Document Document Title
US09693063B2 Video analyzer
A content receiver and a method for controlling the same are provided. The content receiver, for example, may include, but is not limited to, a communication system configured to receive video content comprising a plurality of video frames from a content source, and a video analyzer configured to determine when compression of the video content is causing blockiness in one or more of the plurality of video frames, and trigger at least one content receiver response when the compression of the video content is causing blockiness in one or more of the plurality of video frames.
US09693061B2 Method and apparatus for hierarchical data unit-based video encoding and decoding comprising quantization parameter prediction
A method of decoding a video includes determining an initial value of a quantization parameter (QP) used to perform inverse quantization on coding units included in a slice segment, based on syntax obtained from a bitstream; determining a slice-level initial QP for predicting the QP used to perform inverse quantization on the coding units included in the slice segment, based on the initial value of the QP; and determining a predicted QP of a first quantization group of a parallel-decodable data unit included in the slice segment, based on the slice-level initial QP.
US09693052B2 Method and devices for predictive coding/decoding with directional scanning
A predictive coding system can encode motion vectors by determining a motion vector of a target partition in a frame picture of an encoding target; determining a first motion vector predictor candidate from a motion vector or motion vectors of one or more partitions belonging to a left-neighboring region to the target partition; determining a second motion vector predictor candidate from a motion vector or motion vectors of one or more partitions belonging to an above-neighboring region to the target partition; selecting an optimum motion vector predictor and outputting motion vector predictor indication information to specify the selected optimum motion vector predictor, the optimum motion vector predictor selected based on comparison between one or more motion vector predictor candidates including the first motion vector predictor candidate and the second motion vector predictor candidate, and the motion vector of the target partition; and encoding the motion vector predictor indication information.
US09693051B2 Video coder providing implicit coefficient prediction and scan adaptation for image coding and intra coding of video
A predictive video coder performs gradient prediction based on previous blocks of image data. For a new block of image data, the prediction determines a horizontal gradient and a vertical gradient from a block diagonally above the new block (vertically above a previous horizontally adjacent block). Based on these gradients, the encoder predicts image information based on image information of either the horizontally adjacent block or a block vertically adjacent to the new block. The encoder determines a residual that is transmitted in an output bitstream. The decoder performs the identical gradient prediction and predicts image information without need for overhead information. The decoder computes the actual information based on the predicted information and the residual from the bitstream.
US09693050B1 Automated measurement of mobile device application performance
Methods, systems and apparatuses, including computer program products, are described for determining a performance metric of a mobile computing device application. A test computing device captures a plurality of images displayed on a mobile computing device based on execution of a mobile computing device application. The test computing device determines a first property for first and second images of the plurality of images. A first performance parameter is set based on a difference between the first properties of the first and second images. The test computing device determines a first property for third and fourth images of the plurality of images. A second performance parameter is set based on a difference between the first properties of the third and fourth image. A performance metric is determined based on a difference between the first performance parameter and the second performance parameter.
US09693047B2 Transparent stereo display and operation method thereof
A transparent stereo display includes a first substrate, a second substrate, a common electrode, a display medium, and a patterned phase retardation film. A plurality of pixel structures is disposed on the first substrate. The pixel structures include a plurality of right eye pixel structures and left eye pixel structures. Each pixel structure includes a display region, a first region, and a second region. The patterned phase retardation film includes right eye polarized patterns and left eye polarized patterns. The right eye polarized patterns are disposed corresponding to the right eye pixel structures, and the left eye polarized patterns are disposed corresponding to the left eye polarized patterns. An edge of each right eye polarized pattern overlaps with the second region of the corresponding right eye pixel structure. An edge of each left eye polarized pattern overlaps with the second region of the corresponding left eye pixel structure.
US09693045B2 Organic light emitting display and driving method thereof
An organic light emitting display is driven in a simultaneous (or concurrent) emission scheme. The organic light emitting display includes: a display unit including a plurality of pixels coupled to scan lines, control lines, and data lines; a control line driver for providing control signals to the pixels through the control lines; and a power driver for applying a power at different levels to the pixels of the display unit during a plurality of periods of one frame. The control signals and the power are concurrently provided to the pixels included in the display unit.
US09693044B2 Method for constructing a stereoscopic light recycling device
A method for constructing a stereoscopic device is provided. A chassis with front and back openings and that forms a housing framing the front and back openings is constructed. A beam splitter constructed of substantially orthogonally polarizing material faces the back opening and is captively held to the chassis. A single phase shifting optic having a reflective surface coated by a phase shifting film on which the divergent image light is received is placed at an angle non-perpendicular to the divergent image light, such that the phase shifting optic is facing toward the front opening and is substantially parallel to the polarizing material of the beam splitter. The beam splitter and phase shifting optic are in optical alignment with each other within the chassis. A modulator sized to cover at least a portion of the front opening is positioned in front of the front opening.
US09693040B2 Method for optically measuring three-dimensional coordinates and calibration of a three-dimensional measuring device
A method for scanning and obtaining three-dimensional (3D)l coordinates is provided. The method includes providing a 3D measuring device having a projector, a first camera and a second camera. The method records images of a light pattern emitted by the projector onto an object. A deviation in a measured parameter from an expected parameter is determined. The calibration of the 3D measuring device may be changed when the deviation is outside of a predetermined threshold.
US09693031B2 System and method for capturing and processing a live event
A system comprising a lead computer a plurality of receivers and transmitters for capturing audio and/or video signals and converting the audio and/or video signals to a transmittable form, wherein at least one of the plurality of receivers and transmitters is associated with at least one individual of a group, wherein the lead computer includes a computer processor for processing a selection of the group and a selection of the transmittable audio and/or video signals of the at least one individual transmitted over a network to the lead computer, wherein the lead computer includes a display device having one or more view windows for playing the selection of the group alongside the selection of the transmittable audio and/or video signals of the at least one individual.
US09693027B2 Increase in dynamics in color-coded triangulation
An arrangement is disclosed for increasing dynamics in color-coded triangulation by using an adapted narrow band color filter. Spectral passage ranges of the color filter overlap with sensitive spectral ranges of a camera sensor. However, the spectral passage ranges are, in contrast to the sensitive spectral ranges of the camera sensor, spectrally disjunct, and the transmitted colors can therefore be clearly identified.
US09693025B2 Image projector, image projection method, and recording medium
An image projector includes a light source to emit light, an image forming device to form an image based on a reflected light of the light emitted from the light source, a color wheel disposed between the light source and the image forming device so as to pass the light emitted from the light source to the image forming device through an optical path, the color wheel including a plurality of color filters, at least one lens to project the image formed on the image forming device to a projection surface as a projection image, and circuitry to cause the color wheel be moved away from the optical path for the light emitted from the light source, when a brightness of the projection image is to be increased.
US09693024B2 Visual inspection device
A visual inspection device includes a body having a support portion and a grip portion extending from the support portion. The device also includes a flexible cable having a first end portion coupled to the body and a second end portion, and a camera assembly coupled to the second end portion of the flexible cable. The camera assembly includes an image sensor operable to transmit image data through the flexible cable. The device further includes a display supported by the support portion of the body. The display is electrically connected to the flexible cable to display image date from the image sensor. The device is powered by a rechargeable battery pack removably coupled to the body.
US09693020B1 Producing and viewing publically viewable video-based group conversations
A system and method for producing a video-based group conversation for viewing over a network. The system is configured to generate a display at a first user computer which includes a plurality of sections in a single screen display, including at least a preview section configured for displaying an indicator for each of one or more viewers who are viewing the video-based conversation, and a media player section configured for displaying a video signal including at least some of the video feeds. The creator of the publically viewable video-based group conversation controls which users can participate in the publically viewable video-based group conversation by enabling video streams provided by those users to be displayed on the screen and viewable to other users who access the group conversation.
US09693015B2 Presentation and display equipment
A presentation and display system comprising a pedestal mounted on a plinth and a display screen or monitor carried by the pedestal, in which the individual components of the system are secured together by manually operable releasable fasteners.
US09693011B2 Upgraded image streaming to legacy and upgraded displays
A display system and method including (a) at least one input source encoding images to be displayed in a first format with a first resolution and in a second format with a second resolution higher than the first; (b) a first and second display for displaying images with the first and second resolution, respectively; and (c) a shared resource network linking the at least one input source with the first and second displays. The images encoded in the first format with the first resolution are sent over the shard resource network through a first cable. A first part of each image encoded in the second format with the second resolution is sent over the shared resource network through the first cable. A second part of each image encoded in the second format with the second resolution is sent over the shared resource network through a second cable.
US09693009B2 Sound source selection for aural interest
A viewer-selectable audio display region is associated with certain pixels of a video feed visible to the viewer of the video. Directional microphones provide audio signals for specific audio sources within a three-dimensional (3-D) video recording space. The recorded video signal is augmented with the audio signals and identified sound sources. The sound sources are mapped to pixels on the display. When the viewer selects the pixels, one or more audio recordings are: (i) played; (ii) amplified; (iii) mixed; and/or (iv) otherwise processed.
US09693005B2 Electric apparatus and an operation method thereof
The present invention discloses an electric apparatus and operation method thereof. The electric apparatus includes: display unit to display the output content from said electric apparatus: operation unit used to operate said electric apparatus; the apparatus further includes: the primary indication unit, when the primary indication unit is started up, the operation unit is in visible status and otherwise the operation unit is in invisible status. The design of the present invention improves the front visual effect and the interactive performance of the electrical apparatus.
US09693001B2 Image sensor, operating method thereof, and system including same
A method of operating an image processing system includes storing differences between first analog pixel signals and second analog pixel signals and converting the stored differences to one-bit digital signals, the first analog pixel signals being output from a plurality of pixels and corresponding to a previous frame, and the second analog pixel signals being output from the plurality of pixels and corresponding to a current frame.
US09693000B2 Image processing apparatus and method for controlling image processing apparatus
A first area of an image is generated from a plurality of pixels existing on a line of interest that is set so as to pass through a pixel corresponding to a correction target pixel. A plurality of second areas are generated, each second area based on the positions of a plurality of pixels existing on at least one reference lines that are set so as not to pass through the correction target pixel. The value of the pixel corresponding to the correction target pixel is corrected using a value of a pixel on each of the at least one reference lines, the value being determined based on the amounts of correlation between the respective second areas and the first area.
US09692995B2 Flare detection and mitigation in panoramic images
Lens flare mitigation techniques determine which pixels in images of a sequence of images are likely to be pixels affected by lens flare. Once the lens flare areas of the images are determined, unwanted lens flare effects may be mitigated by various approaches, including reducing border artifacts along a seam between successive images, discarding entire images of the sequence that contain lens flare areas, and using tone-mapping to reduce the visibility of lens flare.
US09692993B2 Illumination estimation device, illumination estimation method, and storage medium
Illumination estimation device includes: target object area extraction unit which extracts an object area from a multispectral image, the object area being an area, including specular reflection, of an object; distribution characteristics estimation unit which estimates information representing a subspace that approximates a distribution of observation values in a spectral space, as distribution characteristics, the distribution characteristics being characteristics of a spreading manner of the observation values in the object area within the spectral space; dimension reduction unit which selects a distribution characteristic to be used from among the distribution characteristics estimated by the distribution characteristics estimation unit depending on the number of dimensions to be reduced, the number of dimensions to be reduced being determined in advance by a light environment; and illumination estimation unit which estimates spectral characteristics of illumination based on the subspace information to be represented by the distribution characteristic selected by the dimension reduction unit.
US09692987B2 Method for applying multi-layered film grain and texture mapping to a digital video image
A method for processing digital video to have grain corresponding to a motion picture film, the method having the steps of: receiving a plurality of different grain assets corresponding to different film exposure levels; receiving a digital video image; separating the digital video image into a plurality of luminance delineated matte images; adding a different grain asset to each of the plurality of luminance delineated matte images to create a plurality of asset plates; and combining the plurality of asset plates to form a final digital video image.
US09692986B2 Display device and method for shooting and displaying images
The present disclosure relates to a display device and a method for shooting and displaying an image. The display device includes a displayer and a camera installed in the displayer and configured to shoot images of an external object directly facing the displayer. The camera includes a plurality of lens components installed at intervals on a surface of the displayer, a plurality of photosensitive components matched with the plurality of lens components respectively, and a set of image processing chips configured to process the images generated by the camera.
US09692985B2 Image processing apparatus and image processing method for tone control by applying different gain
An image processing apparatus includes: a reduced image generation unit configured to obtain a reduced image; a gain data generation unit configured to obtain gain data; and a determination unit configured to determine a control gain required to amplify the input image based on the generated gain data, and letting first gain data be the gain data for an image having a relatively high frequency, and second gain data be the gain data having a relatively low frequency, the determination unit determines the control gain based on a first addition result and a second addition result.
US09692978B2 Image capturing apparatus, control method therefor, and storage medium
There is provided an image capturing apparatus. A detection unit detects a position that has been designated by a user on a first display screen. A display unit displays, on the first display screen, a captured image generated by a image capturing unit. A transmission unit transmits the captured image to an external apparatus, the external apparatus being configured to display the captured image on a second display screen and detect a position that has been designated by the user on the second display screen. An obtaining unit configured to obtain, from the detection unit or the external apparatus, position information based on the position designated by the user. A selection unit selects a partial region of the captured image based on the position information if the position designated by the user is within an effective range.
US09692976B2 Imaging apparatus with shake correction function
An imaging apparatus has one of the interchangeable lens and the camera body acting as a master and the other acting as a slave. The master has a shake detection unit configured to detect a shake of the camera body and/or the interchangeable lens; and a shake correction processing unit configured to calculate an amount of shake correction for the correction lens and the imaging device based on an output from the shake detection unit. The shake correction processing unit performs arithmetic processing for calculating a shake correction signal and separates the shake correction signal into a low frequency domain and a high frequency domain. One of the lens driving unit and the device driving unit performs the image blur correction based on the shake correction signal of the high frequency domain, and the other performs the image blur correction based on the shake correction signal of the low frequency domain.
US09692975B2 Motion blur-free capture of low light high dynamic range images
Embodiments of the disclosure compensate for global movement and in-scene movement during image capture by a computing device. A sequence of images is accessed by the computing device. Accelerometer readings and/or gyroscope readings corresponding to each of the accessed images are used by the computing device for calculating global movement among each of the accessed images. Each of the accessed images is re-aligned based on the calculated global movement. The re-aligned images are combined into a single output image. The intensity values of each of the pixels in the re-aligned images are compared with the intensity values of each of the corresponding pixels in a reference image. Based on the comparison, the intensity values associated with the pixels in the re-aligned images are selectively accumulated to generate an output image that is blur-free, low-light enhanced, and high dynamic range.
US09692972B2 Stabilization of low-light video
In one embodiment, a method includes determining a maximum exposure time for capturing one or more image frames of a video clip. The maximum exposure time represents an exposure time below which the captured image frames are substantially free of motion-blur artifacts and above which the captured image frames exhibit motion-blur artifacts. The method also includes capturing the image frames with an exposure time that is less than or equal to the maximum exposure time.
US09692965B2 Omnidirectional image editing program and omnidirectional image editing apparatus
This invention has an object to provide an image editing program and apparatus allowing users to intuitively produce images covering the omnidirection. In a virtual space, an omnidirectional image is projected according to a coordinate conversion and displayed at a display device 20. For omnidirectional image edition, a view direction and a view angle are changed in the virtual space with a pointing device 30, and under control of a central control unit 11, display of the omnidirectional image in a screen image is renewed to perform two-dimensional drawing to an image for drawing having the same coordinate system as that of the screen image with the pointing device 30 using the screen image as a clue. After the end of drawing, the coordinate conversion is made to the drawing image to project the image at a proper position of the omnidirectional image. The omnidirectional image is thus completed by repeating the steps of view direction changes and drawing.
US09692960B2 Method and system for enabling camera of mobile terminal to automatically adapt camera parameters according to scene motion
A method and a system for a mobile terminal camera, to automatically adapt to scenarios, may include collecting motion data of a mobile terminal, within a predetermined period of time, via a sensor, acquiring a number of times when a maximum value of the motion data exceeds a predetermined value, obtaining a current motion scenario through analysis of the motion data according to the number of times the motion data exceeds the predetermined value, and automatically adjusting camera operation parameters according to the current motion scenario. Thereby, the present invention may make it unnecessary for a user to conduct frequent operations, so the user can conveniently and rapidly take pictures or videos in agreement with a current environment.
US09692958B2 Focus assist system and method
Focus assist systems and methods for imaging devices are provided. The focus assist systems and methods display focus level data to a user. There are a variety of methods of displaying focus level data to a user, including, but not limited to, graphs, highlights, symbols, and varied levels of brightness or color.
US09692950B2 Display method for video conferencing
A display method for video conferencing and an associated video conferencing system are provided. The video conferencing system includes a display, an image capturing unit, and a network interface unit. The method includes the steps of: utilizing the image capturing unit to capture images of a local user in a video conference; performing foreground segmentation on the captured images to obtain a foreground object; flipping the foreground object horizontally; identifying a human face from the flipped foreground object and correcting a facing angle of the human face; determining interaction data from the local user on the display; encoding the interaction data and the flipped foreground object into an interaction stream and a video stream, respectively; packing the interaction stream and the video stream into an output stream; and transmitting the output stream to a remote user of the video conference through the network interface unit.
US09692949B2 Ball with trajectory control for reconnaissance or recreation
A ball with a housing suitable for being thrown or projected into an airborne trajectory, the ball capable of deforming a portion of the exterior surface of the housing for the purpose of controlling the direction of its airborne trajectory. Also disclosed is a ball with a housing suitable for being thrown or projected into an airborne trajectory with means for shifting its center of mass away from the center of the housing for the purpose of controlling the direction of its airborne trajectory. A golf ball with one or more deformable dimples is also disclosed.
US09692940B2 Image processing apparatus, image processing method, and storage medium
Jaggies in an edge portion are reduced while suppressing deterioration of an image to a minimum. There are provided a determination unit configured to determine an edge of an object from input image data, a unit configured to generate edge correction data used to correct a pixel value of a pixel constituting the edge, a screen data generation unit configured to generate screen data by performing screen processing on the input image dada, and an image combination unit configured to generate output image in which a screen dot existing in the edge in the screen data is shifted into the inside of the object.
US09692939B2 Device, system, and method of blind deblurring and blind super-resolution utilizing internal patch recurrence
Devices, systems, and methods of blind deblurring and blind super-resolution utilizing internal patch recurrence. Small signal patches tend to repeat “as is” across multiple scales of a natural signal. This fractal-like behavior is utilized for signal processing tasks, including “Blind Deblurring” or “Blind Super-Resolution”, namely, removing signal blur or increasing signal resolution without a-priori knowledge of the underlying blur kernel. While the cross-scale patch recurrence is strong in signals taken under ideal conditions, the cross-scale patch recurrence significantly diminishes when the acquisition blur deviates from an ideal blur. These deviations from ideal patch recurrences are used for recovering the underlying (unknown) blur kernel. The correct blur kernel is recovered by seeking the kernel which maximizes the patch similarity across scales of a related “reference” signal. For example, this reference signal may be the low-resolution input signal, the sharp deblurred-version of a blurry input signal, or the like. Quantitative and qualitative experiments indicate that this approach yields improved or superior results, in “Blind Deblurring” and in “Blind Super-Resolution”.
US09692937B1 Methods and apparatus for identifying lines in an image and using identified lines
Methods and apparatus for: identifying perimeter lines in an image, e.g., document border lines forming a non-rectangular quadrilateral corresponding to a scanned document, determining document corner points, and correcting the input image based on determined corner points are described. Lines are identified in the input image and a line weight is generated for each identified line. The identified lines are classified into two different groups based on direction, e.g., predominately vertical or predominately horizontal. For each group at least two, and sometimes more, candidate perimeter lines are determined to be kept, based on line weight and line length, and other lines in the group are eliminated. Two best candidate perimeter lines are identified from each group, e.g., based on distance between the remaining lines in the group. Four document corner points are determined based on the remaining lines in the two groups.
US09692933B2 Image forming apparatus that ensures execution of asynchronous information sharing without using mail server, image forming method and recording medium
An image forming apparatus that executes information sharing among a plurality of image forming apparatuses includes a communication circuit, a set value management circuit, a storage circuit, and a distribution hold list management circuit. The communication circuit ensures communication with another image forming apparatus of the plurality of the image forming apparatuses. The set value management circuit distributes, based on a master authority as an authority for distributing a changed set value to the other image forming apparatus, the changed set value to the other image forming apparatus. The storage circuit, when the distribution fails, stores a distribution hold list that includes a combination of: an identifier of another image forming apparatus where the distribution has failed, and an item name and value of a set value where the distribution has failed. The distribution hold list management circuit manages the stored distribution hold list.
US09692929B2 Method and system for correction of an image from a hand-held scanning device
A method for correcting an image acquired by a hand-held scanning device. A binarized image of an acquired image is cropped by removing columns on the left end and on the right end of only first components. A work image is created from the cropped image by replacing in each row of components series of first components smaller than a predetermined distance with series of second components. In the work image, a central line is identified. The identified central line in the work image is used to identify the corresponding central line in the cropped image forming a central line image, and in the central line image, the central text line is straightened.
US09692928B2 Network system for resolving image-forming-apparatus firmware and application version conflicts
A program exchange system includes an exchange information managing server and a program exchange server. The exchange information managing server manages exchange information, the exchange information indicating a necessity to exchange at least one of a firmware program and an application program, corresponding to a combination of a version of the firmware program on an image forming apparatus and a version of the application program on the image forming apparatus. The program exchange server exchanges the program on the target image forming apparatus. The program exchange server determines the necessity to exchange the program on the target image forming apparatus based on the combination of the version of the firmware program on the target image forming apparatus and the version of the application program on the target image forming apparatus, and the exchange information managed by the exchange information managing server.
US09692927B2 Device, information processing system, and information processing method
A device includes an input part configured to input data, a first transmission part configured to transmit the data to a predetermined transmission destination, a second transmission part configured to transmit the data to a transmission destination different from the predetermined transmission destination, and a transmission control part configured to cause the second transmission part to transmit the data in response to receiving a request to transmit the data from the first transmission part.
US09692925B2 Image processing apparatus that facilitates restoration from protection mode of included hard disk drive, method for controlling image processing apparatus, and storage medium
An image processing apparatus includes a mounting information holding circuit, an abnormality determination circuit, and a mounting execution circuit. The abnormality determination circuit determines whether or not a predetermined abnormality determination condition is met based on mounting information related to already-executed mounting held in the mounting information holding circuit when a hard disk drive is inaccessible. The mounting execution circuit sets a power supply of the hard disk drive in ON state after once setting in OFF state, and then executes mounting of the hard disk drive after the setting in ON state when the abnormality determination circuit determines that the abnormality determination condition is not met.
US09692919B2 Image forming apparatus, image editing method and non-transitory computer-readable recording medium for forming an image on a recording medium based on an image displayed on a display section
An image forming apparatus includes a position detecting section detecting a position of contact with a display screen of a display section and forms an image on a recording medium based on a display image displayed on the display section. The display image includes an object image indicative of an object for an image formation and a medium image indicative of the recording medium, and the image forming apparatus selectively edits the object image or the medium image based on positions of two points detected by the position detecting section.
US09692917B2 Operating information storing system, operating information storing method, and non-transitory computer readable recording medium storing an operating information storing method for storing information from volatile memory to non-volatile memory
An operating information storing system includes a master apparatus and multiple slave apparatuses. The master apparatus and each slave apparatus respectively include a first processor. The master apparatus includes a nonvolatile memory, the first processor that acquires operating information generated by each slave apparatus, stores the acquired operating information, and determines if at least one operating information indicates specific operating information, and a first transmitter. Each slave apparatus includes a volatile memory, a second processor to store generated operating information in the volatile memory sequentially, and a second transmitter that transfers the operating information stored in the volatile memory to the master apparatus. The second processor stores the specific operating information in the volatile memory until the second transmitter transfers the generated specific operating information to the master apparatus based on the request transferred by the first transmitter in the master apparatus if the specific operating information is generated.
US09692915B2 Server apparatus providing portable information terminal and image forming apparatus with cloud image processing service
An image forming apparatus 176 capable of easy log-in to a desired cloud service includes a print engine communicable with a cloud server 170 for printing a print job received from cloud server 170, a reader/writer 174 capable of proximity communication with a portable terminal 172, and a log-in executing device receiving log-in information to cloud server 170 from portable terminal 172 through reader/writer 174, for executing the log-in process to cloud server 170 using the log-in information.
US09692909B2 Techniques for zero rating through web reconstruction
Techniques for zero rating through web reconstruction are described. In one embodiment, an apparatus may comprise a client access component operative to receive a web request from a client device, the web request for a web page hosted on a network server device; and transmit a zero-rating transformed web page to the client device in response to the web request; and a web reconstruction component operative on the processor circuit to retrieve the web page from the network server device; identify one or more non-zero-rated resource references in the retrieved web page; transform the one or more non-zero-rated resource references to form one or more zero-rated resource references; and replace the one or more non-zero-rated resource references with the one or more zero-rated resource references in the web page to form the zero-rating transformed web page. Other embodiments are described and claimed.
US09692907B2 Device and method for GSM call identifier
A network node for a GSM network, arranged to receive a TDMA frame comprising a plurality of timeslots, each of which comprises payload from one or more calls. The network node extracts payload from calls and to assigns the extracted payload a corresponding identifier identifying the call of the payload. The network node is also arranged to generate a data packet comprising the extracted payload from calls together with their corresponding identifier, and places the corresponding identifier in a header in the data packet. The network node is also arranged to transmit the data packet to another node in the GSM network.
US09692905B2 Proximity based call transfer back based on increasing distance
A communication system includes logic to detect a second communication device in proximity to a first communication device engaged in a call, and to provide a substantially uninterrupted transfer of selected parties to the call to the second communication device. A proximate device may be identified as one capable of rendering a particular data type, and a substantially uninterrupted transfer may be performed to the proximate device of data of the communications having the data type. An application associated with communication data may be identified, as well as a proximate device capable of providing the application, and a substantially uninterrupted transfer may be performed to the proximate device of data associated with the application.
US09692904B2 Tree-based broadcasting service over push-to-talk mobile IP network
A method for generating a plurality of messages for inviting communication devices to a communication conference comprises: establishing a first communication conference with a plurality of first communication devices, receiving a plurality of communication device identifiers from a communication device participating in the first communication conference, which communication device identifiers identify the communication devices to be invited to at least a second communication conference, determining the communication devices from the plurality of the communication devices, which are already involved in the first communication conference, generating messages for inviting communication devices to a communication conference only for those communication devices which are not involved in another communication conference.
US09692902B2 Method and system for forwarding or delegating modified mobile device functions
This provides for controlling mobile device functions and features. For example, it limits or disables the use of some of mobile device features which could cause distraction to the user, when the user is engaged in another activity. In an example, it enables other mobile device features based on occurrence of events related to the user or environment. Another example addresses controlling the mobile device features, such as SMS, while the user is in a vehicle or driving. Another example restricts the ability of the driver of a vehicle to text, while the vehicle is in motion, by automatically disabling the texting ability of mobile device within and around the perimeter of the driver's seat. Other variations, examples, improvements, detection mechanisms, models, techniques, calculations, verification mechanisms, and features are also described in details.
US09692901B2 System and method of intelligent call routing for cross sell offer selection based on optimization parameters or account-level data
An apparatus and methods for a call routing system is disclosed whereby the call routing service provider is associated with a series of partners. By providing a system supporting not only the main user, but also the partners, efficiencies are gained through cost-spreading. Agents can be qualified to field calls for multiple business entities. Cross-selling and proactive servicing based on caller demographic and profile data can be effectuated. The system employs a centralized or global bank of shared Interactive Voice Response (IVR) units so that unnecessary post-routing and call site interflow are reduced. The system comprises a central server system that interfaces with a long distance provider so that route requests are received, caller data is retrieved from one or more databases, routing and handling strategies are developed, load balancing is effectuated, and calls are appropriately routed to one of a plurality of geographically separated call center systems with queues staffed by agents. Each call center system is designed to support various queues, and agents may be qualified or assigned to various queues based on their skill sets and skill levels.
US09692900B1 Strategic intelligent decision engine
One or more embodiments of the present invention pertains to an apparatus and method that detects a condition of the customer when an incoming call is received from a customer and directs or transfers the customer to an agent to service the customer based on the detected condition.
US09692898B1 Techniques for benchmarking paring strategies in a contact center system
Techniques for benchmarking pairing strategies in a contact center system are disclosed. In one particular embodiment, the techniques may be realized as a method for techniques for benchmarking pairing strategies in a contact center system comprising: cycling, by at least one processor, among at least two pairing strategies; and determining, by the at least one processor, a difference in performance between the at least two pairing strategies.
US09692896B2 Communication dashboard with dynamically configured interface
The method and system of the present invention include, responsive to a receipt of a customer input, customizing an agent interface menu. The customizing includes selecting a plurality of action items for the agent interface menu, and ordering the plurality or more action items in the agent interface menu. The customizing is performed using the customer input and an item of stored customer information. The method further includes presenting an item of the customer input in an agent interface. The agent interface includes the agent interface menu, a communication window, and a customer attributes display. Responsive to a selection of one of the plurality of action items, wherein the plurality of action items is presented by the agent interface menu, an input field in a form provided in support of an action selected from the agent interface menu is populated with the customer input received from the customer interface.
US09692892B2 Trading exchange for local data services
The present invention provides a method and system for trading exchange to facilitate local data services for roaming users. The trading exchange includes an ecosystem of a plurality of operators, having home network (HPMN) and visited network (VPMN) operators. The trading exchange further includes a gateway for facilitating local data services for users, where the user is roaming in VPMN, by configuring a Domane Name Resolution (DNS) of the VPMN's Gateway General Packet Radio System (GPRS) Support Node (GGSN) for its users. The trading exchange further includes an interface maintaining a bi-directional connection with the gateway to exchange information related to the roaming services, and a bi-directional connection with users via their mobile devices' user interface.
US09692891B1 Methods and systems for blocking unwanted communications
Methods and systems are described for processing call blocking instructions and for managing mobile messaging. A method of processing call blocking instructions is described. A call processing system receives a call from a caller intended for a first user. A notification regarding the call is transmitted to a mobile device associated with the first user. A message from the user is received via the mobile device, wherein the message is a text or multimedia type message. At least partly in response to the message, the caller is placed on a blacklist indicating that future calls from the caller to the user are to be blocked.
US09692881B2 Electronic device, information processing method and information display method
An electronic device includes a first display unit which displays information about an active application, which is an application being executed; a touch sensor which is overlapped on the first display unit and which detects a touch thereto; and a control unit which, in a state where information about the active application is being displayed on the first display unit, performs processing on the active application when a touch to the touch sensor is determined as a first touch, and executes, as the active application, another application different from the application being executed when the touch to the touch sensor is determined as a second touch which has a wider region than the first touch.
US09692874B2 Adjusting alarms based on sleep onset latency
In some implementations, a mobile device can adjust an alarm setting based on the sleep onset latency duration detected for a user of the mobile device. For example, sleep onset latency can be the amount of time it takes for the user to fall asleep after the user attempts to go to sleep (e.g., goes to bed). The mobile device can determine when the user intends or attempts to go to sleep based on detected sleep ritual activities. Sleep ritual activities can include those activities a user performs in preparation for sleep. The mobile device can determine when the user is asleep based on detected sleep signals (e.g., biometric data, sounds, etc.). In some implementations, the mobile device can determine recurring patterns of long or short sleep onset latency and present suggestions that might help the user sleep better or feel more rested.
US09692872B2 System and method to customize a telephone
Methods and apparatus for customizing a telephone are disclosed in which preferred communication services are conveniently accessible to a user, in which a telephone is tailored to the specific requirements of a user.
US09692870B2 Monitoring camera system
In a monitoring camera system, a master device registers a smart phone and a wireless router therein in advance. If sensor detection information is received from a human sensor, the master device requests a monitoring camera to transmit image/audio data, and sends image/audio data transmitted from the monitoring camera to the smart phone via the wireless router. The smart phone displays the image data sent from the monitoring camera on a touch panel.
US09692868B2 Mobile terminal and control method for the mobile terminal
A mobile terminal including a display: a wireless communication unit configured to pair the mobile terminal with a doorlock device; and a controller configured to receive an image captured by the doorlock device, display the received image on the display, and control the doorlock device based on a touch input applied to the displayed image.
US09692865B2 Mobile terminal and menu control method thereof
A mobile terminal including a wireless communication unit configured to provide wireless communication, a display, and a controller configured to, activate a mode for voice recognition in response to a touch input to a soft button displayed on the display or to a hard button on the mobile terminal, receive a first voice input associated with a phone call relating operation of the mobile terminal, display an indicator on the display indicating the voice input is being recognized by the mobile terminal, analyze the context of a voice command in the voice input, execute the call relating operation only if there is a single contact in a phonebook that matches the voice command in the first voice input, if there is no single contact that matches the voice command of the received voice input, display a plurality of candidates that is analyzed based on the voice command, receive a second input according to a plurality of candidates, and execute the call relating operation based on the second input.
US09692864B1 Attachable cosmetics case for a cellular phone
An attachable cosmetics case for a cellular phone including a substantially rectangular case having a substantially rectangular primary storage compartment and a U-shaped back side having a right wing, a left wing, and an elongated substantially linear middle portion. A top lid is hingedly attached to the case. A cellular phone charging connector plug is medially disposed on a middle portion of the back side of the case. A charging port is disposed on a right side of the case, and a headphone port is disposed on a left side of the case. A plurality of secondary storage compartments and an applicator compartment is disposed within the primary storage compartment of the case. The case is removably attachable to a cellular phone, with the cellular phone charging connector plug disposed within a charging port of the cellular phone.
US09692861B1 Internal magnetic locking for mobile devices
Systems and methods for assembling a mobile cellular device do not require screws or adhesives, allowing for more efficient and less wasteful rework of the device when needed. In an embodiment, one or more fixed lock elements are attached to one a screen assembly of the device (or the device housing) and a locking shaft is retained in the housing (or the screen assembly). The locking shaft includes blocking sections that block passage of the lock elements, and non-blocking sections that permit passage of at least part of each lock element. In this way, when the screen assembly is mated to the housing, each lock element aligns with and at least partially passes over one of the non-blocking sections, such that when the locking shaft is slid axially, the lock elements align with and are retained by the blocking sections.
US09692845B2 Permanent presence for polite block and confirm
The present invention relates to a method and devices for operating a communication network, in particular a presence SIMPLE network applying polite block and confirm for subscribers to presence data. A method for operating a communication system comprising a presence server and a presence document server is provided, the communication system being adapted to communicate with a first client requesting subscription to the presence data of a presentity using a second client, the method comprising the steps of: sending, in case the subscription is to be confirmed or politely blocked, a request for presence data from the presence server to the presence document server; receiving a message comprising presence data of the presentity from the presence document server; and sending a notification message to the first client based on the received presence data of the presentity.
US09692843B1 System and method for associating individual household members with television programs viewed
A method executes at a server system with one or more processors and memory. The server receives demographic information for a plurality of household members. The demographic information includes at least age and gender. The server receives web activity information for the household. The server identifies one or more web activity sessions from the web activity information and selects one of the web activity sessions. The server identifies one or more web sites visited during the selected web activity session and accesses demographic skew data for at least a subset of the web sites visited. The demographic skew data for a web site identifies fractions of visitors to the web site from predefined demographic segments. The server associates a household member with the web activity session at least in part by correlating the demographic skew data of the web sites visited with the demographic information of the first household member.
US09692842B2 Automatically generating web conference recording bookmarks based on user analytics
Arrangements described herein include accessing user data associated with a user participating in a web conference. The user data includes user analytics generated by tracking and analyzing use, by the user, of web based resources unrelated to the web conference. A plurality of topics discussed during the web conference can be identified in real time. For each respective topic that has a high probability of being of interest to the user, at least one bookmark for the web conference can be generated. Data contained in the bookmark artifact can be applied to a recording of the web conference to bookmark in the recording of the web conference each respective topic that has a high probability of being of interest to the user. An association between the recording of the web conference and the user can be created.
US09692839B2 Context emotion determination system
Systems, methods, and devices for determining contexts and determining associated emotion profiles using information received from multiple emotion sensor enabled electronic devices, are disclosed. Contexts can be defined by a description of spatial and/or temporal components. Such contexts can be arbitrarily defined using semantically meaningful and absolute descriptions of times and locations. Emotion sensor data is associated with or includes context data that describes the circumstances under which the data was determined. The emotion sensor data can include emotion sensor readings that are implicit indications of an emotion for the context. The sensor data can also include user reported data with explicit descriptors of an emotion for the context. The emotion sensor data can be filtered by context data according a selected context. The filtered sensor data can then be analyzed to determine an emotion profile for the context that can be output to one or more users or entities.
US09692838B2 Generating business insights using beacons on online social networks
In one embodiment, a method includes receiving, from beacons of a third-party content provider (e.g., a business), session information for users of an online social network. A mobile device of each user may have been in at least one wireless communication session with at least one beacon, and during the session the mobile device was proximate to the at least one beacon. The session information may include an identifier for each of the users, which may be used to access social-networking information for each user. A report of business insights may be generated based on aggregated social-networking information (e.g., demographics) and aggregated session information (e.g., average duration of sessions) of the users. For example, the report may include statistics regarding the business' clientele. User-specified permissions may delimit which information may be included in the report. The report may be sent to a third-party system for display.
US09692837B2 Federated application services
In one embodiment, a method includes receiving a request from an application for access to a service. The application is one of a number of applications that each includes software for accessing the service. The method includes selecting one of the applications to use to access the service, and providing the requesting application access to the service through the selected application's software for accessing the service.
US09692836B2 Method, apparatus and system for device discovery
The present invention provides a method, an apparatus and a system for device discovery. The method includes: acquiring, by a first device, a user identification of a target user, and acquiring, according to the user identification of the target user, broadcast information of a second device which the target user logs in; when broadcast information of another device is monitored through a D2D function, matching, by the first device, the monitored broadcast information with the broadcast information of the second device, and if the match is successful, determining, by the first device, that the second device and the first device are within a preset distance. According to the present invention, the accuracy of discovering a short distance user is improved and, thus, the problem in the prior art that the accuracy of discovering a user in a short distance cannot be guaranteed by using a cell ID is solved.
US09692834B2 Multimodal conversation transfer
In one embodiment, a user may transfer multimodal conversation. A multimodal conversation may have a first mode communication session and a second mode communication session. A first user point of presence may execute a first transfer of the first mode communication session with a first partner point of presence from the first user point of presence to a first target point of presence. A second user point of presence may execute a second transfer of the second mode communication session with a second partner point of presence from the second user point of presence to a second target point of presence.
US09692830B2 Systems and methods for identifying and characterizing client devices
The teachings herein generally relate to client-server communications and the delivery of content over computer networks to clients, and provide improved methods, systems, and apparatus for identifying and/or characterizing client devices that are requesting content from a server. For example, based on information sent in a client device's request for content, a web server modified in accordance with the teachings hereof can identify a set of characteristics associated with that client device. Such characteristics might include the model name of the client device, the screen dimensions of the client device, information about the particular operating system or browser name/version it is running, content formats it is capable of consuming, and so on. The web server can use this information to modify and customize its response for the given client device.
US09692829B2 Medication delivery system and method
A medication delivery system includes a medical server configured to send and receive and process data, a medication device configured to administer a preselected medication, a sensor circuit configured to detect selected parameters relating to medication delivery and transmit information, a transmission hub configured to communicate with the medical server and the sensor circuit. The transmission hub is configured to receive a signal from the sensor circuit and exchange the information. An application is configured to facilitate exchange of information between the sensor circuit and the medical server. The application has a preselected set of protocols. The application monitors usage of the medication device and location of the medication device by connecting to the medication device via the transmission hub.
US09692827B2 Systems and methods for provisioning sensing resources for mobile sensor networks
An aspect of this invention is a method that includes a computing apparatus estimating geographic locations as a function of time for each of a plurality of sensor nodes. The method further includes estimating a quality of information as a function of time for sensed data to be sensed by the plurality of sensor nodes at the estimated geographic locations; and sending the estimated quality of information as a function of time to one or more applications or consumers of the sensed data.
US09692826B2 Collection folder for collecting file submissions via a customizable file request
A content management system for collecting files from one or more submitters in a collection folder. A collector, who generates the collection folder, can invite one or more submitters to submit one or more files to the collection folder via a customizable file request. The one or more submitters have limited rights to the collection folder. The limited rights can include uploading rights and prohibiting a submitter from viewing files that other submitters associated with the collection folder submitted. Thus, the collection folder is able to store files from the one or more submitters, but prevent them from viewing other's submissions.
US09692825B2 Endpoint caching for data storage systems
A data storage system including a central storage system, at least one endpoint computer system in network communication with the central storage system by a network infrastructure, and a storage accelerator in communication with a CPU of the computer system, wherein the storage accelerator provides endpoint caching of data on the central storage system that is accessible to the at least one endpoint computer. Preferably, the storage accelerator is positioned at a location where a throughput of data from the CPU to the storage accelerator is greater than the throughput of data through a connection from the CPU to the central storage system.
US09692822B1 System and method for optimized content synchronization for mobile devices
A mobile device may download preconfigured synchronization settings from a server machine. An application running on the mobile device may have special control logic that works with the server machine to implement a mobile synchronization algorithm. The control logic may collect information on communication system elements including device attributes, static channel attributes, dynamic channel attributes, or a combination thereof. The server machine may determine communication settings based at least on the collected information. The mobile device may, based at least in part on the determined communication settings, perform a synchronization process and obtain one or more synchronization items from the server machine to update content, graphics, and/or behavior of the application. Upon completion of the synchronization process, statistics may be collected and used in a subsequent dynamic synchronization process.
US09692818B2 Automated application deployment based on server utilization
Embodiments disclosed herein relate to systems, methods, and computer program products for deploying an application in a networked server environment. In some embodiments, the method monitors server metrics and deploys the application according to prioritization criteria associated with the application. The system, method, and computer program product are configured to identify a plurality of servers connected via a network; monitor a plurality of metrics associated with each server, wherein the metrics are associated with server performance or server communication over the network; receive a request to deploy an application on at least one of the servers, wherein the prioritization criteria rank the metrics in order of importance to the application; determine a deployment server for the application based at least in part on the metrics and the prioritization criteria; and deploy the application to the deployment server.
US09692816B2 System and method for global load balancing of requests for content based on membership status of a user with one or more subscription services
The present description is directed towards systems and methods for directing a user request for content over a network to a given content server on the basis of one or more rules. Methods and systems implemented in accordance with the present description comprise receiving a request for content form a user, the request for content including a profile of the user identifying one or more characteristics associated with the user. One or more rules are retrieved for identifying a content server to which a request for content is to be delivered, the one or more rules including at least one of business rules, network rules, and user profile rules. The one or more retrieved rules are applied to the request for content to identify a content server to which the request for content is to be delivered and the request for content is delivered to the identified content server.
US09692814B2 Integrating social-networking information
In one embodiment, a method includes receiving a message associated with a user at an information exchange system. At least one correspondent associated with the user may be determined, based on the message. A social connection between the user and the at least one correspondent may be assessed with respect to a social-networking system. The information exchange system may provide an interface for display to the user, the interface comprising information associated with the message. If the social connection is confirmed, the interface may include social-networking information associated with the at least one correspondent. Otherwise, the interface may provide functionality to create a social connection between the user and the at least one correspondent with respect to the social-networking system.
US09692812B1 System and method for providing access to data objects based on proximity
A system and method for providing access to data objects based on proximity. The system and method allow sharing of data objects by identifying one or more client devices proximate to the sharing device. The user of the sharing device may then select one or more of the identified devices with which to share the data object. Aspects of the invention include the ability to enable a “sharing mode” on the client devices to opt-in and allow communication with other similarly configured devices in the area. Access to the data object may be managed via an access control list present on a remote server, with the remote server hosting the data object.
US09692807B2 Mobile itinerant software agent carrying itinerary and data within
A method and data processing system for using agent software to perform data processing on multiple computer systems. The agent software is sequentially migrated from a user computer system to each system of N computer systems, after which the agent software is returned to the user computer system with a final result that includes output results obtained from execution of run time instructions in the agent software on each computer system of the N computer systems. N is at least 1.
US09692803B2 Computer device, system and methods for controlling an exchange of objects between devices
A computer device includes at least one processor in communication with a database storing at least one first object having one or more characteristics and at least one second object having at least one different characteristic to the characteristics of the first object, the at least one processor being configured to control an exchange of the at least one first object or the second object between a first device and a second device, the control comprising the steps of retrieving an identifier associated with the second device, selecting the first object having one or more characteristics or the second object having at least one different characteristic in dependence on the identifier associated with the second device and at least one predetermined rule, and transmit the selected first object or the selected second object to said first device.
US09692800B2 Enhanced streaming media playback
A streaming video playback system is provided to generate locally a manifest file associated with a streaming video for a media player of a client device. The locally generated manifest file helps reduce startup time for the media player and the manifest file is locally generated based on streaming metadata associated with the streaming video and the manifest files includes HTTP Live Streaming (HLS) based master playlists and media playlists. The locally generated manifest file also provides better adaptive bit rate control by enabling pre-fetching of video segments of a streaming video and caching during playback. The streaming video playback system reduces the size of media playlist transmitted to a content sharing service using index of the last video segment and makes it practical to have DVR-able live video streaming with a larger seek window.
US09692798B2 Method for routing in a central conferencing routing server
Aspects of the present disclosure involve systems, methods, computer program products, and the like, for collaboration conferencing with multiple participants over a communications network, and more specifically for a conferencing routing service for managing and routing collaboration participants. A collaboration conferencing routing server may provide configurability in routing a collaboration conference to a conference bridge based on any number of criteria and information about the requester and the communications network on which the conference occurs.
US09692797B2 Collaborative browsing on a network site
Disclosed are various embodiments for facilitating collaborative browsing of a network site by multiple users. A user interface is rendered by a computing device, and the user interface facilitates participation in a collaborative browsing session by multiple users including a master user and one or more other users. The user interface includes a browsing window that facilitates browsing of a network site by the master user. An indication of a status change of the browsing window is sent to another computing device when the computing device corresponds to a client in use by the master user.
US09692796B2 Apparatus and method for setting disposition with respect to document share
Provided is an apparatus and method for setting disposition with respect to document information share. To this end, once a transmission-side server forwards a document forward request message including a document disposition rule with respect to a document to a reception-side server, the reception-side server checks a preference with respect to the document forward request message by using a preset user preference to notify a document change, and stores document data together with a disposition rule regarding the document data, such that efficient management and disclosure of private information forwarded to a user become possible and thus a CAB service can be easily and rapidly provided according to user's selection.
US09692795B2 Dynamic group and event update method in phone based impromptu meet-up app
This disclosure relates to generating a group of invitees in a wireless communication system. An embodiment of the disclosure receives criteria for an event from an organizer of the event, compares the criteria to contact information of each contact of a plurality of contacts, assigns a recommendation ranking to each contact based on the comparison of the criteria to the contact information for each contact, and displays a subset of the plurality of contacts sorted according to the recommendation ranking.
US09692792B2 Method and system for managing security policies
A system and method of managing security policies in an information technologies (IT) system are provided. In an example, the method includes receiving an input indicating a high-level security policy for the IT system, the received high-level security policy relating to non-functional system attributes for the IT system and received in a format that is not machine-enforceable at an enforcement entity of the IT system. A functional model for the IT system is determined, where the functional model indicates functional system attributes of the IT system. At least one pre-configured rule template is loaded, and at least one machine-enforceable rule is generated in a manner compliant with the received high-level security policy by iteratively filling the at least one pre-configured rule template with functional system attributes indicated by the functional model. After the generating step, the at least one machine-enforceable rule can be distributed (e.g., to an enforcement entity, an Intrusion Detection System (IDS), etc.). In another example, the receiving, determining, loading, generating and distributing steps can be performed at a policy node within an IT system.
US09692791B1 Network-based security services for software applications
A software application may be registered for network-based security services that help ensure that the software application only communicates with network devices (e.g., application servers) for which permission is expressly given or network devices otherwise deemed trustworthy. A network server may monitor network traffic originating from the software application installed on a user device. When the software application causes the user device to communicate with a network device for which permission has not been given and/or that is untrustworthy (e.g., for having a reputation of being associated with malicious software), the network server may prohibit the software application from sending information to the network device.
US09692789B2 Techniques for cloud security monitoring and threat intelligence
Systems and methods for cloud security monitoring and threat intelligence in accordance with embodiments of the invention are disclosed. In one embodiment, a process for monitoring and remediation of security threats includes generating a threat model using a first portion of activity data, identifying, based upon the threat model, a threat using a second portion of activity data, selecting a security policy to implement in response to the identified threat, identifying cloud security controls in a remotely hosted cloud application server system to modify in accordance with the selected security policy, establishing a secure connection to the remotely hosted cloud application server system using login credentials associated with a tenant account with the cloud application, and sending instructions to the remotely hosted cloud application server system to set the identified cloud security controls with respect to the tenant account in accordance with the selected security policy.
US09692784B1 Security appliance
A security appliance may incorporate a touch screen or similar input/output interface, providing command and control over network functionality and configuration, without requiring log in via a network from another computing device. During denial of service attacks, commands from the local interface may be given priority access to processing resources and memory, allowing mitigating actions to be taken, such as shutting down ports, blacklisting packet sources, or modifying filter rules. This may allow the security device to address attacks without having to be manually rebooted or disconnected from the network.
US09692783B2 Method and apparatus for reporting a virus
According to an example, a client device determines at least one virus sample according to at least one anti-virus engine, transmits sample information of the at least one virus sample to a server, such that the server determines a first virus sample set needs to be reported according to the sample information of the at least one virus sample and a predefined sample information list in the server, and returns to the first virus sample set to the client device. The client device receives the first virus sample set needs to be reported and performs a virus reporting operation according to the virus sample set.
US09692782B2 Detecting malicious resources in a network based upon active client reputation monitoring
Systems and methods for detecting malicious resources by analyzing communication between multiple resources coupled to a network are provided. According to one embodiment, a method is performed for client reputation monitoring. A monitoring unit within a network observes activities relating to multiple monitored devices within the network. For each observed activity, the monitoring unit assigns a score to the observed activity based upon a policy of multiple polices established within the monitoring unit. For each of the monitored devices, the monitoring unit maintains a current reputation score for the monitored device based upon the score and a historical score associated with the monitored device. The monitoring unit classifies one of the monitored devices as potentially being a malicious resource based upon its current reputation score.
US09692781B2 Detecting unwanted intrusions into an information network
The present invention relates to a device for detecting unwanted intrusions into an information network comprising a module for receiving raw data from the network, a plurality of search engines configured to detect an attack indicator and any derived data which may be corrupted, a distribution module suitable for allocating at least one search engine to each piece of raw data, an administrator module linked to the search engines and to the distribution module and configured to transmit each piece of derived data to said module as new raw data if it has not already been processed by said same search engine(s), so as to provide recursive analysis of each piece of raw data received by said receiving module. The invention further relates to a process implemented by a device of this type.
US09692777B2 Monitoring and managing user privacy levels
Various embodiments pertain to techniques for measuring a user's privacy level as a user interacts with various web services. In various embodiments, entities with which the user interacts are detected and sensitive information shared by the user is logged to determine what a given entity knows about the user. In some embodiments, sensitive information that is shared by a user can be processed using a predictive algorithm to ascertain a user's level of privacy. When a user's identity is predicted by the algorithm, a user can be alerted to the loss of anonymity. In various embodiments, user-defined areas of anonymity can be used to measure a user's definition of privacy. In some embodiments, alerts can also be provided to the user when a new, previously undisclosed, piece of information is shared by the user.
US09692776B2 Systems and methods for evaluating content provided to users via user interfaces
The disclosed computer-implemented method for evaluating content provided to users via user interfaces may include (1) monitoring, as part of a security application via an accessibility application program interface provided by an operating system of a computing device, accessibility events that indicate state transitions in user interfaces of applications running on the computing device, (2) receiving, at the security application, an accessibility event that indicates that a user of the computing device is viewing a user interface of an application running on the computing device, (3) identifying, as part of the security application via the accessibility application program interface, content that the user is attempting to access via the application, (4) determining, as part of the security application, that the content is harmful, and (5) performing, as part of the security application, at least one security action in response to determining that the content is harmful.
US09692771B2 System and method for estimating typicality of names and textual data
According to one aspect, a method of assessing typicality of a first name that includes a plurality of characters includes obtaining the first name, determining at least a first N-gram size, and extracting a first plurality of N-grams of the first N-gram size from the first name. The first plurality of N-grams is analyzed with respect to a model. Analyzing the first plurality of N-grams with respect to the model includes obtaining a first score. Finally, the method includes determining whether the first score indicates that the first name is typical.
US09692764B1 System and methods for providing query-based permissions to data
A method includes generating a database query in a database; receiving a first request to execute the database query on behalf of a first user; in response to the first request, executing the database query to generate a first set of results such that the first set of results is limited to data with which there is a semantic relationship in the database to a first datum representing the first user; receiving a second request to execute the database query on behalf of a second user; in response to the second request, executing the database query to generate a second set of results such that the second set of results is limited to data with which there is a semantic relationship in the database to a second datum representing the second user, where the first set of results and the second set of results are at least partially non-overlapping.
US09692761B2 System and method for controlling a DNS request
A system and method of controlling communication. An appliance is provided with a program suitable for issuing a DNS request and a control program enabling the DNS request to be intercepted. The control program includes communications elements for communicating with a DNS server to which the DNS request is transmitted, and for communicating with another server for authorization. An authorization request, distinct from the DNS request, including an identifier of the user of the appliance and the domain name, is transmitted to the DNS server. The authorization server returns to the DNS server a response established as a function of the identifier of the user of the appliance and as a function of the domain name contained in the authorization request. The communications elements for communicating with the issuing program transmit to the issuing program an IP address defined as a function of the response from the authorization server.
US09692760B2 Browser device access proxy
In a web browser (100) access is controlled with respect to at least one user data providing device (102), the web browser comprising a browser engine (106), a browser application (104) and a device access proxy, DAP (108). Access is acquired, in the DAP, to at least one user data providing device and a request is received from a web application (110) for user data from a first user data providing device. In response to the request, default data (112) is transmitted from the DAP to the web application. A user data access confirmation signal is obtained, and in response to the user data access confirmation signal, the transmission of the default data is discontinued and the requested user data is transmitted from the DAP to the web application.
US09692758B2 Authentication techniques utilizing a computing device
A pre-registration procedure is utilized to create a user profile for a user of a multi-factor authentication (“MFA”) service. A client application installation procedure is utilized to install a client application on a computing device that is to be utilized as an authentication factor for the MFA service. A computing device enrollment procedure is utilized to enroll the computing device on which the client application was installed for the MFA service. A voice enrollment procedure is utilized to create a voice print for the user of the computing device that is to be utilized as an authentication factor for the MFA service. An authentication procedure is utilized to provide multi-factor authenticated access to a service, such as an online service that provides access to sensitive account information.
US09692752B2 Ensuring information security using one-time tokens
Methods, systems, and computer-readable media for ensuring information security using one-time tokens are presented. In one or more embodiments, a computing platform may receive, from a user device, a request to access an online banking portal using a user account. Based on the request, the computing platform may generate and send a notification to a registered mobile device linked to the user account. After sending the notification, the computing platform may generate a one-time token message that includes a prompt for authorizing the user device to access the online banking portal using the user account. The computing platform then may send the one-time token message to the mobile device and receive token response input from the mobile device. Based on the input, the computing platform may prevent the user device from accessing the online banking portal or, alternatively, may provide the user device with access to the online banking portal.
US09692751B1 User actuated release of a secret through an audio jack to authenticate the user
A technique provides a secret to authenticate a user. The technique involves storing, by processing circuitry, an initial secret in local memory. The technique further involves receiving, by the processing circuitry, a release command after the initial secret is stored in the local memory. The technique further involves, in response to the release command and based on the initial secret, outputting a released secret through an audio jack which is coupled to the processing circuitry. With such a technique, the secret is only exposed in response to user actuation thus providing improved security against an attacker vis-à-vis a conventional authentication token which constantly generates and outputs a series of one-time use passcodes (OTPs) on a display based on a seed stored in memory.
US09692746B2 Single sign-on processing for associated mobile applications
Systems, methods and computer-readable media are disclosed for performing single sign-on processing between associated mobile applications. The single sign-on processing may include processing to generate an interaction session between a user and a back-end server associated with a mobile application based at least in part on one or more existing interaction sessions between the user and one or more back-end servers associated with one or more other mobile applications. In order to establish an interaction session with an associated back-end server, a mobile application may leverage existing interaction sessions that have already been established in connection with the launching of other associated mobile applications.
US09692738B1 Returns in a multi-seller marketplace
Disclosed are various embodiments for facilitating item returns on behalf of customers of an electronic commerce site. Embodiments of the disclosure can, in one example, facilitate item returns on behalf of a buyer where the seller is a seller in a multi-seller marketplace. A return shipping label can be generated on behalf of the seller as well as communications between buyer and seller archived in the event of a subsequent dispute.
US09692737B2 System and method for product registration
A system and method for controlling a production process for producing a product is provided in which overproduction may be inhibited by introducing a separation of duties within a production process. Typically a producer will contract out the various stages of a production process to multiple contractors. In general, separation of duties involves purposefully separating production stages, for silicon chips or other products, so that the end product has been handled or “touched”, by each subcontractor, in order for the end product to be fully functional.
US09692735B2 Systems and methods for decryption as a service via a message queuing protocol
Systems and methods for decryption of payloads are disclosed herein. In various embodiments, systems and methods herein are configured for decrypting thousands of transactions per second. Further, in particular embodiments, the systems and methods herein are scalable, such that many thousands of transactions can be processed per second upon replicating particular architectural components.
US09692732B2 Network connection automation
A computing resource service provider receives a request from a customer to establish a physical connection between a provider network device and a customer network device in a colocation center. Once the connection has been established, the customer may transmit cryptographic authentication information, through the physical connection, to the provider network device. The provider network device transmits this information to an authentication service operated by the computing resource service provider to verify the authenticity of the information. If the information is authentic, the authentication service may re-configure the provider network device to allow the customer to access one or more services provided by the computing resource service provider. The authentication service may transmit cryptographic authentication information to the customer to verify the identity of the computing resource service provider.
US09692728B2 Packet filtering at an application-processor-to-modem interface
An application processor circuit comprises an interface circuit configured to communicate with a separate modem device, a user application module configured to execute one or more user-installed applications, and a core application module configured to execute one or more core applications and to access one or more modem services on the modem device, using the interface circuit and an IP socket application protocol interface (API), wherein packets sent to the modem device for accessing the one or more modem services include a destination IP address corresponding to the modem device. The application processor circuit further comprises an IP filter module configured to identify and discard outbound packets that include a destination IP address corresponding to the modem device and that originate from any of one or more disallowed applications in the application processor, without sending the identified packets to the modem device.
US09692725B2 Systems and methods for using an HTTP-aware client agent
Systems and methods are described for using a client agent operating in a virtual private network environment to intercept HTTP communications. Methods include: intercepting at the network layer, by a client agent executing on a client, an HTTP request from an application executing on the client; modifying the HTTP request; and transmitting, via a transport layer connection, the modified HTTP request to a server. Additional methods may comprise adding, removing, or modifying at least one cookie in the HTTP request. Still other methods may comprise modifying at least one name-value pair contained in the HTTP request. Corresponding systems are also described.
US09692724B2 Network connection status detection system and method thereof
A network connection status detection system and method thereof. The system comprises a network address translation (NAT) router, a server end and at least one network electronic device. The NAT router is a bridge for communicating an intranet with an extranet. The server end is disposed at the extranet and connected to the NAT router through a network. The network electronic device is disposed at the intranet and connected to the NAT router. When a channel is established between the network electronic device and the NAT router by executing a connection configuration so that the network electronic device connects to the server end, the network electronic device sends a connection detection signal to the server end. If the server end receives the connection detection signal and returns a confirmation signal, an indicator of the network electronic device will remind a user in a predetermined way.
US09692723B2 Network management of devices residing behind a network device
Network device management may be provided. By utilizing a network ID tag (i.e., a switch identifier) corresponding to a network switch, a network management platform on a server may access network devices that exist behind the network switch. The network switch may comprise a network address translation (NAT) device. The network devices may comprise an industrial network comprising groups of machines that exist as islands behind their own respective network switches where each group of machines may utilize the same internet protocol (IP) addresses as other group of machines in the industrial network.
US09692722B2 Computer implemented methods and apparatus for integrating a social network information feed with a network communications application
Disclosed are systems, apparatus, and methods for integrating an information feed. In various implementations, an identity of a user may be determined based on authentication information, where the authentication information identifies a user profile. In some implementations, profile information is identified based on the determined identity, where the profile information identifies one or more entities tracked using one or more information feeds associated with the user profile, and where the one or more information feeds comprises one or more feed items stored in a database system. In various implementations, the identified profile information is associated with a user account provided by a network communications application.
US09692721B2 Invitations for establishing relationships
Techniques for invitations for establishing relationships are described. In at least some embodiments, an architecture is implemented which provides simple and integrated ways for establishing relationships between various entities. The architecture includes invitations that can be used to invite users to establish relationships with entities. A user that receives an invitation can interact with the invitation, such as to accept or decline an invitation to establish a relationship with an entity. If a user accepts an invitation, a relationship can be established between the user and an inviting entity. In at least some embodiments, the relationship can enable the user to perform various actions and/or access resources associated with the entity.
US09692720B1 Preventing modification of an email
In an approach for preventing the modification of an email by the recipients of the email, a processor receives an indication that an email message is composed. A processor receives an indication that modification of contents of the email message, by one or more recipients of the email message, is to be prevented. A processor converts the contents of the email message from editable text to a non-editable format. A processor sends the converted email message to a recipient.
US09692715B2 Multiple ethernet ports and port types using a shared data path
In an embodiment an interface unit includes a transmit pipeline configured to transmit egress data, and a receive pipeline configured to receive ingress data. At least one of the transmit pipeline and the receive pipeline being may be configured to provide shared resources to a plurality of ports. The shared resources may include at least one of a data path resource and a control logic resource.
US09692711B2 DNS redirecting for data roaming offering
A device may receive a request for domain name system (DNS) information to be provided to a user device communicating via a visited network. The device may identify roaming policy information associated with the user device and, based on the roaming policy information, may determine that the user device is restricted from sending or receiving data via the visited network. The device may determine DNS information, to be provided to the user device, that includes information that identifies a restricted DNS server to which the user device is to be directed. The device may provide the DNS information to the user device to cause the user device to be directed to the restricted DNS server. The user device may be directed to the restricted DNS server to permit a user of the user device to authorize the user device to send or receive data via the visited network.
US09692706B2 Virtual enhanced transmission selection (VETS) for lossless ethernet
In one embodiment, a system includes a hardware processor and logic integrated with and/or executable by the processor, the logic being adapted to receive a traffic flow having a plurality of packets, classify the traffic flow into a traffic class based on a characteristic of the traffic flow, the traffic class being selected from a plurality of traffic classes, store an identifier of the selected traffic class to one or more of the packets, and transmit the traffic flow according to its destination based on a priority of its selected traffic class. In more embodiments, additional systems, methods, and computer program products for prioritizing traffic flow handling are described.
US09692703B2 Network traffic management in high bandwidth applications
A method for managing data communication traffic in a network routing device includes monitoring a bandwidth utilization of the network routing device and determining whether the bandwidth utilization exceeds a threshold. The method may additionally include receiving a first signal, the first signal having a first bandwidth, the first signal further having stream of packets. A second signal may be generated based on determining that the bandwidth utilization exceeds the threshold. The second signal may include the stream of packets. The second signal may additionally have a second bandwidth, where the second bandwidth is larger than the first bandwidth. The method may be continued by routing the second signal along a loopback path external to the network routing device. The method may then include extracting, based on determining that the bandwidth utilization is at or below the threshold, the stream of packets from the second signal for processing.
US09692701B1 Throttling client initiated traffic
In one aspect, a method includes electing one of a plurality of browser tabs at a client device as a master browser tab based on a timer value associated with each of the plurality of browser tabs, each of the plurality of browser tabs running web pages or web applications maintained by a common service being served by one or more servers, issuing a request from the master browser tab to the one or more servers, receiving a response to the request including a time value indicating the next time a request should be sent to the one or more servers at the master browser tab, updating, by the master browser tab, a local storage accessible by the plurality of browser tabs with the time value and resetting the timer value at each of the plurality of browser tabs according to the time value in response to receiving the response.
US09692700B1 Processing data flows based on information provided via beacons
A first component of a network device may provide an offload request to a second component of the network device to offload a data flow from the first component. The offload request may direct the second component to provide the data flow towards a destination device and bypass the first component. The first component may receive a beacon from the second component. The beacon may identify information regarding one or more data flows offloaded from the first component. The first component may process the one or more data flows based on the information regarding the one or more data flows included in the beacon and without receiving the one or more data flows.
US09692697B2 Control channel establishing method, forwarding point, and controller
A control channel establishing method, a forwarding point, and controller. The method includes sending, by a first Forwarding Point (FP), topology information of the first FP to a second FP by using a Link Layer Discovery Protocol (LLDP), receiving, by the first FP, first routing information that is sent by the controller and is used by the first FP to reach the controller, where the first routing information is generated by the controller according to the topology information of the first FP, and establishing, by the first FP, a second control channel with the controller according to the first routing information.
US09692696B2 Managing data flows in overlay networks
Embodiments relate to managing data flows at a virtual forwarding element. A method for managing data flows at a virtual forwarding element executing in a host that has a network interface card (NIC) is provided. The method receives, from a virtual machine executing in the host, a packet that belongs to a data flow originating from the virtual machine. The method identifies a network identifier for the data flow based on a mapping between a plurality of virtual machines executing in the host and a plurality of network identifiers. The mapping is provided by a network controller that configures the virtual forwarding element. The method encapsulates the packet with the network identifier and a tunnel header that includes network addresses of the host. The method sends the encapsulated packet to the NIC. The NIC transmits the encapsulated packet out of the host and towards a destination of the packet.
US09692694B2 Multi-protocol routing system and method driven by application and network in convergence
The present invention relates to a multi-protocol routing system, comprising a route determining module and a forwarding module which are located in network layer, wherein the route determining module is used for determining, based on the related information of applications and networks, the types of routable protocols and the next-hop path which are to be selected in the current routing phase; the forwarding module, including different routable protocols and corresponding routing information, is used for periodically calculating the newest remaining network resources and the state of link during a routing process and updating the forwarding table in current state. By integrating various characteristics and states of applications as well as different routable protocols, the present invention realizes real-time protocol selection and dynamic routing. Moreover, the present invention is easy to be expanded to other protocols, thus being adaptive to the continuous development and evolution of network services.
US09692693B2 Bandwidth control for ring-based multi-protocol label switched paths
Techniques are described for specifying and constructing multi-protocol label switching (MPLS) rings. Routers may signal membership within MPLS rings and automatically establish ring-based label switch paths (LSPs) as components of the MPLS rings for packet transport within ring networks. In one example, a router includes a processor configured to establish an MPLS ring having a plurality of ring LSPs. Each of the ring LSPs is configured to transport MPLS packets around the ring network to a different one of the routers operating as an egress router for the respective ring LSP. Moreover, each of the ring LSPs comprises a bidirectional, multipoint-to-point (MP2P) LSP for which any of the routers can operate as an ingress to source packet traffic into the ring LSP for transport to the respective egress router for the ring LSP. Separate protection paths, bypass LSPs, detours or loop-free alternatives need not be signaled.
US09692687B2 Method and apparatus for rapid rerouting of LDP packets
A u-turn fast rerouting capability is provided. A first node propagates a packet toward a second node based on selection of a first routing path for routing the packet from the first node toward an intended destination node. The second node received the packet, determines that the packet cannot be delivered to the destination node via the first routing path, inserts a u-turn label into the packet, and returns the packet to the first node. The u-turn label indicates that the packet is being returned to the first node by the second node due to a condition preventing propagation of the packet toward the destination node using the first routing path. The first node receives the packet including the u-turn label, selects a second routing path for routing the packet toward the destination node, and propagates the packet toward the destination node based on the second routing path.
US09692685B2 Heterogeneous network system, network apparatus, and rendezvous path selection method thereof
A heterogeneous network system, network apparatus, and rendezvous path selection method thereof are provided. The heterogeneous network system includes several partner network apparatuses and a network apparatus. The network apparatus stores at least one weighting table, wherein each weighting table is related to one network service condition. The interface types of the transceiving interfaces of the partner network apparatuses and the network apparatus are not all the same. The network apparatus measures at least one first transmission parameter and receives several second transmission parameters. Each of the first and second transmission parameters is related to transmission between two network apparatuses neighboring each other. The network apparatus enumerates several paths toward a target network apparatus and calculates a path cost corresponding to each of the paths according to one of the weighting table(s) and a portion of the at least one first transmission parameter and the second transmission parameters.
US09692682B2 Methods and network nodes for handling handover failures
There is provided a method performed by a first network node (101) for handling handover failures for a target cell (112), which target cell is applicable for handover of a wireless device (121) in a wireless communications network (100) from a source cell (111) to the target cell. The target cell is associated (202) with an indication indicating that the target cell is unsuitable for handover, when an amount of failed handovers from the source cell to the target cell exceeds (201) a failure threshold.
US09692681B2 Link speed fluctuation reduction
Link speed fluctuation reduction can be useful in a variety of communication systems. Such smoothing may have various benefits and may be achieved in various ways. For example, a policy and charging rules function can be leveraged to avoid repeated transfers of a same section of over-the-top video. A method can include detecting, for a link, a link traffic condition above a predetermined threshold. The method can also include estimating link speed to obtain an initial link speed value. When the detected link traffic condition is above a predetermined threshold, the method can further include limiting fluctuation of the link speed to within a threshold amount of the initial link speed value. The method can additionally include periodically re-estimating the recently achieved link speed as an updated link speed value and limiting the fluctuation based on the updated link speed value.
US09692680B2 Centralized, scalable, resource monitoring system
A method, apparatus, and computer program product are disclosed to provide host-independent resource monitoring for distributed networks. The method includes determining, from a set of jobs, one or more jobs to execute that monitor the status of resources within a distributed network. The method determines one or more environments in which to run the one or more jobs, and instantiates the one or more jobs with one or more environment variables for the determined one or more environments such that the one or more jobs are configured for operation in the determined one or more environments. The method accordingly displays, using a graphical user interface, a job environment matrix including a list of the set of jobs in conjunction with a running status of each of the jobs in each of one or more environments. A corresponding apparatus and computer program product are also provided.
US09692676B2 Scalable off-load of applications from switch to server
Systems include a network element with a plurality of server blades, including a control server and one or more application servers. The control server communicates with each application server to acquire state information about each application server. A switch is in communication with each server blade. The switch is configured to communicate with the control server in order to obtain therefrom the state information acquired by the control server about each application server.
US09692672B2 Communication system, and corresponding integrated circuit and method
A communication system for interfacing a transmitting circuit with a receiving circuit includes a transmission interface for receiving data from the transmitting circuit and transmitting the data received over at least one data line in response to a transmission clock signal. The communication system also includes a reception interface configured for receiving the data in response to a reception clock signal and transmitting the data received to the receiving circuit. In particular, the system is configured for generating a plurality of clock signals that have the same frequency but are phase-shifted with respect to one another. In addition, during a calibration phase, the system is configured for selecting one of the clock signals for the transmission clock signal or reception clock signal via selecting at least one of the clock signals for transmission of test signals via the transmission interface and verifying whether the test signals received via the reception interface are correct. The system is further configured to use, during normal operation, the clock signal selected during the calibration phase for transmission of data.
US09692669B2 Determination of internet access
Internet access or connectivity is determined by sending a request to a third-party service to which connectivity is desired with an application on a client computing device and responsive to receiving a response, attempting to rule out a false positive response from an entity other than the third-party service.
US09692666B2 Container manager
The present invention relates to a method for managing containers in a could computing environment, the method comprising obtaining current information on resources available at hosts, obtaining information on host resources needed for a new container and allocating the new container to a selected host based on the resources available at the host and the host resources needed for the container. The present invention further relates to an apparatus and a computer program product implementing the method for managing containers. The method and the apparatus beneficially speeds up the process of allocating and replacing containers and ensures that only the latest version of the applications placed in containers are available in the cloud computing environment for client devices.
US09692664B1 Method, topology and point of presence equipment for serving a plurality of users via a multiplex module
A number of users interface with a network via a multiplex module, on a communication path established between the multiplex module and a point of presence. Some users may be served by one or more first channels of the communication path while one or more remaining users may be served by one or more additional channels of the communication path. Users having a basic service level agreement may be served by the first channels while users having an extended service level agreement may be served by the one or more additional channels. Allocation of users to distinct channel types based on their service level agreements may apply at a primary point of presence or may apply at a redundant point of presence.
US09692663B2 Methods, systems, and computer program products for user side optimization of acquisition of virtualized resources
A method includes receiving a request for access to an instance of a computing resource, the request having a performance standard associated therewith, requesting the instance of the computing resource from a computing resource provider, evaluating a performance of the instance of the computing resource provided by the computing resource provider to determine if the performance of the instance of the computing resource complies with the performance standard associated with the request, and providing access to the instance of the computing resource provided by the computing resource provider responsive to a determination that the performance of the instance of the computing resource complies with the performance standard associated with the request. Related systems and computer program products are also disclosed.
US09692661B2 Bandwidth prediction apparatus and method for predicting a bandwidth at a first position, and non-transitory computer readable medium storing a program for enabling a computer to execute such bandwidth prediction
There is provided a bandwidth prediction apparatus. An acquisition unit is configured to acquire position information indicating a first position at which a bandwidth is to be predicted. A prediction unit is configured to predict a bandwidth at the first position by using respective measured values of bandwidths measured in advance at a plurality of second positions.
US09692660B2 Election and use of configuration manager
In an approach for election of a manger for a network, a processor detects that a first set of management tasks is not running. A processor identifies at least a first node in a network and information about the first node. A processor determines that the first node is capable of performing the first set of management tasks based on the information about the first node. A processor elects the first node as a manager in the network to perform the first set of management tasks.
US09692659B2 Managing mapping in networks
A method for managing mapping in a network includes: programming mapping relationships between a VSAN and a VLAN of a fabric in advance, which include mapping relationships between VSANs and VLANs programmed in advance for each FCoE switch needed by the fabric; obtaining mapping relationships between the VSANs and the VLANs configured currently for all the FCoE switches of the fabric, when obtained mapping relationships are inconsistent with the programmed-in-advance mapping relationships, automatically updating mapping relationships between the VSANs and the VLANs configured in FCoE switches corresponding to the inconsistent mapping relationships, and/or mapping relationships between the VSANs and the VLANs programmed in advance for the FCoE switches corresponding to the inconsistent mapping relationships.
US09692658B2 Wireless network monitoring device, method and device in wireless communication system
There is provided a wireless network monitoring device, method and device in a wireless communication system, the wireless network monitoring device including: a network distribution space information acquiring unit configured to acquire network distribution space information of a three dimensional distribution space of a network to be monitored; a network status information acquiring unit configured to acquire position information of network nodes in the three dimensional distribution space and performance information of the network nodes, thereby obtaining network status information about the three dimensional distribution space; and a display unit configured to display the network distribution space information and the network status information which are superimposed. According to embodiments of the disclosure, it enables a user to obtain better network service experience.
US09692657B2 Node-pair process scope definition and scope selection computation
A connected directed graphical representation of a process model that includes a plurality of process nodes and interconnections between the process nodes of the process model is displayed. A user selection of a subset of the process nodes of the displayed connected directed graphical representation of the process model is received. A process scope definition represented as at least one begin-end node pair is computed. The at least one begin-end node pair is usable to identify all selected nodes and interconnection path links that are reachable in a traversal from a begin node to an end node of each of the at least one begin-end node pair of the received user selection of the subset of the process nodes. The computed process scope definition is stored.
US09692653B1 Automatic generation of validators to validate deployment code used for configuring servers
A validation system is configured to automatically generate validators for one or more target systems. The validation system includes: a memory storing a computer process, a network interface configured to interface with the one or more target systems over a computer network, and a processor executing the computer process. The computer process is configured to parse the deployment code to identify components in deployment code, generate validator code for each identified component, and use the network interface to transmit the validator codes to the one or more target systems.
US09692651B2 Method and apparatus for improving network performance
A method for improving performance of a network includes identifying at least two communities of users within the network, analysing a structure of each community and clustering the communities according to community performance. The method further includes comparing a structure of a lower performing community with a structure of a higher performing community, and changing the structure of the lower performing community substantially to resemble the structure of the higher performing community. Related computer program product for carrying out a method of introducing connections among users of a network and an apparatus configured to introduce connections among users in a network are disclosed.
US09692644B2 Dynamically adjusting network parameters using weather forecasts
In one embodiment, network parameters are dynamically adjusted using weather forecasts. The embodiments include determining a weather forecast that predicts a weather condition proximate to a network. Network parameters are then selected for adjustment based on the predicted weather condition. The selected network parameters are adjusted to improve performance of the network in response to the predicted weather condition.
US09692641B2 Network connecting method and electronic device
A first electronic device stores first configuration information of the first electronic device collected by a tamper-resistant chip on the first electronic device and approved by a third-party device in the portable medium. A second electronic device stores second configuration information of the second electronic device collected by a tamper-resistant chip on the second electronic device and approved by the third-party device in the portable medium and acquires the first configuration information from the portable medium. The first electronic device transmits the first configuration information of the first electronic device and the second configuration information of the second electronic device acquired from the portable medium to the second electronic device over a long-distance network. The second electronic device controls connection between the first and the second electronic devices over the long-distance network based on the first configuration information and the second configuration information received from the first electronic device.
US09692637B2 Fault protection method and fault protection apparatus in a multi-domain network
The present invention relates to a fault protection method and a fault protection device for an inter-domain link of a multi-domain network. The invention may be particularly applied to multi-domain networks providing end to end services such as an Ethernet service. Embodiments of the invention use a link protection group for an inter-domain link. Link protection group information relating to the link protection group is used to identify a replacement inter-domain link for a faulty inter-domain link that is configured for an inter-domain service. Once the replacement link is identified, the routing of the inter-domain service may be re-configured from the network element ports of the faulty inter-domain link to the network element ports of the identified second inter-domain link.
US09692633B2 Role-based resource navigation
The present disclosure involves systems, software, and computer-implemented methods for providing role-based resource navigation. An example method includes identifying a particular navigation intent from a user associated with a particular user role, the navigation intent representing an action associated with the particular business object; determining a particular target mapping associated with the particular navigation intent based at least in part on the particular user role, the target mapping associated with an application to be executed in response to identification of the associated navigation intent; and executing the application associated with the particular target mapping in response to determining the particular target mapping.
US09692632B2 Migration to managed clouds
A foreign instance is transferred from a customer environment to a target infrastructure-as-a-service cloud environment as an image. The foreign instance is adjusted to standards of the infrastructure-as-a-service cloud environment to obtain an adjusted instance. The adjusted instance is registered into a management system of the infrastructure-as-a-service cloud environment.
US09692628B2 Methods and systems for dual-using a reception channel
Various embodiments of wireless communication systems and methods in which the system seamlessly dual-uses a receiver chain for incoming transmissions and for other signal sensing purposes. The system is configured such that there are multiple receiver chains, and at least one receiver chain alternates between receiving a communication signal with information payload and receiving other signals solely for the purposes of monitoring and/or improving some aspects of the system. In various embodiments, the alternating receiver chain receives alternatively signals with information payloads and signals which have passes through a power amplifier with amplifier distortion characteristics. In various embodiments, the alternating receiver chain receives alternatively signals with information payloads and signals which may be associated with background noise, or other radio transmissions.
US09692627B2 Method for reducing PAPR of OFDM signal and OFDM transmitter using the same background
A method for reducing a PAPR of an OFDM signal and an OFDM transmitter using the same are disclosed. In an OFDM transmitter, a signal processing circuit for reducing a PAPR of a modulated signal includes: a peak detector configured to detect peaks having sizes above a threshold value from an IQ baseband signal of the modulated signal and to output information on a position, a size and a phase; a memory configured to store a reference peak in time domain; a peak generator configured to generate an inverse peak signal for canceling a part of an amplitude of the IQ baseband signal from the reference peak based on the information on the position, the size and the phase; and a signal processing unit configured to add the inverse peak signal to the IQ baseband signal to constrain the amplitude of the IQ baseband signal.
US09692622B2 Equalization with noisy channel state information
Systems and methods related to improved coherent demodulation and, in particular, improved channel equalization that accounts for variation in an effective channel estimation error with transmitted symbols are disclosed. In one embodiment, a wireless node includes a receiver front-end, a channel estimator, and an equalizer. The receiver front-end is adapted to output samples of a received signal. The channel estimator is adapted to estimate a channel between a transmitter of the received signal and the wireless node based on the samples of the received signal. The equalizer is adapted to process the samples of the received signal according to a modified equalization scheme that compensates for variation in an effective channel estimation error with transmitted symbols to thereby provide corresponding bit or symbol decisions. In this manner, channel equalization is improved, particularly for a wireless system that utilizes a modulation scheme with varying amplitude.
US09692621B2 Decision feedback equalizers and operating methods thereof
A decision feedback equalizer (DFE) includes a sampler for receiving a first input signal and comparing an amplitude of the first input signal with a first predetermined voltage level and a second predetermined voltage level. The DFE includes a DFE logic circuit for receiving at least one first sign signal based on comparison results, and for selectively updating a tap coefficient based on the at least one first sign signal. The DFE logic circuit is configured to update the tap coefficient when the at least one first sign signal indicates the amplitude of the first input signal is not between the first predetermined voltage level and the second predetermined voltage level. The DFE logic circuit is configured to maintain the tap coefficient when the at least one first sign signal indicates the amplitude of the first input signal is between the first and the second predetermined voltage levels.
US09692619B2 Non-underdetermined estimation for compressed sensing
Nonzero elements of a signal vector, which may be a sparse signal vector, may be determined based on an observation vector representing a set of underdetermined observations using a compressed sensing optimization and a non-underdetermined estimation method such as iterative linear minimum mean-square error (“LMMSE”) estimation. Compressed sensing optimization may be used to obtain a subset of potentially nonzero elements of the signal vector, and LMMSE estimation may then be used to find the nonzero elements among the potentially nonzero elements. The identification of nonzero elements may then be used to recover the signal vector from the observation vector. This technique is useful for recovering compressed data such as a sparse frequency space representation of audio or video data from a measurement. The technique is also useful for identifying at a base station a relatively small number active devices in an overloaded communication network.
US09692612B2 Distributed CCAP cable modem termination system
Distributed CMTS device for a HFC CATV network serving multiple neighborhoods by multiple individual cables, in which at least some and often all of the QAM modulators that provide data for the individual cables are remote QAM modulators ideally located at the fiber nodes. A CCAP set of IP/on-demand data is transmitted to the nodes using an optical fiber, often using digital protocols such as Ethernet protocols. Optionally a basic set of legacy CATV QAM data, transmitted using RF waveforms transposed to optical frequencies, may also be transmitted to the nodes using either the same or different optical fiber. The nodes extract the data specific to each neighborhood, and inject this data into unused cable QAM channels along with any optional legacy CATV QAM waveforms as desired, thus achieving improved data transmission rates through finer granularity. A computerized “virtual shelf” control system for this system is also disclosed.
US09692611B1 Context-based sensor selection
Pending execution of a sensor function for use in operation of an application executing on a computing device may be determined. At least a first sensor and a second sensor associated with the computing device may be identified, the first sensor and the second sensor both providing at least a portion of the sensor function. A current context associated with the pending execution of the sensor function may be determined, the current context being defined in terms of context parameters. Selection criteria defined in terms of the context parameters may be accessed, and the first sensor may be selected to execute the sensor function for the application, based on the selection criteria and the current context.
US09692606B2 Management of a policy controlled group
There are provided measures for handling policy controlled groups. Exemplarily, such measures comprise receiving, in a first rules function, a notification informing that a user equipment is to be included in a policy controlled group, checking whether the policy controlled group is controlled by the first rules function, and, in case the policy controlled group is not controlled by the first rules function, causing a transfer of the policy control session for the user equipment to a second rules function controlling the policy controlled group.
US09692604B2 Probabilistic key distribution in vehicular networks with infrastructure support
Method and system of key distribution by trusted nodes for a vehicular ad hoc network, the nodes of said network having at least one pair of public-private keys and the corresponding certificates, issued by a CA, said method comprising each vehicle node, on entering said network region, requesting a set of keys from an RSU node that is within range and within that region, said RSU node sending said vehicle node a set of private keys, selected from a pool of private keys, and a list with the key identifiers of the private keys shared by said vehicle node and the other vehicle nodes that have most recently contacted said RSU for a predetermined period of time; such that two nodes are able to establish a secure connection without further interaction by deriving a shared secret which is a cryptographic hash function of the keys shared by said two nodes.
US09692602B2 Method and apparatus for mutually authenticating a user device of a primary service provider
A system and method for communicating between a secondary content provider and a user device includes a primary service provider having an authentication server of a primary service provider authenticating the user device. The primary service provider provides primary content to the user device. The system also includes a supplemental service provider. The authentication server authenticates the service provider. The user device and the supplemental service provider mutually authenticate each other. Thereafter, the supplemental service provider communicates supplemental content to the user device.
US09692601B2 Automatically preventing unauthorized signatories from executing electronic documents for organizations
In some embodiments, an electronic signature service automatically updates electronic documents to prevent execution by an unauthorized signatory. The electronic signature service can receive an electronic document to be electronically signed on behalf of an organization. The electronic signature service can retrieve organization data indicative of signatories that are authorized to electronically sign the electronic document. The organization data may be inaccessible to a first signatory that is associated with the document. The electronic signature service can determine from the organization data that the first signatory is not authorized to electronically sign the document. The electronic signature service can update the electronic document with a second signatory that is determined from the organization data as being authorized to execute the document. The electronic signature service can prevent the first signatory from executing the document and provide access to the electronic document by a computing device associated with the second signatory.
US09692600B2 Device and method for re-signing application package, and terminal device for running application package
A device for re-signing an application package is provided. The device includes a communication unit configured to receive an application package comprising a signature key, and a control unit configured to re-sign the application package with a conversion key corresponding to the signature key.
US09692598B2 Multi-use long string authentication keys
An authentication system that uses a multi-use long string authentication key to authenticate client device access to protected resources, is presented. The authentication system is based on a shared knowledge of long string authentication key. The authentication key is used as a platform to derive digital signatures for access to protected resources. One or more authentication parameters can be used in combination with the authentication key to derive or validate digital signatures. The one or more authentication parameters can include a key index parameter, a key offset parameter, and a key length parameter. The digital signatures derived from authentication keys can be used to control access to various types of protected resources such as, digital house, a vehicle fob key, a remote garage door opener, a hotel room card key, credit or debit cards magnetic strip or chip, online financial accounts, computer or control systems, or website authentication.
US09692597B2 Apparatus and method for content handling
An apparatus for content handling is provided. The apparatus comprises a content server arranged to provide a content analysis environment to a client terminal, and to provide content to the client terminal for analysis within the content analysis environment once the content analysis environment has been established at the client terminal, wherein the client terminal is arranged: to download the content from the content server into the content analysis environment; to encrypt the downloaded content and store the encrypted content therein in a persistent form; to decrypt the encrypted content into working memory therein for analysis within content analysis environment; to encrypt analyzed content and store the encrypted analyzed content therein in a persistent form; and to decrypt the encrypted analyzed content and to upload this decrypted content to the content server.
US09692592B2 Using state reordering to protect against white box attacks
Some embodiments provide a method for performing an iterative block cipher. Line rotations and column rotations are combined to have a diversity of representations of the AES state. These protections can be performed either in static mode where the rotations are directly included in the code and the tables or in dynamic mode where the rotations are chosen randomly at execution time, depending on some entropic context variables. The two modes can also be advantageously combined together.
US09692591B2 Cryptographic method and apparatus
A method of formatting data for transmission to another party including the step of incorporating in the data a flag indicative of the absence of data for authentication of the sender. An authentication tag length is also included to permit variable length tags to be used.
US09692590B1 Serial data multiplexing
In one aspect, a method includes receiving n data bits in parallel, receiving a data command signal, receiving a clock signal, transmitting the n bits in serial and encoding one of the n bits, after receiving the data command signal, to include at least three logical states. The number of states is a function of the clock signal.
US09692589B2 Redriver link testing
A redriver is provided that includes a receiver to receive a signal from a first device that includes a portion of a defined binary sequence, a drift buffer to retime the binary sequence and provide a seed to a linear feedback shift register (LFSR) from the binary sequence, the LFSR to generate an expected version of the binary sequence from the seed, and pattern checking logic to compare a sequence in subsequent signals received from the first device with the expected version of the binary sequence generated by the LFSR.
US09692587B2 Phase tracking
Techniques for pilot-aided carrier frequency and phase synchronization may use a three-pass process. In a first pass, initial frequency offset may be addressed, and a frame start time may be established. In a second pass, a fine frequency correction may be performed. In a third pass, phase variation may be tracked and corrected using a minimum set of pilot symbols.
US09692584B2 Methods of radio communications using different subframe configurations and related radio and/or network nodes
A method may be provided in a radio node capable of operating in a Radio Access Network according to at least first and second UpLink/DownLink subframe configurations that are different. The first UpLink/DownLink subframe configuration and the second UpLink/DownLink subframe configuration may be used for operation in a first cell and a second cell respectively, and/or the first UpLink/DownLink subframe configuration and the second UpLink/DownLink subframe configuration may be used in the first cell or the second cell at non-overlapping times. A configuration message may be received at the radio node relating to the first UpLink/DownLink subframe configuration and/or the second UpLink/DownLink subframe configuration. An operation may be performed at the radio node on signals transmitted to and/or received from the first cell and/or the second cell based on the configuration message relating to the first UpLink/DownLink subframe configuration and/or the second UpLink/DownLink subframe configuration.
US09692579B2 Multiple description media broadcast aided by a secondary base station
According to some embodiments, a secondary network node detects a first data transmission of media content from a primary network node to a first wireless device. The first data transmission has a first data quality description D(n1) and a first transport format T(k1). The secondary network node selects a second data quality description D(n2′) and a second transport format T(k2′) for a second data transmission. The second data quality description D(n2′) and second transport format T(k2′) differ from the first data quality description D(1) and first transport format T(k1), respectively. The secondary network node transmits the second data transmission to a second wireless device according to the second data quality description D(n2′) and the second transport format T(k2′). The second data transmission includes at least a portion of the media content.
US09692577B2 Method for acquiring channel state information in FDD MIMO wireless networks
This invention presents methods and circuits for a BS to acquire DL CSI in a FDD wireless network comprising switching the normal transmitting and receiving frequencies in a first and a second FDD apparatus, and using UL pilot signals to estimate the DL CSI based on reciprocity of the over the air channels.
US09692575B2 Method of receiving uplink control signals identified by cyclic shift values in wireless communication system
A method and a base station for receiving uplink control signals in a wireless communication system are described. The base station receives a first uplink control channel in a mixed resource block from a first user equipment. The mixed resource block includes a plurality of subcarriers. The base station receives a second uplink control channel in the mixed resource block from a second user equipment. The first uplink control channel is identified by a first cyclic shift value. The second uplink control channel is identified by a second cyclic shift value that is different from the first cyclic shift value. The first uplink control channel carries a Hybrid Automatic Repeat Request (HARQ) acknowledgement/negative acknowledgement (ACK/NACK) of the first user equipment. The second uplink control channel carries a channel quality indicator (CQI) for the second user equipment and a HARQ ACK/NACK of the second user equipment.
US09692572B2 Terminal, base station, communications system, and communication method for allocating hybrid automatic repeat request acknowledge resource using control channel
A terminal that communicates with a base station monitors a physical downlink control channel allocated in a physical downlink control channel region and an enhanced physical downlink control channel allocated in a physical downlink shared channel region different from the physical downlink control channel region. If the enhanced physical downlink control channel is detected, the terminal reports response information via a physical uplink control channel resource corresponding to the resource in which the enhanced physical downlink control channel was detected.
US09692570B2 Method for multiplexing control signals and reference signals in mobile communications system
A reference signal multiplexing method for multiple mobile stations includes: grouping together control signals for the multiple mobile stations; and multiplexing reference signals corresponding to the control signals by CDM over the same bandwidth as that of grouped control signals.
US09692569B2 Method and apparatus for control channel resource allocations in constrained and unconstrained subframes in a wireless communication network
Among other advantageous aspects, the teachings herein provide network-side and device-side apparatuses and methods that preserve normal Resource Element (RE) aggregation levels for the transmission of Enhanced Physical Downlink Control Channels (EPDCCHs) in “constrained” subframes, where “constrained” refers to any subframe having fewer REs available for EPDCCH usage within a base set of PRB pairs than are available in a “non-constrained” or “normal” subframe. Non-limiting examples of “constrained” subframes include special subframes in Time Division Duplex, TDD, operation, which comprise a downlink portion that is abbreviated to accommodate an included uplink portion, along with a guard portion between them. Multimedia Broadcast Single Frequency Network, MBSFN, subframes represent another example of a constrained subframe, where only the first two OFDM symbols within the subframe are available for EPDCCH transmissions.
US09692568B2 Device, method, mobile station, and digital storage medium
A device, a method, a mobile station and a non-transitory computer-readable digital storage medium are provided. The device comprises a quadrant classification unit to classify a plurality of symbols in an input shared channel signal into a plurality of quadrants in a complex plane, an energy determination unit to determine a real part energy and an imaginary part energy for the plurality of symbols in each of the plurality of quadrants respectively, an energy summing unit to determine a real part energy sum EI and an imaginary part energy sum EQ by summing the real part energy and the imaginary part energy for the plurality of quadrants respectively, and an estimation unit to estimate a SubChannel Power Imbalance Ratio (SCPIR) of the input shared channel signal the real part energy sum EI and the imaginary part energy sum EQ.
US09692566B2 Inter-cell interference mitigation
The present application discloses a method for mitigating inter-cell interference (ICI) by scheduling user equipments. The method comprises estimating inter-cell interference tolerance of each of at least one neighboring cell during uplink transmission of the user equipment; and coordinating uplink scheduling of the user equipment in accordance with the inter-cell interference tolerance. The present application also discloses a base station, a radio network controller and relevant signaling for mitigating inter-cell interference (ICI) by scheduling user equipments.
US09692560B1 Methods and systems for reliable network communication
Methods and systems for network communication are provided. One of the methods includes receiving an out of order packet at a requestor device that is communicably connected to a responder device; storing the out of order packet at an out of order buffer location; and sending a lossy reliable connection (LRC) packet to the responder device when selective acknowledgement (SACK) is supported between the requestor device and the responder device, with information regarding an updated sequence number in a LRC extended header (LRCETH) that indicates to the responder information regarding in-order packets that have been received by the requestor device.
US09692557B2 Apparatus and methods for administering treatment within a bodily duct of a patient
Apparatus and methods for administering treatment within a bodily duct of a patient. According to one implementation a treatment catheter having an expandable structure disposed at an end thereof is provided that includes an elongate hollow shaft having a one or more first through holes and one or more second through holes spaced axial apart, the one or more first through holes residing beneath the expandable structure. A sleeve positioned along an outer surface of the hollow shaft is moveable between first and second axial positions to respectively permit or inhibit the flow of a treatment agent through the one or more second through holes into the bodily duct. An elongate wire having a seal unit is positioned within an inner lumen of the hollow shaft. The seal unit is moveable between first and second axial positions to respectively permit or inhibit the flow of an inflation medium between a cavity of the expandable structure and the inner lumen of the hollow shaft through the one or more first through holes.
US09692553B2 Method and device for decoding a transport block of a communication signal
The present invention relates to a device and method of decoding code blocks of a transport block of a communication signal using a decoder. The method comprises making an assumption about how many decoder iterations should be used for different code blocks of the code blocks of the transport block, wherein the assumption is made based on a study of code block soft-bits. The method also comprises decoding the transport block using different numbers of decoder iterations for the different code blocks, based on the made assumption about how many decoder iterations should be used for the different code blocks.
US09692552B2 Systems and method for link adaptation for variable link conditions
Systems, apparatus, methods, and manufactures for performing link adaptation in a communications system are described. The methods may employ an error rate table that has a channel condition value dimension and a transmission parameter dimension. The elements of the error rate table include expected error rates for data transmitted at various channel conditions according to various transmission parameters. Also, the various transmission parameters may each be associated with a data transmission rate. For a given channel condition value, the methods may determine expected throughputs for each of the transmission parameters according to the associated expected error rates and data transmission rates. A transmission parameter may be selected according to the expected throughputs.
US09692548B2 Techniques for blind equalization of high-order quadrature amplitude modulation signals
A blind equalization technique of high-order QAM signals is provided. A method implemented at a receiver-side in an optical communication network receives an optical signal and performs a two-step polarization tracking process on the received optical signal. Using another method, a polarization multiplexed optical transmission is received by a receiver and a polarization tracking process is performed by applying two different algorithms in parallel. One algorithm may be a decision directed least means square (DD-LMS) algorithm. Another algorithm may be a constant modulus algorithm (CMA).
US09692544B2 Method and apparatus for a reconfigurable optical add/drop module with loop-back functions
A method and apparatus for approaches for troubleshooting optical networks, particularly ROADM-based networks is described. The method includes designating a first port, of an optical communication node of a transport network, as an ingress for a loop-back optical signal to troubleshoot the transport network, designating a second port, of the optical communication node, as an egress for the loop-back optical signal, and establishing a loop-back connection between the first port and the second port to transport the loop-back optical signal.
US09692543B2 Optical transmission system
A receiver is configured to have two coherent receivers using two pieces of local oscillator of optical frequencies f11 and f12 close to optical frequency f1 of signal light, the two pieces of local oscillator being controlled to have a predetermined optical frequency spacing ΔF, and a digital signal processor demodulating transmission data signal sequences based on outputs from the coherent receivers. When the frequency difference Δf1 of one of the two pieces of local oscillator from a virtual reference frequency f1′ close to the optical frequency f1 of the signal light is set, the digital signal processor obtains the frequency difference Δf2 of the other of the two pieces of local oscillator by calculating Δf1−ΔF, inputs electric signals output from the two coherent receivers, and compensates the phase rotation caused in the electric signals by frequency differences Δf1 and Δf2.
US09692542B2 Method and system for generating channel codes, in particular for a frame-header
A method for generating a channel code, in particular for a frame-header, wherein at least a code-word of the channel code is obtained by means of at least a concatenation of code-words of two constituent codes and such concatenation is performed on subsets of code-words of a first constituent code, having maximum length, with code-words of a second constituent code.
US09692539B2 Incremental interference cancelation capability and signaling
Incremental interference cancelation (IC) capability management and signaling is disclosed. A mobile device selects certain groups of its individual IC capabilities to deactivate in response to various operating conditions it is experiencing. The mobile device reports its currently active IC capability to a serving base station, which uses information to determine whether to modify any existing communication conditions with respect to the reporting mobile device. The base station detects and analyzes the current communication conditions with respect to the reporting mobile device in light of the mobile device's currently active IC capabilities. The base station may modify such conditions through actions such as signaling the mobile device to activate or deactivate certain other groups of IC capabilities. The base station can make other modifications such as changing the communication schedule for the mobile device, modifying the control loop for channel quality indicator (CQI) reporting, and the like.
US09692538B2 Latency mitigation
A network including a plurality of wireless communication devices capable of operating according to a wireless protocol that imposes no common timebase at the network level, the plurality of devices comprising: an initiator device configured to detect an event and in response transmit an event message having a payload comprising a time field; and a set of appliance devices configured to receive and automatically retransmit messages received from others of the devices, each appliance device being associated with an appliance supplementary to its wireless communication function and being configured to, on receiving an event message comprising a time field, cause their respective associated appliance to perform a function at a time indicated by the content of the time field in the received message.
US09692533B2 Operating a user equipment in a wireless communication network
A method for operating a user equipment in a wireless communication network and a user equipment are described.
US09692532B2 Method and wireless communication device for antenna deployment determination
A method of antenna deployment determination in a wireless communication device is disclosed. The method includes transceiving a radio signal via the a first antenna port of the wireless communication device, obtaining a first strength result corresponding to the radio signal transmitted or received via the first antenna port, and determining a connecting status of the first antenna port according to the first strength result.
US09692529B1 System and method for signal emitter identification using higher-order cumulants
A system, method and computer program product for signal emitter identification using Higher-Order Cumulants (HOC) is presented. At least one transient signal is received from an emitter when the emitter turns on. The at least one transient signal is processed using at least one Higher-Order Cumulant (HOC) to provide a set of entries for a vector table. A feature vector is derived from the vector table, the feature vector identifying the emitter. The feature vector is used to identify an emitter.
US09692524B2 Ultrasonic transducer device, probe, electronic instrument, and ultrasonic diagnostic device
An ultrasonic transducer device includes a first substrate, a plurality of ultrasonic transducer elements, a second substrate and a wiring member. The first substrate defines a plurality of openings arranged in an array pattern. Each of the ultrasonic transducer elements is provided in each of the openings in a plan view. The second substrate includes a first wiring part, and coupled to the first substrate. The wiring member includes a second wiring part electrically connecting the ultrasonic transducer elements to the first wiring part.
US09692521B1 Polarization pre-compensation technique for polarization-division-multiplexed direct-detection optical communication systems
This disclosure provides systems, methods, and apparatus for mitigating the effects of an optical link in a communication system on polarization angles of signals transmitted over the optical link. The communication system can include an optical transmitter transmitting polarization-division multiplexed (PDM) optical signals over the optical link and a direct-detection receiver for receiving the PDM optical signals. The transmitter can include a polarization compensation unit for receiving estimated values of link polarization parameters from the receiver. The receiver uses the estimated values to pre-distort modulator drive and bias signals and to adjust the relative phase between modulated optical signals. The transmitter can also transmit training optical signals to the receiver over the optical link. The receiver uses the training optical signals to estimate the values of link polarization parameters. The receiver also can include a crosstalk mitigation unit for mitigating effects of crosstalk between the PDM optical signals.
US09692520B2 Optical signal-processing apparatus, receiving apparatus, and optical network system
An optical modulator combines and inputs a signal light propagating through the optical network and a control light having information concerning the optical network to a nonlinear optical medium. The optical modulator modulates the signal light according to changes in intensity of the control light, in the nonlinear optical medium.
US09692519B2 Level spacing for M-PAM optical systems with coherent detection
An apparatus includes an optical transmitter configured to provide an optical signal amplitude-modulated among M different levels. A constellation control module is configured to provide a drive signal to control the optical signal. A feedback module is configured to receive a measure of spacing between amplitude peaks of a symbol constellation of the optical signal. The feedback module is further configured to regulate the constellation control module to adjust the optical signal in response to the measure of spacing.
US09692518B2 Method and apparatus for stabilization of optical transmitter
A DP-QPSK optical transmitter includes an outer MZM comprising a first parent MZM comprising a first child MZM and a second child MZM that modulates a QPSK signal with a first polarization. A second parent MZM includes a first child MZM and a second child MZM that modulates a QPSK signal with a second polarization. The outer Mach-Zehnder modulator multiplexes the first and second polarization embedded into a dual-polarization QPSK signal generation. A first optical detector detects the QPSK signal generated by the first parent MZM with the first polarization. A second optical detector optical detects the QPSK signal generated by the second parent Mach-Zehnder modulator with the second polarization. A bias control circuit generates bias signals on at least one output that stabilize the DP-QPSK signal in response to signals generated by the first and second optical detector using electrical time division multiplexing.
US09692517B1 Wavelength tuning of Fabry-Perot lasers in spectrum-sliced optical links
This application discloses apparatuses and methods for controlling a multi-longitudinal mode device seeded or wavelength locked to a spectrum-sliced external wavelength by either self-seeding or broadband light-source seeding through an array-waveguide grating.
US09692514B2 Network node and a method therein enabling a first unit to connect or to be connected ad-hoc to a second unit
Embodiments herein relate to a method in a network node configured in an optical network for enabling a first unit to connect ad-hoc to a second unit in a system configured for remote radio units and main units. The network node receives a connection request from the first unit over the optical network. The network node establishes a connection, to the first unit, for control data. The network node stores control data regarding the first unit. The control data is retrieved from the first unit over the established connection and wherein the control data enables the first unit to connect/be connected ad-hoc to the second unit for transferring user data over a physical path through the optical network.
US09692513B2 HFC cable system with shadow fiber and coax fiber terminals
System and method to extend the upstream data capacity of an HFC CATV system by extending a “shadow” optical fiber network deeper into the various CATV cable neighborhoods, with coax fiber terminals (CFT) spaced roughly according to the distribution of CATV active devices such as RF amplifiers. The CFT can intercept local upstream data from various neighborhood sub-regions and transform this upstream data into upstream optical data, thus relieving upstream data congestion in the 5-42 MHz CATV frequency region. The system can produce an order of magnitude improvement in upstream capability, while maintaining high compatibility with legacy HFC equipment. The CFT may exist in multiple embodiments ranging from low-cost “dumb” CFT to sophisticated CFT that can additionally provide GigE to the home (GTTH) service. Methods to maintain good compatibility with legacy CMTS devices, and methods to utilize DOCSIS MAP data for more efficient data transmission are also discussed.
US09692512B2 Directional multiband antenna
There is disclosed a directional multi-band antenna comprising a substrate structure, a plurality of RF units arranged at the substrate structure to provide an RF phased array, the RF phased array having an angular scan range, an array of optical units arranged at the substrate structure and interspersed amongst the RF units, an array of optical lensing devices supported over the substrate structure, the array of optical lensing devices being substantially RF transmissive and being arranged to correspond with the arrangement of the optical units, such that each optical unit may communicate light signals with an associated optical lensing device so as to communicate light signals along an optical axis within the angular scan range of the RF phased array.
US09692511B1 Redundant and reconfigurable optical transceiver
A reconfigurable and redundant electro-optical connector and corresponding method are provided. The connector may include a first plurality of transducers in communication with a first port and a second plurality of transducers in communication with a second port, the first port and the first transducers defining a first channel and the second port and the second transducers defining a second channel. The connector may include a selective combiner to combine the first optical signals and the second optical signals, and a controller in communication with each of the transducers. The controller may transmit at least a first portion of a first datalink on at least the first channel in a first configuration. The controller may redistribute the first portion of the first datalink onto at least the second channel in a second configuration.
US09692510B2 System and method for communication with a mobile device via a positioning system including RF communication devices and modulated beacon light sources
A lighting network includes a plurality of nodes, each having a node identifier. Each node includes a light source and a radio-frequency (RF) transceiver that transmits RF signals to and receives RF signals from other ones of the nodes. Each signal includes a data packet having a packet identifier, a destination node identifier and a payload. Each node compares the packet identifier of a received packet to a list of packets identifiers and when the packet identifier is not in the list, adds the packet identifier to the list. If the node is the destination node for the packet, the node then executes a command contained in the payload of the packet. If the node is not the destination node, the node retransmits the packet to the nodes that are within range of the RF transceiver. When the packet is in the list, the node discards the packet.
US09692508B2 Directional optical communications
Directional optical communications are provided between devices such as at least one pixel is selected from an array of pixels provided by an image projecting device for emitting light from an emitting device towards a target area of a receiving device. Light is then emitted by the selected at least one pixel towards the target area.
US09692507B2 Apparatus and method for providing synchronized data by using visible light communication
Apparatuses and methods which provide synchronized data using visible light communication are described. In one method, a first Light Emitting Diode (LED) lighting apparatus, which has a checked Identification (ID), receives a synchronization signal from a mobile communication network. This synchronization signal is analyzed in order to synchronize the first LED lighting apparatus with at least one second LED lighting apparatus adjacent to the first LED lighting apparatus. A synchronized time slot is prepared using the synchronization signal and a period of the time slot is determined, using the checked ID of the first LED apparatus, for transmitting data of the first LED lighting apparatus to a mobile terminal.
US09692504B2 Optical transport system
An optical transport system includes: uplink transponders opposed to construct an uplink transport path, to transport an OTU frame, redundant uplink transponders opposed to construct a redundant system uplink transport path, to transport the OTU frame, downlink transponders opposed to construct a downlink transport path, to store maintenance information in the OTU overhead of the OTU frame and transport this OTU frame when a failure occurs in the uplink transport path; optical switches to connect between client transport devices, and the uplink transport path and the redundant system uplink transport path such that switching between these uplink transport paths can be performed, to switch from the uplink transport path to the redundant system uplink transport path on the basis of the maintenance information.
US09692502B2 System for dual frequency range mobile two-way satellite communications
A microwave antenna terminal for two-way, in-motion communication systems using geostationary or other orbit satellites, and capable of supporting two-way communication in two different frequency ranges, for example Ku and Ka frequency ranges, is provided.
US09692497B2 Tethered airborne device
A communication system is provided. The system comprises a ground station, one or more airborne measurement devices, and an airborne device tethered to the ground station using one or more wires. The airborne device is operable to communicate with the one or more airborne measurement devices.
US09692495B2 Control channel overhead assumptions for deriving CSI feedback
Determination of channel state information (CSI) feedback by mobile devices is disclosed in which the mobile device receives one or more configuration parameters, that may include one or more control channel parameters for configuring a mobile device control channel. The UE uses the configuration parameters to determine an assumption of overhead resources. Using this overhead assumption, the mobile device derives the CSI index and transmits the CSI index to a serving base station.
US09692485B1 Wireless energy reception management
Systems, methods, and other embodiments associated with wireless energy are described. In one embodiment, a method can comprise collecting an energy that is transmitted wirelessly to produce a collected energy. The method can also comprise supplying the collected energy to a device.
US09692481B2 Systems and methods for communicating among network distribution points
A communication system has a trunk extending from a network facility, such as a central office, with a plurality of distribution points positioned along the trunk. Each leg of the trunk defines a shared channel that permits peak data rates much greater than what would be achievable without channel sharing. As an example, the connections of each respective trunk leg may be bonded. Further, the same modulation format and crosstalk vectoring are used for each leg of the trunk. The crosstalk vectoring cancels both far-end crosstalk (FEXT) that couples between connections of a given trunk leg and crossover crosstalk that couples between one trunk leg and another. In addition, logic determines an amount of excess capacity available for each leg of the trunk and controls error correction based on the determined excess capacity.
US09692478B1 Information handling system dynamic antenna management
A portable information handling system has plural antennae integrated in a housing proximate a touchscreen display. An antenna controller interfaced with the touchscreen display alters performance settings of the plural antennae, such as impedance tuning settings and selection of one or more antenna as active and/or idle. Touchscreen display touched locations and touch area sizes are associated in a table with predetermined performance settings for lookup by the antenna controller.
US09692476B2 Wireless connectors
A wireless connector includes a plurality of printed circuit boards (PCBs) (901, 902) disposed within a housing of the electronic system. Each PCB comprises a plurality of transceivers (910a, 910b, 920a, 920b) configured to wirelessly transmit and receive modulated carrier signals (910, 920). Each transceiver in the system is configured to receive signals transmitted by every other transceiver in the system.
US09692475B2 Attachment for an electronic communications device
An attachment for an electronic communications device including a conducting element that is coated on one side with layers of material and securely affixed to a nonconducting substrate such that the overall dimensions and thickness of the attachment are sufficiently small that it may be attached to a surface of an electronic communications device whilst allowing the use of any protective casing preferred by the user.
US09692471B2 Wireless receiver with high linearity
A wireless receiver with high linearity, having an out-band signal bypass filter, a mixer, and a baseband circuit. The out-band signal bypass filter has a first terminal and a second terminal respectively receiving a positive differential signal and a negative differential signal from a former-stage circuit, and the out-band signal bypass filter provides an out-band signal bypass path from the first terminal to the second terminal. The mixer receives a filtered signal from the out-band signal bypass filter. The baseband circuit is coupled to the mixer for generation of an in-phase signal and a quadrature phase signal.
US09692470B2 Low noise amplifier and notch filter
An apparatus includes a low noise amplifier (LNA) having an input configured to receive a radio frequency signal. The apparatus also includes a notch filter coupled to an input of the LNA. The notch filter is configured to attenuate the radio frequency signal at a notch frequency.
US09692469B1 Interference signal cancellation over a broad frequency range
A signal interference cancellation system includes a signal filter that receives an interference signal and is in communication with a receiver that also receives the interference signal. The signal filter includes (a) a modulation system that modulates the interference signal to generate a modulated signal, (b) a first frequency range within which the modulation system amplifies quadrature components of the modulated signal, (c) a second frequency range within which the modulation system amplifies non-quadrature components of the modulated signal, and (d) a signal adder that combines the amplified quadrature and non-quadrature components of the modulated signal from (b) and (c) to generate an interference cancellation signal. The signal filter communicates the interference cancellation signal to the receiver for cancelling the interference signal.
US09692463B2 Wireless transmission system and signal transmission method
A wireless transmission system includes a first device and a second device that are connected by an optical transmission line. The first device includes: a generating unit that generates a transmission signal; and a first attenuation unit that attenuates the transmission signal generated by the generating unit and that inputs the transmission signal to the optical transmission line. The second device includes: a second attenuation unit that attenuates the transmission signal output from the optical transmission line; an amplifying unit that amplifies the transmission signal attenuated by the second attenuation unit; and a transmitting unit that wirelessly transmits the transmission signal amplified by the amplifying unit. The first device or the second device further includes a control unit that controls attenuation in each of the first attenuation unit and the second attenuation unit.
US09692454B2 Transmitting apparatus and interleaving method thereof
A transmitting apparatus is provided. The transmitting apparatus includes: an encoder configured to generate a low density parity check (LDPC) codeword by LDPC encoding based on a parity check matrix; an interleaver configured to interleave the LDPC codeword; and a modulator configured to map the interleaved LDPC codeword onto a modulation symbol, wherein the modulator is further configured to map a bit included in a predetermined bit group from among a plurality of bit groups constituting the LDPC codeword onto a predetermined bit of the modulation symbol.
US09692453B2 Transmitting apparatus and interleaving method thereof
A transmitting apparatus is provided. The transmitting apparatus includes: an encoder configured to perform a low-density parity check (LDPC) encoding on input bits using a parity check matrix to generate an LDPC codeword comprising information word bits and parity bits; an interleaver configured to interleave the LDPC codeword; and a modulator configured to map the interleaved LDPC codeword onto a modulation symbol, wherein the modulator is further configured to map a bit included in a predetermined bit group from among a plurality of bit groups constituting the LDPC codeword onto a predetermined bit of the modulation symbol.
US09692451B2 Non-binary low density parity check (NB-LDPC) codes for communication systems
A communication device (alternatively, device) includes a processor configured to support communications with other communication device(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other communication device(s) and to generate and process signals for such communications. The device receives a non-binary low density parity check (NB-LDPC) coded signal. The device then decodes the NB-LDPC coded signal using a NB-LDPC matrix to generate estimates of information bits encoded therein. The NB-LDPC matrix is characterized by a base proto-matrix having elements that represent sub-matrices, and the elements are selected from a finite Galois field that includes symbols. In another example, the device encodes other information bits using a generator matrix to generate another NB-LDPC coded signal and then transmits this other NB-LDPC coded signal.
US09692450B2 Systems and methods for early exit of layered LDPC decoder
The present invention provides systems and methods to detect when hard decisions change for bit nodes of one or more layers of a layered LDPC decoder and to update accumulated partial syndrome calculations for those layers. As hard decisions of bit nodes are generated, they are compared with their previous values. If the hard decisions change, partial syndrome calculations are accumulated and updated for the layers having non-zero elements in one or more columns of the parity check matrix corresponding to the bit nodes of the changed hard decisions. If the hard decisions for the bit nodes are unchanged, the partial syndrome calculations for the corresponding layers are not updated. Changes to hard decisions of codewords are tracked and partial syndromes are flipped for the layers of the columns of the parity check matrix corresponding to the bit nodes of the changed hard decisions.
US09692449B2 Read threshold calibration for LDPC
Apparatuses and methods for soft read threshold location calibration are provided. One example method can include selecting read threshold sets (RTSs), and determining log-likelihood-ratios (LLRs) based on a number of decisions that correspond to each bin associated with the selected RTSs. Low-density parity-check (LDPC) codewords are decoded using the determined LLRs, and a RTS of the RTSs yielding a least number of failed codewords decoded using the determined LLRs is identified.
US09692439B2 Apparatus using a differential analog-to-digital converter
Electronic apparatus and methods of operating the electronic apparatus include less than a frequency associated with a generated waveform. In various embodiments, an apparatus using a differential analog-to-digital converter can perform low frequency noise rejection that can be implemented in a variety of applications. Additional apparatus, systems, and methods are disclosed.
US09692437B2 Analog-to-digital converting device and method of operating analog-to-digital converting device
Provided is an analog-to-digital converting device. The analog-to-digital converting device may include a determination circuit that determination whether a reference digital signal or a determination digital signal obtained by conversion of a reference voltage or a determination voltage matches a test pattern for the reference voltage, and it is possible to monitor whether the analog-to-digital converting device normally operates, according to whether there is matching.
US09692431B2 Wide range frequency synthesizer with quadrature generation and spur cancellation
A frequency synthesizer generates a wide range of frequencies from a single oscillator while achieving good noise performance. A cascaded phase-locked loop (PLL) circuit includes a first PLL circuit with an LC voltage controlled oscillator (VCO) and a second PLL circuit with a ring VCO. A feedforward path from the first PLL circuit to the second PLL circuit provides means and signal path for cancellation of phase noise, thereby reducing or eliminating spur and quantization effects. The frequency synthesizer can directly generate in-phase and quadrature phase output signals. A split-tuned ring-based VCO is controlled via a phase error detection loop to reduce or eliminate phase error between the quadrature signals.
US09692430B2 Electrical characteristic adjustment device and electrical characteristic adjustment method
A frequency adjustment device 10 includes an operation unit 14 that inputs data for a first minimum value and a first maximum value indicating a target range of a characteristic value, a fine adjustment mark display unit 24 that displays a frequency value with a first mark for fine adjustment at a position relative to a first axis which extends from a first minimum value to a first maximum value, a coarse adjustment mark display unit 22 that displays the frequency value with a second mark for coarse adjustment at a position relative to a second axis which extends from a second minimum value to a second maximum value, and a medium adjustment mark display unit 23 that displays the frequency value with a third mark for medium adjustment at a position relative to a third axis which extends from a third minimum value to a third maximum value.
US09692428B2 Self-calibrating shared-component dual synthesizer
A self-calibrating shared-component dual synthesizer includes, for example, two frequency synthesizers that are adapted to operate (respectively) in transmit (TX) and receive (RX) modes. Each synthesizer can be selectively arranged to vary and optimize the phase noise in accordance with the TX and RX requirements associated with each mode as well as independently optimized for flexible low area floorplan to achieve low power, spectral fidelity and reduced test time, low cost built in self-calibration. The two frequency synthesizers are also adapted to provide a built-in self-test signals used for intermodulation testing and calibration.
US09692424B2 Decoupling circuit and semiconductor device including the same
A decoupling circuit and a semiconductor device including the same are provided. The decoupling circuit includes a first circuit including a first capacitor having a first end connected to a first terminal, a first switch device connected between a second end of the first capacitor and a second terminal, and a first control device configured to turn on/off the first switch device based on a voltage level of the a second end of the first capacitor, and a second circuit including a second capacitor having a first end connected to the first terminal, a second switch device connected between a second end of the second capacitor and the second terminal, and a second control device configured to turn on/off the second switch device based on a voltage level of the second end of the second capacitor and an output signal of the first control device.
US09692418B1 Pipelined interconnect circuitry with double data rate interconnections
An integrated circuit may have pipelined interconnects that are configurable to operate in registered single data rate mode, registered double data rate mode, or in combinational mode. The pipelined interconnect may include routing multiplexers for selecting incoming signals, circuitry for serialization and de-serialization, and memory elements that are configurable to store one or two signals per clock period. Operating the pipeline interconnects in double data rate mode may provide a trade-off between reducing the number of physical wires that are required to implement a design at a constant bandwidth or increasing the bandwidth while keeping the number of physical wires constant.
US09692416B1 Buffers for driving circuits in a stand by mode
A buffer that drives components during a standby mode includes a first combination of two standard voltage threshold (SVT) transistors and two high voltage threshold (HVT) transistors that generate a logic 1 signal at a first output. A second combination of two SVT transistors and two HVT transistors generates a logic 0 signal at a second output. A power supply operates the buffer, wherein the power supply generates a voltage less that the threshold voltages of the HVT transistors.
US09692415B2 Semiconductor device having low power consumption
A semiconductor device includes a first power supply node and a second power supply node having a voltage value higher than the first power supply node. A first switch interrupts a power supplied from the first power supply node to a first circuit node. A second switch interrupts a power supplied from the second power supply node to a second circuit node. A driver drives the second switch by a third switch being driven. The third switch is connected between the second power supply node and the first circuit node. A controller outputs a control signal to drive the first and third switches.
US09692409B2 Simplified gate driver for power transistors
A pulse-transformer-based isolated gate driver circuit uses a small count of high-temperature-qualified components to drive a power semiconductor switch with asymmetrical voltage biases. A differential driver generates a pulse signal from a pulse-width-modulated signal, which is passed to a charge and lock circuit through a transformer. The charge and lock circuit includes an activation path and a deactivation path, which are selectively open to current flow based on positive or negative voltage pulses in the pulse signal, to selectively turn the main semiconductor switch on or off. The charge and lock circuit can lock voltage across the main semiconductor switch to keep the main semiconductor switch in an “on” or and “off” state.
US09692408B2 Devices and systems comprising drivers for power conversion circuits
An electronic switching system and device comprising driver circuits for power transistors are disclosed, with particular application for MOSFET driven, normally-on gallium nitride (GaN) power transistors. Preferably, a low power, high speed CMOS driver circuit with an integrated low voltage, lateral MOSFET driver is series coupled, in a hybrid cascode arrangement, to a high voltage GaN HEMT and provides for improved control of noise and voltage transients. Monitoring and control functions, including latching and clamping, are based on monitoring of Vcc conditions for shut-down and start-up conditioning to enable safer operation, particularly for high voltage and high current switching. Preferred embodiments also provide isolated, self-powered, high speed driver devices, with reduced input losses.
US09692405B2 Switching circuit
A switching circuit switches a first IGBT and a second IGBT. A control circuit is equipped with a first switching element that is configured to be able to control a gate current of the first IGBT, a second switching element that is configured to be able to control a gate current of the second IGBT, and a third switching element that is connected between an electrode of the first IGBT and an electrode of the second IGBT. The control circuit controls a turn on timing and turn off timing.
US09692404B2 Power factor correction controlling circuit and driving method thereof
A power factor correction controlling circuit includes a control signal providing circuit configured to provide a control signal associated with a feedback signal, the feedback signal being controlled based on a bias signal, a pulse width modulation signal controlling circuit configured to control a pulse width modulation signal based on one of first and second bias signals and a power factor controlling circuit configured to provide a power factor control signal when an amplitude of the pulse width modulation signal reaches that of the power factor control signal. Such a circuit Is able to operate stably, regardless of a load condition and an input voltage condition.
US09692403B2 Digital clock-duty-cycle correction
A clock generator includes a duty cycle correction circuit. The duty cycle correction circuit includes a duty cycle detector. The duty cycle detector, includes a first programmable delay element and a controller. The first programmable delay element is configured to delay a clock signal. The controller is configured to vary an amount of delay applied to the clock signal by the first programmable delay element, and to apply a delayed version of the clock signal, provided by the first programmable delay element, to locate an edge of a different version of the clock signal and measure time during which the different version of the clock is high. The controller is also configured to generate a digital value that indicates an amount of adjustment to apply to a duty cycle of the clock signal based on measured time during which the different version of the clock is high.
US09692401B2 Skew adjustment circuit and skew adjustment method
A skew adjustment circuit comprises a phase adjustment circuit that adjusts a phase of a first input clock based on a predetermined phase control signal, and outputs it as an output clock, a logical circuit that performs a logical operation between signals that are input, an integral circuit that generates a predetermined voltage signal, based on a result of the logical operation by the logical circuit, a comparator that compares an electric potential of the predetermined voltage signal and an electric potential of a predetermined reference voltage signal, a first controller that generates the predetermined phase control signal based on a result of the comparison by the comparator, and a second controller that performs control for selecting a signal that is to be input to the logical circuit. The second controller, in a first mode, performs the control such that the output clock and a second input clock are selected.
US09692399B2 Digital delay unit and signal delay circuit
An example of the invention provides a digital delay unit that is made up of a plurality of NAND gates. The digital delay unit includes a first delay path and a second delay path. The first delay path is coupled between a first input terminal and an output terminal to provide a basic time delay which is caused by one NAND gate. The second delay path is coupled between a second input terminal and the output terminal to provide at least three basic time delays.
US09692392B2 Filters for multi-band wireless device
Techniques to implement a filter for a selected signal path by reusing a circuit component in an unselected signal path are disclosed. In an exemplary design, an apparatus includes first, second, and third circuits. The first circuit passes a first radio frequency (RF) signal to an antenna when a first signal path is selected. The second circuit passes a second RF signal to the antenna when a second signal path is selected. The third circuit is selectively coupled to the first circuit, e.g., via a switch. The first and third circuits form a filter for the second RF signal (e.g., to attenuate a harmonic of the second RF signal) when the second signal path is selected and the first signal path is unselected. The first circuit may include a series inductor, and the third circuit may include a shunt capacitor.
US09692389B2 Surface acoustic wave device having matrices of combinable selectable electrode sub-elements
Described embodiments include a surface acoustic wave device, method, and apparatus. The device includes a piezoelectric substrate and a configurable electrode assembly. The assembly includes N stacked instances of electrode assembly sub-units. Each electrode assembly sub-unit includes: a plurality M of elongated electrode sub-elements electromechanically coupled with the piezoelectric substrate; an electrically isolated first signal bus crossing each of the electrode sub-elements; a first matrix of individually addressable switches, each addressable switch of the first matrix configured to electrically couple a respective electrode sub-element of the plurality M of electrode sub-elements with the first signal bus; an electrically isolated second signal bus crossing each of the electrode sub-elements; and a second matrix of individually addressable switches, each addressable switch of the second matrix configured to electrically couple a respective electrode sub-element of the plurality M of electrode sub-elements with the second signal bus.
US09692387B2 Balun transformer
A balun includes a dielectric layer having first and second sides, an electrically conductive plate on the second side of the dielectric layer, a first electrically conductive line on the first side and comprising a first end electrically connected to a first terminal and a second end, a second electrically conductive line on the second side and comprising a third end electrically coupled to a second terminal and a fourth end connected to an unbalanced terminal and a micro strip line comprising a fifth end electrically connected to the third end and a sixth end. The first electrically conductive line overlaps the second electrically conductive line. The second and the sixth ends are electrically coupled to the electrically conductive plate. The electrically conductive plate is hollowed in at least a region corresponding to an overlap area of the first electrically conductive line and second electrically conductive line.
US09692386B2 Three-dimensional wire bond inductor
An inductor is provided on a substrate that includes a capacitor. The inductor comprises a series of wire loops. An end of the wire loop is wire bonded to the capacitor.
US09692385B2 Noise reduction device
Provided is a noise reduction device including: a conductive bar of conductive material; a metal tubular portion with a through hole having the conductive bar penetrating therethrough and accommodating a magnetic material core and a substrate therein; a capacitor mounted on the substrate and having a first terminal connected to the conductive bar and a second terminal connected to an inner wall of the through hole; and a blocking unit blocking an opening of the through hole so as to affix the conductive bar with respect to the metal housing and the tubular portion. The tubular portion includes an outer peripheral surface having a threaded engagement part threadedly engaged with the metal housing; and the conductive bar has an outer end that functions as an output terminal.
US09692382B2 Smart automatic audio recording leveler
The invention is directed to systems, methods and computer program products for adjusting audio properties after recording an audio. An exemplary method includes recording audio using an audio capturing system, wherein the recorded audio is associated with an audio level; determining one or more audio signal properties associated with the recorded audio; comparing the audio level with a first predetermined threshold level; and in response to determining the audio level is greater than a first predetermined threshold level, adjusting the recorded audio based at least partially on modifying the one or more determined audio signal properties, wherein the adjusting step is performed a finite time interval following the recording step.
US09692379B2 Adaptive audio capturing
Embodiments of the present invention relate to adaptive audio capturing. A method for adaptive audio capturing is disclosed. The method comprising obtaining an audio signal through an audio channel associated with an audio capturing element on a user terminal; calculating a signal amplitude for the audio channel by processing the obtained audio signal; and determining a functionality of the audio capturing element based on the signal amplitude and a further signal amplitude for at least one further audio channel associated with at least one further audio capturing element on the user terminal. Corresponding apparatus, computer program product, and user terminal are also disclosed.
US09692377B2 Digital amplitude modulation device and digital amplitude modulation control method
A calculation output unit of a digital amplitude modulation device calculates and outputs a protection index of an amplifier based on a combined output signal or an amplitude modulation signal. A first protection unit outputs to a control unit a first control signal to place an entire amplifier unit in an off-controlled state, based on the protection index. A second protection unit outputs, to the control unit, a second control signal to control an upper limit number of amplifier units that can be on-controlled in parallel and a third control signal to on/off control the upper limit number or less or the initial number of the amplifiers. The control unit on/off controls the power amplifiers based on an input sound signal, the first control signal, the second control signal, and the third control signal.
US09692375B2 Boosting amplifier gain without clipping signal envelope
Disclosed is a circuit having a differential stage comprising a pair or transistors. The transistors are biased by respective bias transistors. Each bias transistor has a respective feedback network configured to reduce transconductance of the bias transistor, to increase a gain of the differential stage.
US09692373B2 Inverse class F amplifiers with intrinsic capacitance compensation
The embodiments described herein provide inverse class F (class F−1) amplifiers. In general, the inverse class F amplifiers are implemented with a transistor, an output inductance and a transmission line configured to approximate inverse class F voltage and current output waveforms by compensating the effects of the transistor's intrinsic output capacitance for some even harmonic signals while providing a low impedance for some odd harmonic signals. Specifically, the transistor is configured with the output inductance and transmission line to form a parallel LC circuit that resonates at the second harmonic frequency. The parallel LC circuit effectively creates high impedance for the second harmonic signals, thus blocking the capacitive reactance path to ground for those harmonic signals that the intrinsic output capacitance would otherwise provide. This facilitates the operation of the amplifier as an effective, high efficiency, inverse class F amplifier.
US09692369B2 Low-noise amplifier having high linearity for multi-band
The present invention discloses a low-noise amplifier having a characteristic of high linearity for multi-band. Embodiments of the present invention is to provide a low-noise amplifier (LNA), which realizes a balun function and a preamplifier function of mixer in the low-noise amplifier (LNA), and minimizes the factors reducing the linearity between the low-noise amplifier (LNA) and the mixer.
US09692364B2 Multi-stage track-and-hold amplifier
Examples are provided for a multi-stage track-and-hold circuit (THA). The multi-stage THA may include a first stage, a second stage, and a third stage. The first stage may be coupled to an input signal and configured to sample the input signal. The second stage may be coupled to the first stage and may include a buffer circuit. The third stage may be coupled to the second stage and can include a bootstrapped THA. The first stage may further include a shunted source-follower circuit and a switched source-follower circuit. The shunted source-follower circuit may include a first switch that can be operable to couple an output node of the shunted source-follower circuit to ground potential.
US09692362B2 Amplifier circuit applied to display apparatus
An amplifier circuit applied to a source driver of a display apparatus includes a first input terminal, a second input terminal, an operational amplifier, an output stage and an output terminal. The first input terminal receives a first input signal. The second input terminal receives a second input signal. The operational amplifier is coupled to the first input terminal and second input terminal and receives the first input signal and second input signal and outputs a first control signal and a second control signal respectively. The output stage includes a first BJT and a second BJT coupled in series between a first terminal and a second terminal. The first BJT and second BJT are coupled to the operational amplifier and receive the first control signal and second control signal respectively. The output terminal is coupled between the first BJT and second BJT and outputs an output signal.
US09692360B2 Amplifier control systems and methods
A system improve amplifier efficiency of operation relative to that of an amplifier with fixed biasing and fixed matching conditions receives a power level and an indicator of amplifier operation. The indicator is at least one of channel, channel bandwidth, out-of band spectral requirements, spectral mask requirements, error vector magnitude, modulation rate, and modulation type. A controller generates a control signal based at least in part on the power level and the indicator to control at least one of the bias current and the matching conditions of matching circuits. The matching conditions and bias current for channels at an edge of a channel band are different from the bias current and matching conditions for channels nearer a center of the channel band.
US09692359B1 Pulse shaping biasing circuitry
Pulse shaping biasing circuitry includes square wave generator circuitry, first inverse ramp signal generator circuitry, and second inverse ramp signal generator circuitry. The square wave generator circuitry is coupled between an input node and signal summation circuitry, and is configured to generate a square wave signal. The first inverse ramp signal generator circuitry is coupled in parallel with the square wave generator circuitry and configured to generate a first inverted ramp signal. The second inverse ramp signal generator circuitry is coupled in parallel with the square wave generator circuitry and the first inverse ramp signal generator circuitry and configured to generate a second inverted ramp signal. The square wave signal, the first inverted ramp signal, and the second inverted ramp signal are combined by the signal summation circuitry to provide a pulse shaping bias signal for a radio frequency (RF) power amplifier.
US09692358B2 Circuitry
Trans-impedance amplifier circuitry having an amplifier; a feedback resistor arranged between an output of the amplifier and an input of the amplifier; and at least one further resistor arranged physically parallel to the feedback resistor.
US09692356B2 Oscillator frequency tuning using bulk acoustic wave resonator
The systems and methods of oscillator frequency tuning using a bulk acoustic wave resonator include a relaxation oscillator, a BAW oscillator, a frequency counter, and an adjustment module. The BAW oscillator provides an accurate time reference even over temperature changes. The BAW oscillator is turned on periodically and the relaxation oscillator is calibrated with the BAW oscillator. A temporary and periodic enablement of the BAW oscillator maintains a low current consumption. The frequency counter counts a number of full periods of the BAW oscillator that occur in one period of the relaxation oscillator. Since each frequency is known, the number of pulses of the BAW oscillator that should occur during one period of the relaxation oscillator is known. If the count is different from what should be counted, a correction may be made by adjusting an input parameter of the relaxation oscillator.
US09692354B2 Oscillator circuit with two switchable oscillators
An oscillator circuit comprises a first, high-Q crystal oscillator and a second, low-Q oscillator arranged for kick-starting the crystal oscillator at switch-on by coupling the second oscillator to the first oscillator for a time period. The oscillator circuit is arranged to select the frequency of the second oscillator by placing the second oscillator in a phase locked loop with the first oscillator providing a reference frequency, and adjusting the frequency of the second oscillator towards the frequency of the first oscillator.
US09692348B2 Motor control device that detects overload
A motor control device includes a load torque estimation unit configured to estimate a load torque applied to a motor, a torque comparison unit configured to compare the load torque with a reference torque, a time measurement unit configured to measure a time span during which the load torque is higher than the reference torque, a time comparison unit configured to compare the time span with a reference time, and a decision unit configured to decide that the motor is subjected to an excessive load when the time span exceeds the reference time.
US09692341B2 Apparatus for detecting speed of motor
An apparatus for detecting speed of a motor is disclosed, the apparatus including an amplifier configured to amplify a two-phase sine-wave signal inputted from an encoder based on rotation of a motor; a first conversion unit configured to convert the two-phase sine-wave signal to a digital data; a second conversion unit configured to convert the two-phase sine-wave signal to a square-wave signal; a counter unit configured to accumulate by counting the square-wave signal; and a speed determination unit configured to determine a speed of the motor, by receiving the digital data from the first conversion unit and the accumulated count from the counter unit.
US09692336B2 Asynchronous state estimation and control in a field-oriented control architecture
A motor controller architecture and method of operating the same. The motor controller asynchronously generates multiphase control signals for a multi-phase electric motor, relative to the estimation of various state parameters used in generating those control signals. Latency between the state estimation task and the control signal generation task is addressed by storing a timestamp with each input data sample from the sensors, and maintaining that timestamp with the output data from state estimation. Knowledge of the timestamp value allows the control task to update the state estimates to compensate for the time difference between the input data sample and the current sampling period.
US09692335B2 Motor driving apparatus, motor control apparatus, conveyance apparatus and motor driving method
A motor driving apparatus for causing drive current to flow in first and second armature coils of two-phases to rotate a rotator, includes a drive unit configured to give first and second PWM pulse signals to ends of the first and second armature coils. The drive unit includes a first shift unit configured to, when a difference between pulse widths of the first PWM pulse signals given to the ends of the first armature coil is less than or equal to a first predetermined value, shift forward any one of pulses of the first PWM pulse signals, and a second shift unit configured to, when a difference between pulse widths of the second PWM pulse signals given to the ends of the second armature coil is less than or equal to a second predetermined value, shift backward any one of pulses of the second PWM pulse signals.
US09692334B2 Phase management and power saving mode in an image forming apparatus
A phase management apparatus includes a control section configured to output a first signal for rotating a motor, and output the first signal at a first frequency higher than the frequency which is necessary for rotating the motor when the apparatus resumes from a power-saving mode; a drive circuit configured to store the information relating to the rotation phase of the motor, output a pulse signal to the motor according to the first signal output from the control section, receive the first signal output at the first frequency, and update the information according to the first signal; and a power control section configured to carry out a control of supplying power to the control section but not to the drive circuit in the power-saving mode and supplying power to both the control section and the drive circuit when the apparatus resumes from the power-saving mode.
US09692321B2 Five level inverter
A five level inverter comprises six switch tubes, two inductors, four capacitor units and two reverse current preventing devices. The common terminal of the third capacitor unit and the fourth capacitor unit is connected with the common terminal of the first capacitor unit and the second capacitor unit. The third capacitor unit and the fourth capacitor unit are used as the output filter circuit of the inverter, and the common terminal of the third capacitor unit and the fourth capacitor unit is used as the midpoint of the DC bus.
US09692320B2 Adaptive control method for grid-connected inverters used with distributed power generation
Systems, methods, and devices relating to control systems for grid-connected inverters. Because grid conditions may vary and because control system stability is dependent on the parameters of the components within the inverter, the present invention adaptably monitors the varying values of these components. Based on the sensed values and on predicted values, controller gains are adaptably adjusted to maintain system stability.
US09692317B2 Power control circuit having an error prevention function
A power control circuit includes a primary auxiliary winding, a startup module, a power control module, a rectifier module, and a clamping module. The primary auxiliary winding is configured to induce a voltage provided by a power circuit to generate an induced voltage. The startup module is configured to provide a startup voltage. The power control module is connected to the startup module and configured to output a control signal which controls the power circuit to supply power when the startup voltage input to the power control module is less than an upper threshold voltage. The rectifier module is connected to the primary auxiliary winding and configured to rectify the induced voltage generated by the primary auxiliary winding. The clamping module is connected between the rectifier module and the startup module is configured to clamp the induced voltage under the upper threshold voltage.
US09692310B2 Power converter
A power converter that can supply constant voltage to a load even upon fluctuation of voltage of an AC power source includes an inverter circuit resulting from connecting switching elements in series, the inverter circuit being connected to both ends of a DC power source series circuit resulting from connecting in series two DC power sources; an AC output terminal that is connected to a connection point of the switching elements; another AC output terminal that is connected to a connection point of the DC power sources; and a bidirectional switch element including one end connected to the AC output terminal U and another end connected to a terminal of an AC power source.
US09692308B2 Switch-mode power supply current monitoring with over current and overload protection
A device for current protection comprises a switch-mode power supply controller. The switch-mode power supply controller includes an inrush current comparator that is arranged to compare a primary winding current with an inrush current threshold at least during at least one of a startup phase or a burst phase. The switch-mode power supply controller also includes a switch controller that is arranged to control regulation of an output voltage by controlling turning of a primary switch on and off based on a feedback signal that is based, at least in part, on the output voltage. The switch controller is further arranged to, if the inrush current comparator determines that the primary winding current has reached the inrush current threshold, control the primary switch to turn off and remain turned off until at least a next switching cycle.
US09692306B2 Systems and methods for voltage regulation of primary side regulated power conversion systems with compensation mechanisms
Systems and methods are provided for voltage regulation of power conversion systems. An example system controller includes: a first sampling component configured to sample a sensing signal and determine a compensation signal based on at least in part on the sensing signal, the sensing signal being associated with a first current flowing through a primary winding of a power conversion system; a signal processing component configured to receive a feedback signal and the compensation signal and generate a first signal based at least in part on the feedback signal and the compensation signal, the feedback signal being associated with an auxiliary winding coupled with a secondary winding of the power conversion system; an error amplifier configured to receive the first signal and a reference signal and generate an amplified signal based at least in part on the first signal and the reference signal.
US09692304B1 Integrated power stage device with offset monitor current for sensing a switch node output current
An integrated power stage device includes a switch node that is coupled to an output inductor. The integrated power stage device generates a monitor current that is a scaled version of the current through the output inductor. The integrated power stage device outputs a single-ended offset monitor current that is equal to the monitor current plus a DC offset current. A PWM controller senses the current through the output inductor by receiving a monitor voltage that is developed from the offset monitor current. The PWM controller generates a PWM signal in accordance with the sensed output inductor current to control a switching operation of a power switch of the integrated power stage device.
US09692302B2 Circuit apparatus and electronic appliance
An output transistor of an output circuit that outputs a large current may have a partial fault, but such a partial fault may not be detected because the transistor is very large. To address this, the invention provides an output circuit in which one output transistor is divided into a plurality of transistors, and a plurality of pads that are connected correspondingly to the transistors are provided. Fault detection can be performed on the plurality of transistors by using each pad. At least some of the pads are connected to one same output terminal of the substrate or the like.
US09692300B2 Supply regulation circuit with energy efficient digital control
A regulated voltage system with digital control to maintain a regulated voltage supply and protection against overcurrents is disclosed. A regulated supply voltage circuit including a voltage output and a charging capacitor is coupled to a direct current power source. The regulated supply voltage output supplies power to an electrical load. A shunt transistor is coupled between the direct current power source and the regulated supply voltage circuit and ground. A shunt control circuit operates the shunt transistor between an open and closed state. The shunt control circuit includes a cross-coupled bias circuit coupled to a controller. The controller operates the shunt transistor according to a state machine having a first state to close the shunt transistor when the regulated supply voltage exceeds a maximum hysteresis voltage and a second state to open the shunt transistor when the regulated supply voltage is less than a minimum hysteresis voltage.
US09692297B2 Adjusting a current threshold of a power supply in response to a portion of a current-pulse period
An embodiment of a power-supply controller includes switching circuitry and an adjuster circuit. The switching circuitry is configured to cause a charging current to flow until the charging current has a predetermined relationship to a threshold, and to cause a discharging current to flow after the charging current. The adjuster circuit is configured to adjust the threshold in response to at least one of a charging period during which the charging current flows and a discharging period during which the discharging current flows. For example, a power supply may include such a power-supply controller to maintain a length of a current pulse, or of a portion thereof, within a particular range, such as approximately at a particular value, during a pulse-frequency-modulation (PFM) mode despite variations in one or more parameters such as input voltage, output voltage, filter capacitance, phase inductance, charging-current-sense impedance, and load, from their respective nominal values.
US09692296B1 Single-input-multiple-output (SIMO) DC-DC converters and SIMO DC-DC converter control circuits
Single-input-multiple-output (SIMO) DC-DC converters and SIMO DC-DC converter control circuits are disclosed. An example DC-DC converter control circuit includes a switch controller to control respective switches of a SIMO DC-DC voltage converter that has multiple output circuits. The example control circuit also includes an arbitration circuit that determines a first one of the output circuits to have priority over other ones of the output circuits based on a priority signal, and selects a first output circuit to be charged during a first time slot based on the priority signal and based on first kick signals indicating that the at least two output circuits are to be charged. The control circuit also includes a next kick detector that determines a second one of the output circuits to be charged during a second time slot after the first time slot based on the priority. The control circuit also includes a time slot controller that determines a first time duration of the first time slot based on the determined second one of the output circuits, the arbitration circuit to output a second kick signal to the switch controller to control the switches to charge the first one of the output circuits during the first time slot.
US09692294B2 Main switch control circuit in power factor correction circuit
A control circuit in a power factor correction (PFC) circuit includes: a multiplier, used for multiplying a voltage sampling signal by a feedback signal, and outputting a first signal; and a waveform generating module, used for generating a second signal related to a filter capacitor connected in parallel to an input end and/or an output end of a rectifier bridge. A control signal for controlling a state of a main switch transistor is generated by using the first signal, the second signal, and a current sampling signal of the main switch transistor in the PFC circuit.
US09692292B2 Power supply apparatus with alternating current power detection circuit
A power supply apparatus includes a main power processing circuit and an alternating current power detection circuit. The alternating current power detection circuit is electrically connected to the main power processing circuit. The alternating current power detection circuit includes a rectifying unit and a frequency processing unit. The rectifying unit is electrically connected to the main power processing circuit. The frequency processing unit is electrically connected to the main power processing circuit and the rectifying unit. The rectifying unit rectifies an alternating current power to obtain a rectified power. When a frequency of the rectified power is greater than a predetermined frequency, the frequency processing unit informs the main power processing circuit, so that the main power processing circuit processes the alternating current power to obtain an output direct current power.
US09692291B2 Noise filter
A noise filter is assembled to an electric power conversion device and has a metal housing casing and two capacitors connected to an external terminal of the device through which an electric power conversion circuit is connected to an external device. The two capacitors, the housing casing and the external terminal make a current loop. A magnetic flux of an alternating magnetic field generated in a part of the electric power conversion circuit penetrates in a first area and a second area formed in the current loop. A first induced noise current is induced in the current loop when the magnetic flux of the generated magnetic field penetrates in the first area. A second induced noise current is induced in the current loop when the magnetic flux penetrates in the second area so that the first induced noise current flows in a reverse direction to the second induced noise current.
US09692288B2 High-efficiency bias voltage generating circuit
Disclosed are bias voltage generating circuits and methods for a switching power supply. In one embodiment, a switching power supply can include: (i) a driver circuit configured to receive a bias voltage, and to drive a switch in a power stage of the switching power supply; (ii) where a ratio of an output voltage of the switching power supply to an expected bias voltage of the driver circuit is configured as a proportionality coefficient; (iii) a bias voltage generating circuit configured to generate the bias voltage for the driver circuit based on a first voltage; and (iv) an H-shaped inductor coupled to an input of the bias voltage generating circuit, where the first voltage is configured to be generated based on a number of turns of the H-shaped inductor and the proportionality coefficient.
US09692286B2 Vibration actuator
A first weight portion of a vibration actuator includes an inner-side enlarged portion that protrudes from an end portion of a solid head in a direction of a vibration axis and that is inserted into an opening portion extending within a first compression coil spring along the direction of the vibration axis. An outer peripheral surface of the inner-side enlarged portion becomes continuously smaller in diameter from a base end towards a free end, with the vibration axis being the center of the diameter. That is, the inner-side enlarged portion has the shape of a truncated cone. The inner-side enlarged portion is inserted into the opening portion of the first compression coil spring and the opening portion is utilized to change the length of the inner-side enlarged portion in the direction of the vibration axis, thereby changing the mass of the first weight portion.
US09692285B2 Electrodynamic actuator
An electrodynamic actuator (10), has a flat coil (24) formed by tracks (22, 23) on a face of a circuit board (16) and a permanent magnet (14) the magnetic field of which passes through turns of the flat coil (24).
US09692284B2 Electric motor with plural stator components
An electric motor apparatus comprises a rotor and a stator formed of at least two stator components, each of the at least two stator components having a substantially hollow cylindrical form. The rotor is mounted within the at least two stator components on a rotational mounting such that the rotor can rotate about a longitudinal central axis with respect to the stator. Each of the at least two stator components has at least two protrusions arranged at different circumferential points on an inner surface of the at least two stator components. Each protrusion has a winding mounted thereon. Control circuitry generates control signals to control power supplied to the windings on each stator component such that power can be controlled to each stator component independently. The stator components are mounted adjacent to each other along the longitudinal central axis and rotationally offset with respect to each other such that the two protrusions on one of the stator components are offset with respect to the protrusions on an adjacently mounted stator component, such that a portion of each winding that extends beyond a longitudinal end of the protrusions on one of the stator components fits within a gap between windings mounted on the adjacently mounted stator component.
US09692276B2 Systems and methods related to coupling an energy harvester to exercise equipment
A system and method for mechanically coupling an energy harvester to strength training type exercise equipment is disclosed. An energy harvester with unwanted vibration forces is mechanically isolated from exercise equipment by a system comprising a plurality of mechanically compliant vibration isolators and a ballast mass; a flexible cord, pre-loaded with a near constant force spring is used to transmit motion from the weight stack to the energy harvester; the flexible cord has a force limiting feature to pre-excessive force from being transmitted from the energy harvester to the weight stack during an exercise motion.
US09692270B2 Motor including brackets and fixing members
A motor includes a shaft, an annular rotor magnet, an armature arranged to cover the rotor magnet, an upper bracket fixed to an axial upper portion of the armature, and a lower bracket fixed to an axial lower portion of the armature. The armature includes an annular core-back, a plurality of magnetic pole teeth protruding radially inward from the core-back, an insulator arranged to cover the magnetic pole teeth, and a coil wound around the magnetic pole teeth through the insulator. The insulator includes an annular core-back insulating portion arranged radially outward of the coil and extended axially upward. The upper bracket is fixed by a plurality of fixing members positioned radially inward of an outer circumferential surface of the core-back.
US09692269B2 Winding configuration of doubly salient permanent magnet electric machine
The present invention relates to a doubly salient permanent magnet electric machine that has a winding structure in which series-connected windings are included in the phase windings of a mover, and that has a stator implemented as an iron core having a plurality of permanent magnets and a plurality of stator salient poles neighboring the permanent magnets, thus reducing the number of permanent magnets by half. An electric machine is configured such that a mover moves while facing a stator and includes an N (a number of power phases) multiple number of teeth and phase windings wound around the teeth, and one or more pairs of phase windings of the mover mutually having a phase difference of 180° are connected in series, and the stator includes permanent magnets in depressions between individual stator salient poles of an iron core in which the stator salient poles are formed.
US09692265B2 Variable magnetic flux-type rotary electric machine
A variable magnetic flux-type rotary electric machine includes a stator and a rotor. The stator includes a stator coil wound on teeth. The rotor defines an air gap between the rotor and the stator. The rotor has at least one permanent magnet arranged in the d-axis magnetic path. The stator and the rotor are arranged relative to the permanent magnet to set a characteristic of d(Kt(I))/dI≧0 in a range of at or below magnetic saturation of a core material of at least one of the stator and the rotor, where KT represents a torque constant, and I represents an applied current, and a function of KT with respect to I is represented by KT=Kt(I) for a torque Tr acting on the rotor that is represented by Tr=KT×I.
US09692260B2 Dynamic wireless power control
In accordance with various aspects of the disclosure, devices and methods are disclosed that include measuring, at a transmitter, a reflected power level corresponding to a specific transmit power level, and setting the transmit power to an operational level. At the transmitter, a new operational level of the transmit power may be determined, for example, by selecting at least one trial transmit power level, and based on reflected power levels measured corresponding to the operational level and the at least one trial level of the transmit power, either maintaining the operational level as the new operational level, or determining the at least one trial level as the new operational level. The operational transmit power level may correspond to a lowest reflected power level, or a highest rate of change of the reflected power level with respect to the transmit power level.
US09692258B2 Method and system for multi-IED event classification in an electrical grid
A method of classifying an event in an electrical grid. The method utilizes event related data provided by intelligent electronic devices and provides the operator with a single conclusion classifying the event, thereby helping the operator to determine the mitigation actions. The method includes receiving individual event related data from each intelligent electronic device, and determining whether the event is a fault or a non-fault based on probabilistic methods applied to the event related data. A corresponding system is also presented herein.
US09692256B2 Power supply unit
A power supply unit for supplying power to a device has a rechargeable, main battery; a charging arrangement for charging the main battery; a non-rechargeable back-up battery; load terminals for connection to a load; and a control unit for controlling supply of power to the load primarily from the main battery and secondarily from the back-up battery. The device is, in particular, a single bay, stand alone parking meter. In the event that the main battery runs low, the control unit is configured to supply power to the load from both the main battery and the back-up battery or only from the back-up battery. The back-up battery is easily replaceable, and the power supply unit has a bay, with connectors for receiving the back-up battery. The main battery is charged from solar panels. A communication device is provided to communicate status messages wirelessly to a control system.
US09692255B2 Power supply system and control method thereof
A control method for implementation in a power supply system includes steps (A), (B), and (C). In step (A), while the power supply system is providing electricity to a load, a control circuit determines, an estimated capacitance value related to an output capacitor. In step (B), while the output capacitor is providing electricity to the load, the control circuit determines an average power value related to the electricity provided by the output capacitor to the load. In step (C), the control circuit determines an estimated hold-up time value related to the power supply system based on a predetermined target voltage value, a predetermined minimum voltage value, the average power value and the estimated capacitance value.
US09692254B2 Three-source automatic redundant bypass-isolation switches and related systems and methods
Power systems include a housing and an automatic transfer switch (ATS switch) held in the housing, a Bypass switch held in the housing and a control circuit in communication with the ATS switch and the Bypass switch to automatically direct the Bypass switch and the ATS switch to carry out the selective connections to thereby allow automated, redundant power transitions to the system load from three different power sources.
US09692251B2 Apparatus, system and method of wireless power transfer
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless power transfer. For example, a Wireless Power Receiver (WPR) may include a rectifier to convert a wireless charging signal received from Wireless Power Transmitter (WPT into a Direct Current (DC) power signal; a voltage regulator to regulate a voltage of the DC power signal according to a voltage range; a bypass path to bypass the voltage regulator; and a bypass controller to select between directing the DC power signal to the voltage regulator or to the bypass path, based on a voltage level of the DC power signal and the voltage range.
US09692247B2 Apparatus and method for powering a mobile device
A system, topology, and methods for providing power or data to electronic devices are described generally herein. Other embodiments may be described and claimed. The system may include an internal power source, charging module, modem, and an external power coupling module.
US09692246B2 Light load detection and current drain cutoff in a power bank device
A power bank device has an input connector, an output connector, a DC-to-DC switching converter, a plurality of battery cells coupled together in series, and novel light load detection circuitry. The power bank device is operable in a discharging mode in which the battery cells power the DC-to-DC converter, and the converter drives a regulated DC voltage onto the output connector. The detection circuitry detects whether a light load condition exists in which only a small amount of current is being output onto the output connector. If the condition is detected, then the converter is disabled so that current flow out of the output connector is stopped. In one example, the condition is detected by supplying a constant current onto the output connector and detecting whether the voltage on the output connector rises and stays above a predetermined voltage for a predetermined amount of time.
US09692242B2 Battery system, method for charging battery modules, and method for balancing battery modules
A battery system has a battery with a plurality of battery modules which can be selectively activated or deactivated by means of actuation, wherein, in the activated state, the battery module voltage of a respective battery module contributes to an output voltage of the battery and, in the deactivated state, the battery module is uncoupled from the current path of the battery. The battery system comprises a circuit for charging the battery modules which has components which are arranged in accordance with a switching converter topology, which is integrated in the battery system in such a way that the battery modules can be charged independently of whether a respective battery module which is to be charged is in the activated or in the deactivated state. A method for charging battery modules, a method for balancing battery modules, and a motor vehicle include the battery system.
US09692240B2 Battery sleep mode management method and system
A method for managing a battery module includes receiving data relating to one or more operational parameters of the battery module. The method also includes determining whether a first operational parameter of the one or more operational parameters violates a first threshold. Additionally, the method includes transitioning the battery module from an operational mode to a sleep mode in response to a determination that the first operational parameter violates the first threshold.
US09692239B2 Method for battery equalization
A battery equalization circuit is provided, including: a positive battery node connecting to a positive node of a battery cell in a battery circuit with a plurality of other battery cells; a negative battery node connected to a negative node of the battery cell; a transformer winding receiving an AC voltage, the transformer winding having an upper transformer node and a lower transformer node; an upper triac connected between the positive battery node and the upper transformer node; a lower triac connected between the negative battery node and the lower transformer node; a control circuit for controlling the upper triac and the lower triac based on a measured cell voltage between the positive battery node and the negative battery node, and a total battery voltage of the battery circuit; and an isolation element connected between the control circuit and a data bus.
US09692231B2 Managing power feeds through waveform monitoring
Managing power feeds includes monitoring a waveform of a high-voltage power feed supplied to an electrical load to detect potential interruption of the high-voltage power feed and switching to another power feed to supply power to the electrical load in response to identifying the waveform pattern. Monitoring a waveform includes processing the waveform to determine if one or more waveform patterns are present in the waveform. A waveform pattern indicates, by its presence in a waveform of a power feed, a power event associated with the power feed, and some waveform patterns indicate potential interruption of the power feed. Switching to another power feed in response to determining potential interruption of the power feed based on waveform monitoring enables an uninterrupted power supply.
US09692224B2 Power distribution systems and methods of monitoring zone selective interlocking in a power distribution system
Power distribution systems and methods are described. In one example, a method of testing a power distribution system including a first circuit protection device and a second circuit protection device coupled to the first circuit protection device downstream of the first circuit protection device is described. The method includes monitoring a status of a communicative connection between a ZSI output port of the first circuit protection device and a ZSI input port of the second circuit protection device with a ZSI monitor of the first circuit protection device, detecting whether the ZSI output port of the first circuit protection device is coupled to the ZSI input port of the second circuit protection device, and indicating the status of the communicative connection.
US09692223B2 Power distribution systems and methods of testing a power distribution system
Power distribution systems and methods are described. In one example, a method of testing a power distribution zone select interlocking system including a first circuit protection device and a second circuit protection device coupled to the first circuit protection device downstream of the first circuit protection device is described. The method includes receiving, by the second circuit protection device, an input instructing the second circuit protection device to test communication between the first circuit protection device and the second circuit protection device, and outputting, by the second circuit protection device, a blocking signal in response to the input. The first circuit protection display an indication of reception of the blocking signal to confirm proper interconnection of the zone select interlocking signals.
US09692217B2 Tube and conductor set
A tube and conductor set includes a polymeric tube having a radially outward facing surface and a conductor having a polymeric sheath in which the polymeric sheath has a radially outward facing surface. The radially outward facing surface of the polymeric tube is bonded to the radially outward facing surface of the polymeric sheath of the conductor over an axial length, except for one or more unbonded intermediate axial gaps. These one or more unbonded intermediate axial gaps provide a starting point for the separation of one of the ends of the polymeric tube from one of the ends the conductor. It is contemplated that more than one tube and/or conductor can be bonded and that each line of bonding could have such unbonded intermediate axial gaps to facilitate ease of separation.
US09692216B2 Electric wire protective tube
An electric wire protective tube is configured such that a straight tube section in a shape of a straight tube and a bendable tube section that is bendable are provided along a longitudinal direction, and is configured to have a shape of a tube that allows an electric wire to be arranged therein. The electric wire protective tube has a tubular inner shield portion made of an electrically conductive material and forming an inner surface of the tube, and an exterior portion made of resin and forming an outer surface of the tube. The inner shield portion is provided such that it is firmly attached to an inner surface of the exterior portion in the straight tube section, and such that it is separable from an inner surface of the exterior portion in the bendable tube section.
US09692215B2 Protection tube with latch and manufacturing apparatus for the same
A protection tube with latch in which a latch that is formed engageable with an attachment hole of a panel is molded integral with a protection tube that receives an electric wire, and a manufacturing apparatus of the protection tube with latch. The protection tube with latch includes a latch to be engaged with the attachment hole of the panel having the electric wire wired therein disposed on an outer peripheral face of the protection tube that is formed tubular and receives the electric wire.
US09692213B2 Doorless modular panelboard
A panelboard is composed of modular units. Each unit has compartments for circuit breakers, side walls, and wiring gutters. A main circuit breaker unit has a main cable compartment having separate compartmentalized routing for power cables, and a compartment for the main breaker. A branch circuit breaker unit is edge connected to the main breaker unit. More branch breaker units may be added. Each branch breaker unit has a bus plane for line power, with pin-shaped stabs extending perpendicularly from its busses. The bus plane is covered by circuit breaker compartments in front and an insulative backplane in back. Branch wiring exit slots in the circuit breaker compartments lead to wiring gutters. Each unit is shaped and dimensioned to be mechanically and electrically connected together to form the whole panelboard. Caps for the wiring gutters are front accessible and constitute a front surface of the finished panelboard.
US09692210B2 Laser diode assembly
A laser diode arrangement having at least one semiconductor substrate, having at least two laser stacks each having an active zone and having at least one intermediate layer. The laser stacks and the intermediate layer are grown monolithically on the semiconductor substrate. The intermediate layer is arranged between the laser stacks. The active zone of the first laser stack can be actuated separately from the active zone of the at least one further laser stack.
US09692208B2 Method of manufacturing semiconductor device
A method of manufacturing a semiconductor device includes: forming a ridge on a semiconductor layer stacked on a substrate by removing a part of the semiconductor layer; forming an electrode on the ridge so as to have a flat portion having a flat surface substantially parallel to the upper surface of the ridge and sloped portions on both sides of the flat portion with each of the sloped portions having a sloped surface that is sloped with respect to the upper surface of the ridge; forming a protective film disposed on each side of the ridge to cover a region from the side surface of the ridge to the sloped surface of the sloped portion of the electrode; and forming a pad electrode at least on an upper surface of the electrode and the protective film.
US09692207B2 Tunable laser with integrated wavelength reference
In the prior art, tunable lasers utilizing silicon-based tunable ring filters and III-V semiconductor-based gain regions required the heterogeneous integration of independently formed silicon and III-V semiconductor based optical elements, resulting in large optical devices requiring a complex manufacturing process (e.g., airtight packaging to couple the devices formed on different substrates, precise alignment for the elements, etc.). Embodiments of the invention eliminate the need for bulk optical elements and hermetic packaging, via the use of hybridized III-V/silicon gain regions and silicon optical components, such as silicon wavelength filters and silicon wavelength references, thereby reducing the size and manufacturing complexity of tunable lasing devices. For example, embodiments of the invention may utilize hybridized III-V/silicon gain regions with ring filters on silicon form a tunable laser with efficient gain from the III-V region, while providing wide tunability, efficient tunability, and narrow linewidth due to the nature of the silicon rings.
US09692203B2 Optical module
An optical module includes: a wiring substrate that has a wiring pattern including a connecting portion and is arranged on an optical subassembly so as to be electrically connected thereto; and a flexible insulating layer formed between the optical subassembly and the wiring substrate. The optical subassembly includes: a conductive stem that has a surface opposed to the wiring substrate, the conductive stem being shaped so that the surface has a through hole opened therein and being connected to a reference potential; and a signal lead for transmitting a signal, the signal lead passing through the through hole while being electrically insulated from the conductive stem. The signal lead passes through the flexible insulating layer to be joined to the connecting portion. The flexible insulating layer is in contact with the connecting portion, the signal lead, and the surface of the conductive stem.
US09692202B2 Lasers with beam shape and beam direction modification
A reflective surface is disclosed in conjunction with a semiconductor laser to shape a laser beam and modify a direction of the laser beam. The reflective surface may be formed on a structure disposed adjacent to a laser structure to allow high coupling of laser light to, for example, a silicon photonics chip or an optical fiber.
US09692199B2 Tube hydroforming of jointless USB stainless steel shell
Methods for forming seamless and jointless metal parts suitable in a manufacturing environment are disclosed. The metal parts can be used in the manufacture of electronic devices and accessories of electronic devices, such as connectors. In particular embodiments, the methods involve forming a seamless cylindrical tube. The seamless cylindrical tube can then undergo a series of shaping processes that retain and exterior seamless surface of the tube. In some embodiments, the shaping processes include a hydroforming process. The methods can be performed without the use of dovetails and other types of visible joints that can complicate the manufacturing process and result in a part with aesthetically unappealing visible joints and seams.
US09692196B2 Cable wire brushing connector
An electrical connector includes a body having a bore and an interior surface. The bore is sized to receive a cable conductor of an electrical power cable. The body includes a groove disposed along a length of the interior surface. A wire brush insert is located within the groove and includes a plurality of bristles that extend into at least a portion of the bore. Rotating the cable wire brushing connector relative to the cable conductor cleans the cable conductor prior to securing the cable conductor within the cable wire brushing connector.
US09692195B2 No-touch busway plug in units
Apparatus for substantially eliminating exposure to live parts on a busway plug-in unit enclosure includes a power take-off with male-terminal stabs which are capped with nonconductive material. A nonconductive structure covers the bus assembly and allows only the stabs to pass into the interior of a plug-in unit enclosure. A shutter assembly in each plug-in unit enclosure has a nonconductive shutter plate that moves only longitudinally along the stabs when a plug-in unit device is inserted into the enclosure. Inserting the plug in unit device into the enclosure causes a shutter plate latch to open and depress the shutter. When the plug in unit device is removed from the plug in unit enclosure, the shutter plate is biased upward and latched in a position over the stabs. No live touch points are available in the enclosure.
US09692194B2 Track having a backing plate with a plurality of slots with a plurality of open regions
A modular equipment mount to enable quick relocation of the piece of equipment. The piece of equipment is secured to a mount. A track system is secured to multiple locations where the piece of equipment may be secured. Power and data connections are included with the track system to provide power and data to the piece of equipment through connectors on the mount.
US09692193B1 Connector having a plate seal and a conductor seal
A sealed feedthrough connector can include a non-conductive clamp plate having at least one first conductor aperture and further including at least one conductor having a first end connecting to electronics in a high-power electronics chassis. The conductor can include a second end connecting to a circuit external to the electronics chassis, with a shoulder between the first and second ends. The connector can include a non-conductive terminal panel, a plate seal, and a conductor seal, the terminal panel having at least one second conductor aperture. The non-conductive clamp plate can be secured to the non-conductive terminal panel with a wall of the electronics chassis and the plate seal between them. At least one conductor can extend the first end through the first conductor aperture and the second end through the second conductor aperture, the conductor seal being positioned between the shoulder and the clamp plate or the terminal panel.
US09692191B2 Contact element with resiliently mounting contact points
A contact element having an outer conductor and an inner conductor, which is arranged within the outer conductor, wherein the outer conductor has, in one of its longitudinally axial end faces, at least one contact point for a contact with a contact point on a component part with which contact is to be made. In this case, the contact point is mounted in a spring-like manner.
US09692190B2 Connector system for a fuel cell stack
An electrical connection system for cell voltage monitoring in a fuel cell stack. A fuel cell stack assembly comprises a plurality of fuel cells disposed in a stacked configuration, each cell substantially parallel to an x-y plane and including an electrical tab extending laterally from an edge of a plate in the cell in the x-direction to form an array of tabs extending along a side face of the fuel cell stack in a z-direction orthogonal to the x-y plane. A connector device comprises a planar member having a plurality of spaced-apart slits formed in an edge of the planar member, each slit having an electrically conductive material on an inside face of the slit. The slits are spaced along the edge of the planar member and configured to receive the tabs by sliding engagement in the y-direction. Alternatively, each tab may be crimped to create a distortion in the tab out of the x-y plane of the plate and a connector device comprises a planar member having a plurality of generally parallel slits formed in the body of the planar member, each slit having an electrically conductive material on an inside face of the slit, the slits being spaced within the planar member and configured to receive the tabs by sliding engagement in the x-direction so that each tab engages with at least a portion of the electrically conductive material on the inside face of a respective slit.
US09692182B2 Signal transmission cable
A signal transmission cable of the present invention comprises a terminal part electrically connectable to an external device, and a cable including metal wires of eight or more channels that are electrically connectable to the terminal part, the terminal part has a substrate including a plurality of connection parts that are electrically connectable to the external device and connected respectively to the metal wires of the individual channels included in the cable, and the metal wires of the mutually different channels that are adjacently connected at the plurality of connection parts are arranged so as not to be adjacent to each other inside the cable.
US09692181B2 Matched high-speed interconnector assembly
An assembly for use in a system comprising a plurality of pairs of conductors, and a plug/receptacle for terminating the cable at a rear end thereof, a plurality of evenly spaced terminal contacts/tines respectively exposed along a front of the plug body/within the receptacle, arranged in parallel, and a printed circuit board assembly comprising a plurality of pairs of traces interconnecting each conductor of the pairs of conductors with respective ones of the terminal contacts/tines. A center pair of the conductors is attached to a first pair of the terminal contacts/tines and a second pair of conductors is attached to a second pair of the terminal contacts/tines. The center pair of terminal contacts/tines is positioned between the second pair of contacts/tines wherein in operation a current flow in the center pair of terminal contacts/tines is in a direction substantially away from the second pair of terminal contacts/tines.
US09692179B2 Plug connector assembly
A connector assembly includes a first plug connector housing in which a first plug contact is arranged, a second plug connector housing, and a seal. The second connector housing includes a protective enclosure, a contact carrier insert in which a second plug contact is fixedly arranged, and a lever. The protective enclosure and the contact carrier insert are movable relative to one another. While the contact carrier insert is connected to the first connector housing with the first and second plug contacts being joined together the protective enclosure moves relative to the contact carrier insert in a direction toward the first connector housing during an actuation of the force-amplifying means to compress the seal between the protective enclosure, the contact carrier insert, and the first connector housing.
US09692175B2 Snap-on edge connector system
An electrical connection system can include a first member including one or more spring pins, located within a rigid frame. After assembling the spring pins into the rigid frame of the first member, the frame can be overmolded creating an electrical connector at the end of a cable. The second member of the system can include one or more contact pads located within a rigid frame. After assembling the contact pads into the rigid frame of the second member, the frame can be overmolded creating an electrical connector at the end of a cable. The rigid frame of the first member can be located within the rigid frame of the second member to align the spring pins with the contact pads. Retention features in he rigid frame of the first member can allow gripping the edge of a device or protective case into which the second member is mounted.
US09692167B2 Connector mountable on a circuit board and having a coupling portion coupling an enclosing portion with a housing
A connector is mountable on a circuit board and mateable with a mating connector along a mating direction. The connector comprises a contact, a housing, an enclosing portion and a coupling portion. The housing holds the contact. The enclosing portion encloses an outer circumference of the housing in a plane perpendicular to the mating direction. The coupling portion directly or indirectly couples the enclosing portion with the housing so as to allow the enclosing portion to move along the mating direction relative to the housing.
US09692163B1 Crush rib housing for postive lock receptacle
A receptacle connector that includes a positive lock receptacle, wherein the positive lock receptacle includes a wire receiving portion; and a housing insertion portion, wherein the housing insertion portion further includes a first electrical contact roll and a second electrical contact roll; and a housing adapted to receive the positive lock receptacle, wherein the housing includes: an insulating housing body; and a first crush rib positioned within the insulating housing body and a second crush rib positioned within the insulating housing body, wherein the first and second crush ribs engage and secure the first and second electrical contact rolls respectively upon insertion of the housing insertion portion of the positive lock receptacle into the housing.
US09692162B2 Electric contact and connector terminal pair
An electric contact includes a bulge-shaped contact having a bulge shape, and a plate-shaped contact that has a plate shape and comes into electrical contact with an apex portion of the bulge-shaped contact. The bulge-shaped contact has a silver-tin alloy layer and a silver coating layer that coats the surface of the silver-tin alloy layer and is exposed at an outermost surface. The plate-shaped contact has a silver layer that does not have a silver-tin alloy layer directly below and is exposed at the outermost surface. Also, a connector terminal pair has such an electric contact in a contacting portion.
US09692159B2 Electronic device connectable to external device and method for connecting the same
An electronic device connectable to an external device is provided. The electronic device includes a case part covering the electronic device, the case part having at least one hole, and a connector, at least a part of which is exposed through the hole so as to perform electrical or physical connection to the external device, wherein the exposed part may form a smooth surface with a surface of the case part.
US09692158B1 Connector assembly for attaching cables to a planar electrical device
A connector assembly for connecting cables to a planar electrical device that has a compression mount connector. In one embodiment, the connector reciprocates within a shroud and is spring-biased outwardly. A pair of latches are pivotally mounted to the shroud. In a second embodiment, the connector has compliant contacts and the latches are pivotally mounted to the connector. In a third embodiment, the latches are spring-mounted to the connector. Each latch has an arm that extends beyond the connector face. A hook at the end of the arm curves through an angle of greater than 90°. The hook face is offset from the edge of the planar electrical device and aligned with the connector face. When the connector assembly is connected to the planar electrical device, the connector spring bias pulls the hook faces against the planar electrical device to securely pull the connector face to the planar electrical device.
US09692156B2 Electronic device
An electronic device includes a substrate, and a press-fit terminal. The substrate includes a first surface, a second surface opposite to the first surface in a thickness direction of the substrate, a through hole, and an electrode formed in the first surface, the second surface, and a wall of the through hole. The press-fit terminal is fit into the through hole from the first surface while being elastically deformed. The press-fit terminal is connected to the electrode by a reaction force due to the elastic deformation of the press-fit terminal. The substrate includes (i) a core layer that is overlapped, in the thickness direction, with a contact portion of the electrode with the press-fit terminal, and (ii) a flexible layer that is at a position closer to the first surface than the core layer is to. The flexible layer has a lower elastic modulus than the core layer.
US09692147B1 Small form factor sockets and connectors
An electronic device connection system includes a first electrical device and a second electrical device. The first electrical device includes a plurality of electrical connectors disposed in, on, or about at least a portion of an exterior surface of the first electrical device. The second electrical device includes a plurality of electrical contacts disposed in, on, or about at least a portion of an exterior surface of the second electrical device. A mechanical compressor exerts a force on at least one of the first electrical device or the second electrical device such that the electrical connections on the first electrical device physically and conductively couple to the electrical contacts on the second electrical device. The device casing may function as the mechanical compressor. The electrical connectors and/or electrical contacts may include injection molded connectors that include a conductive material dispersed in a thermoplastic matrix.
US09692142B2 Inverted F-antennas at a wireless communication node
The disclosure relates to a node in a wireless communication arrangement, the node comprising an antenna arrangement that comprises a first and second inverted F antenna. The inverted F antennas comprise a corresponding first and second feed connection, first and second ground connection and a corresponding first and second radiating element mainly extending from the respective ground connection along a corresponding first and second longitudinal extension. The inverted F antennas are arranged on, or in, a plane. Furthermore, the first and second radiating elements are extending in opposite directions along their respective longitudinal extensions from the respective ground connections, the first longitudinal extension and the second longitudinal extension being mutually parallel. The closest distance between the first radiating element and the second radiating element exceeds 0.4*λ0, where λ0 is the wavelength for the center frequency of the frequency band for which the inverted F antennas are intended.
US09692140B2 Antenna apparatus capable of reducing decreases in gain and bandwidth
An antenna apparatus is provided with an antenna and a ground conductor plate. The antenna is provided with: a dielectric substrate having a first surface and a second surface; a feed element having a strip shape and formed on the first surface of the dielectric substrate, the feed element having a first end connected to a feeding point, and an opened second end; and a parasitic element having a strip shape and formed on the second surface of the dielectric substrate, the parasitic element having a first end connected to the ground conductor plate, and an opened second end. The feed element and the parasitic element are arranged to oppose each other, at at least a portion including the second end of the feed element and the second end of the parasitic element.
US09692130B2 Near-field communication antenna, antenna module and wireless communications apparatus
A near-field communication antenna comprising at least one annular coil, a planar, non-magnetic resin member holding the annular coil, a planar, soft-magnetic member overlapping the non-magnetic resin member via the annular coil, and terminals to which the conductor wire leads of the annular coil are connected, the annular coil being received in a circumferential recess along the periphery of the non-magnetic resin member lest that it projects from the periphery of the magnetic member, and the conductor wire leads of the annular coil being connected to the terminals through notches provided in the peripheral edge of the soft-magnetic member.
US09692126B2 Millimeter (mm) wave switched beam antenna system
A mm-wave antenna apparatus with beam steering function that includes: a Butler Matrix feeding network; a plurality of power combiners, each power combiner having one input and N outputs, configured to apply equal phase and power to a phase distributed output signal generated by the Butler Matrix feeding network and to generate N processed signals; and a plurality of millimeter wave switched beam planar antenna arrays having at least 1.5 GHz of bandwidth and located on a top low loss dielectric substrate, each antenna array of N elements, configured to obtain direct and narrow width beams from the N processed signals combined by each power combiner.
US09692122B2 Multi leveled active antenna configuration for multiband MIMO LTE system
An active antenna system and algorithm is described that provides for dynamic tuning and optimization of antenna system parameters for a MIMO system where correlation and isolation between antennas in the system are dynamically altered to provide for greater throughput. As one or multiple antennas are loaded or de-tuned due to environmental changes, corrections to correlation and/or isolation are made by selecting the optimal antenna radiation pattern and by adjusting electrical length and/or reactive loading of transmission lines connecting the antennas. Multiple Isolated Magnetic Dipole (IMD) antennas are co-located and connected with a feed network that can include switches that adjust phase length for transmission lines connecting the antennas. Filtering is integrated into the feed network to improve rejection of unwanted frequencies. Filtering can also be implemented on the antenna structure.
US09692120B2 Devices and methods related to electrostatic discharge-protected CMOS switches
Disclosed are devices and methods related to a CMOS switch for radio-frequency (RF) applications. In some embodiments, the switch can be configured to include a resistive body-floating circuit to provide improved power handling capability. The switch can further include an electrostatic discharge (ESD) protection circuit disposed relative to the switch to provide ESD protection for the switch. Such a switch can be implemented for different switching applications in wireless devices such as cell phones, including band-selection switching and transmit/receive switching.
US09692117B2 Antenna
An antenna includes an antenna layer, a coupling layer, and a feeder circuit layer. The antenna layer includes antennas elements. First and second antenna elements are arranged in such a manner that the centers thereof are aligned in a first direction. A third antenna element is arranged in such a manner that the third antenna element is separated from the first antenna element in a second direction and centers of the antenna elements are not aligned in the second direction. A waveguide is formed in the coupling layer.
US09692116B2 Antenna arrangement, a method for manufacturing an antenna arrangement and a printed wiring board for use in an antenna arrangement
An antenna arrangement including: a conductive ground element having a first end and a second end; an antenna element at a first end; a first conductive part extending from the conductive ground element and a second conductive part extending from conductive ground element and separated from the first conductive part by a gap.
US09692114B2 Compact, rugged, environmentally-sealed, electrically non-conductive, antenna radome for an RFID reader and method of installing an antenna in the radome
A compact, rugged, environmentally-sealed, electrically non-conductive, antenna radome protects an antenna of a handheld radio frequency (RF) identification (RFID) reader operative for scanning RFID tags. A rear housing is directly connected to a front housing, each constituted of an electrically non-conductive material. A support structure in the housings supports the antenna to enable RF signals to be transmitted or received by the antenna forwardly through the housings during scanning without being detuned by electrically conductive materials and electrically conductive fasteners located forwardly of the antenna. A seal environmentally seals the antenna inside the housings.
US09692107B2 Antenna structure and wireless communication device using the same
An antenna structure includes a first carrier, a second carrier and an antenna main body. The antenna main body includes a main antenna and a sub antenna. The main antenna is printed on the first carrier, the sub antenna is printed on the second carrier. The present invention also provides a wireless communication device using the antenna structure.
US09692105B2 Information processing apparatus
There is provided an information processing apparatus in which an antenna operating in two or more communication bands is disposed in a space conserving manner. An information processing apparatus according to the present disclosure has: a network interface for processing signals used for communications in a plurality of frequency bands; a display panel having a main surface for displaying an image, a rear surface opposite to the main surface, and a side surface defining a thickness between the main surface and the rear surface; an antenna connected to the network interface and having a conductive antenna element; and a conductive rib conducted to the antenna element, and holding the antenna with a predetermined gap between the antenna and the side surface of the display panel. The network interface processes the signals by resonance of a part of the antenna element and a part of the rib.
US09692102B2 Dielectric waveguide socket for connecting a dielectric waveguide stub to a dielectric waveguide
A dielectric waveguide socket is provided with a dielectric waveguide (DWG) stub having a dielectric core member surrounded by dielectric cladding, the DWG stub having an interface end and an opposite mating end. A socket body is coupled to the DWG stub, such that a mounting surface of the socket body is configured to mount the socket body on a substrate such that the core member of DWG stub forms an angle of inclination with the substrate. The socket body is configured to couple with the end of a DWG cable, such that the end of the DWG cable is held in alignment with the mating end of the DWG stub.
US09692101B2 Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
A dielectric waveguide coupling system for launching and extracting guided wave communication transmissions from a wire. At millimeter-wave frequencies, wherein the wavelength is small compared to the macroscopic size of the equipment, transmissions can propagate as guided waves guided by a strip of dielectric material. Unlike conventional waveguides, the electromagnetic field associated with the dielectric waveguide is primarily outside of the waveguide. When this dielectric waveguide strip is brought into close proximity to a wire, the guided waves decouple from the dielectric waveguide and couple to the wire, and continue to propagate as guided waves about the surface of the wire.
US09692099B2 Antenna-matching device, antenna device and mobile communication terminal
An antenna-matching device includes a first antenna terminal that is connected to a first radiating element, a second antenna terminal that is connected to a second radiating element, power feeding terminals and that are connected to a power-feeding unit C, an antenna coupling circuit (coupling inductance element L) that is connected in series between the antenna terminals, and a matching unit B that is connected between the antenna terminals and the power feeding terminals. The coupling inductance element L and the matching unit are integrally provided in a substrate. The matching circuit B is connected in series with the signal lines and includes a first resonant circuit and a second resonant circuit that have different resonant frequencies from each other and are coupled with each other. The matching unit B is connected to a power-feeding circuit that includes an RF circuit.
US09692098B2 Multi resonator non-adjacent coupling
A coupling is provided for coupling non-adjacent resonators of a radio frequency filter. The coupling joins together non-adjacent resonators with a metal strip. The metal strip is physically connected to but electrically isolated from resonators located between the connected non-adjacent resonators. The metal strips include tabs the length of which may be varied. The coupling works with different resonator configurations including horizontally aligned resonators. The coupling allows for the jumping of an even number of resonators can produce zeros at high and low bands. A single coupling of this configuration enables two negative couplings.
US09692097B2 Power-generating system having a fuel cell
A power-generating system is provided including a fluid-tight chamber and an electricity-generating assembly arranged in the chamber, the electricity-generating assembly comprising a fuel cell for generating power by means of an oxidation-reduction reaction between an oxidizer and a fuel, and a supply system for supplying oxidizer and fuel to the fuel cell, the power-generating system also including a heat-control system including a cold source and a hot source, and a heat-transport fluid circuit that is configured to control the temperature of the electricity-generating assembly by exchanging heat with the cold source and the hot source.
US09692091B2 Battery pack having a cooling structure
In a battery pack having an improved cooling structure, unit cells, an internal cooling fan and a drive motor are arranged in an inside space of a housing. The inside space of the housing is completely sealed. The drive motor drives the internal cooling fan to supply cooling air. The cooling air circulates in the inside space of the housing to cool the unit cells. Radiation fins are formed on at least one specific exterior surface of the housing. The specific exterior surface has a superior radiation capability which is higher than that of each of the other exterior surfaces of the housing. The cooling air is supplied in turn surfaces of the unit cells and interior surface of the housing corresponding to the exterior surface on which the radiation fins are formed.
US09692089B2 Single wire battery pack temperature and identification method
Disclosed are techniques for identifying battery pack types and by inference battery chemistries by measuring a transient response of the battery pack to signal applied to the battery pack.
US09692086B2 Co-solvents with high coulombic efficiency in propylene carbonate based electrolytes
A homologous series of cyclic carbonate or propylene carbonate (PC) analogue solvents with increasing length of linear alkyl substitutes were synthesized and used as co-solvents with PC for graphite based lithium ion half cells. A graphite anode reaches a capacity around 310 mAh/g in PC and its analogue co-solvents with 99.95% Coulombic efficiency. Cyclic carbonate co-solvents with longer alkyl chains are able to prevent exfoliation of graphite when used as co-solvents with PC. The cyclic carbonate co-solvents of PC compete for solvation of Li ion with PC solvent, delaying PC co-intercalation. Reduction products of PC on graphite surfaces via single-electron path form a stable Solid Electrolyte Interphase (SEI), which allows the reversible cycling of graphite.
US09692082B2 Electrode assembly and manufacturing method thereof
An electrode assembly includes at least one first unit cell obtained by stacking a first electrode, a separator, a second electrode, a separator and a first electrode one by one, and at least one second unit cell obtained by stacking a second electrode, a separator, a first electrode, a separator and a second electrode one by one. The first unit cell and the second unit cell are alternately and repeatedly disposed between a separator sheet folded in zigzags.
US09692075B1 Multi-layered proton-conducting electrolyte
The present invention provides a multilayer anode/electrolyte assembly comprising a porous anode substrate and a layered solid electrolyte in contact therewith. The layered solid electrolyte includes a first dense layer of yttrium-doped barium zirconate (BZY), optionally including another metal besides Y, Ba, and Zr (e.g., a lanthanide metal such as Pr) on one surface thereof, a second dense layer of yttrium-doped barium cerate (BCY), and an interfacial layer between and contacting the BZY and BCY layers. The interfacial layer comprises a solid solution of the BZY and BCY electrolytes. The porous anode substrate comprises at least one porous ceramic material that is stable to carbon dioxide and water (e.g., porous BZY), as well as an electrically conductive metal and/or metal oxide (e.g., Ni, NiO, and the like).
US09692074B2 Solid oxide fuel cell structure
A solid oxide fuel cell structure includes an anode, a cathode arranged oppositely relative to the anode and electrolyte located between the anode and the cathode and at least two air paths each having a distal end provided with a turn and a continuous surface on the inner surface of the distal end.
US09692070B2 Carbon substrate for gas diffusion layer, gas diffusion layer using the same, and electrode for fuel cell, membrane-electrode assembly and fuel cell comprising the gas diffusion layer
A carbon substrate for a gas diffusion layer that has a porosity gradient in a thickness direction thereof, a gas diffusion using the carbon substrate, an electrode and a membrane-electrode assembly for a fuel cell that include the gas diffusion layer, and a fuel cell including the membrane-electrode assembly having the gas diffusion layer are provided. The gas diffusion layer has improved water discharge ability and improved bending strength both in the machine direction and cross-machine direction.
US09692066B2 Device for discharging liquid
A device (13) for discharging liquid water from a water separator (12) in a fuel cell system (1), having a valve device (15), a liquid sensor (16) and a control unit (17) which controls the valve device (15) depending on measured values of the liquid sensor (16). The liquid sensor (16) is arranged downstream of the valve device (15) in the flow direction.
US09692053B2 Mixed cathode active material having improved power characteristics and safety, and lithium secondary battery including the same
Provided are a mixed cathode active material having improved power characteristics and safety, and a lithium secondary battery including the same. More particularly, the present invention relates to a mixed cathode active material which may assist power in a low SOC range to widen an available state of charge (SOC) range and may simultaneously provide improved safety by blending substituted LFP, in which operating voltage is adjusted by substituting a portion of iron (Fe) with other elements such as titanium (Ti), in order to prevent a rapid increase in resistance of manganese (Mn)-rich having high capacity but low operating voltage in a low SOC range (e.g., a SOC range of 10% to 40%), and a lithium secondary battery including the mixed cathode active material.
US09692049B2 Anode containing composite anode active material including water-soluble polymer coating and lithium secondary battery including the same
An anode for a lithium secondary battery including: a composite anode active material including an anode active material, and a water-soluble polymer disposed on a surface of the anode active material; and a binder disposed on the composite anode active material, the binder including one or more selected from a polyimide, a polyamideimide, a polyamide, and a polyetherimide.
US09692043B2 Active material for nonaqueous electrolyte energy storage device
An active material for a nonaqueous electrolyte energy storage device contains a lithium-transition metal composite oxide having a crystal structure attributable to space group Fm-3m and represented by the compositional formula (1): Li1+xNbyMezApO2  (1) wherein Me is a transition metal including Fe and/or Mn, 0
US09692038B2 Cap for electrochemical cell
An electrochemical cell includes: a cell can; electrolyte and an active-material roll in the cell can; and a cap that closes at least one opening of the cell can, the cap comprising: a substantially flat member that covers the opening, the substantially flat member having a separation portion defined therein; and a diaphragm that covers the separation portion on an inside of the substantially flat member.
US09692035B2 Battery system and motor vehicle
A battery system comprises a battery which includes a plurality of battery cells connected in series and two battery poles. The battery system further comprises at least one protection device, which is connected to the battery cells in series in such a manner that after the at least one protection device is tripped, a sum of voltages of the battery cells still connected in series does not exceed a limit voltage. The battery system also comprises a switching device which electrically connects the two battery poles, the switching device being configured to short-circuit the battery when a fault signal is detected, thus tripping the at least one protection device.
US09692034B2 Secondary battery
A secondary battery includes an electrode assembly comprising a first electrode plate, a second electrode plate and a separator located between the first electrode plate and the second electrode plate; a case accommodating the electrode assembly; a cap plate sealing the case; a first collector plate comprising a first vertical part electrically connected to the first electrode plate, a first horizontal part bent from the first vertical part and extending between the electrode assembly and the cap plate, and a first protrusion protruding from the first horizontal part; and a first electrode terminal electrically connected to the first collector plate and extending through the cap plate, wherein the first electrode terminal has a coupling opening engaged with the first protrusion.
US09692027B2 Electrode assembly and lithium secondary battery including the same
Provided is an electrode assembly, and more particularly, an electrode assembly having a structure wound in a state, in which a plurality of unit cells having a stacking structure is disposed on a long sheet type separation film, and including the unit cells having two or more types of configurations of electrode materials, wherein a separator stacked on the unit cell having a stacking structure has a coating material coated on both sides thereof and the long sheet type separation film has a coating material coated on one side thereof. According to the present invention, an electrode assembly improving processability of preparation of a battery while reducing initial resistance during the preparation of the battery as well as having battery lifetime equivalent to that of a conventional battery and a lithium secondary battery including the electrode assembly may be provided.
US09692026B2 Secondary cell using hydroxide-ion-conductive ceramic separator
Provided is a secondary battery including a positive electrode, a negative electrode, an alkaline electrolytic solution, a separator structure, and a resin container. The separator structure includes a ceramic separator composed of an inorganic solid electrolyte exhibiting hydroxide ion conductivity and optionally a resin frame and/or resin film disposed to surround the periphery of the ceramic separator. The separator structure is bonded to the resin container with an adhesive, and/or the ceramic separator is bonded to the resin frame and/or the resin film with the adhesive. The adhesive is selected from an epoxy resin adhesive, a natural resin adhesive, a modified olefin resin adhesive, and a modified silicone resin adhesive, and the adhesive exhibits a variation in weight of 5% or less after immersed, in a solidified form, in a 9 mol/L aqueous KOH solution at 25° C. for 672 hours.
US09692025B2 Battery cap assembly with high efficiency vent
A battery cell design is disclosed that provides a predictable pathway through a portion of the cell (e.g., the cell cap assembly) for the efficient release of the thermal energy that occurs during thermal runaway, thereby reducing the chances of a rupture in an undesirable location. Furthermore the disclosed design maintains the functionality of the cell cap as the positive terminal of the cell, thereby having minimal impact on the manufacturability of the cell as well as its use in a variety of applications.
US09692022B2 Rechargeable battery
A rechargeable battery that reduces a production cost by reducing a number of processes of a case is provided. The rechargeable battery includes: a case that houses an electrode assembly; a cap plate that is coupled to an opening of the case; and an electrode terminal that is electrically connected to the electrode assembly to be provided in the cap plate, wherein the cap plate has an inclined portion at a side surface of an outer edge and a modified groove at a corner of an outer surface and is coupled to the opening with the inclined portion while the modified groove becomes narrow.
US09692017B2 Organic light emitting diode and display device having enhanced viewing angles
An organic light emitting diode can include a first electrode and a second electrode; an organic light emitting layer between the first electrode and the second electrode; and a auxiliary light emitting layer between the first electrode and the organic light emitting layer or between the organic light emitting layer and the second electrode, wherein a difference between a main peak wavelength of light emitted from the organic light emitting layer itself and a main peak wavelength of light out-coupling between the first and second electrodes is within a predetermined range.
US09692015B2 Organic light emitting device and manufacturing method thereof
An organic light emitting device having a photonic crystal structure and a manufacturing method thereof are provided. The organic light emitting device comprises: a substrate through which light passes; a photonic crystal layer formed on the substrate and having a photonic crystal structure; an intermediate layer formed on the photonic crystal layer and having a large refractive index compared with the photonic crystal layer; a first electrode layer formed on the intermediate layer; a light emitting layer formed on the first electrode layer and emitting light according to current flow; and a second electrode layer formed on the light emitting layer.
US09692006B2 Transparent OLED device and display device employing same
The present invention discloses a transparent OLED device, which comprises a plurality of pixels, each pixel comprising an organic functional layer, a first transparent electrode and a second transparent electrode being disposed on both sides of the organic functional layer, a reflective electrode being disposed on one side of the organic functional layer, the area of the reflective electrode being less than that of the organic functional layer. With regard to the transparent OLED device, by providing a reflective electrode, a combination of a light-emitting device over a microdomain is combined with a transparent light-emitting device, such that the luminance on both sides of a transparent OLED device can be respectively adjusted to be the same or different as required. The present invention can be applied to the field of transparent illumination or display.
US09692005B2 Optoelectronic device and method for producing an optoelectronic device
An optoelectronic device is provided which comprises an organic active layer (5) provided for generating electromagnetic radiation and a first electrode (1) provided for electrical contacting of the active layer, wherein the first electrode comprises a first electrode layer (11) and a first connection layer (12) spaced at least in places from the first electrode layer, the active layer is arranged at least in places between the first electrode layer and the first connection layer, and the first electrode comprises at least one through via (13) which extends through the active layer and, in so doing, forms an electrical contact between the first electrode layer and the first connection layer. A method for producing such a device is furthermore provided.
US09692004B2 Optoelectronic element
The invention relates to an optoelectronic component with a first substrate, a second substrate, a functional layer stack, a lateral first recess and a first contact surface, the layer stack being arranged between the first substrate and the second substrate. Said layer stack comprises an organically active area for producing electromagnetic radiation, and the component has a first lateral surface. The first recess extends in the lateral direction to the first lateral surface and in the vertical direction through the second substrate.
US09692003B2 Phenanthroline derivative and use thereof
The present invention discloses a phenanthroline derivative is represented by the following formula(I), the organic EL device employing the phenanthroline derivative as hole blocking electron transport material, electron transport material can display good performance like as lower driving voltage and power consumption, increasing efficiency and half-life time. wherein Ar, m, n, p and R1 to R4 are the same definition as described in the present invention.
US09691999B2 Photoelectric conversion device vapor deposition material, photoelectric conversion device, sensor, and imaging device
In the photoelectric conversion device having a pair of electrodes and a light receiving layer sandwiched between the pair of electrodes and including at least a photoelectric conversion layer, at least a part of the light receiving layer includes a fullerene or a fullerene derivative deposited using a vapor deposition material of a plurality of particles or a compact formed of the particles consisting primarily of the fullerene or fullerene derivative with an average particle size expressed as D50% of 50 to 300 μm.
US09691996B2 Stretchable display device and manufacturing method thereof
A stretchable display device includes a stretchable substrate capable of being expanded or contracted in a first direction and pixel portions on the stretchable substrate. The pixel portions include rigid areas provided with a light emitter to selectively emit light depending on a driving signal and elastic areas surrounding the rigid areas. The pixel portions are continuously adjacent to each other in the first direction to form a plurality of pixel lines. The pixel portions included in a first pixel line and a second pixel line that are adjacent in the second direction are arranged in a zigzag form along the first direction.
US09691989B2 Carbo- and heterocyclic spiro compounds as donor materials for organic photovoltaics and their preparation
The subject invention provides compositions of and methods of using carbo- and heterocyclic spiro compounds as donor materials for organic photovoltaic (OPV) devices. In preferred embodiments, spiro compounds comprising triarylamine and derivatives thereof demonstrate effective hole-transporting properties in OPV devices, achieving up to 5.46% of power conversion efficiency. Advantageously, preferred compounds provided herein are thermally stable and volatile enough to form thin films for the photoactive layer of an OPV device by vacuum deposition or by spin-coating.
US09691987B1 Self-assembly of nanostructures
Structures and methods that include selective electrostatic placement based on a dipole-to-dipole interaction of electron-rich carbon nanotubes onto an electron-deficient pre-patterned surface. The structure includes a substrate with a first surface having a first isoelectric point and at least one additional surface having a second isoelectric point. A self-assembled monolayer is selectively formed on the first surface and includes an electron deficient compound including a deprotonated pendant hydroxamic acid or a pendant phosphonic acid group or a pendant catechol group bound to the first surface. An organic solvent can be used to deposit the electron rich carbon nanotubes on the self-assembled monolayer.
US09691985B2 Passivation layers for organic electronic devices including polycycloolefinic polymers allowing for a flexible material design
The invention generally relates to passivation layers for use in organic electronic devices, and more specifically in organic field effect transistors, to processes for preparing such passivation layers, and to organic electronic devices and organic field effect transistors encompassing such passivation layers.
US09691983B2 Composition containing polymer compound and light-emitting device using the same
It is an object of the present invention to provide a composition using a polymer compound, which is useful for manufacturing a blue phosphorescent light-emitting device excellent in luminous efficiency. The present invention provides a composition including: a polymer compound substantially consisting of a constitutional unit selected from a constitutional unit represented by Formula (1)-1 below, a constitutional unit represented by Formula (1)-2 below, a constitutional unit represented by Formula (2)-1 below, a constitutional unit represented by Formula (2)-2 below, and a constitutional unit derived from a phosphorescent light-emitting compound having a light-emitting spectrum peak at smaller than 480 nm and the polymer compound containing at least both of the constitutional unit represented by Formula (1)-1 and the constitutional unit represented by Formula (1)-2; and a phosphorescent light-emitting compound having a light-emitting spectrum peak at smaller than 480 nm.
US09691979B2 Resistive random access memory and method of fabricating the same
A resistive random access memory includes a first electrode layer, a second electrode layer, and a stacked structure disposed between the first electrode layer and the second electrode layer. The stacked structure includes a conductive layer and a resistance variable layer. The material of the conductive layer includes HfOx, the material of the resistance variable layer includes HfOy, and x
US09691976B2 Interfacial cap for electrode contacts in memory cell arrays
Exemplary embodiments of the present invention are directed towards a method for fabricated a memory cell comprising depositing a material to form an interface cap above a bulk conductive plug and below active cell materials in the memory cell.
US09691975B2 Conductive bridging memory device
A Conductive Bridge Random Access Memory (CBRAM) device comprising an insulating electrolyte element sandwiched between a cation supply electrode and a bottom electrode, whereby the conductivity σ of the cation provided by the cation supply electrode in the electrolyte element increases towards the bottom electrode.
US09691974B2 Phase-change device, related manufacturing method, and related electronic device
A method for manufacturing a phase-change device may include the following steps: preparing a substrate; preparing a first dielectric layer, which may be positioned on the substrate; preparing a first electrode, which may be positioned in the first dielectric layer; forming a phase-change material layer, which may overlap the first electrode; processing (e.g., etching) the phase-change material layer to form a phase-change member, which may be electrically connected to the first electrode; forming an etch-stop layer, which may overlap and/or cover the phase-change member; forming an intermediary layer, which may be positioned on the etch-stop layer; forming a second dielectric layer, which may be positioned on the intermediary layer; and forming a second electrode, which may extend through the second dielectric layer, the intermediary layer, and the etch-stop layer and may be electrically connected to the phase-change member.
US09691972B1 Low temperature encapsulation for magnetic tunnel junction
A method of making a magnetic random access memory device comprises forming a magnetic tunnel junction on an electrode, the magnetic tunnel junction comprising a reference layer positioned in contact with the electrode, a tunnel barrier layer arranged on the reference layer, and a free layer arranged on the tunnel barrier layer; and depositing an encapsulating layer on and along sidewalls of the magnetic tunnel junction at a temperature of 40 to 60° C. using remote microwave plasma deposition wherein the encapsulation layer comprises silicon and nitrogen. An MRAM device made by the aforementioned method is also disclosed.
US09691971B2 Integrated circuits including magnetic tunnel junctions for magnetoresistive random-access memory and methods for fabricating the same
Integrated circuits that include a magnetic tunnel junction (MTJ) for a magnetoresistive random-access memory (MRAM) and methods for fabricating such integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes forming a lower electrode on a metal interconnect. The metal interconnect is disposed above a semiconductor substrate and is aligned with a normal axis that is substantially perpendicular to the semiconductor substrate. The lower electrode includes a conductive metal plug. A MTJ stack is formed on the lower electrode aligned with the normal axis.
US09691968B2 Magnetic memory and method for manufacturing the same
According to one embodiment, a magnetic memory is disclosed. The magnetic memory includes a substrate, an electrode provided on the substrate, a first insulating film surrounding a side surface of the electrode. The first insulating film contains oxygen. The magnetic memory further includes a second insulating film provided between the electrode and the first insulating film, and surrounding the side surface of the electrode. The second insulating film contains nitrogen. A magnetoresistance effect element is provided on the electrode.
US09691964B2 Piezoelectric element unit and driving device
A piezoelectric element unit comprises an element body having an active part and an inactive part; and a first resin part bonding one end surface in the laminating direction of the element body to a mounting surface of a joint member placed to face the one end surface. The first resin part covers the mounting surface up to an outer side surface of the element body corresponding to an interface between the active part and the inactive part, a second resin part covers an outer surface of the first resin part covering the outer side surface of the element body at a position corresponding to the interface between the active part and the inactive part, and the second resin part also integrally covers the outer side surface of the element body corresponding to the active part.
US09691961B2 Thermoelectric conversion material using substrate having nanostructure, and method for producing same
The present invention provides a thermoelectric conversion material having a low thermal conductivity and having an improved figure of merit, and a method for producing it. The thermoelectric conversion material has, as formed on a substrate having a nano-level microporous nanostructure, a thermoelectric semiconductor layer prepared by forming a thermoelectric semiconductor material into a film, wherein the substrate is a block copolymer substrate formed of a block copolymer that comprises a polymethyl methacrylate unit and a polyhedral oligomeric silsesquioxane-containing polymethacrylate unit, and the thermoelectric semiconductor material is a p-type bismuth telluride or an n-type bismuth telluride. The production method comprises a substrate formation step of forming the nanostructure-having block copolymer substrate, and a film formation step of forming a p-type bismuth telluride or an n-type bismuth telluride into a film to thereby provide a thermoelectric semiconductor layer.
US09691957B2 Light emitting device package
The present application relates to a light emitting device package. The light emitting device package includes a package substrate in which a via hole is formed. An electrode layer extends to both surfaces of the package substrate after passing through the via hole. A light emitting device is arranged on the package substrate and is connected to the electrode layer. A fluorescence film includes a first part that fills at least a part of an internal space of the via hole and a second part that covers at least a part of the light emitting device.
US09691951B2 Curable silicone composition, and optical semiconductor device
The present invention provides a hydrosilylation curable silicone composition for forming a cured product which inhibits the discoloration of silver electrodes or a silver-plated substrate in an optical semiconductor device due to a sulfur-containing gas in the air, and for sealing, covering, or adhering an optical semiconductor element, the curable silicone composition comprising: (A) an organopolysiloxane having at least two silicon-bonded alkenyl groups per molecule; (B) an organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms per molecule; (C) a tetrazole-based compound; and (D) a hydrosilylation reaction catalyst. In addition, the present invention provides an optical semiconductor device in which an optical semiconductor element is sealed, covered, or adhered by the cured product of the composition so that the discoloration of silver electrodes or a silver-plated substrate due to a sulfur-containing gas in the air is inhibited.
US09691941B2 Barriers, injectors, tunnel-junctions, and cascaded LED junctions
Optoelectric devices that comprise a semiconductor superlattice heterostructure. One or more individual layers within the semiconductor superlattice heterostructure can further comprise layers of differing thicknesses. In at least one embodiment, an optoelectric device with specially engineered layers can generate an output wavelength of between 3 μm to 15 μm at output power levels of 0.01 mW to 100 mW.
US09691934B2 Shallow junction photodiode for detecting short wavelength light
The present invention is a photodiode or photodiode array having improved ruggedness for a shallow junction photodiode which is typically used in the detection of short wavelengths of light. In one embodiment, the photodiode has a relatively deep, lightly-doped P zone underneath a P+ layer. By moving the shallow junction to a deeper junction in a range of 2-5 μm below the photodiode surface, the improved device has improved ruggedness, is less prone to degradation, and has an improved linear current.
US09691932B2 Photodetector
According to a photodetector includes a first light detection layer and a reflective layer. The first light detection layer has a first surface and a second surface on a side opposite to the first surface. The first light detection layer includes a first light detection area including a p-n junction of a p-type semiconductor layer containing Si and an n-type semiconductor layer containing Si. The reflective layer arranged on a second surface side of the first light detection layer so as to be opposed to the first light detection area. The reflective layer reflects at least part of light in a near-infrared range.
US09691930B2 Fabrication of solar cells with electrically conductive polyimide adhesive
The present disclosure provides a method of manufacturing a solar cell including: providing a first substrate and a second substrate; depositing on the first substrate a sequence of layers of semiconductor material forming a solar cell including a top subcell and a bottom subcell; forming a back metal contact over the bottom subcell; applying a conductive polyimide adhesive to the second substrate; attaching the second substrate on top of the back metal contact; and removing the first substrate to expose the surface of the top subcell.
US09691929B2 Four junction inverted metamorphic multijunction solar cell with two metamorphic layers
A multijunction solar cell including an upper first solar subcell having a first band gap; a second solar subcell adjacent to the first solar subcell and having a second band gap smaller than the first band gap; a first graded interlayer adjacent to the second solar subcell; the first graded interlayer having a third band gap greater than the second band gap; and a third solar subcell adjacent to the first graded interlayer, the third subcell having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell. A second graded interlayer is provided adjacent to the third solar subcell; the second graded interlayer having a fifth band gap greater than the fourth band gap; and a lower fourth solar subcell is provided adjacent to the second graded interlayer, the lower fourth subcell having a sixth band gap smaller than the fourth band gap such that the fourth subcell is lattice mismatched with respect to the third subcell.
US09691928B2 Inverted metamorphic multijunction solar cells with doped alpha layer
A method of forming a multijunction solar cell comprising at least an upper subcell, a middle subcell, and a lower subcell, the method including forming a first alpha layer over said middle solar subcell using a surfactant and dopant including selenium, the first alpha layer configured to prevent threading dislocations from propagating; forming a metamorphic grading interlayer over and directly adjacent to said first alpha layer; forming a second alpha layer using a surfactant and dopant including selenium over and directly adjacent to said grading interlayer to prevent threading dislocations from propagating; and forming a lower solar subcell over said grading interlayer such that said lower solar subcell is lattice mismatched with respect to said middle solar subcell.
US09691926B2 Using solar cells as bypass diode heat sinks
A solar panel includes a plurality of solar cells, a bypass diode unit, and a heat spreader. The bypass diode unit includes a bypass diode coupled in an electrical shunting configuration across at least a first solar cell of the plurality of solar cells to bypass current around at least the first solar cell in an event of failure of the first solar cell. The heat spreader is disposed over a portion of one or more of the solar cells. The bypass diode unit is disposed on a first side of the heat spreader with the bypass diode in thermal contact with the heat spreader. A second side of the heat spreader is mounted in thermal contact with the one or more of the solar cells to dissipate heat generated in the bypass diode to the one or more of the solar cells.
US09691922B2 Adjusting device
An adjusting device for adjusting orientation of an energy conversion board comprises a first frame member, a second frame member, a third frame member and a base. The first frame member contains the energy conversion board. The second frame member holds the first frame member. The third frame member holds the second frame member. The base supports the third frame including the other frames and the energy conversion board. The first frame member is rotatable relative to the second frame member, the second frame member is rotatable relative to the third frame, and the third frame member is rotatable relative to the base. The first rotating axis is perpendicular to the second rotating axis, and the third rotating axis is coaxial with the first rotating axis.
US09691920B2 Metamaterial enhanced thermophotovoltaic converter
A thermophotovoltaic (TPV) converter includes spectrally-selective metamaterial emitters disposed on peripheral walls of an all-metal box-like enclosure, and associated photovoltaic (PV) cells configured to efficiently convert in-band photons having optimal conversion spectrums into electricity. The peripheral walls surround a substantially rectangular interior cavity having an inlet opening through which heat energy (e.g., concentrated sunlight) is supplied, and an outlet opening through which waste heat exits the cavity. Concentrated sunlight passing through the box-like enclosure heats the peripheral walls to a high temperature (i.e., above 1000° K), causing thermally excited surface plasmons generated on the emitters' concentric circular ridges to produce highly-directional radiant energy beams having a peak emission wavelength roughly equal to a fixed grating period separating the ridges. The metamaterial emitter is optionally provided with multiple bull's eye structures in a multiplexed (overlapping) pattern and with different grating periods to produce a broad emission spectrum overlapping the optimal conversion spectrum.
US09691919B2 Solar cell and solar cell module
A solar cell and a solar cell module including a plurality of solar cells are discussed. The solar cell according to an embodiment includes a substrate of a first conductive type, an emitter layer of a second conductive type opposite the first conductive type disposed on the substrate, a plurality of first electrodes electrically connected to the emitter layer, a second electrode electrically connected to the substrate, a first current collector electrically connected to the plurality of first electrodes, and a second current collector electrically connected to the second electrode. The second current collector includes a plurality of second electrode current collectors electrically connected to the second electrode, and a current collector connector for connecting the plurality of second electrode current collectors to one another.
US09691908B2 Vertical-channel type junction SiC power FET and method of manufacturing same
In order to secure the performance of a SiC-based JFET having an impurity diffusion rate lower than silicon-based one, a gate depth is secured while precisely controlling a distance between gate regions, instead of forming gate regions by ion implantation into the side wall of a trench. This means that a channel region defined by a gate distance and a gate depth should have a high aspect ratio. Further, due to limitations of process, a gate region is formed within a source region. Formation of a highly doped PN junction between source and gate regions causes various problems such as inevitable increase in junction current. In addition, a markedly high energy ion implantation becomes necessary for the formation of a termination structure. In the invention, provided is a vertical channel type SiC power JFET having a floating gate region below and separated from a source region and between gate regions.
US09691905B2 Semiconductor device, manufacturing method thereof, and electronic device
A semiconductor device includes a first insulating layer over a substrate, a first metal oxide layer over the first insulating layer, an oxide semiconductor layer over the first metal oxide layer, a second metal oxide layer over the oxide semiconductor layer, a gate insulating layer over the second metal oxide layer, a second insulating layer over the second metal oxide layer, and a gate electrode layer over the gate insulating layer. The gate insulating layer includes a region in contact with a side surface of the gate electrode layer. The second insulating layer includes a region in contact with the gate insulating layer. The oxide semiconductor layer includes first to third regions. The first region includes a region overlapping with the gate electrode layer. The second region, which is between the first and third regions, includes a region overlapping with the gate insulating layer or the second insulating layer. The second and third regions each include a region containing an element N (N is phosphorus, argon, or xenon).
US09691900B2 Dual epitaxy CMOS processing using selective nitride formation for reduced gate pitch
A method of forming a complementary metal oxide semiconductor (CMOS) device structure includes forming a spacer layer material over a substrate and over gate structures defined in a first polarity type region and a second polarity type region; selectively etching the spacer layer material in the first polarity type region to form first gate sidewall spacers; forming first epitaxially grown source/drain (SD) regions in the first polarity type region; selectively forming a protection layer only on exposed surfaces of the first SD regions, so as not to increase a thickness of the spacer layer material in the second polarity type region; forming a masking layer over the first polarity type region, and etching the spacer layer material in the second polarity type region to form second gate sidewall spacers; and removing the masking layer and forming second epitaxially grown SD regions in the second polarity type region.
US09691897B2 Three-dimensional semiconductor transistor with gate contact in active region
A three-dimensional transistor includes a semiconductor substrate, a fin coupled to the substrate, the fin including an active region across a top portion thereof, the active region including a source, a drain and a channel region therebetween. The transistor further includes a gate situated above the channel region, and a gate contact situated in the active region, no portion thereof being electrically coupled to the source or drain. The transistor is achieved by removing a portion of the source/drain contact situated beneath the gate contact during fabrication.
US09691895B2 Lateral MOSFET
A device includes a plurality of isolation regions formed in a substrate, wherein a top surface of a first isolation region is lower than a top surface of the substrate and a second isolation region has a first portion in a high voltage region and a second portion in a low voltage region, a first gate electrode layer over the high voltage region, a second gate electrode layer over the second isolation region and a third gate electrode layer over the low voltage region, wherein a bottom surface of the first gate electrode layer is higher than a bottom surface of the third gate electrode layer.
US09691894B2 Transistor having gate, first metal-containing material and second metal-containing material with different work functions
A transistor includes source region and drain regions, a channel region, a drift region, a gate, a dummy gate, a gate dielectric layer and an interconnection line. The source and drain regions of a first conductivity type are in a substrate. The channel region of a second conductivity type is in the substrate and surrounds the source region. The drift region of the first conductivity type is beneath the drain region and extends toward the channel region. The gate is over the substrate and overlapped with the channel region and the drift region. The dummy gate is over the drift region and laterally adjacent to the gate. The gate dielectric layer is between the gate and the substrate and between the dummy gate and the drift region. The interconnection line is electrically connected to the dummy gate and configured to provide a voltage potential thereto.
US09691890B2 Compound semiconductor device and manufacturing method thereof
A compound semiconductor device includes a compound semiconductor stacked structure, the compound semiconductor stacked structure including: an electron transit layer; an electron supply layer formed above the electron transit layer, the electron supply layer containing an n-type impurity; and a cap layer formed above the electron supply layer and containing the n-type impurity, in which in the electron supply layer, a concentration of the n-type impurity contained therein is non-uniform in a film thickness direction and a concentration of the n-type impurity in a surface of the cap layer side is lower than a maximum concentration of the n-type impurity in the electron supply layer.
US09691888B1 IGBT
An IGBT includes a rectangular trench including first to fourth trenches and a gate electrode arranged inside of the rectangular trench. An n-type emitter region includes a first emitter region being in contact with the first trench, and a second emitter region being in contact with the third trench. A body contact region includes a first body contact region being in contact with the second trench, and a second body contact region being in contact with the fourth trench. A surface body region is in contact with the trenches in ranges from connection portions to the emitter regions.
US09691885B2 Method for manufacturing a transistor
A method comprises arranging a stack, on a semiconductor substrate, comprising a sacrificial layer and an insulating layer. The insulator layer is at least partially arranged between the semiconductor substrate and the sacrificial layer. A recess is formed within the stack. The recess extends through the stack to the semiconductor substrate so that the recess at least partially overlaps with a surface of the collector region of the semiconductor substrate. The collector region extends from a main surface of the semiconductor substrate into the substrate material. The method further comprises generating a base structure at the collector region and in the recess. The base structure contacts and covers the collector region within the recess of the sacrificial layer. The method further comprises generating an emitter structure at the base structure. The emitter structure contacts and at least partially covers the base structure within the recess of the sacrificial layer.
US09691882B2 Carbon-doped cap for a raised active semiconductor region
After formation of a disposable gate structure, a raised active semiconductor region includes a vertical stack, from bottom to top, of an electrical-dopant-doped semiconductor material portion and a carbon-doped semiconductor material portion. A planarization dielectric layer is deposited over the raised active semiconductor region, and the disposable gate structure is replaced with a replacement gate structure. A contact via cavity is formed through the planarization dielectric material layer by an anisotropic etch process that employs a fluorocarbon gas as an etchant. The carbon in the carbon-doped semiconductor material portion retards the anisotropic etch process, and the carbon-doped semiconductor material portion functions as a stopping layer for the anisotropic etch process, thereby making the depth of the contact via cavity less dependent on variations on the thickness of the planarization dielectric layer or pattern factors.
US09691878B2 Method of manufacturing MOSFET
Provided is a method for manufacturing a MOSFET, including: forming a shallow trench isolation (STI) in a semiconductor substrate to define an active region for the MOSFET; performing etching with the STI as a mask, to expose a surface of the semiconductor substrate, and to protrude a portion of the STI with respect to the surface of the semiconductor substrate, resulting in a protruding portion; forming a first spacer on sidewalls of the protruding portion; forming a gate stack on the semiconductor substrate; forming a second spacer surrounding the gate stack; forming openings in the semiconductor substrate with the STI, the gate stack, the first spacer and the second spacer as a mask; epitaxially growing a semiconductor layer with a bottom surface and sidewalls of each of the openings as a growth seed layer; and performing ion implantation into the semiconductor layer to form source and drain regions.
US09691874B2 Manufacturing method of semiconductor structure
A manufacturing method of a semiconductor structure provides a substrate. A well having a first conductive type and a well having a second conductive type are formed in the substrate, respectively. A body region is formed in the well having the second conductive type. A first doped region and a second doped region are formed in the well having the first conductive type and the body region respectively. The first and second doped regions have same polarities, and a dopant concentration of the second doped region is higher than that of the first doped region. A third doped region is formed in the well having the second conductive type and between the first and second doped regions. The third and first doped regions have reverse polarities. A first field plate is formed on a surface region between the second and third doped regions.
US09691873B2 Transient devices designed to undergo programmable transformations
The invention provides transient devices, including active and passive devices that electrically and/or physically transform upon application of at least one internal and/or external stimulus. Materials, modeling tools, manufacturing approaches, device designs and system level examples of transient electronics are provided.
US09691871B1 Process for forming a layer of equiaxed titanium nitride and a MOSFET device having a metal gate electrode including a layer of equiaxed titanium nitride
Local variability of the grain size of work function metal, as well as its crystal orientation, induces a variable work function and local variability of transistor threshold voltage. If the metal nitride for the work function metal of the transistor gate is deposited using a radio frequency physical vapor deposition, equiaxed grains are produced. The substantially equiaxed structure for the metal nitride work function metal layer (such as with TiN) reduces local variability in threshold voltage.
US09691866B2 Memory cell having a vertical selection gate formed in an FDSOI substrate
A memory cell formed in a semiconductor substrate, includes a selection gate extending vertically in a trench made in the substrate, and isolated from the substrate by a first layer of gate oxide, a horizontal floating gate extending above the substrate and isolated from the substrate by a second layer of gate oxide, and a horizontal control gate extending above the floating gate. The selection gate covers a lateral face of the floating gate. The floating gate is separated from the selection gate only by the first layer of gate oxide, and separated from a vertical channel region, extending in the substrate along the selection gate, only by the second layer of gate oxide.
US09691864B1 Semiconductor device having a cavity and method for manufacturing thereof
A method for manufacturing a semiconductor device includes: providing a semiconductor substrate; forming at least one recess in the semiconductor substrate; the recess having a bottom and a sidewall; forming an auxiliary structure on the sidewall and the bottom of the recess and forming a hollow space within the recess; filling the hollow space of the recess with a filling material for forming a filling structure in the recess; removing portions of the auxiliary structure from the sidewall of the recess so as to form at least one cavity between the filling structure and the sidewall of the recess; and sealing the cavity at the first side of the semiconductor substrate.
US09691862B2 Semiconductor device having field plate structures and gate electrode structures between the field plate structures
A semiconductor device includes a field effect transistor in a semiconductor substrate having a first surface. The field effect transistor includes a first field plate structure and a second field plate structure, each extending in a first direction parallel to the first surface, and gate electrode structures disposed over the first surface and extending in a second direction parallel to the first surface, the gate electrode structures being disposed between the first and the second field plate structures.
US09691860B2 Methods of forming defect-free SRB onto lattice-mismatched substrates and defect-free fins on insulators
A strain-relieved buffer is formed by forming a first silicon-germanium (SiGe) layer directly on a surface of a bulk silicon (Si) substrate. The first SiGe layer is patterned to form at least two SiGe structures so there is a space between the SiGe structures. An oxide is formed on the SiGe structures, and the SiGe structures are mesa annealed. The oxide is removed to expose a top portion of the SiGe structures. A second SiGe layer is formed on the exposed portion of the SiGe structures so that the second SiGe layer covers the space between the SiGe structures, and so that a percentage Ge content of the first and second SiGe layers are substantially equal. The space between the SiGe structures is related to the sizes of the structures adjacent to the space and an amount of stress relief that is associated with the structures.
US09691857B2 Group III-N nanowire transistors
A group III-N nanowire is disposed on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first group III-N material, a source region electrically coupled with a first end of the channel region, and a drain region electrically coupled with a second end of the channel region. A second group III-N material on the first group III-N material serves as a charge inducing layer, and/or barrier layer on surfaces of nanowire. A gate insulator and/or gate conductor coaxially wraps completely around the nanowire within the channel region. Drain and source contacts may similarly coaxially wrap completely around the drain and source regions.
US09691856B2 Extreme high mobility CMOS logic
A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
US09691855B2 Method of growing a high quality III-V compound layer on a silicon substrate
The present disclosure involves a method of fabricating a semiconductor device. A surface of a silicon wafer is cleaned. A first buffer layer is then epitaxially grown on the silicon wafer. The first buffer layer contains an aluminum nitride (AlN) material. A second buffer layer is then epitaxially grown on the first buffer layer. The second buffer layer includes a plurality of aluminum gallium nitride (AlxGa1-xN) sub-layers. Each of the sub-layers has a respective value for x that is between 0 and 1. A value of x for each sub-layer is a function of its position within the second buffer layer. A first gallium nitride (GaN) layer is epitaxially grown over the second buffer layer. A third buffer layer is then epitaxially grown over the first GaN layer. A second GaN layer is then epitaxially grown over the third buffer layer.
US09691854B1 Semiconductor device including multiple fin heights
A semiconductor device comprising a substrate, an base layer disposed on the substrate having a thickness C in first area and a thickness B in a second area and a hole extending to the substrate filled with semiconductor, a first semiconductor fin disposed on the first area and having a height A, and a second semiconductor fin disposed on the second area and having a height D, wherein (A+C)=(B+D).
US09691853B2 Electronic device including graphene and quantum dots
According to example embodiments, an electronic device includes channel layer including a graphene layer electrically contacting a quantum dot layer including a plurality of quantum dots, a first electrode and a second electrode electrically connected to the channel layer, respectively, and a gate electrode configured to control an electric current between the first electrode and the second electrode via the channel layer. A gate insulating layer may be between the gate electrode and the channel layer.
US09691847B2 Self-formation of high-density arrays of nanostructures
A method for forming nanostructures includes bonding a flexible substrate to a crystalline semiconductor layer having a two-dimensional material formed on a side opposite the flexible substrate. The crystalline semiconductor layer is stressed in a first direction to initiate first cracks in the crystalline semiconductor layer. The first cracks are propagated through the crystalline semiconductor layer and through the two-dimensional material. The stress of the crystalline semiconductor layer is released to provide parallel structures including the two-dimensional material on the crystalline semiconductor layer.
US09691844B2 Power semiconductor device
The present examples relate to a power semiconductor device. The present examples also relate to a power semiconductor device that maintains a breakdown voltage and reduces a gate capacitance through improving the structure of an Injection Enhanced Gate Transistor (IEGT), and thereby reduces strength of an electric field compared to alternative technologies. Accordingly, the present examples provide a power semiconductor device with a small energy consumption and with an improved switching functionality.
US09691836B2 Pixel unit, array substrate, display device and method for manufacturing the same including MoW/Cu/MoW conductive line
A pixel unit is used in an array substrate of a display device. In one embodiment, it comprises a gate line, a source-drain line and a thin-film transistor; and the gate line is in an overlapped structure comprising a first MoW layer, a Cu layer and a second MoW layer overlapped successively; and a gate of the thin-film transistor is formed of the first MoW layer. In another embodiment, the source-drain line is in a same overlapped structure; and a source and a drain of the thin-film transistor are formed of the first MoW layer. The first embodiment is achieved by means of a halftone process while the second embodiment is achieved by means of a lift off process. Diffusion of Cu in the gate layer or in the source-drain layer towards the oxide active layer is prevented. Also disclosed is a method for manufacturing the abovementioned pixel unit, an array substrate comprising the abovementioned pixel unit, a display device comprising the abovementioned pixel unit, and a method for manufacturing abovementioned array substrate and display device.
US09691832B2 Organic light emitting display device and method of manufacturing organic light emitting display device
An organic light emitting display device, including a substrate, a first conductive layer pattern on the substrate, a first insulation layer pattern on the first conductive layer pattern, a first semiconductor layer pattern on the first insulation layer pattern, a gate insulation layer pattern on the gate insulation layer pattern, a gate electrode on the gate insulation layer pattern, a planarization layer on the gate electrode, the planarization layer including a first protruding portion protruded in a first direction perpendicular to an upper surface of the substrate, a lower electrode on the first protruding portion, a pixel defining layer exposing at least a portion of the lower electrode, the pixel defining layer covering opposite side portions of the first protruding portion, a light emitting layer on the lower electrode, and an upper electrode on the light emitting layer.
US09691826B2 Pixel structure and manufacturing method thereof, light-emitting device, array substrate and display device
The present invention discloses a pixel structure and a manufacturing method thereof, a light-emitting device, an array substrate and a display device. The pixel structure comprises a plurality of pixel units sequentially arranged, each pixel unit comprising a plurality of color sub-pixel units, wherein the color sub-pixel unit of a certain color to which human eyes have poor discriminating power is positioned in a central position of the pixel unit, and the color sub-pixel units of the remaining colors are positioned around the color sub-pixel unit of the certain color, and an area of the color sub-pixel unit of the certain color is larger than that of any one of the color sub-pixel units of the remaining colors.
US09691819B2 Vertical transistor and variable resistive memory device including the same
A vertical transistor may include a pillar, a gate and an electric field-buffering region. The pillar may be vertically extended from a surface of a semiconductor substrate. The pillar may include a source, a channel region and a drain. The gate may be formed on an outer surface of the pillar. The gate may be overlapped with the channel region, a portion of the source configured to make contact with the channel region, and a portion of the drain configured to make contact with the channel region. The electric field-buffering region may be formed in the portion of the drain overlapped with the gate. The electric field-buffering region may have a band gap different from a band gap of a material in the pillar.
US09691815B2 Method for producing an optoelectronic semiconductor component, and optoelectronic semiconductor component
In at least one embodiment of the method, said method includes the following steps: A) producing radiation-active islands (4) having a semiconductor layer sequence (3) on a growth substrate (2), wherein the islands (4) each comprise at least one active zone (33) of the semiconductor layer sequence (3), and an average diameter of the islands (4), as viewed in a top view of the growth substrate, amounts to between 50 nm and 10 μm inclusive, B) producing a separating layer (5) on a side of the islands (4) facing the growth substrate (2), wherein the separating layer (5) surrounds the islands (4) all around, as viewed in a top view of the growth substrate (2), C) attaching a carrier substrate (6) to a side of the islands (4) facing away from the growth substrate (2), and D) detaching the growth substrate (2) from the islands (4), wherein at least a part of the separating layer (5) is destroyed and/or at least temporarily softened during the detachment.
US09691814B2 Chip-on-film (COF) package, COF package array including the same, and display device including the same
A chip-on-film (COF) package includes a base film, an integrated circuit chip, and a plurality of signal interconnections. The base film includes a bonding region and a non-bonding region. The integrated circuit chip is at the non-bonding region. Each of the plurality of signal interconnections is coupled to the integrated circuit chip and extend to the bonding region along a first direction. The plurality of signal interconnections are spaced from each other along a second direction substantially crossing the first direction. The plurality of signal interconnections alternate on a first surface and a second surface opposite to the first surface of the base film along the second direction.
US09691808B2 Radiation detector with diffusion stop layer
A radiation detector may include: a common electrode; a thin film transistor (TFT) array; a photoconductor material layer disposed between the common electrode and the TFT array; and a diffusion stop layer, disposed between the common electrode and the TFT array, on a location corresponding to a connecting portion where the common electrode is connected to a bias voltage supply source, wherein the diffusion stop layer prevents a metal included in the connecting portion from diffusing to the photoconductor material layer.
US09691801B2 Image sensing device with cap and related methods
An image sensing device may include an interconnect layer and grid array contacts carried by the interconnect layer, and an image sensor IC carried by the interconnect layer and coupled to the grid array contacts, the image sensor IC having an image sensing surface. The image sensing device may include a transparent plate carried by the image sensor IC and aligned with the image sensing surface, and a cap carried by the interconnect layer and having an opening aligned with the image sensing surface. The cap may have an upper wall spaced above the interconnect layer and the image sensor IC to define an internal cavity, and the cap may define an air vent coupled to the internal cavity.
US09691794B1 Conductive layer in a semiconductor apparatus, display substrate and display apparatus having the same, and fabricating method thereof
The present application discloses a conductive layer in a semiconductor apparatus, comprising a metal sub-layer and an anti-reflective coating over the metal sub-layer for reducing light reflection on the metal sub-layer; wherein the anti-reflective coating comprises a light absorption sub-layer on the metal sub-layer for reducing light reflection by absorption and a light destructive interference sub-layer on a side of the light absorption layer distal to the metal sub-layer for reducing light reflection by destructive interference; and the metal sub-layer is made of a material comprising M1, wherein M1 is a single metal or a combination of metals; the light absorption sub-layer is made of a material comprising M2OaNb, wherein M2 is a single metal or a combination of metals, a>0, and b≧0; the light destructive interference sub-layer is made of a material comprising M3Oc, wherein M3 is a single metal or a combination of metals, and c>0; the light absorption sub-layer has a refractive index larger than that of the light destructive interference sub-layer.
US09691793B2 Array substrate and display panel
An array substrate and a display panel. The array substrate includes an active region and a peripheral circuitry region surrounding the active region; a plurality of scan lines and a plurality of data lines intersected with and insulated from the scan lines; a plurality of pixel driving circuit units disposed at intersection areas between the scan lines and the data lines; a plurality of first electrodes respectively electrically connected to the plurality of pixel driving circuit units and disposed in the active region and the peripheral circuitry region of the array substrate; and a plurality of first connection lines configured to electrically connect the pixel driving circuit units to the corresponding first electrodes.
US09691791B2 Display panel and display device having the same
A display device includes: a substrate partitioned into a display area including a plurality of pixels for displaying images thereon and a non-display area around the display area; a plurality of first gate lines and a plurality of data lines extended in one direction on the display area; a plurality of pads on one side of the non-display area; a plurality of gate fan-out lines, each coupling one of the first gate lines and a corresponding one of the pads; and a plurality of data fan-out lines, each coupling one of the data lines and a corresponding one of the pads, wherein the gate fan-out lines and the data fan-out lines may be alternately disposed.
US09691789B2 Method for manufacturing semiconductor device
An object is to establish a processing technique in manufacture of a semiconductor device in which an oxide semiconductor is used. A gate electrode is formed over a substrate, a gate insulating layer is formed over the gate electrode, an oxide semiconductor layer is formed over the gate insulating layer, the oxide semiconductor layer is processed by wet etching to form an island-shaped oxide semiconductor layer, a conductive layer is formed to cover the island-shaped oxide semiconductor layer, the conductive layer is processed by dry etching to form a source electrode, and a drain electrode and part of the island-shaped oxide semiconductor layer is removed by dry etching to form a recessed portion in the island-shaped oxide semiconductor layer.
US09691788B2 Display device
A display device according to an exemplary embodiment includes: a first insulation substrate; a thin film transistor disposed on the first insulation substrate; and a pixel electrode coupled to the thin film transistor. The pixel electrode includes a first subpixel electrode that is divided into two regions configured to arrange liquid crystal molecules while including one first horizontal stem portion, and a second subpixel electrode that includes a plurality of second horizontal stem portions.
US09691784B2 Semiconductor memory device
A semiconductor memory device includes a first portion including a semiconductor element, a second portion surrounding the semiconductor element. The second portion includes a stack of conductive layers and insulating layers, and at least one groove through the conductive layers and the insulating layers.
US09691783B2 Semiconductor device and method of manufacturing the same
Provided is a semiconductor device including a first stacked structure in which first conductive patterns and first interlayer insulating layers are alternately stacked, a second stacked structure formed on the first stacked structure and including second conductive patterns and second interlayer insulating layers, which are alternately stacked, an interfacial pattern formed between the first stacked structure and the second stacked structure, first through-areas passing through the first stacked structure and the interfacial pattern, and including first protrusions protruding toward a sidewall of the interfacial pattern, second through-areas passing through the second stacked structure and connected to the first through-areas, and through-structures formed along sidewalls of the first through-areas and the second through-areas.
US09691782B1 Non-volatile memory device
A non-volatile memory device includes a substrate, a memory cell array on the substrate, a plurality of bonding pads, and a pad circuit. The memory cell array includes a plurality of gate conductive layers stacked on the substrate in a vertical direction and a plurality of channels penetrating into the plurality of gate conductive layers on an upper portion of the substrate. The plurality of bonding pads are on at least part of an upper portion of the memory cell array. The plurality of bonding pads are configured to electrically connect the non-volatile memory device to an external device. The pad circuit is between the substrate and the memory cell array. The pad circuit is electrically connected to at least one of the plurality of bonding pads.
US09691774B2 Structure and method for SRAM cell circuit
The present disclosure provides a static random access memory (SRAM) cell. The SRAM cell includes a first and a second pull-up devices; a first and a second pull-down devices configured with the first and second pull-up devices to form two cross-coupled inverters for data storage; and a first and second pass-gate devices configured with the two cross-coupled inverters to form a port for data access, wherein the first and second pull-down devices each includes a first channel doping feature of a first doping concentration, and the first and second pass-gate devices each includes a second channel doping feature of a second doping concentration greater than the first doping concentration.
US09691773B2 Silicon buried digit line access device and method of forming the same
An access device includes a plurality of first digit lines (DL) trenches extending along a first direction, buried digit lines between each DL trench, second and third trenches separating the digit lines, a filling material filling the digit line trenches comprising airgaps in each second trench, a plurality of word line (WL) trenches extending along a second direction, metal word lines deposited on the walls of the word line trenches, a filling material filling the word line trenches.
US09691770B2 Vanadium-containing film forming compositions and vapor deposition of vanadium-containing films
Vanadium-containing film forming compositions are disclosed, along with methods of synthesizing the same, and methods of forming Vanadium-containing films on one or more substrates via vapor deposition processes using the Vanadium-containing film forming composition.
US09691766B1 Fin field effect transistor and method for fabricating the same
A fin field effect transistor (FinFET) including a substrate, a plurality of insulators, and a gate stack is provided. The substrate includes a plurality of trenches and at least one semiconductor fin between the trenches. The insulators are disposed in the trenches and include doped regions distributed therein. The gate stack partially covers the at least one semiconductor fin and the insulators. A method for fabricating the aforesaid FinFET is also discussed.
US09691761B1 Monolithic integration of GaN and InP components
A compound semiconductor integrated circuit comprising a first substrate; a first electronic component formed on top of said first substrate; a layer of a first dielectric material formed on top of said first substrate and including said first electronic component, said layer of a first dielectric material comprising a recess exposing a first region of said first substrate; and a layer of a second dielectric material attached to said first substrate on top of said first region of said first substrate after manufacturing of said layer of a second dielectric material, said layer of a second material comprising a second electronic component.
US09691760B2 Semiconductor device and structure
A 3D device, including: a first layer including first transistors, the first transistors interconnected by a first layer of interconnection; a second layer including second transistors, the second transistors overlaying the first layer of interconnection, where the first layer includes a first clock distribution structure, where the second layer includes a second clock distribution structure, where the device includes a Phase Lock Loop (“PLL”) circuit, where the second clock distribution structure is connected to the Phase Lock Loop (“PLL”) circuit, and where the second transistors are aligned to the first transistors with less than 200 nm alignment error.
US09691757B2 Semiconductor device including transistors and diodes and a first line extending between the transistors and diodes
Reduction of the speed of switching between the drain electrodes of transistors and the cathode electrodes of diodes due to the inductances of lines coupling them is inhibited. Transistors and diodes are formed over a substrate. The transistors and the diodes are arranged in a first direction. The substrate also includes a first line, first branch lines, and second branch lines formed thereover. The first line extends between the transistors and the diodes. The first branch lines are formed to branch from the first line in a direction to overlap the transistors and are coupled to the transistors. The second branch lines are formed to branch from the first line in a direction to overlap the diodes and are coupled to the diodes.
US09691756B2 Nonvolatile memory device and method of fabricating the same
The nonvolatile memory device includes a memory cell having a transistor in which an insulating isolation layer is formed in a channel region. The nonvolatile memory device includes a metal-oxide-semiconductor (MOS) transistor as a basic component. An insulating isolation layer is formed in at least a channel region, and a gate insulating layer includes an insulating layer or a variable resistor and serves as a data storage. A gate includes a metal layer formed in a lower portion thereof. First source and drain regions are lightly doped with a dopant, and second source and drain regions are heavily doped with a dopant.
US09691752B1 Semiconductor device for electrostatic discharge protection and method of forming the same
An ESD protection device and a method of forming the same, the ESD device includes a substrate, a first doped well, a second doped well, a source and drain regions and a guard ring. The first doped well with a first conductive type is disposed in the substrate. The source and drain regions with the second conductive type are disposed in the first doped well. The guard ring with the first conductive type is also disposed in the first doped well and has a first portion extending along a first direction and a second portion extending along a second direction different from the first direction. The second doped well with the second conductive type is also disposed in the first doped well between the drain region and the second portion of the guard ring to in contact with the drain region in the first direction.
US09691748B2 Forming a panel of triple stack semiconductor packages
A method for forming a panel of stacked semiconductor packages includes providing a bottom leadframe (LF) panel including LFs downset each including at least a plurality of terminals. Low side (LS) transistors are attached to the first die attach area. A first clip panel including first clips downset and interconnected are placed on the bottom LF panel. A dielectric interposer is attached on the first clips over the LS transistors. High side (HS) transistors are attached on the interposers. A second clip panel including a plurality of second clips is mated to interconnect to the HS transistors including mating together the second clip panel, first clip panel and bottom LF panel. The LFs can include a second die attach area, and a controller die attached on the second die attach area, and then pads of the controller die wirebonded to the plurality of terminals.
US09691743B2 Localized redistribution layer structure for embedded component package and method
An embedded component package includes an embedded component substrate. The embedded component substrate includes an electronic component having an active surface including bond pads and a package body encapsulating the electronic component. The package body includes a principle surface coplanar with the active surface. A localized redistribution layer (RDL) dielectric layer is on the active surface. A localized RDL conductive layer is on the localized RDL dielectric layer and is coupled to the bond pads through openings in localized RDL dielectric layer. A primary RDL dielectric layer encloses the entire embedded component substrate and directly contacts the localized RDL dielectric layer, the localized RDL conductive layer, and the principal surface of the package body. The localized RDL conductive layer provides additional space for routing of additional interconnects while the localized RDL dielectric layer acts as a stress buffer.
US09691742B2 Display device and method of manufacturing the same
A method of manufacturing a display device includes: forming a plurality of photoresist columns at an upper edge region of a glass substrate by a photo patterning process; coating a plastic chemical liquid on an entire upper surface of the glass substrate to cover the photoresist columns; evaporating a solvent of the plastic chemical liquid to semi-harden a plastic substrate and to expose an upper portion of the photoresist columns; forming a plurality of through-holes at an edge region of the surface of the semi-hardened plastic substrate by removing the photoresist columns; firing and curing the plastic chemical liquid to form the plastic substrate; and coating a metal layer on an edge region of the surface of the plastic substrate with the through-holes.
US09691740B2 Stacked semiconductor device and method of controlling thereof
A semiconductor device includes: a plurality of semiconductor chips which are stacked; a plurality of circuit blocks respectively included in the plurality of semiconductor chips; a first power supply domain that supplies power and stops the supply of the power to one of the plurality of circuit blocks independently of the other circuit blocks; and a second power supply domain that supplies power and stops the supply of the power to at least two of the plurality of circuit blocks in common and supplies the power and stops the supply of the power independently of the other circuit blocks.
US09691737B2 Semiconductor device
Provided is a semiconductor device having as many input/output pads as possible using a chip having a small number of input/output pads. The semiconductor device includes a substrate including first and second extending input/output pads, a first memory structure disposed on the substrate and including first connecting input/output pads, a second memory structure disposed on the first memory structure and including second connecting input/output pads, and a wiring structure formed on lateral surfaces of the first and second memory structures and connecting the first and second connecting input/output pads and the first and second extending input/output pads, respectively; wherein the wiring structure includes a first wiring connecting the first connecting input/output pads and the first extending input/output pad and a second wiring connecting the first connecting input/output pads and the second extending input/output pad, and the second wiring is offset relative to the first wiring.
US09691736B2 Miniaturized SMD diode package and process for producing the same
A process for producing a miniaturized SMD diode package involves using a diode chip whose bottom surface has a positive electrode and a negative electrode, using a circuit board instead of a conventional lead frame during packaging, and using Charge-Coupled Device (CCD) image registration technology to perform chip bonding; the beneficial advantages brought from the process for producing the same including to simplify producing process and reduce manufacturing cost, to improve accuracy and precision of producing the miniaturized SMD diode package due to using a circuit board instead of conventionally used lead frame, and to ensure the produced miniaturized SMD diode package possesses excellent diode characteristics without distortion or defect.
US09691735B2 Miniaturized SMD diode package and process for producing the same
A miniaturized SMD diode package involves using a diode chip whose bottom surface has a positive electrode and a negative electrode, using a circuit board instead of a conventional lead frame during packaging, and using Charge-Coupled Device (CCD) image registration technology to perform chip bonding; the beneficial advantages brought from a process for producing the same including to simplify producing process and reduce manufacturing cost, to improve accuracy and precision of producing the miniaturized SMD diode package due to using a circuit board instead of conventionally used lead frame, and to ensure the produced miniaturized SMD diode package possesses excellent diode characteristics without distortion or defect.
US09691733B1 Bonded semiconductor structure and method for forming the same
A bonded semiconductor structure includes a first substrate and a second substrate. The first substrate includes a first interconnection structure, a first dielectric layer, and a first silicon carbon nitride (SiCN) layer sequentially stacked thereon. And at least a first conductive pad is formed in the first dielectric layer and the first SiCN layer. The second substrate includes a second interconnection structure, a second dielectric layer, and a second SiCN layer sequentially stacked thereon. And at least a second conductive pad is formed in the second dielectric layer and the second SiCN layer. The first conductive pad physically contacts the second conductive pad, and the first SiCN layer physically contacts the second SiCN layer.
US09691729B2 Systems of bonded substrates and methods for bonding substrates with bonding layers
A first substrate may be bonded to a second substrate in a method that may include providing the first substrate, providing a second substrate, providing a bonding layer precursor, positioning the bonding layer precursor between the first substrate and the second substrate, and bonding the first substrate to the second substrate by heating the bonding layer precursor to form a bonding layer. The first substrate may include a bonding surface, and a geometry of the bonding surface of the first substrate may include a plurality of microchannels. The second substrate may include a complementary bonding surface and the bonding layer precursor may include a metal. The bonding layer may fill the microchannels of the first substrate and may contact substantially the entire bonding surface of the first substrate.
US09691728B2 BBUL top side substrate layer enabling dual sided silicon interconnect and stacking flexibility
An apparatus including a die including a first side and an opposite second side including a device side with contact points; and a build-up carrier including at least one layer of conductive material disposed on a first side of the die, and a plurality of alternating layers of conductive material and dielectric material disposed on the second side of the die, wherein the at least one layer of conductive material on the first side of the die is coupled to at least one of (1) at least one of the alternating layers of conductive material on the second side of the die and (2) at least one of the contact points of the die. A method including forming a first portion of a build-up carrier adjacent one side of a die, and forming a second portion of the build-up carrier adjacent another side of the die.
US09691727B2 Pad-less interconnect for electrical coreless substrate
A microelectronic device includes a laminated mounting substrate including a die side and a land side with a surface finish layer disposed in a recess on the mounting substrate die side. An electrically conductive first plug is in contact with the surface finish layer and an electrically conductive subsequent plug is disposed on the mounting substrate land side and it is electrically coupled to the electrically conductive first plug and disposed directly below the electrically conductive first plug.
US09691720B2 Multi-layer ground shield structure of interconnected elements
A multi-layer ground shield structure of interconnected elements is disclosed. The ground shield structure may include a first patterned layer of a ground shield structure, a second patterned layer of the ground shield structure, and a spacer between the first patterned layer and the second patterned layer. The first patterned layer includes first conductive elements interconnected within the first patterned layer according to a first pattern. The second patterned layer includes second conductive elements interconnected within the second patterned layer according to a second pattern.
US09691719B2 Semiconductor device
A semiconductor device is a semiconductor device in which one chip region is formed through divided exposure. An interlayer insulating film has a via and an interconnection trench in an element formation region and has a guard ring hole in a guard ring region. An interconnection conductive layer is formed in the via and the interconnection trench. A guard ring conductive layer is formed in the guard ring hole. A minimum dimension of a width of the guard ring conductive layer is greater than a minimum dimension of a width of the interconnection conductive layer in the via.
US09691718B2 On-chip semiconductor device having enhanced variability
A physical unclonable function (PUF) semiconductor device includes a semiconductor substrate extending along a first direction to define a length and a second direction opposite the first direction to define a thickness. At least one pair of semiconductor structures is formed on the semiconductor substrate. The semiconductor structures include a first semiconductor structure and a second semiconductor structure. The first semiconductor structure includes a first gate dielectric layer having a first shape that defines a first threshold voltage. The second semiconductor structure includes a second gate dielectric layer having a second dielectric shape that is reversely arranged with respect to the first shape and that defines a second threshold voltage different from the first threshold voltage.
US09691715B2 Support for long channel length nanowire transistors
A nanowire device includes a first component formed on a substrate and a second component disposed apart from the first component on the substrate. A nanowire is configured to connect the first component to the second component. An anchor pad is formed along a span of the nanowire and configured to support the nanowire along the span to prevent sagging.
US09691714B2 Semiconductor device and method for manufacturing semiconductor device
A semiconductor device of the present invention includes a first interlayer film having a first region and a second region, a MIM structure including a lower electrode formed on the second region, a first capacitance film formed on the lower electrode, and an upper electrode formed on the first capacitance film, a lower metal layer formed on the first region, and disposed in the same layer level with the lower electrode, an auxiliary metal layer disposed in the same layer level with the upper electrode, and opposed to the lower metal layer, a second interlayer film formed on the first interlayer film, and covering the auxiliary metal layer and the MIM structure, and a top metal layer formed on the second interlayer film, and penetrating through the second interlayer film to contact the auxiliary metal layer.
US09691711B2 Method of making an electromagnetic interference shield for semiconductor chip packages
An electromagnetic interference shield is described for semiconductor chip packages. In some embodiments, a mold compound is formed over a semiconductor die, the die being over a front side redistribution layer on a side opposite the mold compound, the redistribution layer extending past the die and the mold compound extending around the die to contact the redistribution layer. A plurality of vias are formed in the mold compound vertically toward the redistribution layer, the vias being outside of the die, wherein the bottoms of the vias are over a ground layer of the front side redistribution layer. A continuous conductive shielding film is applied over the mold compound and into the vias, wherein the shielding film in some of the vias directly connects to the ground layer and wherein the shielding film in some of the vias does not directly connect to the ground layer, the redistribution layer connecting the metal film to an external ground so that the vias form a shield.
US09691709B2 Semiconductor device security
Semiconductor device security is provided as follows. A unique identification is generated by randomly forming a plurality of defects in one or more circuit elements of the semiconductor device. This method may yield a semiconductor device which is not susceptible to being replicated or cloned.
US09691704B1 Semiconductor structure and method for manufacturing the same
A semiconductor structure comprises a first wire level, a second wire level and a via level. The first wire level comprises a first conductive feature. The second wire level is disposed on the first wire level. The second wire level comprises a second conductive feature and a third conductive feature. The via level is disposed between the first wire level and the second wire level. The via level comprises a via connecting the first conductive feature and the second conductive feature. There is a first air gap between the first conductive feature and the second conductive feature. There is a second air gap between the second conductive feature and the third conductive feature. The first air gap and the second air gap are linked.
US09691701B2 SOC with integrated voltage regulator using preformed MIM capacitor wafer
In some embodiments, a method and/or a system may include an integrated circuit. The integrated circuit may include a semiconductor die. The integrated circuit may include a plurality of wiring layers. At least one metal-insulator-metal (MIM) capacitor may be formed within the plurality of wiring layers. The integrated circuit may include a circuit. The circuit may include at least an inductor and a voltage regulator which, with the MIM capacitor, forms a voltage regulator for the semiconductor die. The circuit may be coupled substantially below at least a portion of the MIM capacitor in the plurality of layers. The circuit may be electrically coupled to the capacitor through the plurality of wiring layers. The integrated circuit may include a plurality of electrical connectors, the plurality of electrical connectors coupled to the second surface at points separate from an area of the second surface that is occupied by the circuit.
US09691698B2 Method of transferring and electrically joining a high density multilevel thin film to a circuitized and flexible organic substrate and associated devices
A method is for making an electronic device and includes forming an interconnect layer stack on a sacrificial substrate and having a plurality of patterned electrical conductor layers, and a dielectric layer between adjacent patterned electrical conductor layers. The method also includes laminating and electrically joining through an intermetallic bond a liquid crystal polymer (LCP) substrate to the interconnect layer stack on a side thereof opposite the sacrificial substrate. The method further includes removing the sacrificial substrate to expose a lowermost patterned electrical conductor layer, and electrically coupling at least one first device to the lowermost patterned electrical conductor layer.
US09691697B2 Semiconductor device and method of manufacturing semiconductor device
A terminal pressing frame of a semiconductor device is disposed so as to form a first gap partially from the bottom surface of an L-shaped leg portion of an external terminal and a second gap from an inside surface of a resin case. Adhesive spreads to the second gap and further spreads to the first gap connected to the second gap, consequent to the pressure when a metal base is assembled. The spreading of the adhesive to the first gap fixes an L-shaped leg portion of the external terminal and the terminal pressing frame to each other; and the spreading of adhesive to the second gap fixes the resin case and the terminal pressing frame to each other.
US09691693B2 Carrier-less silicon interposer using photo patterned polymer as substrate
A component, e.g., interposer has first and second opposite sides, conductive elements at the first side and terminals at the second side. The terminals can connect with another component, for example. A first element at the first side can comprise a first material having a thermal expansion coefficient less than 10 ppm/° C., and a second element at the second side can comprise a plurality of insulated structures separated from one another by at least one gap. Conductive structure extends through at least one insulated structure and is electrically coupled with the terminals and the conductive elements. The at least one gap can reduce mechanical stress in connections between the terminals and another component.
US09691692B2 Semiconductor device
A semiconductor device in which the electrical connection is established using conductive pins and a printed wiring board, wherein the printed wiring board is mounted parallel to an insulated circuit board to prevent poor bonding of the conductive pins. A third-type conductive pin is arranged in such a manner as to be connected to a first metal layer at a position farther than a first-type conductive pin arranged at a position farthest from a side that is in contact with a gap between island regions. Similarly, another third-type conductive pin is arranged in such a manner as to be connected to another first metal layer at a position farther than another first-type conductive pin arranged at a position farthest from another side that is in contact with the gap between the island regions.
US09691691B2 Semiconductor package with sidewall contacting bonding tape
A semiconductor package having a structure in which a decoupling capacitor is disposed to be adjacent with a semiconductor chip using a vertical chip interconnection (VCI) to improve power integrity. The semiconductor package includes a semiconductor substrate including a first finger pad and a second finger pad, a semiconductor chip mounted on the semiconductor substrate and including a first chip pad and a second chip pad, a bonding tape electrically connecting the first finger pad and the first chip pad, and a bonding wire electrically connecting the second finger pad and the second chip pad. Here, the bonding tape is formed to make contact with a sidewall of the semiconductor chip in a vertical direction of the semiconductor chip.
US09691688B2 Thin plastic leadless package with exposed metal die paddle
A method of making electronic packages includes providing a leadframe strip that includes a plurality of leadframes, wherein the leadframes comprise a plurality of leads, etching a surface of each of the leadframes to form an opening, wherein each of the leads has a lead tip that connects to a die paddle within the opening, isolating each of the leads from the die paddle, adhering a tape to a bottom side of the leadframe strips, leads, and die paddle, attaching a die to the die paddle, placing ball bumps on each of the lead tips, and connecting the die to the ball bumps. The electronic package includes a leadframe having a plurality of leads, wherein each of the leads has a lead tip, an opening formed within the leadframe, a die paddle that is disposed within the opening and is isolated from each of the lead tips, a tape that is adhered to a back side of the leadframe, leads, and die paddle, and a die, wherein the die is attached to the die paddle and is connected by wires to a bump disposed on each of the lead tips.
US09691687B2 Module and method of manufacturing a module
A module and a method for manufacturing a module are disclosed. An embodiment of a module includes a first semiconductor device, a frame arranged on the first semiconductor device, the frame including a cavity, and a second semiconductor device arranged on the frame wherein the second semiconductor device seals the cavity.
US09691685B2 Semiconductor devices and methods of manufacturing the same, and semiconductor packages including the semiconductor devices
A semiconductor device includes a substrate having a die region and a scribe region surrounding the die region, a plurality of via structures penetrating through the substrate in the die region, a portion of the via structure being exposed over a surface of the substrate, and a protection layer pattern structure provided on the surface of the substrate surrounding a sidewall of the exposed portion of the via structure and having a protruding portion covering at least a portion of the scribe region adjacent to the via structure.
US09691679B2 Method for package-on-package assembly with wire bonds to encapsulation surface
A microelectronic assembly (10) includes a substrate (12) having a first and second opposed surfaces. A microelectronic element (22) overlies the first surface and first electrically conductive elements (28) can be exposed at at least one of the first surface or second surfaces. Some of the first conductive elements (28) are electrically connected to the microelectronic element (22). Wire bonds (32) have bases (34) joined to the conductive elements (28) and end surfaces (38) remote from the substrate and the bases, each wire bond defining an edge surface (37) extending between the base and the end surface. An encapsulation layer (42) can extend from the first surface and fill spaces between the wire bonds, such that the wire bonds can be separated by the encapsulation layer. Unencapsulated portions of the wire bonds (32) are defined by at least portions of the end surfaces (38) of the wire bonds that are uncovered by the encapsulation layer (42).
US09691678B2 Semiconductor device having electrode pads arranged between groups of external electrodes
The semiconductor device has the CSP structure, and may include a plurality of electrode pads formed on a semiconductor integrated circuit in order to input/output signals from/to exterior; solder bumps for making external lead electrodes; and rewiring. The solder bumps may be arranged in two rows along the periphery of the semiconductor device. The electrode pads may be arranged inside the outermost solder bumps so as to be interposed between the two rows of solder bumps. Each trace of the rewiring may be extended from an electrode pad, and may be connected to any one of the outermost solder bumps or any one of the inner solder bumps.
US09691673B2 Power module semiconductor device
There is provided a power module semiconductor device allowing reduction in size and weight of a thin type SiC power module. The power module semiconductor device includes: a ceramic substrate; a first pattern of a first copper plate layer disposed on a surface of the ceramic substrate; a first semiconductor chip disposed on the first pattern; a first pillar connection electrode disposed on the first pattern; and an output terminal connected to the first pillar connection electrode.
US09691667B2 Integrated circuit and manufacturing method thereof
An integrated circuit includes a semiconductor substrate, and at least two transistors connected in series on the semiconductor substrate, wherein each transistor shares a source electrode or a drain electrode with an adjacent transistor. The integrated circuit also includes a hermetic cavity disposed on the source electrode and the drain electrode, between gate electrodes of adjacent transistors. The source electrode disposed at a first end portion of the series of transistors is in direct contact with a source interconnect, and the drain electrode disposed at a second end portion of the series of transistors is in direct contact with a drain interconnect.
US09691658B1 Contact fill in an integrated circuit
A method of forming an electrical contact in an integrated circuit, and an integrated circuit are disclosed. In an embodiment, the integrated circuit comprises a substrate, an insulating layer, and a metal layer. An opening is formed through the insulating layer to expose an active area of the substrate. The metal layer forms a cusp at a top end of the opening, narrowing this end of the opening. In embodiments, the method comprises depositing a conductive layer in the opening to form a liner, applying a filler material inside the opening to protect a portion of the liner, removing the cusp to widen the top of the opening while the filler material protects the portion of the liner covered by this material, removing the filler material from the opening, re-lining the opening, and filling the opening with a conductive material to form a contact through the insulating layer.
US09691656B2 Self-forming embedded diffusion barriers
Interconnect structures containing metal oxide embedded diffusion barriers and methods of forming the same. Interconnect structures may include an Mx level including an Mx metal in an Mx dielectric, an Mx+1 level above the Mx level including an Mx+1 metal in an Mx+1 dielectric, an embedded diffusion barrier adjacent to the Mx+1 dielectric; and a seed alloy region adjacent to the Mx+1 metal separating the Mx metal from the Mx+1 metal. The embedded diffusion barrier may include a barrier-forming material such as manganese, aluminum, titanium, or some combination thereof. The seed alloy region may include a seed material such as cobalt, ruthenium, or some combination thereof.
US09691655B1 Etch stop in a dep-etch-dep process
Described herein is a method of forming semiconductor devices. The method comprises depositing an etch stop layer of titanium aluminum carbide in a cavity of a semiconductor device; depositing a first layer of metal on the etch stop layer; etching the first layer of metal to create an etch-modified surface of the first layer of metal; and depositing a second layer of metal on the etch-modified surface of the first layer of metal.
US09691650B2 Substrate transfer robot with chamber and substrate monitoring capability
A method and apparatus for a transfer robot that having at least one image sensor disposed thereon is provided. The transfer robot includes a lift assembly having a first drive assembly for moving a first platform relative to a second platform in a first linear direction, an end effector assembly disposed on the second platform and movable in a second linear direction by a second drive assembly, the second linear direction being orthogonal to the first linear direction, at least one image sensor, and a lighting device associated with the at least one image sensor.
US09691649B2 Linear vacuum robot with z motion and articulated arm
There is described apparatus and methods for transporting and processing substrates including wafers as to efficiently produce at reasonable costs improved throughput as compared to systems in use today. A linear transport chamber includes linear tracks and robot arms riding on the linear tracks to linearly transfer substrates along the sides of processing chambers for feeding substrates into a controlled atmosphere through a load lock and then along a transport chamber as a way of reaching processing chambers. A four-axis robot arm is disclosed, capable of linear translation, rotation and articulation, and z-motion.
US09691648B2 Particle supply device and particle supply method
A particle supply device according to one embodiment includes a housing and a particle supplier. The housing seals a space between a substrate carry-out port provided in a FOUP and a substrate carry-in port provided at a load port of a substrate processing device. A particle supplier supplies particles to an inside of the housing.
US09691647B2 Holding apparatus for holding substrates
The present disclosure relates to a holding apparatus for holding substrates, comprising: a case, and a first support rod and a second support rod, the first support rod is provided with first support sub-rods, and the second support rod is provided with second support sub-rods, the holding apparatus further comprising: a first adjusting mechanism configured to control the first support sub-rods at a first position to move in a direction perpendicular to the first support rod, so as to adjust gaps between the first support sub-rods and the second support sub-rods at a second position corresponding to the first position, and/or a second adjusting mechanism configured to control the second support sub-rods at the second position to move in a direction perpendicular to the second support rod, so as to adjust gaps between the second support sub-rods and the first support sub-rods at the first position.
US09691646B2 Substrate processing apparatus, substrate detection method of substrate processing apparatus and storage medium
A liquid processing apparatus includes a substrate holding and rotating unit provided with a rotating plate and a substrate support unit, and a liquid supply unit. The rotating plate is connected to a rotating shaft and a central portion of the rotating shaft is exposed to outside through an opening of the rotating plate. A ring-shaped retro-reflective sheet is attached to the central portion of the rotating shaft. The central opened part of the ring-shaped retro-reflective sheet is positioned on the extended line of the central axis of the wafer holding and rotating unit. Further, a supply pipe penetrates through the central opened part of the retro-reflective sheet. Laser light is irradiated to the retro-reflective sheet from the slanted upper side, the reflected light is received by the laser light projecting/receiving part, and presence or absence of the wafer is detected by a substrate detection unit.
US09691640B2 Mechanisms for cleaning load ports of semiconductor process tools
Embodiments of mechanisms for cleaning load ports of semiconductor process tools are provided. The automatic system includes a vacuum cleaner, a rail, and a transport mechanism. The transport mechanism is moveably disposed on the rail and transfers the vacuum cleaner along the rail. The automatic system also includes a system controller. The system controller is connected to the semiconductor process tools and the transport mechanism to detect which load port is unoccupied, such that the system controller controls the transport mechanism to transfer the vacuum cleaner to the unoccupied load port to perform a cleaning process.
US09691639B2 Process container
In order to provide a process container for carrying out a cleaning process, a drying process, a deburring process, a coating process and/or a coating removal process on a workpiece in the interior of the process container, comprising a wall delimiting the interior of the process container, which is usable in a maintenance-friendly and flexible manner, it is proposed that the process container comprises at least one medium passage, by means of which a medium is guidable through the wall of the process container, at least two different process elements of different types being adaptable to at least one of the medium passages.
US09691638B2 Apparatus for treating substrate and method for discharging supercritical fluid
Provided are an apparatus for treating a substrate and a method for discharge a supercritical fluid, and more particularly, an apparatus for treating a substrate using a supercritical fluid and a method for discharging the supercritical fluid using the same. The apparatus for treating the substrate includes a container for providing a supercritical fluid, a vent line through which the supercritical fluid is discharged from the container, and a freezing prevention unit disposed in the vent line to prevent the supercritical fluid from being frozen.
US09691636B2 Interposer frame and method of manufacturing the same
The mechanisms of using an interposer frame to form a PoP package are provided in the disclosure. The interposer frame is formed by using a substrate with one or more additives to adjust the properties of the substrate. The interposer frame has openings lined with conductive layer to form through substrate vias (TSVs) with solder balls on adjacent packages. The interposer frame enables the reduction of pitch of TSVs, mismatch of coefficients of thermal expansion (CTEs), shorting, and delamination of solder joints, and improve mechanical strength of the package.
US09691634B2 Method for creating through-connected vias and conductors on a substrate
A method for creating electrically or thermally conductive vias in both vertical and horizontal orientations in a dielectric material has the steps of: (a) depositing a powder comprising metallic particles on a planar surface of a dielectric material having through or blind vias; (b) drying the deposited powder of metallic particles; (c) polishing the powder of metallic powders into the through or blind vias; (d) repeating steps (a)-(c) on a reverse side of the dielectric material; and (e) repeating steps (a)-(d) until no unfilled vias are detected.
US09691630B2 Etching method
An etching method includes loading a target substrate W into a chamber 40, the target substrate W having a silicon nitride film formed thereon and at least one of a polysilicon film and a silicon oxide film formed adjacent to the silicon nitride film; supplying a fluorine (F)-containing gas and an O2 gas into the chamber 40, while at least the O2 gas is excited; and selectively etching the silicon nitride film with respect to at least one of the polysilicon film and the silicon oxide film using the F-containing gas and the O2 gas.
US09691629B2 Compositions and methods for the selective removal of silicon nitride
Compositions useful for the selective removal of silicon nitride materials relative to polysilicon, silicon oxide materials and/or silicide materials from a microelectronic device having same thereon. The removal compositions include fluorosilicic acid, silicic acid, and at least one organic solvent. Typical process temperatures are less than about 100° C. and typical selectivity for nitride versus oxide etch is about 200:1 to about 2000:1. Under typical process conditions, nickel-based silicides as well as titanium and tantalum nitrides are largely unaffected, and polysilicon etch rates are less than about 1 Å min−1.
US09691628B2 Process for silicon nitride removal selective to SiGex
A method for selectively removing silicon nitride is described. In particular, the method includes providing a substrate having a surface with silicon nitride exposed on at least one portion of the surface and SiGex (x is greater than or equal to zero) exposed on at least another portion of the surface, and dispensing an oxidizing agent onto the surface of the substrate to oxidize the exposed SiGex. Thereafter, the method includes dispensing a silicon nitride etching agent as a liquid stream onto the surface of the substrate to remove at least a portion of the silicon nitride.
US09691626B1 Method of forming a pattern for interconnection lines in an integrated circuit wherein the pattern includes gamma and beta block mask portions
A method of forming a pattern includes providing a structure having an etch mask layer disposed over a pattern layer disposed over a dielectric layer. Disposing first and second trench plugs having different material compositions in the etch mask layer, the first and second trench plugs overlaying gamma and beta block mask portions respectively of the pattern layer. Forming an array of self-aligned spacers disposed on sidewalls of mandrels, the spacers and mandrels defining alternating beta and gamma regions extending normally to the dielectric layer, the gamma region and beta regions extending though portions of the first and second trench plug respectively. Selectively etching the structure to remove any portion of the first trench plug within the beta region and any portion of the second trench plug within the gamma region. Selectively etching the structure to form a pattern in the pattern layer including the block mask portions.
US09691625B2 Methods and systems for plasma etching using bi-modal process gas composition responsive to plasma power level
A substrate is disposed on a substrate holder within a process module. The substrate includes a mask material overlying a target material with at least one portion of the target material exposed through an opening in the mask material. A bi-modal process gas composition is supplied to a plasma generation region overlying the substrate. For a first period of time, a first radiofrequency power is applied to the bi-modal process gas composition to generate a plasma to cause etching-dominant effects on the substrate. For a second period of time, after completion of the first period of time, a second radiofrequency power is applied to the bi-modal process gas composition to generate the plasma to cause deposition-dominant effects on the substrate. The first and second radiofrequency powers are applied in an alternating and successive manner for an overall period of time to remove a required amount of exposed target material.
US09691618B2 Methods of fabricating semiconductor devices including performing an atomic layer etching process
Provided are a semiconductor device fabricating apparatus configured to perform an atomic layer etching process and a method of fabricating a semiconductor device including performing the atomic layer etching process. The method includes loading a wafer onto an electrostatic chuck in a chamber, performing a first periodical process in which a first gas is supplied to an inside of the chamber and the first gas is adsorbed onto the wafer, performing a second periodical process in which a second gas is supplied to the inside of the chamber and the first gas remaining in the chamber is exhausted to an outside of the chamber, performing a third periodical process in which a third gas is supplied to the inside of the chamber, plasma including the third gas is generated, the plasma collides with the wafer, and the first gas adsorbed onto the wafer is removed, and unloading the wafer to the outside of the chamber.
US09691616B2 Method of manufacturing silicon carbide semiconductor device by using protective films to activate dopants in the silicon carbide semiconductor device
A method of manufacturing a silicon carbide semiconductor device includes a step of preparing a silicon carbide substrate having a first main surface and a second main surface located opposite to the first main surface, a step of forming a doped region in the silicon carbide substrate by doping the first main surface with an impurity, a step of forming a first protecting film on the first main surface, and a step of forming a second protecting film on the second main surface, the step of forming a first protecting film being performed after the step of forming a doped region, the method further including a step of activating the impurity included in the doped region by annealing with at least a portion of the first main surface covered with the first protecting film and at least a portion of the second main surface covered with the second protecting film.
US09691607B2 Process for producing epitaxial silicon carbide single crystal substrate and epitaxial silicon carbide single crystal substrate obtained by the same
Disclosed is a process for producing an epitaxial single-crystal silicon carbide substrate by epitaxially growing a silicon carbide film on a single-crystal silicon carbide substrate by chemical vapor deposition. The step of crystal growth in the process comprises a main crystal growth step, which mainly occupies the period of epitaxial growth, and a secondary crystal growth step, in which the growth temperature is switched between a set growth temperature (T0) and a set growth temperature (T2) which are respectively lower and higher than a growth temperature (T1) used in the main crystal growth step. The basal plane dislocations of the single-crystal silicon carbide substrate are inhibited from being transferred to the epitaxial film. Thus, a high-quality epitaxial film is formed.
US09691604B2 LDMOS transistor and fabrication method thereof
A LDMOS transistor includes a semiconductor substrate with a first doping type; a plurality of first trenches formed in the semiconductor substrate; a wave-shaped drift region with an increased conductive path and a second doping type formed on the semiconductor substrate between adjacent first trenches and the semiconductor substrate exposed by side and bottom surfaces of the first trenches; a first shallow trench isolation (STI) structure formed in each of the first trenches; a body region with the first doping type formed in semiconductor substrate at one side of the drift region; a gate structure formed over portions of the body region, the drift region and the first STI structure most close to the body region; a source region formed in the body region; and a drain region formed in the drift region at one side of the first STI structure most far away from the body region.
US09691603B2 Chemical for forming protective film
Disclosed is a liquid chemical for forming a water repellent protective film on a wafer that has at its surface a finely uneven pattern and contains silicon element at least at a part of the uneven pattern, the water repellent protective film being formed at least on surfaces of recessed portions of the uneven pattern at the time of cleaning the wafer. The liquid chemical contains: a silicon compound (A) represented by the general formula R1aSi(H)b(X)4−a−b and an acid; or a silicon compound (C) represented by the general formula R7gSi(H)h(CH3)w(Z)4−g−h−w and a base that contains no more than 35 mass % of water. The total amount of water in the liquid chemical is no greater than 1000 mass ppm relative to the total amount of the liquid chemical. The liquid chemical can improve a cleaning step that easily induces pattern collapse.
US09691601B2 Supporting unit and substrate-treating apparatus including the same
A supporting unit is provided. The supporting unit includes a body, an alignment member, at least one sensor, and a controller. The body has a top surface supporting a target object. The alignment member is disposed in the body and adjusts a position of the target object. The sensor senses the position of the target object. The controller controls the alignment member and the sensor member. The alignment member includes a magnet that adjusts the position of the target object according to an electromagnetic force; and a coil that applies the electromagnetic force to the magnet.
US09691600B2 Ultraviolet light emitting device
An ultraviolet light emitting device includes: a first substrate; a second substrate; a gas in a space between the first substrate and the second substrate; electrodes directly or indirectly on a first main surface of the first substrate; a dielectric layer that is located in a first region directly or indirectly on the first main surface of the first substrate and covers the electrodes, the dielectric layer being not located in a second region directly or indirectly on the first main surface of the first substrate, the second region being different from the first region, the first region including regions in which the electrodes are located; and a light-emitting layer that is located in the second region and/or located directly or indirectly on at least one of second and third main surfaces of the second substrate and emits the ultraviolet light in the gas due to electrical discharge between the electrodes.
US09691597B2 Electrically conductive and filtrating substrates for mass spectrometry
A mass spectrometry substrate includes an electrically conductive material providing an electrical conductivity that allows at least one of a first and a second surface of the substrate to be maintained at a desirable potential for ion extraction while ions are desorbed during ionization. A solid lattice material comprises a plurality of pores positioned in a plurality of layers that form a network of at least one continuous channel extending from a first surface of the substrate to a second surface of the substrate. Each of the plurality of pores are dimensioned and positioned in the plurality of layers so that a first group of substances are adsorbed or absorbed on the first surface and a second group of substances are adsorbed or absorbed on the second surface.
US09691594B2 Method for analysis of sample and apparatus therefor
A thermal analysis step, a molecule ionization step and a molecular structure analysis step are executed in parallel to a temperature increasing step. In the molecule ionization step, component molecules contained in gas evolved from a sample S due to temperature increase are ionized, and in the molecular structure analysis step, any selected ion out of molecular ions obtained in the molecule ionization step is dissociated to generate fragment ions corresponding to the structural factors of the molecule, and the structure of the molecule is analyzed on the basis of the fragment ions.