Document Document Title
US10631034B2 In-vehicle broadcast reception apparatus
An in-vehicle broadcast reception apparatus includes the following. A viewing or listening determiner section determining whether a relay broadcasting of a sports game is viewed or listened to via a first broadcast. A team determiner section determining whether a team in the sports game is a team of interest to a user among a plurality of teams. A retriever section retrieving a second broadcast that performs a relay broadcasting of a sports game which is identical to the relay broadcasting of the sports game viewed or listened to via the first broadcast. A switcher section switching to the second broadcast to enable continued viewing or listening of the sports game when the relay broadcasting of the sports game via the first broadcast is ended, in response to that the team in the sports game is determined to be the team of interest to the user.
US10631027B2 Audiovisual content item data streams
A transmitting apparatus generates an audiovisual content item data stream (e.g. transport stream) comprising a plurality of individual audiovisual data streams with audiovisual components for the content item. A generator (301-307) generates a first stream comprising both mandatory audio data and replaceable audio data for the audio representation where the replaceable audio data being data can be replaced by alternative audio data. A combiner (309) includes the resulting stream into the content item data stream. A receiving apparatus includes an extractor (403) which extracts the mandatory audio data from the received stream. A replacer (415) may replace the replaceable audio data by alternative audio data and an output (415) can generate an audio signal from the mandatory and alternative audio data. The approach may specifically provide an improved and more flexible data stream for audiovisual content.
US10631025B2 Encoding device and method, reproduction device and method, and program
The present technology relates to an encoding device, an encoding method, a reproduction device, a reproduction method, and a program enabling each reproduction equipment to reproduce an appropriate content in a simplified manner. A content data decoding unit decodes encoded metadata and outputs zoom area information, which is included in metadata acquired as a result thereof, designating an area to be zoomed. A zoom area selecting unit selects one or a plurality of pieces of zoom area information from among the zoom area information. A video segmenting unit segments a zoom area represented by the selected zoom area information in a video based on video data and outputs zoom video data acquired as a result thereof. An audio converting unit performs an audio converting process according to the selected zoom area information for audio data and outputs zoom audio data acquired as a result thereof. The present technology can be applied to a reproduction device.
US10631021B2 Systems and methods for enabling a persistent stream for use in a communications session
The present disclosure relates to systems and methods for providing a video stream to one or more communication sessions. In one implementation, the system may include a video recording device, a memory storing instructions, and a processor configured to execute the instructions. The instructions may comprise instructions to activate the video recording device and receive a video stream therefrom, buffer the video stream in an allocated portion of the memory, allow access to the buffered video stream for use in a first communications session, continue buffering the video stream after the buffered video stream has been accessed for use in the first communications session, and allow access to the buffered video stream for use in a second communications session.
US10631014B2 Image coding method, image coding apparatus, image decoding method and image decoding apparatus
An image coding method including: binarizing last position information to generate (i) a binary signal which includes a first signal having a length smaller than or equal to a predetermined maximum length and does not include a second signal or (ii) a binary signal which includes the first signal having the predetermined maximum length and the second signal; first coding for arithmetically coding each of binary symbols included in the first signal using a context switched among a plurality of contexts according to a bit position of the binary symbol; and second coding for arithmetically coding the second signal using a fixed probability when the binary signal includes the second signal, wherein in the first coding, a binary symbol at a last bit position of the first signal is arithmetically coded using a context exclusive to the last bit position, when the first signal has the predetermined maximum length.
US10631007B2 System and method for image processing
Some embodiments relate to a machine-implemented method of packing volumetric image data executed by at least one processing device, the method comprising: determining a first block size; writing to memory a first block of image data from a first image, the first block having the first block size; determining a second block size; and writing to memory a second block of image data from a second image, the second block having the second block size; wherein the first image contains X by Y pixels of one of colour data and depth data, and the second image contains X by Y pixels of the other of colour and depth data; and wherein the first image is related to the second image. Embodiments also relate to methods of unpacking volumetric image data. Further embodiments relate to systems and computer-readable media storing or having access to code to execute the packing and unpacking methods.
US10631000B2 Method and an apparatus for processing a video signal
A method of processing a video signal is disclosed. The present invention includes obtaining a current macroblock type, obtaining skip or direct mode indication information on a partition of the current macroblock according to the current macroblock type, deriving a motion vector of the partition according to the skip or direct mode indication information, and predicting a pixel value of the partition using the motion vector. Accordingly, the present invention obtains a pixel value of a reference block close to an original video using a motion vector, thereby enhancing a reconstruction ratio of the macroblock. As a macroblock uses skip or direct prediction indication information, it is unnecessary to separately code skip mode indication information and direct mode indication information on the macroblock, whereby an information size to be coded can be reduced.
US10630998B2 Video compression systems and methods
Systems and methods presented herein provide for video compression and decompression. In one embodiment, a video compression system includes a decimation filter operable to receive a video datastream, and to filter the video datastream to remove spatial data components and temporal data components of the video datastream. The system also includes a video codec operable to compress the filtered video datastream and a comparator operable to compare the video datastream to the filtered-compressed video datastream, and to determine a difference video datastream based on the comparison. The system also includes a generator operable to generate a tool for decompressing the filtered-compressed video datastream based on the difference video datastream.
US10630996B2 Visual processing using temporal and spatial interpolation
A method for enhancing at least a section of lower-quality visual data using a hierarchical algorithm, the method including receiving at least a plurality of neighbouring sections of lower-quality visual data. A plurality of input sections from the received plurality of neighbouring sections of lower quality visual data are selected and features are extracted from those plurality of input sections of lower-quality visual data. A target section based on the extracted features from the plurality of input sections of lower-quality visual data is then enhanced.
US10630995B2 Video compressed sensing reconstruction method, system, electronic device, and storage medium
The present disclosure provides a video compressed sensing reconstruction method, including: step B, after receiving to-be-reconstructed compressed video frames, extracting frame fragments of the compressed video frames according to a predetermined extraction rule; step C, inputting the frame fragments into an input layer of a pre-trained video frame reconstruction model, performing feature abstraction to the frame fragments through multiple hidden layers of the video frame reconstruction model, and building a nonlinear mapping between each frame fragment and a corresponding frame fragment block; and step D, reconstructing the input frame fragments to frame fragment blocks by the hidden layers according to the nonlinear mapping, and outputting the frame fragment blocks by an output layer of the video frame reconstruction model, and generating a reconstructed video based on the reconstructed frame fragment blocks. The present disclosure can render and reconstruct video frames quickly with a high quality.
US10630994B2 Specific operation prediction in video compression
A decoding method includes: decoding from the video bitstream a prediction status parameter indicative of whether SOP is enabled; if the SOP is enabled, determining a SOP type indicative of a specific operation for predicting a current picture of the video bitstream; and determining a predicted picture by applying the specific operation to at least one of a reference picture for the current picture and the current picture, in which the specific operation includes at least one of rotation and zoom. An encoding method includes: if SOP is enabled, determining SOP data indicative of a specific operation for predicting a current picture of a video sequence; determining a predicted picture by applying the specific operation to at least one of a reference picture for the current picture and the current picture, in which the specific operation includes at least one of rotation and zoom; and encoding the SOP data.
US10630990B1 Encoder output responsive to quality metric information
A video packaging and origination service can include one or more encoder components that receive content for encoding and transmitting to requesting entities. During the operation of the encoder components, individual encoders receive input signals for encoding and determine quality metric information related to the generation of an encoded segment. The encoder components exchange quality metric information and an encoder component is selected to transmit an encoded segment. The selection of an individual encoder component per segment can continue throughout the streaming process.
US10630983B2 Transform coefficient dequantization method and apparatus, and decoding device
A unit size of a to-be-processed unit corresponding to a first transform coefficient set is determined using division information. Then, a quantization regulation factor for the first transform coefficient set is determined according to a first preset algorithm and the unit size of the to-be-processed unit, and with the first preset algorithm, the quantization regulation factor decreases progressively with the size of the to-be-processed unit. Dequantization processing is performed on a transform coefficient in the first transform coefficient set according to a second preset algorithm using the quantization regulation factor. Therefore, a decoding device adaptively determines the quantization regulation factor for the first transform coefficient set according to the unit size of the to-be-processed unit, and then performs dequantization processing on the transform coefficient in the first transform coefficient set using the determined quantization regulation factor.
US10630982B2 Encoding apparatus, encoding method, and non-transitory computer-readable storage medium for performing encoding with quantization parameters according to a feature of an image
An encoding apparatus, comprising a detecting unit configured to detect a feature of an image of each block configuring a still image of an image to be encoded, a setting unit configured to set an image quality mode for encoding the image to be encoded, a deciding unit configured to, for each block, decide a quantization parameter based on the detected feature and the image quality mode, a generating unit configured to, for each block, generate a difference image by performing an intra-prediction, a transformation unit configured to generate transform coefficients by performing an orthogonal transformation on the difference image, and an encoding unit configured to encode the image to be encoded and including a quantizing unit configured to quantize the transform coefficients by using the decided quantization parameter.
US10630981B2 Moving image encoding apparatus and moving image encoding method
A moving image encoding apparatus includes one or more processors configured to calculate encoding costs regarding each of a plurality of blocks having different block sizes on the basis of differences between original images of the plurality of blocks and specific prediction images of the plurality of blocks respectively wherein the plurality of blocks is defined by recursively dividing an encoding target image included in a moving image, perform a selection of a first block size in a first hierarchy among the plurality of hierarchies by comparing the encoding costs with each other, perform a selection of a first intra-prediction mode for a first block having the first block size, and encode the first block on the basis of a difference between a first prediction image of the first block generated by the first intra-prediction mode and a first original image of the first block.
US10630979B2 Reference sample padding and filtering for intra prediction in video compression
A method of and an apparatus for controlling intra prediction for decoding of a video sequence are provided. The method includes setting a table including a plurality of intra prediction modes respectively corresponding to a plurality of intra prediction angles, the plurality of intra prediction angles including diagonal intra prediction angles respectively corresponding to diagonal directions of all shapes of coding units, and selecting, for decoding the video sequence, one of the plurality of intra prediction modes, from the set table.
US10630975B2 Luma-based chroma intra-prediction for video coding
A method for luma-based chroma intra-prediction in a video encoder or a video decoder is provided that includes down sampling a first reconstructed luma block of a largest coding unit (LCU), computing parameters α and β of a linear model using immediate top neighboring reconstructed luma samples and left neighboring reconstructed luma samples of the first reconstructed luma block and reconstructed neighboring chroma samples of a chroma block corresponding to the first reconstructed luma block, wherein the linear model is PredC[x,y]=α·RecL′[x,y]+β, wherein x and y are sample coordinates, PredC is predicted chroma samples, and RecL′ is samples of the down sampled first reconstructed luma block, and wherein the immediate top neighboring reconstructed luma samples are the only top neighboring reconstructed luma samples used, and computing samples of a first predicted chroma block from corresponding samples of the down sampled first reconstructed luma block using the linear model and the parameters.
US10630971B2 Automatic calibration of PTZ camera system
A method to determine a base focal length of a pan-tilt-zoom (PTZ) camera system. The method includes generating a spherical mosaic with a feature track by the camera system and determining, by the camera system, a base focal length by analyzing a conic trajectory created by the feature track on an image plane.
US10630969B2 Method and device for detecting digital camera
The present disclosure provides a detection method and a detection device for a digital camera. The detection method includes: Step 1 of moving the to-be-detected auto-focusing lens assembly to a position spaced apart from a subject by a first distance; Step 2 of performing automatic exposure control until an average luminance value of a central region of an image is in a stable state; Step 3 of locking an automatic exposure control parameter; Step 4 of taking a first image; Step 5 of determining sizes of four corner regions in the first image; Step 6 of counting average luminance values of the four corner regions; and Step 7 of, in the case that the average luminance values of the four corner regions are identical to each other, determining that the to-be-detected auto-focusing lens assembly is installed at an accurate position. According to the present disclosure, it is able to detect where or not the auto-focusing lens assembly is installed at the accurate position in an automatic and efficient manner.
US10630967B2 Display device and driving method thereof
A display device and a driving method thereof are provided. The display device, including a display panel and a 3D grating provided above the display panel in a first direction, the 3D grating including a plurality of grating units sequentially arranged, and the display panel including a plurality of columns of pixels; wherein, the first direction and a column direction of the pixels have an angel of non-zero value therebetween. The sloped 3D grating and the black matrix pattern are no longer parallel with each other, thereby reducing moire patterns generated during display.
US10630964B2 Light field display device and method of manufacturing the same
A light field display device according to example embodiments includes a lower substrate, a back plane structure on the lower substrate, a first electrode electrically connected to the back plane structure, an organic light emitting layer on the first electrode, a second electrode facing the first electrode and covering the organic light emitting layer, an encapsulation layer covering the second electrode, a lower alignment layer directly on the encapsulation layer, a liquid crystal layer on the lower alignment layer, the liquid crystal layer including a plurality of micro liquid crystal lenses to constitute a microlens array, a lens electrode on the liquid crystal layer to form an electric field with the second electrode, and an upper substrate on the lens electrode.
US10630961B2 Virtual viewpoint image generation system based on captured images, virtual viewpoint image generation apparatus, and method of controlling same
A virtual viewpoint image generation system generates a virtual viewpoint image based on a plurality of captured images obtained by capturing an image capturing target region from a plurality of different directions, and position information relating to a virtual viewpoint position. The system comprises: a plurality of image capturing apparatuses; a daisy-chain-type topology network; an obtainment unit configured to obtain the position information relating to the virtual viewpoint position; and a generation unit configured to generate the virtual viewpoint image based on the position information and the data based on each captured image of the plurality of image capturing apparatuses obtained via the daisy-chain-type topology network.
US10630959B2 System and method for object counting and tracking
Disclosed systems and methods for detecting and tracking a quantity of items in a particular location by optical means. The system includes an imager having a field of view directed over a region of interest where the items to be tracked are located, the imager being operable to acquire images of the items. The system further includes a controller in operative communication with the imager, where the controller acquires depth data from the images and determines volume measurements based on the depth data. Based on the determined volume measurements, the system is capable of counting and tracking the items present in the region of interest using optical means to avoid relying on barcodes or other identifier information affixed to the items.
US10630957B2 Scalable distributed computation framework for data-intensive computer vision workloads
Techniques described herein provide methods and systems for scalable distribution of computer vision workloads. In an embodiment, a method comprises receiving, at each of a first node and a second node of a distributed system of nodes, two images. The first image comprises a first set of pixels and the second image comprising a second set of pixels. The method further comprises shifting, at the first node, each pixel of the first set of pixels of the first image in a uniform direction by a first number of pixels to form a first shifted image and shifting, at the second node, each pixel of the first set of pixels of the first image in the uniform direction by a second number of pixels to form a second shifted image. The second number of pixels is different from the first number of pixels. The method further comprises overlaying each of the first shifted image and the second shifted image with the second image, such that each pixel of the first shifted image and second shifted image has a corresponding pixel in the second image. The method further comprises creating, at the first node, a first disparity map that indicates, for each pixel of the first shifted image, a level of similarity between the pixel of the first shifted image and the corresponding pixel in the second image and creating, at the second node, a second disparity map that indicates, for each pixel of the second shifted image, a level of similarity between the pixel of the second shifted image and the corresponding pixel in the second image.
US10630956B2 Image processing method and apparatus
An image processing method includes obtaining multiple video frames, where the multiple video frames are collected from a same scene at different angles and determining a depth map of each video frame according to corresponding pixels among the multiple video frames; supplementing background missing regions of the multiple video frames according to depth maps of the multiple video frames, to obtain supplemented video frames of the multiple video frames and depth maps of the multiple supplemented video frames. The method also includes generating an alpha image of each video frame according to an occlusion relationship between each of the multiple video frames and a supplemented video frame of each video frame in a background missing region and generating a browsing frame at a specified browsing angle according to the multiple video frames, the supplemented video frames of the multiple video frames, and alpha images of the multiple video frames.
US10630955B2 Display device, method of driving display device, and electronic device
A display unit including a display area, an optical separating unit configured to separate an image displayed in the display area into images to be observed at a plurality of predetermined observation positions, respectively, a position detecting unit which detects position information of an image observer, and a driving unit which drives the display unit are provided, and the driving unit controls the image to be displayed on the display unit such that a right-eye image is observed at each of a plurality of observation positions located in the vicinity of an observer's right eye and a left-eye image is observed at each of a plurality of observation positions located in the vicinity of an observer's left eye on the basis of the position information from the position detecting unit.
US10630948B2 Device, system and method for photometric compensation of images provided by a display device
A device, system and method for photometric compensation of images provided by a display device. A display device is controlled to provide colors, the display device configured to provide images according to the colors of the display device. A camera acquires respective images of the colors provided by the display device. A per-pixel correction function for modifying image data used by the display device to provide the images is determined based on: the respective images of each of the colors acquired by the camera corrected into the HVS model using a predetermined color-relationship between the camera and a Human Visual System (HVS) model for the colors of the display device. The display device is controlled to provide the images using the image data as corrected using the per-pixel correction function.
US10630947B2 Projection apparatus with illumination function and image projection display function, control method therefor, and storage medium storing control program therefor
A projection apparatus that is capable of reducing difference in color tones between diffused light with a high diffusion degree and non-diffused light with a low diffusion degree. An irradiation unit irradiates with light including color components. A modulation unit modulates the light irradiated by the irradiation unit. A diffusion unit diffuses and outputs the light incident from the modulation unit. A color setting unit sets up a target color of the light output from the diffusion unit. A controller controls the irradiation unit and the modulation unit. The controller controls at least one of the irradiation unit and the modulation unit according to variation of characteristics of the diffusion unit so that difference between a color of the light diffused by the diffusion unit and the target color will become small.
US10630946B2 Projection type display device, display control method of projection type display device, and program
Provided are a projection type display device, a display control method thereof, and a display control program thereof capable of preventing missing of warning information even in a case where display of warning information using a virtual image and display of warning information using a real image are switched. During a low speed run, warning information A1 is displayed on a windshield 6 using a real image Ir, and guidance information G1 is displayed in front of the windshield 6 using a virtual image Iv. During a high speed run, warning information A2 is displayed in front of the windshield 6 using the virtual image Iv, and guidance information G2 is displayed on the windshield 6 using the real image Ir.
US10630940B2 Vehicular vision system with electronic control unit
A vehicular vision system includes an electronic control unit having at least four coaxial connectors. At least four coaxial cables are electrically connected at respective coaxial connectors of the electronic control unit and respective cameras of at least four cameras. Each of the coaxial cables carries DC power from the electronic control unit to the respective camera. Each of the coaxial cables carries image data captured by an imager of the respective camera to the electronic control unit. Image data carried to the electronic control unit is processed at the electronic control unit by a processor of the electronic control unit. Each of the coaxial cables provides monodirectional data transfer of captured image data from the respective camera to the electronic control unit. Each of the coaxial cables provides bidirectional data transfer of other data between the respective camera and the electronic control unit.
US10630939B2 Multi-participant live communication user interface
An electronic device includes a display, one or more processors, and memory storing one or more programs configured to be executed by the one or more processors. The device can display a messaging user interface of a messaging application, the messaging user interface including: a message region including a plurality of messages between participants in a message conversation that includes three or more participants, and an affordance separate from the message region for starting a live video communication session in a live video communication application. The device can detect an input corresponding to selection of the affordance. In response to, detecting the input corresponding to selection of the affordance, the device can initiate a process for starting the live video communication session in the live video communication application, the live video communication session including the participants of the message conversation.
US10630937B1 Device, system and method for transmitting one or more of annotations and video prior to a video call
A device, system and method for transmitting one or more of annotations and video prior to a video call is provided. A communication device receives a request for a video call from a first communication device, of other communication devices. Prior to the video call being established, the communication device: determines whether a user of the first communication device is an authorized caller; and when the user of the first communication device is an authorized caller, transmits, to the first communication device, one or more of annotations received at the input device and video from a video camera. The determination of whether a user of the first communication device is an authorized caller is based on profile data associated with users of one or more of the other communication devices.
US10630935B2 Method for adjusting an aspect ratio of a displayed image and display system thereof
A method for adjusting the aspect ratio of a displayed image includes setting a first displayed image range, selectively adjusting the size of the first displayed image range to generate a second displayed image range, driving a plurality of pixels inside the second displayed image range of a display panel to display an image, and disabling a plurality of pixels outside the second displayed image range of the display panel.
US10630932B2 Television viewing control apparatus
A television viewing control apparatus includes a distance setting unit, a time setting unit, an ultrasonic sensor, a mounted wireless communication module, and a control unit to perform control to regulate television viewing when a distance between a viewer and the television is measured and the viewer views the television at a position within a set distance or when a remote control signal is received from a smartphone over a wireless network.
US10630929B2 Solid-state imaging device and signal processing device
A solid-state imaging device includes pixels in a matrix and a readout circuit that reads signals from a pixel. Each pixel includes a first photoelectric converter, a second photoelectric converter arranged in a first direction relative to the first photoelectric converter, a third photoelectric converter arranged in a second direction relative to the first photoelectric converter, a fourth photoelectric converter arranged in the second direction relative to the second photoelectric converter and in the first direction relative to the third photoelectric converter, and a micro lens for all the photoelectric converters. The readout circuit reads charges from all the photoelectric converters by three readout operations and reads signals so as to be able to identify a signal based on charges generated by only one photoelectric converter. The readout circuit selects the one photoelectric converter from all the photoelectric converters.
US10630928B2 Image sensor pixels with overflow capabilities
An image sensor pixel may include multiple split photodiodes that are covered by a single microlens. The image sensor may include a charge overflow capacitor coupled to a pixel charge storage within the image sensor via a gain control transistor. The image sensor pixel may have phase detection capabilities in a first mode of operation enabled by comparing phase signals generated from the split photodiodes. The image sensor pixel also may generate and readout image signals simultaneously in both rolling shutter operations and global shutter operations in a second mode of operation. The image sensor pixel may also generate an image using a linear combination of at least two signals read out using the charge overflow capacitor and light flickering mitigation operations. The image may be a high dynamic range image that is generated from at least a low exposure signal and a high exposure signal.
US10630925B1 Depth determination using polarization of light and camera assembly with augmented pixels
A depth camera assembly (DCA) for depth sensing of a local area. The DCA includes a light source assembly, a camera assembly, and a controller. The light source assembly projects pulses of light into the local area, each pulse having a respective polarization type. The camera assembly images a portion of the local area illuminated with the pulses of light. The camera assembly includes a plurality of augmented pixels, each augmented pixel having a plurality of gates and local storage locations. An exposure interval of the camera assembly is divided into intervals and some of the intervals are synchronized to the projected pulses of light such that each respective local storage location stores image data associated with a different polarization type. The controller determines depth information for the local area based in part on the polarization types associated with the image data stored in respective local storage locations.
US10630924B2 Image processing apparatus, image processing method, and non-transitory computer readable recording medium
An image processing apparatus executes plural corrections for plural types of noises having mutually different characteristics included in image data generated by an image sensor including plural pixels, and including plural read-out circuits that read out the signal of each pixel as a pixel value. The apparatus includes a noise correction unit executable of the plural types of correction processes in an order determined based on the characteristic of each of the plural types of noises and a signal generating process from a light reception through an output of pixel values from the pixel. The noise correction unit classifies the plural types of correction processes into plural groups, on the basis of the characteristic of each of the plural types of noises, and executes the plural types of correction processes in an order determined in accordance with the plural groups and the signal generation process.
US10630922B1 Local exposure sensor and method for operating the same
A high dynamic range imaging sensor includes a pixel array of pixel cells, a readout circuitry, a function logic and a control circuitry. Each pixel cell comprises one of a normal pixel and a base pixel, and each M rows by N columns pixels defines a pixel subarray. Each pixel subarray includes at least three normal pixels and at least one base pixel. The readout circuitry is coupled to read image data out from a plurality of pixels of the pixel array. The readout circuitry includes an Analog-to-Digital Converter associated to respective readout column. The function logic is coupled to receive the digital image data from the readout circuitry. The control circuitry is coupled to receive exposure levels from the function logic and to output each applied exposure level assigned to respective pixel subarray of the pixel array to control an exposure time of each pixel.
US10630920B2 Image processing apparatus
An image processing apparatus includes a pixel value acquisition circuit configured to acquire pixel values from image data that is generated by an imaging device including a detection pixel, and a pixel specification circuit configured to specify a flare-affected pixel that is affected by flare.
US10630916B2 Electronic device, method of controlling same, and image sensor
An image sensor capable of switching between a first path configured to output an image signal read from a plurality of pixels to an external after storing the image signal in a memory, and a second path configured to output the image signal to the external without storing the image signal in the memory is configured. In a case of shooting using a supplemental light source, the image sensor is controlled so as to use the first path and to have a speed for reading the image signal from the plurality of pixels be faster than a speed for outputting the image signal from the memory to the external.
US10630915B2 Semiconductor integrated circuit that can turn off part of a write area without turning off a memory area and control method of semiconductor integrated circuit
The image forming apparatus of the present invention is a semiconductor integrated circuit including: a first image processing module; a second image processing module; a first SRAM configured to temporarily store image data for which the first image processing has been performed by the first image processing module; a second SRAM configured to store a parameter for performing the second image processing for image data that is input to the second image processing module; and a control unit. The control unit stops power supply to the first SRAM, continues to supply power to a storage area of the second SRAM in which the parameter is stored, and stops power supply to a control area for writing data to the storage area of the second SRAM based on that a condition to cause the semiconductor integrated circuit to make a transition into a power-saving mode is satisfied.
US10630914B2 Thermal imaging camera with graphical temperature plot
Methods and apparatus for monitoring a temperature of an object over time using a thermal imaging camera. The methods and apparatus may gather infrared temperature data from a selected source of temperature data within a scene at a selected time interval and display a graphical plot of the gathered temperature data on a digital display.
US10630909B2 Camera apparatus and system, method and recording medium for indicating camera field of view
A camera field indicating method, system, and non-transitory computer readable medium for a camera including imaging optics, a light sensor, the imaging optics and the light sensor intermittently sensing incoming light, an extended light source provided separate from the imaging optics and the light sensor, the extended light source comprising a distributed illuminator capable of being intermittently activated when the light sensor does not need to sense incoming light such that a projection of the distributed illuminator through a duplicate lens of the extended light source matches a field of view of the light sensor.
US10630907B2 Methods of producing video images that are independent of the background lighting
Methods of creating frames captured with a video camera that are independent of light conditions are presented. In a first method the invention attains this goal by the addition of a modulated light source, for example amplitude modulation (AM), to the background light that illuminates the scene being captured and executing an algorithm that generates processed images in which the effects of the background illumination have been eliminated. In a second aspect the invention is a method of modifying the flash no flash technique by executing an algorithm that averages out the maximum and minimum intensity peaks in adjacent frames thereby allowing this technique to be employed using non-synchronous light in video.
US10630906B2 Imaging control method, electronic device and computer readable storage medium
An imaging control method, an electronic device and a computer readable storage medium are provided. The imaging control method includes: determining a target combination from a plurality of preset exposure level combinations according to a brightness of a shooting scene; performing shooting according to each exposure level comprised in the target combination to obtain a corresponding image of each exposure level; and performing synthesis processing on images of the plurality of exposure levels of the target combination.
US10630905B2 Real time shadow and glare analysis for document capture
There are described mobile devices, and methods thereof, for real time analyses of captured images. The device determines whether a light level of a first image meets or exceeds a low light threshold. The device also determines whether a shadow level of the first image meets or exceeds a shadow threshold in response to determining the light level does not meet or exceed the low light threshold. The light source is activated in response to determining the light level meets or exceeds the low light threshold or the shadow level meets or exceeds the shadow threshold. The device further determines whether a glare level of a second image meets or exceeds a glare threshold in response to identifying the second image. If so, then a final image is captured with the light source inactive. Otherwise, the final image is captured with the light source active.
US10630895B2 Assist for orienting a camera at different zoom levels
Aspects of the present disclosure relate to systems and methods for assisting in positioning a camera at different zoom levels. An example device may include a memory configured to store image data. The example device may further include a processor in communication with the memory, the processor being configured to process a first image stream associated with a scene, independently process a second image stream associated with a spatial portion of the scene wherein the second image stream is different from the first image stream, output the processed first image stream, and output during output of the processed first image stream a visual indication that indicates the spatial portion associated with the second image stream.
US10630893B2 Apparatus for adjusting image capture settings based on a type of visual trigger
A device and method are provided for adjusting image capture settings. In one implementation, a wearable apparatus may include at least one wearable image sensor configured to capture a plurality of images from an environment of a user. The wearable apparatus may also include at least one processing device configured to identify, in at least one representation of at least one of the plurality of images, an existence of at least one visual trigger in the environment of the user, determine, based on a type of the at least one visual trigger, a value for at least one capturing parameter, cause the image sensor to capture at least one subsequent image according to at least the value of the at least one capturing parameter, determine a data size for storing at least one representation of the at least one subsequent image, and store, in a memory, the at least one representation of the at least one subsequent image.
US10630891B2 Image processing apparatus, image processing method, and program
Provided is a an image processing apparatus including a candidate detection unit configured to detect each of candidate images serving as candidates for a main subject for a plurality of frames of image data, and a main subject determination unit configured to obtain a degree of stable presence of the candidate images detected by the candidate detection unit within the image data spanning the plurality of frames and to determine a main subject among the candidate images using the degree of stable presence.
US10630890B2 Three-dimensional measurement method and three-dimensional measurement device using the same
A three-dimensional (3D) measurement method includes steps of: detecting a facial orientation and a gaze direction of a user through a field of view detection unit; determining an interested field of view according to the facial orientation and the gaze direction, and configuring a first set of scanning parameters according to the interested field of view through an computation control unit; and performing a first structured-light scan on a first scanning region corresponding to the interested field of view based on the first set of scanning parameters, and selectively performing a second structured-light scan on a second scanning region which is outside the first scanning region based on a second set of scanning parameters through a scanning unit.
US10630888B2 Method and apparatus for selecting capture configuration based on scene analysis
A method of selecting capture configuration based on scene analysis and an image capturing device are provided. The method includes analyzing by a processor, a scene currently being captured by an image capturing device having a plurality of imaging sensors, identifying a current image capturing mode of the image capturing device, setting at least one capture parameter for the plurality of the imaging sensors, upon determining that the at least one capture parameter of the current image capturing mode has to be changed, and determining a timing sequence for triggering the plurality of imaging sensors to capture a plurality of image frames based on the set at least one capture parameter.
US10630885B2 Focusing method and terminal
A focusing method and a terminal are provided. The method includes the following. A set of FV sampling parameter groups and a set of defocus value sampling parameter groups are obtained. A first mapping relation between step angles and FVs is determined according to the set of FV sampling parameter groups and a first predetermined fitting scheme, and a second mapping relation between the step angles and defocus values is determined according to the set of defocus value sampling parameter groups and a second predetermined fitting scheme. A first step angle in a first step angle set is determined according to the first mapping relation, and a second step angle in a second step angle set is determined according to the second mapping relation. Focusing is completed according to the first step angle and the second step angle.
US10630884B2 Camera focusing method, apparatus, and device for terminal
A camera focusing method, apparatus, and device for a terminal, and relate to the field of electronic device technologies to improve focusing precision of a terminal in a camera focusing process. The method includes obtaining a first confidence and a second confidence, determining a target ranging manner and a target object distance when the first confidence and the second confidence meet a preset condition, and determining a target position in a lens position interval to help a first camera and a second camera complete focusing.
US10630881B2 Lens detection method and lens detection system used for detecting type of externally connected lens
A lens detection system includes a system chip, and the system chip includes a first lens selection pin and a protocol path pin. A lens detection method includes performing a reset step by the system chip; enabling the first lens selection pin by the system chip; detecting a first lens identification code via the protocol path pin by the system chip; loading first lens data by the system chip and entering a first lens operation mode for controlling an externally connected first lens if the first lens identification code is detected; and disabling the first lens selection pin by the system chip if the first lens identification code is undetected.
US10630879B2 Imaging control device, imaging apparatus, imaging control system, image display apparatus, imaging control method, information processing method, and program
An imaging control device acquires examination order information, outputs, external to the imaging control device, a captured image obtained based on a first imaging protocol information included in the examination order information, and acquires second imaging protocol information for additional imaging based on an instruction from an external apparatus that received the output captured image.
US10630878B2 Self-photographing system and method
The present invention provides a self-photographing system and method. The self-photographing system comprises an electronic device having a taking photo or recording video, and a self-photographing device. The electronic device is disposed on the self-photographing device. The self-photographing device comprises a controller, an infrared receiver and a rotating platform. The controller defines a first area from a signal sensing range of the infrared receiver. The controller controls the rotation of the rotating platform, so that the infrared receiver is able to receive the infrared signal in the first area of the signal sensing range, and therefore a lens of the electronic device can take photo or record video for the user in a particular angle.
US10630874B2 Wastewater monitoring system and method
A wastewater monitoring system uses a camera in a fixed location in a wastewater pipe. The camera is coupled to a sensor that measures some characteristic of material in the wastewater pipe. The sensor is programmed with one or more alarms that, when triggered, cause the sensor to wake up the camera and command the camera to take one or more photos. Sensor data, such as current time/date, location, and the characteristics of material in the wastewater pipe, is sent by the sensor to the camera, which overlays one or more photos with visible text information corresponding to the received sensor data. The sensor can wake up the camera and command the camera to turn on the camera's Wi-Fi interface, which allows a wastewater control system in a remote location to communicate directly with the camera.
US10630873B2 Animal-wearable first person view system
An animal-wearable head-mountable display (AW-HMD) device comprises a head fitting designed to fit the head of an animal, and an output subsystem coupled to or integral with the head fitting and configured to output a signal to the animal. The device can comprise an optical module configured to project images into an eye of the animal, and various other modules, such as an audio module, a tactile module and/or an olfactory module. An animal-wearable first person view (AW-FPV) system may be used separately or in conjunction with the AW-HMD device, to enable a remote human user to view the animal's real-world environment from the animal's point of view.
US10630870B2 System and method for augmented reality movie screenings
A method for an augmented reality screening is disclosed. The method includes receiving a content package, such as a Digital Cinema Package (DCP), extracting actor, video, and audio data from the content package, displaying the extracted video data on a display, playing the extracted audio data on one or more speakers, and instructing one or more actors to perform one or more actions on a stage based on the extracted actor data.
US10630866B2 Electronic devices and methods for blurring and revealing persons appearing in images
An electronic device includes an imager and one or more processors operable with the imager. The imager captures at least one image of a plurality of persons. The one or more processors blur depictions of one or more persons of the plurality of persons until a reveal permission instruction is detected.
US10630864B2 Image forming apparatus, image forming system, and communication processing method allowing log storage of remote maintenance connection
Provided is an image forming apparatus that can acquire a log at the time of connection with a support terminal of remote maintenance service. The image forming apparatus includes a connecting part, an operation acquiring part, and a log acquiring part. The connecting part connects with the support terminal in a session of a specific protocol. The operation acquiring part acquires operational information corresponding to operation of the support terminal connected by the connecting part. The log acquiring part acquires log information, which is acquired in the support terminal, with the same session as the operational information acquired by the operation acquiring part.
US10630863B2 Storing print data in association with user data
If a storage period of data held in a holding unit elapses and the data is deleted from the holding unit after a user logs out of a job processing apparatus, the user cannot easily recognize that there is deleted data. A method for controlling the job processing apparatus includes holding in the holding unit a job associated with a user, storing in a first storing unit identification information for identifying a user associated with a job deleted from the holding unit, storing in a second storing unit identification information for identifying a user associated with a job of which holding in the holding unit has failed, notifying based on the identification information stored in the first storing unit a user that the job is deleted, and notifying based on the identification information stored in the second storing unit a user that the holding of the job has failed.
US10630860B2 Image reading device and method for controlling image reading device
An image sensor in an image reading device reads a document based on light from a lamp while a carriage is moving from one to the other side. An image data generation circuit generates read image data based on an analog image signal fed out from the image sensor. A controller senses the edge of the document in the read image data generated while the carriage is moving. On recognizing once or a plurality of times, while the carriage is moving, based on the result of sensing of the edge, that the reading of one placed sheet of the document is completed, the controller makes a moving mechanism stop the movement of the carriage and turns off the lamp.
US10630859B2 Image forming apparatus
An image forming apparatus includes a temperature detecting unit configured to detect a temperature outside the image forming apparatus, a storage portion, and a control unit configured to execute a dew condensation eliminating operation for eliminating dew condensation in the image forming apparatus based on a detection result of the temperature detecting unit. The control unit stores, in the storage portion, an execution time of the dew condensation eliminating operation executed when a power supply to the image forming apparatus is stopped during the dew condensation eliminating operation and determines, when the power supply to the image forming apparatus is started, whether or not to execute the dew condensation eliminating operation based on the execution time and a power supply stop continuing time from when the power supply is stopped to when the power supply is started.
US10630850B2 Image forming apparatus
An image forming apparatus includes: a document reading unit 110 allowing input of image data generated from a read document, a paper feed unit 140 containing recording paper, an image forming unit 120 forming an image on the recording paper based on the image data, and a touch-panel display 132 displaying a preview image representing a state of image formation. The touch-panel display displays a preview image in a designated orientation for a document of a prescribed size, and displays a preview image in accordance with size and orientation of recording paper fed from the paper feed unit, for a document not of the prescribed size. Thus, for documents of a prescribed size, preview images in a prescribed orientation can be displayed regardless of the direction of arrangement of the recording paper, and easier confirmation of expected finish of the formed image becomes possible.
US10630843B1 Dialing into a meeting without entering information
A computer-implemented method is provided that includes receiving a telephone call placed by a device associated with a user. The user is identified based on a caller identifier obtained from the telephone call. A user identifier is determined for the user based on the caller identifier. Using the user identifier, access is made to a calendar associated with the user to determine from the calendar for the user whether there are any online meetings scheduled for the user at or near a current time. When there is at least one online meeting in the calendar for the user at or near the current time, the user is joined to the at least one online meeting, which results in connecting the telephone call to an audio portion of the at least one online meeting served by a meeting service.
US10630842B1 Database allocation and analytics for service call centers
A method for routing customer service requests to call centers includes collecting data associated with customer service experience between a customer and a call center regarding a completed customer call. The collected data is analyzed to determine a quality of customer service for one or more completed calls between the customer and the call center. A nature of an incoming customer call is determined. The incoming customer call is routed to a call center based upon making reference to the analyzed collected data such that the nature of the customer call matches with corresponding one or more favorable attributes of the call center.
US10630838B2 System and method for dynamic dialog control for contact center systems
A system and method for engaging in an automated dialog with a user. A processor retrieves a preset dialog flow that includes various blocks directing the dialog with the user. The processor provides a prompt to the user based on a current block of the dialog flow, receives an action from the user in response to the prompt, and retrieves a classification/decision tree corresponding to the dialog flow. The classification tree has a plurality of nodes mapped to the blocks of the dialog flow. Each of the nodes represents a user intent. The processor computes a probability for each of the nodes based on the action from the user. A particular one of the nodes is then selected based on the computed probabilities. A target block of the dialog flow is further identified based on the selected node, and a response is output in response to the identified target block.
US10630836B2 Systems and methods for adaption of a telephonic audio signal
Systems and methods for adaption of telephonic signal are provided. A telephonic listener's demographic information is first received. Next, a set of preset parameters are retrieved from a database based on the demographic information. The preset parameters are calculated using suprathreshold and/or threshold hearing data, which is representative of a demographic group. These preset parameters are then outputted to a sound personalization digital signal processing (DSP) algorithm. A voice signal is then processed using the sound personalization DSP and the processed voice signal is then outputted at the listener's telephonic device.
US10630835B2 Content sharing between related devices
Methods and computing systems for sharing content between related devices in a cellular network are described. A first device receives content from an external content source via a wireless connection, and causes presentation of the content on an output device of the first device. The first device retrieves information for one or more related devices that utilize the same telephone number the first device for sending and receiving at least cellular communications via the cellular network. The first device enables sharing of the content with at least one related device of the one or more related devices.
US10630833B2 Display device and operating method thereof
A display device according to an embodiment of the present invention may comprise: a short-range communication unit for receiving a search request signal from a mobile terminal making a telephone call; a control unit for obtaining a connection state with the mobile terminal as the search request signal is received, and receiving an audio signal from the mobile terminal if the control unit is connected to the mobile terminal; and a display unit for displaying a result of a search on the basis of the audio signal.
US10630830B2 Microphone switching method and electronic device using same
An electronic device includes a first microphone, a second microphone, a sensing unit, and a control unit. The first and second microphones are respectively positioned at two different sides of the electronic device. The sensing unit is configured to sense a first light value of a first side of the electronic device, a second light value of a second side of the electronic device and an orientation of the electronic device. The control unit is configured to select one of the first microphone and the second microphone to work according to the first and second light values and the orientation of the electronic device.
US10630829B1 Device and techniques for mobile experience
Embodiments disclosed herein include an accessory for a computing device. The accessory includes one or more physical attributes that can produce a signal that can be detected by one or more sensors of the computing device. Once detected by the one or more sensors of the computing device, the signal can be compared with at least one signature stored in a memory of the computing device. If there is a match between the detected signal and the signature in memory, an application running on the computing device can instruct the a processor of the computing device to execute an action.
US10630827B2 Electronic device and control method thereof
A device and method for responding to a user voice including an inquiry by outputting a response to the user's voice through a speaker and providing a guide screen including a response to the user's voice.
US10630825B2 System and method for registering an IP telephone
A system and method for establishing connection of an IP telephone to a network may include, in response to receiving a registration request from an IP telephone, generating a command to cause network access devices to ping the IP telephone. The command may be communicated to the network access devices. Ping information may be received in response to the network access devices pinging the IP telephone. A network access device may be selected that has the highest quality network access path to the IP telephone. In response to selecting the network access device that has the highest quality network access path, a network address of the selected network access device may be communicated to a network device to enable the IP telephone to communicate with the selected network access device. Credentials may be communicated to the IP telephone to register with the selected network access device.
US10630819B2 Method and apparatus for PCDP discard
A method and apparatus for discarding a packet data convergence protocol (PDCP) service data unit (SDU) are disclosed. A PDCP layer sets a timer and discards a PDCP SDU upon expiration of the timer. The timer may be set upon receiving the PDCP SDU from an upper layer or upon submitting the PDCP SDU to a lower layer for transmission. The timer and a radio link control (RLC) discard timer may be coordinated. Alternatively, the PDCP layer may discard the PDCP SDU based on a notification from an RLC layer or based on a PDCP status report.
US10630814B2 Serial interface to transmission control protocol interface multi-port communication device
A multi-port communication device having a plurality of serial interfaces and a plurality of Transmission Control Protocol (TCP) interfaces is provided. Data is received from one or more medical devices at a serial interface of the plurality of serial interfaces and communicated to a healthcare information system via a TCP interface of the plurality of TCP interfaces. The multi-port communication device can be remotely managed by a remote device via a set of management tools. In embodiments, the set of management tools run locally on the multi-port communication device. The multi-port communication device may additionally comprise locally installed drivers that enable communication with the healthcare information system via TCP.
US10630802B2 Read caching in PPRC environments
A method for caching reads in a data replication environment is disclosed. In one embodiment, such a method includes receiving a read request at a primary site of a data replication environment. The method executes the read request at the primary site. In the event data associated with the read request is not already cached at the primary site, the method stores the data in cache at the primary site. The method also notifies a secondary site of the read request at the primary site. This notification may be sent synchronously or asynchronously as time and resources allow. In the event the data is not already cached at the secondary site, the method stores the data in cache at the secondary site. A corresponding system and computer program product are also disclosed.
US10630801B2 Data shunting method, data transmission device, and shunting node device
Embodiments of the present invention relate to a data shunting method, a data transmission device and a shunting node device, the data shunting method provided in the embodiments of the present invention includes: acquiring the number of to-be-transmitted shunted data packets which are cached in the shunting node device; when the number of the to-be-transmitted shunted data packets is less than a first threshold value, transmitting shunted data to the shunting node device, otherwise, not transmitting the shunted data to the shunting node device. The data shunting method provided in the embodiments of the present invention enables the data transmission device to provide the shunting node device with an appropriate shunted data rate.
US10630797B2 Systems and methods for content delivery acceleration of virtual reality and augmented reality web pages
Among other things, this document describes systems, devices, and methods for improving the delivery and performance of web pages authored to produce virtual reality (VR) or augmented reality (AR) experiences. In some embodiments, such web pages are analyzed. This analysis may be initiated at the request of a content server that receives a client request for the HTML. The analysis may involve, asynchronous to the client request, loading the page into a non-user-facing browser environment and allowing the VR or AR scene to execute, even including executing animation routines for a predetermined period of time. Certain characteristics of the scene and of objects are thereby captured. Based on this information, an object list ordered by loading priority is prepared. Consulting this information in response to subsequent requests for the page, a content server can implement server push, early hints and/or other delivery enhancements.
US10630795B2 Systems and methods for transferring application state between devices based on gestural input
Systems and methods are provided for transferring state between devices. In one implementation, a gestural input is detected, and a state of a source application is transferred from a first device to a second device in response to the gestural input. The second device may then generate an instance of a target application that corresponds to a representation of the state of the source application received from the first device. In an additional implementation, a state of the target application is transferred from the second device to the first device. The first device then updates a state of the source application to correspond to a representation of the state of the target application received from the second device.
US10630794B2 Multi computing device network based conversion determination based on computer network traffic
Multi-computing device network based cross-device conversion determination is described. A content selection computer server can identify cross-device conversions. A first computing device accesses third-party content via a first computer network connection. A second computing device accesses a webpage of the third-party content provider via a second computer network connection. The first and devices can be logged into a same online account. The content selection computer server can obtain, via a content tag that includes a script that executes on a webpage that includes the third-party content, data indicating that the first computing device accessed the third-party content. The selection computer server determines the conversion from the content tag and the second computing device having accessed the webpage. Based on a percentage of first and second sets of computing devices that have logged into common respective online accounts, the content selection computer server extrapolates an estimated number of cross-device conversions.
US10630793B2 Browser fingerprinting
Browser requests are received and data included in it is added to a vector. If explicit identification information (username, cookie data, etc.) is present, the vector is associated with a pre-existing user record, which is then updated. If not, candidate user records may be identified according to correspondence with values in the vector. This may include comparing hashes of one or more values to identify similarities. Candidate vectors may be eliminated by identifying inconsistency in OS, device, and browser information. Probability assigned to each candidate vector may be adjusted, e.g., reduced, in response to inconsistency in other data relating to a browser, device, or of a more global nature, e.g. time zone, user attributes, etc. Records associated with different devices may be associated with one another by evaluating hashes of data values submitted by a user on the different devices. Where the hash values of two records intersect, they may be merged with one another.
US10630792B2 Methods and systems for viewing user feedback
In a client device having one or more processors and memory storing instructions for execution by the one or more processors, graphic icons of one or more users who have provided user feedback for a first content item are displayed. The client device transitions from displaying one or more of the graphic icons to displaying user feedback for the first content item provided by respective users.
US10630790B2 Systems and methods for abandonment detection and mitigation
Systems and methods for presenting information are disclosed. One aspect comprises receiving a request for information. First data can be provided in response to the request if a parameter is equal to or exceeds a comparator element, wherein the parameter relates to one or more of abandoned data transmissions and completed data transmissions. Second data can be provided in response to the request if the comparator element exceeds the parameter.
US10630781B2 SMB2 scaleout
Systems and methods are disclosed for clients and servers operating in a scaled cluster environment. Efficiencies are introduced to the process of connecting a client to a clustered environment by providing the client with the ability to attempt a connection with multiple servers in parallel. Servers operating the in the clustered environment are also capable of providing persistent storage of file handles and other state information. Ownership of the state information and persistent handles may be transferred between servers, thereby providing clients with the opportunity to move from one server to another while maintaining access to resources in the clustered environment.
US10630778B2 System and method of controlling data transmission of external apparatus connected to gateway
A system and method of controlling data transmission from a device connected to a gateway includes: determining a resource utilization rate of the gateway, and determining a data processing method of the device in accordance with the utilization rate of the gateway.
US10630777B2 Topology formed by electronic nicotine delivery devices
The present disclosure teaches provision of a method that includes passing a data token from a first wirelessly connectable electronic nicotine delivery (END) device to a second wirelessly connectable END device. The method also includes using the token to control an aspect of the operation of a third wirelessly connectable device, the third wirelessly connectable device having an established communications relationship with the second wirelessly connectable END device.
US10630772B2 Maintaining global namespace consistency for a distributed filesystem
The disclosed embodiments disclose techniques for maintaining global name consistency for a distributed filesystem. Two or more cloud controllers collectively manage distributed filesystem data that is stored in one or more cloud storage systems; the cloud controllers ensure data consistency for the stored data, and each cloud controller caches portions of the distributed filesystem. During operation, a cloud controller receives a client request to perform a namespace operation upon a filesystem object. The cloud controller contacts the cloud controller that manages (“owns”) the portion of the global namespace for the distributed filesystem that includes the filesystem object. This second cloud controller ensures the consistency of the filesystem object across the distributed filesystem during the namespace operation.
US10630770B2 Peer-to-peer data sharing between internet-of-things networks
Techniques are described for sharing data among Internet of Things (IoT) networks. An IoT network may include a platform that collects data generated by IoT devices. The platform may execute an agent that sends a communication to indicate the network presence of the sending platform to broker module(s) that support a data sharing service. The communication may also indicate the type and/or quantity of data generated by the sending platform and available to be shared with other receiving platforms in other IoT networks. The data broker module(s) may generate and send security tokens to the agents executing on the sending platform and receiving platform(s). Using the security tokens, the respective agents may establish a peer-to-peer (P2P) connection over a network over which the data is streamed in real time as it is received and/or processed by the sending platform.
US10630768B1 Content-based media compression
The playback of a media file can be adjusted for portions where the content may be of less interest to a viewer. The audio content can be analyzed to locate portions of the media file that might be appropriate for compression, such as during periods of relative silence. Information for the beginning or end of such a period can be stored as compression cues associated with the media file. During an encoding of the file, the compression cues and associated time code data can be used to incorporate playback adjustment information in the media file. A player playing the media file can determine whether to adjust the playback based on this information, such as to increase a frame rate of the playback during periods of silence and return the frame rate to a standard rate for the media file at the end of those periods.
US10630767B1 Hardware grouping based computing resource allocation
A customer of a computing resource service provider submits a request to a virtual computer system service to instantiate a virtual computer system. In response to the request, the service obtains physical network information in order to identify any hardware groupings that may be used, at a later time, to provision one or more data storage volumes that may be associated with the virtual computer system. The service assigns a score to each of these hardware groupings based at least in part on the available capacity for provisioning of these data storage volumes. Based at least in part on these assigned scores, the virtual computer system service selects a hardware grouping and instantiates the virtual computer system within the selected hardware grouping.
US10630765B2 Multi-priority service instance allocation within cloud computing platforms
In various embodiments, methods and systems for optimizing allocation of multi-priority service instances are provided. In embodiments, a packing quality metric associated with each candidate node to which a service instance could be allocated are determined. An eviction cost associated with at least a portion of the candidate nodes to which the service instance could be allocated are determined. The eviction costs generally indicate a cost to evict a service instance from a corresponding node such that another service instance can be allocated to that node. At least a portion of the packing quality metrics and the eviction costs are used to select a node from the candidate nodes to which to allocate the service instance.
US10630760B2 Adaptive encryption in checkpoint recovery of file transfers
Embodiments are provided herein for applying adaptive encryption in checkpoint recovery of a file transfer. An embodiment includes establishing a first connection between a first node and a second node, generating a first ciphertext object at the second node by encrypting first input data received from the first node based, at least in part, on an encryption algorithm and an input block, and storing the first ciphertext object in an output file. The embodiment further includes, subsequent to a communication failure via the first connection, establishing a second connection between the first node and the second node, obtaining a last block stored in the output file, and generating a second ciphertext object by encrypting second input data received from the first node based, at least in part, on the encryption algorithm and the last block. More specific embodiments include storing a current file offset based on detecting the communication failure.
US10630759B2 Method and apparatus for generating and reproducing adaptive stream based on file format, and recording medium thereof
Methods and apparatus are provided for receiving a file in a streaming system. The method includes receiving, by a client device, a file related to at least one segment, the at least one segment being decoded based on the file; and performing, by the client device, a streaming service based on the file. The file is updated for a live service, and the file includes information indicating if the file is to be updated.
US10630757B2 Application sharing method and apparatus
The present invention provides an application sharing method and apparatus, which resolve a problem that not all applications can be shared. The method of the present invention includes: obtaining a distance between an icon of a first application and an icon of a second application, where the first application is a to-be-shared application, and the second application is used to share the first application; determining whether the distance is less than a preset distance; if the distance is less than the preset distance, obtaining application information of the first application in an application store on the Internet, and obtaining information about a to-share-with user, where the application information includes a link address of the first application in the application store; and sending the link address to the to-share-with user by using the second application. The present invention can be applied to application sharing.
US10630755B2 Selective consumption of web page data over a data-limited connection
A problem with Internet access in a number of markets is the issue of data-limited network connections. Selective, on-demand consumption of web page data is provided. A user's browser presents a “light” version of a web page by loading compressed or low-fidelity versions of the web page images in place of the actual, higher-fidelity images. In the event that the user wishes to see the original higher-fidelity version of an image, clicking on the image or an associated icon loads the original-fidelity version of the image, replacing the low-fidelity version. The light version of the web page loads faster than would the original version of the web page, and requires less data to be downloaded when rendering the web page. This enables a user with a data-limited connection to select how he or she wishes to “spend” their data consumption.
US10630754B2 Systems, methods, and media for correlating information corresponding to multiple related frames on a web page
Systems, methods, and media for correlating information corresponding to multiple related frames on a web page are provided. In some embodiments, a method for identifying corresponding iframes on a web page to a server is provided, the method comprising: loading a web page including a plurality of iframes; receiving the requested content and identifying information for a first iframe; loading an event listener; determining a location of the first iframe in the structure of the web page; transmitting a message to a second iframe including the first identifying information and location of the first iframe; receiving, using the event listener, a message from the second iframe including second identifying information and location of the second iframe; determining that the second iframe is nested within the first iframe; and transmitting a third message to a server including at least the second identifying information and location of the second iframe.
US10630749B2 Timely delivery of real-time media problem when TCP must be used
Methods and systems are disclosed wherein TCP may approximate Reliable Transport Protocol (RTP) or UDP delivery for real-time video/data conferencing applications that have long RTT connections.
US10630748B1 Video-based encoder alignment
A video packaging and origination service can include one or more encoder components that receive content for encoding and transmitting to requesting entities. During the operation of the encoder components, individual encoders receive input signals for encoding and determine picture data related to the generation of an encoded segment. The encoder components exchange picture data information and individual encoder components select synchronization information based processing the exchanged picture data information. The exchange of picture data and synchronization can continue throughout the streaming process.
US10630742B2 System and method for content messaging
A system and method for content messaging includes observing, by the server, synchronization of a database cluster accessible to the server with a first local database at a first client, the database cluster including a message after the synchronization, the message including content and instructions for processing the content, and processing, by the server, the content of the message according to the instructions for processing the content, in response to observing the synchronization.
US10630739B2 Parallel peer to peer connection establishment in WebRTC conferencing
A computer-implemented method comprises using a media server, establishing a video conference between a first instance of a media application and a second instance of the media application over a relay connection, in response to determining that the video conference comprises only the first instance and the second instance of the media application, determining by the first instance of the media application candidate addresses for a peer to peer (P2P) connection with the second instance of the media application, the candidate addresses excluding the media server, sending the candidate addresses to the second instance of the media application, establishing the P2P connection using a particular candidate address, in response to establishing the P2P connection, setting the relay connection to an inactive state and sending media data for the video conference over the P2P connection.
US10630738B1 Method and system for sharing annotated conferencing content among conference participants
Shared conferencing content may be annotated during presentation either by a presenter or by a participant of a conference. The annotated content may be manipulated by a participant or by a presenter through a user interface. A system for annotating shared conferencing content may be configured to receive, in real time, an annotation for a portion of multimedia content. The annotated portions of the multimedia content may have a set of associated characteristics for manipulating the portions of the multimedia content. A multimedia conferencing method may include permitting, in response to a received request, manipulation of the annotated portions of the multimedia content based on the set of the associated characteristics.
US10630736B2 Information processing apparatus, communication platform determining method, transmission system, and transmission terminal
An information processing apparatus that interconnects a plurality of transmission terminals supporting a plurality of communication platforms is provided. The information processing apparatus includes a state detection unit configured to detect a communication state relating to at least one of a communication between the transmission terminals and a communication between at least one of the transmission terminals and the information processing apparatus; a read unit configured to read from a storage unit communication platform determination information associating the plurality of communication platforms with the communication state; and a determination unit configured to determine that a communication platform of the plurality of communication platforms that is registered in the communication platform determination information in association with the communication state that has been detected by the state detection unit is to be used in the communication between the transmission terminals.
US10630731B2 Establishing media sessions via MQTT and SIP
A method of establishing a media session between first and second mobile stations, the method including receiving, at an MQTT messaging service and from the first mobile station, a first MQTT subscription request and a first MQTT application message; issuing, in response to receiving the first MQTT application message, an indication to the second mobile station that a mobile station requests establishing a media session with the second mobile station; receiving, at the MQTT messaging service and from the second mobile station, a second MQTT application message; forwarding the second MQTT application message to the first mobile station; receiving a SIP INVITE message issued by one of the first and second mobile stations; forwarding the SIP INVITE message the other of the first and second mobile stations; receiving a SIP OK message issued by the one mobile station; and forwarding the SIP OK message to the other mobile station.
US10630728B2 Systems and methods for minimizing privacy intrusion during internet of things lawful interception
This disclosure relates generally to methods and systems for minimizing privacy intrusion during internet of things lawful interception. In one embodiment, a topology of probes system for providing lawful interception information for an internet of things network is provided. The topology of probes system may comprise a super-probe connected to a lawful interception gateway by a set of LI-interfaces and a hierarchy of probes connected to the super-probe. Further, the super-probe and the hierarchy-of-probes may be configured to perform LI operation according to one or more privacy requirement settings and to provide lawful interception information collected by the LI operation. Additionally, the privacy requirement settings may comprise rules that govern at least one of: content-based data exposure, prevention of access of information by predetermined users, and obfuscation of predetermined information.
US10630723B1 Determining policy characteristics based on route similarity
Techniques are described for adjusting policy characteristics based on a determined similarity between routes. A similarity metric may be determined indicating the similarity between a first route followed by a vehicle and/or driver and a second (e.g., previous) route followed by the vehicle and/or driver. A similarity metric may indicate the similarity in movements, and changes in movement, exhibited by the vehicle on the routes. The similarity metric may be determined through analysis of real time data collected by in-vehicle sensor(s), mobile user device(s), external sensors or other data sources. Based on the similarity metric, a premium, a deductible, a price, or other characteristic(s) of a policy may be determined. In some examples, policy characteristics may be adjusted (e.g., in real time) based on the analysis according to changing risk conditions if a driver is following routes that are dissimilar from typical routes.
US10630721B1 Monitoring system for detecting and preventing a malicious program code from being uploaded from a client computer to a webpage computer server
A monitoring system for detecting and preventing a malicious program code from being uploaded from a client computer to a webpage computer server is provided. A secure computer server compares a first plurality of binary portions in a first binary file to a plurality of stored malicious binary program codes to determine whether at least one binary portion of the first plurality of binary portions corresponds to at least one malicious binary program code in the plurality of stored malicious binary program codes. The secure computer server does not send a first modified webpage file and an attachment file to the webpage computer server in response to a first binary file having at least one malicious binary program code.
US10630719B2 SDN-based DDOS attack prevention method, apparatus, and system
A software defined networking (SDN)-based distributed denial of service (DDoS) attack prevention method, an apparatus, and a system, where a controller delivers a traffic statistics collection instruction to a first packet forwarding device. The traffic statistics collection instruction instructs the first packet forwarding device to perform traffic statistics collection, and carries a destination Internet Protocol (IP) address. The controller collects statistical data reported by the first packet forwarding device, obtains, according to the statistical data, a statistical value of global traffic flowing to the destination IP address, and delivers a DDoS prevention policy to a second packet forwarding device based on a determining result that the statistical value of the global traffic exceeds the preset threshold. Correspondingly, the second packet forwarding device receives the DDoS prevention policy from the controller, and performs, according to the DDoS prevention policy, prevention process on the traffic flowing to the destination IP address.
US10630710B2 Systems and methods of stateless processing in a fault-tolerant microservice environment
A system, method, and non-transitory computer-readable relating to network security are disclosed. In particular, embodiments described generally relate to systems and methods of stateless processing in a fault-tolerant microservice environment. In one example, a method is disclosed, which includes transmitting, by a first microservice, packet data and a context associated therewith; receiving the packet data and the context by a second microservice, the second microservice to: use the context to determine what security processing to perform, perform the security processing over the packet data, and transmit resulting data and the context to a third microservice; and receiving the resulting data and the context by the third microservice, the third microservice to: use the context to determine what security processing to perform, and perform the security processing over the resulting data.
US10630704B1 Methods and systems for identifying infrastructure attack progressions
A novel enterprise security solution allows for precise interception and surgical response to attack progression, in real time, as it occurs across a distributed infrastructure. The solution includes a data monitoring and management framework that continually models system level host and network activities as mutually exclusive infrastructure wide execution sequences and bucketizes them into unique execution trails. A multimodal intelligent security middleware detects indicators of compromise in real-time on top of subsets of each unique execution trail using rule based behavioral analytics, machine learning based anomaly detection, and other sources. Each detection result dynamically contributes to aggregated risk scores at execution trail level granularities. These scores can be used to prioritize and identify highest risk attack trails to end users, along with steps that such end users can perform to mitigate further damage and progression of an attack.
US10630703B1 Methods and system for identifying relationships among infrastructure security-related events
A novel enterprise security solution allows for precise interception and surgical response to attack progression, in real time, as it occurs across a distributed infrastructure. The solution includes a data monitoring and management framework that continually models system level host and network activities as mutually exclusive infrastructure wide execution sequences and bucketizes them into unique execution trails. A multimodal intelligent security middleware detects indicators of compromise in real-time on top of subsets of each unique execution trail using rule based behavioral analytics, machine learning based anomaly detection, and other sources. Each detection result dynamically contributes to aggregated risk scores at execution trail level granularities. These scores can be used to prioritize and identify highest risk attack trails to end users, along with steps that such end users can perform to mitigate further damage and progression of an attack.
US10630702B1 Protocol agnostic security by using out-of-band health checks
A computer-implemented method provides an improvement in security breach detection and comprises using a broker computing device, sending an initial digital fingerprint of a computing device out-of-band for storing in a distributed data repository, wherein the initial digital fingerprint is based on initial security service data of the computing device; using a gateway computing device, remotely calculating a current digital fingerprint of the computing device based on current security service data of the computing device; using the gateway computing device, conducting a real-time out-of-band health check of the computing device based, at least in part, on the initial digital fingerprint stored in the distributed data repository; and using the gateway computing device, in response to conducting the real-time out-of-band health check, determining whether to restore the computing device with configurations consistent with the initial digital fingerprint stored in the distributed data repository.
US10630698B2 Method and system for network access control based on traffic monitoring and vulnerability detection using process related information
Disclosed are various embodiments of method and system for network access control. The method may involve traffic monitoring and vulnerability detection using process information. The system may analyze the vulnerability as a process malfunctioning where preventive action focuses on process blocking as opposed to host blocking, which can lead to improved performance and productivity of a network. Techniques may use process related information, connection information, and network packet information for network control. The information may be matched against a plurality of signatures to identify and detect a known vulnerability in network activities. On the basis of a match, a verification report may be established. Techniques may further check whether a verification report is applicable to a process associated with a network packet and allow or block the process running on the host based in the report.
US10630697B2 Reassembly free deep packet inspection for peer to peer networks
The present disclosure relates to a system, a method, and a non-transitory computer readable storage medium for deep packet inspection scanning at an application layer of a computer. A method of the presently claimed invention may scan pieces of data received out of order without reassembly at an application layer from a first input state generating one or more output states for each piece of data. The method may then identify that the first input state includes one or more characters that are associated with malicious content. The method may then identify that the data set may include malicious content when the first input state combined with one or more output states matches a known piece of malicious content.
US10630695B2 Security policy monitoring service
Requests of a computing system may be monitored. A request associated with the application of a policy may be identified and a policy verification routine may be invoked. The policy verification routine may detect whether the policy of the request is more permissive than a reference policy and perform a mitigation routine in response to determining that the policy of the request is more permissive than the reference policy. Propositional logics may be utilized in the evaluation of policies.
US10630692B2 Systems and methods for connecting a public device to a private device providing a pre-installed content management application
Systems and methods for providing access to media content by connecting, to a private device, a public device that does not have an installed application associated with the media content. A media guidance application may receive a communication from a private device, with a private interface application and a public interface application, wherein the communication is a request to access content using the public device. In response, the media guidance application may request, at the public device, the public interface application from the private device. The private device may thus transmit the public interface application with user authorization information to the public device. The private interface application may be configured to control a graphical user interface of the public interface application. Accordingly, the user may be able to access content via the public device when the private device is within a predetermined proximity to the public device.
US10630689B2 Strong identity management and cyber security software
A security software comprises administrative module for configuring access levels and creating types of accounts and application server for domain filtering by checking against friendly and unfriendly inbound, outbound and exception lists. Hard filtering either approves, terminates requests or re-routes request without the user's knowledge. Soft filtering passes disapproved requests and sends an e-mail alert to authorized recipients. Content filtering includes checking a content of a requested document against a friendly, unfriendly list and exception list. Hard filtering passes or rejects the requested document. Soft filtering passes the requested document or rejects or approves by highlighting its content. Options include e-mail filtering that checks subject, sender's address and domain against an unfriendly, friendly and exception list. e-mail alert for hard filtering, inbound privacy shield, a pop up blocker, the application server acts as proxy server with proxy chaining capabilities.
US10630688B2 Method for controlling contents and electronic device thereof
The present disclosure relates to a sensor network, Machine Type Communication (MTC), Machine-to-Machine (M2M) communication, and technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the above technologies, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method for controlling contents and an electronic device thereof are provided. An operation method of an electronic device includes the operations of setting an access authority for one or more contents, if there is a request for an access of at least one application to the contents, resetting the access authority for the contents, and controlling the access by the application to the contents in accordance with the reset access authority of the application for the contents.
US10630684B2 PPPoE packets transmitting method and PPPoE server thereof
The present disclosure provides a PPPoE packets transmitting method and a PPPoE server. The method comprises: registering, by a PPPoE server, a PPPoE protocol packet sniffer with a Linux kernel and an Internet Protocol Version 4 (IPV4) protocol packet sniffer with a Netfilter framework, and adding a user's IP address and MAC address to authenticated user information, receiving, by the PPPoE server, a packet, and calling, by the PPPoE server, the PPPoE protocol packet sniffer or the IPV4 protocol packet sniffer to process and transmit the packet according to the authenticated user information. In the present disclosure, during a user's dial-up logon or logoff, the creation and deletion of a network interface are not required, which can improve the logon and logoff speeds.
US10630681B2 Bio leash for user authentication
Systems and methods for electronically leashing a user to a mobile device. A user is authenticated on the mobile device and initial sensor data (e.g., radio signal readings, accelerometer readings, image/video, audio) is collected. Based on a timer or other triggering event, additional sensor data is captured and evaluated. Based on the evaluation of the sensor data, a value representing a likelihood of whether the device remains in possession of the user is determined. Upon determining that this value is less than a threshold, the user is required to reauthenticate on the mobile device to further engage with the device or particular features on the device.
US10630679B2 Methods providing authentication during a session using image data and related devices and computer program products
A method providing use of an application may include providing a session for a user of the application, wherein the session is provided based on a credential for the user. While providing the session, image data for the session may be obtained, and responsive to the image data for the session, authentication may be performed based on a determination whether the image data for the session includes a facial image that matches the user credential. Responsive to success of the authentication based on the image data for the session, the session for the user of the application may continue to be provided. Related devices and computer program products are also discussed.
US10630678B2 Method and apparatus for DNA-based authentication system
Techniques for biochemcally-enabled security/authentication mechanisms are described herein. In an example embodiment, a security system receives a biological sample from a key. The biological sample includes a set of deoxyribonucleic acid (DNA) oligos that represent a code assigned to the key. The set of DNA oligos is sequenced to obtain a set of read sequences. The set of read sequences is then filtered to identify a set of filtered sequences. The set of filtered sequences is matched to sets of expected sequences, where the sets of expected sequences are assigned to respective keys issued for the security system. Access to a resource is then granted or denied based on whether the set of filtered sequences matches with any set from the sets of expected sequences.
US10630668B2 Single sign-on registration
An identity provider receives a request to configure authentication for enabling single sign-on to a service provider. The identity provider identifies the authentication protocols supported by the service provider and determines whether it is compatible with these authentication protocols. As a result of the identity provider being compatible with at least some of the authentication protocols, the identity provider generates configuration information that is usable by the service provider to configure the authentication. The identity provider transmits, to a computer system, a response that causes the computer system to be redirected to the service provider in order to provide information usable by the service provider to obtain the configuration information.
US10630667B2 Client, server, method and identity verification system
A client, a server, a method and an identity verification system are provided. The client is configured to generate a verification code and includes: a transaction initiating unit configured to initiate, in response to a predetermined identity verification event regarding a user, a random transaction between a first account and a second account in a data platform system, so that the random transaction is recorded in the data platform system; a verification code generating unit configured to generate, based on at least information about the random transaction, a verification code for verifying an identity of the user; and a sending unit configured to send the generated verification code to a server, so that the server verifies the identity of the user according to a record of the random transaction and the verification code, the data platform system being a decentralized distributed database and records therein being unchangeable and undeletable.
US10630666B2 Peer registration and relationship fulfillment system and method thereof
A method and a system to allow Peers to register with and establish ownership of identities, such as email addresses, social network identities, phone numbers, etc., that they are recognized by in the real world, and then have these be utilized for the purpose of being targeted for relationship establishment. Correspondingly, the Peer uses identities of other Peers to seek relationships with these Peers, who too have registered and established ownership of their identities. Relationships are assessed for compatibility prior to fulfillment. A Relationship request could be made visible to all Peers, to the targeted Peer or to the targeted Peer if the targeted Peer also seeks an equivalent relationship with the Peer. Relationship fulfillment may be customized to allow for prior affirmations. Peers use their various network connected computing devices to utilize the system, which runs on a host of network connected computing devices.
US10630664B2 Counter check and reconfiguration method, apparatus, and system
The present invention relates to a counter check and reconfiguration method, apparatus, and system. The method includes: sending a second identity information and a second count information to a terminal, so that the terminal compares, according to the second identity information, the second count information with third count information maintained by the terminal itself to obtain first comparison result information or second comparison result information; receiving the first comparison result information sent by the terminal, or the second identity information and second comparison result information sent by the terminal; and determining counter check result information according to the received first comparison result information, or the received second identity information and second comparison result information. Thereby, the present invention implements a counter check process and a reconfiguration process in a network architecture in which a primary base station is separated from a secondary base station.
US10630662B1 Key rotation with external workflows
A material set, such as an asymmetric keypair, is processed using an associated workflow to prepare the material set for activation and/or use. In one embodiment, a material set is generated and information about the material set is communicated to a workflow manager. Based at least on the information, the workflow manager generates a workflow that when accomplished will allow the material set to be activated and/or used. In another embodiment, a service provider provides a key manager, workflow manager and destination for the key, such as a load balancer that terminates SSL connections. A key can be generated by the key manager, sent through the workflow manager for processing (potentially communicated to third parties such as a certificate authority, if needed) and installed at a destination.
US10630660B1 Methods and apparatus for dynamic automated configuration within a control plane of a switch fabric
In one embodiment, a method includes receiving a first identifier and a private key after a network device has been included in a data center switch fabric control plane, authenticating the network device based on the private key, sending a second identifier to the network device, and sending a control signal to the network device based on the second identifier. The first identifier is associated with the network device and unique within a segment of the data center switch fabric control plane. The second identifier is unique within the segment of the data center switch fabric control plane.
US10630657B2 System and method for enhancing the security of data packets exchanged across a computer network
The present disclosure envisages establishing a virtual overlay network between the source computer and the destination computer (in addition to a typical, unsecured, public computer network already connecting the source computer and the destination computer), and designating the source computer and destination computer to be identified on the virtual overlay network only by the corresponding source private IP address and destination private IP address. The present disclosure envisages an intermediary server for creating and subsequently managing the virtual overlay network. The intermediary server renders the virtual overlay network accessible only to the source computer and the destination computer to communicate with one another and to exchange data packets using the source private IP address and destination private address and the corresponding private ports, while ensuring that the virtual overlay network remains inaccessible to any other computer on the underlying public computer network.
US10630649B2 Home automation system including encrypted device connection based upon publicly accessible connection file and related methods
A home automation (HA) system may include addressable HA devices that are not publicly accessible via the Internet and a remote user device configured to generate a connection request to communicate with a given addressable HA device. The HA system may also include a cloud server configured to cooperate with the remote user device to generate a connection file based upon the connection request, and store the connection file so that the connection file is publicly accessible via the Internet. The connection file may include instructions for establishing an encrypted connection to the given addressable HA device. The given addressable HA device may be configured to retrieve the connection file and establish the encrypted connection with the remote user device via the cloud server.
US10630644B2 Managing firewall flow records of a virtual infrastructure
In a computer-implemented method for managing firewall flow records, firewall flow records of a virtual infrastructure including a distributed firewall are received, wherein the firewall flow records are captured according to firewall rules of the distributed firewall, and wherein the firewall flow records each include tuples and at least one field of network traffic data. Responsive to detecting a number of received firewall flow records exceeding a threshold value, it is determined whether the tuples are identical for any of the firewall flow records. Provided the tuples are not identical for any of the firewall flow records, the tuples for the firewall flow records are modified to generate modified firewall flow records. It is determined whether the tuples are identical for any of the modified firewall flow records. Provided the tuples are identical for any of the modified firewall flow records, the modified firewall flow records for which the tuples are identical are coalesced into a single firewall flow record.
US10630643B2 Dual memory introspection for securing multiple network endpoints
In some embodiments, a protected client operates a live introspection engine and an on-demand introspection engine. The live introspection engine detects the occurrence of certain events within a protected virtual machine exposed on the respective client system, and communicates the occurrence to a remote security server. In turn, the server may request a forensic analysis of the event from the client system, by indicating a forensic tool to be executed by the client. Forensic tools may be stored in a central repository accessible to the client. In response to receiving the analysis request, the on-demand introspection engine may retrieve and execute the forensic tool, and communicate a result of the forensic analysis to the security server. The server may use the information to determine whether the respective client is under attack by malicious software or an intruder.
US10630641B2 Protecting communications between a content delivery network and an origin server
A privatized link between an origin server and a content delivery network is provided. A privatized link can be direct connection that does not route over the internet. Another privatized link is one that rotates IP addresses. An origin server may be assigned to use a set of multiple IP addresses for communication with the content delivery network. However, at any given time, the origin server is only using a small number of IP addresses. When one of the IP addresses being used to communicate with the content delivery network comes under attack, the origin server switches to another IP address in the set in order to continue serving content to the content delivery network via an IP address that is not under attack.
US10630638B2 Maintaining communications in a failover instance via network address translation
Described herein are systems, methods, and software to enhance failover operations in a cloud computing environment. In one implementation, a method of operating a first service instance in a cloud computing environment includes obtaining a communication from a computing asset, wherein the communication comprises a first destination address. The method further provides replacing the first destination address with a second destination address in the communication, wherein the second destination address comprises a shared address for failover from a second service instance. After replacing the address, the method determines whether the communication is permitted based on the second destination address, and if permitted, processes the communication in accordance with a service executing on the service instance.
US10630636B1 Anti-censorship framework using moving target defense systems and methods
Systems and methods are provided to implement an anti-censorship framework that includes moving target defense systems and methods. The framework can be implemented at a web server hosting content that is intended to be accessed by one or more users. The web server can utilize dynamically changing IP addresses to avoid filtering and blocking (and also from being attacked) by censors. Users can be assigned to random groups and provided with a dynamic IP address of the web server that is unique for that group. After some time interval (called a shuffling interval), the web server can generate new sets of dynamic IP addresses and re-randomize the user groups and update the users with new IP addresses for the web server.
US10630632B2 Systems and methods for ranking comments
Systems, methods, and non-transitory computer-readable media can train a model to define relatedness ratings for a plurality of terms. A posted content item and a comment to the posted content item are received. A relevance rating for the comment and the posted content item is determined based on the model. The comment is ranked among a plurality of comments based on the relevance rating.
US10630631B1 Message content cleansing
A message is monitored to determine whether a response is required based on message compliance regulations. The monitoring of the message comprises automatically identifying one or more parts of the message that are not relevant to the monitoring of the message based on the message compliance regulations; automatically excluding the one or more parts of the message that are not relevant from the monitoring of the message based on the message compliance regulations; identifying content in a part of the message that is not excluded from the monitoring of the message that can indicate that a response is required based on the message compliance regulations. When the content that can indicate that a response is required based on the message compliance regulations is discovered in the part of the message that is not excluded from the monitoring of the message, the message is automatically designated for further analysis.
US10630630B1 Intelligent lock screen notifications
A device analyzes text messages, email, and/or other data for the purposes of suppressing the display of sensitive content on a lock screen. For example, a device may prevent a lock screen from displaying a notification indicating the arrival of a message containing sensitive information. Alternatively, the device may filter any sensitive information from a notification indicating the arrival of a message. The techniques disclosed herein improve the security of a device by preventing the display of sensitive information on a lock screen, while also improving the usability of lock screen notifications by allowing other information to be displayed. The techniques disclosed herein also improve the security of other systems using the device as part of a multi-factor authentication process.
US10630629B2 Screen display method, apparatus, terminal, and storage medium
A screen display method, an apparatus, a terminal, and a storage medium are provided. The method includes: receiving, by a terminal, an enabling instruction for activating a location sharing function; and generating, by the terminal, a location sharing layer according to the enabling instruction. The location sharing layer is used for sharing and displaying, on a map, a geographical location of at least one user in a dialogue session. The method also includes displaying, by the terminal, the location sharing layer as a background display layer of a session screen corresponding to the dialogue session. The session screen includes a message display layer and the background display layer, the message display layer being located above the background display layer, and the message display layer being used for displaying a session message between a local user of the terminal and a remote user participated in the dialogue session.
US10630627B2 Method, apparatus and computer program product for metadata search in a group based communication platform
Method, apparatus and computer program product for querying a group-based communication platform are described herein. For example, the apparatus comprises at least one processor and at least one non-transitory memory including program code. The at least one non-transitory memory and the program code are configured to, with the at least one processor, cause the apparatus to at least store a plurality of electronic messages to a message corpus; receive a search query associated with the message corpus, wherein the search query comprises reaction metadata criteria; and apply the search query to the message corpus to generate a reaction search results set.
US10630622B2 Adding images via MMS to a draft document
A user may use a client device to create a draft document by interacting with a server. The server may send a message to a second device (e.g., using the short message service (SMS)). The message may prompt the user to respond with a message (e.g., a multimedia messaging service (MMS) message) that includes an image to be added to the draft. The server receives the image and modifies the draft (e.g., by updating a web page being displayed on the client device). This process allows the user to type text for a draft using a client device that includes a keyboard (e.g., a desktop or laptop computer) and to add an image to the draft using a second device that includes a camera (e.g., a mobile phone or tablet computer) without having to transfer the image from the second device to the first device.
US10630620B2 Performing updates to action items in an electronic communication application with a single input
Described is a system and method for automatically updating an action item in an electronic communication application using a single input or click from a user. In response to received input, an electronic communication having a mailto link is automatically generated. The mailto link includes the email address of the intended recipient, an identifier associated with the action item, and the update that is to be performed on the action item. The electronic communication is then automatically provided to the intended recipient and the update is performed on the action item.
US10630619B2 Electronic device and method for extracting and using semantic entity in text message of electronic device
Disclosed is a method of extracting and using a semantic entity from a text message by an electronic device. The method includes: recognizing a text-based input; extracting a semantic entity from the text-based input; and providing the extracted semantic entity through an application in response to the application having a semantic setting that corresponds to the extracted semantic entity.
US10630615B2 Preserving collaboration history with relevant contextual information
Preserving collaborative history includes detecting a trigger for a chat session between at least two participants using a processor and, responsive to the trigger, obtaining event data for an event occurring during the chat session and involving at least one of the participants. The event data is included within a transcript of the chat session. In other cases, event data is obtained from external systems that is correlated with the chat session and is included within the transcript.
US10630613B1 Open conversation user interface
Disclosed are systems and methods for conducting an open conversation user interface and more particularly, to a channel-agnostic user interface experience which can utilize automated background intelligence to simplify the exchange between a software system or member service representative (MSR) and a member, and avoids the need for web-based free form inputs.
US10630609B2 Relay device
A relay device is usable as one of a plurality of relay devices providing a communication network. Each of the plurality of relay devices has a plurality of ports including at least two redundant ports. A relay device includes a determining unit, a copying unit and a selecting unit. The selecting unit is configured to compare traffics of the at least two redundant ports when the determining unit determines that a port mirroring instruction transmitted from a diagnostic device is received by any of the at least two redundant ports. The selecting unit is configured to select an output redundant port to output a mirror frame copied by the copying unit based on a comparison result among the at least two redundant ports, and output the mirror frame from the output redundant port to transfer the mirror frame to the diagnostic device.
US10630607B2 Parallel data switch
An interconnect apparatus enables improved signal integrity, even at high clock rates, increased bandwidth, and lower latency. An interconnect apparatus can comprise a plurality of logic units and a plurality of buses coupling the plurality of logic units in a selected configuration of logic units arranged in triplets comprising logic units LA, LC, and LD. The logic units LA and LC are positioned to send data to the logic unit LD. The logic unit LC has priority over the logic unit LA to send data to the logic unit LD. For a packet PKT divided into subpackets, a subpacket of the packet PKT at the logic unit LA, and the packet specifying a target either: (A) the logic unit LC sends a subpacket of the packet PKT to the logic unit LD and the logic unit LA does not send a subpacket of the packet PKT to the logic unit LD; (B) the logic unit LC does not send a subpacket of data to the logic unit LD and the logic unit LA sends a subpacket of the packet PKT to the logic unit LD; or (C) the logic unit LC does not send a subpacket of data to the logic unit LD and the logic unit LA does not send a subpacket of the packet PKT to the logic unit LD.
US10630606B1 System, method and architecture for data center network switching
A hyperscale switch is implemented with a plurality of semiconductor crossbar switching elements connected to one another according to a direct point-to-point electrical mesh interconnect for transceiving data packets between peripheral devices connected to the switch and utilizing a lookup table and network device addressing for reduced switching power.
US10630594B2 System, device, and method for communicating data over a mesh network
Devices and computer-implemented methods for controlling data communication to one or more devices in a network, e.g., a mesh network. The methods include a device broadcasting data requested by a first device, and a second device eavesdropping on the broadcast of the data in order to capture the data and to storing the captured data if the data is appropriate for the second device.
US10630591B2 Adaptive private network asynchronous distributed shared memory services
A highly predicable quality shared distributed memory process is achieved using less than predicable public and private internet protocol networks as the means for communications within the processing interconnect. An adaptive private network (APN) service provides the ability for the distributed memory process to communicate data via an APN conduit service, to use high throughput paths by bandwidth allocation to higher quality paths avoiding lower quality paths, to deliver reliability via fast retransmissions on single packet loss detection, to deliver reliability and timely communication through redundancy transmissions via duplicate transmissions on high a best path and on a most independent path from the best path, to lower latency via high resolution clock synchronized path monitoring and high latency path avoidance, to monitor packet loss and provide loss prone path avoidance, and to avoid congestion by use of high resolution clock synchronized enabled congestion monitoring and avoidance.
US10630590B2 Credit loop deadlock detection and recovery in arbitrary topology networks
A credit loop that produces a deadlock is identified in a network of switches that are interconnected for packet traffic flows therethrough. The identification is carried out by periodically transmitting respective credit loop control messages from the loop-participating switches via their deadlock-suspected egress ports to respective next-hop switches. The CLCMs has switch port-unique identifiers (SPUIDs). The loop is identified when in one of the next-hop switches the SPUID of a received CLCM is equal to the SPUID of a transmitted CLCM thereof. A master switch is selected for resolving the deadlock.
US10630588B2 System and method for range matching
Methods and systems for range matching. The system holds a definition of one or more ranges of Internet Protocol (IP) addresses. The definition may specify any desired number of ranges of any suitable size, and some ranges may overlap one another or be contained in one another. The definition may also specify certain returned values and/or relative priorities for the various ranges. In a pre-processing phase, a hash table that is subsequently queried with addresses to be range-matched. The hash table may be updated at run-time. During operation, the system receives addresses (e.g., extracts addresses from monitored communication traffic) and identifies by querying the hash table, for each address, whether the address falls within any of the ranges.
US10630586B2 Methods and apparatus for providing traffic forwarder via dynamic overlay network
A process capable of facilitating network communication using forwarders or vforwarders interconnected via an overlay network is disclosed. The process, in one aspect, is able to receive a packet stream or network traffic from a customer premise equipment (“CPE”) using a point-to-point (“PTP”) connection via the overlay network. After identifying a service component able to provide a network function (“NF”) in accordance with the packet stream, at least a portion of the packet stream is forwarded to the service component via a second PTP connection through the overlay network according to a set of predefined requirements. Upon receipt of a processed packet stream in response to the packet stream from the service component, the processed packet stream is forwarded to another forwarder via a hop-to-hop (“HTH”) link through the overlay network in accordance with the processed packet stream.
US10630583B2 System and method for supporting multiple lids for dual-port virtual routers in a high performance computing environment
Systems and methods for supporting multiple LIDs for dual-port virtual routers in a high performance computing environment. In accordance with an embodiment, a dual port router abstraction can provide a simple way for enabling subnet-to-subnet router functionality to be defined based on a switch hardware implementation. A virtual dual-port router can logically be connected outside a corresponding switch port. This virtual dual-port router can provide an InfiniBand specification compliant view to a standard management entity, such as a Subnet Manager. In order to allow for packets addressed outside of a local subnet and for those packets addressed to a switch port configured as a router port within a local subnet, the subnet manager can configure the switch port configured as a router port with two or more local identifiers.
US10630582B1 Scalable border gateway protocol routing
In a computing resource service provider environment, Border Gateway Protocol (BGP) routers may connect various networked environments. In addition, the implementation of the BGP router may be distributed between computing resources within the computing resource service provider environment. A subset of hosts may be selected from a set of hosts within the computing resource service provider environment. The subset of hosts may be selected to implement the BGP router, the adjacency-in routing information, and the adjacency-out routing information.
US10630579B1 Ensuring separate paths for network traffic between source devices and a destination device
Technologies are provided for ensuring that separate network paths within a network are used for network traffic between multiple source devices and a destination device or between pairs of source and destination devices. In some solutions, network path information is determined and sent to source devices that use the network path information to encapsulate network packets that then use separate network paths for at least a portion of their paths through the network. In some solutions, separate network paths are ensured using network path separation lists that are sent to network devices to make network traffic routing decisions. In some solutions, flow description information is calculated and sent to network devices to make network traffic routing decisions to keep network flows separate.
US10630577B2 Subscriberless differentiated routing system and method
A differentiated routing system includes a computer-executable system to receive a request from a first network gateway of a native network for establishing a communication service from a calling party terminal to a called party terminal. Upon receipt of the request, the system determines that policy information is not known for the calling party terminal that has originated the request, and therefore append a tag to the request in which the tag indicates that the requested communication service is to be established using one or more generic policies. The generic policies include one or more default policies to be used for establishing the communication service. The system then transmits the request to a routing device, wherein the routing device determines how the communication service is routed through the native network according to the one or more generic policies.
US10630572B1 Open loop, closed loop, real and near real-time computer network system and method therefor
A network communication system is disclosed that comprises a communicating device that communicates instruction and data signals over a communication link, a user interface device that communicates instruction and data signals related to the communicating device, an administrator server that communicates with the communicating device and the user interface device, and a transceiver device that interacts with the communicating device and generates a communication signal having transaction event data about the interaction, wherein the administrator server retains and manages a client record associated with the communicating device and a partner record associated with the user interface device. The network communication system may comprise an open loop infrastructure or a closed loop infrastructure.
US10630571B1 Fault-tolerant request routing
Fault-tolerant request routing routes request to service hosts without using a central routing authority to processes each request and without applying a consensus protocol to each request. In order to route requests, a routing authority distributes updated routing tables to request routers or clients while the request routers or clients continue to route requests according to a previous version of the routing table. Each request router or client includes a logical clock and refrains from using the next version of the routing table until receiving an indication to transition its logical clock. The routing authority indicates to a first request router to transition its logical clock to the next moment in logical time and an epidemic algorithm transitions other ones of the request router to the next moment in logical time without direct involvement by the routing authority.
US10630569B2 Automatically determining over-the-top applications and services
A method for determining Over-The-Top (OTT) applications includes receiving, by an active agent, a list of OTT service platforms to be monitored. The received list includes URLs associated with various applications that are delivered by the OTT service platforms. The active agent connects to the URLs to determine information uniquely identifying OTT applications. The active agent stores the information in a repository. A network monitor monitors data flows between a plurality of sources and destinations on a network. Each of the data flows includes a plurality of data packets of the various applications that are delivered OTT. The network monitor extracts at least a portion of header information from each of monitored data packets. The network monitor identifies an OTT application occurring on the network based on the extracted header information and based on the information uniquely identifying various applications stored in the repository.
US10630567B1 Methods, systems and computer readable media for monitoring communications networks using cross-correlation of packet flows
The subject matter described herein includes methods, systems and computer media for monitoring communications networks using cross-correlation of packet flows. One method for monitoring a communications network using cross-correlation of packet flows includes receiving a plurality of packets copied from a communications network. The method further includes classifying the packets into flows. The method further includes, for at least one of the flows, generating a trace value sequence, where the trace value sequence is sequence of values that characterizes the flow according to a cross-correlation metric. The method further includes performing a frequency domain cross-correlation for the at least one flow using the trace value sequence. The method further includes outputting an indication of a network or flow characteristic based on results of the cross-correlation.
US10630559B2 Virtual machine (VM) realm integration and management
A hardware and operating system independent platform and/or run time architecture that implements a configuration and algorithmic based application and process for enabling multiple virtual machines or internal networked physical servers (hosts) to be organized into groups or “realms” in real time and against specific configurable metrics. The configurable metrics include one or more of the following; load or processing capacity availability, cost of CPU processing, location based on risk, importance to business continuity priority requirements, disaster recovery strength and priority, geographic location of host aligned to IP, and any other client specific or custom requirements. A realm manager balances all of these configurable metrics and creates an algorithm to address allocation. The algorithm is fully elastic, allowing for automatic opening and closing of virtual machines to accommodate any internal or external changes.
US10630547B2 System and method for automatic closed loop control
A system and method for providing automatic closed loop control of a network using a dynamic control loop. The system includes one or more collectors and a remote network manager. The one or more collectors are configured to receive network traffic data from a plurality of network elements in the network. The remote network manager computes an initial control policy to the programmable network elements using (1) high-level policies, security requirements, and any anomalous traffic behavior; (2) configuration capability and current configuration of underlying network elements; (3) network topology, statistics, and tolerable configuration change; and (4) control loop parameters including stability, oscillation, and timescale. The remote network manager sends control policy parameters to the programmable network elements, observes the network, measures effectiveness of the initial control policy with respect to the high-level policy, and computes an updated control policy to send to the programmable network elements.
US10630545B2 Device and method of handling communications in dual connectivity
The present invention relates to a method and an apparatus for handling measurement object configurations configured by a master base station and a secondary base station in dual connectivity in a mobile communication system.
US10630542B2 Method for automatically initializing network device, remote server and network system using the same
A method for automatically initializing a network device, a remote server, and a network system using the method are provided. The remote server is connected to a switch via a network. The remote server obtains a port number of a port at which the network device is connected to the switch and a forwarding table from the switch. The remote server analyzes the forwarding table according to the port number of the port at which the network device is connected to the switch to obtain an identifier of a remote management controller of the network device. The remote server assigns and transmits a network address of the remote management controller to the remote management controller of the network device according to the identifier of the remote management controller.
US10630540B2 Selectable declarative requirement levels
Constraints are stored. A plurality of processing stages is processed. For at least one of the plurality of processing stages, an input declarative requirement is utilized with at least some of the constraints to determine an output declarative requirement that is at a lower level than a level of the input declarative requirement. At least a portion of the plurality of processing stages are utilized to at least in part automatically establish and configure a computer network.
US10630537B2 Predictive analytics and device tracking to facilitate minimization of alert events
Techniques for autonomously tracking and/or predicting an alert event are provided. In one example, a system can comprise a memory that stores computer executable components. The system can also comprise a processor, operably coupled to the memory, and that executes the computer executable components stored in the memory. The computer executable components can comprise a schedule component that determines plan information for a hub of a plurality of hubs, and the hub can be coupled to a device. The computer executable components can further comprise a tracking component that identifies a deviation from the plan information by the hub. Additionally, the computer executable components can comprise a prediction component that determines a probability that the deviation will result in an alert event.
US10630535B2 Notification timing for electronic devices
A method of operation of a first device associated with a first user includes sending a communication to a second device associated with a second user. The communication is sent in response to detecting one or more conditions associated with delaying one or more notifications at a plurality of devices that includes the first device and the second device. The communication is associated with a timing window during which the one or more notifications are to be delayed. The method further includes delaying, during the timing window, generation of a first notification at the first device. The method further includes generating, in response to determining expiration of the timing window, generating the first notification at the first device.
US10630529B2 System and method for push-to-talk (PTT) in mobile edge computing (MEC)
In an embodiment, a method includes: synchronizing service information for a push-to-talk (PTT) client between a central PTT server and an first edge PTT server, the first edge PTT server and the PTT client being in a first network, the central PTT server being in a second network different from the first network; establishing a service session with the PTT client at the first edge PTT server in accordance with the service information, the service session used to conduct a PTT call with the PTT client; registering a first functionality for the PTT call at the first edge PTT server with the central PTT server; and performing the first functionality for the PTT call at the first edge PTT server.
US10630525B2 Resource grid offset indication in mixed numerologies
Systems and methods are provided for configuring an alignment between various resource grids. A base station transmits alignment information between a first resource grid or a first transmission using the first resource grid, and a second resource grid and a third resource grid. The first resource grid uses a first sub-carrier spacing (SCS) from a first set of SCSs, the second resource grid uses a second SCS from a second set of SCSs, the third resource grid uses a third SCS from the second set of SCSs. The base station transmits a synchronization sequence block (SSB) using the first resource grid, and the base station transmits a first physical downlink shared channel (PDSCH) in assigned resource blocks using at least one of the second resource grid and the third resource grid. A user equipment receives the alignment information.
US10630522B2 Communication system, communication device, and communication method
To reduce a hardware circuit scale and a memory capacity in a communication system reducing a PAPR. A transmitter includes a transmission processing feedback type FIR filter configured to feed back data outputted from the last stage delay element of a plurality of delay elements included in an FIR filter to the first stage delay element and configured to set an initial value to a delay element in a predetermined position, of the delay elements, and performs transmission processing by using the transmission processing feedback type FIR filter. A receiver includes a reception processing feedback type FIR filter configured similarly to the transmission processing feedback type FIR filter and performs reception processing by using the reception processing feedback type FIR filter.
US10630506B2 Method and apparatus for data transmission involving tunneling in wireless communication networks
A method and apparatus for connecting a user equipment (UE) to a wireless communication network such as a 5th generation network. The network supports node-level tunneling. Node-level tunnels can be pre-configured prior to receipt of UE attach requests. The tunnels can be shared by plural UEs, flows, or services. A policy function is connected to a network management function and performs tasks such as applying constraints to the node-level tunnels. A session management function pre-establishes node-level tunnels based on policy information from the policy function. Operations of network elements such as the access network node and user plane function to handle UE attachment, session establishment, and handling of mobile-originated and mobile-terminated traffic are described. Also described is a method and apparatus for packet transmission in which packets are processed according to an identified tunnel type. The tunnel type can be identified using a field in the tunnel encapsulation header.
US10630505B2 System and method for a global virtual network
Systems and methods for connecting devices via a virtual global network are disclosed. In one embodiment the network system may comprise a first device in communication with a first endpoint device and a second device in communication with a second endpoint device. The first and second devices may be connected with a communication path. The communication path may comprise one or more intermediate tunnels connecting each endpoint device to one or more intermediate access point servers and one or more control servers.
US10630504B2 Dual-mode controller
A dual-mode controller may include a communication interface between a handheld electronic device and subsystems on a computing bus or network. The dual-mode controller may operate in a “master mode” when a user directly manipulates the dual-mode controller to communicate with any subsystem(s). In this mode, the dual-mode controller may serve as a master controller and accesses and controls various subsystems on the bus or network (such as location positioning subsystems, satellite communication subsystems, emergency rescue beacon subsystems, sensors and transducers) as a master controller. In a slave mode, the interface may act as an adapter or interface between the handheld device and the subsystems.
US10630499B2 System and method to provide path records derived from ARP responses and peer-to-peer negotiation based on homogeneous fabric attribute in a high performance computing environment
Systems and methods for InfiniBand fabric optimizations to minimize SA access and startup failover times. Based on the combination of path record parameters defined with values from the Homogeneous Fabric/Subnet flag (or configuration parameter), as well as the GID and SLID information defined by IPoIB ARP requests and responses, there is no additional need for SA requests to obtain path records or path related information in general.
US10630497B2 Communication middleware for managing multicast channels
The invention is directed to a communication middleware for managing multicast channels between a server and a client connected through a communication network, wherein the communication middleware manages at least one compulsory multicast channel for delivering compulsory data to the client and the communication middleware manages at least one optional multicast channel for delivering optional data to the client.
US10630493B2 Physical unclonable functions related to inverter trip points
A physical unclonable function (PUF) array includes a plurality of PUF transistor cells each of which includes at least one inverter. An input and an output of the at least one inverter are shorted to a first reference node. There is adjustment circuitry for adjusting a reference voltage of the first reference node, and measurement circuitry for measuring a trip point of the at least one inverter. If the trip point is close to the reference voltage then bits of the at least one inverter are defined as unstable.
US10630490B2 Obtaining and using time information on a secure element (SE)
A secure element (SE) with a notion of time useful for checking secure items is disclosed herein. Methods of obtaining time information by the SE include push, pull, opportunistic, local interface, and multi-check methods. Time information can be obtained from a root certification authority (CA) and one or more subordinate CAs, which are associated with and subordinate to the root CA. The SE uses the time information for time management of time values stored in the SE. The SE also uses the time information in cooperation with certificate revocation lists (CRLs) and/or online certificate status protocol (OCSP) stapling procedures.
US10630489B2 Apparatus and method for managing digital certificates
An apparatus and a method for managing user identity, the method comprising: establishing a connection secured with Transport Layer Security (TLS) from a client device to an IRP server; authenticating, at the IRP server, user login via the client device, with Strong Client Authentication (SCA) or Username/Password Authentication (UPA); upon request from the client device, registering or retrieving at the IRP server user identity information comprising user information, and an Internet Protocol (IP) address of the client device; upon request from the client device, registering or retrieving at the IRP server one or more digital certificate; sending from the client device to the IRP server a Certificate Signing Request (CSR) via the secured connection; upon request from the client device, returning a signed digital certificate from the IRP server to the client device; sending a PKCS #12 package from the client device to the IRP server; and upon request from the client device, returning a PKCS #12 package from the IRP server to the client device.
US10630488B2 Method and apparatus for managing application identifier
Embodiments provide a method and an apparatus for managing an application identifier. The method includes: receiving, by an identifier management apparatus, an application identifier certificate application request sent by a user, and acquiring a user identifier and an application identifier of the user according to the application identifier certificate application request. The method also includes acquiring a feature identifier of the user according to the user identifier, generating an application identifier certificate according to the application identifier and the feature identifier of the user, and sending the application identifier certificate to the user.
US10630487B2 System and method for issuing a certificate to permit access to information
A system for issuing a certificate to permit access to information, the system including: an identification service to receive dynamic biometric and contextual data regarding an individual located within an area, and to receive at least one of stored identity, biometric, and contextual data for a given individual to provide an identity estimate and a level of certainty indicator of a match based on comparison of the biometric and contextual data regarding the individual to the biometric and contextual data regarding the subscribers; a registration authority to receive the identity estimate and the level of certainty indicator, and to determine whether a certificate should be issued to an individual based on the level of certainty indicator; and a certificate authority to issue the certificate upon determining that the certificate should be issued, wherein the certificate will allow an individual to use the computing device to access an information system.
US10630483B2 Anonymous image/video digital signature insertion and authentication
Embodiments herein relate to an electronic device that includes a camera sensor to capture a digital image that includes a plurality of pixels. The electronic device may further include a digital signature calculation engine coupled with the camera sensor, the digital signature calculation engine to generate, based on a private key that is shared between a plurality of image/video acquisition modules and a pixel of the plurality of pixels, a digital signature. The electronic device may further include digital signature insertion logic coupled with the digital signature calculation engine, the digital signature insertion logic to insert an indication of the digital signature into the digital image. Other embodiments may be described and/or claimed.
US10630478B1 Sender optimal, breach-resilient, and post-quantum secure cryptographic methods and systems for digital auditing
Cryptographic techniques referred to as Sender Optimal, Breach-resilient Auditing with Post-Quantum security (SOBAP) are described. Optimal efficiency and post-quantum security of symmetric key based techniques are achieved, while providing compromise-resiliency, conditional non-repudiation, and fault-tolerance verification in a distributed setting. SOBAP relies on any choice of a symmetric key based primitive with extended features (e.g., forward-security, append-only authentication), which can be optimally efficient. The verification is done via the execution of symmetric primitive F with a secure multi-party computation (SMPC) technique, wherein an honest majority guarantees a conditional non-repudiation and fault-tolerance. SOBAP offers an architecture that uses authenticated access control data structures to ensure policy enforcement. SOBAP also offers a post-quantum security via symmetric primitives and SMPC. Extensions of SOBAP offer oblivious access and enhancements with secure hardware support.
US10630474B2 Method and system for encrypted data synchronization for secure data management
A method for encrypted data synchronization, wherein the method includes providing at least one data entity (100) including data content (110), accompanying metadata (120) including an entity key (140) usable for encrypting the data content (110), and synchronization metadata (130) usable for synchronizing the at least one data entity (100) between at least two first devices (400), wherein at least the entity key (140) of the accompanying metadata (120) and the synchronization metadata (130) are encrypted using a second key.
US10630469B2 Mobile device having quantum cryptographic security function for mobile commerce, and authentication method
Disclosed herein are technologies regarding a communication device and server which are capable of cryptographic communication based on quantum cryptography. The communication device includes: a quantum signal generation unit configured to generate a series of first quantum signals by using a first quantum filter; an optical transmission unit configured to send the series of first quantum signals to a server; and a processor configured to select the first quantum filter based on a series of randomly generated first quantum states, and to control the quantum signal generation unit to generate the series of first quantum signals by using the first quantum filter.
US10630468B1 Distributed multi-party security model training framework for privacy protection
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for training a multi-party secure logistic regression model (SLRM). One of the methods includes receiving, at a plurality of secure computation nodes (SCNs), a plurality of random numbers from a random number provider; encrypting, at each SCN, data stored at the SCN using the received random numbers; iteratively updating a secure logistic regression model (SLRM) by using the encrypted data from each SCN; and after iteratively updating the SLRM, outputting a result of the SLRM, wherein the result is configured to enable a service to be performed by each SCN.
US10630463B2 Meta block chain
A fork in a block chain data structure is identified, the block chain data structure including a first set of blocks each describing a respective transaction. The fork includes a first branch beginning with a first block and a second branch beginning with a different second block. The first branch includes a first set of blocks comprising at least the first block, and the second branch includes a second set of blocks including at least the second block. A determination is made, based on a consensus protocol, that the second branch is to be discarded. Accordingly, a meta block is generated to identify and describe the second branch. The meta block is to be included in a meta block chain data structure. The meta block chain data structure is separate from the block chain data structure and comprises meta blocks to record orphan branches of the block chain data structure.
US10630462B2 Using white-box in a leakage-resilient primitive
A method for implementing a pseudo-random function (PRF) using a white-box implementation of a cryptographic function in N rounds, including: receiving an input to the PRF; receiving a cryptographic key in a first round; encrypting, using the white-box implementation of the cryptographic function and the cryptographic key, an input message that is one of M possible input messages based upon a portion of the input to produce a first output; for each succeeding round: encrypting, using the white-box implementation of the cryptographic function and an ith cryptographic key, further input messages that are one of M possible input messages based upon a further portion of the input to produce an ith output, wherein the ith cryptographic key is the output from the preceding round, wherein the white-box implementation of the cryptographic function only produces a correct output for the M possible input messages and produces an incorrect output for input messages that are not one of the M possible input messages.
US10630457B2 Base station, terminal apparatus, radio communication system, and communication method
The base station performs radio communication of a time-division-duplex scheme with a terminal apparatus, using any of a plurality of channels included in each of a plurality of frequency bands, and includes: a channel selector that selects a plurality of use channels to be used for the radio communication; a transmitter that transmits a downlink signal to the terminal apparatus; and a receiver that receives an uplink signal from the terminal apparatus. The transmitter transmits, using at least one of the plurality of use channels, the downlink signal in a transmission interval of the downlink signal, and the receiver receives the uplink signal in the transmission interval of the downlink signal, using another one of the plurality of use channels that is not adjacent to the at least one of the use channels.
US10630455B2 Method and transmitter for non-orthogonal multiple access communication system
A transmitting method of a transmitter for a non-orthogonal multiple access communication system, including: storing rules for calculating transmission rate combinations for simultaneously transmitting a first and a second application data; receiving a transmission grant for transmitting the first application data from a receiver; determining whether to transmit the second application data simultaneously; if yes, calculating multiple transmission rate combinations for simultaneously transmitting the first and the second application data based on the rules to calculate a transmission rate combination table, or generating the transmission rate combination table according to a pre-stored transmission rate combination table; selecting a transmission rate combination from the transmission rate combinations in the transmission rate combination table based on a transmission rate requirement of the second application data; and transmitting the first and the second application data simultaneously based on the selected transmission rate combination.
US10630452B2 Control and data multiplexing in communication systems
Disclosed is a method for wireless communication, including receiving information related to a plurality of offsets by higher layer signaling, receiving scheduling information for uplink data transmission, identifying a number of symbols for uplink control information based on at least one offset from the plurality of offsets and a size of uplink data, and transmitting the uplink data with the uplink control information on a physical uplink shared channel based on the identified number of symbols for the uplink control information.
US10630448B2 Logical channel management in a wireless communication network
A wireless transmit/receive unit (WTRU) may receive a higher layer message indicating a triggering condition. The WTRU may process data for a logical channel. Based on the higher layer message and the triggering condition for the logical channel being met, the WTRU may transmit a predetermined sequence over an uplink control channel. The WTRU may receive a scheduling message based on the transmitted predetermined sequence.
US10630447B2 Terminal device, base station device, and communication method
To efficiently control a cell using an allocated frequency band, a non-allocated frequency band, or a shared frequency band. A terminal device for communicating with a base station device includes: a higher layer processing unit configured to configure a set for monitoring an EPDCCH for a LAA cell, based on higher layer signaling; and a reception unit configured to monitor the EPDCCH based on the set. The reception unit determines an antenna port number of an antenna port to be used for localized EPDCCH transmission in a subframe, based on a start position of an OFDM symbol in the subframe.
US10630437B2 Method and apparatus for non-orthogonal access in LTE systems
The disclosure pertains to methods and apparatus for transmitting uplink data to a wireless network asynchronously comprising generating data for transmission to the network on an uplink shared channel (UL-SCH) transport channel, selecting between transmitting the data to the network orthogonally or non-orthogonally, and transmitting the data on the selected physical channel.
US10630435B2 Sub-carrier or tone plan and design within OFDM/OFDMA wireless communications
A wireless communication device (alternatively, device, WDEV, etc.) includes a processing circuitry configured to support communications with other WDEV(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processing circuitry, among other possible circuitries, components, elements, etc. to support communications with other WDEV(s) and to generate and process signals for such communications. A WDEV selects a resource unit (RU) from an orthogonal frequency division multiple access (OFDMA) sub-carrier plan for use in supporting communications with another WDEV. The WDEV transmits a signal to the other WDEV that includes information that specifies the RU that is selected from the OFDMA sub-carrier plan and then supports communications with the other WDEV using the RU that is selected from the OFDMA sub-carrier plan. The OFDMA sub-carrier plan includes multiple OFDMA sub-carrier sub-plans of different sized RUs and null sub-carriers.
US10630434B2 Operation method of communication node for supporting coordinated multi-point transmission and reception in communication network
An operation method of a communication node supporting a coordinated multi-point transmission and reception (CoMP) of a terminal based on a plurality of transmission points (TPs) included in a communication network may comprise allocating a resource for transmitting a pilot signal of the terminal; receiving quality measurement information of the pilot signal of the terminal from the plurality of TPs; determining a TP cluster supporting the CoMP of the terminal based on channel states among the plurality of TPs; transmitting information on the allocated resource and information on the TP cluster to the terminal and the TP cluster; and supporting the CoMP of the terminal based on the allocated resource and the TP cluster.
US10630433B2 Method for transmitting uplink signal and apparatus therefor
The present invention relates to a wireless communication system. Particularly, the present invention relates to a method and an apparatus therefor, the method comprising the steps of: transmitting a PUSCH on a first RB set of subframe #n; transmitting a PUCCH on a second RB set of subframe #n; and when the first RB set and the second RB set overlap, restricting transmission of the PUCCH on one or more RBs where the first RB set and the second RB set overlap.
US10630431B2 Data re-transferring method based on bit transformation
A data re-transferring method is based on bit transformation in a communication system. The communication system adopts a high order modulation and supports a re-transferring mechanism. The method includes transforming bits of data to be retransferred in a symbol according to a selected transformation mode, mapping the transformed bits to one constellation figure, and performing Quadrature Amplitude Modulation for the mapped bits.
US10630430B2 System and method for dual-coding for dual-hops channels
An origination device (e.g., a base station) encodes first and second data packets according to a first set of encoding parameters corresponding to channel conditions associated with a first communication link between a signal forwarding device and a destination device. The resulting first and second single-encoded data packets contain the same data. The origination device combines the first and second single-encoded data packets to generate a single-encoded data block. The origination device encodes the single-encoded data block, according to a second set of encoding parameters corresponding to channel conditions associated with a second communication link between the origination device and the signal forwarding device, to generate a dual-encoded data block. The dual-encoded data block is transmitted to the signal forwarding device.
US10630427B2 Method and apparatus for implementing space frequency block coding in an orthogonal frequency division multiplexing wireless communication system
The present invention is related to a method and apparatus for implementing space frequency block coding (SFBC) in an orthogonal frequency division multiplexing (OFDM) wireless communication system. A wireless transmit/receive unit (WTRU) including a transceiver and a processor is configured to receive, via the transceiver, an orthogonal frequency division multiplexing (OFDM) signal, wherein the OFDM signal comprises a channel coded data stream that was space frequency block coding (SFBC) encoded such that the SFBC encoding was performed using a plurality of pairs of OFDM sub-carriers. The processor is further configured to decode the OFDM signal.
US10630426B2 Redundancy information for a packet data portion
Implementations described herein utilize redundancy information for packet data portions. For instance, a first packet includes multiple data portions. A second packet is generated that includes redundancy information for one or more of the multiple data portions of the first packet. In at least some implementations, the redundancy information can be used to determine whether an error condition occurs related to the first packet, such as data errors and/or a dropped data portion.
US10630424B2 Methods for reducing data errors in transceiving of a flash storage interface and apparatuses using the same
The invention introduces a method for reducing data errors in transceiving of a flash storage interface, performed by a processing unit of a first side, at least including: descrambling first data from a second side via an enabled descrambler of a lowest layer; determining whether a reception error is occurred by continuously monitoring first descrambled data; and when the reception error is occurred, disabling the descrambler of the lowest layer and issuing a first request to the second side for directing the second side to disable a scrambler, thereby disabling the second side to protect second data to be transmitted to the first side by using a data scrambling technique.
US10630420B2 Hybrid energy storage modules for directed energy systems
An electrical power system for an aircraft may comprise a hybrid energy storage system, a first high voltage bus coupled to an input of said hybrid energy storage system, a second high voltage bus coupled to an output of said hybrid energy storage system, and a directed energy system coupled to the second high voltage bus. The hybrid energy storage system receives DC power via the input from said first high voltage bus, converts the DC power to a converted DC power, and dynamically stores the converted DC power and/or provides said converted DC power via said output to said directed energy system via the second high voltage bus.
US10630418B2 Optical subchannel routing, protection switching and security
The present invention includes novel techniques, apparatus, and systems for optical WDM communications. Tunable lasers are employed to generate subcarrier frequencies representing subchannels of an ITU channel to which client signals can be mapped. Client circuits can be divided and combined before being mapped, independent of one another, to individual subchannels within and across ITU channels. Subchannels may be independently routed to a single subchannel receiver filter, such that each subchannel detected at the receiver may come from a different source location. Network architectures and subchannel transponders, muxponders and crossponders are disclosed, and techniques are employed (at the subchannel level/layer), to facilitate the desired optical routing, switching, concatenation and protection of client circuits mapped to these subchannels across the nodes of a WDM network. Subchannel hopping may also be used to increase the optical network security.
US10630417B1 Optimized colorless, directionless, and contentionless ROADM in a module
A Reconfigurable Optical Add/Drop Multiplexer (ROADM) node with a Colorless, Directionless, and Contentionless (CDC) architecture, targeting smaller degree nodes, includes an integrated ROADM degree and add/drop module having M common input and output ports and N add/drop input and output ports, wherein the integrated ROADM degree and add/drop module is formed by an M×N demultiplexer Contentionless Wavelength Selective Switch (CWSS) and an M×N multiplexer CWSS; and X degree modules, each having an input and output port connected to common ports of the integrated ROADM degree and add/drop module, a first set of ports of the N add/drop input and output ports are connected for degree-to-degree connectivity and a second set of ports of the N add/drop input and output ports are utilized for local add/drop, such that the integrated module provides both the degree-to-degree connectivity and the local add/drop.
US10630416B2 System and method for optical channel reconfiguration
In wavelength division multiplexing (WDM) systems, one optical multiplexing section (OMS) can support several channels. During a network reconfiguration, the number or channel index of the channels in the OMS may change, which may result in a change in gain for other channels in the OMS due to the channel loading dependant gain properties of many optical amplifiers. Equalization is therefore required in order to reduce power excursion for the channels in the OMS. Using a model for the channel loading dependent gain of optical amplifiers, equalization may be performed more quickly than using measurement-based equalization methods. The model predicts the change in gain for the channels in an OMS following network reconfiguration, and allows for an equalizer to quickly or pre-emptively adjust for the changes. This model may include an artificial neural network, which is trained using some of the possible channel loading conditions for the OMS.
US10630414B2 Optical module
An integrated apparatus with optical/electrical interfaces and protocol converter on a single silicon substrate. The apparatus includes an optical module comprising one or more modulators respectively coupled with one or more laser devices for producing a first optical signal to an optical interface and one or more photodetectors for detecting a second optical signal from the optical interface to generate a current signal. Additionally, the apparatus includes a transmit lane module coupled between the optical module and an electrical interface to receive a first electric signal from the electrical interface and provide a framing protocol for driving the one or more modulators. Furthermore, the apparatus includes a receive lane module coupled between the optical module and the electrical interface to process the current signal to send a second electric signal to the electrical interface.
US10630413B2 Optical communications system with centralized wavelength source
The disclosure is directed to an optical telecommunications system which includes a central node and a plurality of user nodes. The central node provides the light necessary to enable communication between the user nodes. Within the central node is a multi-wavelength source, providing lights at different wavelengths, along with a wavelength selector. The wavelength selector selects one of the lights at different wavelengths from the multi-wavelength source for delivery to the user nodes such that the user nodes then modulate this light for transmission between nodes.
US10630410B2 Network architecture, methods, and devices for a wireless communications network
Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
US10630407B2 Systems and methods for providing an in-vehicle image supplement
Systems and methods for providing an in-vehicle image supplement are disclosed. One embodiment includes receiving a broadcast media signal that includes a content portion and a metadata portion, determining whether a primary image is included in the metadata portion, and in response to determining that the primary image is included in the metadata portion, providing the primary image for display. Additionally, in response to determining that the primary image is not included in the metadata portion, some embodiments include determining whether the primary image is otherwise available and in response to determining that the primary image is otherwise available, retrieving the primary image and providing the primary image for display. In response to determining that the primary image is not otherwise available, some embodiments include determining whether a secondary image is available, retrieving the secondary image, and providing the secondary image for display.
US10630404B2 Received signal strength indication measurement with uplink interference handling
A method of performing received signal strength indication (RSSI) measurements in new radio (NR) networks is proposed. When RSSI-Measurement time slots and OFDM symbols are configured by high-layer signaling, UE can assume the timing reference of a target carrier is the frame boundary of the serving cell or any detected cells on that carrier. UE then performs RSSI measurements according to the timing reference and the configured RSSI-Measurement slot/symbol. UE derives the timing location of the configured slot/symbol according to the timing reference and the subcarrier spacing (SCS) of the synchronization signal block (SSB) in the target carrier.
US10630396B2 Method and apparatus for reducing interference from mobile industry processor interface to communication quality
A mobile industry processor interface MIPI clock frequency configuration method and apparatus are provided. When a radio frequency band used by a device on which an MIPI is located changes, an MIPI clock frequency is determined according to radio frequency band information, where the radio frequency band information includes the radio frequency band currently used by the device, and the determined MIPI clock frequency causes no interference to the radio frequency band currently used by the device; and an MIPI clock frequency of the device is configured as the determined MIPI clock frequency. According to the technical solutions in the present invention, when a radio frequency band of a device changes, an MIPI clock frequency causes no interference to communication of the device, thereby improving communication quality and stability of the device.
US10630391B1 RF processing system and method
RF processing systems and methods. An RF processing system includes an optical storage module, a processing module, and an electro-optical modulation module. The electro-optical modulation module is configured to receive the first signal from the optical storage module, receive the modulation signal from the processing module, and electro-optically modulate the first signal based on the modulation signal.
US10630389B2 Optical transceiver device and optical transceiver module that includes optical transceiver device
An optical transceiver device includes: an optical circuit that includes an optical modulator to generate a modulated optical signal and an optical reception circuit to convert a received optical signal into an electric signal and implemented in a rectangular optical circuit area; a driver circuit that drives the optical modulator and arranged along a first side of the optical circuit area; an amplifier circuit that converts an output signal of the optical reception circuit into a voltage signal and arranged along a second side of the optical circuit area, the second side being orthogonal to the first side; a first electrical component that is electrically coupled to the driver circuit and arranged in an area adjacent to the driver circuit; and a second electrical component that is electrically coupled to the amplifier circuit and arranged in an area adjacent to the amplifier circuit.
US10630383B2 CM, HFC network fault locating system, and fault detection method
A cable modem (CM), a hybrid fiber coaxial (HFC) network fault locating system, and a fault detection method are provided. The CM can not only detect intrusion noise outside a carrier and white noise, but also detect other fault problems, such as non-linear distortion, pulse noise, intrusion noise on a carrier, and linear distortion. The system includes a direction-selective apparatus. The apparatus can allow only an upstream signal entered from an output port of the apparatus to be transmitted to a CM to which a branch port of the apparatus is connected, without allowing an upstream signal entered from an input port of the apparatus to be transmitted to the CM to which the branch port of the apparatus is connected, so that once detecting a fault from the upstream signal, the CM can accurately determine, through locating, that the fault in an HFC network is located on an output port side of the apparatus.
US10630381B2 Systems and methods for beacon detection infrastructures
A communication system includes an earth station configured to receive a downlink transmission from a satellite and transmit an uplink transmission to the satellite. The communication system further includes a server in operable communication with the earth station, a beacon detector in operable communication with the server, an access point configured to operate within a proximity of the earth station, and a beacon transmitter disposed within close proximity to the access point. The beacon transmitter is configured to transmit a beacon signal to one or more of the server and the beacon detector. The beacon signal uniquely identifies the access point. The server is configured to implement a measurement-based protection scheme with respect to at least one of the downlink transmission and the uplink transmission.
US10630378B2 Bandwidth optimizing range adjustments among satellites
Various enhanced operations and orbital techniques for satellite devices are discussed herein. In one example, a method of operating an orbital satellite platform is provided. The method includes establishing relative distances between a plurality of satellite devices, and performing temporary adjustments to the relative distances between the satellite devices. The method also includes directing at least communication processes among the satellite devices based at least in part on the temporary adjustments to the relative distances.
US10630370B2 Transmitter and receiver
A transmitter includes: a first transmission block that generates a first radio wave having an information signal modulated thereon and having a plane of polarization that rotates; and a second transmission block that generates a second radio wave having the information signal modulated thereon and having a plane of polarization that is fixed. A receiver includes: a first receive section that demodulates a first radio wave having an information signal modulated thereon and having a plane of polarization that rotates; and a second receive section that demodulates a second radio wave having the information signal modulated thereon and having a plane of polarization that is fixed. The receiver restores the information signal on the basis of the result of reception by the first receive section and the second receive section.
US10630368B2 Method and device for supporting multi-user multi-stream in wireless communication system
The present application provides a method for a multi-user multi-stream supporting base station transmitting a signal to a terminal. The method comprising: estimating channel information of a first terminal by receiving a reference signal from the first terminal; and by using the estimated channel information, transmitting a plurality of beams to the first terminal based on a non-orthogonal multiple access scheme. When transmitting the plurality of beams to the first terminal based on the non-orthogonal multiple access scheme, a plurality of virtual terminals of the first terminal are generated, and a signal for a first virtual terminal among the plurality of virtual terminals are allocated to a first beam and transmitted, and a signal for a second virtual terminal among the plurality of virtual terminals are allocated to a second beam and transmitted.
US10630365B2 Method for transmitting and receiving channel state information between base station and terminal in wireless communication system and apparatus for supporting same
Disclosed are a method for transmitting and receiving channel state information between a base station and a terminal and an apparatus for supporting the same. Specifically, disclosed is a method for reporting channel state information of a specific terminal in order to determine an optimal antenna port setting (number, index, etc.) for transmitting, by a base station, a data signal to the terminal. More particularly, disclosed are a method for reporting, by a terminal, channel state information on different antenna port settings (number, index, etc.) to a base station and an apparatus for supporting the same.
US10630363B2 Electronic device in wireless communication system, and wireless communication method
An electronic device in a wireless communication system, and a wireless communication method. The electronic device includes one or more processing circuits, and is configured to: respond to a measurement instruction from a base station in a wireless communication system, and separately measure channel state information reference signals (CSI-RSs) on one or more antenna ports; and generate feedback information according to the measurement result, so that the base station selects, from the one or more antenna ports, an antenna port used for transmitting to the CSI-RSs to the electronic device, the feedback information including occupation information of occupation condition of each of the one or more antenna ports. Port selection for CSI-RSs can be implemented, beamforming CSI-RS interference between cells and within a cell can be reduced, and system performance can be improved only requiring very low signaling overheads.
US10630361B2 Method for feeding back channel state information, UE and system
A method for feeding back channel state information, applicable to a coordinated multi-point (CoMP) transmission system, the method includes; arranging more than one piece of channel state information in a source bit domain by way of concatenating the more than one piece of channel state information in a bit domain; performing corresponding processing and mapping to a resource of the arranged more than one piece of channel state information; and transmitting the processed and mapped more than one piece of channel state information to the network side of the CoMP transmission system, wherein the more than one piece of channel state information are arranged in the source bit domain in an order of the configured channel state information.
US10630356B2 Communication apparatus and method of controlling the same
A communication apparatus having a plurality of antennas, comprises a communication unit configured to communicate with an external apparatus with the plurality of antennas, a detection unit configured to detect a status of the communication apparatus, and a specifying unit configured to specify a noise component mixed in signals received from the external apparatus according to the status of the communication apparatus.
US10630355B2 Methods and devices for determining precoder parameters in a wireless communication network
A method and a device for determining parameters of a precoder in a wireless communication system are disclosed. According to one aspect, a method includes selecting a subset of beams corresponding to a plurality of orthogonal beams; obtaining power levels of the selected subset of beams for generating a first factor of the precoder and obtaining phases of the selected subset of beams for generating a second factor, wherein the first factor and the second factor are part of the parameters of the precoder.
US10630354B2 Electronic device and method in wireless communication system, and wireless communication system
An electronic device at a base station end includes a processing circuit, the processing circuit being configured to: configure, in response to request signalling from a user equipment, an aperiodic beam-forming reference signal relevant to a first beam group for the user equipment, wherein the first beam group is determined by a base station according to channel state information periodically fed back by the user equipment; generate downlink control information, so as to indicate that the user equipment feeds back beam selection information according to the aperiodic beam-forming reference signal; determine, according to the beam selection information, one or a plurality of candidate beams and one or a plurality of corresponding second pre-coding codebooks; and determine an effective pre-coding codebook based on the one or multiple second pre-coding codebooks.
US10630353B2 Two-stage precoding method and apparatus
This application relates to the field of wireless communications, and in particular, to a two-stage precoding technology and a channel information feedback technology in a wireless communications system. In a two-stage precoding method, a first network device sends a first reference signal for estimating spatial correlation matrix information by a second network device, and the first network device receives spatial correlation matrix information fed back by a user, and determines a stage-1 precoding matrix based on the spatial correlation matrix information. Solutions provided in this application are intended to improve performance of a two-stage precoding system by applying a two-stage precoding method that includes a spatial correlation matrix information feedback solution.
US10630350B2 Multiple-input multiple-output (MIMO) apparatus
An apparatus is disclosed that includes a processor configured to acquire subarray information indicating a plurality of subarrays usable for multilayer Multi-Input Multi-Output (MIMO), notify a terminal apparatus of information related to the subarrays, wherein the terminal apparatus is a terminal apparatus that performs a report related to a combination of two or more subarrays included in the plurality of subarrays, and wherein the plurality of subarrays includes two or more subarrays that share one or more antenna ports.
US10630348B1 Mesh topology radio
An apparatus for wireless communication in a millimeter wave (mmW) mesh network is described. The apparatus may include a processor, memory in electronic communication with the processor, a radio component including a plurality of mmW radios in electronic communication with the processor, each mmW radio configured to establish a mmW connection with a node in the mmW mesh network, and a pole mount component coupled with a first section of the radio component.
US10630336B1 Apparatus and method for operating with a radio frequency circuitry and wireless transmission and reception in a millimeter wave range
An apparatus for wireless transmissions and reception. The apparatus includes a radio frequency (RF) circuitry, a baseband circuitry, and a conversion circuitry. The RF circuitry is configured to transmit and receive a signal in an RF frequency. The baseband circuitry is configured to process a transmit signal or a receive signal in a baseband frequency. The conversion circuitry is configured to perform frequency conversion between the baseband and RF frequencies. The conversion circuitry is configured to convert a baseband signal received from the baseband circuitry to an RF signal in a first RF frequency if a transmit frequency is a second RF frequency or to the RF signal in the second RF frequency if the transmit frequency is the first RF frequency, and send the RF signal after frequency conversion to the RF circuitry. The RF circuitry converts the received RF signal to the transmit frequency for transmission.
US10630335B2 Wireless circuit-mounted electronic apparatus
A signal transmission and reception element transmits and receives a differential signal. Two transmission lines transmit the differential signal between the signal transmission and reception element and a connector. The signal transmission and reception element is connected to an external apparatus with the connector interposed therebetween. A noise generation source generates noise in a wireless band, which is coupled to the transmission lines. An antenna has a gain in a frequency band of the noise which is generated in the noise generation source. A wireless signal processing circuit processes a signal received by the antenna. An absorption-type filter that is mounted on the transmission lines absorbs noise mixed in the transmission lines.
US10630320B2 Methods for re-using filters for uplink carrier aggregation
Disclosed herein are systems, circuits, architectures and methods related to front-end architectures for wireless devices configured for uplink carrier aggregation. The disclosed methods dynamically route signals from a filter-less module to one of two modules with filters for filtering. The re-use of filters reduces the size of the filter-less module relative to a module that utilizes its own filters, thereby reducing costs, reducing size, and/or providing additional space for other modules or other functionality to be included in a wireless device.
US10630316B2 Bit flipping algorithm for providing soft information during hard decision hard decoding
A method for performing low-density parity check (LDPC) decoding includes: in a first decoder which operates in a first mode, performing a plurality of decoding iterations of a codeword using a first algorithm, including: decoding the codeword to generate first information including a number of failed check nodes; linking the number of failed check nodes to a log-likelihood ratio (LLR) value to generate second information; and performing parity check equations for the codeword at check nodes. When a predetermined number of decoding iterations in the first decoder is reached without the parity check equations being solved, decoding of the codeword using the first decoder is stopped, the codeword is input to a second decoder and decoding of the codeword in the second decoder using a second algorithm and the second information is started.
US10630312B1 General-purpose processor instruction to perform compression/decompression operations
A DEFLATE Conversion Call general-purpose processor instruction. An instruction is obtained by a general-purpose processor of the computing environment. The instruction is a single architected instruction of an instruction set architecture that complies to an industry standard for compression. The instruction is executed, and the executing includes transforming, based on a function to be performed by the instruction being a compression function or a decompression function, state of input data between an uncompressed form of the input data and a compressed form of the input data to provide a transformed state of data. The transformed state of the data is provided as output to be used in performing a task.
US10630310B1 Analog signal generation by hardware re-use in sampled circuits
An integrated charge redistribution successive approximate register (CR-SAR) analog-to-digital converter (ADC) includes a sample-and-hold switch, a digital-to-analog converter (DAC), a comparator and a logic circuit. The sample-and-hold switch obtains a sample input voltage (Vin). The DAC includes a plurality of digital multiplexers that selects between a superposition phase, which superimposes an analog offset voltage onto Vin, and a conversion phase which determines values for a digital output register which determines the input values to each control line. Each digital multiplexer presents input values to a control line. The comparator has two inputs coupled to the sample-and-hold switch and to the DAC such that the output of the converter determines a value of each successive bit in the digital output register. The logic circuit is coupled to the comparator and to digital multiplexers and includes the digital output register.
US10630309B1 Signal receiver for radio signal strength indication estimation with sub-sampling analog-to-digital converter for radio frequency signal with constant envelope modulation
A signal receiver includes a multiplexer, a sub-sample analog-to-digital converter (ADC) and a received signal strength indicator (RSSI) estimator for a signal receiver with multiple stage cascade amplifiers architecture. The multiplexer may select one of the input signal of each stage of cascade amplifiers or the last stage output signal of cascade amplifiers as a selected signal according to a selection signal. The sub-sample ADC may perform a sub-sampling operation using the selected signal to generate sampled data. The RSSI estimator may calculate a RSSI value corresponding to the selected signal according to the sampled data.
US10630305B2 Data converters systematic error calibration using on chip generated precise reference signal
A self-calibrating analog-to-digital converter includes a reference signal circuit configured to provide a reference signal, an analog-to-digital converter configured to generate a first digital representation of the reference signal, a dual-slope analog-to-digital converter configured to generate a second digital representation of the reference signal, and a digital engine configured to compare the first digital representation with the second digital representation to obtain a difference and output a calibration signal to the analog-to-digital converter in response to the difference. The reference signal circuit, the analog-to-digital converter, the dual-slop analog-to-digital converter, and digital engine are integrated in an integrated circuit.
US10630302B2 Optically pumped atomic clock and associated manufacturing process
An optically pumped atomic clock includes an optically pumped atomic resonator provided with a vacuum-tight envelope equipped with optical interfaces and comprising, inside the vacuum-tight envelope a resonant cavity, optical mirrors, and caesium traps made of graphite, and outside the vacuum-tight envelope a vacuum pump, a magnetic shield, a magnetic field coil, an RF cable, a caesium oven, and an interface for connection with the caesium oven.
US10630299B2 Systems and methods for frequency domain calibration and characterization
A system for assigning a characterization and calibrating a parameter is disclosed. The system includes a frequency measurement circuit and a finite state machine. The frequency measurement circuit is configured to measure frequencies of an oscillatory signal and to generate a measurement signal including measured frequencies. The finite state machine is configured to control measurements by the frequency measurement circuit, to assign a characterization to a parameter based on the measurement signal, and to generate a calibration signal based on the characterized parameter.
US10630298B2 Thermally locked oven controlled crystal oscillator
Systems and processes disclosed herein determine the temperature of a crystal, such as a crystal that may be used in a crystal oscillator, using the reference crystal itself. The system can measure the temperature of the crystal without a temperature sensor. Further, a single oven technique may be used to maintain the temperature of the reference crystal. Thus, in certain embodiments, a more compact crystal oscillator can be generated compared to conventional techniques. Further, by measuring the reference crystal based on signals generated by the reference crystal itself, the system disclosed herein is more accurate than many previous crystal oscillator systems.
US10630294B1 Apparatuses and methods for transmitting an operation mode with a clock
Apparatuses and methods for transmitting a command mode (e.g., operation mode) associated with a command between devices are disclosed. One device may be configured as a master and one or more devices may be configured as slaves. The command mode may be transmitted by the master to the slaves by setting a resting state of a clock signal transmitted between the devices and transitioning a device enable signal to an active state. The slaves may detect the resting state of the clock at the time the enable signal is transitioned to the active state in order to determine the command mode of the command. The devices may then execute the command in the mode indicated by the transmitted command mode.
US10630291B1 Integrated circuit delay cell
An integrated circuit delay cell includes an input circuit to establish a current level in the circuit, a switch configured to control an on/off time of a delay circuit, a delay circuit including at least one current starved stage configured to mirror the current level, the delay circuit configured to control a speed of a rise and/or fall time of an output signal, and a glitch discharging circuit connected to the delay circuit configured to tolerate and discharge unwanted charge of the delay circuit.
US10630289B1 On-die-termination circuit and control method for of the same
An ODT circuit is connected to a memory module and includes a first transmission line, a first ODT, a second ODT, a first switch circuit, a third ODT, a fourth ODT, a second switch circuit, and an ODT control logic. The first and second ODTs are coupled to a first node on the first transmission line. The first switch circuit includes a first switch and a second switch, and is driven according to the first control signal. The third and the fourth ODTs are coupled to a second node on the first transmission line. The second switch circuit includes a third switch and a fourth switch, and is driven according to the second control signal. The ODT control logic outputs the first control signal and the second control signal to control the first switch circuit and the second switch circuit to be turned on at different timings.
US10630288B2 Switch
A switch includes a substrate and a microwave line comprising two tracks produced on the substrate, an active zone of the substrate being bounded by the two conductive tracks and connecting the two tracks. The switch comprises a set of at least one DC line, intended to convey a DC current, the DC line comprising two electrodes that are distant from each other and that are connected by a separation zone of the substrate, the separation zone being able to be made conductive when it is illuminated by the optical control beam so as to establish an electrical contact between the two electrodes, the two electrodes being separated by a separation plane of the DC line, the separation plane passing through the centre O and being perpendicular to the plane of the active zone.
US10630284B2 Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals
Devices and methods for improving voltage handling and/or bi-directionality of stacks of elements when connected between terminals are described. Such devices and method include use of symmetrical compensation capacitances, symmetrical series capacitors, or symmetrical sizing of the elements of the stack.
US10630280B2 AC coupling modules for bias ladders
A positive-logic FET switch stack that does not require a negative bias voltage, exhibits high isolation and low insertion/mismatch loss, and may withstand high RF voltages. Embodiments include a FET stack comprising series-coupled positive-logic FETs (i.e., FETs not requiring a negative voltage supply to turn OFF), series-coupled on at least one end by an “end-cap” FET of a type that turns OFF when its VGS is zero volts. The one or more end-cap FETs provide a selectable capacitive DC blocking function or a resistive signal path. Embodiments include a stack of FETs of only the zero VGS type, or a mix of positive-logic and zero VGS type FETs with end-cap FETs of the zero VGS type. Some embodiments withstand high RF voltages by including combinations of series or parallel coupled resistor ladders for the FET gate resistors, drain-source resistors, body charge control resistors, and one or more AC coupling modules.
US10630277B2 FET driving circuit
A FET driving circuit includes: inputs into which a DC voltage is inputted; outputs connected to gate and source electrodes of a FET; a switch; a capacitance connected across the switch; and an LC resonance circuit connected in series with the switch across the inputs. A voltage generated across the switch during switching is outputted to drive the FET. The LC resonance circuit has a first connector connected to one input and a second connector connected to the switch, and is configured with a path including an inductance and a path including an inductance and a capacitance. An impedance between the first and second connectors has two resonant frequencies. The impedance has a local maximum at the lower resonant frequency, which is higher than a switching frequency, and a local minimum at the higher resonant frequency, which is around double the switching frequency.
US10630276B2 Pulse width demodulator
A simple, fast, easily designed circuit for demodulating a PWM signal produces an output signal indicating a duty cycle of a received PWM signal. The circuit may include a low pass filter circuit to receive a Pulse Width Modulated (PWM) signal and produce a triangular signal, a track-and-hold circuit to receive the PWM signal and the triangular signal and produce a minimum and maximum signals corresponding to minimum and maximum values of the triangular signal during each cycle of the PWM signal, and an averaging circuit to receive the minimum signal and the maximum signal and produce, by averaging the values of the minimum signal and the maximum signal, the output signal.
US10630274B2 Method for biasing outputs of a folded cascode stage in a comparator and corresponding comparator
A comparator includes a folded cascode stage having positive and negative outputs. The folded cascode stage includes: a common-mode voltage regulation circuit that includes resistive elements that are respectively situated between each of the outputs and a common-mode node. A compensation circuit is configured to regulate a difference between the voltages on the outputs, and is configured to generate a constant and continuous compensation current in the two resistive elements. A hysteresis circuit is configured to offset voltages on the outputs, and to generate a hysteresis current in the two resistive elements.
US10630273B2 Clock circuit having a pulse width adjustment module
A clock circuit has a clock input terminal, a first clock output terminal, and a second clock output terminal. The clock circuit includes a pulse width adjustment module, a sampling module, a comparing module, and a differential signal converting module. A differential input terminal is electrically connected to a pulse width output terminal of the pulse width adjustment module. A positive differential signal output terminal and a negative differential signal output terminal are electrically connected to the first clock output terminal of the clock circuit and the second clock output terminal to output two clock signals with a phase difference of 180 degrees, respectively. A second input terminal of the sampling module is electrically connected to the second clock output terminal.
US10630272B1 Measurement and correction of multiphase clock duty cycle and skew
Methods and systems are described for generating, at a plurality of delay stages of a local oscillator, a plurality of phases of a local oscillator signal, generating a loop error signal based on a comparison of one or more phases of the local oscillator signal to one or more phases of a received reference clock, generating a plurality of phase-specific quadrature error signals, each phase-specific quadrature error signal associated with a respective phase of the plurality of phases of the local oscillator signal, each phase-specific quadrature error signal based on a comparison of the respective phase to two or more other phases of the local oscillator signal, and adjusting each delay stage according to a corresponding phase-specific quadrature error signal of the plurality of phase-specific quadrature error signals and the loop error signal.
US10630269B2 Multiple mode device implementation for programmable logic devices
Various techniques are provided to efficiently implement user designs in programmable logic devices (PLDs). In one example, a programmable logic device (PLD) includes a plurality of programmable logic blocks (PLBs) and at least first and second logic cells within at least one of the PLBs, where each logic cell includes a lookup table (LUT) and associated mode logic configured to receive a LUT output signal from the LUT. The associated mode logic is configured to use a single physical signal output to provide a logic cell output signal corresponding to a selected logic function operational mode, ripple arithmetic operational mode, or extended logic function operational mode for each logic cell.
US10630267B2 Oscillator circuit, and related integrated circuit
An oscillator circuit including a ring oscillator and a reference current source is provided. The ring oscillator includes an odd number of inverter stages. Each inverter stage includes a first transistor having a first reference threshold that varies over temperature. The reference current source is configured to generate a plurality of currents, where a respective current is applied directly to the drain of a respective first transistor of a respective inverter stage. The reference current source includes a reference transistor that has a second reference threshold that varies over temperature; a resistor coupled between a gate and a source of the reference transistor; a second transistor having a source coupled to the gate of the reference transistor for generating a reference current that flows through the resistor to regulate a voltage of the resistor to the second threshold voltage; and a current mirror configured to generate the plurality of currents.
US10630253B2 Active distributed mode actuator
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for changing a distributed mode loudspeaker's fundamental frequency. One of the systems includes a distributed mode loudspeaker comprising an actuator that includes: a supported portion, and a cantilevered portion having a length, a first fundamental frequency, and adapted to create a force to cause vibration of a load to generate sound waves using the first fundamental frequency; a support element connected to the supported portion of the actuator and adapted to adjust, based on a change to a shape of the support element, a size of the length of the cantilevered portion to change the first fundamental frequency to a second fundamental frequency with which the load will generate sound waves; and a frequency selection module that provides a signal to the support element to cause the support element to change shape.
US10630244B2 Pulse width distortion cancellation of a switching mode amplifier for reduced second harmonic interference
A switching-mode power amplifier includes a driver circuit having an input for receiving a radio frequency (RF) signal, an output for outputting a digital output signal, and a bias port for receiving a bias signal, and a bias circuit having a first input coupled to the output of the driver circuit for receiving the digital output signal, a second input coupled to the input of the driver circuit for receiving the RF signal, and an output coupled to the bias port of the driver circuit for providing the bias signal to the driver circuit.
US10630240B2 Amplifier, audio device and control method
An amplifier includes a power amplifier that amplifies an input signal, a VI detection circuit that is connected to a rear stage of the power amplifier to detect power of an output signal of the power amplifier, and a controller that turns on the power amplifier when the input signal is inputted to the power amplifier, turns off the power amplifier when the input signal is not inputted to the power amplifier, and turns on the power amplifier when the VI detection circuit detects a voltage that exceeds a predetermined value when the power amplifier is in off state.
US10630235B2 Internal protection circuit structure of photovoltaic modules having independent power generating unit
The present invention discloses an internal protection circuit structure of photovoltaic modules having independent power generating unit, which includes a plurality of solar cells. The plurality of solar cells is combined to form a power generating unit A and a power generating unit B. Polarities of the upper ends of the substrings of solar cell are positive, negative, positive, negative, positive, and negative sequentially from the first column of A to the sixth column of A. Polarities of the lower ends of the substrings of solar cell are positive, negative, positive, negative, positive, and negative sequentially from the first column of B to the sixth column of B. Moreover, the busbar is provided with three separate junction boxes.
US10630227B2 Method for type-specific operating of an electric drive unit and system
A method is provided for type-specific operating of an electric drive unit, wherein the drive unit is configured for coupling and driving a tool unit selected from a set of different types of tool units. The set includes at least one rotatory tool unit and at least one non-rotatory tool unit. The method includes: driving of a coupled tool unit by the drive unit; identifying operating data of the drive unit during the driving procedure; determining, based on the identified operating data, whether the coupled tool unit is a rotatory tool unit or a non-rotatory tool unit; and controlling the drive unit in a rotation control mode if the coupled tool unit is determined to be a rotatory tool unit, or in a non-rotation control mode if the coupled tool unit is determined to be a non-rotatory tool unit.
US10630222B2 System having electrical machine and controller
A unique system may include a power absorber; an electrical machine coupled to the power absorber and operative to supply mechanical power to the power absorber; a drive coupled to the electrical machine and operative to supply electrical power to drive the electrical machine; and a controller communicatively coupled to the drive. The controller may be configured to execute program instructions to selectively vary a control voltage while maintaining a given torque output of the electrical machine, and to determine, based on varying the control voltage, a minimum current required for the electrical machine to maintain the given torque output.
US10630216B2 Electromechanical power transmission chain and an electric system, a method, and a computer program for controlling the same to stabilize converter input voltages and optimize combustion engine efficiency
An electric system of an electromechanical power transmission chain is provided that includes a first capacitive circuit, converter equipment between the first capacitive circuit and one or more electric machines, a second capacitive circuit, and a direct voltage converter between the first and second capacitive circuits. The electric system includes a control system for controlling the direct voltage converter in response to changes in first direct voltage of the first capacitive circuit and for controlling the converter equipment in response to changes in second direct voltage of the second capacitive circuit. The control of the first direct voltage is faster than the control of the second direct voltage so as to keep the first direct voltage on a predetermined voltage range and to allow the second direct voltage to fluctuate in order to respond to peak power needs.
US10630214B2 DC motor controller
A direct current (DC) motor controller includes first and second electrode terminals, a motor switch and a control unit. The first and second electrode terminals are connected to a DC electric power source, and cooperatively conduct DC electric current therefrom to the DC motor. The motor switch has first and second terminals. The first terminal is connected to a DC motor. The second terminal is connected to the second electrode terminal. The motor switch is switchable between a first state and a second state. The control unit is connected between the first and second electrode terminals, and controls the motor switch to switch between the first and second states.
US10630213B2 Motor control integrated circuit
A motor control integrated circuit according to embodiments outputs predetermined PWM signals to an inverter circuit that drives a synchronous motor and is configured to perform on-off control on a plurality of three-phase bridge connected switching elements in accordance with the PWM signals to convert direct current into three-phase alternating current, and includes: a PWM generation unit configured to generate the signals based on a received speed command value and output the PWM signals; and a current detection unit configured to detect differential values of phase currents at a predetermined time point that is fixed within a period of a carrier wave used for PWM control, based on the carrier wave and a signal generated by a current detector for detecting current conducted to the synchronous motor, wherein the PWM generation unit calculates a speed of the synchronous motor based on the differential values and then, based on the speed, generates the PWM signals to be applied to the synchronous motor.
US10630212B2 Device for controlling inverter
The present invention relates to an inverter-controlling device. The inverter-controlling device include a main controller configured to generate a predetermined command current; a comparison module configured to calculate a difference between the command current and an output current of an inverting module; a current controller configured to perform a proportional-integral (PI) control based on the difference; and a frequency estimation module configured to estimate a rotation speed of a motor based on a current response to the command current while the command current is injected to the current controller, wherein the main controller is further configured: when a flying start operation of the inverting module begins, to set an output frequency of the inverting module based on the rotation speed of the motor estimated by the frequency estimation module.
US10630211B2 Device for an electric machine, in particular of a motor vehicle
A device for operating an electric machine, it being possible for the electric machine to be at least operated in generator mode, having an electrical energy accumulator that is connected to the electric machine by an electrical circuit that has a main switch; the circuit having a motor brake circuit that is designed to feed the electrical energy generated by the electric machine in generator mode to the energy accumulator. It is provided that the motor brake circuit be designed to convert the electrical energy into heat in the case of a failure of the main switch, of a connection of the circuit to the energy accumulator and/or of the energy accumulator itself.
US10630210B2 Optocoupler-based control circuit and method thereof
An optocoupler based control circuit and a method thereof are disclosed. The control circuit comprises a first control branch, which includes a first control signal input terminal configured to receive a first OFF function control signal; a first optocoupler, wherein a primary side of the first optocoupler is coupled to the first control signal input terminal, and an output of a secondary side of the first optocoupler is configured to control a first power supplied to a motor driving circuit; a first primary side on/off control circuit connected to the primary side of the first optocoupler, and configured to periodically turn on and off the coupling of the primary side to the first control signal input terminal; and a first secondary side filter circuit connected to the secondary side of the first optocoupler, and configured to filter the output of the secondary side, and configured as a low pass filter having a cutoff frequency lower than an on/off frequency of the primary side. The control circuit further comprises a diagnostic circuit configured to diagnose an operating state of the control circuit based on the output of the secondary side of the first optocoupler and the first power. The control circuit may be a Safe Torque Off (STO) circuit.
US10630206B2 Lignin-based biopolymer and triboelectric nanogenerators using lignin-based biopolymer
The present disclosure generally relates lignin-based biopolymers and triboelectric nanogenerators comprising lignin-based biopolymer. Such triboelectric nanogenerators can generate voltage and current by using the triboelectric effect. The lignin-based biopolymers is a reaction product of a mixture comprising at least a lignin and a starch, and optionally an alcohol and/or a base.
US10630204B2 Network feedback unit to feed energy into a three-phase network and electrical drive system
A network feedback unit feeds electrical energy from a voltage intermediate circuit into a three-phase network. The network feedback unit has: a buck converter unit having first and second buck converters, the first buck and second buck converters being connected in parallel with the input side of each electrically coupled to the voltage intermediate circuit; an inverter, with the input side electrically coupled to an output of the buck converter unit and the output side electrically coupled to the three-phase network; at least one filter capacitor arranged at the output of the buck converter unit or at the output of the inverter; and a controller unit to drive the first and second buck converter depending on a filter capacitor current such that the first and second buck converter contribute in equal parts to an output current of the buck converter unit.
US10630201B2 Module for a multilevel converter
A module configured as a component of a multilevel converter has a plurality of basic units and electrical energy sources. Each basic unit has at least one half-bridge. The at least one half-bridge includes at least one high-side switch and at least one low-side switch. Two basic units are arranged directly adjacent alongside one another within the module. A first basic unit is connected to a positive pole of a first energy source and the at least one low-side switch is connected to a negative pole of a second energy source. A second basic unit is connected to a positive pole of the second energy source and the at least one low-side switch is connected to a negative pole of the first energy source. Current is transported between two poles via at least one current path.
US10630188B2 Switching power supply apparatus and semiconductor device
A switching power supply apparatus includes a PFM control circuit that outputs a clock signal Set such that a switching frequency of a switching element varies in accordance with a load state. The clock signal Set determines a turn-on timing of the switching element. A reference value of a current flowing through the switching element determines a turn-off timing of the switching element. A modulation signal is applied to the turn-off timing of the switching element to modulate one of a peak value of a drain current flowing through the switching element and an on-time of the switching element. Input control is performed separately on the clock signal Set and the modulation signal. Accordingly, even when the clock signal Set and the modulation signal contribute to each other to offset each other, modulation effects are not cancelled.
US10630187B2 Switching power supply device and semiconductor device
A switching power supply device has both a turn-on timing modulation function and a turn-off timing modulation function, performs the turn-off timing modulation in a PFM control region and the turn-on timing modulation in a PWM control region, and further continues at least one of the modulations even after the PFM control and the PWM control are switched from one to the other, to achieve a stable operation of the switching power supply device at the control switching boundary without significantly decreasing the modulation effect of frequency jitter control.
US10630186B2 Switching power supply device and semiconductor device
A switching power supply circuit includes an intermittent oscillation control circuit, which performs intermittent oscillation control that repeats a cycle including an oscillation time period and a stop time period according to a feedback signal so that output voltage or current becomes constant, compares an intermittent oscillation period that is a sum of the oscillation time period and the stop time period with a preset target period, sets the oscillation time period of current cycle to a length obtained by extending the oscillation time period of previous cycle by first predetermined time when the intermittent oscillation period is shorter than the target period, and sets the oscillation time period of current cycle to a length obtained by subtracting second predetermined time from the oscillation time period of previous cycle when the intermittent oscillation period is longer than the target period, in each cycle of intermittent oscillation control.
US10630181B2 Semiconductor chip power supply system
The present disclosure provides a semiconductor chip power supply system, including: a semiconductor chip including: a first data processing function area and a first power converter control area, the first data processing function area and the first power converter control area being formed on a first semiconductor substrate of the semiconductor chip; and a first power converter power stage located outside the first semiconductor substrate and electrically connected to the first power converter control area and the first data processing function area; wherein the first power converter control area controls the first power converter power stage to supply power to the first data processing function area.
US10630170B2 Power factor correction circuit and method
A Power Factor Correction (PFC) circuit includes an oscillator circuit. The oscillator circuit receives a valley detect signal indicating a zero current condition, determines a blanking time according to an operational cycle of the PFC circuit, and determines to initiate the operational cycle according to the valley detect signal and the blanking time. Determining the blanking time includes selecting one of a plurality of predetermined blanking times according to a count of operational cycles of the PFC circuit. The PFC circuit may operate in a Boundary Conduction Mode or a Discontinuous Conduction Mode depending on whether a charge-discharge period is greater than the blanking time. The PFC circuit may determine, according to its output voltage, a first duration of a charging period, determine a delay time according to zero current times of previous operational cycles, and extend the first duration of the charging period by the delay time.
US10630169B1 Power factor correction at switched mode power supply
Embodiments of a method and a device are disclosed. In an embodiment, a method for power factor correction (PFC) at a switched mode power supply (SMPS) is disclosed. The method involves receiving an input voltage, generating a reference waveform that is in phase with the input voltage, determining a time value for phase-shifting a PFC current signal, scaling the time value with a phase factor to generate a scaled time value, phase-shifting the reference waveform according to the scaled time value to generate a phase-shifted reference waveform, and generating the PFC current signal based on the phase-shifted reference waveform.
US10630167B2 Adaptive loading techniques to avoid negative voltage slope and output overshoot during system start-up
A switched mode power supply (SMPS) to output a smoothly rising voltage (VOUT) during startup and still operate efficiently during steady state. A smoothly rising VOUT that avoids a negative voltage slope and voltage overshoot may be desirable in some applications. The techniques of this disclosure include an adaptive loading time controlled oscillator (TCO) compensation circuit that adjusts the TCO frequency to linearly regulate the feedback voltage from the half-bridge (VHBFB). The TCO compensation circuit adapts to the startup loading and self-adjusts the regulation speed for the handover point between the TCO and the voltage controlled oscillator (VCO).
US10630166B2 Circuit and switching power supply and liquid crystal display driving circuit
The disclosure discloses an absorption circuit which is coupled to a switching power supply, wherein the absorption circuit comprises: a switching power supply voltage spike suppression circuit for changing a voltage spike of the switching power supply into a desired voltage spike, an energy storage circuit which is coupled to the switching power supply voltage spike suppression circuit and used for storing the spike voltage that is suppressed, and a release circuit which is coupled to the energy storage circuit and used for, when the voltage stored by the energy storage circuit is higher than the output voltage of the switching power supply, releasing the energy which is stored by the energy storage circuit and higher than the output voltage to the output terminal of the switching power supply. The disclosure further discloses a corresponding switching power supply and a liquid crystal display driving circuit.
US10630164B1 Generator systems
A generator system can include a generator configured to output an alternating current (AC) generator output, a rectifier operatively connected to the generator and configured convert the AC generator output into a direct current (DC) rectifier output, and a four wire inverter operatively connected to the rectifier to receive the DC rectifier output, the four wire inverter configured to convert the DC rectifier output into 3 phase AC inverter output, wherein the four wire inverter can include three output wires, each output wire configured to output a respective phase of the 3 phase AC, wherein the four wire inverter can include a fourth neutral wire for providing a neutral path.
US10630163B2 Pulse width modulation method, pulse width modulation system, and controller
A pulse width modulation method, a pulse width modulation system, and a controller are provided, which change a change rate of a common-mode component of a three-phase converter upon a change of a converter modulation degree, thereby improving stability and harmonic characteristics of the three-phase converter and implementing flexible adaptive adjustment. An example pulse width modulation method includes: obtaining initial three-phase modulation waves and a converter modulation degree; calculating a common-mode-component change-rate adjustment coefficient based on preset modulation parameters and the converter modulation degree; selecting a modulation wave having a minimum absolute value from the modulation wave set as a common-mode modulation wave; and performing waveform superposition on the initial three-phase modulation waves and the common-mode modulation wave to obtain output three-phase modulation waves.
US10630159B2 Magnetic coupling rotor
A magnetic coupling rotor includes permanent magnets arranged at equal angular spacings about its axis of rotation, wherein they respectively face radially inwardly and radially outwardly with their pole faces, of which a respective one bears against a backiron body of ferromagnetic material. The backiron body is a cylindrical ring with smooth peripheral surfaces. Provided for the permanent magnets is a holding device comprising a not or only weakly magnetizable injection-moldable material in the form of a rotary-symmetrical body having recesses for receiving the permanent magnets. The diameters of the holding means and the backiron body are such that they can be fitted together coaxially such that the backiron body at least partially covers the recesses in a radial direction. Thus, formed between it and the holding means is an even number of insertion compartments into which permanent magnets may be inserted.
US10630158B2 Active vibration controller
An active vibration controller includes: a housing; a first magnetic member on the housing, the first magnetic member including a first tip portion extending from a first base end of the first magnetic member and including a first connecting surface extending from the base end on the first tip portion; a movable member including a second magnetic member including a second tip portion extending from a second base end of the second magnetic member and a second connecting surface extending from the second base end on the second tip portion; an exciting coil; a magnetic viscoelastic elastomer having a magnetic viscoelastic property varying according to a magnetic field magnitude between the first and second tip portions, and connects the first connecting surface to the second connecting surface. The first and second tip portions are thinner than the first and second base ends, respectively.
US10630155B2 Single phase permanent magnet motor
A single phase permanent magnet motor includes a stator and a rotor. The stator includes a stator core and a stator winding. The stator core includes an outer yoke, teeth extending inwardly from the outer yoke, and pole shoes extending from inner ends of the teeth. The rotor is received in a space cooperatively defined by the pole shoes. The rotor includes circumferentially arranged permanent magnetic poles. An outer circumferential surface of the permanent magnetic poles is concentric with an inner circumferential surface of the pole shoes, such that a uniform air gap is formed between the pole shoes and magnetic poles. The single phase permanent magnet motor forms the uniform air gap, which reduces the vibration and noise. The pole shoes form invisible positioning slots, which avoids the negative effect of the positioning slots to the thickness of the air gap and reduces the startup dead point.
US10630154B2 Method for winding a plurality of coil bodies and segmented spindle
A method for winding a plurality of coil bodies for the production of electric motors using a segmented spindle. According to the method, a number of coil bodies are coupled to at least one intermediate part and two end parts to form a segmented spindle, and the segmented spindle is arranged in/on a winding machine. In this way, the coil bodies are wound in a synchronized manner. As a result, only a rotatable spindle is required for the winding of a number of coil bodies.
US10630151B2 Rotor for an induction motor
A rotor for an induction motor includes a first shorting end ring, a second shorting end ring, and a plurality of conductor bars. Each conductor bar has a first end and a second end and is coated with an electrically conductive material. The first end of each conductor bar is in electrical and mechanical contact with the first shorting end ring, and the second end of each conductor bar is in electrical and mechanical contact with the second shorting end ring. The conductive material is disposed between each conductor bar and the respective shorting end rings.
US10630147B2 Electric machine having a rotor shaft with a duct system for cooling
An electric machine, in particular for an electric vehicle. The machine includes a rotor which can be rotated with respect to a stator and has at least one rotor shaft. The machine includes a duct system for cooling the machine, through which duct system a coolant can flow. The duct system runs at least in sections within the rotor shaft. Here, the duct system includes a cooling duct. The cooling duct is configured so as to run conically at least in sections in the longitudinal direction of the rotor shaft, such that the coolant can be conveyed in the direction of an increasing duct diameter by way of a rotational movement of the rotor shaft.
US10630144B2 Electric motor support mechanism, compressor, and turbocharger
An electric motor support mechanism having a cylindrical member that is attached to the end part of the intake opening side of an air inlet guide, and is formed in a cylindrical shape around an axis line extending along a rotation shaft, a plurality of struts connected to multiple locations on the inner circumferential surface of the cylindrical member, the plurality of struts extending in the radial direction from the inner circumferential surface toward the axis line, and connecting members that connect pairs of struts disposed adjacently in the circumferential direction around the axis line. The end parts of the plurality of struts on the axis-line side in the radial direction are connected in multiple locations on the outer circumferential surface of the electric motor, whereby the electric motor is supported on the axis line.
US10630143B2 System comprising at least two electric machines
An electric machine, which includes a rotor rotatable about a shaft and a stator. The stator is provided with a stator metal plate whose outer wall is locally limited and flattened in at least one location and otherwise is formed with a round shape.
US10630141B2 Driving apparatus
In a driving apparatus (10) in which a position of a rotating shaft (27) of an electric motor (16) in a direction of an axis (B1) is determined, the driving apparatus (10) has: a stopper (77) which determines a position of the rotating shaft (27) in the direction of the axis (B1), and a terminal holder (31) which holds a first terminal for supplying an electric current to the electric motor (16), wherein a layout region of the stopper (77) in the direction of the axis (B1) and a layout region of the terminal holder (31) in the direction of the axis (B1) are overlapped with each other.
US10630137B2 Front end motor-generator system and modular generator drive apparatus
A system and method are provided for hybrid electric internal combustion engine applications in which a motor-generator, a narrow switchable coupling and a torque transfer unit therebetween are arranged and positioned in the constrained environment at the front of an engine in applications such as commercial vehicles, off-road vehicles and stationary engine installations. The motor-generator is preferably positioned laterally offset from the switchable coupling, which is co-axially-arranged with the front end of the engine crankshaft. The switchable coupling is an integrated unit in which a crankshaft vibration damper, an engine accessory drive pulley and a disengageable clutch overlap such that the axial depth of the clutch-pulley-damper unit is nearly the same as a conventional belt drive pulley and engine damper. The front end motor-generator system includes an electrical energy store that receives electrical energy generated by the motor-generator when the coupling is engaged. When the coupling is disengaged, the motor-generator may drive the pulley portion of the clutch-pulley-damper to drive the engine accessories using energy returned from the energy store, independent of the engine crankshaft.
US10630135B2 Electric power tool
An electric power tool includes a terminal unit and a component. A signal line and a power line are coupled to the terminal unit. The signal line transmits signal. The power line supplies electric power. The terminal unit is mounted to the component. The terminal unit includes a signal terminal coupled to the signal line, and a power supply terminal coupled to the power line. The component includes a component-side signal terminal and a component-side power supply terminal. The component-side signal terminal is electrically conductive to the signal terminal of the mounted terminal unit. The component-side power supply terminal is electrically conductive to the power supply terminal of the mounted terminal unit.
US10630134B2 Electric machine cooling passage with internal fin structure
An electric machine is provided. The electric machine may include a shaft and a rotor. The shaft may define a rotational axis and a coolant passage that is transverse to the axis. The rotor may be assembled to the shaft and define an outer periphery, an inner periphery, and a medial section extending therebetween. The medial section may define a coolant channel that defines an inner edge and a plurality of elongated fins extending therefrom. The plurality of elongated fins may be configured to transfer heat from the outer periphery to coolant flowing from the coolant passage through the coolant aperture.
US10630132B2 Rotor and motor having the same
A rotor and a motor having a rotor are provided. The rotor may include a rotor core, a cover provided on an upper part of the rotor core, a magnet provided on an outer circumferential surface of the rotor core, and a can member that accommodates the rotor core and the magnet therein and is coupled to the cover. The cover may include a groove formed in a circumferential direction with respect to the center of the cover and into which an edge of the can member may be inserted, and the edge of the can member may be inserted into the groove of the cover to be coupled to the cover. Therefore, use of an adhesive when the can member is coupled to the rotor core may be avoided.
US10630130B2 Compressor for compressing refrigerant and having a motor with insulator tooth portions
A compressor includes a shaft, a motor portion, and a compressor portion. The motor portion rotates the shaft. The compressor portion compresses refrigerant by rotation of the shaft. The motor portion has an upper insulator, a stator core, and a winding wire. The upper insulator has a plurality of insulator tooth portions. The stator core has a plurality of stator core tooth portions corresponding to the plurality of insulator tooth portions of the upper insulator. The plurality of stator core tooth portions of the stator core are respectively covered with a plurality of teeth of the upper insulator and are respectively wound around thereof by the winding wire. The insulator tooth portion of the upper insulator has a groove through which lubricant oil poured into the compressor portion passes on a stator core contacting surface which is in contact with the stator core tooth portion of the stator core.
US10630128B2 Eddy current repulsion motor
A method and apparatus for controlling an electric motor. A flow of an alternating current through stator coils in the electric motor is controlled based on a position of a rotor in the electric motor such that a repulsive force between a rotor and a stator coil in the stator coils occurs when the alternating current flows through the stator coil.
US10630125B2 Rotor with magnet protection mechanism
The present invention provides a rotor with magnet protection mechanism comprising a core, a plurality of magnets and a magnet protection mechanism. The core comprises a plurality of slots in a radial arrangement, and the magnets are held within the slots. The magnet protection mechanism is set against the core and comprises a plurality of segments corresponding to the slots in a circular configuration.
US10630115B2 Foreign object detecting device, wireless power transmitting device, and wireless power transmission system
An object detecting device includes a coil array including coils, short-circuit switches connected in parallel with the coils, an oscillator circuit that outputs, to the coils, a voltage including an alternating current component, selection switches connected between the coils and the oscillator circuit, a detecting circuit that detects an object based on a change in a physical value such as voltage, and a control circuit that opens and closes the short-circuit switches and the selection switches. When a first selection switch is closed, a first short-circuit switch, which is connected to the first selection switch, is opened. The other selection switches are opened, and the other short-circuit switches are closed.
US10630114B1 Method and system for moving a magnetic field hot spot of a wireless power transfer device
In certain aspects, methods and systems for moving a magnetic field hot spot of a wireless power transfer device are disclosed. An example power transfer device generally includes at least one coil configured to generate a charging field, and a controller configured to vary, over time, a current applied to the at least one coil such that magnetic field values of the charging field at a plurality of different positions relative to the at least one coil are configured to change with time.
US10630113B2 Power supply device of induction type power supply system and RF magnetic card identification method of the same
A power supply device used in an induction type power supply system is provided that includes a power supply coil, an auxiliary coil, a power supply driving module, a auxiliary driving module, a harmonic frequency measuring module, a voltage measuring module and a processing module. The power supply driving module drives the power supply coil. The auxiliary driving module drives the auxiliary coil. The harmonic frequency measuring module measures a resonance frequency of the power-supply coil according to a capacitive and inductive parameter related to the power-supply coil. The voltage measuring module tracks and locks a maximum of an oscillation voltage of the auxiliary coil. When the processing module determines that the resonance frequency is stable and the oscillation voltage decreases more than a predetermined ratio of the oscillation voltage, the processing module keeps the power supply driving module under a non-working status.
US10630112B2 Method for transmitting signal by wireless power transmitter in wireless charging system, wireless power transmitter and wireless power receiver
A method of transmitting a signal by a wireless power transmitter in a wireless charging system, wireless power transmitter, and a wireless power receiver are provided. The method includes receiving, from a wireless power transmitter, a first beacon power for a first duration time in every first period; receiving, from the wireless power transmitter, a second beacon power for a second duration time in every second period; if the wireless power receiver determines that an extension of the second beacon power is required, generating load changes while receiving the second beacon power for the second duration time; in response to the generated load changes, continually receiving, from the wireless power transmitter, the second beacon power until a predetermined third duration time, wherein the predetermined third duration time is determined before the second beacon power is transmitted by the wireless power transmitter; and transmitting an advertisement signal to the wireless power transmitter while receiving the second beacon power for the predetermined third duration time.
US10630111B2 Adjustment of guided surface waveguide probe operation
Disclosed are various embodiments for transmitting and receiving energy conveyed in the form of a guided surface-waveguide mode along the surface of a lossy medium such as, e.g., a terrestrial medium excited by a guided surface waveguide probe.
US10630109B2 Rx headroom adjustment for stability improvement in wireless power systems
A wireless power system includes a receiver. The receiver may include a rectifier coupled to a receiver coil to receive power. The receiver may include a detector coupled to the rectifier to receive a monitor signal from the rectifier. The detector may provide a range signal indicating whether the monitor signal is outside a predetermined range. The receiver further includes an oscillation determiner coupled to the detector to receive the range signal. The oscillation determiner may determine that the rectifier is in an oscillation mode or is not in an oscillation mode. In some embodiments a communication unit is coupled to the oscillation determiner. The oscillation determiner may communicate a power adjustment signal and may request increased power through the communication unit.
US10630106B2 Multi-level controller systems and methods for controlling a physical asset
Exemplary embodiments described in this disclosure pertain to a system that includes a high-level controller coupled to a low-level controller in an arrangement that allows the high-level controller to cooperate with the low-level controller for controlling a power generation unit. The high-level controller generates supplementary signals and/or supplementary code that is provided to a surrogate controller. The surrogate controller uses the supplementary signals and/or supplementary code to generate control software that is provided to the low-level controller for controlling certain operational aspects of the power generation unit that cannot be independently controlled by the low-level controller. If the high-level controller is placed in an independent mode of operation for any reason, the surrogate controller continues to cooperate with the low-level controller for controlling various operations of the power generation unit that were being controlled by the low-level controller prior to the high-level controller entering the independent mode of operation.
US10630105B2 AC-OK detection circuit and method
According to one aspect, embodiments of the invention provide a power circuit comprising an input to receive input AC power from an AC source, an auxiliary charger configured to convert the input AC power from the input into DC power, a differential amplifier configured to be powered by the DC power from the auxiliary charger, to monitor the input AC voltage level of the input AC power, and to generate a sense signal based on a status of the input AC voltage level, and a processor coupled to the auxiliary charger and the differential amplifier, the processor configured to be coupled to an LPS, to be powered into a low power mode by the DC power from the auxiliary charger, and to analyze the sense signal from the differential amplifier in the low power mode of operation. According to one embodiment, the auxiliary charger is an offline DC-DC converter.
US10630104B2 Automatic current balancing for power systems
According to aspects, embodiments herein provide a power system comprising a first Uninterruptible Power Supply (UPS) configured to operate in parallel with a plurality of UPSs, the first UPS including an input configured to receive input power, an output configured to provide output power to a load, a bypass circuit interposed between the input and output and including a bypass switch, the bypass switch positioned to couple the input and the output in a bypass mode and decouple the input and the output in an on-line mode, and a controller coupled to the first UPS and configured to monitor an input current through the bypass circuit, and control the bypass switch of the first UPS to interrupt the input current through the bypass circuit of the first UPS for a delay during the bypass mode such that each UPS provides a balanced output current to the load.
US10630097B2 Power supply apparatus
A power supply apparatus includes a power supply unit that wirelessly supplies power to an electronic apparatus, a communication unit that performs a wireless communication with the electronic apparatus, and a control unit that controls a timing for switching a communication process performed by the communication unit and a power supply process performed by the power supply unit.
US10630089B2 Electric vehicle charging circuit breaker
An electric vehicle charging circuit breaker for charging an electric vehicle with power from a power source. The electric vehicle charging circuit breaker includes a circuit protection unit structured to provide circuit protection between the power source and the electric vehicle, an electric vehicle charging unit structured to control charging of the electric vehicle, a metering unit structured to meter power flowing between the power source and the electric vehicle, and a display unit structured to display information including at least one of metering information and a status of electric vehicle charging.
US10630088B2 Battery charging device
A battery charging device includes: at least one power electronics unit supplying a charging voltage; at least one cooling unit cooling the power electronics unit; and an electronics housing accommodating the at least one power electronics unit in at least one of water-tight and dust-tight manner. The electronics housing is cooled from the outside by a fan of the at least one cooling unit during at least one operating mode.
US10630085B2 Portable power solutions
The system includes a device activation module and a system monitoring module in resources accessible to the system operator over the wide area network. In one embodiment, the method operates to process collateral received by the resources from a client device possessed by a user interested in activating an AC output included in a charger selected by the user from the plurality of portable chargers. Further, if the collateral is accepted, an authorization is wirelessly communicated from the device activation module to the client device, a device activation signal wirelessly communicated from the client device following a receipt of the authorization is received by the charger selected by the user, and the AC output included in the charger selected by the user is activated following a receipt of the device activation signal.
US10630081B2 Charge and discharge control device
A charge and discharge control device includes a control unit which controls charging and discharging of a plurality of storage batteries capable of exchanging electric power via an external electrical grid; and an acquisition unit which acquires a temperature of each of the storage batteries. When there are at least two storage batteries having a temperature equal to or lower than a threshold value among the plurality of storage batteries, the control unit controls the two storage batteries to repeatedly perform charging and discharging in turn between the two storage batteries.
US10630076B2 Electrical energy storage device and system
An electrical energy storage device comprises an electrical connection arranged to detachably connect to a power distribution system on a site; an energy store having an input arranged selectively to charge the energy store from the distribution system, and an output arranged selectively to discharge the energy store to the distribution system; a processor arranged to monitor at least one condition relating to the site, and to monitor at least one condition relating to the energy store, and to control the energy store to charge or to discharge dependent upon the monitored conditions; and preferably a communication interface for the processor. Such a device could be provided in a domestic site, in particular a site having a generation capacity such as PV panels, in order for the energy consumer at the site to obtain an electrical energy supply more efficiently or more cheaply, and in order to smooth out fluctuations in energy supply and/or demand from the site.
US10630072B2 Voltage protection circuit
A voltage protection circuit, comprising a first metal oxide semiconductor field effect transistor (MOSFET) having a gate terminal coupled to a first node, a source terminal coupled to a second node, and a drain terminal coupled to a third node, a second MOSFET having a gate terminal coupled to the first node, a source terminal coupled to the second node, and a drain terminal coupled to a fourth node, a first current mirror coupled to the third node and configured to couple to a fifth node, a sixth node, and a regulator supply, and a second current mirror coupled to the fourth node, and configured to couple to the fifth node, the sixth node, and a ground node.
US10630063B2 Heat-conducting ceramic bushing for switchgear
A bushing for switchgear is composed of an outer metal ring, a current-conducting element and a disk-shaped ceramic insulating element which can be mounted in a floating manner in the outer metal ring. There is also described a switchgear with such a bushing.
US10630060B2 Motorized drive for racking operation in a medium voltage switchgear
A motorized drive for racking operations in a medium voltage switchgear comprising a main drive shaft actuated by a drive motor and adapted to be operatively coupled to a truck in said medium voltage switchgear characterized in that it comprises a replicating device which replicates the stroke of said truck during rack-in or rack out operations in said switchgear.
US10630058B2 Quantum cascade laser
A quantum cascade laser having a laser structure that includes a semiconductor mesa, a first end surface, a second end surface, and a first electrode provided on the semiconductor mesa. The laser structure includes a first region having the first end surface and a second region located between the second end surface and the first region. The semiconductor mesa includes a first mesa portion and a second mesa portion that are respectively included in the first region and the second region. The semiconductor mesa includes a first superlattice layer, a second superlattice layer, and a conductive semiconductor region. The first superlattice layer extends from the first end surface in the second axis direction and is included in the first mesa portion and the second mesa portion, and the second superlattice layer is provided in one of the first mesa portion and the second mesa portion.
US10630054B2 Laser radar
An apparatus comprises an array of vertical-cavity surface-emitting lasers (VCSELs) on a first substrate and an array of detectors on a second substrate, the detectors being configured to detect laser beams emitted by the VCSELs and backscattered by an object, wherein the first substrate is mounted to the second substrate and is configured to allow the laser beams emitted by the VCSELs and backscattered by the object to transmit through the first substrate and reach the detectors.
US10630046B2 Laser light source device and laser light adjusting method
A laser light adjusting method includes detecting a pair of mode hops and a comparison saturated absorption line group of the pair of mode hops based on an intensity of a light output signal in response to a change applied to an actuator, comparing a mode center voltage value with a comparison voltage value which is the voltage value at which the comparison saturated absorption line group was generated; a control temperature adjustment process that increases a control temperature when the comparison voltage value is lower than the mode center voltage value, and that decreases the control temperature of the temperature adjuster when the comparison voltage value is greater than the mode center voltage value; and a laser light stabilization step that stabilizes an emission frequency of the laser light to a specific saturated absorption line after the control temperature adjustment process.
US10630045B1 Single pulse laser apparatus using double trigger
The present disclosure discloses a double trigger type single pulse laser apparatus configured to suppress additional pulses to increase single pulse energy and improve stability of output as compared to a conventional single trigger type single pulse laser apparatus. According to the present invention, there is provided a single pulse laser apparatus including a resonator which has a first mirror, a second mirror, a gain medium, an electro-optic modulator and an acousto-optic modulator configured to respectively perform Q-switching and mode-locking, the single pulse laser apparatus including a first photodiode configured to measure a laser beam oscillated by the resonator.
US10630043B1 Methods and devices for laser beam parameters sensing and control with fiber-tip integrated systems
A sensing method for in-situ non-perturbing measurement of characteristics of laser beams at the exit of the laser beam delivery fiber tips include measuring power of a laser beam transmitted through delivery fiber tip in fiber-optics systems. A sensing devices for in-situ non-perturbing sensing and control of multiple characteristics of laser light transmitted through light delivery fiber tips includes a fiber-tip coupler comprised of a shell with enclosed delivery fiber having a specially designed angle-cleaved endcap and one or several tap fibers that are specially arranged and assembled at back side of the endcap and other variations. Methods and system architectures for in-situ non-perturbing control of characteristics of laser beams at the exit of the laser beam delivery fiber tips include fiber-tip couplers and sensing modules that receive laser light from tap fibers, and systems for optical processing to enhance light characteristics suitable for in-situ measurement.
US10630040B2 Mode mixing optical fibers and methods and systems using the same
The present disclosure relates more to mode mixing optical fibers useful, for example in providing optical fiber laser outputs having a desired beam product parameter and beam profile. In one aspect, the disclosure provides a mode mixing optical fiber that includes a core having a refractive index profile; and a cladding disposed about the core. The core of the mode mixing optical fiber supports at least two (e.g., at least five) guided modes at the wavelength. The mode mixing optical fiber is configured to substantially distribute optical radiation having the wavelength propagating therein (e.g., input at its input end or generated or amplified within the core) among a plurality of the guided modes (e.g., to distribute a substantial fraction of the optical radiation having the wavelength propagating therein from its lower-order guided modes to its higher-order guided modes).
US10630037B2 Apparatus for delivering gas and illumination source for generating high harmonic radiation
Disclosed is a high harmonic generation (HHG) radiation source which may be used to generate measurement radiation for an inspection apparatus. In such a radiation source, a pump radiation source is operable to emit pump radiation at a high harmonic generation gas medium thereby exciting the high harmonic generation gas medium within a pump radiation interaction region so as to generate the high harmonic radiation and an ionization radiation source is operable to emit ionization radiation at the high harmonic generation gas medium to ionize a gas at an ionization region between the pump radiation interaction region and an optical output of the illumination source.
US10630036B2 Laser guided tools
Tools for crimping or cutting of an object such as a wire, cable, or connector. The tool includes a first member and a second member configured to come together through a gap to crimp or cut a wire, cable or connector and a laser positioned to visually indicate a region where at least one member traverses as the first and second member come together through the gap. This visual indication aids in alignment of the object for the crimping or cutting operation.
US10630027B2 Connector with selective placement of noise reduction member
A connector is equipped with a housing capable of being fitted in a mating housing of a mating connector, a plurality of terminals which are held by the housing and electrically connected to each other, and a noise reduction member which is held in the housing so as to reduce noise occurring in the terminals. The noise reduction member is disposed at at least one of the plurality of terminals, and is not disposed at at least one of the remaining terminals of the plurality of terminals. The noise reduction member is made of a material containing ferrite.
US10630026B2 Movable connector
There is provided a movable connector that facilitates easy engagement and improves stability in electrical connection. The movable connector includes a manipulation housing that is coupled to a movable housing by a pressing operation of the manipulation housing against the movable housing. The movable connector also includes a contact reinforcing member that moves together with the manipulation housing by the pressing operation. The contact reinforcing member comes into contact with a pair of contact portions of a circuit-board connection terminal and thereby presses the contact portions against a pin terminal.
US10630022B2 High-speed cable connector
A high-speed cable connector includes a housing, a PCB fixed in the housing, a cable electrically connected to the PCB and a snap-fit member. The snap-fit member includes a main body portion and a clasp portion. The main body portion includes a fixing portion, a lever arm rotating portion formed by bending upwards from the tail end of the fixing portion, and a pressing portion fixedly connected to the end of the lever arm rotating portion. The fixing portion is fixedly installed on the top of the housing. The clasp portion includes two clasp arms on two sides of the pressing portion and fixedly connected to the pressing portion. The ends of the clasp arms are respectively provided with a clasp protruding upwards. The height of the clasp is reduced by pressing the pressing portion and the unlocking of the connector is finally completed.
US10630019B2 Shelf system having electrical supply
A shelf system having electrical supply includes at least one backboard and at least one power adjustment mechanism. Each power adjustment mechanism has a socket and a plug. The backboard has a through hole. The socket has an inserting cylinder inserted in the through hole and a clamping portion. The clamping portion has a connecting cylinder, a flange disposed on the connecting cylinder, and a wedge buckle disposed on the connecting cylinder and spaced from the flange. The backboard is sandwiched between the wedge buckle and the flange. The plug is a cylindrical portion inserted in the connecting cylinder. The plug can be arranged on the backboard and the socket can be inserted on the plug. Even if the shelf has been assembled, a user may quickly install the power adjustment mechanism into the shelf.
US10630017B2 Insulating sheath of plug
An insulating sheath of a plug has a sheet-like sheath main body (1), a contact pin sheath (2) and a contact pin hole (3). The contact pin sheath protrudes from the sheath main body, the contact pin hole is a through-hole allowing the contact pin sheath to communicate with the sheath main body, and the contact pin hole is used for being sheathed on a contact pin of the plug. The insulating sheath can adhere the sheath main body to an insulation part of the plug, and can protect the contact pin at the same time, preventing short circuit by water leakage or electric leakage between contact pins, and also preventing an electric shock caused by a finger touching the contact pin without affecting normal plugging-in and unplugging of the plug.
US10630015B2 Plug connector and socket connector
A plug connector includes an insulating body, a first plug conductive terminal set and a second plug conductive terminal set. The insulating body includes a base portion, a tongue plate, at least two projections and a stopper block. The tongue plate extends onward from the base portion, the at least two projections extend from two sidewalls of the tongue plate, and the stopper block is positioned on an inner side of one of the at least two projections. The first plug conductive terminal set is fixed upon one side of the tongue plate. The second plug conductive terminal set is fixed upon the other side of the tongue plate.
US10630014B2 Mobile terminal, power interface, and method for manufacturing power interface
A power interface may include a housing and a connection body. The housing has an inner wall defining a stopping groove. The connection body is disposed in the housing and includes a first encapsulation portion and a plurality of pins spaced apart. The pins are wrapped by the first encapsulation portion, and a partial outer face of each of the pins is exposed by the first encapsulation portion. The first encapsulation portion is connected to the housing. The first encapsulation portion has an engaging flange arranged adjacent an end of the pins, and the engaging flange is engaged in the stopping groove.
US10630013B2 Mobile terminal and power interface
A power interface may include a housing and a connection body. The housing has an inner wall defining a stopping groove. The connection body is disposed in the housing and includes a first encapsulation portion and a plurality of pins spaced apart. The pins are wrapped by the first encapsulation portion, and a partial outer face of each of the pins is exposed by the first encapsulation portion. The first encapsulation portion is connected to the housing. The first encapsulation portion has an engaging flange arranged adjacent an end of the pins, and the engaging flange is engaged in the stopping groove.
US10630011B2 Plug connection of conductive tracks of at least two mutually spaced circuit boards, by means of at least one plug connector
In one example, the disclosure relates to plug connections of conductor tracks of at least two interspaced circuit boards with the aid of at least one plug connector. The plug connections are distinguished, for example, by the fact that the conductor tracks are easily electrically conductively interconnected. For this purpose, the plug connector can be a column having a polygonal or star-shaped or conic-section-shaped cross-section. The column can include at least two C-shaped contact springs positioned opposite each other. Moreover, the interspaced circuit boards each include, at the same point, an opening for partially accommodating the column, including plated through-holes, and so the interspaced plated through-holes of the circuit boards can be electrically conductively interconnected via the contact springs of the column.
US10630006B2 SIM card reader connector with retention contact
A card connector for SIM cards and the like includes a base or housing and a cover that removably attaches to the base. A spring contact disposed within the base that engages a card during insertion and removal operations to provide controlled insertion and removal forces. The spring contact defines a base portion defining a first longitudinal end and an opposing second longitudinal end, a first resilient member extending above the base portion, a second resilient member extending above the base portion, and a third resilient member extending above the base portion.
US10630005B1 Method for coupling an electrical conductor to an electrical connector utilizing generic ferrule
An electrical coupling method for coupling an electrical conductor to a connector may provide for the elimination of pre-crimping, crimp tooling and pre-crimp UL testing certifications that go with it, and by testing standard generic ferrules in the said Dual Rated connectors, and by use of a UL approved instruction sheet, for the user to utilize generic ferrules. The may include the steps of: inserting one or more electrical conductors and an uncrimped ferrule into a connector aperture of an electrical connector, the one or more electrical conductors and uncrimped ferrule being uncoupled to each other prior to insertion into the connector aperture; and screwing a clamping screw so that preferably the clamping screw simultaneously (i) crimps the uncrimped ferrule to the first electrical conductor and (ii) secures the ferrule and first electrical conductor to the electrical connector within the connector aperture.
US10630000B1 Integrated infrared optical antenna and polaronic organic transducer sensor
An antenna array is provided including a substrate, a metal ground plane proximate the substrate, and a dielectric layer proximate the metal ground plane. A first plurality of antenna elements including polaronic organic transducer elements is proximate the dielectric layer and connected in series. A second plurality of antenna elements including polaronic organic transducer elements is proximate the dielectric layer and also connected in series. The first and second plurality of antenna elements are electrically isolated. The antenna elements of the first plurality of antenna elements are configured to detect a first wavelength, while the antenna elements of the second plurality of antenna elements are configured to detect a second wavelength, different from the first wavelength.
US10629996B2 Active chaff
Embodiments of the present invention relate to a chaff electronic countermeasure device for protecting mobile platforms against radio frequency threats. A device comprises an antenna that is in communication with a substrate. An integrated circuit is in electrical communication with the antenna. The device is configured to absorb from a source a first radio frequency having a first amplitude. In response to absorbing the first radio frequency, the device reradiates at least a portion of a second radio frequency having a second amplitude toward the radar source, which results in an increased radar cross section of the device as perceived by the radar source. The second amplitude is higher than the first amplitude.
US10629993B2 Method and apparatus for a 60 GHz endfire antenna
The LTCC (Low Temperature Co-fired Ceramic) substrate is used to form an antenna structure operating at 60 GHz. The dielectric constant is high and ranges from 5 to 8. The substrate thickness is fabricated with a thickness between 360 μm to 700 μm. The large dielectric constant and large thickness of the substrate creates a guiding wave in the LTCC that forms an endfire antenna. A high gain signal of 10 dB in a preferred direction occurs by placing the microstrip fed dipole structure in the center of the LTCC substrate creating a dielectric cavity resonator. The creation of a slot in the LTCC substrate between the two microstrip fed dipole structures eliminates beam tilting and allows for the two microstrip fed dipole structures to reduce the coupling to each other thereby providing substantially two isolated endfire antennas. These antennas can be used as multiple receive or transmit antennas.
US10629991B2 Antenna device including mutually coupled antenna elements
An antenna device is disclosed. The antenna device includes a main antenna element and a sub antenna element, the sub antenna element being configured to form a mutual coupling with the main antenna element where a central axis of the sub antenna element forms an angle different from a right angle with a central axis of the main antenna element.
US10629988B2 Antenna device and electronic device
An antenna device includes an insulating substrate, a coil antenna including a helically wound coil conductor and at least two mounting electrodes conducted to the coil conductor, and a wiring conductor disposed on the substrate and including connection portions connected to the mounting electrodes of the coil antenna. The wiring conductor includes a first wiring conductor parallel extending portion and a second wiring conductor parallel extending portion, and directions of currents flowing through the first wiring conductor parallel extending portion and the second wiring conductor parallel extending portion are opposite to each other with respect to a direction of a current flowing through the coil conductor.
US10629987B2 Microstrip antenna assembly having a detuning resistant and electrically small ground plane
An antenna assembly is disclosed including a ground plane having a first longitudinal edge and a second longitudinal edge. The first and second longitudinal edges may extend in a longitudinal direction and may be spaced apart in a lateral direction that is perpendicular to the longitudinal direction. The ground plane may define a first plurality of slots that are open to the first longitudinal edge and a second plurality of slots that are open to the second longitudinal edge. The antenna assembly may also include a patch antenna spaced apart from the ground plane and arranged in parallel with the ground plane. The patch antenna may have a pair of opposite edges and may define a first plurality of slots that are open to one of the pair of opposite edges of the patch antenna. In some embodiments, the antenna assembly may include one or more parasitic elements that also define a plurality of slots.
US10629983B2 Antenna system and mobile terminal
An antenna system, including a metal frame including a radiation portion and a grounding portion separately arranged, and a gap zone is defined therebetween; a main board including a system ground, a first radio frequency feeding end and a second radio frequency feeding end; a first conductive member; a second conductive member; a three-in-one antenna unit; and a diversity antenna unit; the three-in-one antenna unit is connected with the first radio frequency feeding end, and the diversity antenna unit is electrically connected with the second radio frequency feeding end; the three-in-one antenna unit and the diversity antenna unit are connected with the radiation portion respectively through the first conductive member and the second conductive member; the radiation portion includes a first grounding point and a second grounding point which are connected with the system ground and arranged between the diversity antenna unit and the three-in-one antenna unit.
US10629981B2 Method for producing vias on flexible substrate
Method for producing a connection structure passing through a flexible substrate, in particular a plastic substrate, comprising: producing a hole passing through the thickness of the substrate, depositing in the hole a first conductive ink having a first viscosity, so as to form a conductive layer on at least one wall of the hole, depositing in the hole a second conductive ink having a second viscosity greater than the first viscosity, so as to fill the hole.
US10629974B2 Tunable dual-band resonator
A tunable dual-band resonator and a tunable dual-band band-pass filter using the tunable dual-band resonator. The dual-band resonator is structured such that a stub is added to each half-wavelength resonator provided with half-wavelength resonator protrusions (capacity-component adjust parts). The dual-band resonator is made up of an odd-number mode resonator in a shape including a ground conductor disposed on the back surface of a dielectric body, and a strip conductor disposed on the top surface thereof, and an even-number mode resonator in such a shape as to be formed when the stub is connected to an end face on the opposite side of the open-end of the strip, characterized in that a dielectric rod having a circular cross section is provided in the space above the respective stubs and another dielectric rod having a circular cross section is provided in the space above the half-wavelength resonator protrusions.
US10629973B2 Phase shift device
A phase shift device includes a planar transmission line that is formed by a signal electrode and a ground electrode which are separated by a dielectric substance, whereby the signal electrode of the planar transmission line is divided into several pieces and includes overlapping areas of adjacent pieces that are filled with a tunable liquid crystal material, thereby forming a dielectric tunable component (varactor) with a metal-insulator-metal type capacitor. The several pieces of the signal electrode are arranged at two or more different distance levels with respect to the ground electrode. The tunable liquid crystal material is arranged as a continuous layer between several pieces of the signal electrode that are arranged at two different distance levels.
US10629972B2 Radio-frequency switching circuit
A radio-frequency switching circuit includes a first diode, a second diode, a first inductor, a second inductor, a first capacitor, and a second capacitor. Cathodes of the first diode and the second diode are configured to receive a first reference voltage. A first inductor is coupled with an anode of the first diode, and configured to receive a first control voltage. A second inductor is coupled with an anode of the second diode, and configured to receive a second control voltage. The first capacitor is coupled with the first node of the first inductor. The second capacitor is coupled with the first node of the second inductor. When the first control voltage is lower than the first reference voltage, the first diode is switched off. When the second control voltage is lower than the first reference voltage, the second diode is switched off.
US10629965B2 Battery module, battery pack including such battery module, and vehicle including such battery pack
Disclosed is a battery module, which includes a battery cell assembly having a plurality of battery cells which are stacked one another, an interconnection board mounted to at least one side of the battery cell assembly to electrically connect the plurality of battery cells, a temperature sensor mounting groove provided at the interconnection board so that a temperature sensor for measuring a temperature of the battery cell assembly passes therethrough, and an assembling error preventer provided at a bottom of the temperature sensor mounting groove to prevent the temperature sensor from interfacing with a facing battery cell which faces the temperature sensor when the temperature sensor passes through the temperature sensor mounting groove.
US10629951B2 Electrolyte composition and a sodium ion battery comprising the same
Disclosed is an electrolyte composition, suitable for sodium ion battery, comprising at least one sodium compound selected from the group consisting of sodium monofluorophosphate (Na2PO3F), sodium difluorophosphate (Na PO2F2) and mixture thereof, and a sodium ion battery comprising the same.
US10629947B2 Electrochemical cell
Electrochemical cells including components and configurations for electrochemical cells, such as rechargeable lithium batteries, are provided. The electrochemical cells described herein may include a combination of components arranged in certain configurations that work together to increase performance of the electrochemical cell. In some embodiments, such combinations of components and configurations described herein may minimize defects, inefficiencies, or other drawbacks that might otherwise exist inherently in prior electrochemical cells, or that might exist inherently in prior electrochemical cells using the same or similar materials as those described herein, but arranged differently.
US10629945B2 Method for manufacturing secondary battery and method for manufacturing electrode assembly
The present invention relates to a method for manufacturing a secondary battery. The method comprises: a first process (S10) of manufacturing an incomplete electrode assembly; a second process (S20) of preparing a pattern member on which a patterned pressing protrusion is formed; a third process (S30) of stacking the pattern member on an outer surface of the incomplete electrode assembly; a fourth process (S40) of partially pressing the incomplete electrode assembly to pattern-bond an interface between the electrode and the separator and thereby to manufacture a complete electrode assembly; a fifth process (S50) of accommodating the complete electrode assembly into a case; a sixth process (S60) of injecting an electrolyte to impregnate the electrolyte into the electrode assembly; a seventh process (S70) of sealing an unsealed surface to manufacture a secondary battery; and an eighth process (S80) of heating and pressing an entire surface of the secondary battery.
US10629941B2 Making a pouch format cell and attaching a tab to an electrode
To make a pouch format cell, an outermost stack (including a negative electrode and separators positioned on opposed surfaces thereof) is formed. An inner stack is formed, including a positive electrode and a sub-stack (i.e., another negative electrode with separators positioned on opposed surfaces thereof and another positive electrode). The inner stack is positioned on the outermost stack to form a core stack, such that i) one inner stack end substantially aligns with one outermost stack end, ii) another end and a portion of the outermost stack remain exposed, and iii) the inner stack positive electrode is adjacent to one of the outermost stack separators. The outermost stack exposed portion is folded around another inner stack end and to cover a portion of an outer layer of the inner stack. This forms an initial overlay. The core stack is folded around at least a portion of the initial overlay.
US10629937B2 Fuel cell separator member and fuel cell stack
A separator member of a fuel cell stack includes a load receiver in a form of a plate. The load receiver is joined to a first separator in a manner that the load receiver protrudes outward from an outer peripheral portion of the first separator. The load receiver is formed asymmetrically about a central line passing through the center of the load receiver in the width direction and extending in the protruding direction of the load receiver.
US10629936B2 Fuel cell stack
A fuel cell stack includes a cell laminate, a casing, a first fastening member, a second fastening member, a first seal member, and a second seal member. The cell laminate includes fuel cells stacked in a stacking direction. The casing accommodates the cell laminate. The casing includes a first end plate, a second end plate, and a connecting member. The first end plate and the second end plate sandwich the cell laminate in the stacking direction. The connecting member is arranged between the first end plate and the second end plate. The first fastening member connects the first end plate and the connecting member. The second fastening member connects the second end plate and the connecting member. The first seal member is provided between the first end plate and the first fastening member. The second seal member is provided between the second end plate and the second fastening member.
US10629932B2 Method and system for monitoring state of charge (SOC) of flow battery system
An apparatus monitors the state of charge (SOC) of a flow battery system. The monitoring method include determining SOCs of at least two pairs of different monitoring positions. A pair of monitoring position may be located inside of an anode electrolyte storage tank (2) and inside of a cathode electrolyte storage tank (3), or inside of an anode electrolyte outlet pipeline (6) of a stack and inside of a cathode electrolyte outlet pipeline (7) of the stack, or inside of an anode electrolyte inlet pipeline (8) of the stack and inside of a cathode electrolyte inlet pipeline (9) of the stack. The SOCsum of the flow battery system is acquired according to the SOCs corresponding to different pair of monitoring positions, respectively. The method ensures acquiring an SOC monitoring result timely and accurately.
US10629930B2 Fuel cell system and control method therefor
A controller closes a cutoff valve and a purge valve when a pressure value detected by a pressure sensor is an abnormal value. The controller then judges that an on-off valve has failed when the pressure value detected by the pressure sensor P1 has lowered, whereas the controller judges that the pressure sensor has failed when the pressure value detected by the pressure sensor has not lowered.
US10629928B2 Fuel cell system and control method of fuel cell system
A fuel cell system includes a fuel cell, an oxidizing gas supplier, an oxidizing gas supply pipe, an oxidizing gas discharge pipe, a fuel gas supply pipe, a fuel gas return pipe, a fuel gas discharge valve, and a controller. The controller executes valve closing control to close the fuel gas discharge valve; and determines the flow rate of a diluent gas to be supplied to an oxidizing gas supply portion by the oxidizing gas supplier according to the flow rate of a leakage gas flowing from the fuel gas discharge valve to the oxidizing gas discharge pipe after the execution of the valve closing control. The flow rate of the diluent gas to be supplied to the oxidizing gas supply portion is determined to increase as the flow rate of the leakage gas increases.
US10629918B2 Fuel cell stack with enhanced freeze-thaw durability
The present invention provides a fuel cell stack with enhanced freeze-thaw durability. In particular, the fuel cell stack includes a gas diffusion layer between a membrane-electrode assembly and a bipolar plate. The gas diffusion layer has a structure that reduces contact resistance in a fuel cell and is cut at a certain angle such that the machine direction (high stiffness direction) of GDL roll is not in parallel with the major flow field direction of the bipolar plate, resulting in an increased GDL stiffness in a width direction perpendicular to a major flow field direction of a bipolar plate.
US10629917B2 Separator for fuel cells, fuel cell, fuel cell stack, and method of manufacturing separator for fuel cells
A separator for fuel cells is provided. The separator includes: a base material; an underlying plate layer formed on the base material; and a gold plate layer formed on the underlying plate layer by means of electroless plating. The separator is characterized in that a face of the underlying plate layer facing the gold plate layer has an arithmetic average roughness Ra of 80 nm or less. According to the present invention, there can be provided a separator for fuel cells in which the gold plate layer can be uniformly formed for irregular parts that constitute gas flow channels and the occurrence of unformed parts and pinholes in the gold plate layer is prevented without increasing the film thickness of the gold plate layer and which is excellent in the corrosion resistance and the conductivity.
US10629914B2 Electrode assembly and method for manufacturing same
The present disclosure is directed to preventing generation of side reactions at a negative electrode, inhibiting an increase in resistance, and improving productivity. An electrode assembly is provided including: a negative electrode including a negative electrode current collector having a negative electrode tab at one end, and a negative electrode active material layer formed on a surface thereof; a positive electrode including a positive electrode current collector having a positive electrode tab at one end, and a positive electrode active material layer formed on a surface thereof; and a separator interposed between the positive and negative electrodes, and including a coating layer containing a conductive material and a polymer binder on the top surface of the negative electrode active material layer, wherein the coating layer is spaced apart from the top end, where the negative electrode tab is formed, and the bottom end by a predetermined distance.
US10629909B2 Energy storage device
An energy storage device having sufficient energy density and sufficient power is provided. In this embodiment, an energy storage device that includes a negative electrode containing an active material layer including an active material is provided. The active material layer includes particulate graphite as the active material. A particle diameter frequency distribution of the graphite includes a first peak and a second peak which appears in a region where a particle diameter is larger than a particle diameter of the first peak, the particle diameter of the first peak is equal to or less than 10 μm and the particle diameter of the second peak is more than 10 μm. The active material layer further includes a particulate high hardness active material which has higher hardness than the graphite.
US10629907B2 Lithium ion secondary battery and method for producing the same
A lithium ion secondary battery with a high capacity retention rate, and a method for producing the lithium ion secondary battery. The lithium ion secondary battery may comprise a cathode including a cathode active material layer comprising a cathode active material and Li3PO4, an anode including an anode active material layer comprising an anode active material, and an electrolyte layer being disposed between the cathode and the anode and comprising a liquid electrolyte, wherein a C1s element ratio obtained by X-ray photoelectron spectroscopy measurement of the Li3PO4 is 18.82 at % or less.
US10629901B2 Production method of battery active material, battery active material, nonaqueous electrolyte battery and battery pack
A production method of a battery active material of the present embodiment includes a step of obtaining a coprecipitated product containing Ti and Nb by mixing a solution with a pH of 5 or lower, in which a Ti compound is dissolved, and a solution with a pH of 5 or lower, in which a Nb compound is dissolved, such that molar ratio of Ti and Nb (Nb/Ti) is adjusted within a range of 1≤Nb/Ti≤28, and then further mixing with an alkali solution with a pH of 8 or higher; and a step of burning the coprecipitated product under condition of 635° C. or higher and 1200° C. or lower.
US10629900B2 Porous silicon compositions and devices and methods thereof
A porous silicon composition, a porous alloy composition, or a porous silicon containing cermet composition, as defined herein. A method of making: the porous silicon composition; the porous alloy composition, or the porous silicon containing cermet composition, as defined herein. Also disclosed is an electrode, and an energy storage device incorporating the electrode and at least one of the disclosed compositions, as defined herein.
US10629898B2 Electrodes, lithium-ion batteries, and methods of making and using same
Described herein are improved composite anodes and lithium-ion batteries made therefrom. Further described are methods of making and using the improved anodes and batteries. In general, the anodes include a porous composite having a plurality of agglomerated nanocomposites. At least one of the plurality of agglomerated nanocomposites is formed from a dendritic particle, which is a three-dimensional, randomly-ordered assembly of nanoparticles of an electrically conducting material and a plurality of discrete non-porous nanoparticles of a non-carbon Group 4A element or mixture thereof disposed on a surface of the dendritic particle. At least one nanocomposite of the plurality of agglomerated nanocomposites has at least a portion of its dendritic particle in electrical communication with at least a portion of a dendritic particle of an adjacent nanocomposite in the plurality of agglomerated nanocomposites.
US10629894B2 Cathode material for a lithium-sulphur cell
A cathode material for an electrochemical cell, in particular a lithium-sulfur cell, including at least one cathode active material and at least one in particular lithium ion-conducting or lithium ion-conductive polymer electrolyte and/or at least one inorganic ion conductor, in particular a lithium ion conductor. The at least one cathode active material includes a polymer containing in particular covalently bound sulfur. Moreover, also described is a cell and a battery equipped with same.
US10629893B2 Method of producing an electrode substrate made of carbon fibers
A porous electrode substrate has a form of a tape material and contains a structure made of carbon fibers and a carbon matrix. A specific surface area, porosity, and pore distribution are determined by the carbon matrix. The carbon matrix contains carbon particles including activated carbon with a high specific surface area and a carbonized or graphitized residue of a carbonizable or graphitizable binder.
US10629892B2 Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including same
A negative electrode for a rechargeable lithium battery includes a negative active material layer on a current collector. The negative active material layer includes a carbon-based negative active material. A Degree of Divergence (DD) value of the negative electrode is greater than or equal to about 19. The DD value may be calculated based on the following equation: DD(Degree of Divergence)=(Ia/Itotal)*100 where Ia is a sum of peak intensities at non-planar angles measured by XRD using a CuKα ray and Itotal is a sum of peak intensities at all angles measured by XRD using a CuKα ray.
US10629889B2 Process of preparing a chemically pre-formed (CPF) iron negative electrode with oxidizing gases
Provided is a process for preparing an electrode comprising an iron active material. The process comprises first fabricating an electrode comprising an iron active material, and then treating the electrode with a gaseous oxidant to thereby create an oxidized surface. The resulting iron electrode is preconditioned prior to any charge-discharge cycle to have the assessable surface of the iron active material in the same oxidation state as in discharged iron negative electrodes active material.
US10629886B2 Battery pack system
An improved battery pack and system including such battery pack is disclosed. The battery pack includes a power control module positioned to allow for increased battery power or reduced battery pack size.
US10629882B2 Battery module
A battery module includes a plurality of overlapping rechargeable batteries arranged in one direction, each rechargeable battery including at least one terminal protruding outside, and a plurality of bus bars electrically connecting terminals of different rechargeable batteries of the plurality of rechargeable batteries, the bus bar including a bent band in surface contact with and electrically connected to a respective terminal.
US10629880B2 Energy providing devices and applications thereof
Disclosed herein are compositions for use in an energy providing devices and methods of preparing such devices. Also included herein is energy providing devices that comprise a charged compound modified substrate or zwitterion-modified substrate or energy providing devices that comprise an electrolyte that comprises a perhalogenatedphenyl azide charged or zwitterionic compound.
US10629878B2 Battery pack including spacer
Disclosed herein is a battery pack configured to have a structure in which two or more battery modules, each of which includes a plurality of battery cells or unit modules which can be charged and discharged, are arranged such that the battery modules are mounted in a space defined between a pack housing and a base plate, the battery pack including the base plate on which the arranged battery modules are loaded, a sensing assembly mounted at upper ends of the battery modules for detecting voltage of the battery modules, a pair of tension bars mounted at the upper ends of the battery modules in a direction in which the battery modules are arranged for supporting the battery modules, a battery management system (BMS) mounted at an outside of an outermost one of the battery modules in a state in which the BMS is adjacent to the outermost one of the battery modules, the pack housing for surrounding the battery modules and the BMS, a lower end of the pack housing being coupled to the base plate, and a spacer disposed in a space defined between an inner surface of the pack housing and outer surfaces of the battery modules for restraining motion of upper end parts of the battery modules.
US10629875B2 Battery module
Disclosed is a battery module having a simple structure, facilitating reduction in weight and size, and saving manufacturing costs while securing an efficient cooling capability. The battery module includes: a plurality of pouch-type secondary batteries, each including an electrode assembly, an electrolyte, a pouch exterior, a receiving portion configured to receive the electrode assembly, and a sealing portion obtained by sealing the pouch exterior, wherein the plurality of secondary batteries are arranged in a left-and-right direction while standing in an up-and-down direction and each have a lower sealing portion that is folded; and a cooling plate including a thermally conductive material, arranged under the plurality of pouch-type secondary batteries while lying down in a horizontal direction, and having two or more protrusions to which lower portions of the secondary batteries are attached and a folding support portion located between the protrusions and protruding upwards, wherein the protrusions convexly protrude upwards from an upper surface of the cooling plate, and the folding support portion supports the folded lower sealing portion of each secondary battery upwards.
US10629870B1 Circuit board and battery holder thereof
A circuit board including electronic component and battery holder. Battery holder is fixed to circuit board and includes base, first conductive component and second conductive component. Base includes bottom portion and side portion. Bottom portion has top surface and bottom surface. Side portion stands on top surface. Side portion and bottom portion form accommodation space. First conductive component includes first contact part, first support part and first protruding part. First support part is connected to first contact part. First protruding part is located on first support part. First contact part is located in accommodation space. First support part extends outwards along normal direction of bottom surface. First protruding part extends along longitudinal direction of first support part, and side of first support part that is located away from first contact part is fixed to circuit board. Electronic component is located between bottom surface and circuit board.
US10629865B2 Feedthrough device
In a feedthrough device and method of assembly thereof, a body has longitudinally spaced first and second end faces and an inner surface defining a longitudinally extending opening. A conductor extends within the opening and an insulator extends within the opening transversely intermediate the conductor and the inner surface of the body to insulate the conductor from the body. The body has at least one indentation formed longitudinally into at least one of the first and second end faces, with a portion of the inner surface of the body being displaced transversely against the insulator in correspondence with the at least one longitudinal indentation to crimp the insulator and conductor within the opening of the body and maintain a hermetic seal across the feedthrough device.
US10629861B2 Stretchable battery and method of manufacturing the same
A stretchable battery includes: a pouch; a metal barrier disposed in the pouch; and an electrode assembly disposed in the pouch and on the metal barrier, wherein the pouch and the electrode assembly each have a wavy shape including a plurality of peaks and valleys.
US10629851B2 OLED thin film encapsulation structure
An OLED thin film encapsulation structure and a method of fabricating the same are provided. The OLED thin film encapsulation structure has: a substrate, a first organic layer disposed on the substrate; a first inorganic layer which is a hydrophobic layer; a second organic layer; a second inorganic layer which is disposed on the first inorganic layer and the second organic layer, and is a hydrophobic layer; and a plurality of first protrusions disposed with intervals on the first organic layer and/or the second organic layer.
US10629850B2 Flexible OLED display panel and encapsulation method thereof
A flexible OLED display panel is disclosed and includes an encapsulation structure. The encapsulation structure includes: a first inorganic thin film formed on a surface of an OLED display layer and a surrounding region of the surface; a first organic thin film formed on a surface of the first inorganic thin film; and a plurality of dams. Each of the dams has a first sub-dam close to the first inorganic thin film and a second sub-dam away from the first inorganic thin film. A gap is formed between the first sub-dam and the second sub-dam which are located at a same side. The gap is filled with desiccant.
US10629849B2 OLED with a flattening layer between two barrier layers
According to one embodiment, an organic semiconductor device includes a supporting substrate, a plurality of organic EL light emitting elements, a first barrier layer, a flattening layer, and a second barrier layer. The flattening layer exists sporadically and makes gentle in inclination steep elevation change present in the surface of the first barrier layer. The first barrier layer and the second barrier layer are made of moisture penetration preventive material.
US10629846B2 Flexible display apparatus
A display apparatus includes a flexible substrate and a first insulation layer disposed on the flexible substrate. The flexible substrate includes a bending area. The first insulation layer includes a first unevenness disposed over the bending area. The first unevenness includes two or more steps in at least a portion of the first unevenness.
US10629840B2 Organic optoelectronic device and method for manufacturing the same
The present invention provides an organic optoelectronic device and a method for manufacturing the same, in which laser scanning is used to form the electrical connection between the second electrode layer and the contact electrode layer. The present invention can effectively decrease the frequency of replacement of metal masks, significantly shorten the time required for replacing the metal masks, and reduce the down time due to the replacement of metal masks. In addition, the organic optoelectronic device can have a large active area due to the narrow border of the electrical connection formed by the laser scanning.
US10629839B2 Lighting apparatus using organic light emitting diode
A lighting apparatus of the present disclosure divides a plurality of pixels and configures an auxiliary electrode which transmits a signal to the first substrate with a metal nano ink so that the light which is reflected from the interface between the first substrate and an external air layer to be incident is reflected and scattered again to improve the luminous efficiency of the lighting apparatus.
US10629837B2 Top emission organic EL element and manufacturing method thereof
A manufacturing method of a top emission organic EL element includes a step of providing an insulating layer on a substrate, a processing step of processing a center area within a region in which the insulating layer is provided, a step of forming a bank on the insulating layer, a lower electrode material applying step, a luminescent material applying step, and an upper transparent electrode forming step. The insulating layer is provided such that a contact angle to a solution to be applied in forming a lower electrode becomes smaller at the center area than the contact angle at a peripheral area within the region.
US10629836B2 Organic light emitting diode and organic light emitting diode display device including the same
An organic light emitting diode includes a first electrode; a hole auxiliary layer on the first electrode; a light emitting material layer on the hole auxiliary layer and emitting white light; an electron auxiliary layer on the light emitting material layer; and a second electrode on the electron auxiliary layer, wherein the light emitting material layer includes a first light emitting material layer, a second light emitting material layer and a third light emitting material layer sequentially layered, and wherein the first light emitting material layer includes an electron blocking material.
US10629833B2 Flashing ratchets
Provided herein are flashing ratchets that produce transport based on the oscillating application of regularly-spaced, asymmetric potentials. In particular, devices are provided that transport electrons without the requirement of an overall source-drain bias favoring electron transport.
US10629830B2 Organic electroluminescent device
An amine derivative represented by the following General Formula (1) is provided. In the above General Formula (1), Ar1, Ar2 and Ar3 are independently a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group, at least one of Ar1, Ar2 and Ar3 is substituted with a substituted or unsubstituted silyl group, and L is a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
US10629829B2 Organometallic compound and organic light-emitting device including the same
An organometallic compound represented by Formula 1: wherein in Formula 1, CY1, R1 to R3, R11 to R13, R21, and b1 are the same as described in the specification.
US10629827B2 Organometallic complexes as phosphorescent emitters in organic LEDs
Organic light emitting devices are described wherein the emissive layer comprises a host material containing an emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium and osmium complexes. The organic light emitting devices optionally contain an exciton blocking layer. Furthermore, improved electroluminescent efficiency in organic light emitting devices is obtained with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands. Compounds of this formula can be synthesized more facilely than in previous approaches and synthetic options allow insertion of fluorescent molecules into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers.
US10629826B2 Organic compound and photoelectric conversion element
To provide an organic compound represented by the following general formula (1): where R1 is a C2-C6 alkyl group or a hydrogen atom, R2 and R3, which may be identical or different, are each a C2-C12 alkyl group, and R4 and R5, which may be identical or different, are each a C6-C12 alkyl group that may be a branched chain or a straight chain.
US10629825B2 Organic light-emitting device
An organic light-emitting device includes: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, the organic layer including an emission layer, wherein the organic layer includes a first compound represented by Formula 1 and a second compound represented by one of Formulae 2 and 3:
US10629824B2 Organic electroluminescent compound and organic electroluminescent device comprising the same
The present disclosure relates to an organic electroluminescent compound and an organic electroluminescent device comprising the same. The organic electroluminescent compound of the present disclosure has a high glass transition temperature that can be used in a deposition process. In addition, an organic electroluminescent device having low driving voltage, a high luminous efficiency and/or long lifespan characteristic can be provided with the use of the organic electroluminescent compound according to the present disclosure.
US10629818B2 Organic thin-film transistor and method for manufacturing the same, material for organic thin-film transistor, composition for organic thin-film transistor, compound, and organic semiconductor film
A compound which, when used for organic semiconductor films in organic thin-film transistors, makes the organic thin-film transistors exhibit a high carrier mobility, a material for an organic thin-film transistor for which the compound is used, a composition for an organic thin-film transistor, an organic thin-film transistor and a method for manufacturing the same, and an organic semiconductor film. The organic thin-film transistor contains a compound represented by General Formula (1) in an organic semiconductor film (organic semiconductor layer) thereof.
US10629814B2 Coaxial semiconductive organic nanofibers and electrospinning fabrication thereof
A coaxial nanocomposite including a core, which includes fibers of a first organic polymer, and a shell, which includes fibers of a second organic polymer, the first polymer and the second polymer forming a heterojunction.
US10629811B2 Resistance variable memory structure and method of forming the same
A memory structure includes a first dielectric layer, having a first top surface, over a conductive structure. A first opening in the first dielectric layer exposes an area of the conductive structure, and has an interior sidewall. A first electrode structure, having a first portion and a second portion, is over the exposed area of the conductive structure. The second portion extends upwardly along the interior sidewall. A resistance variable layer is disposed over the first electrode. A second electrode structure, having a third portion and a fourth portion, is over the resistance variable layer. The third portion has a second top surface below the first top surface of the first dielectric layer. The fourth portion extends upwardly along the resistance variable layer. A second opening is defined by the second electrode structure. At least a part of a second dielectric layer is disposed in the second opening.
US10629810B2 Resistance-change type memory device
A resistance-change type memory device includes a substrate, a plurality of electrodes arranged in a first direction parallel to an upper surface of the substrate and extending in a second direction intersecting the upper surface, a resistance-change film provided in a third direction that is parallel to the upper surface and intersects the first direction as viewed from the plurality of electrodes, a semiconductor film provided between the plurality of electrodes and the resistance-change film, and an insulating film provided between the plurality of electrodes and the semiconductor film. The resistance-change film has a resistance value that changes when a current flows therein.
US10629808B2 Phase change random access memory and fabrication method thereof
A method for forming a phase change random access memory is provided. The method includes providing a substrate having a surface; and forming a dielectric layer on the surface of the substrate. The method also includes forming a through-hole penetrating through the dielectric layer; and forming an adhesion layer on inner surface of the through-hole. Further, the method includes forming a metal layer doped with inorganic ions on the adhesion layer to reduce over-etching of the metal layer and increase heating efficiency of the metal layer on the surface of the adhesion layer; and forming a phase change layer on the dielectric layer, the adhesion layer and the doped metal layer.
US10629805B2 Magnetic element
A magnetic element is provided. The magnetic element includes a free magnetization layer having a surface area that is approximately 1,600 nm2 or less, the free magnetization layer including a magnetization state that is configured to be changed; an insulation layer coupled to the free magnetization layer, the insulation layer including a non-magnetic material; and a magnetization fixing layer coupled to the insulation layer opposite the free magnetization layer, the magnetization fixing layer including a fixed magnetization so as to be capable of serving as a reference of the free magnetization layer.
US10629804B2 Method of manufacturing magnetoresistive device
A magnetoresistance device has an MgO (magnesium oxide) layer provided between a first ferromagnetic layer and a second ferromagnetic layer. The device is manufactured by forming a film of the MgO layer in a film forming chamber. A substance whose getter effect with respect to an oxidizing gas is large is adhered to surfaces of components provided in the chamber for forming the MgO layer. The substance having a large getter effect is a substance whose value of oxygen gas adsorption energy is 145 kcal/mol or higher. Ta (tantalum), in particular, is preferable as a substance which constitutes the magnetoresistance device.
US10629802B1 Magnetoresistance device and method for forming the same
A magnetoresistance device is disclosed, comprising a bottom electrode, a magnetic tunneling junction (MTJ) disposed on the bottom electrode, a top electrode disposed on the magnetic tunneling junction, a first spacer disposed on the magnetic tunneling junction and covering a sidewall of the top electrode, and a second spacer disposed on the first spacer and conformally covering along a sidewall of the first spacer, a sidewall of the magnetic tunneling junction and a sidewall of the bottom electrode.
US10629799B2 Piezoelectric vibration element and piezoelectric vibration device
A crystal vibration element includes a plate shaped crystal blank including a pair of long sides and pair of short sides when viewed on a plane, and a pair of excitation electrodes superimposed on the two major surfaces of the crystal blank. When viewed on a plane, each of the pair of excitation electrodes includes a pair of short edges extending along a pair of short sides on inner sides of the pair of short sides, and a pair of long edges extending along a pair of long sides on inner sides of the pair of long sides. The pair of short edges are shaped as straight line parallel to the pair of short sides, while the pair of long edges are shaped outwardly bulging when viewed on a plane.
US10629798B1 Semiconductor fabrication
In-situ patterning of semiconductor structures is performed using one or more “shadow walls” in conjunction with an angled deposition beam. A shadow wall protrudes outwardly from the surface of a substrate to define an adjacent shadow region in which deposition is prevented due to the shadow wall inhibiting the passage of the angled deposition beam. Hence, deposition will not occur on a surface portion of a semiconductor structure within the shadow region. Shadow walls can thus be used to achieve selective patterning of semiconductor structures. The shadow walls themselves are formed of semiconductor. In one implementation, the semiconductor structure and the one or more shadow walls used to selectively pattern it may be formed using selective area growth (SAG).
US10629797B2 Two-component bump metallization
A structure has a first substrate bonded to a first under-bump metallization (UBM) structure, the first UBM structure comprising a first bonding region laterally surrounded by a first superconducting region. A second substrate is bonded to a second under-bump metallization (UBM) structure, the second UBM structure comprising a second bonding region laterally surrounded by a second superconducting region; and a superconducting solder material joins the first UBM structure to the second UBM structure.
US10629796B2 Laminate and thermoelectric conversion element
A laminate includes, on a substrate, a first buffer layer substantially made of zirconium oxide or stabilized zirconia, a second buffer layer substantially made of yttrium oxide, a metal layer substantially made of at least one among platinum, iridium, palladium, rhodium, vanadium, chromium, iron, molybdenum, tungsten, aluminum, silver, gold, copper, and nickel, and a magnesium oxide layer substantially made of magnesium oxide, in this order.
US10629795B2 Thermoelectric module and device, in particular for generating an electric current in a motor vehicle
A thermoelectric device may include a casing of tubular shape in which extends a plurality of modules of thermoelectric elements extending parallel to a longitudinal axis of the casing. Additionally, each module may include a plurality of thermoelectric elements having a cylinder or right prism shape with a central opening, a first fluid circulating through the central opening, and a second fluid circulating around the exterior periphery, and an enclosure capping said thermoelectric elements. Further, the enclosure may include at least an intake for the second fluid and a discharge for said second fluid. Furthermore, a number and dimensions of said thermoelectric element modules is optimized as a function of the ratio between a volume of the thermoelectric elements and a volume of the casing, a thickness of the enclosure and a distance between two adjacent modules.
US10629794B2 Thermoelectric power generation device and method for manufacturing same
Each of a first outside plate and a second outside plate includes bent portions at its both ends in a direction perpendicular to a direction in which a low-temperature fluid flows. The bent portions of the first outside plate and the bent portions of the second outside plate are respectively welded together in a resiliently deformed state to approach each other. The bent portions of the first outside plate and the bent portions of the second outside plate are respectively welded together to generate stress to press a first power generation module and a second power generation module on a duct.
US10629784B2 Optoelectronic component, method for producing an optoelectronic component and flashlight for a portable device
The invention relates to an optoelectronic component (100) comprising a semiconductor chip (1) for generating a primary beam in the blue spectral range, a conversion element (4) which is arranged in the beam path of the semiconductor chip (2) and is designed to generate a secondary beam from the primary beam, wherein the conversion element (4) comprises at least one first luminescent material (9) used as a conversion material, the first luminescent material (9) being (La1-xCax)3Si6(N1-yOy)11:Ce3+ with 0≤x≤1 and 0
US10629777B2 Optoelectronic semiconductor chip
An optoelectronic semiconductor chip includes a semiconductor body including an n-conducting region, a p-conducting region and an active region between the n-conducting region and the p-conducting region; a first mirror containing a first metallic layer, and a p-metallization containing a second metallic layer, wherein during operation of the semiconductor chip, the first mirror is not at the same electrical potential as the p-conducting region, during operation of the semiconductor chip, the p-metallization is at the same electrical potential as the p-conducting region, and the first mirror has at least one opening through which the p-metallization is electrically conductively connected to the p-conducting region.
US10629775B2 Ultra-wideband light emitting diode and optical detector comprising indium gallium arsenide phosphide and method of fabricating the same
Devices, systems, and methods for providing wireless personal area networks (PANs) and local area networks (LANs) using visible and near-visible optical spectrum. Various constructions and material selections are provided herein. According to one embodiment, a light-emitting diode (LED) includes a substrate, a carrier confinement (CC) region positioned over the substrate, and an active region positioned over the CC region. The CC region includes a first CC layer that is a wideband gap CC layer including indium gallium phosphide or aluminum gallium arsenide. The CC region includes a second CC layer positioned over the first CC layer. The second CC layer is a wideband gap CC layer that includes indium gallium phosphide or aluminum gallium arsenide. The active region is configured to have a transient response time of less than 500 picoseconds (ps).
US10629773B2 Light-emitting diode comprising at least one wider bandgap intermediate layer placed in at least one barrier layer of the light-emitting zone
Disclosed is a light-emitting diode containing: first and second semiconductor layers respectively n-doped and p-doped, forming a p-n junction; an active zone placed between the first and second layers, including an InXGa1-XN emitting layer able to form a quantum well, and two InYGa1-YN, where 0W>0.
US10629768B2 Assembly and mounting of solar cells on space vehicles or satellites
Solar cell array assemblies or modules mounted on a space vehicle having discrete predefined pressure sensitive adhesive (PSA) regions thereon. In certain embodiments, the solar cell array modules may be conveniently mounted on the surface of a panel of a space vehicle or satellite with the discrete predefined PSA regions sized and shaped to match portions of the panel.
US10629766B2 Method for manufacturing ultraviolet photodetector based on Ga2O3 material
A method for manufacturing an ultraviolet photodetector based on Ga2O3 material are provided. The method includes: selecting a substrate; forming a Ga2O3 layer on an upper surface of the substrate; forming a top electrode on the Ga2O3 layer; and forming a bottom electrode on a lower surface of the substrate. Ga2O3 material is adopted, with a light transmittance in the solar blind area can reach 80% or even 90%. The Ga2O3 material is suitable for application to a light absorbing layer, and its transparent conductive electrical properties are also beneficial to improve the light absorption capacity of the light absorbing layer, thereby greatly improving the device performance of the photodetector diode.
US10629765B2 Single photon avalanche diode
A photodetector includes: a substrate having a first doping type; a first semiconductor region having a second doping type, the first semiconductor region extending into the substrate from a front side of the substrate; and a second semiconductor region having the first doping type, the second semiconductor region further extending into the substrate from a bottom boundary of the first semiconductor region, wherein when the photodetector operates under a Geiger mode, the second semiconductor region is fully depleted to absorb a radiation source received from a back side of the substrate.
US10629763B2 Solar cell module
A solar cell module includes: two solar cells adjacent one another across a space; an elongated light reflector extending over the two solar cells; and a front protector covering front surfaces of the two solar cells and the light reflector. In a plan view of the two solar cells, each of the two solar cells has chamfered corners and a substantially octagonal shape with linear long sides and linear or non-linear short sides, connected alternately. The light reflector, in the plan view, protrudes in the longitudinal direction from an intersection between a first long side facing another long side across the space, among the long sides, and a first short side one end of which is connected to the first long side, among the short sides, to cause light reflected by the uneven structure of the light-reflective film to reach at least one of the two solar cells.
US10629762B2 Infinitely extending solar battery module based on magnetically extended circuit
An infinitely extendable solar cell module based on a circuit extendable through magnetic engagement is provided. The solar cell module comprises a circuit, a battery piece, a transparent layer, and a magnetic engagement element. The battery piece is connected with the magnetic engagement element by the circuit, the battery module is adapted to be connected to another battery module by the magnetic engagement element, and the transparent layer is on the surface of the battery module.
US10629761B2 Internal protection circuit structure of photovoltaic module
An internal protection circuit structure of a photovoltaic module, which includes a plurality of solar cells including a first column, a second column, a third column, a fourth column, a fifth column, and a sixth column sequentially. Positive and negative electrodes of each column of the solar cells are sequentially connected in series to form a substring of the solar cell. The upper ends of the second column and the third column are connected to each other with a first diode connected in series to be pulled out as an outgoing terminal. The present invention uses a manner in which substrings are connected first in series and later in parallel, with four bypass diodes connected in the circuit. As such, the actual utilization ratio of the solar cell is improved.
US10629760B2 Method of fabricating an emitter region of a solar cell
Methods of fabricating emitter regions of solar cells are described. Methods of forming layers on substrates of solar cells, and the resulting solar cells, are also described.
US10629758B2 Solar cells with differentiated P-type and N-type region architectures
Methods of fabricating solar cell emitter regions with differentiated P-type and N-type regions architectures, and resulting solar cells, are described. In an example, a solar cell can include a substrate having a light-receiving surface and a back surface. A first doped region of a first conductivity type, wherein the first doped region is disposed in a first portion of the back surface. A first thin dielectric layer disposed over the back surface of the substrate, where a portion of the first thin dielectric layer is disposed over the first doped region of the first conductivity type. A first semiconductor layer disposed over the first thin dielectric layer. A second doped region of a second conductivity type in the first semiconductor layer, where the second doped region is disposed over a second portion of the back surface. A first conductive contact disposed over the first doped region and a second conductive contact disposed over the second doped region.
US10629757B2 Laminar airfoil and the assembly and mounting of solar cell arrays on such airfoils
Methods of fabricating a solar cell assembly for streamlined bodies are provided. The solar cell assembly may be prepared on an assembly fixture. The solar cell assembly may then be removed from the assembly fixture and positioned on a top surface of the streamlined body. In examples, the solar cell assembly comprises a first film, an array of solar cells on top of the first film, and a second silicone film deposited over the solar cells.
US10629754B2 SiC wide trench-type junction barrier Schottky diode and manufacturing method therefor
Disclosed is a SiC wide trench-type junction barrier Schottky diode. The Schottky diode includes a SiC N− epitaxial layer formed on a SiC N+-type substrate and a Schottky metal layer having a planar Schottky metal pattern layer and a downwardly depressed trench-type Schottky metal pattern layer, which are alternately formed at predetermined intervals and on the upper end part of the SiC N− epitaxial layer. The Schottky diode includes a P+ junction pattern formed so as to permeate from the lower part of the trench-type Schottky metal pattern layer to the SiC N− epitaxial layer and a cathode electrode formed on the lower part of the SiC N+-type substrate. The width of the P+ junction pattern is narrower than the width of the trench-type Schottky metal pattern layer, and the P+ junction pattern is not formed on a side wall vertical surface region of the trench-type Schottky metal pattern layer.
US10629752B1 Gate all-around device
Gate all-around devices are disclosed in which an angled channel including a semiconducting nanostructure is located between a source and a drain. The angled channel has an axis that is oriented at an angle to the top surface of the substrate at an angle in a range of about 1° to less than about 90°. The gate all-around device is intended to meet design and performance criteria for the 7 nm technology generation.
US10629749B2 Method of treating interfacial layer on silicon germanium
A method includes forming a channel region on a semiconductor substrate. An interfacial layer is formed on the channel region. The interfacial layer is treated with trimethyl aluminum (TMA). A high-k dielectric layer is formed on the interfacial layer after treating the interfacial layer with TMA. A gate electrode is formed on the high-k dielectric layer. The treating the interfacial layer with TMA and forming the high-k dielectric layer are performed in the same chamber. The interfacial layer is annealed before treating the interfacial layer with TMA. The annealing the interfacial layer and treating the interfacial layer with TMA are performed in different chambers.
US10629746B2 Array substrate and manufacturing method thereof
The present disclosure discloses an array substrate and manufacturing method thereof. The method includes: forming a gate layer on the surface of a substrate; forming an insulating layer on the surface of the gate layer; forming a polysilicon layer having a separating portion on the surface of the insulating layer; and forming a source drain layer on the surface the polysilicon layer having the separating portion, such that the source drain layer is not directly in contact with the polysilicon layer. Through the above-mentioned method, the contact resistance of the source drain layer and the amorphous silicon layer is effectively improved, thereby effectively reducing the leakage current, and the characteristic of TFT device is greatly improved.
US10629744B2 Electronic device and method for fabricating the same
Provided is a method for fabricating an electronic device, the method including: preparing a carrier substrate including an element region and a wiring region; forming a sacrificial layer on the carrier substrate; forming an electronic element on the sacrificial layer of the element region; forming a first elastic layer having a corrugated surface on the first elastic layer of the wiring region; forming a metal wirings electrically connecting the electronic element thereto, on the first elastic layer of the wiring region; forming a second elastic layer covering the metal wirings, on the first elastic layer; forming a high rigidity pattern filling in a recess of the second elastic layer above the electronic element so as to overlap the electronic element, and having a corrugated surface; forming a third elastic layer on the second elastic layer and the high rigidity pattern; and separating the carrier substrate.
US10629742B2 Semiconductor device and method of fabricating the same
A semiconductor device includes first and second fin patterns on a substrate and extending apart from each other, a field insulating film on the substrate and surrounding parts of the first and second fin patterns, a first gate structure on the first fin pattern and intersecting the first fin pattern, a second gate structure on the second fin pattern and intersecting the second fin pattern, and a separating structure protruding from a top surface of the field insulating film and separating the first and second gate structures, the field insulating film and the separating structure including a same insulating material.
US10629740B2 Semiconductor devices
A semiconductor device includes channels, a gate structure, and a source/drain layer. The channels are disposed at a plurality of levels, respectively, and spaced apart from each other in a vertical direction on an upper surface of a substrate. The gate structure is disposed on the substrate, at least partially surrounds a surface of each of the channels, and extends in a first direction substantially parallel to the upper surface of the substrate. The source/drain layer is disposed at each of opposite sides of the gate structure in a second direction substantially parallel to the upper surface of the substrate and substantially perpendicular to the first direction and is connected to sidewalls of the channels. A length of the gate structure in the second direction changes along the first direction at a first height from the upper surface of the substrate in the vertical direction.
US10629737B2 Method for fabricating FinFET including forming an oxide layer
Methods are disclosed herein for fabricating integrated circuit devices, such as fin-like field-effect transistors (FinFETs). An exemplary method includes forming a first semiconductor material layer over a fin portion of a substrate; forming a second semiconductor material layer over the first semiconductor material layer; and converting a portion of the first semiconductor material layer to a first semiconductor oxide layer. The fin portion of the substrate, the first semiconductor material layer, the first semiconductor oxide layer, and the second semiconductor material layer form a fin. The method further includes forming a gate stack overwrapping the fin.
US10629735B2 Reacted conductive gate electrodes and methods of making the same
A semiconductor device and a method for fabricating a semiconductor device involve a semiconductor layer that includes a first material and a second material. The first and second materials can be silicon and germanium. A contact of the device has a portion proximal to the semiconductor layer and a portion distal to the semiconductor layer. The distal portion includes the first material and the second material. A metal layer formed adjacent to the relaxed semiconductor layer and adjacent to the distal portion of the contact is simultaneously reacted with the relaxed semiconductor layer and with the distal portion of the contact to provide metallic contact material.
US10629733B2 Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink-harmonic wrinkle reduction
A method and apparatus for use in improving linearity sensitivity of MOSFET devices having an accumulated charge sink (ACS) are disclosed. The method and apparatus are adapted to address degradation in second- and third-order intermodulation harmonic distortion at a desired range of operating voltage in devices employing an accumulated charge sink.
US10629731B2 Power mesh-on-die trace bumping
A power mesh-on-die apparatus includes a solder trace that enhances current flow for a power source trace between adjacent power bumps. The solder trace is also applied between power drain bumps on a power drain trace.
US10629728B1 Semiconductor device and fabrication method thereof
A semiconductor device including a substrate having a fin structure surrounded by a trench isolation region; a trench disposed in the fin structure; a silicon nitride trench-fill layer disposed in the trench; an interlayer dielectric layer disposed on the silicon nitride trench-fill layer; a working gate striding over the fin structure, on the first side of the trench; a dummy gate striding over the fin structure, on the second side of the trench; a doped source region in the fin structure; and a doped drain region in the fin structure. The dummy gate is disposed between the trench and the doped drain region.
US10629727B2 Method of manufacturing a semiconductor device including an LDMOS transistor
In an embodiment, a semiconductor device includes a semiconductor substrate having a front surface, a LDMOS transistor in the front surface, and a metallization structure arranged on the front surface. The metallization structure includes at least one cavity arranged in at least one dielectric layer. Related methods of manufacture are also described.
US10629726B2 High-voltage semiconductor device and method for manufacturing the same
The present disclosure provides a high-voltage semiconductor device, including: a substrate; an epitaxial layer disposed over the substrate and having a first conductive type; a gate structure disposed over the epitaxial layer; a source region and a drain region disposed in the epitaxial layer at opposite sides of the gate structure respectively; and a stack structure disposed between the gate structure and the drain region, wherein the stack structure includes: a blocking layer; an insulating layer disposed over the blocking layer; and a conductive layer disposed over the insulating layer and electrically connected the source region or the gate structure. The present disclosure also provides a method for manufacturing the high-voltage semiconductor device.
US10629722B2 Semiconductor device having super junction metal oxide semiconductor structure and fabrication method for the same
A semiconductor device includes: a first base layer; a drain layer disposed on the back side surface of the first base layer; a second base layer formed on the surface of the first base layer; a source layer formed on the surface of the second base layer; a gate insulating film disposed on the surface of both the source layer and the second base layer; a gate electrode disposed on the gate insulating film; a column layer formed in the first base layer of the lower part of both the second base layer and the source layer by opposing the drain layer; a drain electrode disposed in the drain layer; and a source electrode disposed on both the source layer and the second base layer, wherein heavy particle irradiation is performed to the column layer to form a trap level locally.
US10629721B2 Contact resistance reduction for advanced technology nodes
A source/drain contact includes a first portion arranged on a substrate and extending between a first gate and a second gate; a second portion arranged on the first portion and extending over the first gate and the second gate, the second portion including a partially recessed liner and a metal disposed on the partially recessed liner, and the partially recessed liner arranged on an endwall of the second portion and in contact with the first portion; and an oxide disposed around the second portion and on the first gate and the second gate.
US10629720B2 Layered vertical field effect transistor and methods of fabrication
A III-nitride vertical field effect transistor comprises a base plate; a mask layer overlaying said base plate and having opening windows for partial exposure of said base plate; a drain grown epitaxially onto regions of said base plate exposed by the opening windows of said mask layer; an insulation layer grown epitaxially onto said drain; a source grown epitaxially onto said insulation layer; a vertical nitride stack grown epitaxially onto the side faces of said drain, said insulation layer and said source, overlaying said mask layer and providing at least one vertical conducting channel to connect said source to said drain; a current flowing from said source to said drain through a conducting channel can be modulated by an electrical voltage that is applied to the side face of said vertical nitride stack. There are preferably also electrodes and edge terms.
US10629718B2 III-nitride epitaxial structure
An epitaxial structure includes a substrate, a buffer layer, a channel layer, an intermediate layer, and a barrier layer. The buffer layer is disposed on the substrate, the channel layer is disposed on the buffer layer, the barrier layer is disposed on the channel layer, and the intermediate layer is disposed between the channel layer and the barrier layer. The chemical composition of the barrier layer is Alx1Iny1Gaz1N, and the chemical composition of the intermediate layer is Alx2Iny2Gaz2N. The lattice constant of the barrier layer is greater than the lattice constant of the intermediate layer. The aluminum (Al) content of at least a portion of the intermediate layer is greater than the Al content of the barrier layer.
US10629715B2 Unidirectional ESD protection with buried breakdown thyristor device
An electrostatic discharge protection device includes a substrate, first and second emitter regions disposed in the substrate, laterally spaced from one another on a side of the substrate, and having opposite conductivity types, and first and second base regions having opposite conductivity types and in which the first and second emitter regions are disposed in a thyristor arrangement, respectively. The first base region includes a buried doped layer that extends under the second base region. Each of the buried doped layer and the second base region includes a respective non-uniformity in dopant concentration profile. A spacing between the buried doped layer and the second base region at the respective non-uniformities establishes a breakdown trigger voltage for the thyristor arrangement.
US10629711B2 Semiconductor device with multiple HBTs having different emitter ballast resistances
The present disclosure relates to a semiconductor device with multiple heterojunction bipolar transistors (HBTs) that have different emitter ballast resistances. The disclosed semiconductor device includes a substrate, a first HBT and a second HBT formed over the substrate. The first HBT includes a first collector, a first base over the first collector, a first emitter over the first base, and a first cap structure over the first emitter. The second HBT includes a second collector, a second base over the second collector, a second emitter over the second base, and a second cap structure over the second emitter. Herein, the first cap structure is different from the second cap structure, such that a first emitter ballast resistance from the first cap structure is at least 1.5 times greater than a second emitter ballast resistance from the second cap structure.
US10629707B2 FinFET structure with bulbous upper insulative cap portion to protect gate height, and related method
A finFET structure includes an insulative cap over each gate in a vicinity of a first and second self-aligned contact (SAC) to source/drain regions thereof. The insulative cap has a bulbous upper insulative cap portion selectively grown to protect gate height loss during SAC opening formation. The bulbous upper insulative cap portion may be over just gates in the vicinity of the S/D regions, and optionally, over gates in the vicinity of a gate contact.
US10629706B2 Fin and gate dimensions for optimizing gate formation
Integrated circuit devices having optimized fin and gate dimensions are disclosed herein. An exemplary integrated circuit device includes a first multi-fin structure and a second multi-fin structure. A first gate structure traverses the first multi-fin structure, such that the first gate structure is disposed over a first channel region. A second gate structure traverses the second multi-fin structure, such that the second gate structure is disposed over a second channel region. The first gate structure includes a first gate dielectric having a first thickness, and the second gate structure includes a second gate dielectric having a second thickness. The first thickness is greater than the second thickness. The first multi-fin structure has a first pitch in the first channel region, and the second multi-fin structure has a second pitch in the second channel region. The first pitch is greater than the second pitch.
US10629704B2 Semiconductor device and method for manufacturing the same
A semiconductor device in which the retention characteristics of a rewritable memory cell packaged together with a field effect transistor including a metal gate electrode are improved and a method for manufacturing the semiconductor device. The semiconductor device includes a field effect transistor with a metal gate electrode and a rewritable memory cell. The manufacturing method includes the step of replacing a dummy gate electrode with the metal gate electrode. Before the step of replacing the dummy gate electrode with the metal gate electrode, the method includes the steps of making the height of the memory cell lower than the height of the dummy gate electrode and forming a protective film for covering the memory cell.
US10629703B2 Sloped finFET with methods of forming same
Embodiments of the present disclosure provide an integrated circuit (IC) structure, which can include: a semiconductor fin; a gate dielectric positioned above a first region of the semiconductor fin; a spacer positioned above a second region of the semiconductor fin and adjacent to the gate dielectric; and a source/drain region contacting a third region of the semiconductor fin; wherein the first region of the semiconductor fin includes substantially vertical sidewalls, and the third region of the semiconductor fin includes sloped sidewalls.
US10629701B1 Self-aligned gate cut method and multilayer gate-cut pillar structure
One illustrative method disclosed herein includes forming a sacrificial gate structure and a gate-cut structure within the sacrificial gate structure at a location positioned above the isolation material, the gate-cut structure having an upper portion and a lower portion, and forming a replacement gate cavity by removing the sacrificial gate structure and the lower portion of the gate-cut structure. The method further includes forming a final gate structure that includes forming a gate insulation layer of the final gate structure on all exposed surfaces of the upper portion of the gate-cut structure, removing the upper portion of the gate-cut structure, removing the exposed portion of the final gate structure to define a gate-cut opening that separates the final gate structure into the first and second final gate structures, and forming a gate separation structure in the gate-cut opening.
US10629700B1 High-K metal gate process and device
An embodiment is a method of semiconductor processing. The method includes depositing a high-k gate dielectric layer over a semiconductor fin. A barrier layer is deposited over the high-k gate dielectric layer. A silicon passivation layer is deposited over the barrier layer. A nitrogen treatment is performed on the silicon passivation layer. A capping layer is deposited over the silicon passivation layer. The capping layer is annealed.
US10629698B2 Method and structure for enabling high aspect ratio sacrificial gates
Sacrificial gate structures having an aspect ratio of greater than 5:1 are formed on a substrate. In some embodiments, each sacrificial gate structure straddles a portion of a semiconductor fin that is present on the substrate. An anchoring element is formed orthogonal to each sacrificial gate structure rendering the sacrificial gate structures mechanically stable. After formation of a planarization dielectric layer, each anchoring element can be removed and thereafter each sacrificial gate structure can be replaced with a functional gate structure.
US10629696B1 Method for forming hexagonal boron nitride thin film, method for forming multi-layered structure and method for manufacturing switching element using the same
A method for forming a hexagonal boron nitride (h-BN) thin film is provided. According to the method, an alumina thin film including amorphous alumina or gamma-alumina is prepared. An h-BN thin film is synthesized at equal to or less than 750° C. on the alumina thin film. A mono-layer thickness of the h-BN film is equal to or less than 0.40 nm.
US10629694B1 Gate contact and cross-coupling contact formation
Methods of forming cross-coupling contacts for field-effect transistors and structures for field effect-transistors that include cross-coupling contacts. A sidewall spacer is formed adjacent to a gate structure, a dielectric cap is formed over the gate structure and the sidewall spacer, and an epitaxial semiconductor layer is formed adjacent to the sidewall spacer. A first portion of the dielectric cap is removed from over the sidewall spacer and the gate structure to expose a portion of a top surface of a gate electrode of the gate structure. A portion of the sidewall spacer is modified with an amorphization process. The modified portion of the sidewall spacer and the underlying gate dielectric layer are removed to expose a portion of a sidewall of the gate electrode. A cross-coupling contact is formed that directly connects the portions of the sidewall and top surface of the gate electrode with the epitaxial semiconductor layer.
US10629690B2 Semiconductor device comprising a transistor including a first field plate and a second field plate
A semiconductor device includes a transistor in a semiconductor substrate. The transistor includes a drift zone of a first conductivity type adjacent to a drain region, and a first field plate and a second field plate adjacent to the drift zone. The second field plate is arranged between the first field plate and the drain region. The second field plate is electrically connected to a contact portion arranged in the drift zone. The transistor further includes an intermediate portion of the first conductivity type at a lower doping concentration than the drift zone. A distance between the intermediate portion and the drain region is smaller than the distance between the contact portion and the drain region.
US10629689B1 Manufacturable thin film gallium and nitrogen containing devices
A method for manufacturing a display panel comprising light emitting device including micro LEDs includes providing multiple donor wafers having a surface region and forming an epitaxial material overlying the surface region. The epitaxial material includes an n-type region, an active region comprising at least one light emitting layer overlying the n-type region, and a p-type region overlying the active layer region. The multiple donor wafers are configured to emit different color emissions. The epitaxial material on the multiple donor wafers is patterned to form a plurality of dice, characterized by a first pitch between a pair of dice less than a design width. At least some of the dice are selectively transferred from the multiple donor wafers to a common carrier wafer such that the carrier wafer is configured with different color emitting LEDs. The different color LEDs could comprise red-green-blue LEDs to form a RGB display panel.
US10629687B2 Silicon carbide semiconductor device
According to one embodiment, a semiconductor device includes a first element. The first element includes a first electrode, a second electrode and first to fourth semiconductor regions. The second electrode includes a first conductive region and a second conductive region. The first semiconductor region is provided between the first electrode and the first conductive region and between the first electrode and the second conductive region. The second semiconductor region includes a first partial region and a second partial region. The first partial region is provided between the first electrode and the first conductive region. The second partial region is provided between the first electrode and the second conductive region. The third semiconductor region is provided between the second partial region and the second conductive region. The fourth semiconductor region is provided between the third semiconductor region and the second conductive region.
US10629686B2 Carbon-controlled ohmic contact layer for backside ohmic contact on a silicon carbide power semiconductor device
A semiconductor power device may include a Silicon Carbide (SiC) layer having an active power device formed on a first surface thereof. An Ohmic contact layer may be formed on a second, opposing surface of the SiC layer, the Ohmic contact layer including Nickel Silicide (NiSix) with a first silicide region containing a first precipitate of non-reacted carbon disposed between the SiC layer and a second silicide region. The second silicide region may be disposed between the first silicide region and a third silicide region, and may include a mixture of a first precipitate of refractory metal carbide and a second precipitate of non-reacted carbon. The third silicide region may contain a second precipitate of refractory metal carbide. A solder metal layer may be formed on the Ohmic contact layer, with the third silicide region disposed between the second silicide region and the solder metal layer.
US10629684B2 Fin-based strap cell structure
Fin-based well straps are disclosed herein for improving performance of memory arrays, such as static random access memory arrays. An exemplary integrated circuit (IC) device includes a FinFET disposed over a doped region of a first type dopant. The FinFET includes a first fin structure doped with a first dopant concentration of the first type dopant and first source/drain features of a second type dopant. The IC device further includes a fin-based well strap disposed over the doped region of the first type dopant. The fin-based well strap connects the doped region to a voltage. The fin-based well strap includes a second fin structure doped with a second dopant concentration of the first type dopant and second source/drain features of the first type dopant. The second dopant concentration is greater than (for example, at least three times greater than) the first dopant concentration.
US10629683B2 High voltage DEMOS transistor with improved threshold voltage matching
A semiconductor device includes a semiconductor substrate having a first conductivity type. First and second wells are located within the substrate, the first well being formed with a dopant of the first conductivity type, e.g. n-type, and the second well formed with a dopant of a second different conductivity type, e.g. p-type. A doped gap region is located between the first and second wells. The doped gap region is formed with a dopant of the second conductivity type, e.g. p-type, at a lower dopant concertation than the dopant concentration in the second well.
US10629679B2 Method of manufacturing a semiconductor device and a semiconductor device
In a method of manufacturing a semiconductor device, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. The first semiconductor layers, the second semiconductor layer and an upper portion of the fin structure at a source/drain region of the fin structure, which is not covered by the sacrificial gate structure, are etched. A dielectric layer is formed over the etched upper portion of the fin structure. A source/drain epitaxial layer is formed. The source/drain epitaxial layer is connected to ends of the second semiconductor wires, and a bottom of the source/drain epitaxial layer is separated from the fin structure by the dielectric layer.
US10629677B2 Area efficient floating field ring termination
A high power semiconductor device with a floating field ring termination includes a wafer, wherein a plurality of floating field rings is formed in an edge termination region adjacent to a first main side surface of the wafer. At least in the termination region a drift layer, in which the floating field rings are formed, includes a surface layer and a bulk layer wherein the surface layer is formed adjacent to the first main side surface to separate the bulk layer from the first main side surface and has an average doping concentration which is less than 50% of the minimum doping concentration of the bulk layer. The drift layer includes a plurality of enhanced doping regions, wherein each one of the enhanced doping regions is in direct contact with a corresponding one of the floating field rings at least on a lateral side of this floating field ring, which faces towards the active region. The relatively low doped surface layer and the enhanced doping regions increase the electric field coupling from floating field ring to floating field ring, thus allowing an area efficient termination structure. Each enhanced doping region extends to at least the same depth as the one of the corresponding floating field ring.
US10629676B2 Semiconductor device with cell trench structures and recessed contacts and method of manufacturing a semiconductor device
First and second cell trench structures extend from a first surface into a semiconductor substrate. The first cell trench structure includes a first buried electrode and a first insulator layer between the first buried electrode and a semiconductor mesa separating the first and second cell trench structures. A capping layer covers the first surface. The capping layer is patterned to form an opening having a minimum width larger than a thickness of the first insulator layer. The opening exposes a first vertical section of the first insulator layer at the first surface. An exposed portion of the first insulator layer is removed to form a recess between the semiconductor mesa and the first buried electrode. A contact structure is in the opening and the recess. The contact structure electrically connects both a buried zone in the semiconductor mesa and the first buried electrode and allows for narrower semiconductor mesa width.
US10629675B1 Three-dimensional memory device containing capacitor pillars and methods of making the same
A semiconductor structure can include an alternating stack of insulating layers and electrically conductive layers located over a substrate, and capacitor pillar structures vertically extending through the first alternating stack. Each of the capacitor pillar structures can include a node dielectric and a semiconductor material portion that is laterally surrounded by the node dielectric. A first electrode layer of a capacitor includes the semiconductor material portions, and a second electrode layer of the capacitor includes the electrically conductive layers. Alternatively or additionally, a first dielectric fill material portion can extend through the alternating stack and can include a plurality of capacitor via cavities. A capacitor can be provided within the plurality of capacitor via cavities.
US10629674B2 Trench isolated capacitor
An integrated trench capacitor and method for making the trench capacitor is disclosed. The method includes forming a trench in a silicon layer, forming a first dielectric on the exposed surface of the trench, performing an anisotropic etch of the first dielectric to expose silicon at the bottom of the trench, implanting a dopant into exposed silicon at the bottom of the trench, forming a first polysilicon layer over the first dielectric, forming a second dielectric over the first polysilicon layer, and forming a second polysilicon layer over the second dielectric to fill the trench.
US10629673B2 Method for manufacturing semiconductor and structure thereof
A method of manufacturing a semiconductor structure is provided. The method includes: providing a conductive terminal exposed from a passivation; forming a capacitor structure under the passivation proximal to a heterogeneous interface; electrically connecting the capacitor structure to the conductive terminal and isolating the capacitor structure from other electrical components in the semiconductor structure; and probing the conductive terminal to measure an electrical parameter of the capacitor structure covered by the passivation, wherein the electrical parameter corresponds to a humidity permeability at the heterogeneous interface. A semiconductor structure thereof is also provided.
US10629670B2 Display apparatus having reduced defects
Provided is a display apparatus capable of reducing generation of defects during manufacturing of the display apparatus or while in use after being manufactured. The display apparatus includes a substrate including a bending area between a first area and a second area, the substrate being bent in the bending area about a bending axis; an inorganic insulating layer over the substrate and including a first feature that is either a first opening or a first groove, the first feature positioned to correspond to the bending area; and an organic material layer at least partially filling the first feature, and including a second feature that is a second opening or a second groove, the second feature extending along an edge of the substrate.
US10629668B1 Display panel and display device thereof
A display panel and a display device are provided. The display panel includes a display region, at least one notch, and a non-display region surrounding the display region. The display region includes an irregularly-shaped edge. The at least one notch is formed by recessing the irregularly-shaped edge toward an inside of the display region. The display panel also includes an array layer disposed on a side of a base substrate. The array layer includes at least one inorganic layer, the at least one inorganic layer including at least one protruded portion. In addition, the display panel includes a display function layer disposed on a side of the array layer away from the base substrate. Further, the display panel includes at least one blocking part formed in the non-display region. The at least one blocking part is disposed around the display region and around the display function layer.
US10629659B2 Display device, manufacturing method and display apparatus
The present disclosure provides a method for manufacturing a display device and a display apparatus. The display device includes a substrate including a display region, a driving circuit formed at a vicinity of the display region, a passivation layer covering the driving circuit and including a contact hole exposing the driving circuit, a first conductive layer covering the passivation layer and contacting the driving circuit through the contact hole, and a display element formed in the display region and including a first electrode layer extending from the display region to the driving circuit. The first electrode layer is electrically connected to the driving circuit through the first conductive layer. According to the display device and the manufacturing method thereof, a distance between the packaging region and the display region is shortened, so as to narrow the width of the bezel and realize a narrow bezel structure.
US10629657B2 OLED device, brightness adjustment method thereof and display device
An organic light-emitting diode (OLED) device, a brightness adjustment method thereof and a display device are provided. The OLED device includes: an OLED substrate provided with at least one OLED element; a package structure configured to form a closed space with the OLED substrate; and an external compensation component including at least one photosensitive sensor and at least one compensation adjustment unit. The at least one photosensitive sensor is configured to detect the light intensity emitted by the at least one OLED element; and the at least one compensation adjustment unit is provided on a side wall on a light-emitting side of the package structure facing the closed space and configured to adjust light intensity emitted by the at least one OLED element according to a detected signal by the at least one photosensitive sensor.
US10629653B2 Cross-point array device including conductive fuse material layer
In an embodiment, a cross-point array device includes a pillar-shaped structure disposed in an intersection region where a first conductive line overlaps a second conductive line. The pillar-shaped structure includes a resistance change material layer disposed between the first conductive line and the second conductive line. The pillar-shaped structure includes one or more conductive fuse material layers, each of which is disposed between the first or second conductive line and the resistance change material layer. The melting point of the conductive fuse material layer is higher than the melting point of the resistance change material layer.
US10629647B2 Semiconductor devices and methods for forming patterned radiation blocking on a semiconductor device
Several embodiments for semiconductor devices and methods for forming semiconductor devices are disclosed herein. One embodiment is directed to a method for manufacturing a microelectronic imager having a die including an image sensor, an integrated circuit electrically coupled to the image sensor, and electrical connectors electrically coupled to the integrated circuit. The method can comprise covering the electrical connectors with a radiation blocking layer and forming apertures aligned with the electrical connectors through a layer of photo-resist on the radiation blocking layer. The radiation blocking layer is not photoreactive such that it cannot be patterned using radiation. The method further includes etching openings in the radiation blocking layer through the apertures of the photo-resist layer.
US10629646B2 Image sensor including doped regions and manufacturing method therefor
The present disclosure relates to the technical field of semiconductors, and discloses an image sensor and a manufacturing method therefor. The method includes: providing a semiconductor structure, where the semiconductor structure includes: a semiconductor substrate, and a first active region located on the semiconductor substrate, the first active region including a first doped region and a second doped region abutting against the first doped region, and the second doped region being located at an upper surface of the first active region; forming a semiconductor layer on an upper surface of the second doped region; and forming a contact connected to the semiconductor layer. The present disclosure enables defects or damages caused when forming the contact to be kept away from a junction field formed by the second doped region and the first doped region. Therefore, leakage current may be reduced and device performances may be improved.
US10629642B2 Stacked image sensor and system including the same
A stacked image sensor includes a first semiconductor die and a second semiconductor die. The first semiconductor die includes a pixel array of rows and columns of pixels, a first column interlayer-connection unit extending in the row direction and disposed adjacent the top or bottom of the pixel array and column routing wires extending in a diagonal direction and connecting the pixel columns and the first column interlayer-connection unit. The second semiconductor die is stacked with the first semiconductor die. The second semiconductor die includes a second column interlayer-connection unit extending in the row direction and disposed at a location corresponding to the first column interlayer-connection unit and connected to the first column interlayer-connection unit, and a column control circuit connected to the second column interlayer-connection unit.
US10629639B2 Wire including organic layer, display device including the same and method of manufacturing the same
A display device includes: a thin film transistor to which signals are provided for displaying an image, the thin film transistor including a semiconductor layer, a data signal line and a gate signal line; and a first electrode with which the image is displayed, the first electrode connected to the thin film transistor. One signal line among the data signal line and the gate signal line in the thin film transistor includes a metal layer and an organic layer which is disposed on the metal layer, and the organic layer is an ion-doped photosensitive resin material.
US10629637B2 Vehicle, display device and manufacturing method for a semiconductor device
To provide a semiconductor device in which a layer to be peeled is attached to a base having a curved surface, and a method of manufacturing the same, and more particularly, a display having a curved surface, and more specifically a light-emitting device having a light emitting element attached to a base with a curved surface. A layer to be peeled, which contains a light emitting element furnished to a substrate using a laminate of a first material layer which is a metallic layer or nitride layer, and a second material layer which is an oxide layer, is transferred onto a film, and then the film and the layer to be peeled are curved, to thereby produce a display having a curved surface.
US10629633B2 Array substrate and manufacturing method thereof, display device
A manufacturing method of an array substrate is disclosed. The manufacturing method includes a step of forming a pattern including a pixel electrode; and the manufacturing method further includes a step of forming a pattern including an active layer after the step of forming the pattern including the pixel electrode. Accordingly, an array substrate and a display device are also disclosed. In the manufacturing process of the array substrate, conductive material remained on the active layer is less, thereby producing less leak current, which in turn improves quality of the array substrate and display performance of the display device.
US10629630B2 Active matrix substrate, and liquid crystal display device provided with active matrix substrate
An active matrix substrate is provided with a gate driver including a multi-stage shift register (240). Each stage of the multi-stage shift register has a plurality of oxide semiconductor TFTs, a first input terminal for receiving a set signal, a second input terminal for receiving a clock signal, a third input terminal for receiving a clear signal, and an output terminal for outputting a gate output signal to one of the plurality of gate bus lines. The clock signal and the clear signal have the same high-level potential, and the clock signal and the clear signal have the same low-level potential. The plurality of oxide semiconductor TFTs include a first TFT (101) having a back-gate structure. The main gate electrode of the first TFT (101) is coupled to the third input terminal or a negative power supply voltage VSS. The back-gate electrode of the first TFT has a potential set to a positive power supply voltage VDD or a ground potential GND.
US10629627B2 Semiconductor device and manufacturing method thereof
The semiconductor device includes a driver circuit portion including a driver circuit and a pixel portion including a pixel. The pixel includes a gate electrode layer having a light-transimitting property, a gate insulating layer, a source electrode layer and a drain electrode layer each having a light-transmitting property provided over the gate insulating layer, an oxide semiconductor layer covering top surfaces and side surfaces of the source electrode layer and the drain electrode layer and provided over the gate electrode layer with the gate insulating layer therebetween, a conductive layer provided over part of the oxide semiconductor layer and having a lower resistance than the source electrode layer and the drain electrode layer, and an oxide insulating layer in contact with part of the oxide semiconductor layer.
US10629618B2 Semiconductor device, operation method of semiconductor device, and manufacturing method of semiconductor device
The present disclosure relates to a semiconductor device, an operation method of a semiconductor device, and a manufacturing method of a semiconductor device which are capable of minimizing influence of a gate length variation on a circuit characteristic and increasing a good product ratio (yield) in a product sorting test. A ring oscillator configured such that the plurality of inverters is connected in a ring-like form, and gate capacitors of the transistors are connected to respective output terminals of the plurality of inverters as a load capacitor outputs an oscillating signal, the ring oscillator is configured with a plurality of transistors having the same gate length, and at least two or more ring oscillators including a plurality of transistors having different gate lengths are configured. At the time of product test, the gate length is calculated on the basis of frequencies of oscillating signals of a plurality of ring oscillators, and a back bias is applied in accordance with a correction value corresponding to the calculated gate length, and an operation is performed. The present disclosure can be applied to semiconductor devices.
US10629617B2 Semiconductor device and manufacturing method of the same
The present disclosure relates to a semiconductor device having improved structural stability and a method of manufacturing such a semiconductor device. The semiconductor device includes a first stacked structure and a second stacked structure. The semiconductor device further includes a first support including a first upper pillar passing through the second stacked structure and including at least two first lower pillars extending from the first upper pillar and passing through the first stacked structure.
US10629608B2 3D vertical channel tri-gate NAND memory with tilted hemi-cylindrical structure
A memory device comprises a stack of conductive strips separated by insulating strips, the conductive strips in the stack extending in a first direction. The memory device comprises a plurality of hemi-cylindrical vertical channel structures extending through the conductive strips in the stack, each of the hemi-cylindrical vertical channel structures having a divided elliptical cross section with a major axis tilted relative to the first direction. The memory device comprises data storage structures on the sidewalls of the conductive strips. The hemi-cylindrical vertical channel structures comprise semiconductor films having outside surfaces in contact with the data storage structures on the sidewalls of the conductive strips.
US10629605B2 Semiconductor device and method of manufacturing
The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes a first gate disposed over a substrate and having a first height measured between an upper surface of the substrate and a first uppermost surface of the first gate structure. A second gate structure is disposed over the substrate and has a second height measured between the upper surface of the substrate and a second uppermost surface of the second gate structure. The second height is smaller than the first height. A first sidewall spacer laterally surrounds the first gate structure and is recessed below the first uppermost surface. A second sidewall spacer laterally surrounds the second gate structure. A top of the first sidewall spacer is arranged along a horizontal plane that is vertically between the first uppermost surface and the second uppermost surface.
US10629602B2 Static random access memory cells with arranged vertical-transport field-effect transistors
Structures for a static random access memory (SRAM) bitcell and methods for forming a SRAM bitcell. The SRAM includes a storage element with a first pull-up (PU) vertical-transport field-effect transistor (VTFET) having a first bottom source/drain region and a fin projecting from the first bottom source/drain region, and a second pull-up (PU) VTFET with a second bottom source/drain region and a fin projecting from the second bottom source/drain region. The fin of the first PU VTFET is arranged over a first active region in which the first bottom source/drain region is centrally arranged, and the fin of the second PU VTFET is arranged over a second active region in which the second bottom source/drain region is centrally arranged. The second source/drain region is aligned with the first bottom source/drain region. A read port may be connected with the storage element, and may also be formed using VTFETs.
US10629596B2 Fin-type field effect transistor structure and manufacturing method thereof
A fin-type field effect transistor comprising a substrate, at least one gate stack and epitaxy material portions is described. The substrate has fins and insulators located between the fins, and the fins include channel portions and flank portions beside the channel portions. The at least one gate stack is disposed over the insulators and over the channel portions of the fins. The epitaxy material portions are disposed over the flank portions of the fins and at two opposite sides of the at least one gate stack. The epitaxy material portions disposed on the flank portions of the fins are separate from one another.
US10629593B2 Formation of semiconductor device with resistors having different resistances
A semiconductor device includes a semiconductor substrate, trench isolations, a sacrificial layer, a first resist protect oxide (RPO) layer, a second RPO layer and a silicide layer. The semiconductor substrate has first portions and second portions which are alternately disposed, and each of the second portions includes a first resist region with a first resistance, a second resist region with a second resistance and a silicide region. The second resistance is greater than the first resistance. The trench isolations are in the first portions. The sacrificial layer is on the first resist region. The first RPO layer is on the sacrificial layer. The first RPO layer together with the sacrificial layer have a first thickness. The second RPO layer is on the second resist region, in which the second RPO layer has a second thickness smaller than the first thickness. The silicide layer is on the silicide region.
US10629592B2 Through silicon via design for stacking integrated circuits
A three-dimensional (3D) integrated circuit (IC) is provided. In some embodiments, a first IC die comprises a first bonding structure and a first interconnect structure over a first semiconductor substrate. A second IC die is disposed over the first IC die and comprises a second bonding structure and a second interconnect structure over a second semiconductor substrate. A seal-ring structure is in the first and second IC dies and extends from the first semiconductor substrate to the second semiconductor substrate. A plurality of through silicon via (TSV) coupling structures is arranged in the peripheral region of the 3D IC along an inner perimeter of the seal-ring structure. The plurality of TSV coupling structures respectively comprises a through silicon via (TSV) disposed in the second semiconductor substrate and electrically coupling to the 3D IC through a stack of TSV wiring layers and inter-wire vias.
US10629591B2 Semiconductor device
A semiconductor device includes a plurality of unit transistors that are arranged on a surface of a substrate in a first direction. Input capacitive elements are arranged so as to correspond to the unit transistors. An emitter common wiring line is connected to emitter layers of the unit transistors. A via-hole extending from the emitter common wiring line to a back surface of the substrate is disposed at a position overlapping the emitter common wiring line. A collector common wiring line is connected to collector layers of the unit transistors. The input capacitive elements, the emitter common wiring line, the unit transistors, and the collector common wiring line are arranged in this order in a second direction. Base wiring lines that connect the input capacitive elements to base layers of the corresponding unit transistors intersect the emitter common wiring line without physical contact.
US10629588B2 ESD hard backend structures in nanometer dimension
Some embodiments relate to a semiconductor device on a substrate. An interconnect structure is disposed over the substrate, and a first conductive pad is disposed over the interconnect structure. A second conductive pad is disposed over the interconnect structure and is spaced apart from the first conductive pad. A third conductive pad is disposed over the interconnect structure and is spaced apart from the first and second conductive pads. A fourth conductive pad is disposed over the interconnect structure and is spaced apart from the first, second, and third conductive pads. A first ESD protection element is electrically coupled between the first and second pads; and a second ESD protection element is electrically coupled between the third and fourth pads. A first device under test is electrically coupled between the first and third conductive pads; and a second device under test is electrically coupled between the second and fourth pads.
US10629587B2 Protection circuit and protection circuit system
The present technique relates to a protection circuit for a MOSFET and a protection circuit system including the protection circuit all of which can reduce losses in the main current and increase in the manufacturing costs for ensuring a sense area. The protection circuit includes: a first MOSFET for power through which a main current flows; an IGBT which is connected in parallel to the first MOSFET and through which a current diverted from the main current flows; a sense resistor connected in series with the IGBT; and a first control circuit that controls a gate voltage of the first MOSFET based on a value of a voltage to be applied to the sense resistor, wherein a ratio of the diverted current flowing through the IGBT to the main current flowing through the first MOSFET in current value ranges from 0.018% to 0.022%.
US10629585B2 Electrostatic discharge protection semiconductor device
An electrostatic discharge (ESD) protection device includes a substrate, a first gate group and a second gate group on the substrate, a drain region and a fourth doped region respectively at two sides of the first gate group, a source region and the fourth doped region respectively at two sides of the second gate group, a first doped region in the substrate and surrounded by the drain region, and a second doped region in the substrate and surrounded by the fourth doped region. The drain region and the source region have a first conductivity type. The first doped region and the second doped region have a second conductivity type complementary to the first conductivity type. The drain region is electrically connected to an input/output pad. The source region is electrically connected to a ground pad. The first doped region and the second doped region are electrically connected to each other.
US10629584B1 Integrated circuits including an electrostatic discharge device and methods of producing the same
Integrated circuits including an electrostatic discharge device and methods of forming the integrated circuits are provided herein. In an embodiment, an integrated circuit includes an n-type epitaxy layer, a segmented p-well, a p-type buried layer, and a collector region. The segmented p-well is formed in the n-type epitaxy layer. The segmented p-well defines and laterally surrounds a spacing region of the n-type epitaxy layer. The p-type buried layer is formed in the spacing region. The p-type buried layer laterally extends into the segmented p-well about the spacing region and impedes current flow between an underlying portion of the n-type epitaxy layer in relation to the p-type buried layer and an overlying portion of the n-type epitaxy layer in the spacing region. The collector region of the electrostatic discharge device is formed in the overlying portion of the n-type epitaxy layer in the spacing region.
US10629583B2 Transient voltage suppression device
A transient voltage suppression device including a substrate and a first transient voltage suppressor is provided. The substrate includes a device region and a seal-ring region. The seal-ring region surrounds the device region. A first transient voltage suppressor is located in the device region. The first transient voltage suppressor includes a first well region having a first conductivity type, a first doped region having a second conductivity type, and a second doped region having the second conductivity type. The first well region is located in the substrate of the device region. The first doped region is located in the first well region. The second doped region is located in the first well region. A third doped region having the second conductivity type is located in the substrate of the seal-ring region, and the third doped region is electrically connected to the first doped region.
US10629579B2 Package-on-package with cavity in interposer
A package includes an interposer, which includes a core dielectric material, a through-opening extending from a top surface to a bottom surface of the core dielectric material, a conductive pipe penetrating through the core dielectric material, and a device die in the through-opening. The device die includes electrical connectors. A top package is disposed over the interposer. A first solder region bonds the top package to the conductive pipe, wherein the first solder region extends into a region encircled by the conductive pipe. A package substrate is underlying the interposer. A second solder region bonds the package substrate to the interposer.
US10629575B1 Stacked die semiconductor package with electrical interposer
A semiconductor chip assembly includes first and second semiconductor dies that each include opposite facing upper and lower sides and an outer edge side, and an electrical interposer having opposite facing first and second conductive surfaces and a conductive connection between the conductive surfaces. The second semiconductor die is mounted on top of the first semiconductor die and the interposer such that the lower side of the second semiconductor die faces the first semiconductor die and the interposer, a first lateral section of the second semiconductor die at least partially covers the upper side of the first semiconductor die, and a second lateral section of the second semiconductor die extends past the outer edge side of the first semiconductor die. The first conductive surface is electrically connected to a first terminal that is disposed on a lower side of the second semiconductor die.
US10629573B2 Display device with different size subpixels and operating method for such a display device
A display device and a method for operating a display device are disclosed. In an embodiment a display device includes a plurality of image points configured for emitting visible light of adjustable color by at least one semiconductor layer sequence, wherein the image points are independently controllable of one another, wherein each of the image points includes a plurality of types of pixels and each type of pixel is configured to emit light of a particular color, wherein the pixels are independently controllable of one another, wherein each of the pixels is divided into a plurality of subpixels, the subpixels being independently controllable of one another within the associated pixel, and wherein all subpixels of the associated pixel are configured for emitting light of the same color from the display device without further color change.
US10629572B2 Electronic package and method for fabricating the same
An electronic package is provided, including: a first substrate having a first insulating portion; a first electronic component disposed on the first substrate; a second substrate having a second insulating portion and stacked on the first substrate through a plurality of conductive elements; and a first encapsulant formed between the first substrate and the second substrate. The first insulating portion of the first substrate differs in rigidity from the second insulating portion of the second substrate. As such, during a high temperature process, one of the first substrate and the second substrate pulls at the other to bend toward the same direction, thereby reducing warpage deviation of the overall electronic package. The present invention further provides a method for fabricating the electronic package.
US10629571B2 Optoelectronic semiconductor component
An optoelectronic semiconductor component is disclosed. In an embodiment a component includes a housing having a recess, a first semiconductor chip for generating light of a first color and a second semiconductor chip for generating light of a second color which is different from the first color, wherein, during operation, a mixed radiation including at least the light of the first color is emitted along a main emission direction, wherein the first semiconductor chip is arranged in a first plane and the second semiconductor chip is arranged in a second plane in the recess, the planes following one another along the main emission direction, wherein active zones of the first and second semiconductor chips are arranged side by side to one another, and wherein at least one electrical connection surface of the first semiconductor chip forms a part of a mounting surface of the semiconductor component.
US10629566B1 Seamlessly integrated soft OLEDs
A seamless connection system for organic light emitting diodes (OLEDs) includes a first OLED strip in electrical communication with a power source via an electrical connector. The first OLED strip includes a first illuminated portion, and a first non-illuminated portion. The seamless connection system for OLEDS further includes a second OLED strip in electrical communication with a power source or the first OLED strip via an electrical connector. The second OLED strip includes a second illuminated portion, and a second non-illuminated portion. The first and second non-illuminated portions are substantially transparent, the first non-illuminated portion is adhered to the second illuminated portion, and the second non-illuminated portion is adhered to the first illuminated portion.
US10629565B2 Semiconductor device and method of forming SIP with electrical component terminals extending out from encapsulant
A semiconductor device has a carrier with an adhesive layer formed over the carrier. Alignment marks are provided for picking and placing the electrical component on the carrier or adhesive layer. An electrical component is disposed on the adhesive layer by pressing terminals of the electrical component into the adhesive layer. The electrical component can be a semiconductor die, discrete component, electronic module, and semiconductor package. A leadframe is disposed over the adhesive layer. A shielding layer is formed over the electrical component. An encapsulant is deposited over the electrical component. The carrier and adhesive layer are removed so that the terminals of the electrical component extend out from the encapsulant for electrical interconnect. A substrate includes a plurality of conductive traces. The semiconductor device is disposed on the substrate with the terminals of the electrical component in contact with the conductive traces.
US10629564B2 Removal apparatuses for semiconductor chips
A removal apparatus for a semiconductor chip may include a stage configured to support a board on which the semiconductor chip is mounted by bumps, a laser configured to irradiate a laser beam into the board over an area larger than the semiconductor chip, and a picker configured to cause the laser beam to penetrate the semiconductor chip locally and to separate the semiconductor chip from the board. A method of removing a semiconductor chip from a board may include loading the board, on which the semiconductor chip is mounted by bumps, on a stage; irradiating a laser beam into the semiconductor chip to melt the bumps and to separate the semiconductor chip from the board; continuously irradiating the laser beam into the board on which solder pillars, that are residues of the bumps, remain to melt the solder pillars; and removing the solder pillars.
US10629562B2 Integrated circuit packaging
An integrated circuit package and methods for packaging an integrated circuit. In one example, a method for packaging an integrated circuit includes connecting input/output pads of a first die to terminals of a lead frame via palladium coated copper wires. An oxygen plasma is applied to the first die and the palladium coated copper wires. The first die and the palladium coated copper wires are encapsulated in a mold compound after application of the oxygen plasma.
US10629561B2 Overlapping stacked die package with vertical columns
Some forms relate to an electronic assembly that includes a die that includes an upper surface and a conductive column extending from the upper surface such that the conductive column is not surrounded by any material other than where the conductive column engages the die. Other forms relate to an electronic package that includes a stack of electronic assemblies where each electronic assembly includes a die that having an upper surface and a plurality of conductive columns extending from the upper surface such that each conductive column is not surrounded by any material other than where the conductive column engages the die, and wherein the stack of electronic assemblies is arranged in an overlapping configuration such the plurality of conductive columns on each electronic assembly are not covered by another electronic assembly.
US10629560B2 Semiconductor structure
A semiconductor structure including an insulating encapsulant, a plurality of semiconductor dies separately embedded in the insulating encapsulant, and an electrical communication path is provided. The electrical communication path includes at least one turning wiring connected to a conductive terminal of one of the semiconductor dies and extending across and above the insulating encapsulant to reach another conductive terminal of another one of the semiconductor dies. A layout area of the at least one turning wiring is within a region corresponding to an edge of one of the semiconductor dies and a closest edge of the adjacent one of the semiconductor dies.
US10629558B2 Electronic device
An electronic device includes a first dielectric layer, a second dielectric layer and at least one first stud bump. The second dielectric layer is disposed on the first dielectric layer. The first stud bump is disposed in the first dielectric layer and the second dielectric layer. The first stud bump includes a bump portion and a stud portion, and the stud portion is disposed on the bump portion.
US10629555B2 Packaging devices and methods of manufacture thereof
Packaging devices and methods of manufacture thereof for semiconductor devices are disclosed. In some embodiments, a packaging device includes a contact pad disposed over a substrate, and a passivation layer disposed over the substrate and a first portion of the contact pad, a second portion of the contact pad being exposed. A post passivation interconnect (PPI) line is disposed over the passivation layer and is coupled to the second portion of the contact pad. A PPI pad is disposed over the passivation layer and is coupled to the PPI line. An insulating material is disposed over the PPI line, the PPI pad being exposed. The insulating material is spaced apart from an edge portion of the PPI pad by a predetermined distance.
US10629552B2 Amplifiers and amplifier modules with ground plane height variation structures
An embodiment of a module (e.g., an amplifier module) includes a substrate, a transmission line, and a ground plane height variation structure. The substrate is formed from a plurality of dielectric material layers, and has a mounting surface and a second surface opposite the mounting surface. A plurality of non-overlapping zones is defined at the mounting surface. The transmission line is coupled to the substrate and is located within a first zone of the plurality of non-overlapping zones. The ground plane height variation structure extends from the second surface into the substrate within the first zone. The ground plane height variation structure underlies the transmission line, a portion of the substrate is present between the upper boundary and the transmission line, and the ground plane height variation structure includes a conductive path between an upper boundary of the ground plane height variation structure and the second surface.
US10629547B1 Redistribution-layer fanout package stiffener
An apparatus may include a packaging substrate. The apparatus may further include multiple semiconductor devices attached to the packaging substrate, the multiple semiconductor devices defining a path along the packaging substrate between a pair of the multiple semiconductor devices. The apparatus may also include a stiffener structure coupled to the packaging substrate and positioned with a longitudinal axis of the stiffener structure being perpendicular to the path.
US10629546B2 Semiconductor device
A semiconductor device including a substrate including a central region and a peripheral region surrounding the central region, a semiconductor integrated circuit in the central region, and a three-dimensional crack detection structure in the peripheral region, the three-dimensional crack detection structure surrounding the central region, the three-dimensional crack detection structure including a first pattern, a second pattern, and a third pattern, the first and second patterns extending in a first direction and spaced apart from each other, the third pattern being parallel to an upper surface of the substrate and connecting the first and second patterns to each other, the third pattern including a first portion and a second portion, the first and second portions extending in a second direction and a third direction respectively, the second direction intersecting with the first direction, the third direction intersecting with the first and second directions may be provided.
US10629543B2 Package substrates having an electromagnetic bandgap structure and semiconductor packages employing the package substrates
A package substrate includes a core layer including a first surface and a second surface, which are opposite to each other. The package substrate also includes a power plane interconnection layer disposed on the first surface of the core layer and a ground plane interconnection layer disposed on the second surface of the core layer. The package substrate additionally includes an electromagnetic (EM) bandgap structure disposed in the core layer and electrically coupled between the power plane interconnection layer and the ground plane interconnection layer. The EM bandgap structure includes an EM bandgap via protruding from a portion of the power plane interconnection layer toward the ground plane interconnection layer. The EM bandgap structure further includes an EM bandgap cylindrical structure extending from a portion of the ground plane interconnection layer toward the power plane interconnection layer and surrounding a side surface of the EM bandgap via.