RDAP client over a network, a RDAP query for RDAP data from a user; providing, by the RDAP client, the RDAP query and a cryptographic credential to a RDAP server, wherein the RDAP server communicates with one or more thick RDAP servers to provide respective thick RDAP answers to the RDAP query, wherein at least one the respective thick RDAP answers are encrypted using a symmetric or asymmetric cryptographic key associated with the cryptographic credential of the RDAP client; obtaining a consolidated thick RDAP answer to the RDAP query from the RDAP server; decrypting the consolidated thick RDAP answer using a symmetric or asymmetric cryptographic key associated with the cryptographic credential; and providing the thick RDAP answer that is decrypted to the user.
US10798092B2 Domain joined virtual names on domainless servers
Services from domainless machines are made available in a security domain under a virtual name. Each machine is not joined to the domain but can reach a security domain controller. The controller controls at least one security domain using an authentication protocol, such as a modified Kerberos protocol. One obtains a set of security domain credentials, generates a cluster name secret, gives the cluster a virtual name, and authenticates the machines to the domain controller using these items. In some cases, authentication uses a ticket-based protocol which accepts the cluster name secret in place of a proof of valid security domain membership. In some, the domain controller uses a directory service which is compatible with an active directory service; the cluster virtual name is provisioned as an account in the directory service. The cluster virtual name may concurrently serve clients on different security domains of the directory service.
US10798090B2 User authentication method, system for implementing the same, and information communication terminal used in the same
[Problem] To provide a user authentication technology whereby hacking of a system by a third party is effectively prevented. [Solution] The present invention is a user authentication method and system, wherein: an information communication terminal allocates numerals, etc., which configure a token code which is generated by time synchronizing with an authentication system side to each cell which configures a user's password derivation pattern, and displays upon a user interface a personal identification table whereupon numerals, etc., are allocated which have been randomly generated with other cells; the user, with reference to the personal identification table, selects the numerals, etc., which are allocated to each cell which configures the user's password derivation pattern, and inputs same as a password; and the authentication system carries out an authentication determination upon the inputted password on the basis of the generated time synchronized token code.
US10798089B1 System and method for capturing information
Embodiments of the present disclosure relate to systems and methods for capturing information. In addition, embodiments of the present disclosure relate to solutions for capturing information using a web browser extension. Embodiments of the present disclosure further relate to securely transmitting captured information to a server for association with an application or form being completed by an individual.
US10798086B2 Implicit certificates using ring learning with errors
An implicit certificate is based on a ring learning with errors (“RLWE”) public keys that are, in some examples, resistant to quantum-based computing attacks. Various methods are described that request, generate, verify, and use the implicit certificates. In some examples, the system provides an implicit certificate that enables communication between two parties that are identified at the time of certificate generation. In another example, the system provides a certificate that may be used to communicate with a variety of different parties. The implicit certificate generation algorithm yields a public key purportedly bound to U. Confirmation that the public key is bound to U is obtained after use of the corresponding private key. Binding of an entity to its associated public key and accessibility to the private key, are verified as a result of successful key use.
US10798083B2 Synchronization of multiple independent identity providers in relation to single sign-on management
A method includes receiving an authentication request from a web application of a user device, the web application running in a browser. The method also includes establishing a local single sign-on session between the local identity provider and the browser and determining that a master identity provider associated with a plurality of local identity providers is unavailable. The method also includes in response to determining that the master identity provider is unavailable, marking the local single sign-on session as unsynchronized with the master identity provider. The method further includes after determining that the master identity provider is available, synchronizing the local single sign-on session with a master single sign-on session that is available to the plurality of local identity providers and marking the local single sign-on session as synchronized with the master identity provider.
US10798081B2 Method, apparatus, and system for providing a security check
Embodiments of the present application relate to a method, apparatus, and system for providing a security check. The method includes receiving a security verification request sent from a terminal, obtaining first verification element information based at least in part on the security verification request, generating a digital object unique identifier based at least in part on the first verification element information, sending the digital object unique identifier to the terminal, receiving second verification element information from the terminal, and in the event that the first verification element information and the second verification element information are consistent, sending security check pass information to the terminal.
US10798073B2 Secure key management protocol for distributed network encryption
For an encryption management module of a host that executes one or more data compute nodes (DCNs), some embodiments of the invention provide a method of providing key management and encryption services. The method initially receives an encryption key ticket at an encryption management module to be used to retrieve an encryption key identified by the ticket from a key manager. When the encryption key has been retrieved, the method uses the encryption key to encrypt a message sent by a data compute node executing on the host requiring encryption according to an encryption rule. The encryption key ticket, in some embodiments, is generated for an encryption management module to implement the principle of least privilege. The ticket acts as a security token in retrieving encryption keys from a key manager. Ticket distribution and encryption rule distribution are independent of each other in some embodiments.
US10798070B2 Authenticating credentials for mobile platforms
Systems and methods for providing services are disclosed. One aspect comprises authenticating a user associated with a first service, receiving a selection of a second service, generating an opaque identifier associated with the user and the first service, wherein the opaque identifier facilitates the anonymous collection of data relating to the second service. Another aspect can comprise transmitting the opaque identifier to the second service, and receiving data relating to the second service.
US10798067B2 Recording encrypted media session
In one implementation, a media stream is recorded using one or more keys. The one or more keys are also encrypted. The one or more encrypted keys may be stored with the encrypted media session at a cloud storage service. A network device receives a request to record a media stream and accesses at least one stream key for the media stream. The stream key is for encrypting the media stream. The network device encrypts the stream key with a master key. The encrypted stream key is stored in association with the encrypted media stream.
US10798064B1 Proxy computer system to provide encryption as a service
A server system implements an encryption service, in connection with a proxy service that enables a client computer to utilize the third-party network service.
US10798061B2 Automated learning of externally defined network assets by a network security device
Systems and methods for automated learning of externally defined network assets by a network security device are provided. According to one embodiment, updated information for a network asset associated with a private network is received by a network security device from an external asset management device associated with the private network. The updated information includes a change in a definition or an attribute of the network asset. The existence of a current definition and attribute information for the network asset is determined by the network security device. The current definition and attribute information is dynamically updated based on the updated information by the network security system within a run-time representation of security policy rules within a kernel of a network security operating system without disrupting on-going application of one or more security policy rules defined for the network asset to network traffic directed to or originated by the network asset.
US10798060B2 Network attack defense policy sending method and apparatus, and network attack defending method and apparatus
A network attack defense policy sending method and apparatus are presented. The method includes receiving attack information which includes a target Internet Protocol (IP) address, and the attack information is used to indicate that a network attack packet whose destination address is the target IP address exists in a first network; determining that the network attack packet enters the first network through a first edge network device, where the first edge network device is an edge device in the first network; sending a defense policy to the first edge network device, where the defense policy is used to instruct the first edge network device to process, according to the defense policy, a packet whose destination address is the target IP address. By means of this application, network resources occupied by a network attack packet can be reduced, and an effect of defending against the network attack packet can be improved.
US10798057B2 Method and apparatus for providing secure internal directory service for hosted services
A system and method for providing secure access to an organization's internal directory service from external hosted services. The system includes a remote directory service configured to accept directory service queries from an application running on hosted services. The remote directory service passes the queries to a directory service proxy server inside a firewall of the organization via a secure rendezvous service. The directory service proxy server passes the queries to the internal directory service inside said firewall. Request responses from the internal directory service pass through the directory service proxy server to the remote directory service through said firewall via the secure rendezvous service. The remote directory servicer returns the response to the requesting application.
US10798053B2 Alias-based time-limited lease addressing for internet of things devices
An apparatus for addressing a plurality of Internet of Things (IoT) devices includes storage to store instructions and a processor. The processor is to execute the stored instructions to initialize an IoT device alias addressing space, to assign an alias address to each of a plurality of the IoT devices, where the alias addresses are time-limited, and to handle packet transactions using the assigned alias addresses.
US10798051B1 Filtering and organizing process for domain name system query collection
A method for filtering, distributing, and organizing domain name system queries in a communications network may include receiving a first domain name system query from a first endpoint device connected to the network, identifying a first network address of the first endpoint device from the first domain name system query, classifying the first domain name system query into a first class of a plurality of classes, wherein each class of the plurality of classes is associated with one predefined numerical range of a plurality of predefined numerical ranges, and wherein a target address unit of the first network address falls into the predefined numerical range associated with the first class, and forwarding the first domain name system query to a first collection server of a plurality of collection servers, wherein the first collection server is dedicated for collecting domain name system queries that are classified into the first class.
US10798049B2 Obscured routing
Systems and techniques are provided for obscured routing. A computing device may send stacks of identifiers to neighbor computing devices in a network. Each stack of identifiers may include a unique identifier for the neighbor computing device to which it is sent. The computing device may send a notification identifying a destination computing device to the neighbor computing devices. The computing device may receive stacks of identifiers from the neighbor computing devices. The received stacks of identifiers may include completed routes to the destination computing device. Each completed route may be specified by unique identifiers added to the stack of identifiers by computing devices in the network. A unique identifier in each stack of identifiers may not be resolvable to an address by the computing device. The computing device may send a message a neighbor computing device based on a unique identifier in a chosen stack of identifiers.
US10798048B2 Address resolution protocol suppression using a flow-based forwarding element
A method of suppressing ARP packets in a logical network comprising a set of data compute nodes (DCNs). The DCNs are hosted on a set of physical hosts. Each DCN has a protocol address and is connected to a forwarding elements (FE) on the corresponding host. Each FE has a set of flows that specifies a set of conditions to match a set of fields of each received packet and a set of actions to take on a packet that matches the set of conditions. An FE on a physical host receives a packet sent by a first DCN on the physical host and determines that the received packet is an ARP request packet by matching a set of fields in the packet with a set of conditions of a particular flow. The ARP request packet identifies a protocol address of a second DCN on the logical network. The PFE utilizes the actions specified by the particular flow to determine a corresponding hardware address for the target protocol address by searching an address-mapping table that maps the protocol address of each DCN to a corresponding hardware address. The PFE converts the ARP request packet to an ARP reply packet utilizing the set of actions specified by the particular flow, the ARP reply packet comprising the determined target address as a resolution of the ARP request. The PFE sends the ARP reply packet to the first DCN without broadcasting the ARP request to any DCNs on the logical network.
US10798046B1 System for integrating offsite data records with online data records
A network system and methods utilized for tracking activities related to an event, such as audio communications, chats, text messages, completion of forms, and other user interactions. The method generates at least one identifier, distributes the identifier(s) to at least one system, and uses the identifier(s) to associate interactions with network-based content across different entities, whereby at least one interaction can be anonymous. The method involves receiving a request sent to a database stored on a computer readable medium in response to online activity and any collected or known user information, creating a record thereof in response to the request, generating an identifier associated therewith, generating a code corresponding thereto, and using the identifier to associate activities related to an event and user information. The association happens through remote communication with a system that interacts with the event.
US10798042B2 Information sending method and apparatus
Data is identified for network transmission. A waiting period is determined for the particular data based on a content of the information. The particular data is transmitted to a device using a first transmission method. The first transmission method includes a mechanism to determine whether the particular data was received by the device. Determining whether the particular data transmitted using the first transmission method was received by the device. The particular data and a predetermined answer response identifier are transmitted to the device using a second transmission method. The second transmission method does not include a mechanism to determine whether the particular data was received by the device. Determining whether the particular data transmitted using the second transmission method was received by the device based on whether a response including the predetermined answer response identifier has been received. Transmitting additional data to the device using a non-mobile communication method.
US10798039B2 Intelligent real-time SMTP routing
A dynamic relay makes real-time decisions about routing to mail transfer agents (MTAs) of email envelopes received by the relay from an SMTP email server. Those decisions can be based on one or more factors, such as MTA respective statuses. They can also be based on information contained in x-header fields provided in the email messages' respective headers (e.g., identifying the individual/entity (or “client”) for whom the email envelope is being generated and/or an IP address of the MTA to select for load balancing or otherwise). This allows, for example, the relay to select among available MTAs for delivery of each message in order to segregate email message traffic for load-balancing and/or based on preferences of specific MTAs for specific clients, or otherwise, while bypassing MTAs that have been blacklisted or are suffering delays.
US10798038B2 Communication control method and information processing apparatus
A communication control method is for performing a process executed by a computer including a processor. The process includes storing, in a storage device of an information processing apparatus, a correspondence relationship of a first user, a second user associated with the first user, and a third user associated with the second user; receiving, at the information processing apparatus, a message from the first user to the third user, from a terminal of the first user; and sending, by the information processing apparatus, the message received from the terminal of the first user as a message from the second user, to a terminal of the third user.
US10798035B2 System and interface that facilitate selecting videos to share in a messaging application
Systems and methods are provided that facilitate selecting videos to share in a messaging session such as group video chat. In one or more aspects, a system is provided that includes an interface component configured to generate a graphical user interface that facilitates selecting by a user of the device, one or more videos provided by a remote streaming media provider, for sharing with one or more other users in association with a messaging session between the user and the one or more other users, the interface comprising a plurality of input categories including at least one video selection category corresponding to information identifying a set of videos associated with a shared attribute. The system further includes a presentation component configured to display the graphical user interface via a display screen of the device in response to a request.
US10798032B2 Method, system and recording medium for messenger service providing output effect
According to at least one example embodiment of the present disclosure, provided is a computer program that is combined with an electronic apparatus embodied via a computer and is stored in a computer-readable recording medium so as to execute a messenger service method including extracting input time information from input data included in a message; calculating output time information according to each of output units based on the input time information; and generating output data including the output time information for display on a display device.
US10798027B2 Personalized communications using semantic memory
Systems and methods are disclosed for personalized communications using semantic memory. In one implementation, a first communication is received from a user and processed to identify a first content element within the communication. The first content element is associated with a second content element within a content repository. A second communication that includes the first content element is received from the user. Based on an association between the first content element and the second content element within the content repository, a third communication that includes the second content element is generated and provided to the user in response to the second communication.
US10798023B2 Edge datapath using user-kernel transports
A novel design of a gateway that handles traffic in and out of a network by using a datapath daemon is provided. The datapath daemon is a run-to-completion process that performs various data-plane packet-processing operations at the edge of the network. In some embodiments, the datapath daemon dispatches packets to other processes or processing threads outside of the daemon. In some embodiments, the datapath daemon dispatches packets to a kernel network stack in order to support packet traffic monitoring.
US10798014B1 Egress maximum transmission unit (MTU) enforcement
Certain embodiments disclosed herein relate to method for egress maximum transmission unit (MTU) enforcement. The method may include receiving a protocol packet at an ingress interface of a network device; make a first determination of a protocol packet payload length; performing an ingress MTU identifier lookup in an ingress MTU identifier table using the protocol packet payload length to obtain an ingress MTU identifier; performing a packet propagation lookup to obtain an egress MTU identifier; performing an MTU enforcement lookup in an MTU enforcement table using the ingress MTU identifier and the egress MTU identifier to obtain an egress action; and performing the egress action.
US10798013B2 Method of data caching in delay tolerant network based on information centric network, computer readable medium and device for performing the method
Provided is a method of data caching in delay tolerant network based on information centric network and a recording medium and a device for performing the same. The data caching method includes: the step of checking a remaining buffer amount and a buffer usage amount of node, the step of caching data in the node which is received from another node according to a data caching policy, in case remaining buffer amount of the node is greater than a preset remaining buffer amount threshold, the step of deleting data cached in the node from the node according to a data deletion policy, in case the buffer usage amount of the node is less than a preset buffer usage amount threshold, and the step of setting an initial Time-to-Live (TTL) value of the data received from another node or updating a TTL of the data cached in the node using information of the data received from another node or information of the node.
US10798012B2 Jitter elimination and latency compensation at DetNet transport egress
In one embodiment, a method comprises receiving, by a transport layer executed by a processor circuit in an apparatus, an identifiable grouping of data; storing, by the transport layer, the data as transport layer packets in a buffer circuit in the apparatus, the storing including inserting into each transport layer packet a grouping identifier that identifies the transport layer packets as belonging to the identifiable grouping; and causing, by the transport layer, a plurality of transmitting deterministic network interface circuits to deterministically retrieve the transport layer packets from the buffer circuit for deterministic transmission across respective deterministic links, the grouping identifier enabling receiving deterministic network interface circuits to group the received transport layer packets, regardless of deterministic link, into a single processing group for a next receiving transport layer.
US10798011B2 Method and system for data stream processing
A method for processing a flow of data from a plurality of devices (1) is disclosed. The method comprises the following steps: receiving a data package (100) from a device (1); detecting whether said data package (100) relates to an active device (1) or a non-active device; and: if the data package (100) relates to an active device (1), delivering the data to a data processing facility (30); and if the data package relates to a non-active device (1), storing the data package in a raw-data archive (14).
US10798004B2 Network traffic appliance for triggering augmented data collection on a network based on traffic patterns
A method and system for increasing the collection of network traffic data in a network based on the occurrence of predetermined criteria. A network appliance manages network traffic in the network and passes data traffic on the network. Network traffic data is collected based on the data traffic passing through the network appliance at a normal level. It is determined whether the network traffic data indicates an abnormal condition. The collection of network traffic data is increased through the network traffic appliance when an abnormal condition is detected. The network traffic data from the increased collection is stored in a memory device.
US10797999B2 Multichannel input/output virtualization
Provided are systems, methods, and computer-readable medium for enabling sharing of a multi-channel packet processor by multiple processes executing on a network device. The network device can include a memory management unit, configured to include an address map. The address map can include a reserved portion. The virtual machine can allocate a guest portion in the address map, where the guest portion is allocated in a part of the address map that does not include the reserved portion. A first channel from the packet processor can be assigned to the guest portion, and the virtual machine can use the first channel to receive packets. The reserved portion can be assigned to a host process executing on the network device. A second channel from the packet processor can be assigned to the reserved portion. The host process can transmit packets to the network using the second channel.
US10797998B2 Route server for distributed routers using hierarchical routing protocol
Some embodiments provide a method for a computing device that implements a centralized logical routing component of a logical network that handles data traffic between the logical network and an external physical network. The method receives a first routing protocol message from a machine that implements a route server for a distributed logical routing component of the logical network. The first routing protocol message includes (i) a parameter identifying the machine as a route server and (ii) a set of logical network addresses. The method receives a second routing protocol message from the route server that specifies a next hop address for the set of logical network addresses. The method adds a route specifying the next hop address for the set of logical network addresses to a routing table of the centralized logical routing component. The added route has a higher priority than routes received from the external physical network.
US10797994B1 Decentralized system for distributing digital content
Disclosed are examples of decentralized systems and related apparatus, devices, computer program products, and methods for distributing digital content. In some implementations, an overlay network of fabric nodes is implemented in an application layer differentiated from an internet protocol layer. One or more network-wide parameters and a node identifier (ID) identifying a fabric node are obtained. A set of partition identifiers (IDs) for the node ID is determined using the one or more network-wide parameters. The partition IDs identify partitions to be managed by the fabric node. At least a portion of digital content in the overlay network can be distributed using a partition ID.
US10797992B2 Intelligent wide area network (IWAN)
In one embodiment, an electronic device maintains one or more tunnel-based overlays for a communication network. The communication network includes two or more physical provider networks. The device maintains a mapping between a particular application and the one or more overlays for the communication network. The device adjusts the mapping between the particular application and the one or more overlays for the communication network. The device causes one or more routers in the communication network to route traffic for the particular application according to the adjusted mapping between the application and the one or more overlays for the communication network.
US10797989B2 Scalable virtual traffic hub interconnecting isolated networks
Metadata indicating that an action implementation node and a routing decision master node have been assigned to a virtual traffic hub programmatically associated with one or more isolated networks is stored. The routing decision master node determines a first action to be implemented for packets of a network flow using state information of the isolated networks, and provides a representation of a first action to the first action implementation node. Based on performing the first action at the action implementation node, contents of a data packet received from one isolated network are transmitted to another isolated network.
US10797987B1 Systems and methods for switch stack emulation, monitoring, and control
Systems, methods, and machine-readable storage media to facilitate adaptive switch stack interaction are disclosed. Discovery may be performed via a network with respect to switches, each switch corresponding to a switch stack and including ports communicatively coupled to endpoint devices or access points. Switch data transmitted from the plurality of switches may be processed and used to develop models of the switches. Each model may include switch specifications, and a particular model may be used to emulate a particular switch. Emulation data may be created to facilitate a graphical representation formatted to represent the particular switch. The emulation data may be transmitted to an endpoint device to facilitate an emulation interface that may correspond to a graphical layout of the particular switch that allows access, via user-selectable interface elements, to a subset of the switch data that is mapped to the particular switch.
US10797984B1 Systems and methods for timestamping a data event
Systems and methods are provided for timestamping, which can include a signal generator, a detector, a sampler, a pulse detector, a timer, and a time-stamper. The signal generator can define a signal profile. The detector can i) detect a data event, and, upon detecting the data event, ii) instruct the signal generator to change from operating in a first mode of operation to operating in a second mode of operation. The sampler can sample the signal profile at a frequency of at least 4 GHz to generate a plurality of bits. The pulse detector can detect a change in the signal profile by detecting a change in value in the plurality of bits. The timer can time the change in the signal profile to provide at least one detection time measurement. The time-stamper can record in association with the data event a timestamp based on the at least one detection time measurement.
US10797983B1 Systems and methods for debugging network stacks based on evidence collected from selective tracing
A disclosed method may include (1) determining that a packet traversing a network device has been selected for conditional tracing by (A) comparing a characteristic of the packet against a firewall rule that calls for all packets exhibiting the characteristic to be conditionally debugged while traversing the network device and (B) determining, based at least in part on the comparison, that the firewall rule applies to the packet due at least in part to the packet exhibiting the characteristic, (2) tracing a journey of the packet within the network device in response to the determination by collecting information about the packet's journey through a network stack of the network device, and then (3) performing at least one action on the network device based at least in part on the information collected about the packet's journey through the network stack. Various other systems, methods, and computer-readable media are also disclosed.
US10797980B2 Information notifying apparatus
The present invention is to analyze information collected from each device via a network to a server, thereby not only detecting an abnormal state of the device itself, but also proposing replacement with another device being the most beneficial in a user's life or presenting an beneficial usage. An information notifying apparatus according to the present invention is further comprising: an information receiving unit configured to receive usage information transmitted from an electric device on a client side; an external condition information acquiring unit configured to acquire external condition information relating to performance or an operation state of the electric device; a presented information determining unit configured to determine information to be notified to a user based on the usage information and the external condition information; and an information transmitting unit configured to transmit the information determined by the presented information determining unit to a display device.
US10797979B2 Multi-link network gateway with monitoring and dynamic failover
Embodiments are directed to managing communication networks. One or more links associated with a gateway computer may be monitored. Each link may be associated with a network addresses, and the gateway computer is associated with a gateway identifier (GID). Metrics associated with the monitored links may be provided. Scores may be associated with the links based on the metrics. The scores may be modified based on policy information. The links may be compared based on the scores and the policy information. A comparison may be employed to activate a portion of the links such that the activated links may be employed to communicate over the networks with other gateway computers. The links may be compared based on updated metrics. The comparison of the updated metrics may be used to activate another portion of the links that are associated with the GID.
US10797976B2 System and methods for facilitating object assignments
The present invention determines which network devices are likely to have a positive result in engagements with terminal devices. A server can obtain data about network devices with respect to the communication session with a network site. Then the server can use rules to define a set of network devices that are eligible to interact or communicate with a terminal device. The server can connect to the network devices as randomly as possible. Terminal devices can initiate engagements with network devices. The server can detect characteristics in the interaction of engagements that have positive results. The server generates an evaluation protocol based on the characteristics, to assign new network devices a parameter representing how close the new network device conforms to the evaluation protocol. The parameter is used by the system in real-time to inform terminal devices as to which network devices to connect to and in what order.
US10797975B2 Apparatus, system and method of a wireless communication multi-stream sniffer
For example, a wireless communication multi-stream sniffer may configure a plurality of wireless communication sniffers to sniff a respective plurality of wireless streams by configuring the plurality of wireless communication sniffers according to a respective plurality of stream configurations; process a plurality of sniffer streams from the plurality of wireless communication sniffers, a sniffer stream from a wireless communication sniffer of the plurality of wireless communication sniffers including frame information of frames captured by the wireless communication sniffer according to a stream configuration of the wireless communication sniffer; and generate a unified sniffer stream by combining the plurality of sniffer streams based on the plurality of stream configurations.
US10797974B2 Enterprise server behavior profiling
Generation of behavior profiling reports is provided for enterprise server devices in a network of enterprise server devices, as well as generation and association of severity scores for behavior profiling reports generated for enterprise server devices included in the network of enterprise server devices. A method can comprise receiving historical security event data representing historical security events of a first device and owner data representing an owner of the first device, and, as a function of the historical security event data and the owner data, an anomalous contact established between the first device and the second device can be identified. Further, in response to identifying the existence of the anomalous contact, the second device can be depicted on a connected graph of anomalous contacts established by the first device.
US10797972B2 Visualization of analysis results of contents
A method, system and computer program product for visualizing analysis results of contents. Contents collected from various kinds of communication tools are read into memory. The contents are analyzed to obtain analysis results, where the analysis results include information on user groups, information on topics and degrees of involvement of users with the topic. Furthermore, user objects assigned according to the degree of involvement are dynamically displayed for a designated period of time and for each topic using the analysis results, where the displaying of each of the user objects is modified according to the degree of involvement and the information on a user group. A communication volume object which represents a communication volume between users may be further displayed between the user objects associated with these users and displayed so as to be different depending on the communication volume.
US10797970B2 Interactive hierarchical network chord diagram for application dependency mapping
The technology visualizes data flows within a datacenter in an interactive hierarchical network chord diagram. Based on analyzed data describing data flows, a portion of the data flows that originate at the same first endpoint and terminate at the same second endpoint can be grouped. Subsequently, the dataflow monitoring system displays an interactive hierarchical network chord diagram to include a chord with a first endpoint and a second endpoint. The chord represents the grouped portion of data flows that originate at the same first endpoint and terminate at the same second endpoint. Upon receiving a selection of the chord or the first endpoint of the chord, the dataflow monitoring system expands the grouped portion of the data flows into a more granular representation of the network.
US10797966B2 Service operation chaining
For a multi-tenant environment, some embodiments of the invention provide a novel method for forwarding tenant traffic through a set of service machines to perform a set of service operations on the tenant traffic. In some embodiments, the method performs a classification operation on a data message flow of a tenant, in order to identify a set of service operations to perform on the data message flow. For some data message flows, the classification operation selects the identified set of service operations from several candidate sets of service operations that are viable service operation sets for similar data message flows of the tenant. In some embodiments, the classification operation is based on a set of attributes associated with the data message flow (e.g., five tuple identifier, i.e., protocol and source and destination ports and IP addresses).
US10797964B2 System event notification service
A system event notification service detects that an event has occurred that impacts infrastructure of a computing resource service. In response to the event, the service identifies a customer account that is impacted by the event. The service generates, for the customer account, event data corresponding to a plurality of computing resources impacted by the event. The service provides the event data in accordance with one or more preferences specified in the customer account.
US10797963B2 Composition of custom key performance indicators for real-time analysis of network telemetry events
A graphical user interface (“GUI”) allows for the creation of custom key performance indicators (“KPIs”) for real-time analysis of network telemetry events. The GUI can include options for defining variables based on event attributes. These can correspond to events that exist in input telemetry streams at a stream processor. The GUI can allow creation of a formula based on these variables. An aggregation section specifies how the output of the formula is aggregated. This can be based on group, aggregation function, and time period. A manager process causes the stream processor to apply the custom KPI definition to real-time input streams. An output KPI stream can then be routed to a destination for analysis.
US10797959B2 LLDP based rack management controller
What is disclosed is a system and method to use discovery packets, such as in an LLDP message, for determining operational status of a rack system. A network device is connected to the port of a switch. Operational data may be sent or received via a discovery packet to the network device. The operational data may be determined by a management agent on the network device and sent to a management controller via the discovery packet. The operational data may be determined by the management controller and sent to the network device.
US10797958B2 Enabling real-time operational environment conformity within an enterprise architecture model dashboard
An enterprise model associated with an operational environment within an operational dashboard can be identified. The model can include an entity which can be an operational node, an architecture component node, a resource, a goal, or a constraint of an enterprise organization. The environment can include element which can be a computing resource and a computing resource state associated with the organization. An operational state change within the operational environment can be performed. A result of the change can be presented within an architectural view of the model within the dashboard. The result can include a context, a policy, a function, or a relationship affecting the model.
US10797956B2 Extending center cluster membership to additional compute resources
The present technology addresses a need to automatically configure a new compute resource to join an existing cluster of computing resources. The present technology provides a mechanism to ensure that the new compute resource is executing the same kernel version which further permits subsequent exchange at least one configuration message informing the new compute resource of necessary configuration parameters and an address to retrieve required software packages.
US10797952B1 Intelligent rollback analysis of configuration changes
Systems and methods to identify a plurality of different snapshot versions for a rollback to a previous configuration for subsets of network infrastructure devices is disclosed. A plurality of different network device configuration snapshots is identified and a set of snapshot checkpoints that each include a set of related parameter settings for each different network device are selected as a rollback configuration snapshot for that device. Each device may be associated with automated validation capabilities to validate a proposed rollback version. The computer system may iterate through a set of versions of snapshots and automatically initiate validation capabilities to validate a proposed rollback for the first logical grouping. Determination of a set of configurations may be based on a version control tag to restore a network to an operational state, never before seen in operation, that has a high degree of confidence, in part, because validation tests were successful.
US10797950B2 Systems and methods for dynamically configuring a network switch for monitoring
Systems and methods for dynamically configuring a network switch for monitoring are disclosed. Embodiments may include receiving an IP address associated with a network switch. Embodiments may also include probing the network switch based, at least in part, on the received IP address to obtain first information regarding the network switch, wherein the first information includes at least one of a vendor of the network switch, a model of the network switch, and a firmware version of the network switch. Embodiments may further include configuring the processor to monitor the network switch based on processing of the first information.
US10797946B2 Provisioning a network device
Methods, systems, and apparatus for provisioning a network device are disclosed. In one aspect, a message is received by a translation device from a controller. A determination is made, by the translation device, that the received message includes data that is destined for multiple different downstream network devices. A determination is made that a first downstream network device among the multiple different downstream network devices is incapable of being provisioned using a communications protocol of the received message. Data from the received message, that is destined for the first downstream network device, is translated, by the translation device, from the communications protocol of the received message to a translated message defined in a different protocol that is required to provision the first downstream network device. The translated message is transmitted, by the translation device, to the first downstream network device according to the different protocol.
US10797945B2 Methods are provided for flight management services in a cloud environment
Methods for providing a flight management service in a cloud computing environment, the method includes: receiving, an object request by a server from a mobile device wherein the server is located in the cloud computing environment including: at least a flight management system (FMS) connected to a stateless object; processing, by the connected FMS hosted by the server, the object request generating a resource object for a particular flight plan wherein the resource object includes a data set; storing, by the connected FMS, the data set at the stateless object in the cloud environment; and sending, by the server, an object response from the connected FMS to the mobile device, for accessing the data set of the stateless object for the particular flight plan.
US10797943B2 Configuration management in a stream computing environment
Disclosed aspects relate to configuration management in a stream computing environment to process a stream of tuples using a compiled application bundle. A set of configuration overlay parameters may be established separate from the compiled application bundle. A set of configuration overlay parameter values may be ascertained with respect to the set of configuration overlay data. A stream environment application overlay configuration may be determined based on the set of configuration overlay parameter values. The stream of tuples may be processed using the stream environment application overlay configuration.
US10797941B2 Determining network element analytics and networking recommendations based thereon
A network element includes one or more hardware memory resources of fixed storage capacity for storing data used to configure a plurality of networking features of the network element. A utilization management process runs on the network element to perform operations including obtaining utilization data representing utilization of the one or more hardware memory resources, and analyzing the utilization data of the one or more hardware memory resources to produce summarized utilization data.
US10797935B2 Methods and apparatus for enhancing native service layer device management functionality
Enhancements to the device management functionality within service layer architecture of a Gateway node are described. The SL application registration procedure can be enhanced for devices in support of device management. Functionality can be added to the service layer to initiate automated request notification for DM purposes. Lightweight SL Transport Protocol bindings can support sending multiple DM commands called DM Action Scripts with a specific focus on the Constrained Application Protocol (CoAP) Protocol.
US10797931B2 Systems and methods for using seektables to stream media items
In one aspect, a first client device receives, from a second client device, a request to stream a media item from a first position within the media item. The first client device obtains, from a server, a seektable that identifies a plurality of segments into which content corresponding to the media item is divided, wherein each segment of the plurality of segments corresponds to multiple samples of the media item. The first client device consults the seektable to determine a segment of the media item to retrieve in response to the request, the segment including content at the first position. After consulting the seektable, the device retrieves, from the server, the segment of the media item. The first client device plays the content corresponding to the first position using the retrieved segment.
US10797928B2 Frame formats for distributed MIMO
Disclosed herein are related to systems and methods for a multiple-input multiple-output (MIMO) communication. In one aspect, during a first time period, a master access point transmits, to a slave access point, information for a joint transmission by the master access point and the slave access point. In one aspect, the slave access point estimates synchronizing information for the joint transmission, according to the information for the joint transmission. In one aspect, during a second time period after the first time period, the master access point transmits a portion of a steered frame to a station device. In one aspect, the slave access point transmits, during the second time period, the portion of the steered frame to the station device, based on the synchronizing information. In one aspect, the station device decodes the portion of the steered frame to obtain content data in the portion of the steered frame.
US10797927B2 Methods and apparatus for supporting use of multiple beams for communications purposes
Methods and apparatus for facilitating the use of a plurality of antenna beams for communications purposes are described. In at least some embodiments beam priority information is periodically exchanged. Multiple timers are used to ensure beam information is exchanged at intervals intended to facilitate reliable beam synchronization and to control switching to one or more alternative beams in a predictable manner in the event beam change information or beam synchronization information is lost. In some but not all embodiments a wideband beam is used to communicate beam synchronization information when synchronization using narrower beams used for normal data communication is lost.
US10797924B2 Method and apparatus for sending information
Provided is a method and apparatus for sending information. The method includes determining uplink information and/or a reference signal to be sent; and sending the uplink information and/or the reference signal to a communication node via a first sequence.
US10797923B2 Enhancing data transfer
There is provided a method comprising: obtaining, by an apparatus, a first data block, a second data block and a third data block; generating a first signal, wherein a first part of the first signal is generated based on a data of the first data block, and wherein a second part of the first signal is generated based on a data of the second data block, the second part being subsequent in time domain compared with the first part; generating a second signal, wherein a first part of the second signal is generated based on a data of the third data block, and wherein a second part of the second signal is generated based on the data of the second data block, the second part being subsequent in time domain compared with the first part; and transmitting the first and second signals.
US10797918B2 Resource allocation for data transmission in wireless systems
Techniques are disclosed for allocating time-frequency resources in a system that uses multiple multicarrier modulation numerologies. According to one aspect, a method in a first wireless node comprises allocating (1310) time-frequency resources for use by a second wireless node, where said allocating comprises selecting, for use in multicarrier modulation in the allocated time-frequency resources, one of two or more subcarrier bandwidths that the second wireless node is adapted to use for modulating or demodulating of data. In some embodiments, the method further comprises sending (1320) resource allocation information to the second wireless node, the resource allocation information identifying the allocated time-frequency resources.
US10797916B2 EHF receiver architecture with dynamically adjustable discrimination threshold
An EHF receiver that determines an initial slicing voltage level and dynamically adjusts the slicing voltage level and/or amplifier gain levels to account for characteristics of the received EHF electromagnetic data signal. The architecture includes an amplifier, detector, adaptive signal slicer, and controller. The detector includes a main detector and replica detector that convert the received EHF electromagnetic data signal into a baseband signal and a reference signal. The controller uses the baseband signal and reference signal to determine an initial slicing voltage level, and dynamically adjust the slicing voltage level and the gain settings of the amplifier to compensate for changing signal conditions.
US10797915B2 Apparatus and method for processing a received input signal containing a sequence of data blocks
An apparatus and method are provided for processing a received input signal comprising a sequence of data blocks. Counter circuitry within the apparatus is arranged to receive a digital representation of the input signal, and for each data block generates a count value indicative of occurrences of a property of the digital representation (for example a rising edge or a falling edge) during an associated data block transmission period. Quantization circuitry then maps each count value to a soft decision value from amongst a predetermined set of soft decision values, where the number of soft decision values in the predetermined set exceeds a number of possible data values of the data block. The output circuitry then generates a digital output signal in dependence on the soft decision values. Such an apparatus has been found to provide a low power technique for a receiver, whilst still enabling the improved sensitivity benefits of using soft decisions to be achieved, and allows the apparatus to be constructed using all digital components.
US10797913B2 Reciprocity based FDD FD-MIMO DL channel CSI acquisition
Reciprocity base frequency division duplex (FDD) multiple-input-multiple-output (MIMO) downlink (DL) channel Channel-State Information (CSI) acquisition is provided. A base station (BS) includes a transceiver configured to measure uplink (UL) sounding reference signals (SRSs) at a UL carrier frequency, using two polarization components of an antenna array of the BS, and a processor configured to determine a quantity of propagation paths between the BS and a user equipment (UE), for each of the determined propagation paths, extract propagation parameters from the UL SRS measurements, for each of the determined propagation paths, predict a downlink (DL) channel based on the extracted propagation parameters and a DL carrier frequency, and generate a precoding channel matrix for the UE by summing the predicted DL channels for each of the determined propagation paths and for each of the two polarization components of the antenna array of the BS.
US10797912B2 Relay device and relay method
A relay device includes one or more memories, and one or more processors configured to, based on an amount of traffic regarding each of a plurality of ports included in a plurality of relay devices including the relay device belonging to an MLAG, determine whether a total amount of traffic in the MLAG is no more than a first threshold, in a case where the total amount of traffic in the MLAG is no more than the first threshold, select a first port from among the plurality of ports in accordance with the amount of traffic regarding each of the plurality of ports, and turn off the first port in a case where the first port is included in the relay device.
US10797906B2 Over-the-top internet service provisioning
Novel tools and techniques for provisioning OTT internet services are provided. A system includes a user device associated with a first customer, a first physical customer local area network, and an enhanced network gateway. The enhanced network gateway may be configured to instantiate a virtual gateway associated with the first physical customer local area network, create a secure domain associated with the first physical customer local area network, determine whether a subscriber account is associated with the first customer. Responsive to determining that a subscriber account is not associated with the first customer, the enhanced network gateway may further provide a consumer portal to the user device, receive a selection of one or more services through the consumer portal, establish a connection to a service provider network associated with the one or more services, and provision the one or more services over the first physical customer local area network.
US10797903B2 Control device and method thereof
A control device which controls the power of a plurality of apparatuses in a home network, and a method thereof are provided. The control device includes an input unit which receives a power off command, and a control unit which concurrently turns off apparatuses which are currently turned on among the plurality of apparatuses in response to the power off command received by the input unit. Therefore, it is possible for a user to concurrently turn off currently running apparatuses so user convenience can increase.
US10797902B2 Control of network-connected devices in accordance with group preferences
A processing system including at least one processor may detect the presence of at least two users in a zone containing a network-connected device, obtain preferences and tolerance ranges of the at least two users with respect to the network-connected device, select a setting for the network-connected device in accordance with the preferences and tolerance ranges of the at least two users, and apply the setting to the network-connected device. The processing system may further detect a change of the setting, and adjust at least one of the preferences and tolerance ranges of the at least two users in response to the change of the setting.
US10797893B2 Single pair ethernet management interface
In one embodiment, a method includes detecting a slave device at a master device, determining at the master device if the slave device is configured for I2C (Inter-Integrated Circuit) or SPE (Single Pair Ethernet) based on an output at the slave device, and selecting an I2C mode of operation at the master device if the slave device is configured for I2C, or selecting an SPE mode of operation at the master device if the slave device is configured for SPE. Data and control are selected from an I2C controller at the master device in the I2C mode of operation and selected from a physical coding sublayer at the master device in the SPE mode of operation.
US10797892B2 Accessing composite data structures in tiered storage across network nodes
Aspects of the disclosed technology relate to ways to determine the optimal storage of data structures across different memory device is associated with physically disparate network nodes. In some aspects, a process of the technology can include steps for receiving a first retrieval request for a first object, searching a local PMEM device for the first object based on the first retrieval request, in response to a failure to find the first object on the local PMEM device, transmitting a second retrieval request to a remote node, wherein the second retrieval request is configured to cause the remote node to retrieve the first object from a remote PMEM device. Systems and machine-readable media are also provided.
US10797891B2 Physically unclonable function resistant to side-channel attack and method therefor
A physically unclonable function (PUF) system is provided. The PUF system includes an entropy source, a plurality of selectable paths, a random selection block, and error correction logic. The plurality of selectable paths are formed between the entropy source and an output for providing a PUF response. The random selection block is for randomly selecting one of the plurality of selectable paths in response to receiving a challenge. The error correction logic is coupled to the output for receiving the PUF response and for correcting any errors in the PUF response for the plurality of selectable paths. By using a different path through the entropy source each time a challenge is received, protection is provided against side-channel attacks.
US10797884B2 Methods of facilitating packet-based connections
Methods of facilitating communication between clients and servers are contemplated. Embodiments of the inventive subject matter make it possible for a client to establish a packet-based connection with a server by first authenticating with a web backend. This can enable, for example, a client to establish a packet-based connection with a server though a web browser.
US10797882B2 Systems and methods for cryptographic authentication of contactless cards
Example embodiments of systems and methods for data transmission in a contactless card are provided. The contactless card may include a processor, and a memory. The memory may contain a first applet, a second applet, and a plurality of keys. The first applet and the second applet may be stored within a shared security domain. The second applet may be configured to communicate with the first applet to perform one or more cryptographic services. The second applet may be configured to transmit one or more requests to the first applet to encode one or more payload strings based on the plurality of keys to perform the one or more cryptographic services. The first applet may be configured to perform the one or more cryptographic services on behalf of the second applet based on the one or more requests.
US10797880B2 Access manager
An access manager determines whether access will be granted to a guarded species or space utilizing a controller including a digital processor with a memory for storing an ID library and a transducer block coupled with the processor for accessing a plurality of different ID types and an actuator block coupled with the processor for unblocking a normally locked portal to the guarded space.
US10797879B2 Methods and systems to facilitate authentication of a user
Disclosed is a method of facilitating authentication of a user. The method may include performing at least one of generating and receiving, using a processor, a primary cryptographic identifier consisted of a primary public key and a primary private key. Further, the method may include generating, using the processor, a global static user identifier corresponding to the user based on the primary public key. Further, the method may include generating, using the processor, a digital signature corresponding to a service based on a unique identifier associated with the service and the primary cryptographic identifier. Further, the method may include generating, using the processor, a key generation seed based on the digital signature and the global static user identifier. Further, the method may include generating, using the processor, a secondary cryptographic identifier including a secondary public key based on the key generation seed.
US10797877B2 Method and system for byzantine fault-tolerance replicating of data
A method for byzantine fault-tolerance replicating of data on a plurality of n servers includes performing a preprocessing procedure. The n servers include one primary node (PN) and n−1 backup nodes (BN), wherein f servers may arbitrarily fail, and wherein all n servers have a trusted computing entity (TCE). The preprocessing procedure is performed by the TCE of the PN and includes computing a random secret value for a unique, monotonic, sequential counter (UMSC) to be assigned with a request message for requesting an operation to be performed, computing a commitment for the random secret value and the UMSC, and splitting the random secret value into a plurality of shares. The preprocessing procedure further includes computing a server-specific authenticated encryption of each share, and providing the computed server-specific shares and the computed commitment to the respective servers.
US10797874B2 Secure cryptlet tunnel
The disclosed technology is generally directed to secure transactions. In one example of the technology, a secure encrypted communication tunnel between the enclave and a hardware security module (HSM) may be established and used. Establishing the tunnel includes the following steps. A session public/private enclave key pair, including a session enclave private key and a session enclave public key, may be derived from the public/private key pair of the enclave. The session enclave public key may be sent to the HSM. A session HSM public key may be received from the HSM. Additional information may be encrypted with the session HSM public key. The encrypted additional information may be sent to the HSM. Further encrypted information may be received from the HSM. The further encrypted information may be decrypted with the session enclave private key.
US10797869B1 Systems and methods for quantum session authentication
Systems, apparatuses, methods, and computer program products are disclosed for session authentication. An example method includes receiving, by decoding circuitry and over a quantum line, a set of qbits generated based on a first set of quantum bases. The example method further includes decoding, by the decoding circuitry and based on a second set of quantum bases, the set of qbits to generate a decoded set of bits. The example method further includes generating, by session authentication circuitry, a session key based on the decoded set of bits.
US10797865B2 Key data processing method and apparatus, and server
A parent cryptographic key associated with a blockchain object is obtained. A number of parties (N) to share control over the blockchain object is obtained. N child cryptographic keys are generated based on the parent cryptographic key by applying a predetermined algorithm to the parent cryptographic key, wherein N is an integer greater than or equal to 2, and wherein the N child cryptographic keys are collectively configured to enable reconstruction of the parent cryptographic key.
US10797861B2 Secure data transactions
A data exchange agreement between a first user and a second user is written, by a data exchange platform, into a block chain. The data exchange agreement is associated with first data. A first key is received, by the data exchange platform and from a first device associated with the first user. The first key is used for decrypting encrypted first data. The received first key is transmitted by the data exchange platform to a second device associated with the second user.
US10797857B2 Data interleaving scheme for an external memory of a secure microcontroller
The invention relates to methods of interleaving payload data and integrity control data in an external memory interfaced with a microcontroller to improve data integrity check, enhance data confidentiality and save internal memory. Data words are received for storing in the external memory. Each data word is used to generate a respective integrity word, while an associated logic address is translated to two physical addresses in the external memory, one for the data word and the other for the integrity word. The two physical addresses for the data and integrity words are interleaved in the external memory, and sometimes, in a periodic scheme. In particular, each data word may be associated to an integrity sub-word included in an integrity word having the same length with that of a data word. The external memory may have dedicated regions for the data words and the integrity words, respectively.
US10797848B2 Control and data multiplexing in communication systems
Disclosed is a method performed by a user equipment (UE) in a wireless communication system, including identifying first offset information and second offset information, determining a size of uplink data for the UE, and transmitting, to a base station in the wireless communication system, the uplink data with at least one of acknowledgement/non-acknowledgment (ACK/NACK) information and channel quality indicator (CQI) information on a physical uplink shared channel (PUSCH), wherein a number of symbols for the ACK/NACK information is determined based on the first offset information and the size of the uplink data, and wherein a number of symbols for the CQI information is determined based on the second offset information and the size of the uplink data.
US10797843B2 Method and device for detecting and transmitting information
Embodiments of the present invention disclose a method and a device for detecting and transmitting information. The method includes: obtaining, by a UE, at least one type of configuration information of an antenna port occupied by a D-PDCCH, which is configured on a base station side; determining, by the UE, a search space of the D-PDCCH; and detecting, by the UE, the D-PDCCH in the search space according to the antenna port configuration information. With the embodiments of the present invention, the UE can detect the D-PDCCH, and therefore data transmission is ensured. Furthermore, a blind detection of a PDCCH by the UE based on time-frequency resources in an existing system is extended to a spatial dimension, that is, an antenna port, thereby increasing the efficiency of resource utilization, so that the D-PDCCH can be detected in the spatial dimension.
US10797837B2 User terminal, radio base station and radio communication method
The present invention is designed to reduce the time it takes to form adequate beams, in communication using beamforming. According to one aspect of the present invention, a user terminal has a transmission section that, using temporally orthogonal radio resources, forms different transmitting beams and transmits reference signals respectively to a radio base station, and a control section that controls the forming of the transmitting beams so that at least one of the reference signals is received in a receiving beam which the radio base station forms in a given period set.
US10797836B2 Measurement of data streams comprising data and pilot channels
A method comprises receiving a data signal on a data channel and a pilot signal on a pilot channel, demodulating the received data signal and the received pilot signal to obtain a demodulated data signal and a demodulated pilot signal, generating a data stream by decoding the demodulated data signal, generating a feedback signal by encoding the data stream, and performing a measurement of a coherent sum signal comprising the coherent sum of (1) the demodulated pilot signal and (2) the product of the demodulated data signal and the feedback signal.
US10797830B2 Signal multiplexing apparatus using layered division multiplexing and signal multiplexing method
An apparatus and method for multiplexing signals using layered division multiplexing are disclosed. A signal multiplexing apparatus according to an embodiment of the present invention includes a combiner configured to combine a core layer signal and an enhanced layer signal at different power levels to generate a multiplexed signal, a power normalizer configured to reduce power of the multiplexed signal to power corresponding to the core layer signal, and a time interleaver configured to perform interleaving applied to both the core layer signal and the enhanced layer signal.
US10797821B1 Signaling PHY preamble formats
A communication device receives a physical layer (PHY) data unit via a communication channel, and analyzes i) a length value in a field in a legacy portion of a PHY preamble of the PHY data unit, and ii) a phase of modulation of an orthogonal frequency division modulation (OFDM) symbol in a non-legacy portion of the PHY preamble. The communication device determines a format of the received PHY data unit corresponding to the analysis of i) the length value and ii) the phase of modulation of the OFDM symbol in the non-legacy portion of the PHY preamble, where the determined format is from a set of multiple PHY formats defined by a communication protocol. The communication device then processes the received PHY data unit according to the determined format.
US10797819B2 Method and device for controlling the load of an optical transmission line with wavelength-division multiplexing
A load-controlling device controlling load on an optical transmission line, the input of which is coupled to an emitting device for modulating with data and multiplexing a plurality of useful wavelengths into a useful optical signal to be transmitted over the transmission line. The load-controlling device includes elements for generating a filler optical signal composed of at least one filler wavelength that is not modulated by data, to be injected into the optical transmission line. The generating elements generate a source optical signal composed of a plurality of wavelengths corresponding to the plurality of wavelengths of the useful optical signal and selects the wavelength of the filler optical signal among the wavelengths of the source optical signal. A control module controls selection of the wavelength of the filler optical signal depending on information indicative of non-turn-on of a wavelength among the plurality of wavelengths of the useful optical signal.
US10797818B1 Dynamic data-driven power scaling in an optical node and network
Systems and methods include obtaining power measurements from one or more first components in an optical node and store the power measurements at corresponding vertices in a graph that describes the optical node; obtaining calibration data from a plurality of second components in the optical node and utilize the calibration data to determine an optical gain or an optical loss through an associated arc in the graph; and determining an optical power at any point in the optical node via traversing the graph, for any of configuration and operation of the optical node. The graph includes the vertices that are points in the optical node where there is a need for optical power, the arcs that are connections through the optical node where the optical power has the optical gain or the optical loss, and optical channels and their associated optical spectrum.
US10797817B2 Optical signal processing device
Provided is an optical signal processing device that can operate simultaneously for a plurality of wavelength bands. The optical signal processing device includes a WDM coupler array including a plurality of WDM couplers for separating the C band and the L band for the respective ports; input/output port groups provided for the C band and the L band, respectively; a micro lens array; a diffraction grating; a lens; and a spatial light modulator arranged in this order. The spatial light modulator collects light at different positions for the respective wavelengths, thus allowing all wavelengths to be independently subjected to a phase modulation. Light subjected to the desired phase modulation by the spatial light modulator is reflected and is deflected to have an angle corresponding to any desired port of the input/output port group, and then is optically-coupled to an input/output port depending on the deflection angle.
US10797816B1 Method for providing path signal overhead in the 64B/66B character stream of an ITU-T metro transport network
A method for extracting POH data blocks and a MOS control block from a data stream in a 64B/66B-block communication link including receiving a data stream, finding a first combination of a MOS control block and K POH data blocks including CRC data in the data stream, extracting the MOS control block and the K POH data blocks from the data stream, searching in a window for a subsequent combination of a MOS control block and K POH data blocks and removing them if at least one of them are found, if neither the subsequent MOS control block nor the K POH data blocks are found within the predetermined window, extracting from the data stream K+1 64B/66B-blocks in the predetermined window.
US10797815B1 Radio genre enhancement using crowd-sourced listener data
A memory is configured to store listener data indicative of radio stations listened to by a plurality of listeners and genre classifications of the radio stations. A processor is programmed to combine a plurality of the genre classifications into a single combined genre classification responsive to listener behavior across the plurality of listeners indicating overlap in listening to the plurality of the genre classifications; separate one of the genre classifications into a plurality of separated genre classifications responsive to listener behavior across the plurality of listeners indicating disparate subsets of radio stations within the one of the genre classifications; and reclassify the radio stations according to the genre classifications as updated.
US10797808B2 Method for testing wireless performance of MIMO wireless terminal
A method for testing wireless performance of a MIMO wireless terminal includes: obtaining antenna pattern information of a plurality of antennas of the MIMO wireless terminal tested in an electromagnetic anechoic chamber; further obtaining a test signal according to the antenna pattern information of the MIMO wireless terminal; calibrating the test signal by using an error calibration joint matrix of the MIMO wireless terminal so as to obtain a transmitting signal for testing; and finally feeding the transmitting signal for testing into a plurality of measurement antennas of the electromagnetic anechoic chamber and transmitting the transmitting signal to the wireless terminal through the measurement antennas so as to test the wireless terminal.
US10797799B2 Optical transmission apparatus, optical transmission system, and optical transmission method
An optical transmission apparatus includes a wavelength variable filter whose transmission light wavelength is variable; a receiver that receives light, the light being sent from another optical transmission apparatus and passing through the wavelength variable filter; a transmitter that sends to the another optical transmission apparatus, a utilization permission request for a second wavelength corresponding to a first wavelength of the light received by the receiver, the transmitter sending the utilization permission request as light of the second wavelength and in a form of a tone signal of a predetermined frequency; and a controller that, when receiving from the another optical transmission apparatus, a utilization permission notification of the second wavelength for a sender of the utilization permission request, configures a wavelength of a main signal to the second wavelength, the main signal being sent from the transmitter to the another optical transmission apparatus.
US10797798B2 Optical power and gain detection apparatus and method for optical amplifier in burst mode
An optical power and gain detection apparatus including multiple optical power detection circuits, an FPGA device, and a temperature detection circuit. Various optical power detection circuits include a respective independent photoelectric converter, a trans-impedance amplifier, an analog signal conditioning circuit, a filter and an analog-digital conversion chip. By improving an analog circuit, digital detection and control in an optical amplifier, the property of the FPGA device may be used to realize the detection of optical signal and gain in a burst mode, avoid increasing complicated analogue circuits, and avoid the influence caused by element inconsistency in an analogue control solution. Whether the optical signal is in a stable mode or in a burst mode, the algorithm can detect the optical power accurately and stably, with a wide application range. By strictly controlling the synchronism of ADC sampling and the delay of calculation, the amplifier gain may be calculated more accurately.
US10797796B2 Systems and methods for multipath and reflection compensation in full duplex coherent optical transmissions
A full duplex communication network includes a first coherent optics transceiver having (i) a first receiver, and (ii) a first transmitter configured to transmit a first dual polarized signal. The network further includes a second coherent optics transceiver having (i) a second receiver configured to receive the first dual polarized signal, and (ii) a second transmitter configured to transmit a second dual polarized signal. The network further includes an optical transport medium operably coupling the first coherent optics transceiver to the second coherent optics transceiver, and a first compensation module configured to filter (i) crosstalk between orthogonal components of the first dual polarized signal, and (ii) reflections between the first dual polarized signal and the second dual polarized signal.
US10797792B1 Distributed network diagnostics
Information from optical modules can be combined with information from network switches to help detect and pinpoint problems along a network communications path. A control path between a network switch and a microcontroller of an optical module can be used to obtain monitoring and debugging data from a digital signal processor (DSP) of the optical module. The DSP data can be used with performance data from the network switch to separately determine the health of the electrical and optical sections of the communications link. The ability to pinpoint problems with the communications link enables appropriate remedial actions to be determined and taken automatically.
US10797791B2 Detecting a transceiver using a noise optical signal
A method may include causing a signal to be transmitted that includes a plurality of wavelengths. The signal may be transmitted via an optical fiber that is associated with a particular wavelength. The particular wavelength may be included in the plurality of wavelengths. The method may include filtering the signal, based on the particular wavelength, to generate a filtered signal. The filtered signal may include the particular wavelength. The method may include detecting the filtered signal in association with the optical fiber. The method may include determining the particular wavelength based on the filtered signal. The method may include storing or providing information identifying at least one of the particular wavelength, the optical fiber, or a transmitter that transmitted the signal.
US10797786B1 Method for predicting spot beam high throughput satellite system performance
Method for determining high-throughput-satellite (HTS) system user downlink signal-to-noise-plus-interference ratios (SNIRs) and SNIR distributions is provided, including a procedure for estimating parameters of one spot beam and that for multiple co-color spot beams, and the projection of the satellite antenna radiation patterns onto Earth to form the spot beam power spatial distributions that lead to the SNIRs and SNIR distributions of stationary or mobile user terminals (UTs) in clear sky (CS) line-of-sight (LOS) propagation channel conditions. The estimation precision is controllable. The method is implemented in a programming language run on computational hardware with built-in or connected user interface (UI) devices including desktops, laptops, severs or super-computers. It can be used alone or as part of a simulation package or part of a system operation management software of the control gateway (GW) in the HTS system for system downlink designs.
US10797784B2 Satellite with regenerative processor
A satellite system that includes a gateway, a satellite, and a user terminal. The gateway determines a modulation scheme based on a function of uplink and downlink signal quality and a defined relationship between the downlink modulation to the uplink modulation. The satellite includes an input demodulator configured to apply an input modulation and coding (modcod) scheme; an output modulator configured to apply an output modcod scheme; and an output modcod scheme selector configured to select an output modcod scheme for the output modulator based on the input modcod scheme according a predetermined relationship between input modcod schemes and output modcod schemes. The user terminal providing the gateway a measure of downlink signal quality.
US10797781B2 Client node device and methods for use therewith
Aspects of the subject disclosure may include, for example, a client node device having a radio configured to wirelessly receive downstream channel signals from a communication network. An access point repeater (APR) launches the downstream channel signals on a guided wave communication system as guided electromagnetic waves that propagate along a transmission medium and to wirelessly transmit the downstream channel signals to at least one client device. Other embodiments are disclosed.
US10797780B2 Multisite trunking system and site switching method
Upon reception of ACK via a communication IF, an allocator allocates a channel of a repeater to be controlled to communications between wireless terminals. A determination unit determines whether channels allocatable to the communications between the wireless terminals are short. When the determination unit has determined that the allocatable channels are short, a switching controller controls at least one repeater, among repeaters to be controlled by a repeater controller, that serves as a controlling repeater to cause the repeater to transmit, to a wireless terminal standing by in the channel of the repeater, a switching signal designating standby in a channel of a repeater that is controlled by another repeater controller.
US10797778B2 Wireless communication system and drone system using the wireless communication system
A wireless communication system and a drone system using the wireless communication system are provided. The wireless communication system includes a first communication module and a second communication module. The first communication module transmits a same signal in a first frequency band and a second frequency band respectively by means of power splitting and frequency conversion, the first frequency band being different from the second frequency band. The second communication module separately receives the signal transmitted by the first communication module in the first frequency band and the signal transmitted by the first communication module in the second frequency band, and converts the received signal of the second frequency band into the signal of the first frequency band through frequency conversion, and performs diversity reception with the received signal of the first frequency band. The present utility model can effectively avoid interference of a single frequency band, to improve the reliability of communication.
US10797777B2 Method for communication between terminals, network-side device, and terminal
This application relates to the field of wireless communications technologies, and provides a method for communication between terminals, a network-side device, and a terminal. The method discloses that the network-side device allocates, to the terminal, time-frequency resources for transmitting uplink information and sidelink information. On the time-frequency resources and at a same moment in a range of time domain-frequency resources, the terminal transmits the uplink information used for performing uplink beamform training to the network-side device, and transmits the sidelink information used for performing sidelink beamform training to another terminal. According to solutions provided in this application, based on conventional uplink and downlink beamform training procedures, the terminal performs the sidelink beamform training without additionally using a new time-frequency resource.
US10797772B2 Phase shifter, communication device, and phase shifting method
A phase shifter (60) is provided corresponding to an antenna element constituting an array antenna and is configured to change a phase of a radio frequency signal to be transmitted or received by a corresponding antenna element. The phase shifter (60) includes a first distributor (61) configured to distribute the radio frequency signal input thereto into a plurality of first distributed signals having mutually different phases; second distributors (62) provided corresponding to the first distributed signals, the second distributors each being configured to distribute a corresponding one of the first distributed signals into a plurality of second distributed signals having mutually different amplitudes; a controller (63) configured to control on/off of the second distributed signals; and a combiner (64) configured to combine the second distributed signals that are controlled on by the controller (63).
US10797770B2 Non-uniform antenna array and signal processing therefor
The present disclosure relates to a non-uniform antenna array and signal processing therefor. Specifically disclosed is a device at a transmitting end, comprising a plurality of antenna elements arranged in a vertical direction. Spaces between adjacent antenna elements of at least a part of the plurality of antenna elements increase gradually in a first direction.
US10797767B2 Beamforming for hybrid antenna arrays
A wireless device, comprising: a hybrid antenna array configured to receive a signal transmitted by another wireless device over a wireless channel; and a transceiver configured to update analog radio frequency precoders of a hierarchical codebook based on magnitudes of multipath components of the wireless channel.
US10797764B2 Pilot scheme for a MIMO communication system
The present invention employs a pilot scheme for frequency division multiple access (FDM) communication systems, such as single carrier FDM communication systems. A given transmit time interval will include numerous traffic symbols and two or more short pilot symbols, which are spaced apart from one another by at least one traffic symbol and will have a Fourier transform length that is less than the Fourier transform length of any given traffic symbol. Multiple transmitters will generate pilot information and modulate the pilot information onto sub-carriers of the short pilot symbols in an orthogonal manner. Each transmitter may use different sub-carriers within the time and frequency domain, which is encompassed by the short pilot symbols within the transmit time interval. Alternatively, each transmitter may uniquely encode the pilot information using a unique code division multiplexed code and modulate the encoded pilot information onto common sub-carriers of the short pilot symbols.
US10797763B2 Quantization of channel state information in multiple antenna systems
A method of transmission over multiple wireless channels in a multiple antenna system includes storing channel modulation matrices at a transmitter; receiving quantized channel state information at the transmitter from plural receivers; selecting a transmission modulation matrix using the quantized channel state information from the stored channel modulation matrices; and transmitting over the multiple channels to the plural receivers using the selected transmission modulation matrix. In another embodiment, the method includes storing, at one or more receivers, indexes of modulation matrices generated by a capacity enhancing algorithm; upon a selected one of the one or more receivers receiving a transmission from the transmitter, the selected receiver selecting a modulation matrix from the stored modulation matrices that optimizes transmission between the transmitter and the selected receiver; the selected receiver sending an index representing the selected modulation matrix; and receiving the index at the transmitter from the selected receiver.
US10797760B2 Shared-antenna interface apparatus for simultaneous transmit and receive
An apparatus for simultaneous transmit and receive is provided. The apparatus is capable of rejecting or passing transmitter and receiver signals. The apparatus includes: a transmitter; an antenna (e.g., a shared antenna); a receiver including switches controllable by time varying signals; and a quadrature coupler including first, second, third, and fourth ports, wherein the first port is coupled to the transmitter, wherein the second port is coupled to the antenna, and wherein the third and fourth ports are coupled to the receiver.
US10797759B2 Distributed antenna system with adaptive allocation between digitized RF data and IP formatted data
Embodiments described herein provide for a distributed antenna system including a host unit and an active antenna unit (AAU). The AAU is configured to wirelessly communicate with, and to receive uplink radio frequency (RF) signals from, one or more wireless devices. The AAU is further configured to sample the uplink RF signals to generate digitized RF data. The AAU includes an Ethernet interface for receiving Internet Protocol (IP) formatted data from an IP device coupled to the Ethernet interface. The AAU is configured to transport the digitized RF data and the IP formatted data over a transport signal to the host unit, the transport signal including a plurality of bits. The AAU is configured to adaptively adjust the number of bits that are allocated to the digitized RF data and the number of bits that are allocated to the IP formatted data.
US10797754B2 Controlling zones of electronic devices associated with power lines
Methods, systems, and apparatus for monitoring and controlling electronic devices using wired and wireless protocols are disclosed. The systems and apparatus may monitor their environment for signals from electronic devices. The systems and apparatus may take and disambiguate the signals that are received from the devices in their environment to identify the devices and associate control signals with the devices. The systems and apparatus may use communication means to send control signals to the identified electronic devices. Multiple apparatuses or systems may be connected together into networks, including mesh networks, to make for a more robust architecture.
US10797748B2 Pairwise cross correlation sequences for non-orthogonal multiple access wireless communications
Methods, systems, and devices for wireless communications are described that support pairwise cross correlation sequences for non-orthogonal multiple access wireless communications. A user equipment (UE) may receive, from a base station, an indication of a spreading factor and a number of transmitters in a group of non-orthogonal multiple access (NOMA) transmitters configured for concurrent transmissions. The UE may determine, based on the spreading factor and the number of transmitters, a first spreading sequence of a set of spreading sequences from a first codebook, the first spreading sequence having a defined value for pairwise cross correlation with each spreading sequence of the plurality of spreading sequences. The first UE may identify data to be transmitted in an uplink transmission, apply the first spreading sequence to the data to be transmitted in the uplink transmission, and transmit the uplink transmission to the base station.
US10797747B2 Signal processing device and method and program
A signal processing method comprising rearranging transmission data so that a predictable portion of the transmission data is spread more uniformly in the transmission data, the predictable portion including information that is predictable by a receiver side. The phase of a carrier signal can be modulated based on the rearranged transmission data, and the modulated signal may be transmitted. The transmitted signal is received by the receiver side. A header position of each frame of the received signal is detected based on the information predictable to the receiver side. Once detected, the frames of the received signal are integrated, and the transmission data is decoded based on the integration. A signal processing device, a transmitter, and/or a receiver may utilizes these methods to transmit, receive, and/or process signals.
US10797746B2 Coded antenna array
Coded antenna arrays and associated methods, apparatus and systems are disclosed. Signals transmitted by a client device are received at a plurality of antennas or antenna elements in an antenna array. The received signals are coded using codes such as orthogonal codes and pseudorandom number sequences under which the codes are selected to enable extraction of individual received signals. The coded signals are then combined to form a combined coded waveform that is processed using shared receiver circuitry. The shared receiver circuitry is configured to extract the signals received at each antenna using the codes used to code the received signals. Use of multiple client devices is also supported, with the receiver circuitry further configured to filter out signals received from individual client systems and calculate the phase and magnitude of the signals as received at each antenna. The signal phase and magnitude may be used for wireless transmission of power to clients by a wireless power transmission system.
US10797744B2 System and methods for low power consumption by a wireless sensor device
An example system and method operate a wireless device in a first mode with power to operate a communication resource of the wireless device turned off. While operating the wireless device in the first mode, the system and method evaluates an attribute in a first portion of sensor data. Responsive to the evaluation of the attribute, the system and method transitions to the wireless device to operate in a second mode with power to operate the communication resource turned on. The system and method use the communication resource to establish a wireless connection and communicate packets via the wireless connection.
US10797742B2 Receiving circuit, receiving apparatus and receiving method
According to an embodiment, a receiving circuit includes an envelope signal generating unit configured to output an envelope signal of a received RF signal, an amplitude signal generating unit configured to binarize the envelope signal which is captured in synchronization with a reference clock signal and output the binarized envelope signal as an amplitude signal, and a phase signal generating unit configured to binarize a phase component of the RF signal and output the binarized phase component as a phase signal, in which a digital RF signal is generated based on the amplitude signal and the phase signal.
US10797737B2 Distortion compensation device and distortion compensation method
A distortion compensation device includes a generating unit, a calculation unit, a conversion unit, and a distortion compensation unit. The generating unit generates, from an output signal of a power amplifying unit that amplifies transmission signals having a plurality of different bands, a superimposed signal in which the transmission signals having the different bands have been superimposed. The calculation unit calculates, based on the superimposed signal, a coefficient indicating a forward characteristic of nonlinear distortion of the power amplifying unit associated with each of the transmission signals having the different bands. The conversion unit converts the coefficient calculated by the first calculation unit to a coefficient indicating an inverse characteristic of the nonlinear distortion of the power amplifying unit. The distortion compensation unit performs, by using the coefficients converted by the first conversion unit, a predistortion process on each of the transmission signals having different bands.
US10797734B2 System with multiple virtual radio units in a radio unit that is remote from at least one baseband controller
A communication system is provided. The communication system includes a at least one baseband controller configured to process signals in a baseband frequency band. The communication system also includes at least one radio unit that is physically remote from the at least one baseband controller. Each radio unit includes a plurality of virtual radio units (VRUs) in a physical housing of the respective radio unit. Each radio unit also includes a fronthaul interface configured to communicate with the at least one baseband controller using a packet-based protocol on behalf of each VRU. Each radio unit also includes at least one radio frequency front end unit configured to transmit from and receive on behalf of each of the VRUs.
US10797733B1 Distributed antenna systems
In a multi-user multiple antenna system, a central processor is communicatively coupled to a plurality of geographically distributed access points via a network. The central processor selects two or more of the distributed access points to serve each of a plurality of user devices based on signal power of wireless links between each user device and the distributed access points. The central processor performs subspace processing on the signals transmitted and/or received across the plurality of distributed access points for producing a plurality of non-interfering spatial subchannels.
US10797723B2 Building a context model ensemble in a context mixing compressor
A technique for selecting context models (CMs) for a CM ensemble (CME) in a context mixing compressor includes measuring compression ratios (CRs) of the compressor on a dataset for each CM included in a base set of CMs. A first CM that has a maximum CR for the dataset is added to the CME. In response to a desired number of the CMs not being in the CME, subsequent CRs for the compressor are measured on the dataset for each of the CMs in the base set of CMs that are not in the CME in conjunction with one or more CMs in the CME. In response to a desired number of the CMs not being in the CME, subsequent CMs that in conjunction with the one or more CMs in the CME result in a maximum subsequent CR for the dataset are added to the CME.
US10797721B2 Digital to analog converter, method for driving the same, and display device
A digital to analog converter, a method for driving the same, and a display device are provided. The digital to analog converter includes: a first resistor string, 2m first multiplexers, a first voltage selector, a second resistor string, a second voltage selector, and a second multiplexer, where the 2m first multiplexers, the first voltage selector, and the second voltage selector operate in cooperation with each other so that the entire second resistor string can be connected in series to the first resistor string for further division.
US10797719B2 Mapping circuit and method for selecting cells of a multi core hybrid I/Q digital to analog converter
A mapping circuit (300) for selecting cells of a multi core hybrid I/Q digital to analog converter includes a first sub-mapping circuit (310a) configured to define a first group of cores for each data symbol to be transmitted and to select cells of the first group of cores for an I-code of the data symbol to be transmitted. The mapping circuit (310b) further includes a second sub-mapping circuit configured to define a second group of cores for each data symbol and to select cells of the second group of cores for a Q-code of the data symbol.
US10797717B2 Signal processing device and transceiver
A signal processing device includes an A-D converter and a controller. The A-D converter converts an analog signal to a digital signal in which portions where the amplitude exceeds a predetermined range are clipped. A counter of the controller calculates, for the digital signal, a number of clipped samples for each predetermined number of period samples. A frequency converter performs frequency conversion of the digital signal. An LPF removes high frequency components of the digital signal. A rate converter converts a sampling rate of the A-D converter. A digital amplifier amplifies and outputs the digital signal. An amplification factor adjuster multiplies a preset amplification factor of the digital amplifier by an amplification factor adjustment coefficient based on a ratio of the number of regular samples to the number of period samples, to adjust the amplification factor.
US10797716B1 Imaging systems having successive approximation register (SAR) analog-to-digital converters with reduced non-linearity
An image sensor may contain an array of imaging pixels arranged in rows and columns. Each column of imaging pixels may be coupled to an analog-to-digital converter for converting analog imaging signals from the pixels to digital signals. The analog-to-digital converter may be implemented as a split successive approximation register (SAR) analog-to-digital converter (ADC). The split SAR ADC may include a coarse section and a fine section. During a reset sampling phase, a reset level is sampled with a predetermined pedestal value is applied to the coarse and fine sections. During reset conversion, a reset code is obtained. During a signal sampling phase, a signal level is sampled using inverted bits of the reset code for only the fine section. During signal conversion, a signal code is obtained. Operated in this way, differential non-linearity of the ADC is minimized.
US10797707B2 Delay locked loop detection method and system
A delay locked loop detection system (10), the system can be used for detecting the working state of a delay locked loop (400) and comprises: a signal generator (300), which is used for generating a reference clock and providing the reference clock to the delay locked loop (400); and a testing instrument (500), which is used for acquiring the clock signals output from the delay locked loop (400) and measuring whether the time delays thereof are consistent with expectations; the detection system (10) further comprises at least one of the following circuits: a pre-receiving circuit (100), which is used for receiving the reference clock from the signal generator (300) and amplifying and shaping the reference clock and then providing the reference clock to the delay locked loop (400); and a multiphase multiplexing circuit (200), which is used for receiving the clock signals output from the delay locked loop (400) and synthesizing and then providing a plurality of clock signals with different delay to the testing instrument (500). Also included is a delay locked loop detection method. The system and method mentioned above enable an accurate measurement for the delays of the delay locked loop.
US10797705B2 Circuit device, oscillator, electronic apparatus, and vehicle
A circuit device includes first and second output signal lines from which first and second output signals constituting differential output signals are output, and first to n-th output drivers coupled to the first and second output signal lines. In a first mode, i number of output drivers of the first to n-th output drivers drive the first and second output signal lines based on first and second input signals constituting differential input signals. In a second mode, j number of output drivers of the first to n-th output drivers drive the first and second output signal lines based on the first and second input signals.
US10797701B2 Compensating for degradation of electronics due to radiation vulnerable components
Techniques to compensate non-radiation hardened components for changes or degradation in performance that result from exposure to radiation. During testing and modeling phase, a component's performance may be characterized as a result of the exposure to radiation. In some examples, some performance characteristics, such as voltage response, frequency response, gain, leakage or other characteristics, may change as the component's exposure to an amount of radiation increases. During normal operation, a system may include one or more devices that measure the amount of radiation to which the system may be subjected, such as a radiation dosimeter. The system may compensate the non-radiation hardened component based on the amount of radiation received the known component performance change caused by radiation as determined during the modeling phase.
US10797699B1 System and method for calibrating an electro-permanent magnet key switch assembly
An electro-permanent magnet (EPM) key assembly of an information handling system may include an electro-permanent magnet (EPM) that may include a low-coercivity magnet and a high-coercivity magnet and a magnetic field sensor to detect the magnitude of the magnetic field of the EPM; and a calibration module to calibrate the magnitude of the magnetic field of the EPM by receiving a sensed magnitude value of the magnetic field of the EPM and adjusting the magnitude value of the magnetic field of the EPM when that magnitude value deviates from an established value by a threshold amount.
US10797698B1 Systems and methods for selecting light emitters for emitting light
An example circuit includes a plurality of light emitters connected in parallel between a first node and a second node. The circuit also includes a plurality of capacitors, with each capacitor corresponding to one of the light emitters, and a plurality of discharge-control switches, with each discharge-control switches corresponding to one of the capacitors. The circuit further includes a pulse-control switch connected to the plurality of light emitters. During a first period, the pulse-control switch restricts current flow, and each of the plurality of capacitors is charged via the first node. During a second period, one or more of the plurality of discharge-control switches allows current flow that discharges one or more corresponding capacitors. During a third period, the pulse-control switch allows current flow that discharges one or more undischarged capacitors of the plurality of capacitors through one or more corresponding light emitters.
US10797694B2 Switch circuit and method of switching radio frequency signals
A novel RF switch circuit and method for switching RF signals is described. The RF switch circuit is fabricated in a silicon-on-insulator (SOI) technology. The RF switch includes pairs of switching and shunting transistor groupings used to alternatively couple RF input signals to a common RF node. The switching and shunting transistor grouping pairs are controlled by a switching control voltage (SW) and its inverse (SW_). The switching and shunting transistor groupings comprise one or more MOSFET transistors connected together in a “stacked” or serial configuration. The stacking of transistor grouping devices, and associated gate resistors, increase the breakdown voltage across the series connected switch transistors and operate to improve RF switch compression. A fully integrated RF switch is described including digital control logic and a negative voltage generator integrated together with the RF switch elements. In one embodiment, the fully integrated RF switch includes a built-in oscillator, a charge pump circuit, CMOS logic circuitry, level-shifting and voltage divider circuits, and an RF buffer circuit. Several embodiments of the charge pump, level shifting, voltage divider, and RF buffer circuits are described. The inventive RF switch provides improvements in insertion loss, switch isolation, and switch compression.
US10797693B2 Drive circuit, power module and electric power conversion system
A drive circuit includes: a control circuit providing control voltage to a control terminal of a switching device in accordance with input signal; and a capacitor having one end connected to a high side main terminal of the switching device, wherein the control circuit increases an output current capacity of the control circuit when the input signal becomes ON signal and voltage at the other end of the capacitor drops.
US10797687B2 Signal duty cycle adaptive-adjustment circuit and method for receiving terminal
The present invention relates to a signal duty cycle adaptive-adjustment circuit and method for a receiving terminal. In one embodiment, the circuit includes an analog level comparison circuit, a preprocessing circuit, a first path switch, a second path switch, a decoding circuit, a parameter extraction and estimation circuit, an error generation circuit, a filter feedback circuit and a digital-to-analog conversion circuit. The analog level comparison circuit receives a valid signal according to a reference level to generate a duty cycle signal. The preprocessing circuit preprocesses the duty cycle signal. When the first path switch is turned on, the parameter extraction and estimation circuit acquires duty cycle information from the duty cycle signal to generate a duty cycle deviation. The error generation circuit processes the duty cycle deviation to generate an error signal. The filter feedback circuit and the digital-to-analog conversion circuit filter the error signal and then convert the error signal into an analog voltage signal, which is connected to the analog level comparison circuit to serve as a reference level. When the second path switch is turned on, the decoding circuit decodes the duty cycle signal.
US10797685B2 Jitter cancellation with automatic performance adjustment
Methods, systems, and devices for jitter cancellation with automatic performance adjustment are described. Within a clock distribution system in an electronic device (e.g., a memory device), a jitter cancellation system may be configured to introduce delay between an input clock signal and output clock signal that is directly proportional to the supply voltage for the clock distribution system. In response to supply noise, the delay introduced by the jitter cancellation system may vary directly with respect to the supply voltage fluctuations and thus may offset fluctuations in the delay introduced by other components of the clock distribution system, which may vary inversely with respect to the supply voltage fluctuations. A control component within the jitter cancellation system may execute an algorithm to adjust or regulate the delay introduced by the jitter cancellation system, including its responsiveness to fluctuations in the supply voltage.
US10797684B1 Superconducting waveform synthesizer
A superconducting waveform synthesizer produces an arbitrary waveform and includes an encoder that produces a bitstream; a pattern generator that produces a current bias pulse from the bitstream; a Josephson junction that produces a quantized output pulse from the current bias pulse; and a converter that produces an arbitrary waveform from the quantized output pulse. A process for producing an arbitrary waveform includes producing a bitstream; producing a current bias pulse from the bitstream; communicating the current bias pulse to a Josephson junction; producing, by the Josephson junction, a quantized output pulse from the current bias pulse; producing a quantized output pulse from the current bias pulse; and producing an arbitrary waveform from the quantized output pulse.
US10797680B2 Elastic wave device, high-frequency front-end circuit, and communication apparatus
An elastic wave device includes a supporting substrate, an acoustic reflection layer disposed on the supporting substrate, a piezoelectric layer disposed on the acoustic reflection layer, and an interdigital transducer electrode disposed on the piezoelectric layer. The acoustic reflection layer includes three or more low acoustic impedance layers and two or more high acoustic impedance layers. A film thickness of the low acoustic impedance layer closest to the piezoelectric layer is larger than a film thickness of the low acoustic impedance layer closest to the low acoustic impedance layer that is closest to the piezoelectric layer.
US10797675B2 Transversely excited film bulk acoustic resonator using rotated z-cut lithium niobate
Acoustic resonator devices, filters, and methods are disclosed. An acoustic resonator includes a substrate and a lithium niobate (LN) plate having parallel front and back surfaces, the back surface attached to a surface of the substrate except for a portion of the LN plate forming a diaphragm that spans a cavity in the substrate. An interdigital transducer (IDT) is formed on the front surface of the LN plate such that interleaved fingers of the IDT are disposed on the diaphragm. The IDT is configured to excite a primary acoustic mode in the diaphragm in response to a radio frequency signal applied to the IDT. A direction of acoustic energy flow of the primary acoustic mode is substantially orthogonal to the surfaces of the diaphragm. The Euler angles of the LN plate are 0°, β, 90°, where β is greater than or equal to −15° and less than 0°.
US10797674B2 Signal acquisition device for high-voltage loop, detector, battery device, and vehicle
The present application provides an apparatus for processing signals of a high-voltage loop, a detector, a battery device, and a vehicle. The apparatus includes a filter circuit connected to an element to be detected and configured to filter signals from the element to be detected; a differential amplification circuit connected to the filter circuit and configured to amplify the filtered signals; and a processor connected to the differential amplification circuit and configured to process the amplified signals.
US10797672B2 Signal channel expanding system based on PAD
A signal channel expanding system based on PAD is provided, including a motherboard disposed on an array tester and a plurality of array test pads disposed on a periphery of the motherboard and configured to control the motherboard; each of the array test pads includes a plurality of pins, each of the pins corresponds to a signal channel, the array test pads include at least two left driving array test pads and at least two right driving array test pads. Compared with the related art, in the signal channel expanding system based on PAD in the disclosure, by using at least two left driving array test pads and at least two right driving array test pads on the periphery of the motherboard, the number of the pins on the periphery of the motherboard can be multiplied and the pin size can remain unchanged without lengthening the test jig.
US10797666B2 Port velocity limiter for vented box loudspeakers
One embodiment provides a method comprising determining an energy stored in a port of a vented box loudspeaker based on a physical model of the vented box loudspeaker, determining a time-varying attenuation to apply to a source signal for reproduction via the vented box loudspeaker based on the energy stored in the port, and controlling the energy stored in the port in real-time by attenuating the source signal based on the time-varying attenuation. A velocity of air in the port during the reproduction of the source signal is limited based on the controlling.
US10797665B2 Programmable gain amplifier systems and methods
Systems and methods for amplifying an input signal include amplifier circuitry, an itail connection coupled between a positive voltage circuitry and the negative voltage circuitry and operable to generate an itail voltage corresponding to a greater of the positive voltage input signal (Vp) and the negative voltage input signal (Vn), a first resistor rgp disposed to receive the itail voltage and a first voltage corresponding to Vp, and a second resistor rgn disposed to receive the itail voltage and a second voltage corresponding to Vn. A first current output node is coupled to the output of rgp and operable to output a positive output current (Ioutp) corresponding to the current flowing through rgp, and a second current output is coupled to the output of rgn and operable to output a negative output current (Ioutn) corresponding to the current flowing through rgn.
US10797660B2 Multiphase buck-boost amplifier
Various buck-boost amplifier architectures are disclosed. In some architectures, a plurality of amplifiers use one or more inductors from a shared bank of inductors as needed to deliver variable amounts of power to respective loads. In some architectures, each amplifier includes multiple inductors and switches that are controlled to vary the number of inductors used in an amplifier based on a power requirement of the amplifier to drive its load. In some architectures, the switches include well switching devices. In some architectures, each amplifier drives multiple loads and is operated in a single inductor multiple output (SIMO) mode. In all architectures, the loads include speakers, piezo elements, and motors.
US10797659B2 Audio amplifier having multiple sigma-delta modulators to drive an output load
According to an aspect, an audio amplifier includes a first sigma-delta modulator configured to receive a digital audio signal and generate a first multi-level output signal based on the audio signal, and a second sigma-delta modulator configured to receive the first multi-level output signal from the first sigma-delta modulator and generate a second multi-level output signal. The second multi-level output signal has a number of levels less than a number of levels of the first multi-level output signal.
US10797655B2 Wireless receiver
A low noise amplifier (LNA) includes a pair of n-type transistors, each configured to provide a first transconductance; a pair of p-type transistors, each configured to provide a second transconductance; a first pair of coupling capacitors, cross-coupled between the pair of n-type transistors, and configured to provide a first boosting coefficient to the first transconductance; and a second pair of coupling capacitors, cross-coupled between the pair of p-type transistors, and configured to provide a second boosting coefficient to the second transconductance, wherein the LNA is configured to use a boosted effective transconductance based on the first and second boosting coefficients, and the first and second transconductances to amplify an input signal.
US10797654B2 Amplifying device comprising a compensation circuit
The present invention relates to an amplification device (10) of an input signal comprising: a first amplification stage (12), a second amplification stage (14), each amplification stage (12, 14) comprising: a switching circuit (22), the switching circuit (22) being able to generate, as output (22A, 22B), a switched signal having at least two states, and an inductive element (24) able to smooth the switched signal to obtain a smoothed signal (I1, I3), the smoothed signal (I1, I3) having a useful component and a stray component. The amplification device (10) further comprises a compensation circuit (16), for each amplification stage (12, 14), able to generate a compensation signal (I2, I4) of the stray component of the smoothed signal (I1, I3) generated in the inductive element (24) of the corresponding amplification stage (12, 14).
US10797653B2 Consecutive Doherty amplifier
A consecutive Doherty amplifier is disclosed. The Doherty amplifier includes a carrier amplifier, a power splitter, a peak amplifier, and a phase compensator. The carrier amplifier receives a radio frequency signal with interposing any signal splitters. The power splitter splits an output of the carrier amplifier into first and second split signals. The phase compensator transfers the second split signal to the peak amplifier. The first split signal is combined with the output of the peak amplifier.
US10797651B2 Amplifier offset cancellation using amplifier supply voltage
In accordance with embodiments of the present disclosure, a method for power supply rejection for an amplifier may include generating a correction signal by multiplying a quantity indicative of a power supply voltage of the amplifier by a transfer function defining a response from the power supply voltage of the amplifier to an output signal of the amplifier and subtracting the correction signal from a signal within a signal path of a circuit comprising the amplifier.
US10797641B2 System and method for testing photosensitive device degradation
The performance of photosensitive devices over time may be tested by configuring a photosensitive device test system that includes a light source plate that exposes photosensitive devices within a container to a specified light intensity. The light intensity may be adjusted by a programmable power source according to one or more thresholds. A test may last for a set duration with performance measurements being taken at predetermined intervals throughout the duration. Feedback from the photosensitive device test system may be recorded to determine whether to increase light intensity, to stop testing, to continue testing, and whether one or more environmental conditions should be altered. Measurements may be sent to a client for analysis and display to a user.
US10797634B1 Height-adjustable rail-less solar panel mounting device for roofs
A solar panel mounting device can secure solar panels to roof structures. The solar panel mounting device allows for position adjustment lengthwise along a base via a threaded locking fastener. The base being mountable to a roof surface either directly or optionally via flashing. In addition, the height of a platform that can be used to seat one or more solar panels can be adjusted relative to the roof surface. The solar panel mounting device is so structured so that both the locking fastener and the height adjuster can be accessed from above the solar panels. This allows for both position and height adjustment after the solar panels are installed.
US10797633B2 Thermal emitter for energy conversion technical field
A thermal emitter including a substrate and a grating arranged atop the substrate, the grating includes a plurality of equidistant structures having a cross-section with a trapezoid shape. Material of the substrate and the grating converts incoming heat into radiation.
US10797628B2 Gas turbine engine and electrical system
A gas turbine engine includes first and second electrical machines coupled to the gas turbine engine, each of the first and second electrical machines electrically coupled to both a primary electrical bus and a secondary electrical bus. The gas turbine includes a first controller configured to control operation of the gas turbine engine, and a second controller coupled to the first controller, the second controller configured to respond to control inputs from the first controller and control an electrical output of the first and second electrical machines to the primary and secondary electrical busses. A converter controller is coupled to an energy storage system, the second controller, the primary electrical bus, and the secondary electrical bus.
US10797627B2 Compressed air turbine DC power generator system
A compressed air turbine DC power generator system, comprising: an aerodynamic turbine engine; a direct current generator (2) used for generating a direct current by using power output of the aerodynamic turbine engine as a driving input; and a control unit (3) used for controlling the rotating speed of the aerodynamic turbine engine to generate the power output and adjusting the output current and/or the output voltage of the direct current generator (2). The compressed air turbine DC power generator system is miniaturized and has high integration level, effectively overcomes the disadvantages such as low power density and great vibration noise of a power generation system with an internal combustion engine, and has a high industrial application value. The compressed air turbine DC power generator system can be used as an auxiliary power supply in the development process of an electric automobile, thereby effectively resolving the problem of range anxiety of a pure electric automobile.
US10797623B2 Semiconductor device and method of detecting its rotation abnormality
The conventional semiconductor device requires use of a separate vibration sensor or the like to detect a rotation abnormality of a motor. According to an embodiment, a semiconductor device includes: a resolver rotation angle conversion circuit that obtains a rotation angle signal indicative of a rotation angle of the motor obtained from a resolver that measures the rotation angle of the motor and generates rotation angle information by converting the rotation angle signal to a digital value; a motor rotation angle conversion circuit that generates rotation angle temporal change information by converting the rotation angle information with respect to each phase of the motor to an angular change of the motor; and a determination circuit that determines that an abnormality occurs in the motor in a case of exceeding a fluctuation abnormality detection range of the rotation angle temporal change in the rotation angle temporal change information.
US10797622B2 Trigger switch
It is enabled to facilitate fine adjustment of power as well as reduction of the amount of movement required to maximize the power. An actuator 13 is moved by operation of a user. A pressure sensitive sensor 15 detects applied pressing force. A pressing member 14 presses the pressure sensitive sensor 15. When the amount of movement of the actuator 13 is smaller than a predetermined amount, the pressing member 14 presses the pressure sensitive sensor 15 to apply force corresponding to the amount of movement of the actuator 13. When the amount of movement of the actuator 13 is not smaller than the predetermined amount, the pressing member 14 presses the pressure sensitive sensor 15 to apply force corresponding to pressing force applied to the actuator 13 by the user.
US10797621B2 Method for operating a system with drives, which are mechanically coupled together, and with a higher-level computer, and system
In a method for operating a system with drives, which are mechanically coupled to one another, and with a higher-level computer, which is connected to the drives with the aid of a data-bus connection, and a system, a respective actual torque value is determined in each drive and transmitted to the higher-level computer, in particular using a data-bus connection. The higher-level computer determines for each drive a setpoint torque value allocated to this drive, the higher-level computer has controllers, and one of the controllers is allocated, in particular biuniquely, to each drive. The controller allocated to the respective drive controls the actual torque value of the respective drive to the setpoint torque value of the respective drive by determining a setpoint speed value allocated to the respective drive as the control value and transmits it to the respective drive, in particular with the aid of a data-bus connection. The respective drive has a controller in each case, to which the respective actual speed value, determined in the drive, of an electric motor of the drive is supplied and which controls this actual speed value to the respective setpoint speed value transmitted by the higher-level computer by setting the motor voltage or the motor current of the electric motor of the respective drive.
US10797620B2 Rotating machine control device and electric power steering control device
A control unit includes: control command generation means for generating a first control command and a second control command that specifies currents to flow through a first winding set and second winding set respectively; voltage calculation means for calculating a first voltage command from the first control command and calculating a second voltage command from the second control command; and first voltage application means and second voltage application means for applying voltages to the first winding set and the second winding set of a rotating machine on the basis of the first voltage command and the second voltage command, wherein discharge control for electric charge of a smoothing capacitor is performed while torque generated by current flowing from the smoothing capacitor to the first winding set and torque generated by current flowing from the capacitor to the second winding set are cancelled out with each other.
US10797617B2 Electromechanical transducer
An electromechanical transducer, including: one or more first mechanical resonator structures having respective first fundamental oscillation resonance frequencies; and a second mechanical resonator structure including one or more electromechanical transducer components, and having a second fundamental oscillation resonance frequency that is substantially greater than the first fundamental resonance frequencies of the first mechanical resonator structures; wherein oscillations of the first mechanical resonator structures driven by external mechanical vibrations cause the first mechanical resonator structures to intermittently couple with the second resonating structure to drive oscillations of the second resonating structure such that the electromechanical transducer components of the second mechanical resonator structure convert the oscillations of the second resonating structure to electrical energy or signals.
US10797615B2 Uncertainty based controller design for an inverter
A design method for the current controller of a grid connected inverter is discussed in this disclosure. The repetitive control strategy is used, in tandem with a mu-synthesis based current controller, to attain sinusoidal reference tracking and harmonic rejection. Mu-synthesis based control is chosen to attain reference tracking in the presence of plant uncertainties. The repetitive control strategy is selected since it can reject a large number of harmonics simultaneously, while providing a clean sinusoidal current waveform to the grid, even in the presence of grid load and/or voltage distortions. The repetitive control strategy is implemented via the internal model principle. By applying mu-synthesis principles, a feedback controller that simultaneously achieves stability and tracking performance is obtained.
US10797614B2 Current reduction system for inverters connected to a common bus
A system that may include, plural inverters connected to a common bus and at least one capacitor, the inverters configured to convert a direct current (DC) through the common bus to an alternating current (AC) by alternating different switches of the inverters between open and closed states in a respective switching cycle for each of the inverters, and a controller circuit configured to reduce a ripple current conducted onto the common bus to the inverters, by controlling the inverters to apply a frequency shift to the respective switching cycle of one or more of the inverters to spread a harmonic current spectrum along the common bus. The controller circuit is configured to apply the frequency shift to at least a first inverter and a second inverter of the plural inverters.
US10797610B2 Adaptive synchronous rectifier sensing deglitch
A synchronous rectifier controller method is provided for controlling the on and off periods of a synchronous rectifier (SR) switch transistor in a switching power converter. The method includes a first step of monitoring an unfiltered to control whether the SR switch transistor is turned on during a first part of a power switch cycle. The method also includes a second step of monitoring a filtered SR switch signal to control whether the SR switch is turned on during a remaining second part of the power switch cycle.
US10797609B2 Systems and methods for transferring power across an isolation barrier using an active self synchronized rectifier
Systems and methods for transferring power across an isolation barrier using an active self-synchronized rectifier are described. A rectifier as described herein may provide DC to DC power conversion with high efficiency. Furthermore, by using a microfabricated transformer or microfabricated capacitor as an isolation component, an isolation component and rectifier may be microfabricated and implemented on chip.
US10797608B2 Flyback converter with edge-based isolated communication
A flyback converter communication channel is provided that comprises a pair of capacitors. A transmitter on a first side of a transformer for the flyback converter transmits a transmitter signal over a first one of the capacitors. The transmitter also transmits a complement of the transmitter signal over a second one of the capacitors. A receiver on a second side of the transformer controls a switch transistor responsive to a high-pass-filtered difference of the received signals from the pair of capacitors.
US10797604B1 LLC resonant converter
An LLC converter includes a switch module, a transformer, an output circuit, a resonant circuit and a safety capacitor. The switch module is connected between an input voltage and a ground. The transformer has a primary side winding and at least one secondary side winding. The output circuit is connected between the at least one secondary side winding and a load. The resonant circuit is coupled between the primary side winding and the switch module and includes at least one leakage inductor. The safety capacitor is connected between the at least one leakage inductor and the switch module.
US10797599B2 Method for regulating output characteristics of photovoltaic module and direct current/direct current converter
A method for regulating output characteristics of a photovoltaic module and a DC/DC converter are provided. The DC/DC converter connected with the photovoltaic module determines whether an output voltage of the DC/DC converter detected in a real-time manner is greater than a first preset voltage threshold, and controls an output current of the DC/DC converter to be greater than a first preset current threshold and less than zero or control an output power of the DC/DC converter to be greater than a first preset power threshold and less than zero, in a case that the output voltage is greater than a first preset voltage threshold.
US10797596B2 Transient booster for zero static loadline switching regulator
A zero static loadline switching regulator can include a controller having an integrating outer control loop that receives a first feedback signal corresponding regulator load and a reference signal and generates an intermediate feedback signal therefrom. The control circuit can also include an inner control loop that receives the intermediate feedback signal and a second feedback signal corresponding to a load on the regulator and generates an error signal used to control switching devices of the regulator. The control circuit can also include a transient response circuit configured to boost the error signal, for a predetermined time period after and responsive to a load transient. The error signal may be boosted to an intermediate value between its saturation level and its full scale level. The intermediate value may be predetermined or may be determined responsive to the magnitude of the load transient.
US10797595B2 Power supply and control method for power supply
A current detection circuit included in a power supply detects a current flowing to an inductance element from a detection tap of an inductance element connected between an output terminal and an output of a first switching element. A control circuit included in the power supply controls a first control terminal of the first switching element and a second control terminal of a second switching element and calculates an output current flowing to a load based on the current detected by the current detection circuit.
US10797593B1 Kappa switching DC-DC converter with continuous input and output currents
The Kappa converter circuit, as introduced herein, can be configured for step-down (buck), step-up (boost), or buck-boost operation. The Kappa converter circuit exhibits lower electromagnetic interference (EMI) relative to other buck, boost, or buck-boost topologies, such as without additional input or output filter circuits. The Kappa converter circuit can have high power handling capability and less DCR loss, for example due to a distribution of current signals through respective inductors. The Kappa converter circuit includes isolating inductors at its input and ground reference nodes to help reduce signal bounce or signal pulsations at supply and ground reference busses, thereby further reducing EMI noise due to switching in the circuit. When the Kappa converter is configured for step-up operation, the converter exhibits no right-half-plane (RHP) zero.
US10797591B2 Power controllers with frequency jittering, and control methods thereof
A power controller disclosed is for the use of a power converter with an inductive to regulate an output power source. The power controller has a PWM signal generator and a jitter inducer. The PWM signal generator controls a power switch to generate consecutive switching cycles. In each switching cycle the PWM signal generator controls a peak to regulate the output power source, and the peak is capable of representing a current flowing through the inductive device. The jitter inducer, connected to the PWM signal generator, is for altering the peak, so as to make a difference between two consecutive peaks. The difference has a sign and a magnitude. The jitter inducer makes the sign changed switching cycle by switching cycle.
US10797589B2 Methods and apparatus to compensate for power factor loss using a phasor cancellation based compensation scheme
Example power factor correction circuits to correct the power factor of power converters are disclosed. An example power factor correction controller circuit includes a phase locked loop phase angle determiner to determine a first phase angle of an input voltage of the power converter and further includes a compensating current determiner to determine, based on the phase angle, a compensating current to compensate for a capacitive current introduced by at least one filter capacitor of the power converter. The power factor correction controller circuit further includes a switch controller to cause a controlled current drawn by a power stage of the power converter to be adjusted by the compensating current to reduce a phase offset between the first phase angle of the input voltage and a second phase angle of the an input current drawn at an input of the power converter.
US10797587B1 Power converter with snubber circuit
Disclosed is a power converter including power conversion circuitry. The power conversion circuitry includes a converter coil. The power conversion circuitry includes a power source. The power conversion circuitry includes a switch connected to the converter coil to control current flowing through the converter coil from the power source, the power conversion circuitry including a converter output connectable to a converter load. The power conversion circuitry includes parallel snubber circuitry having resonant circuitry connected in parallel with the converter coil, the resonant circuitry including a parallel snubber circuitry coil and a capacitor connected in series, the parallel snubber circuitry including a parallel snubber output connectable to a parallel snubber circuitry load.
US10797580B1 Detection circuit, switching regulator having the same and control method
A detection circuit for detecting an inductor current flowing through an inductor is provided. The inductor is coupled to a switch. The detection circuit includes a comparison circuit and a signal generating circuit. The comparison circuit, having a first node, is configured to compare a conduction time of a diode of the switch with a time threshold to provide a first voltage at the first node. The signal generating circuit, coupled to the first node, is configured to output a first detection signal according to the first voltage. The first detection signal indicates whether the inductor current flowing through the inductor reaches a first current threshold. A switching regulator comprises the detection circuit. A control method controls the switching regulator.
US10797578B2 Vertically mounted and magnetically driven power generation apparatus
A vertically mounted and magnetically driven power generation apparatus includes a transmission mechanism vertically mounted in a support frame with a spindle thereof connected with a power generator. Multiple magnetic drive assemblies are respectively mounted inside multiple shelves of the support frame. By virtue of magnetic repulsion between the magnetic drive assemblies and multiple magnetic driven members mounted on the transmission mechanism, the spindle can be vertically and suspendedly rotated within the support frame. The power generation apparatus further includes multiple magnetically stabilizing modules that provide radial or axial magnetic repulsion to the transmission mechanism so as to reduce left-and-right swing or up-and-down vibration when the spindle is rotated within the support frame. Accordingly, the power generation apparatus can achieve superior stability and optimal power generation efficiency upon high-speed operation.
US10797577B2 Primary element of an ironless linear motor
A primary element of an ironless linear motor include cooling plates. Each of the cooling plates is connected to a connecting piece extending in a region of an edge of the cooling plate. The connecting pieces are configured to supply coolant. The connecting pieces are located one above the other in a direction perpendicular to the cooling plates so as to form a common connecting region of the cooling plates at an end face of the primary element. A plurality of coils are disposed between the cooling plates. A coolant distribution header is releasably attached to the connecting region.
US10797576B2 Vibration motor
A vibration motor is disclosed. The vibration motor includes a housing; an elastic connecting piece; a fixed component; a vibrating component comprising a counterweight suspended in the housing by the elastic connecting piece; and a damping piece accommodated in the housing and fixed on the counterweight. One of the fixed component and the vibrating component includes coils, and the other includes a magnet. The counterweight includes a restricting protrusion extending from a side facing the elastic connecting piece for abutting against and restricting the damping piece.
US10797574B2 Electrical machine
An electrical machine has a stator with windings, first and second rotors, and an electrical output regulator. The first rotor carries alternating polarity first field magnets, such that, on drive mechanism rotation, the windings interact with the magnetic flux produced by the first magnets to create an EMF. The second rotor carries alternating polarity second field magnets, and has first and second rotational positions to reduce and increase, respectively, the magnetic flux energy. The electrical output regulator regulates a current from the windings to produce a torque on the rotors, as the drive mechanism increases from zero rotational speed, the torque rises above a threshold level that moves the second rotor from the first to the second rotational position, and, as the drive mechanism further increases the rotational speed, the torque peaks and then drops below the threshold level to move the second rotor back to the first rotational position.
US10797570B2 Electric drive device and electric power steering apparatus
Power conversion circuit unit defined by rotation shaft-side line facing toward rotation shaft of electric motor, control output terminal-side line facing toward coil input terminals of electric motor and side lines connecting both end portions of rotation shaft-side line and control output terminal-side line is packaged with synthetic resin. Three-phase control output terminals connected to the coil input terminals are formed at control output terminal-side line. Power switching elements forming upper and lower arms for each phase are arranged in a zigzag formation along control output terminal-side line with power switching elements being offset from a substantially middle between rotation shaft-side line and control output terminal-side line toward control output terminal-side line. With this, size of power conversion circuit unit can be reduced, and heat of power conversion circuit unit can be efficiently released to the outside.
US10797569B2 Semiconductor device
A semiconductor device includes: a plurality of control modules to control a rotating electric machine. The plurality of control modules are circularly arranged around a rotary shaft of the rotating electric machine. Each control module includes at least one switching element supplied with a current from a bus bar coupled to a power source. The at least one switching element in one of the control modules under a structural condition of arrangement has a lower resistance than another switching element.
US10797568B2 Motor unit and vehicle
A motor unit including a drive motor that includes an output shaft having a hollow portion; a torque sensor arranged within the hollow portion; and a cooling mechanism. The cooling mechanism has one end of a coolant path arranged inside the hollow portion and cools the drive motor and the torque sensor. A vehicle can include the motor unit. The drive motor can act as a traction motor generating traction drive force of the vehicle.
US10797564B1 Above ground energy resource device that utilizes a vehicle's spinning tire, and is made serviceable by utilizing magnets, pins and brakes
This device generates electricity when a vehicle tire rolls over a platform containing a cylindrical roller that spins. Friction causes a vehicle tire to roll the cylinder. The spinning roller drives gears of an overdrive transfer box. The output of the overdrive box is a spinning shaft. The spinning shaft turns a differential, which drives a time-gear set. The time-gear set establishes the timing of a spinning shaft from the time-gear set and drives a motor generator suitable to supply electricity to an electric utility grid.To facilitate maintenance of the electrical generating system, brakes are utilized to hold fast the time-gear set; magnets hold fast the cylindrical roller; and a pin can lock the overdrive shaft.
US10797559B2 Isolators for motors
A motor for driving a fan in a heating and/or cooling system includes a motor body, a motor cover, and an isolator. The isolator damps vibrations passed from the motor body to the motor cover. The isolator includes two isolating elements connected by a bridge. At least one of the two isolating elements includes at least two corners in a cross-sectional view.
US10797557B2 Motor
A motor includes a seat, a bearing, a limiting member, a stator and a rotor. The seat includes a base plate and a shaft tube connected to the base plate. The shaft tube includes an open end distant to the base plate and having a plurality of fusion posts. The bearing is received in the shaft tube. The limiting member has a central hole. A diameter of the central hole is smaller than a diameter of the open end. The limiting member has a plurality of through-holes surrounding the central hole. The plurality of fusion posts respectively extends through the plurality of through-holes to fix the limiting member to the shaft tube by fusion bonding. The stator is fit around the shaft tube. The rotor includes a shaft extending through the central hole of the limiting member and rotatably coupled with the bearing.
US10797553B2 Permanent magnet electric motor
The rotor includes an annular permanent magnet, an annular first iron core situated on the inner diameter side of the magnet, an annular second iron core situated on the inner diameter side of the first iron core, an insulating member situated between the first iron core and the second iron core, and a shaft provided along a central axis of the second iron core, the first iron core is provided with a plurality of outer periphery side convex portions protruding from an inner periphery toward the inner diameter side, the second iron core is provided with a plurality of inner periphery side convex portions protruding from an outer periphery toward the outer diameter side, and the outer periphery side convex portions and the inner periphery side convex portions are disposed in positions not overlapping each other when viewed in the radial direction from the axis of the second iron core.
US10797552B2 Tool system for tightening retightenable wedge system in slot of generator stator core
A tool system for tightening a retrightenable wedge system in a slot of a generator stator core is presented. The tool system includes a carriage assembly and a wedge tool assembly that is pivotally coupled to the carriage assembly. The carriage assembly includes motorized drives that axially moves the tool system along the slot and holds the tool system on the slot at an axial position. The wedge tool assembly includes a torqueing socket to tighten the retightenable wedge assembly in the slot. The torqueing socket is driven by a worm gear arrangement.
US10797548B2 Hybrid module including motor rotor clamp ring staked to rotor hub
An electric motor includes a rotor, a stator for rotationally driving the rotor and a rotor carrier hub for supporting the rotor on an outer circumferential surface thereof. The rotor carrier hub includes a groove on the outer circumferential surface. The electric motor also includes a clamping ring configured for holding the rotor axially in place on the rotor carrier hub. The clamping ring being fixed on the outer circumferential surface of the rotor carrier hub by at least one inner radial protrusion of the clamping ring extending into contact with the rotor carrier hub in the groove.
US10797547B2 Systems and methods for improved stator assembly for use with a rotor
Systems and methods relate to a vertical takeoff and landing (VTOL) platform that can include a stator and a rotor magnetically levitated by the stator. The rotor and stator can be annular, such that the rotor rotates about a rotational axis. The stator can include magnets that provide guidance, levitation, and drive forces to drive the rotor, as well as to control operation of rotor blades of the rotor that can be independently rotated to specific pitch angles to control at least one of lift, pitch, roll, or yaw of the VTOL platform. Various controllers can be used to enable independent and redundant control of components of the VTOL platform.
US10797540B2 Stator, motor, compressor, and refrigeration air conditioner
A stator includes a first core and a second core. The first core has a yoke extending in a circumferential direction about an axis line and having a second insertion hole, and a tooth extending from the yoke in a direction toward the axis line and having a first insertion hole. The second core has a first part disposed in the first insertion hole and a second part disposed in the second insertion hole and formed of amorphous metal or nanocrystal metal.
US10797537B2 Distributed wireless charging system and method
A distributed wireless radio frequency-based charging system includes hardware and software platforms. The hardware platform includes adaptive energy harvesters and programmable energy transmitters. The software platform manages the hardware profiles, resources (e.g., energy waveforms and transmission powers), schedules the beams of the energy transmitters, and switches between modes of wireless charging and data access point. This allows the energy transmitters to be configured adaptively based on the ambient energy availability, energy needs and number of energy-requesting devices in the network. Under the software control, the energy transmitters can cooperatively form focused beams of energy and power for transmission to energy harvesters in the energy-receiving devices, such as sensors, Internet of Things (IoT) enabled appliances, and mobile/wearable equipment. The energy harvesters can utilize the energy contained within the transmitted beams, as well as ambient RF sources, for directly powering their operation or charging a battery/capacitor for subsequent use.
US10797531B1 Method and power transmitter for controlling power transmission
Methods and apparatuses are provided for controlling power transmission in a power transmitter. Voltage information including a minimum voltage, a maximum voltage, and a first voltage, is received from each of a plurality of power receivers. Power is transmitted to the plurality of power receivers based on the voltage information. A respective report about a power reception condition is received from each of the plurality of power receivers while transmitting the power. Each respective report includes a measured voltage at a corresponding power receiver of the plurality of power receivers. A power receiver is selected from among the plurality of power receivers based on the received reports. An amount of the power is adjusted by reducing a difference between a first voltage of the selected power receiver and a measured voltage of the selected power receiver.
US10797526B2 Power reception device and wireless power transmission system including the same
A crowbar circuit includes a diode bridge and switching elements, and is configured to rectify the full wave of AC power between the power lines and output the rectified AC power to a positive electrode line and a negative electrode line. A capacitor is connected between the power line and the negative electrode line. When a detection value of a current sensor indicates that the power reception device is not receiving power normally, a charging ECU stops the power conversion operation of the power transmission device, and thereafter outputs at least one of short circuit commands to the crowbar circuit so as to determine whether or not a malfunction is present in the crowbar circuit based on a detection value of the voltage sensor.
US10797524B2 Techniques for power transfer through wheels of a patient support apparatus
A power transfer system comprises a patient support apparatus and a separate power transfer device. The patient support apparatus comprises a support structure having a base and a patient support surface for a patient and wheels coupled to the support structure to facilitate movement of the patient support apparatus over a floor surface. One or more of the wheels includes a power receiver integrated therewith. The power transfer device is energizeable to interact with the wheel to facilitate power transfer between the power transfer device and the power receiver through the wheel.
US10797521B2 Control circuit and control method for wireless power transmission device
A control circuit for a wireless power transmission device is provided. The wireless power transmission device includes a transmitter unit and a receiver unit. The control circuit includes a transmitter detecting unit, a first control unit and a driver unit. The transmitter detecting unit obtains an input power of the transmitter unit and generates an input power signal. The first control unit generates a control signal according to a result of comparing the input power signal with a reference input power signal. The driver unit drives switching devices of the transmitter unit according to the control signal. Consequently, the input power of the transmitter unit is adjusted, and an output ripple or a magnitude of the output of the receiver unit is adjusted.
US10797520B2 Wireless power transmission system, power transmission device and power reception device
According to one embodiment, a wireless power transmission system includes: an AC power source; a power transmission resonator; a power reception resonator; an AC/DC converter; a first circuit disposed between the AC power source and the power transmission resonator; and a second circuit disposed between the power reception resonator and the AC/DC converter. Parameter values of passive elements in the first and second circuits are set so that an absolute value of an inverse transfer function between an input voltage and an output voltage of a target system at a frequency of the AC voltage is equal to or less than a divided value of the AC voltage by a battery voltage while the AC voltage is increased from a first voltage value to a second voltage value, the target system comprising the first circuit, the power transmission resonator, the power reception resonator, the second circuit and the AC/DC converter.
US10797518B2 Adaptive scalable wireless charging module with free positioning
A wireless charging resource includes: processing elements; insulating elements; and coils, where the processing elements, insulating elements, and coils are arranged in a repeating array. A method of wireless charging includes: sending, from a charging resource, an analog ping to identify charging coils associated with a charging receiver; sending a digital ping to identify optimal charging coils; and activating the optimal charging coils in order to provide charging power to the charging receiver. A method of generating a layout for a wireless charging transmitter includes: determining an available area; calculating a number of coils to be included in an array; arranging a first set of coils including the number of coils on a first coil layer; arranging a second set of coils including the number of coils on a second coil layer; and arranging a third set of coils including the number of coils on a third coil layer.
US10797515B2 Method for controlling an uninterruptible power supply and system for an uninterruptible power supply
A method controls an UPS with a system having: first and second terminals, a switch having: first and second switch terminals respectively connected to the first and second terminals; first and second thyristors connected between the first and second switch terminals in anti-parallel; and an inverter connected to the second terminal and the energy store. Switch current and a first potential at the first terminal are detected. In a first fault, where the first potential drops past a first rule and the switch current rises above a second rule: a second potential at the second switch terminal is set using the inverter so the switch current becomes zero. Then the switch current is compared with a second threshold, and if it is exceeded, a first check result is positive, otherwise it's negative. When positive, the second potential is reversed.
US10797513B1 Technologies for interactive predictive control of uninterruptible power supply systems
Technologies for interactive predictive control of uninterruptible power supply systems are disclosed. In an illustrative embodiment, a method of controlling a double-conversion uninterruptible power supply (UPS) system may include defining, with a digital signal processor (DSP), a curve as a function of a plurality of user-input reference points associated with an inductor coupled to either an input or an output of the double-conversion UPS system, where the curve is indicative of an electromagnetic behavior of the inductor. The method may also include determining, with the DSP, in response to an application of current to the inductor, an inductance value for the inductor based on the defined curve and the applied current. The method may further include setting, with the DSP, as a function of the determined inductance value, a duty cycle to control switching of at least one of an active rectifier and an inverter of the double-conversion UPS system.
US10797509B2 Method and system for managing wireless charging
An electronic device is provided. The electronic device includes a power receiver (PRx) that includes a receiver coil for receiving a power signal from a wireless power transmitting device and a wireless charging integrated circuit (IC) for converting the power signal into electrical energy, a power management circuit that is electrically connected to the PRx and configured to charge a battery using the electrical energy, and a processor that is electrically connected with the PRx and the power management circuit. The processor activates a power hold mode (PHM) if a charging level of the battery is a fully charged level and controls auxiliary charging of the battery.
US10797508B2 Portable device docking station charge mechanism
An induction charging system (100) includes: (i) an induction charging station (10) having: an emitting primary induction coil (14); a receiving secondary induction coil (18); and a primary dock (20) for a primary chargeable device; (ii) a primary chargeable device (24) configured to reversibly engage the primary dock and comprising a receiving induction coil (26); and (iii) a secondary device in communication with the secondary induction coil and configured to receive energy from the secondary induction coil, wherein the secondary induction coil is configured to receive excess energy from the primary induction coil without interfering with the receiving induction coil.
US10797506B2 DC to AC power conversion using a wireless power receiver
In certain aspects, methods and systems for converting DC power to AC power by a wireless power receiver are disclosed. Certain aspects provide a wireless power receiver including a resonant circuit. The wireless power receiver includes a first switching circuit coupled to the resonant circuit, the first switching circuit configured to act as an inverter and generate a first signal, based on an output from a battery, at a resonant frequency of the resonant circuit, the first signal having an envelope at a first frequency. The wireless power receiver includes a second switching circuit coupled to the resonant circuit that is configured to bias the second switching circuit at the resonant frequency in response to the first signal, wherein the second switching circuit is configured to act as a rectifier and is configured to extract the envelope to generate a second signal at half of the first frequency.
US10797505B2 Wireless charging guide system, wireless charging guide method and wireless charging guide device
A wireless charging guide system includes a wireless charging cradle, an electronic device and a visual guide medium. The electronic device includes a power storage unit and a charging unit. When the visual guide medium guides the electronic device to be placed at a first position on the top surface of the wireless charging cradle, the charging unit, with respect to the wireless charging cradle, has a charging rate larger than a first default value and starts to charge the power storage unit, wherein the visual guide medium is accessed from a remote server according to the model of the electronic device.
US10797504B2 System, method and device for wireless power transfer
A method and device for wireless power transfer is provided. The device includes a plurality of charging holders positioned adjacent to each other. The method includes generating a first magnetic field using a first transmit coil in a first charging holder. The method further includes generating a second magnetic field using a second transmit coil in a second charging holder positioned adjacent to the first charging holder. The method further includes magnetically coupling the first and second magnetic field to a receive coil of a portable electronic device, wherein magnetically coupling includes transferring power from the first and second magnetic field to the receive coil of the portable electronic device, the first magnetic field and the second magnetic field configured to have a synchronized phase.
US10797499B2 Battery management system
Systems, methods, and devices of managing a battery assembly used to power an object are provided to discharge a battery assembly for a safe and long-term storage. A controlled self-discharge of the battery assembly may be initiated when the power to the object is turned off for a certain length of time or the battery assembly is not in use for a threshold length of time. The controlled self-discharge may be terminated if the battery assembly reaches a threshold voltage value or the battery is in use again during the self-discharge.
US10797492B2 AC inverter pre-charge current limiting system
In one embodiment, a vehicle pre-charge limiting system is disclosed. The system includes an inverter, a comparator, a latch circuit, and a microprocessor. The inverter inverts a first power signal into a second power signal. The comparator receives a first measured current of the second power signal and compares the first measured current to a predetermined current value. The comparator transmits a first control signal indicative of the first measured current exceeding the predetermined current value. The latch circuit transmits a second control signal to the inverter to discontinue inverting the first power signal and transmits a first latch signal. The microprocessor receives a first sense signal indicative of current of the first power signal and transmits a third control signal to the latch circuit. The microprocessor inverts the first power signal into the second power signal for a predetermined number of output periods.
US10797490B2 Battery charge system with transition control that protects adapter components when transitioning from battery mode to adapter mode
A battery charge system including an adapter node, a system node, a battery, a first isolation switch coupled between the adapter and system nodes, a second isolation switch coupled between the battery and system nodes, a boost converter, and a controller. The controller turns off the first isolation switch and turns on the second isolation switch during a battery mode, activates the boost converter when an adapter voltage is detected, turns off the second isolation switch when the system voltage rises above the battery voltage, and turns on the first isolation switch when the system voltage rises to an operating voltage level. The boost converter may then be turned off once in the adapter mode. The second isolation switch may initially be turned on partially at a low current level when the adapter is detected, and then turned fully on when the system voltage is at the operating voltage level.
US10797489B2 Smart powering and pairing system and related method
According to one disclosed embodiment, a smart powering and pairing system includes a power conversion unit (PCU) having a communication module, a power management module and a pairing module. The PCU can convert mains power into a form that can be used to power a plurality of electronic devices. In one embodiment, the PCU can transparently pair a connected electronic device to a group of subsequently connected electronic devices by accepting pairing information from the connected electronic device and using it to pair the subsequently connected devices. In another embodiment, the PCU can transparently pair a group of connected electronic devices by applying generated security data to all the connected devices. In another embodiment, a power conversion unit can use security data to un-pair connected electronic devices.
US10797486B2 System and method for controlling DC link voltage of a power converter of an electrical power system
A system and method for controlling voltage of a DC link of a power converter of a wind turbine power system connected to a power grid includes operating the DC link to an optimum voltage set point that achieves steady state operation of the power converter. The method also includes monitoring a speed of the wind turbine power system. Upon detection of one or more speed conditions occurring in the wind turbine power system, the method includes selecting a first maximum voltage set point for the DC link or a second maximum voltage set point for the DC link. Moreover, the method includes increasing the optimum voltage set point to the selected first or second maximum voltage set point of the DC link. In addition, the method includes operating the DC link at the selected first or second maximum voltage set point until the one or more speed conditions passes so as to optimize voltage control of the DC link.
US10797481B2 Reverse connection protection circuit and load system
In a reverse connection protection circuit, a protection element enters a conductive state when the power source is electrically connected in a forward direction to a load-side circuit and enters a non-conductive state when the power source is electrically connected in a reverse direction to the load-side circuit. The protection element has a first terminal electrically connected to a power source-side terminal of, and a second terminal electrically connected to a load-side terminal of the switching element. A booster circuit is electrically connected to the load-side terminal to supply a boosted voltage of more than a power source voltage to the load-side terminal. A voltage detection part is connected to the load-side terminal to detect an output voltage of the switching element. A judgment part is connected to the voltage detection part to detect a switching element failure based of the voltage detected by the voltage detection part.
US10797480B2 Smart circuit breaker
A smart residential circuit breaker includes a hybrid assembly that incorporates a solid-state circuit element integrated into a simplified mechanical pole having main contacts. The solid-state circuit element includes a printed circuit board (PCB) with a micro SD reader to provide faster opening speeds. The smart residential circuit breaker is configured for use for different current levels and controlled by the PCB. The smart residential circuit breaker includes a mag-latch. The PCB is configured to send a signal to the mag-latch to open and close the main contacts within microseconds of detecting an over-current.
US10797474B1 Fish tape leader
A fish tape leader comprises a leader body extending along a longitudinal axis between a first end and a second end. A frustoconical cap is at the first end. A tail portion extends from the frustoconical cap to the second end. The fish tape leader further comprises an attachment portion configured to secure the leader body to a fish tape.
US10797467B2 Tuning a multi-channel optical transmission system
An optical transmission system includes a laser module generating a modulated optical waveform, including both amplitude and frequency modulation, at center frequencies corresponding to different operating temperatures; and an optical shaping filter, with passbands corresponding to the different center frequencies, that converts at least part of the frequency modulation to additional amplitude modulation. The optical transmission system is tuned by: determining a range of temperatures at which the laser module center frequencies are within a passband of the optical shaping filter; setting the laser module to a temperature, within the range of temperatures, at which the modulated optical waveform is within the passband; measuring an average output power of the optical shaping filter; and adjusting the temperature of the laser module to a target temperature, within the range of temperatures, at which an output condition is achieved, based on the average output power and/or extinction ratio of the filtered waveform.
US10797465B2 Laser apparatus
A laser apparatus includes first and second wavelength dispersion elements, an optical element, first and second actuators, and a control unit. The first wavelength dispersion element generates wavelength dispersion in a direction orthogonal to an electric discharge direction between a pair of electric discharge electrodes. The second wavelength dispersion element generates wavelength dispersion in a direction parallel to the electric discharge direction. The optical element corrects wavelength dispersion generated by the second wavelength dispersion element. The first actuator drives the first wavelength dispersion element. The second actuator drives the optical element. The control unit controls the first actuator so that the center wavelength of the laser light approaches to a target wavelength and controls the second actuator so as to correct the wavelength dispersion generated by the second wavelength dispersion element.
US10797464B2 Wavelength locking structure and method for tunable laser
The present invention relates to a wavelength locking structure for a tunable laser and a wavelength locking method for a tunable laser. According to the present invention, since it is possible to use only one element for measuring the intensity of light, the number of parts is reduced in comparison to methods of the related art, so it is possible to perform wavelength locking economically with a down-sized structure.
US10797463B2 Fiber laser system and method for controlling same
In a case where a variation in reflection resistance among fiber lasers occurs, a reflection resistance of a fiber laser system as a whole is restored by reducing the variation while maintaining an output power of the fiber laser system as a whole. The fiber laser system includes a control section (C) configured to increase a proportion of a backward excitation power (PBi) in a fiber laser (FLi) so that fiber lasers (FL1 through FLn) less vary in reflection resistance.
US10797461B2 Non-linear optical mapping of SAL seeker detector array for removing applied lens distortion from incoming signal
The system and method non-linear optical mapping of a detector array to expand the field of view. Outer edges of the sensor array having lower resolution spatial resolution in exchange for an expanded field of view. A lens is used to distort incoming signals to provide the expanded field of view and a processor is used to remove the distortion to provide the actual spatial angles for the incoming signals suing a look up table or an algorithm. The lens may create radial or linear distortion.
US10797458B2 Method for producing a plug
A method is provided for producing a plug, having a plastic injection-molded encapsulation, for a fuel pump which arranged in a fuel tank of a motor vehicle. The plug has cables, stranded wires and a ground contact each protruding out of the encapsulation and each connected to encapsulated components. The plug elements and coils are inserted into a base plate. One core of a cable is soldered, welded or crimped to flat plug elements. The coils and stranded wires are each soldered, welded or crimped to a flat plug element. The base plate is inserted into a cavity of an injection mold, such that the cables and the stranded wires protrude out of the cavity through first passage openings and second passage openings, respectively, and cores are arranged in continuous openings of identical cross section in the wall of the injection mold. The cavity is then filled with a plastic.
US10797451B2 Thermally efficient connector system
A connector assembly can be provided. A receptacle includes terminals that can be positioned in a card slot on a 0.60 mm pitch (or greater). A biasing element can be provided in the card slot to engage a mating paddle card. The receptacle can be configured to allow air to flow from a front face to a rear face, the air passing through a middle wall. A plug assembly can be provided that includes a conductive body and is configured to generate some amount of heat. The body can include a surface that has cooling grooves. The cooling grooves allow air flow over the plug assembly so that the plug assembly can be cooled directly.
US10797447B2 Electrical connection device with built-in lockout function
An electronic device includes a male connector including at least two male pins, a female connector including at least two first terminals capable of being connected to a power source and at least two second terminals capable of being connected to at least one secondary power consumer. The male connector is capable of being connected to a primary power consumer. In parallel, each first terminal and each second terminal of the female connector is connected to a recess engaging, when the male connector is plugged into the female connector, with at least one male pin of the male connector so as to supply the primary consumer and the secondary consumer with electricity via the power source.
US10797444B2 High-voltage interlock system
The present invention relates to a HVIL system for a HV connector, in particular in a motor vehicle, which HV connector is configured to transmit HV current from the HV connector to a further component, wherein the HVIL system has a first HVIL contact element and a second HVIL contact element, wherein, in a non-plugged state of the HV connector, the first HVIL contact element is spaced apart from the second HVIL contact element by at least one first spring element; and wherein, in a plugged state of the HV connector, the first spring element is deformed in such a way that the first HVIL contact element makes contact with the second HVIL contact element in such a way that the HVIL system ensures that HV current is transmitted from the HV connector to the further component if the connection between the HV connector and the further component is secure. The present invention furthermore relates to a method for establishing a HV connection.
US10797443B2 Electrical connector
An electrical connector includes multiple signal terminals and multiple ground terminals paired to form multiple terminal groups and arranged in one row in a body. One signal terminal and one ground terminal form a first terminal group. Two signal terminals form a second terminal group. One ground terminal and one signal terminal form a third terminal group. An arrangement order of the two terminals in the third terminal group is different from an arrangement order of the two terminals in the first terminal group. Each terminal has a conducting portion. The conducting portions of the terminals in a same terminal group bend in a same direction, and the conducting portions of the terminals in adjacent terminal groups bend in opposite directions. The second terminal group is located between the first terminal group and the third terminal group, and between the adjacent ground terminals.
US10797441B2 Cable retention system for power distribution unit
A cable retention system for a power distribution unit includes a tether and a tether mount. The tether has an elongate portion and an attachment portion, and the attachment portion includes a channel therein. The tether mount has a base at a proximal end and a head at a distal end. The base is adapted to attach the proximal end of the tether mount to the power distribution unit. The tether is adapted to be secured to the tether mount by snap-fitting the head of the tether mount into the channel of the attachment portion.
US10797440B1 Connector assembly with slidable frame for unlocking latches
A connector assembly has a slidable locking frame used for unlocking latches on a plug connector and a socket connector. When the plug connector and the socket connector are connected and the slidable locking frame is mounted around the plug connector and by use of a lifting force moves toward a top side of the plug connector, the two first locking units of the plug connector are pushed outward by the two pushing units of the slidable locking frame respectively, and disengaged, or unlocked, from the two fastening portions of the socket connector respectively, and the slidable locking frame unlocks the two first locking units simultaneously to prevent a user from pulling the plug connector forcibly away from the socket connector before full unlocking of the two locking units.
US10797430B2 Connector
A connector 22 includes a housing 31, a plate 32, a plurality of terminals 33 and a potting material 34. The housing 31 is formed by insert molding with the plate 32 and the plurality of terminals 33 as cores. The housing 31 includes a separation wall 31b held in close contact with a first surface 32a of the plate 32, and this separation wall 31b is held in close contact with side surfaces of the terminals 33.
US10797427B2 Connector housing equipped with an improved cable terminal position assurance (TPA) device
The present application relates to a connector housing whose device, called terminal position assurance (TPA) device, installed so as to be able to slide inside the housing, transverse to its axis, is activated only by inserting a cable terminal whose body releases one or more flexible tabs of the TPA previously abutting against the housing.
US10797426B2 Electrical connector upper and lower contacts made from a single contact carrier and insulative housing molded by one shot
A method of making an electrical connector which includes an insulative housing having a tongue with two opposite surfaces and plural contacts with contacting portions exposed to the two opposite surfaces of the tongue, characterized by the steps of: forming the plural contacts from a single contact carrier to have one contact thereof with a contacting portion oriented reversely-symmetrically with respect to a contacting portion of another contact thereof; insert-molding the plurality of contacts with an insulator to form the insulative housing while exposing front ends of the contacts; and severing a carrier strip of the contact carrier from the front ends of the contacts while leaving the front ends inwardly of a front end surface of the insulative housing.
US10797423B2 Electric contact and socket for electric component
An electric contact including a first member portion to be in contact with a first electric component and a second member portion to be in contact with a second electric component. The first member portion is formed to be tubular by an electrically conductive material plate member a part of which is formed of wave shape portions, and the first member portion includes a first contact portion to be in contact with the first electric component and a spring portion formed by the wave shape portions. The second member portion is constructed by a rod member and includes a second contact portion to be in contact with the second electric component and an insert portion inserted into the spring portion. The first and second contact portions are urged to separate each other while the first and second member portions are contracted with against urging force of the spring portion.
US10797420B2 Connector with displacement restricting member
When a terminal unit (U) is mounted into an accommodation recess (8 of a connector housing (1), a rear part thereof projects from the connector housing (1). A displacement restricting member (2) including positioning portions (16) is mounted on the projecting part. Since the positioning portions (16) are fit into receiving portions (15) of the connector housing (1) while being position in a direction intersecting with an inserting direction, a situation where the projecting part of the terminal holding member (H) is deformed is avoided even if a second wire (25) is swung.
US10797417B2 High performance stacked connector
A shielded I/O connector that supports high density connections. The shielded connector has a cage with channels. At least a first channel is configured to receive a transceiver such that it may be plugged into a port in a connector housing at an end of the cage. At least a second channel is configured to dissipate heat by enabling air to flow adjacent the transceiver. The rate of air flow in the second channel is increased with a diverter at the end of the second channel to smooth the flow of air through the second channel and out of one or more orifices. The diverter may be simply formed by shaping the housing of a connector at an end of the cage. The orifices may be formed by channel in the connector housing and openings in surfaces of the cage that bound the second channel or the housing channel.
US10797414B2 Cable connector for coaxial cable on thick printed-circuit board
Method for connecting a printed circuit board (1) to a coaxial cable (3), wherein the coaxial cable (3) has an internal conductor (5) which is surrounded by a dielectric (7) which, in turn, is surrounded by a shield (6), wherein the dielectric (7) is surrounded by an outer casing (4), wherein the internal conductor (5) is soldered to a contact point (8) on the printed circuit board (1) for the purpose of making electrical contact, characterized in that the printed circuit board (1) has a recess (2) which starts from the surface of said printed circuit board, and the end region of the outer casing (4) of the coaxial cable (3) is inserted at least partially into the recess (2).
US10797405B1 Module comprising antenna and RF element, and base station including same
A communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT) are provided. The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. According to the disclosure, an antenna module includes a first substrate layer on which at least one substrate is stacked; an antenna coupled to an upper end surface of the first substrate layer; a second substrate layer having an upper end surface coupled to a lower end surface of the first substrate layer and on which at least one substrate is stacked; and a radio frequency (RF) element coupled to a lower end surface of the second substrate layer.
US10797402B2 Deployable antenna reflector
A reflective antenna comprising a flexible reflective sheet extending between a central hub and a perimeter edge, and a reflective sheet support mechanism comprising one or more spiral ribs articulated to the reflector sheet at least at several locations along the perimeter edge of the reflective sheet; wherein at a collapsed, stowed position of the reflective antenna the one or more spiral ribs are coiled about a common center and the reflective sheet is folded at a compact configuration, and at an expanded, deployed position the one or more spiral ribs are radially expanded and the reflective sheet is stretched over the expanded one or more spiral ribs, imparting the reflective sheet a parabolic shape.
US10797396B2 Aperture coupled patch antenna arrangement
It is provided an aperture coupled patch antenna comprising a substrate comprising a planar electrically conductive ground plane, an electrically conductive box arranged on and electrically connected to the ground plane to form an air filled cavity between the box and the ground plane, the box comprising an aperture in the form of at least one elongate slot. The antenna further comprises an electrically conductive patch arranged in parallel with the ground plane and at a distance from the box such that the aperture of the box is located between the patch and the ground plane and a distribution network comprising at least one elongate distribution element arranged in parallel with the ground plane between the ground plane and the patch, at a distance from the substrate and the ground plane and at a distance from the box such that a gap is formed between the distribution element and the box, wherein the extension of the distribution element intersects the extension of the aperture.
US10797395B2 Antenna and antenna apparatus
An antenna as an embodiment of the present invention is provided with an exciting element and a plurality of non-exciting elements. In a plan view, the exciting element includes a central region having a feeding point and at least three extending regions that extend radially from the central region. In the plan view, each non-exciting element includes a short circuit region having a short circuit point and a power receiving region located at a position where it is allowed to be capacitively coupled with corresponding one of the extending regions. In the plan view, a current path from the short circuit region to the power receiving region in each non-exciting element has a vertical component with respect to the extending direction of the corresponding one of the extending regions.
US10797393B2 Reading device antenna
An IC tag reading device is provided that has increased directivity and is capable of determining an accurate position of an IC tag inserted into and placed in a human body even when the operation range of the antenna of the reading device is limited, such as in thoracoscopy, without causing reduction in detectable distance. A reading device antenna for reading an IC tag that has been inserted into a human body and placed at a certain position in order to locate a lesion includes a coil portion having a coil with a predetermined number of turns in a circumferential direction, and a shield portion that covers at least an approximately half of the coil portion in the circumferential direction and causes a bias in a magnetic flux generated from the coil.
US10797390B2 Dynamic effective radiated power (ERP) adjustment
Antennas used aboard aircraft to communicate with satellites or ground stations may have complex antenna patterns, which may vary as the aircraft moves throughout a given coverage area. Techniques are disclosed for dynamically adjusting the instantaneous power fed to an antenna system to ensure that the antenna transmits at the regulatory or coordinated effective isotropic radiated power (EIRP) spectral limit. The antenna may transmit, in accordance with aircraft location and attitude, steerable beam patterns at different scan and skew angle combinations, causing variations in antenna gain and fluctuations in the transmitted EIRP. Using on-board navigational data, an antenna gain and ESD limit may be calculated for a particular scan and skew angle, which may be used to adjust power fed to the antenna such that the antenna transmits substantially at maximum allowable EIRP as the steerable beam pattern is adjusted.
US10797389B2 Non-invasive beam forming add-on module
An embodiment of a non-invasive beamforming add-on apparatus couples to an existing antenna port and rectifies the beam azimuth in the upstream and downstream directions. The apparatus comprises input circuitry that is configured to receive one or more signals from a neighboring node of the linear wireless sensor network; first amplifier circuitry configured to adjust an amplitude of a respective received signal in accordance with a weighting coefficient and invoke a desired phase to a carrier frequency of the received signal thereby forming a first amplified signal; and second amplifier circuitry configured to adjust a gain of the first amplified signal towards upstream and downstream neighbors of the linear wireless sensor in the linear wireless sensor network.
US10797387B2 Closed loop aperture tunable antenna
An apparatus comprises a radio frequency (RF) antenna circuit; an antenna aperture tuning circuit; an antenna impedance measurement circuit; and a processor circuit electrically coupled to the tunable antenna aperture circuit and the impedance measurement circuit. The processor circuit is configured to: set the antenna aperture tuning circuit to an antenna aperture tuning state according to one or more parameters of an RF communication network; initiate an antenna impedance measurement; and change the antenna aperture tuning state to an antenna aperture tuning state indicated by the antenna impedance.
US10797385B2 Antenna, antenna apparatus, terminal, and method for adjusting working frequency band of antenna
An antenna, an antenna apparatus, and a terminal are provided. The antenna includes a feeding point, a feeding stub, and a coupling stub. The feeding stub is electrically connected to the feeding point. The coupling stub is coupled to the feeding stub. The coupling stub includes at least two grounding points By selecting different grounding combinations of the at least two grounding points of the coupling stub, an antenna clearance area does not need to be increased while multi-frequency coverage of the antenna is implemented.
US10797381B2 Dynamic interference reduction for antenna beam tracking systems
An antenna beam tracking system has dynamic interference reduction. The system includes antennas that can form multiple beams, each beam of which can continually track or point its beams independently in various angular directions. A first beam continually tracks and receives (downlink) signals from a desired source or node such as a satellite or terrestrial node which generally has an apparent motion relative to the antenna. A second beam continually tracks and receives potentially harmful interference signals that may arise from different directions. The signals of the second beam are dynamically coupled to the signals in the first beam in such a manner as to effect cancellation or substantial reduction of the interference.
US10797378B2 Smart watch and antenna signal processing circuit and method thereof
An antenna signal processing circuit of a smart watch, including: a sensor module, a microprocessor, an antenna body and an antenna tuning circuit having a plurality of tuning paths. The antenna tuning circuit is connected between a smart watch signal source and the antenna body, and the microprocessor is respectively connected to the sensor module and the antenna tuning circuit. The sensor module sends a detected proximity sensing signal to the microprocessor. The microprocessor receives the proximity sensing signal, and obtains a controlling signal, to control the antenna tuning circuit to switch the tuning path and perform tuning processing on a signal from the smart watch signal source or the antenna body. A smart watch and an antenna signal processing method thereof are also provided.
US10797372B2 Chain clamp
Chain clamp and method for clamping around an elongated object and for serving as a support for separate objects. The chain clamp includes a plurality of links with a first link and a second link, and with each link having two attachment portions, a connection member connecting links, and a tensioner adapted to connect to the first and second link and to force the links towards each other to tension the chain clamp and clamp it around the elongated object. At least one link is a piece cut from an elongated extrusion and has a fixed cross-sectional profile and a longitudinal direction, wherein each of the two attachment portions of the at least one link are defined by a respective portion of the cross sectional profile and its continuation along the longitudinal direction of the at least one link.
US10797369B2 Arrayed waveguide-to-parallel-plate twist transition with higher-order mode optimization
A waveguide-to-parallel-plate twist transition includes at least one waveguide-to-parallel plate twist transition element comprising an input port comprising an input waveguide portion, the input waveguide portion configured to orient an E-field of an electromagnetic wave along a first plane, and an output port comprising a multi-mode parallel plate portion, the multi-mode parallel plate portion configured to orient an E-field of an electromagnetic wave along a second plane, wherein an angle of orientation of the second plane is different from an angle of orientation of the first plane. The twist transition further includes at least one intermediate discrete twist waveguide stage coupling each input waveguide portion to the output multi-mode parallel plate portion, wherein at least one intermediate discrete twist waveguide stage is configured to orient an E-field of an electromagnetic wave along a third plane, wherein an angle of orientation of the third plane is between the angle of orientation of the first plane and the angle of orientation of the second plane.
US10797368B2 Metal air battery system
A metal air battery system includes: a battery cell module configured to generate electricity by oxidation of a metal and reduction of oxygen; a plurality of air purification modules in fluid communication with the battery cell module; a compressed air supply unit configured to supply compressed air to the plurality of air purification modules; and a buffer tank disposed between the compressed air supply unit and the plurality of air purification modules, and configured to receive compressed air from the compressed air supply unit and to supply the compressed air to the plurality of air purification modules, wherein a bottom portion of the buffer tank includes a plurality of holes, and a hole of the plurality of holes corresponds to an inlet of an air purification module in the plurality of air purification modules, and the hole is directly connected to the corresponding inlet of the air purification module.
US10797366B2 Temperature-controlling device for a battery module, method for manufacturing same and battery module
The invention relates to a temperature-controlling device for a battery module, having a flow space (4) which has a multiplicity of spacer elements (11) and is essentially closed. The spacer elements (11) are arranged within the flow space (4) and the temperature-controlling device (3) further has a flow deflection unit (15) which is arranged within the flow space (4) and has a longitudinal direction (16) extending along the flow deflection unit (15) from a first end (24) to a second end (25) of said flow deflection unit (15). The flow deflection unit (15) forms a first side face (17) and a second side face (18) which sides are arranged in the longitudinal direction (16) on opposite sides of the flow deflection unit (15), and wherein at least portions of the first side face (17) and the second side face (18) are arranged directly adjacent to a spacer element (11, 111, 112).
US10797365B2 Battery module
The invention relates to a battery module having a multiplicity of battery cells (4), wherein the battery module (1) has a housing (2) with an interior space (3) in which the multiplicity of battery cells (4) is accommodated, wherein a housing wall (5, 6) of the housing (2) has a multiplicity of projections (7) facing toward the interior space (3) of the housing (2), wherein in each case two adjacent projections (7) delimit a flow channel (8) designed for a flow of temperature-control fluid, wherein the multiplicity of battery cells (4) makes direct contact in each case with the multiplicity of projections (7).
US10797364B2 Power supply system of vehicle
A power supply system includes: a first battery; a second battery; a heater; a power circuit in which the first battery and the second battery and the heater are provided; a first external charging unit supplying electric power external to a vehicle to the power circuit; and an electronic control unit controlling the power circuit and the first external charging unit. During execution of heater heating control that heats the first battery with the heater by driving the heater with the electric power supplied from the first external charging unit, the electronic control unit executes discharging heating control that heats the first battery by discharging electric power from the first battery to the second battery, and charges the first battery with the electric power supplied from the first external charging unit after a temperature of the first battery becomes equal to or higher than a heating determination temperature.
US10797360B2 Control device for power system with battery and fuel cell
A battery system control device includes a load, a secondary battery connected to the load via a first power converter converting a voltage by a switching operation, a fuel cell, and a control unit. The battery discharges power supplied to the load. The fuel cell is connected to the load and to the battery and the first power converter, via a second power converter converting a voltage. The fuel cell generates low voltage power. The control unit charges the battery using the generated power from the fuel cell. The control unit includes fuel cell and secondary battery controllers. The fuel cell controller steps up the power generated by the fuel cell to a voltage chargeable by the battery to be supplied to the load by the second power converter. The secondary battery controller directly connects the load and the battery by stopping the switching operation of the first power converter.
US10797359B2 Cooled containment compartments for packaged battery cells
An air plenum assembly includes a first plenum for cooling, where the first plenum includes an inlet for air intake located at a first side of the first plenum. The air plenum assembly further includes a second plenum for exhausting heated air, where the second plenum includes an outlet for exhausting air located at a first side of the second plenum. The air plenum assembly further includes a first aperture located on a first side of the first plenum for directing air from the inlet at the first side of the first plenum to a first compartment and includes a first vent located on a first side of the second plenum for exhausting air away from the first compartment towards the outlet at the first side of the second plenum. The first compartment is isolated from surrounding battery compartments by at least two thermal separators.
US10797358B2 Smart power bank system for efficient energy transfer
In general, techniques are disclosed for efficiently transferring power from a portable power bank to an electronic device. More particularly, a disclosed power bank incorporates a switching mechanism capable of routing battery voltage (novel) or a stepped-up voltage (e.g., from a boost regulator) directly to a common portion of an output connector. In addition, electronic devices as described herein also incorporate a switching mechanism to allow them to accept direct battery output (novel) or a stepped-up voltage at a common portion of the device's connector (e.g., a USB connector). When used in combination, the disclosed portable power bank can transfer power to the electronic device with no more than half the loss attributable to voltage conversion operations of the prior art.
US10797355B2 Non-aqueous electrolyte secondary battery
A non-aqueous electrolyte secondary battery includes a housing, a stack-type electrode array accommodated in the housing, and an electrolyte solution. The electrolyte solution includes an infiltrated portion infiltrated into the stack-type electrode array and an excess portion other than the infiltrated portion. In a set-up state that the non-aqueous electrolyte secondary battery is arranged such that a direction of stack of the stack-type electrode array is orthogonal to a vertical direction, a lower end of the separator projects below lower ends of the positive electrode and the negative electrode. In the set-up state, within a range of an operating state of charge, a projecting portion of any of the plurality separators is always in contact with the excess portion and the plurality of positive electrodes and the plurality of negative electrodes are not in contact with the excess portion at any time.
US10797351B2 Amide-based electrolyte battery
An energy storage apparatus is described and claimed herein comprising, generally, a battery housing enclosing a negative electrode, a positive electrode, and an electrolyte, wherein the electrolyte comprises a salt dissolved in either an amide-based solvent. In various embodiments, the amide-based solvent is a tertiary amide. Moreover, the energy storage apparatus may be a lithium ion battery that comprises an electrolyte with a lithium salt dissolved in a tertiary amide.
US10797348B2 Electrolyte and lithium-ion battery
The present disclosure provides an electrolyte and a lithium-ion battery. The electrolyte comprises: an organic solvent; a lithium salt dissolved in the organic solvent; and an additive. The additive comprises trifluoromethanesulfonate silyl compound, lithium fluorophosphate compound and cyclic phosphonitrile compound. The electrolyte of the present disclosure can significantly decrease the low temperature resistance of the lithium-ion battery, and improve the power performance of the lithium-ion battery, and the electrolyte of present disclosure can also significantly inhibit the gas generation during the cycle process and the storage process of the lithium-ion battery, and significantly improve the cycle performance, the high temperature storage performance and the safety performance of the lithium-ion battery.
US10797346B2 Solid polymer electrolyte comprising an alkoxysilane compound having a urethane bond, a method of preparing the electrolyte, and a lithium secondary battery including
A solid polymer electrolyte includes a matrix prepared by subjecting an alkoxysilane compound having a urethane bond represented by Structural Formula 1 below and an alkoxysilane compound represented by Structural Formula 2 below to a sol-gel reaction; and a lithium salt dispersed in the matrix, and The solid polymer electrolyte composition is configured such that silsesquioxane is linked to a polycarbonate diol-based polymer chain having a urethane bond. The solid polymer electrolyte exhibits superior compatibility, stability, flexibility, mechanical properties and ionic conductivity.
US10797340B2 Lithium air battery
A lithium air battery comprising a plurality of unit cells which have different diameters, each unit cell comprises: electrodes including: a disc-shaped positive electrode having a first air flow path passing through the positive electrode in a vertical direction of the lithium air battery and one or more electrolyte flow paths on the positive electrode in a horizontal or vertical direction of the lithium air battery; and an negative electrode having a second air flow path passing through the negative electrode in the vertical direction to coincide with the first air flow path; and a separator disposed between the positive electrode and the negative electrode. The unit cells are stacked in the vertical direction within a stack cell tank such that a diffusion layer is disposed between the respective unit cells. A lowermost unit cell has the greatest diameter and diameters of the remaining unit cells, which are sequentially stacked on a lowermost unit cell, gradually decreases vertically in an upward direction so that the unit cells have a stepped structure.
US10797336B2 Apparatus and a method for in-vivo power generation
An apparatus for an in-vivo power generation comprises a fuel convertor for converting glucose in a fluid to a hydrogen rich, low carbon fuel such as ethanol or methanol by the action of a bioenzyme on the glucose in the CSF. The fluid can be any one of cerebro spinal fluid, urine and glucose solution. The apparatus further comprises a biofuel cell comprising a cathode chamber and an anode chamber with a membrane assembly sandwiched between them. The membrane assembly comprises a cathode, an anode and a proton exchange membrane. The cathode is coated with an enzyme laccase, which enables extraction of oxygen when the fluid is passed through the cathode chamber. The oxygen from the cathode chamber and the hydrogen in the hydrogen rich fuel from the anode chamber diffuses through the proton exchange membrane and reacts at an ionic level to result in water and electrical power.
US10797335B2 Conductive solid oxide fuel cell electrolyte composition and a method for preparing the same
The present disclosure relates to a conductive Solid Oxide Fuel Cell (SOFC) electrolyte composition that is compatible with Low Temperature Co-fired Ceramic (LTCC). The conductive SOFC electrolyte composition comprises gadolinium doped ceria, glass composite and additives. The conductive SOFC electrolyte composition is physically and chemically compatible with the LTCC. A process for preparing a conductive SOFC electrolyte composition is also provided in the present disclosure.
US10797334B2 Ion conductive polymer electrolyte membrane having ion channel size controlled according to phase separation improvement effect of polar solvent during casting of ion conductive polymer electrolyte membrane, and preparation method therefor
Provided are an proton conducting polymer electrolyte membrane and a manufacturing method thereof which control the proton conducting nanochannel size and proton conductivity by phase separation improvement of a polar aprotic solvent in casting the proton conducting polymer electrolyte membrane.
US10797331B2 Fuel cell system and determination method including injector failure determination based on circulation hydrogen pump power consumption
A fuel cell system determines whether or not the injector is failed using a determination result, the determination result showing whether or not a fluctuation range determined for power consumed by a hydrogen pump is a predetermined value or less, the fluctuation range being generated by opening and closing of the injector.
US10797327B2 SOFC hot box components
Various hot box fuel cell system components are provided, such as heat exchangers, steam generator and other components.
US10797321B2 Method of depositing nanoscale materials within a nanofiber network and networked nanofibers with coating
Provided herein is a method of manufacturing a nanoscale coated network, which includes providing nanofibers, capable of forming a network in the presence of a liquid vehicle and providing a nanoscale solid substance in the presence of the liquid vehicle. The method may also include forming a network of the nanofibers and the nanoscale solid substance and redistributing at least a portion of the nanoscale solid substance within the network to produce a network of nanofibers coated with the nanoscale solid substance. Also provided herein is a nanoscale coated network with an active material coating that is redistributed to cover and electrochemically isolate the network from materials outside the network.
US10797318B2 Positive electrode active material, method for manufacturing same, and lithium secondary battery containing same
A positive active material is provided. The positive active material may include lithium, an additive metal, and at least one of nickel, cobalt, manganese, or aluminum. The additive metal may include an element different from nickel, cobalt, manganese, and aluminum, and an average content of the additive metal may be less than 2 mol %.
US10797317B2 Cathode active material for lithium ion secondary batteries, method for manufacturing the same, and lithium ion secondary batteries including the same
Provided is a composite cathode active material including: a core including a lithium transition metal oxide, the lithium transition metal oxide being doped with nickel (Ni) and at least one element selected from Group 4 to Group 13 elements and having a layered crystalline phase belonging to the Space Group R-3m; and a coating layer on a surface of the core, the coating layer including a cobalt compound.
US10797316B2 Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same
A coated nickel hydroxide powder that has improved dispersibility in a paste to inhibit agglomeration and can be densely packed in a three-dimensional metal porous body in the preparation of a positive electrode for alkaline secondary battery includes nickel hydroxide particles and a coating layer made of a cobalt compound and formed on a surface of the nickel hydroxide particles, wherein when 10 mL of water is added to 10 g of the coated nickel hydroxide powder to prepare a suspension, a total amount of eluted ions except for oxonium ions, hydroxide ions, and carbonate ions in the suspension is 6.5 mmol/L or less. The coated nickel hydroxide powder obtained through a crystallization step, a coating step, and a washing step is dried in a drying step in a decarbonated atmosphere whose partial pressure of a carbon-containing gas is 15 Pa or less.
US10797310B2 Electrochemical energy storage devices and components
A battery electrode composition is provided comprising anode and cathode electrodes and an electrolyte ionically coupling the anode and the cathode. At least one of the electrodes may comprise a plurality of active material particles provided to store and release ions during battery operation. The electrolyte may comprise an aqueous metal-ion electrolyte ionically interconnecting the active material particles. Further, the plurality of active material particles may comprise a conformal, metal-ion permeable coating at the interface between the active material particles and the aqueous metal-ion electrolyte. The conformal, metal-ion permeable coating impedes water decomposition at the aforesaid at least one of the electrodes.
US10797309B2 Negative electrode active material and lithium secondary battery comprising the same
The present invention relates to a negative electrode active material comprising a mixture of a first negative electrode active material and a second negative electrode active material, wherein the first negative electrode active material has a hardness of 1 kg/mm2 to 10 kg/mm2 on the basis of the Vickers hardness standard, and the second negative electrode active material has a higher hardness than the first negative electrode active material. The negative electrode active material according to the present invention comprises a mixture of negative electrode active materials having different hardness so that pores of an active material layer are maintained in spite of a rolling process at the time of producing an negative electrode, and the pores acting as an electrolyte flow passage of an electrode can effectively be secured, thereby producing a lithium secondary battery having excellent battery performance by lowering resistance when a battery is charged or discharged.
US10797304B2 All-solid-state secondary battery
An all-solid-state secondary battery includes a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a solid electrolyte layer between the positive and negative electrode active material layers. The solid electrolyte layer has a thickness of 2 to 20 μm. The solid electrolyte layer includes a binder containing a particulate polymer having an average particle diameter of 0.1 to 1 μm.
US10797303B2 Silicon-based anode active material and preparation method therefor
The present invention relates to a silicon-based anode active material and a method of fabricating the same. The silicon-based anode active material according to an embodiment of the present invention comprises: particles comprising silicon and oxygen combined with the silicon, wherein a carbon-based conductive layer is coated with on outermost surface of the particles; and phosphorus doped in the particles, wherein a content of the phosphorus with respect to a total weight of the particles and the phosphorus doped in the particles have a range of 0.01 wt % to 15 wt %, and a content of the oxygen has a range of 9.5 wt % to 25 wt %.
US10797301B2 Method of manufacturing an electrochemical cell
In a method of manufacturing an electrochemical cell, a porous or non-porous electrically conductive metal substrate may be provided. A conformal metal chalcogenide layer may be formed on a surface of the metal substrate. The metal substrate with the conformal metal chalcogenide layer may be immersed in a nonaqueous liquid electrolyte solution comprising a lithium salt dissolved in a polar aprotic organic solvent. An electrical potential may be established between the metal substrate and a counter electrode immersed in the nonaqueous liquid electrolyte solution such that lithium ions in the electrolyte solution are reduced to metallic lithium and deposited on the surface of the metal substrate over the metal chalcogenide layer to form a conformal lithium metal layer on the surface of the metal substrate over the metal chalcogenide layer.
US10797299B2 Electrode plate and surface treatment method thereof
The disclosure provides an electrode plate and a surface treatment method thereof. The surface treatment method firstly adopts a special annealing process to process the electrode plate to form a Mg film on the surface of the MgAl alloy material layer, and then make the Mg film chemically react with the fluoride ion to form a MgF2 film on the surface of the Mg film or the Mg film is converted into a MgF2 filmentirely. Due to the dense structure and chemical stability of MgF2 film, the fluoride ion corrosion resistance of the electrode plate is improved. The surface of the electrode plate of the disclosure includes a MgF2 film capable of being used as a protective layer to protect the MgAl alloy material layer. Therefore, the electrode plate has excellent corrosion resistance against fluoride ions and can improve the quality of film formation by chemical vapor deposition.
US10797296B2 Single-cell battery, battery module, power battery, and electric vehicle
The present disclosure is directed to a single-cell battery, a battery module, a power battery, and an electric vehicle. The single-cell battery includes a case, a battery cell accommodated in the case, an electrode terminal electrically connected to the battery cell, and a cover plate for sealing the case. The electrode terminal is disposed on the cover plate. The electrode terminal includes a battery post passing through the cover plate and electrically connected to the battery cell. The single-cell battery further includes a current interruption device mounted on the battery post. The current interruption device is in communication with gas inside the case. The current interruption device has a conductive member and a flipping member connected to the conductive member for mutual electrical connection. The flipping member and the conductive member are electrically disconnected from each other under action of air pressure. The conductive member is connected to the battery post for mutual electrical connection.
US10797293B2 Battery pack
A battery pack includes a plurality of unit cells, each including an electrode body having a structure in which a positive electrode and a negative electrode are stacked, and a busbar that electrically connects a positive electrode terminal to a negative electrode terminal between the unit cells. The unit cells are stacked adjacent to one another in the same direction as a direction in which the positive electrode and the negative electrode of the electrode body are stacked. The busbar electrically connects the unit cells disposed apart from each other among the unit cells excluding the unit cells disposed adjacent to each other.
US10797291B2 Bus bar module
A bus bar module includes an electric wire routing structure that is attached to an battery assembly including a plurality of battery cells and accommodates a plurality of bus bars in which each electrodes of the battery cells is electrically connected to each other, a plurality of electric wires connected to the battery cells via the bus bars, respectively, an electric wire routing groove formed in the electric wire routing structure and accommodating the electric wires in a pair of side walls, and a lid that is supported by a first side wall via a hinge and covers the electric wire routing groove to block a groove opening.
US10797290B2 Assembly of electronic components
Identical planar electronic components are stacked in an assembly. Each component has two contact metallizations positioned on edges of a same surface of the component. The components are stacked along a common axis. Each successive component is rotated about the common axis by a fixed angle. A value of the fixed angle is selected to position, side by side, the contact metallization of one component and the contact metallization of another next component adjacent to each other in the stack. Electrical connections are provided between two adjacent contact metallizations.
US10797289B2 Wiring module
A power storage module includes: multiple power storage elements that each include a pair of electrode terminals and an electrode arrangement surface; and a battery connection module that is mounted on the multiple power storage elements. The battery connection module includes an insulating protector that is provided in correspondence with a predetermined number of power storage elements. The insulating protector includes: a first position portion that engages with a first positioned portion provided between the pair of electrode terminals on the electrode arrangement surface of one power storage element; and a second positioning portion that engages with the second positioned portion provided in the periphery of at least one of the pair of electrode portions on the electrode arrangement surface of the one electrode terminal or on the electrode arrangement surface of the one other electrode terminal.
US10797288B2 Separators for electrochemical cells
Provided are separators for use in an electrochemical cell comprising (a) an inorganic oxide and (b) an organic polymer, wherein the inorganic oxide comprises organic substituents. Also provided are electrochemical cells comprising such separators.
US10797287B2 Organic/inorganic composite porous membrane, and separator and electrode structure comprising the same
The present disclosure provides an organic/inorganic composite porous membrane, comprising: one or more particles selected from inorganic particles and organic particles; and a binder polymer, wherein said one or more particles selected from inorganic particles and organic particles are bonded with each other by the binder polymer surrounding the surface of the particles, and said one or more particles are filled at a rate of 60 to 70% in the membrane.
US10797283B2 Battery module
The present disclosure provides a battery module, which comprises a battery group, two end plates and two side plates. Each end plate has X direction groove portions respectively formed to two ends of the end plate in the X direction. Each side plate has: a body portion positioned at one of the two ends of the battery group in the X direction; and inserting portions respectively extending from two ends of the body portion in the Y direction toward the X direction. The inserting portions of each side plate are respectively inserted into the corresponding X direction groove portions of the end plates to limit relative movement between each side plate and the end plates in the Y direction to make each side plate and the end plates fixed and connected. Strength of the battery module is improved and the possibility in connection failure of the battery module is reduced.
US10797281B2 Hand-held power tool and rechargeable battery pack for a hand-held power tool
A rechargeable battery pack for a hand-held power tool, including a rechargeable battery pack housing, the rechargeable battery pack housing accommodating at least two rechargeable battery cells. The rechargeable battery pack is mechanically and electrically connectable to a hand-held power tool and/or to a charging device via an interface. The interface includes contact elements for electrically and/or mechanically contacting corresponding countercontact elements on the hand-held power tool and/or corresponding countercontact elements on the charging device. It is provided that the rechargeable battery pack housing includes at least one first rechargeable battery cell string for accommodating at least one first rechargeable battery cell, and at least one second rechargeable battery cell string for accommodating at least one second rechargeable battery cell. The rechargeable battery pack housing includes at least two electrical contact elements for each rechargeable battery cell string.
US10797275B2 Energy storage device and method for manufacturing the energy storage device
An energy storage device includes: a conductive member (shaft portion) which penetrates a case and is connected to a terminal main body (bus bar connecting portion. The case includes: a through hole through which the conductive member penetrates; a concave portion which is at least a portion of a periphery of the through hole and is formed on one of an inner surface and an outer surface of the case, and a convex portion which is formed at a position opposite to the concave portion on an other of the inner surface and the outer surface of the case. In a plan view of the outer surface of the case, the terminal main body has a shape such that at least a portion of the terminal main body is larger than the concave portion.
US10797273B2 Rechargeable battery
A rechargeable battery includes: an electrode assembly including a first electrode and a second electrode; a housing having an open side, the housing accommodating the electrode assembly; a cap assembly including a cap plate for closing and sealing the open side of the housing; a first current collecting member under the cap assembly and connected to the first electrode; a second current collecting member under the cap assembly and connected to the second electrode; and an insulating case joined with the cap assembly, arranged between the cap plate and the electrode assembly, and having grooves at portions thereof respectively corresponding to the first and second current collecting members.
US10797271B2 Manufacturing method for OLED display panel
A manufacturing method for OLED display panel is disclosed, which first performs patterning on the encapsulation colloid of the encapsulant to divide encapsulation colloid into a plurality of target encapsulation areas, with each target encapsulation area corresponding to each OLED substrate unit, and a gap area outside of target encapsulation areas, performing disintegration treatment from the other side of encapsulation colloid on a portion of encapsulation colloid belonging to gap area so that the surface losing adhesiveness, then attaches encapsulation colloid to OLED substrate, and finally, obtains a plurality of OLED display panels by cutting. This method is simple to perform, reduces the size compatibility requirement of the laminator and avoids the use of extra manipulator and carrier fixture, which reduces the product cost incurred by fixture cleaning, transport, storage and other complex operations, and improves the product of the alignment accuracy, is good for automated production.
US10797270B2 Nozzle-droplet combination techniques to deposit fluids in substrate locations within precise tolerances
An ink printing process employs per-nozzle droplet volume measurement and processing software that plans droplet combinations to reach specific aggregate ink fills per target region, guaranteeing compliance with minimum and maximum ink fills set by specification. In various embodiments, different droplet combinations are produced through different print head/substrate scan offsets, offsets between print heads, the use of different nozzle drive waveforms, and/or other techniques. Optionally, patterns of fill variation can be introduced so as to mitigate observable line effects in a finished display device. The disclosed techniques have many other possible applications.
US10797267B2 Package structure, manufacturing method for the same, and display device
The present disclosure provides a package structure, a manufacturing method for the same, and a display device. The package structure includes a substrate, an organic light emitting device disposed on the substrate, and an encapsulation film layer disposed above the organic light emitting device, the encapsulation film layer encapsulating the organic light emitting device onto the substrate, wherein an adsorption structure is formed in the encapsulation film layer, and the adsorption structure is configured to absorb moisture and oxygen.
US10797264B2 OLED packaging method and OLED packaging structure
An OLED packaging method and structure are disclosed. In the present invention, forming a ring-shaped organic layer on the edge of the inorganic barrier layer, and then forming a planar organic layer on the upper surface of the inorganic barrier layer surrounded by the ring-shaped organic layer. The planar organic layer and the ring-shaped organic layer are integrated together to form an organic buffering layer. The upper surface of the organic buffering layer is flat, and the region of the organic buffering layer corresponding to the edge position of the inorganic barrier layer does not have an upward projection, the film thickness and morphology of the inorganic barrier layer are not affected. The present invention can improve the barrier effect of inorganic barrier layer for water and oxygen. The upper surface of the organic buffering layer in the OLED packaging structure is flat and has a good encapsulation effect.
US10797259B2 Organic light-emitting diode with high efficiency
Disclosed is an organic light-emitting diode, comprising: a first electrode; a second electrode facing the first electrode; and a light-emitting layer interposed therebetween, wherein the light-emitting layer contains at least one selected from among the amine compounds represented by the following Chemical Formula A or Chemical Formula B and the pyrene compound represented by the following Chemical Formula C, plus the anthracene compound represented by the following Chemical Formula D. The structures of Chemical Formulas A to D are as defined in the specification.
US10797258B2 System and method for matching electrode resistances in OLED light panels
Provided are an OLED device and a method of manufacturing the OLED device that may provide improved luminance uniformity. The disclosed OLED may have a first electrode that has a first sheet resistance Rs, and a second electrode that has a second sheet resistance, wherein the second sheet resistance may be in the range of 0.3 Rs-1.3 Rs. In addition, the disclosed OLED may have a plurality of equal potential difference between points on a first electrode and a second electrode. The equal potential difference may be provided by a gradient resistance formed on at least one of the electrodes.
US10797256B2 Organic electroluminescence device, organic electroluminescence unit, and electronic apparatus
An organic electroluminescence device includes, in order, a first electrode, a hole transport layer, an organic light-emitting layer, an electron transport layer, and a second electrode. The hole transport layer is configured by a coated film. The organic light-emitting layer is configured by a coated film. The organic light-emitting layer has a light emission region provided in the organic light-emitting layer on side of the electron transport layer.
US10797253B2 Fabrication method and fabrication assembly for flexible display substrate
A fabrication method and a fabrication assembly for a flexible display substrate are provided. The fabrication assembly for a flexible display substrate includes: a rigid base substrate, including a first engaging structure being on a surface of the rigid base substrate; and a protective film, including a first surface and a second surface opposite to each other, and including a second engaging structure being on the first surface. The second surface of the protective film is configured to be attached to a flexible base substrate; and the rigid base substrate and the protective film are configured to be detachably connected with each other by the first engaging structure and the second engaging structure.
US10797251B2 Flexible display apparatus and touch sensitive display apparatus
A flexible display apparatus includes a flexible substrate including a display area and a bending area outside the display area, the bending area to be bent around a bending axis; an inorganic insulating layer on the flexible substrate; a cut unit in the inorganic insulating layer in the bending area; a stress relaxation layer filling the cut unit and extending into the display area; a wiring part on the stress relaxation layer in the bending area; a planarization layer covering the wiring part and on the stress relaxation layer; and a display on the planarization layer in the display area and electrically connected to the wiring part.
US10797247B2 Compound for organic electric element, organic electric element comprising the same and electronic device thereof
Provided are an organic electric elements, and electronic devices thereof, wherein high luminous efficiency, low driving voltage and the improved lifetime of the organic electronic element are achieved by using the compound of the present invention as a phosphorescent host material.
US10797241B1 Display equipment, display panel, array substrate and method for manufacturing the same
The present disclosure relates to an array substrate and a method for manufacturing the same, a display panel, and a display equipment. The array substrate includes a piezoelectric substrate, a pixel defining layer disposed on the piezoelectric substrate and formed with an opening region, and interdigital electrodes disposed oppositely at two sides of the pixel defining layer on the piezoelectric substrate and fitted on the piezoelectric substrate to form an acoustic surface standing wave including an antinodal point and a nodal point. The position of the antinodal point corresponds to the position of the opening region while the position of the nodal point corresponds to the position of the pixel defining layer. In the array substrate provided by the present disclosure, when a light emitting unit is formed in the opening region by a gas jet printing equipment, a gas material can be prevented from diffusing into adjacent opening regions.
US10797240B2 Inkjet printing apparatus and printing method using the same
An inkjet printing apparatus includes an ink jetting unit to jet ink to a substrate, a stage to movably support the substrate relative to the ink jetting unit, and a pair of air-conditioning units arranged at front and rear ends of the ink jetting unit in a direction in which the stage is moved, the air-conditioning units each including an air blowing unit and a suction unit.
US10797239B2 Method for manufacturing semiconductor device
A method for forming a semiconductor device is disclosed. The method for forming the semiconductor device includes forming a first sacrificial film over a target layer to be etched, forming a first partition mask over the first sacrificial film, forming a first sacrificial film pattern by etching the first sacrificial film using the first partition mask, forming a first spacer at a sidewall of the first sacrificial film pattern, and forming a first spacer pattern by removing the first sacrificial film pattern. The first partition mask includes a plurality of first line-shaped space patterns extending in a first direction. A width of at least one space pattern located at both edges from among the plurality of first space patterns is smaller than a width of each of other space patterns.
US10797237B2 Resistive memory architectures with multiple memory cells per access device
A resistive memory structure, for example, phase change memory structure, includes one access device and two or more resistive memory cells. Each memory cell is coupled to a rectifying device to prevent parallel leak current from flowing through non-selected memory cells. In an array of resistive memory bit structures, resistive memory cells from different memory bit structures are stacked and share rectifying devices.
US10797235B2 Multivalent oxide cap for analog switching resistive memory
A memory includes a base oxide provided between a first electrode and a second electrode, and a multivalent oxide provided between the first electrode and the second electrode. The multivalent oxide switches between at least two oxidative states.
US10797227B2 Spin-transfer torque MRAM with a negative magnetic anisotropy assist layer and methods of operating the same
A MRAM device includes a magnetic tunnel junction containing a reference layer having a fixed magnetization direction, a free layer, and a nonmagnetic tunnel barrier layer located between the reference layer and the free layer, a negative-magnetic-anisotropy assist layer having negative magnetic anisotropy that provides an in-plane magnetization within a plane that is perpendicular to the fixed magnetization direction, and a first nonmagnetic spacer layer located between the free layer and the negative-magnetic-anisotropy assist layer.
US10797226B2 Magnetoresistive memory cell and method for fabricating the same
A magnetoresistive memory cell is provided including a substrate. An inter-layer dielectric layer is disposed on the substrate. A via structure is disposed in the inter-layer dielectric layer. A magnetic pinned layer is disposed on the via structure. A tunnel barrier layer is disposed on the magnetic pinned layer to cover a top and a sidewall of the magnetic pinned layer, wherein the tunnel barrier layer comprises a horizontal extending portion outward from a bottom of the sidewall. A magnetic free layer with a -like structure is disposed on the tunnel barrier layer, wherein the magnetic free layer is isolated from the magnetic pinned layer by the tunnel bather layer. A spacer is disposed on the sidewall of the magnetic free layer. The spacer extends to the inter-layer dielectric layer.
US10797224B2 Magnetoresistive device and method of fabricating same
The disclosed technology generally relates to magnetoresistive devices, and more particularly to a magnetic tunnel junction (MTJ) device formed in an interconnection structure, and to a method of integrating the (MTJ) device in the interconnection structure. According to an aspect, a device includes a first interconnection level including a first dielectric layer and a first set of conductive paths arranged in the first dielectric layer, a second interconnection level arranged on the first connection level and including a second dielectric layer and a second set of conductive paths arranged in the second dielectric layer, and a third interconnection level arranged on the second interconnection level and including a third dielectric layer and a third set of conductive paths arranged in the third dielectric layer. The device additionally includes a magnetic tunnel junction (MTJ) device including a bottom layer, a top layer and an MTJ structure arranged between the bottom layer and the top layer, wherein the bottom layer is connected to a bottom layer contact portion of the first set of conductive paths and the top layer is connected to a top layer contact portion of the second or third set of conductive paths. The device further includes a multi-level via extending through the second dielectric layer and the third dielectric layer, between a first via contact portion of the first set of conductive paths and a second via contact portion of the third set of conductive paths, wherein a height of the MTJ device corresponds to, or-is less than, a height of the multi-level via, e.g., wherein the height of the MTJ device corresponds to or is less than a height of the second interconnection level.
US10797223B2 Integrated circuits with magnetic random access memory (MRAM) devices and methods for fabricating such devices
Integrated circuits with magnetic random access memory (MRAM) devices and methods for fabricating such devices are provided. In an exemplary embodiment, a method for fabricating MRAM bitcells includes determining a desired inter-cell spacing between a first bitcell and a second bitcell and double patterning a semiconductor substrate to form semiconductor fin structures, wherein the semiconductor fin structures are formed in groups with an intra-group pitch between grouped semiconductor fin structures and with the inter-cell spacing between adjacent groups of semiconductor fin structures different from the intra-group pitch. The method further includes forming a first MRAM memory structure over the semiconductor fin structures in the first bitcell and forming a second MRAM memory structure over the semiconductor fin structures in the second bitcell. Also, the method includes forming a first source line for the first bitcell between the first MRAM memory structure and the second MRAM memory structure.
US10797218B2 Substrate, method for manufacturing substrate, and elastic wave device
A substrate includes a substrate main body that includes a first main surface and a second main surface facing the first main surface. First electrode lands are disposed inside a recessed portion of the first main surface of the substrate main body. Second electrode lands are disposed in a region outside the recessed portion. The first electrode land and the second electrode land are connected to different electric potentials.
US10797216B2 Piezoelectric device
A piezoelectric device includes a piezoelectric vibrating piece, a container, and a lid. The piezoelectric vibrating piece is bevel processed and has a bevel surface at one end of the piezoelectric vibrating piece. Thea container holds the piezoelectric vibrating piece with the bevel surface at the one end of the piezoelectric vibrating piece. The container has a connection pad at a holding region of the container and a pillow portion at a region corresponding to the other end of the piezoelectric vibrating piece. The lid member seals the container. The connection pad is buried in the container at the holding region in a state of a flat surface with a surface of the container and in a state where the surface of the connection pad is exposed. The piezoelectric vibrating piece is spanned between the surface of the connection pad and a top surface of the pillow portion.
US10797215B2 Graded thermoelectric materials
This disclosure provides systems, methods, and apparatus related to graded thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with nanostructures of the plurality of nanostructures having first ligands disposed on surfaces of the nanostructures. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is contacted with a solution containing second ligands. A ligand exchange process occurs where some of the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. A first region of the layer is removed from contact with the solution so that the ligand exchange process does not occur in the first region of the layer, with the ligand exchange process occurring in the layer in contact with the solution. The layer is then removed from contact with the solution.
US10797210B2 Light emitting device having reduced thickness and increased light-reflectivity
A light emitting device includes: first and second conductive members disposed on an upper surface of a substrate; and a light emitting element disposed above a portion of an upper surface of a first electrode layer and a portion of an upper surface of a second electrode layer, above the spacer region. The upper surface of the first electrode layer and the upper surface of the second electrode layer above spacer region are located lower than the upper surface of the first electrode layer above the first conductive member and the upper surface of the second electrode layer above the second conductive member, and a reflectance of the first conductive member and the second to light emitted from the light emitting element is higher than reflectance of the first electrode layer and the second electrode layer to light emitted from the light emitting element.
US10797209B2 Light emitting device with beam shaping structure and manufacturing method of the same
A chip scale packaging (CSP) light emitting diode (LED) device includes a flip-chip LED semiconductor die and a beam shaping structure (BSS) to form a monochromatic CSP LED device. A photoluminescent structure can be disposed on the LED semiconductor die to form a phosphor-converted white-light CSP LED device. The BSS is fabricated by dispersing light scattering particles with concentration equal to or less than 30% by weight into a polymer resin material, and is disposed adjacent to the edge portion of the photoluminescent structure or the LED semiconductor die; or disposed remotely above the photoluminescent structure or the LED semiconductor die. The BSS disposed at the edge portion of the device can reduce the edge-emitting light of the device; while the BSS disposed at the top portion of the device can reduce the top-emitting light of the device, therefore shaping the radiation pattern and the viewing angle of the device.
US10797204B2 Submount based light emitter components and methods
Submount based light emitter components and related methods are disclosed. In some aspects, light emitter components include a reflective ceramic submount, at least one light emitter chip disposed over a first surface of the submount, a layer of optical conversion material disposed over portions of each of the at least one light emitter chip and the first surface of the submount, and a lens disposed over the layer of optical conversion material. The layer of optical conversion material and the lens define separate and discrete layers over the at least one light emitter chip and submount.
US10797203B2 Light-emitting device and method for manufacturing the light-emitting device having a first dielectric multilayer film arranged on the side surface of the light emitting element
A light emitting device includes a light-transmissive member including a first surface, a second surface opposite to the first surface, and third surfaces connected to the first surface and the second surface. A phosphor layer faces the second surface of the light-transmissive member. A reflective member faces side surfaces of the phosphor layer and the third surfaces of the light-transmissive member. The light-emitting element has a top surface facing the phosphor layer, a bottom surface opposite to the top surface, and side surfaces connecting the top surface and the bottom surface. The phosphor layer has a bonding surface facing the light emitting element. A first dielectric multilayer film is arranged on at least one of side surfaces of the light-emitting element without being provided on the bonding surface of the phosphor layer.
US10797201B2 High voltage monolithic LED chip
Monolithic LED chips are disclosed comprising a plurality of active regions on submount, wherein the submount comprises integral electrically conductive interconnect elements in electrical contact with the active regions and electrically connecting at least some of the active regions in series. The submount also comprises an integral insulator element electrically insulating at least some of the interconnect elements and active regions from other elements of the submount. The active regions are mounted in close proximity to one another with at least some of the active regions having a space between adjacent ones of the active regions that is 10 percent or less of the width of one or more of the active regions. The space is substantially not visible when the LED chip is emitting, such that the LED chips emits light similar to a filament.
US10797200B2 Method for producing an optoelectronic device comprising a step of etching the rear face of the growth substrate
The invention relates to a method for manufacturing an optoelectronic device (1), comprising the following steps: a) providing a growth substrate (10) made from a semiconductor material; b) forming a plurality of diodes (20) each comprising a lower face (20i); c) removing at least a portion (12; 13) of the substrate so as to free the lower face (20i); wherein: step a) involves producing a lower part and an upper part of the substrate, the upper part (12) having a uniform thickness (eref) and a level of doping less than that of the lower part; step c) involving removal of the lower part (11) by selective chemical etching with respect to the upper part (12).
US10797199B2 Apparatus and method for manufacturing LED module
An apparatus and method capable of efficiently manufacturing a LED module. The method of manufacturing an Light Emitting Diode (LED) module includes preparing a substrate and a carrier on which an LED chip is disposed, disposing a mask on the substrate, the mask including an opening and a wall defining or forming the opening, picking up the LED chip from the carrier with a stamp, moving the LED chip picked up by the stamp to face the opening, moving the LED chip so that at least a part of the LED chip is inserted into the opening, and positioning the LED chip on the substrate by moving the LED chip so that the at least a part of the LED chip contacts the wall.
US10797196B2 Photodetector including a Geiger mode avalanche photodiode and an integrated resistor and related manufacturing method
A photodetector includes a Geiger mode avalanche photodiode, which includes a body of semiconductor material, which is delimited by a front surface. The avalanche photodiode further includes: a cathode region having a first type of conductivity, which forms the front surface; and an anode region having a second type of conductivity, which extends in the cathode region starting from the front surface. The photodetector further includes: a dielectric region, arranged on the front surface; a quenching resistor, which extends on the dielectric region, is electrically connected to the anode region, and is laterally spaced apart with respect to the anode region; and an optical-isolation region, which extends through the dielectric region and laterally delimits a portion of the dielectric region, the anode region extending underneath the portion of the dielectric region, the optical-isolation region being moreover interposed between the portion of the dielectric region and the quenching resistor.
US10797195B2 Ionizing radiation sensor based on float-zone silicon with p-type conductivity
The invention relates to semiconductor devices for converting ionizing radiation into an electrical signal. The present ionizing radiation sensor has an n+-i-p+ structure, produced using the planar process. The sensor contains an i-region in the form of a high-resistivity substrate of high-purity float-zone silicon with p-type conductivity, having on its front face n+-regions (2, 3), an SiO2 layer (4), aluminium metallization (5), and a passivation layer. On the front face of the substrate (1) n-regions (2) are formed by ion implantation; a masking layer of SiO2 (layer 4) is grown; aluminium metallization (5) is deposited; and a passivation layer (6) is applied. At least one or more n+-regions (2) are situated in the central portion of the front face of the substrate and occupy most of the surface area, forming a sensitive zone of the sensor, and at least two n+-regions and two p+-regions are formed as annular elements (guard rings) (3), arranged concentrically in a non-sensitive zone along the periphery of the substrate (1), in order to reduce the amount of surface current and to provide for a smooth drop in potential from the sensitive region to the periphery of the device. The number of n+-regions (2) that form the matrix, i.e. the sensitive zone, of the sensor is equal to 2k, where k can be equal to 0—one region. Ports (9) for connecting leads are situated around the edges of the substrate in its non-sensitive region. The n+-regions (2) which form the sensitive zone of the sensor have profiled portions along the edges in the form of a series of recesses (12).
US10797189B2 Control of surface properties by deposition of particle monolayers
The physical and chemical properties of surfaces can be controlled by bonding nanoparticles, microspheres, or nanotextures to the surface via inorganic precursors. Surfaces can acquire a variety of desirable properties such as antireflection or reflection, antifogging, antifrosting, UV blocking, and IR absorption, while maintaining transparency to visible light. Micro or nanomaterials can also be used as etching masks to texture a surface and control its physical and chemical properties via its micro or nanotexture.
US10797188B2 Optical semiconductor structure for emitting light through aperture
The invention discloses a semiconductor structure, processing light signal, the semiconductor structure comprising: a first type semiconductor layer; a second type semiconductor layer; an active layer located between the first type semiconductor layer and the second type semiconductor layer; a reflector covered surfaces of the first type semiconductor layer and the second type semiconductor layer; a first pad disposed on a top surface of the reflector which is covered the first type semiconductor layer; a second pad disposed on the top surface of the reflector or second type semiconductor layer; an aperture disposed on the top surface of the first type semiconductor layer and passed through the reflector; and a light collection module disposed around the aperture or covered a top surface of the reflector.
US10797184B2 Aperture in a semiconductor
An optoelectronic device comprising a substrate comprising a groove having a first and a second face. The first face of the groove is coated with a conductor material and the second face of the groove coated with a semiconductor material. The conductor material and the semiconductor material are in contact with another semiconductor material in the groove. There is an aperture in the another semiconductor material. The first face, second face, the conductor material and the semiconductor material are all in contact with the another semiconductor material in the groove.
US10797177B2 Method to improve FinFET device performance
A method for manufacturing a semiconductor device includes providing a substrate structure having PMOS and NMOS regions. The PMOS region includes a first region, a first gate structure on the first region, and first source and drain regions on opposite sides of the first gate structure. The NMOS region includes a second region and a second gate structure on the second region. The method also includes introducing a p-type dopant into the first source and drain regions, performing a first annealing, forming second source and drain regions on opposite sides of the second gate structure, introducing an n-type dopant into the second source and drain regions, and performing a second annealing. The method satisfies thermal budget requirements of forming PMOS and NMOS devices, thereby enabling a better diffusion of the p-type dopant into the source and drain regions of the PMOS device without affecting the performance of the NMOS device.
US10797174B2 Semiconductor device with fin end spacer dummy gate and method of manufacturing the same
A semiconductor device includes a plurality of fins on a substrate. A fin liner is formed on an end surface of each of the plurality of fins. An insulating layer is formed on the plurality of fins. A plurality of polycrystalline silicon layers are formed on the insulating layer. A source/drain epitaxial layer is formed in a source/drain space in each of the plurality of fins. One of the polycrystalline silicon layers is formed on a region spaced-apart from the fins.
US10797172B2 Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
A method and apparatus for use in improving linearity sensitivity of MOSFET devices having an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to address degradation in second- and third-order intermodulation harmonic distortion at a desired range of operating voltage in devices employing an accumulated charge sink.
US10797169B2 Silicon carbide semiconductor device and power conversion apparatus
A drift layer contains first conductivity type impurities. A well region contains second conductivity type impurities. A source region is provided on the well region and contains the first conductivity type impurities. A well contact region is in contact with the well region, contains the second conductivity type impurities, and has an impurity concentration on the second surface higher than the impurity concentration on the second surface in the well region. A gate electrode is provided on a gate insulating film. A Schottky electrode is in contact with the drift layer. A source ohmic electrode is in contact with the source region. A resistor is in contact with the well contact region and has higher resistance per unit area than the source ohmic electrode.
US10797162B2 FinFET device having a channel defined in a diamond-like shape semiconductor structure
The present disclosure provides a FinFET device. The FinFET device comprises a semiconductor substrate of a first semiconductor material; a fin structure of the first semiconductor material overlying the semiconductor substrate, wherein the fin structure has a top surface of a first crystal plane orientation; a diamond-like shape structure of a second semiconductor material disposed over the top surface of the fin structure, wherein the diamond-like shape structure has at least one surface of a second crystal plane orientation; a gate structure disposed over the diamond-like shape structure, wherein the gate structure separates a source region and a drain region; and a channel region defined in the diamond-like shape structure between the source and drain regions.
US10797158B2 Transistor comprising a lengthened gate
A MOS transistor is produced on and in an active zone and included a source region and a drain region. The active zone has a width measured transversely to a source-drain direction. A conductive gate region of the MOS transistor includes a central zone and, at a foot of the central zone, at least one stair that extends beyond the central zone along at least an entirety of the width of the active zone.
US10797157B1 Semiconductor device and method for fabricating the same
A method for fabricating semiconductor device includes the steps of: forming a gate structure on a substrate; forming a polymer block on a corner between the gate structure and the substrate; performing an oxidation process to form a first seal layer on sidewalls of the gate structure; and forming a source/drain region adjacent to two sides of the gate structure.
US10797156B2 Method of forming the gate electrode of field effect transistor
A method includes depositing a contact etch stop layer (CESL) over a gate, a source/drain (S/D) region and an isolation feature. The method includes performing a first chemical mechanical planarization (CMP) to expose the gate. The method further includes performing a second CMP using a slurry different from the first CMP to expose the CESL over the S/D region, wherein, following the second CMP, an entire top surface of the CESL over the S/D region and over the isolation feature is substantially level with a top surface of the gate.
US10797145B2 Semiconductor device
A semiconductor device includes a semiconductor region made of a material to which conductive impurities are added, an insulating film formed on a surface of the semiconductor region, and an electroconductive gate electrode formed on the insulating film. The gate electrode is made of a material whose Fermi level is closer to a Fermi level of the semiconductor region than a Fermi level of Si in at least a portion contiguous to the insulating film.
US10797144B2 Semiconductor device
A semiconductor device includes a base body, a stacked body on the base body and a first columnar part. The base body includes a substrate, a first insulating film on the substrate, a first conductive film on the first insulating film, and a first semiconductor part on the first conductive film. The stacked body includes conductive layers and insulating layers stacked alternately in a stacking direction. The first columnar part is provided inside the stacked body and the first semiconductor part. The first columnar part includes a semiconductor body and a memory film between the semiconductor body and conductive layers. The semiconductor body extends in the stacking direction. The first columnar part has a first diameter and a second diameter in a first direction crossing the stacking direction. The first diameter inside the first semiconductor part is larger than the second diameter inside the stacked body.
US10797142B2 FinFET-based split gate non-volatile flash memory with extended source line FinFET, and method of fabrication
A memory cell is formed on a semiconductor substrate having an upper surface with a plurality of upwardly extending fins. First and second fins extend in one direction, and a third fin extends in an orthogonal direction. Spaced apart source and drain regions are formed in each of the first and second fins, defining a channel region extending there between in each of the first and second fins. The source regions are disposed at intersections between the third fin and the first and second fins. A floating gate is disposed laterally between the first and second fins, and laterally adjacent to the third fin, and extends along first portions of the channel regions. A word line gate extends along second portions of the channel regions. A control gate is disposed over the floating gate. An erase gate is disposed over the source regions and the floating gate.
US10797141B2 Semiconductor device
A semiconductor device includes: an underlying substrate; a semiconductor layer formed on the underlying substrate; electrode patterns in which a drain electrode and a source electrode are alternately arranged along an array direction determined in advance, on the semiconductor layer; and a group of gate fingers each having a shape extending in an extending direction which is different from the array direction. Each of the gate fingers is disposed in a region between the drain electrode and the source electrode. Moreover, the gate fingers are arranged at positions displaced from one another in the extending direction.
US10797139B2 Methods of forming backside self-aligned vias and structures formed thereby
Methods and structures formed thereby are described, of forming self-aligned contact structures for microelectronic devices. An embodiment includes forming a trench in a source/drain region of a transistor device disposed in a device layer, wherein the device layer is on a substrate, forming a fill material in the trench, forming a source/drain material on the fill material, forming a first source/drain contact on a first side of the source/drain material, and then forming a second source drain contact on a second side of the source/drain material.
US10797138B2 Vertical-transport field-effect transistors with self-aligned contacts
Methods of forming contacts for vertical-transport field-effect transistors and structures for a vertical-transport field-effect transistor and contact. An interlayer dielectric layer is deposited over a gate stack, and a first opening is formed in the interlayer dielectric layer and penetrates through the gate stack to cut the gate stack into a first section and a second section. A dielectric pillar is formed in the first opening and is arranged between the first section of the gate stack and the second section of the gate stack. Second and third openings are formed in the interlayer dielectric layer that penetrate to the gate stack and that are divided by the dielectric pillar. A first contact in the second opening is coupled with the first section of the gate stack, and a second contact in the third opening is coupled with the second section of the gate stack.
US10797137B2 Method for reducing Schottky barrier height and semiconductor device with reduced Schottky barrier height
A method for controlling Schottky barrier height in a semiconductor device includes forming an alloy layer including at least a first element and a second element on a first surface of a semiconductor substrate. The semiconductor substrate is a first element-based semiconductor substrate, and the first element and the second element are Group IV elements. A first thermal anneal of the alloy layer and the first element-based substrate is performed. The first thermal anneal causes the second element in the alloy layer to migrate towards a surface of the alloy layer. A Schottky contact layer is formed on the alloy layer after the first thermal anneal.
US10797136B2 Multilayer graphene quantum carbon-based semiconductor material prepared from PI film, and preparation method therefor
A preparation method for a multilayer graphene quantum carbon-based two-dimensional semiconductor material comprises: S1. taking a PI film as a raw material, and performing polymer sintering at a first temperature, to remove H, O and N atoms to form a carbon precursor; and S2. adjusting the temperature to a second temperature, and graphitizing the carbon precursor to form a multilayer graphene quantum carbon-based two-dimensional semiconductor material, wherein in at least the step S2, a nano metal material is doped to form quantum dots in the multilayer graphene. The multilayer graphene quantum carbon-based two-dimensional semiconductor material prepared by the method adopts a hexagonal planar net molecular structure, is orderly arranged, and has flexibility, high tortuosity, and quite low in-plane dispersity and degree of deviation. Band gaps are formed through doping of a nano metal, and the band gaps are controllable.
US10797132B2 Heterojunction bipolar transistor fabrication using resist mask edge effects
A heterojunction bipolar transistor (HBT) is fabricated using a selectively implanted collector (SIC) implant mask including multiple openings located over the HBT's collector region. During the SIC implant process, resist mask edge (well proximity) effects caused by the SIC dopant passing through the multiple openings generates multiple secondary shallow increased-doping regions in the collector region adjacent to the substrate surface, where the mask openings are sized such that each secondary increased-doping region has a doping concentration that is comparable to primary increased-doping regions, which are simultaneously formed deeper in the SIC region. A base structure and an emitter structure are then formed over the SIC region using known techniques. The secondary increased-doping regions produce enhanced base-collector junction between the SIC region and the base structure that measurably decreases Kirk Effect by way of enhancing the HBT's cutoff frequency (Ft) and break-down voltage (BVCEO).
US10797118B2 Touch panel, method for fabricating the same and display device
A touch panel, a method for fabricating the same, and a display device are provided. The touch panel includes: a base substrate, a plurality of touch electrode lines, a plurality of cathodes arranged in a matrix, and a plurality of spacers, where each cathode corresponds to at least one of the touch electrode lines, and each spacer includes a first photo spacer and a second photo spacer stacked successively; each touch electrode line includes a first lead part and a second lead part, wherein the first lead part is electrically connected with corresponding one of the cathodes, and the second lead part is configured to electrically connect the first lead part with a corresponding pin on a touch integrated circuit; and the first lead part at least covers the surface of the first photo spacer.
US10797110B2 Organic photodiode pixel for image detectors
Imaging panels and imaging systems that may employ use organic photodiodes or other continuous sensors are discussed. The detector panels discussed may have a non-pixelated organic photodiode disposed above a pixelated backplane. In some embodiments, the sensor panels may also include dielectric structures that create buried vias in the region of contact between the organic photodiode and the thin film transistor (TFT) backplane. In some embodiments, the sensor panels may include dielectric structures that separate neighboring pixels. The dielectric structures may decrease thickness inhomogeneity in active areas of the organic photodiode. Detector panels discussed herein may have decreased sensing lag and current leakage, and improved reliability. Methods for formation of organic photodiodes and of dielectric structures are also discussed.
US10797107B2 Semiconductor memory device including phase change material layers and method for manufacturing thereof
A semiconductor memory device disposed over a substrate includes a common electrode, a selector material layer surrounding the common electrode, and a plurality of phase change material layers in contact with the selector material layer.
US10797104B2 Display substrate, display panel, and display device having electrostriction layer
A display substrate, a display panel, and a display device. The display substrate includes multiple pixel units arranged in an array manner. At least one of pixel unit includes a first electrode. Each first electrode includes a first electrode body, a first electrostriction layer connected to the first electrode body, and a first drive electrode electrically connected to the first electrostriction layer. The first electrostriction layer is configured to be expanded and shrunk with an electrical signal of the first drive electrode and to drive the first electrode body to be expanded and shrunk.
US10797103B2 Method for producing a bolometric detector
A method for producing a bolometric detector comprising producing a stack, on an interconnect level of a read-out circuit, comprising a sacrificial layer positioned between a carrier layer and an etch stop layer, the sacrificial layer comprising a mineral material; producing a conducting via passing through the stack such that it is in contact with a conducting portion of said interconnect level; depositing a conducting layer onto the carrier layer and the via; etching the conducting layer and the carrier layer, forming a bolometer membrane electrically connected to the via by a remaining portion of the conducting layer that covers an upper part of the via; and elimination of the sacrificial layer by selective chemical etching, and such that the membrane is suspended by the via.
US10797100B2 Imaging device
An imaging device includes a semiconductor substrate, pixels, a charge detector, charge storage portions, an output gate portion and a shift gate portion. The pixels and the charge detector are provided in the semiconductor substrate. The charge storage portions are provided on the charge detector side of the pixels, and linked to the pixels. The output gate portion is positioned between the charge detector and the charge storage portions, and includes charge transfer channels extending in a radial configuration in directions from the charge detector toward the pixels. The shift gate portion is positioned between one charge storage portion and one charge transfer channel. The shift gate portion includes a gate electrode provided on the semiconductor substrate. A planar configuration of the gate electrode has a side orthogonal to the extending direction of the one charge transfer channels, the side being most proximal to the one charge transfer channel.
US10797098B2 Image sensor based on avalanche photodiodes
Disclosed herein is an apparatus comprising: an array of avalanche photodiodes (APDs), each of the APDs comprising an absorption region and an amplification region; wherein the absorption region is configured to generate charge carriers from a photon absorbed by the absorption region; wherein the amplification region comprises a junction with an electric field in the junction; wherein the electric field is at a value sufficient to cause an avalanche of charge carriers entering the amplification region, but not sufficient to make the avalanche self-sustaining; wherein the junctions of the APDs are discrete.
US10797093B2 Imaging element, manufacturing method of imaging element, metal thin film filter, and electronic device
According to some aspects, an imaging device is provided comprising a photoelectric conversion layer configured to receive light and to produce an electric charge in response to the received light, including a first filter region corresponding to a first pixel of the imaging device, the first filter region having a first thickness and a plurality of through holes formed therein, wherein the first filter region transmits light incident on the first filter region with a first peak transmission wavelength, and a second filter region corresponding to a second pixel of the imaging device, the second filter region having a second thickness greater than the first thickness and having a plurality of through holes formed therein, wherein the second filter region transmits light incident on the second filter region with a second peak transmission wavelength that is greater than the first peak transmission wavelength.
US10797086B2 Liquid crystal display panel and method of manufacturing the same
A liquid crystal display panel includes a semiconductor film, source and drain electrodes, a planarizing insulating film, first and second transparent conductive films, an insulating film, a pixel electrode, and a counter electrode. The semiconductor film overlaps a gate electrode on a substrate across a gate insulating film. The source and drain electrodes are separately provided on the semiconductor film. The planarizing insulating film includes an opening for partially exposing the source and drain electrodes on its bottom. The first and second transparent conductive films respectively come in contact with surfaces of the source and drain electrodes. The insulating film is provided on the planarizing insulating film so as to cover the opening and the first and second transparent conductive films. The pixel electrode is provided on the insulating film and is electrically connected to the drain electrode via the second transparent conductive film. The counter electrode is opposed to the pixel electrode.
US10797083B2 Array substrate with contact hole having hole walls forming an obtuse angle
The invention provides an array substrate and a method of making the same, wherein the array substrate includes: a base substrate; a metal layer formed on the base substrate; a passivation layer formed on the base substrate and the metal layer; a planarization layer formed on the passivation layer; a contact hole formed by etching the planarization layer and the passivation layer on the metal layer, to make the metal layer at least partially exposed by the contact hole, wherein a hole wall of the contact hole at the passivation layer is coplanar with the hole wall at the planarization layer or the hole wall of the contact hole at the passivation layer and the hole wall at the planarization layer form an obtuse angle; a continuous pixel electrode layer formed on the planarization layer and the contact hole, wherein the pixel electrode layer is connected to the metal layer.
US10797075B2 Staircase and contact structures for three-dimensional memory
Embodiments of staircase and contact structures of a three-dimensional (3D) memory device and fabrication method thereof are disclosed. The 3D memory device includes a semiconductor substrate and a plurality of through-substrate-trenches penetrating the semiconductor substrate. The 3D memory device also includes a film stack disposed on a first surface of the semiconductor substrate extending through the through-substrate-trenches to a second surface of the semiconductor substrate, wherein the film stack includes alternating conductive and dielectric layers. The 3D memory device also includes a staircase structure formed at an edge of the film stack.
US10797073B2 Memory system and semiconductor memory device
According to one embodiment, a memory system includes: a semiconductor memory device; and a controller. The semiconductor memory device includes: first interconnection layers; second interconnection layers; a semiconductor pillar. The semiconductor memory device executes an operation in a first mode or in a second mode. In the first mode, the device selects a third interconnection layer among the first interconnection layers independently with a fourth interconnection layer among the second interconnection layers. In the second mode, the device selects a fifth interconnection layer among the first interconnection layers and sixth interconnection layer among the second interconnection layers in a batch. The controller sends an instruction to the device to execute the operation in the first mode or the second mode.
US10797070B2 Three-dimensional memory device containing a replacement buried source line and methods of making the same
An alternating stack of insulating layers and spacer material layers is formed over a source-level sacrificial layer overlying a substrate. The spacer material layers are formed as, or are subsequently replaced with, electrically conductive layers. Memory stack structures including a respective vertical semiconductor channel and a respective memory film are formed through the alternating stack. A source-level cavity is formed by removing the source-level sacrificial layer. Semiconductor pillar structures may be used to provide mechanical support to the alternating stack during formation of the source-level cavity. A source-level semiconductor material layer can be formed in the source-level cavity. The source-level semiconductor material layer adjoins bottom end portions of the vertical semiconductor channels and laterally surrounds the semiconductor pillar structures. The source-level semiconductor material layer may be electrically isolated from a substrate semiconductor material layer in the substrate by a series connection of two p-n junctions having opposite polarities.
US10797067B2 Three-dimensional memory device and fabricating method thereof
Embodiments of through array contact structures of a 3D memory device and fabricating method thereof are disclosed. The method comprises: forming a recess region in a substrate including multiple protruding islands; forming a gate dielectric layer to cover top surfaces and sidewalls of the multiple protruding islands and a top surface of the recess region of the substrate; forming an underlying sacrificial layer on the gate dielectric layer to surround the sidewalls of the multiple protruding islands; forming an alternating dielectric stack including multiple alternatively stacked insulating layers and sacrificial layers on the underlying sacrificial layer and the multiple protruding islands; forming multiple channel holes penetrating the alternating dielectric stack, each channel hole is located corresponding to one of the multiple protruding islands; and forming a memory layer in each channel hole, wherein a channel layer of the memory layer is electrically connected with a corresponding protruding island.
US10797066B2 Memory devices with three-dimensional structure
A memory device includes a substrate, a first memory structure including a plurality of first word lines stacked on the substrate in a direction perpendicular to a top surface of the substrate, an inter-metal layer on the first memory structure and including a plurality of intermediate pads connected with separate, respective first word lines of the plurality of first word lines, a second memory structure including a plurality of second word lines stacked on the inter-metal layer in the direction perpendicular to the top surface of the substrate, and an upper metal layer on the second memory structure and including a plurality of upper pads connected with separate, respective second word lines of the plurality of second word lines.
US10797064B2 Single-poly non-volatile memory cell and operating method thereof
A non-volatile memory cell includes a floating-gate transistor, a select transistor, and a coupling structure. The floating-gate transistor is deposited in a P-well and includes a gate terminal coupled to a floating gate which is a first polysilicon layer, a drain terminal coupled to a bit line, and a source terminal coupled to a first node. The select transistor is deposited in the P-well and includes a gate terminal coupled to a select gate which is coupled to a word line, a drain terminal coupled to the first node, and a source terminal coupled to the source line. The floating-gate transistor and the select transistor are N-type transistors. The coupling structure is formed by extending the first polysilicon layer to overlap a control gate, in which the control gate is a P-type doped region in an N-well and the control gate is coupled to a control line.
US10797062B1 Bonded die assembly using a face-to-back oxide bonding and methods for making the same
A first semiconductor die includes a first substrate, first semiconductor devices, first dielectric material layers having a first silicon oxide surface as an uppermost surface and forming first metal interconnect structures. A second semiconductor die includes a second substrate, second semiconductor devices, and second dielectric material layers forming second metal interconnect structures. A handle substrate is attached to a topmost surface of the second semiconductor die. The second substrate is thinned, and a second silicon oxide surface is provided as a bottommost surface of the second semiconductor die. The second semiconductor die is bonded to the first semiconductor die by inducing oxide-to-oxide bonding between the second silicon oxide surface and the first silicon oxide surface. The handle substrate is detached, and inter-die connection via structures are formed through the second substrate and the bonding interface to contact the first metal interconnect structures. External bonding pads may be subsequently formed.
US10797058B2 Conductive feature formation
The present disclosure provides example embodiments relating to conductive features, and methods of forming the conductive features, that have differing dimensions. In an embodiment, a structure includes a substrate, a dielectric layer over the substrate, and first and second conductive features through the dielectric layer to first and second source/drain regions, respectively, on the substrate. The first conductive feature has a first length along a longitudinal axis of the first conductive feature and a first width perpendicular to the first length. The second conductive feature has a second length along a longitudinal axis of the second conductive feature and a second width perpendicular to the second length. The longitudinal axis of the first conductive feature is aligned with the longitudinal axis of the second conductive feature. The first width is greater than the second width, and the first length is less than the second length.
US10797057B2 DRAM semiconductor device having reduced parasitic capacitance between capacitor contacts and bit line structures and method for manufacturing the same
A semiconductor device and a method for manufacturing the same are provided. The method includes forming a plurality of bit line structures on a semiconductor substrate, wherein there is a plurality of trenches between the bit line structures. The method also includes forming a first oxide layer conformally covering the bit line structures and the trenches, and forming a photoresist material layer in the trenches and on the first oxide layer, wherein the photoresist material layer has an etch selectivity that is higher than that of the first oxide layer. The method further includes removing the photoresist material layer to form a plurality of capacitor contact holes between the bit line structures, and forming a capacitor contact in the capacitor contact holes.
US10797056B2 Semiconductor device and method of manufacturing the same
A semiconductor device and methods of manufacturing the same are provided. The semiconductor device includes a substrate, buried semiconductor layers, a word line, a bit line, buried contacts, and insulation spacers, and a charge storage. The substrate has active regions and field regions. The buried semiconductor layers are buried in the substrate at the active regions. The word line is buried in the substrate and crosses one of the active regions. The bit line is disposed in one of the active regions. The buried contacts are disposed on the active regions and the field regions. The insulation spacers are disposed on the substrate and on a sidewall of the buried contacts, respectively. The charge storage is disposed on one or more of the buried contacts. The buried semiconductor layers contact, respectively, one of the buried contacts and one of the insulation spacers.
US10797054B2 Memory device and semiconductor device
It is an object to provide a memory device whose power consumption can be suppressed and a semiconductor device including the memory device. As a switching element for holding electric charge accumulated in a transistor which functions as a memory element, a transistor including an oxide semiconductor film as an active layer is provided for each memory cell in the memory device. The transistor which is used as a memory element has a first gate electrode, a second gate electrode, a semiconductor film located between the first gate electrode and the second gate electrode, a first insulating film located between the first gate electrode and the semiconductor film, a second insulating film located between the second gate electrode and the semiconductor film, and a source electrode and a drain electrode in contact with the semiconductor film.
US10797049B2 FinFET structure with dielectric bar containing gate to reduce effective capacitance, and method of forming same
A FinFET structure having reduced effective capacitance and including a substrate having at least two fins thereon laterally spaced from one another, a metal gate over fin tops of the fins and between sidewalls of upper portions of the fins, source/drain regions in each fin on opposing sides of the metal gate, and a dielectric bar within the metal gate located between the sidewalls of the upper portions of the fins, the dielectric bar being laterally spaced away from the sidewalls of the upper portions of the fins within the metal gate.
US10797045B2 Semiconductor device
An accumulation layer has a function of reducing an ON voltage (Von), which is a voltage between the collector and the emitter when turning on the IGBT, by accumulating carrier. However, when turning off the IGBT, the carrier contributes to a turn-off loss (Eoff). A semiconductor device is provided, comprising: a semiconductor substrate, wherein the semiconductor substrate includes: trench portions, a mesa portion each provided between two adjacent trench portions, and a drift layer, wherein the trench portions include: a gate trench portion, and a dummy trench portion, wherein the mesa portion has: an emitter region, a contact region, and a accumulation layer, wherein the number of accumulation layers provided in a depth direction in the mesa portion adjacent to the gate trench portion is larger than that of the accumulation layers provided in the depth direction in the mesa portion between the two dummy trench portions.
US10797043B2 Semiconductor device with bidirectional diode
Provided is a semiconductor device, including: a drain region of a first conductivity type and a source region of the first conductivity type in a semiconductor substrate; a base region of a second conductivity type between the drain region and the source region; a base contact region of the second conductivity type in the base region; a gate electrode on the base region through a gate insulating film; a bidirectional diode overlapping with the gate electrode in a first direction perpendicular to the semiconductor substrate, and having one end electrically connected to the gate electrode and the other end electrically connected to the source region; a source metal layer electrically connected to the source region, the base contact region, and the other end of the bidirectional diode; and a gate metal layer electrically connected to the gate electrode, and overlapping with the source metal layer in the first direction.
US10797042B2 Semiconductor device
A semiconductor device includes a semiconductor substrate, a first standard cell including a first active region and a second active region, and a power switching circuit including a first switching transistor electrically connected between a first interconnect and a second interconnect over the semiconductor substrate, and including a first buffer connected to a gate of the first switching transistor, the first buffer including a third active region and a fourth active region, and wherein the first buffer adjoins, in a plan view, the first standard cell in a first direction, wherein an arrangement of the first active region matches an arrangement of the third active region in a second direction different from the first direction, and wherein an arrangement of the second active region matches an arrangement of the fourth active region in the second direction.
US10797040B2 Method of manufacturing display module using LED
A method of manufacturing a display module includes preparing a first substrate structure including an light-emitting diode (LED) array containing a plurality of LED cells, electrode pads connected to the first and second conductivity-type semiconductor layers, and a first bonding layer covering the LED array; preparing a second substrate structure including a plurality of thin-film transistor (TFT) cells disposed on a second substrate, and each having a source region, a drain region and a gate electrode disposed therebetween, the second substrate structure being provided by forming a circuit region, in which connection portions disposed to correspond to the electrode pads are exposed to one surface thereof, and by forming a second bonding layer covering the circuit region, respectively planarizing the first and second bonding layers, and bonding the first and second substrate structures to each other.
US10797035B1 Bonded assembly containing side bonding structures and methods of manufacturing the same
A bonded assembly includes a first stack containing a first semiconductor die bonded to a second semiconductor die along a stacking direction, first external bonding pads formed within the first semiconductor die, and bonding connection wires. Each of the bonding connection wires extends over a sidewall of the first semiconductor die and protrudes into the first semiconductor die through the sidewall of the first semiconductor die to contact a respective one of the first external bonding pads.
US10797023B2 Integrated fan-out package and method of fabricating an integrated fan-out package
A method of fabricating an INFO package may include at least the following steps. A first buffer pattern and a second buffer pattern are formed on a substrate. A first chip is attached on the substrate through the first buffer pattern. A second chip is attached on the substrate through the second buffer pattern. A squeezing force is provided between an exterior surface of the substrate and a top surface of the first chip and between an exterior surface of the substrate and a top surface of the second chip. The squeezed first buffer pattern and the squeezed second buffer pattern are cured. A molding compound is formed surrounding the first chip, the second chip, the squeezed first buffer pattern and the squeezed second buffer pattern. A redistribution circuit structure layer is formed electrically connected to the first chip and the second chip on the molding compound.
US10797018B2 Methods for fabricating 3D semiconductor device packages, resulting packages and systems incorporating such packages
Methods of forming semiconductor device packages comprising stacking multiple dice, the die stack exhibiting thin bond lines and having an outer environmental coating, the bond lines and environmental coating comprising an in situ formed compound. Semiconductor device packages so formed and electronic systems incorporating such packages are also disclosed.
US10797015B2 Method of manufacturing 3DIC structure
A method of manufacturing a 3DIC structure includes the following processes. A die is bonded to a wafer. A first dielectric layer is formed on the wafer and laterally aside the die. A second dielectric material layer is formed on the die and the first dielectric layer. A portion of the second dielectric material layer over a non-edge region of the wafer is selectively removed to form a protruding portion over an edge region of the wafer. The second dielectric material layer is planarized to form a second dielectric layer on the first dielectric layer and the die. A bonding film is formed on the second dielectric layer. A carrier is bonded to the wafer through the bonding film.
US10797010B2 Semiconductor package having a metal barrier
A semiconductor device having a barrier metal layer positioned over a metallization layer, and an under bump metallurgy layer over the barrier metal layer, and a solder bump over the under bump metallurgy layer.
US10797009B1 Method for transferring micro device
A method for transferring a micro device is provided. The method includes: forming a liquid layer on the micro device attached on a transfer plate; placing the micro device over a receiving substrate such that the liquid layer is between the micro device and a contact pad of the receiving substrate and contacts the contact pad; and evaporating the liquid layer such that the micro device is bound to and in contact with the contact pad.
US10797008B2 Semiconductor package and manufacturing method thereof
A manufacturing method of a semiconductor package includes at least the following steps. A dielectric layer is formed on a conductive pattern and in a space between the conductive pattern, where a concave area of the dielectric layer is formed corresponding to the space between the conductive pattern. A semiconductor die is disposed on the concave area of the dielectric layer with a die attach material interposed therebetween. A pressure is applied to the die attach material so that the concave area of the dielectric layer is filled with the die attach material, and a portion of the die attach material is extruded from the concave area to expand wider than an area of the semiconductor die. An insulating encapsulant is formed on the dielectric layer to cover the semiconductor die. Other methods for forming a semiconductor package are also provided.
US10797007B2 Semiconductor structure and manufacturing method thereof
The present disclosure provides a semiconductor structure including a first insulation, a second insulation over the first insulation, a third insulation over the second insulation, a first conductor proximal to a boundary between the first insulation and the second insulation, and an electronic device electrically connected to the first conductor and at least partially surrounded by the second insulation. A coefficient of thermal expansion (CTE) of the second insulation is larger than a CTE of the first insulation and larger than a CTE of the third insulation.
US10797004B2 Semiconductor device package
A semiconductor device package includes: (1) a lead frame including a connection element and multiple leads; (2) a package body encapsulating the lead frame, wherein the package body includes a lower surface and an upper surface opposite to the lower surface, the package body includes a cavity exposing at least one of the leads; (3) at least one conductive via disposed in the cavity of the package body, electrically connected to the connection element, and exposed from the upper surface of the package body; and (4) a conductive layer disposed on the upper surface of the package body and the conductive via.
US10797002B2 Sputtering systems and methods for packaging applications
Sputtering systems and methods for packaging applications. In some embodiments, a method for processing a plurality of packaged devices can include forming or providing a first assembly having a stencil and a two-sided adhesive member attached to a first side of the stencil, with the stencil having a plurality of openings, and the two-sided adhesive member having a plurality of openings corresponding to the openings of the stencil. The method can further include attaching the first assembly to a ring to provide a second assembly, with the ring being dimensioned to facilitate a deposition process. The method can further include loading a plurality of packaged devices onto the second assembly such that each packaged device is held by the two-sided adhesive member of the first assembly and a portion of each packaged device extends into the corresponding opening of the two-sided adhesive member.
US10796996B2 Semiconductor device and method of forming the same
A semiconductor device includes a substrate, a dielectric layer disposed on the substrate, and a conductive stack disposed within the dielectric layer. The conductive stack includes at least one first conductive layer, a second conductive layer disposed over the at least one first conductive layer, and a contact structure disposed between the at least one first conductive layer and the second conductive layer. The contact structure includes a contact via electrically connecting the at least one first conductive layer to the second conductive layer, and a glue layer conformal to sidewalls and a bottom surface of the contact via. The glue layer has isolated lattices and an amorphous region at which the isolated lattices are uniformly distributed.
US10796993B2 Method for forming three-dimensional integrated wiring structure and semiconductor structure thereof
Embodiments of methods and structures for forming a 3D integrated wiring structure are disclosed. The method can include forming an insulating layer on a front side of a first substrate; forming a semiconductor layer on a front side of the insulating layer; patterning the semiconductor layer to expose at least a portion of a surface of the insulating layer; forming a plurality of semiconductor structures over the front side of the first substrate, wherein the semiconductor structures include a plurality of conductive contacts and a first conductive layer; joining a second substrate with the semiconductor structures; performing a thinning process on a backside of the first substrate to expose the insulating layer and one end of the plurality of conductive contacts; and forming a conductive wiring layer on the exposed insulating layer.
US10796992B2 Stack of layers for protecting against a premature breakdown of interline porous dielectrics within an integrated circuit
A stack including a dual-passivation is etched locally so as to reveal contact pads of an integrated circuit which are situated above a last metallization level of an interconnection part of the integrated circuit. This stack serves to protect the integrated circuit against a breakdown of at least one dielectric region, at least in part porous, separating two electrically conducting elements of the interconnection part of the integrated circuit. Such a breakdown may occur due to electrical conduction assisted by the presence of defects within the at least one dielectric region.
US10796989B2 3D interconnect multi-die inductors with through-substrate via cores
A semiconductor device having a first die and a second die is provided. The first die of the device includes a first surface and a through-substrate via (TSV) extending at least substantially through the first die, the TSV having a portion extending past the first surface. The first die further includes a first substantially helical conductor disposed around the TSV. The second die of the device includes a second surface, an opening in the second surface in which the portion of the TSV is disposed, and a second substantially helical conductor disposed around the opening.
US10796987B2 Semiconductor device package and method of manufacturing the same
A semiconductor packaging device includes a first patterned insulation layer, a patterned conductive layer, a semiconductor device and an encapsulant. The first patterned insulation layer has a first surface, a second surface opposite the first surface, and an island portion having the first surface. The first patterned insulation layer defines a tapered groove surrounding the island portion. The patterned conductive layer is disposed on the first surface of the island portion. The semiconductor device electrically connects to the patterned conductive layer. The encapsulant encapsulates the semiconductor device, the first patterned insulation layer and the patterned conductive layer.
US10796984B2 Leadframe having a conductive layer protruding through a lead recess
The present disclosure is directed to a leadframe package having leads with protrusions on an underside of the leadframe. The protrusions come in various shapes and sizes. The protrusions extend from a body of encapsulant around the leadframe to couple to surface contacts on a substrate. The protrusions have a recess that is filled with encapsulant. Additionally, the protrusions may be part of the lead or may be a conductive layer on the lead. In some embodiments a die pad of the leadframe supporting a semiconductor die also has a protrusion on the underside of the leadframe. The protrusion on the die pad has a recess that houses an adhesive and at least part of the semiconductor die. The die pad with a protrusion may include anchor locks at the ends of the die pad to couple to the encapsulant.
US10796982B2 Semiconductor device and method of manufacturing the same
To reduce a package size of a semiconductor device.According to embodiments, there is a semiconductor device comprising: a first die pad; a first inner lead arranged inside a molded resin; a second die pad; and a second inner lead arranged inside the resin, wherein a part of the first inner lead and a part of the second inner lead are adhered and electrically connected to each other, a first semiconductor chip mounted on the first die pad is electrically connected to a second semiconductor chip mounted on the second die pad via the first inner lead and the second inner lead, and an end face of one end of the first inner lead and the second inner lead that are adhered to each other is exposed to a side surface of the resin.
US10796981B1 Chip to lead interconnect in encapsulant of molded semiconductor package
A semiconductor package includes an electrically insulating first encapsulant body having an upper surface, a first semiconductor die encapsulated within the first encapsulant body, the first semiconductor die having a main surface with a first conductive pad that faces the upper surface of the first encapsulant body, a plurality of electrically conductive leads, each of the leads having interior ends that are encapsulated within the first encapsulant body and outer ends that are exposed from the first encapsulant body, and a first direct electrical connection between the first conductive pad and the interior end of a first lead from the plurality. The first direct electrical connection includes a first conductive track formed in the upper surface of the first encapsulant body. The first encapsulant body includes a laser activatable mold compound. The first conductive track is formed in a first laser activated region of the laser activatable mold compound.
US10796975B2 Semiconductor package with supported stacked die
Semiconductor packages with electromagnetic interference supported stacked die and a method of manufacture therefor is disclosed. The semiconductor packages may house a stack of dies in a system in a package (SiP) implementation, where one or more of the dies may be wire bonded to a semiconductor package substrate. The dies may be stacked in a partially overlapping, and staggered manner, such that portions of some dies may protrude out over an edge of a die that is below it. This dies stacking may define a cavity, and in some cases, wire bonds may be made to the protruding portions of the die. Underfill material may be provided in the cavity and cured to form an underfill support. Wire bonding of the bond pads overlying the cavity formed by the staggered stacking of the dies may be performed after the formation of the underfill support.
US10796973B2 Test structures connected with the lowest metallization levels in an interconnect structure
Structures for testing a field effect-transistor or Kelvin field-effect transistor, and methods of forming a structure for testing a field-effect transistor or Kelvin field-effect transistor. The structure includes a device-under-testing that has one or more source/drain regions and a first metallization level arranged over the device-under-testing. The first metallization level includes one or more first interconnect lines. The structure further includes a contact level having one or more first contacts arranged between the first metallization level and the device-under-testing. The one or more first contacts directly connect the one or more first interconnect lines with the one or more source/drain regions. The structure further includes a second metallization level arranged over the first metallization level. The second metallization level has a first test pad and one or more second interconnect lines connecting the one or more first interconnect lines with the first test pad.
US10796969B2 System and method for fabricating semiconductor wafer features having controlled dimensions
A system and method are provided for fabricating semiconductor wafer features with controlled dimensions. In use, a top surface of a semiconductor wafer is identified. A first portion of the top surface of the semiconductor wafer is then vertically etched to form a step down from a second portion of the top surface of the semiconductor wafer, the step comprised of a horizontal face and a vertical sidewall. Additionally, a film is uniformly deposited across the horizontal face and the vertical sidewall of the step. Further, the second portion of the top surface of the semiconductor wafer is vertically etched to expose, as a feature of the semiconductor wafer, the film deposited across the vertical sidewall of the step.
US10796968B2 Dual metal silicide structures for advanced integrated circuit structure fabrication
Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a P-type semiconductor device above a substrate and including first and second semiconductor source or drain regions adjacent first and second sides of a first gate electrode. A first metal silicide layer is directly on the first and second semiconductor source or drain regions. An N-type semiconductor device includes third and fourth semiconductor source or drain regions adjacent first and second sides of a second gate electrode. A second metal silicide layer is directly on the third and fourth semiconductor source or drain regions, respectively. The first metal silicide layer comprises at least one metal species not included in the second metal silicide layer.
US10796967B2 Vertical field effect transistor (FET) with controllable gate length
A semiconductor device includes a vertical transistor on a substrate. The vertical transistor includes at least one fin. A bottom source/drain is disposed on the substrate and around the at least one fin. A spacer layer is disposed on the bottom source/drain and around the at least one fin. A gate structure is disposed on the spacer layer and around the at least one fin. The gate length is the same or substantially the same on each side of the at least one fin.