Document Document Title
US09681109B2 Systems and methods for configurable demodulation
Exemplary embodiments are directed to configurable demodulation of image data produced by an image sensor. In some aspects, a method includes receiving information indicating a configuration of the image sensor. In some aspects, the information may indicate a configuration of sensor elements and/or corresponding color filters for the sensor elements. A modulation function may then be generated based on the information. In some aspects, the method also includes demodulating the image data based on the generated modulation function to determine chrominance and luminance components of the image data, and generating the second image based on the determined chrominance and luminance components.
US09681108B2 Occupancy sensor and associated methods
A device to detect occupancy of an environment includes a sensor to capture video frames from a location in the environment. The device may compare rules with data using a rules engine. The microcontroller may include a processor and memory to produce results indicative of a condition of the environment. The device may also include an interface through which the data is accessible. The device may generate results respective to the location in the environment. The microcontroller may be in communication with a network. The video frames may be concatenated to create an overview to display the video frames substantially seamlessly respective to the location in which the sensor is positioned. The overview may be viewable using the interface and the results of the analysis performed by the rules engine may be accessible using the interface.
US09681103B2 Distributed control of a heterogeneous video surveillance network
A surveillance video broker arbitrates access by multiple clients to multiple surveillance video sources. Both clients and sources register with the broker. Each source independently specifies respective clients permitted real-time access to its video and conditions of access, if any. Preferably, the video source is a local surveillance domain having one or more cameras, one or more sensors, and a local controller, the source specifying clients or client groups permitted access, and independently specifying conditions of access for each client or client group, where conditions may include scheduled events, non-scheduled events, such as alarms or emergencies, and/or physical proximity. The broker automatically authorizes real-time access according to pre-specified conditions. Preferably, the broker can also arbitrate alert notifications to the clients based on pre-specified notification criteria.
US09681096B1 Light field capture
This disclosure pertains to operations, systems, and computer readable media to capture images of a scene using a camera array and process the captured images based on a viewer's point of view (POV) for immersive augmented reality, live display wall, head mounted display, video conferencing, and similar applications. In one implementation, the disclosed subject matter provides a complete view to a viewer by combining images captured by a camera array. In another implementation, the disclosed subject matter tracks the viewer's POV as he moves from one location to another and displays images in accordance with his varying POV. The change of the viewer's POV is inclusive of movements in the X, Y, and Z dimensions.
US09681089B2 Method for capturing content provided on TV screen and connecting contents with social service by using second device, and system therefor
Disclosed are a method for capturing content provided on a TV screen and connecting the content with a social service by using a second device, and a system therefor. A capture service system comprises: a service server for obtaining profile information on a user from a social service server in which a second terminal or the user is registered, if the user requests content, which is being reproduced in a first terminal, to be captured by using the second terminal; and a media server for capturing an image or video of the content according to copyright information of the content requested to be captured by the user. At this point, the service server can receive the captured image or video from the media server and provide the received image or video to the second terminal.
US09681088B1 System and methods for movie digital container augmented with post-processing metadata
A processing server that builds metadata is disclosed. The server comprises a processor, a memory, and an application stored in the memory. The application when executed by the processor formats data into a data container, wherein the data comprises audio and video files of a movie. The application then builds metadata, wherein the metadata details what post-processing has been done on the data, wherein the metadata identifies what processing and algorithms are applied to the data and supports selection of data by a playback device. The application then writes metadata into the data container, wherein the playback device applies additional post-processing to the data in the data container based on the metadata.
US09681085B2 Display apparatus
Disclosed herein is a display apparatus having a slim display body to display pictures. Main components, such as a switching mode power supply and a main board, are disposed in a base unit, and a drive board mounted to a display module is connected to the switching mode power supply and the main board such that power is supplied to the display module and the main board transmits and receives a control signal. The base unit serves as a stand to support the display body below the display body. Also, the base unit is fixed to the rear of the display body to mount the display apparatus to a wall. A connection unit to connect the display body and the base unit is provided to change the position of the base unit. The connection unit is hingedly rotatable with respect to the display body and the base unit.
US09681084B2 Ramp signal generator and CMOS image sensor using the same
Disclosed are a ramp signal generator capable of reducing the size of a feedback capacitor by using a current subtraction and a CMOS image sensor using the same. The ramp signal generator may include a current supply unit suitable for supplying a first current; a current subtraction unit suitable for subtracting the first current from a second current, or the second current from the first current; and a ramp signal generation unit suitable for generating a ramp signal according to a third current and a reference voltage. The third current is a result of the subtraction.
US09681082B2 Analog-to-digital converter configured to operate at high speed and image sensor including the same
Provided is an image sensor including a pixel array including a plurality of pixels and an analog-to-digital converter (ADC) configured to compare a reference voltage with an analog voltage output by the pixel array and latch and decode a comparison result. The ADC is controlled in response to clock information and a counter clock, which are obtained by expanding and encoding a master clock.
US09681080B2 DA converter, solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
Disclosed is a digital-analog converter including a current generation section, a current source transistor bias voltage keeping section, a cascade transistor group switch section, and a conversion section. The current generation section has at least one current source transistor group including a plurality of current source transistors and generates an output current based on a value of a digital input signal. The current source transistor bias voltage keeping section has a plurality of cascade transistor groups each including cascade transistors connected in series to the current source transistors and keeps bias voltages of the current source transistors constant. The cascade transistor group switch section selects one of the plurality of cascade transistor groups. The conversion section performs current-voltage conversion of the output current supplied via the selected cascade transistor group.
US09681069B2 Spatio-temporal light field cameras
Spatio-temporal light field cameras that can be used to capture the light field within its spatio temporally extended angular extent. Such cameras can be used to record 3D images, 2D images that can be computationally focused, or wide angle panoramic 2D images with relatively high spatial and directional resolutions. The light field cameras can be also be used as 2D/3D switchable cameras with extended angular extent. The spatio-temporal aspects of the novel light field cameras allow them to capture and digitally record the intensity and color from multiple directional views within a wide angle. The inherent volumetric compactness of the light field cameras make it possible to embed in small mobile devices to capture either 3D images or computationally focusable 2D images. The inherent versatility of these light field cameras makes them suitable for multiple perspective light field capture for 3D movies and video recording applications.
US09681066B2 Facilitating improved calibration of captured infrared data values by an IR imaging system in a thermography arrangement
A method for improved calibration of captured infrared data values by an IR imaging system in a thermography arrangement dependent on an infrared (IR) image depicting an observed real world scene. The IR image may be captured by a thermography arrangement including the IR imaging system, wherein infrared (IR) image is related to temperature dependent on IR calibration parameters. A predefined feature may be detected from the IR image, and the IR imaging system may be calibrated based on the predefined feature.
US09681063B2 Method of generating image by compensating excluded pixel data and image generation device therewith
A method of generating an image using an image capturing device includes generating an imperfect image excluding data corresponding to one or more pixel sensors by capturing an object while the object is focused. A defocused image is generated to include the data corresponding to the one or more pixel sensors generated using neighboring pixel sensors around the one or more pixel sensors while the object is defocused. The data corresponding to the one or more pixel sensors is extracted based on data in the generated imperfect image and data in the generated defocused image. A final image is then generated by reflecting the extracted data to at least one of the generated imperfect image or the generated defocused image.
US09681059B2 Image-capturing device
An image-capturing device includes an image-capturing unit 30 including a first image-capturing element 41, a second image-capturing element 51, a third image-capturing element 61, and a fourth image-capturing element 71, and includes an image processing unit 11, wherein a sensitivity of the fourth image-capturing element 71 is less than sensitivities of the first image-capturing element 41 to the third image-capturing element 61, and the image processing unit 11 generates high sensitivity image data on the basis of outputs from the first image-capturing element 41 to the third image-capturing element 61, and generates low sensitivity image data on the basis of an output from the fourth image-capturing element 71, and further, the image processing unit 11 generates a combined image using high sensitivity image data corresponding to a low illumination image area in the low illumination image area obtained from the low sensitivity image data or the high sensitivity image data, and using low sensitivity image data corresponding to an high illumination image area.
US09681057B2 Exposure timing manipulation in a multi-lens camera
The exposure of pixel lines in one or more image sensor regions is substantially synchronized. Each image sensor region is associated with a different lens in a multi-lens camera system. For a first pixel line in a first image sensor region and a second pixel line in a second image sensor region corresponding to the same portion of a field of view, the first pixel line and the second pixel line are sequentially or substantially simultaneously exposed. After exposing the first pixel line and the second pixel line, image information associated with the exposures is combined and output on the same readout line.
US09681056B2 Imaging system, display system, and optical device including plurality of optical systems that have a plurality of optical axes
An imaging system includes: an imaging device; and an optical device that forms a subject image on an imaging plane of an imaging element and that is freely attachable to and detachable from the imaging device. The optical device includes a combination of a plurality of optical systems to provide a plurality of optical axes. The plurality of optical systems include: a plurality of first imaging optical systems; and a second imaging optical system having a view angle narrower than that of each of the plurality of first imaging optical systems. The plurality of first imaging systems are respectively arranged to surround the second imaging optical system, as viewed from a subject side.
US09681055B2 Preview system for concurrently displaying multiple preview images generated based on input image generated by image capture apparatus and related preview method thereof
A preview system of an image capture apparatus has a processing circuit and a display apparatus. The processing circuit reads an input image, scales at least a portion of the input image to generate a first preview image, and derives a second preview image from a selected portion of the input image. The display apparatus displays the first preview image and the second preview image, concurrently. Besides, a preview method for an image capture apparatus includes at least the following steps: reading an input image; scaling at least a portion of the input image to generate a first preview image; deriving a second preview image from a selected portion of the input image; and displaying the first preview image and the second preview image on a display apparatus, concurrently.
US09681051B2 Method and apparatus for motion coded imaging
An imaging apparatus and corresponding method according to an embodiment of the present invention enables high-resolution, wide-field-of-view, high sensitivity imaging. An embodiment of the invention is a camera system that utilizes motion of an optical element, such as a spatial filtering mask or of the camera itself, to apply different spatial filtering functions to a scene to be imaged. Features of a spatial filtering mask implementing the different filtering functions are adjacent along an axis of the spatial mask, and a pitch of the features of the mask is smaller than a pitch of the sensor elements. An imaging reconstructor having knowledge of the filtering functions can produce a high-resolution image from corresponding low-resolution coded imaging data captured by the imaging system. This approach offers advantages over conventional high-resolution, wide-field imaging, including an ability to use large-pitch, lower cost sensor arrays, and transfer and store much less data.
US09681048B2 Image capturing apparatus and method for controlling the same
An image capturing apparatus includes an image capturing unit, a control unit, and a notification unit. The control unit controls the image capturing unit so that a first shooting operation and a second shooting operation are sequentially performed at an interval not smaller than a predetermined time period. The notification unit issues a notification constantly during the predetermined time period of the interval.
US09681047B2 Image feature extraction method and system
Disclosed is an image feature extraction method including a step of defining a combination of at least two kinds of solid angles along at least two directions, of an input spherical image; a step of determining respective values of the combination of the at least two kinds of solid angles, so that surface areas of spherical crowns of spherical segments, which are obtained by dividing the spherical image by the respective values of the combination of the at least two kinds solid angles, have a same value; and a step of generating, by utilizing the respective values of the combination of the at least two kinds of solid angles, an image feature template so as to conduct image feature extraction.
US09681046B2 Image stitching in a multi-camera array
Images captured by multi-camera arrays with overlap regions can be stitched together using image stitching operations. An image stitching operation can be selected for use in stitching images based on a number of factors. An image stitching operation can be selected based on a view window location of a user viewing the images to be stitched together. An image stitching operation can also be selected based on a type, priority, or depth of image features located within an overlap region. Finally, an image stitching operation can be selected based on a likelihood that a particular image stitching operation will produce visible artifacts. Once a stitching operation is selected, the images corresponding to the overlap region can be stitched using the stitching operation, and the stitched image can be stored for subsequent access.
US09681045B2 Systems and methods for generating a panoramic image
Systems and methods for generating a panoramic image include capturing image data from a plurality of cameras and storing the image data within a memory buffer of the respective camera; transmitting image data from an upstream camera to a downstream camera; and combining, within the downstream camera, the image data from the upstream camera with the image data of the downstream camera as combined image data. Each of the plurality of cameras may include an imaging array for capturing image data of a scene; a receiver for receiving image data from an upstream camera of the plurality of cameras; a memory buffer for: combining the image data received from the upstream camera with image data captured by the imaging array to form combined image data, and storing the combined image data; and a transmitter for transmitting the stored combined image data to a downstream camera of the plurality of camera.
US09681038B2 Mobile terminal and method for setting a focal point value
A mobile terminal for capturing an image and a method for controlling the same are provided. The mobile terminal includes a camera unit configured to receive an external image and process the received image to an image frame, and a control unit configured to set a focal point value of the image frame received from the camera unit, wherein the focal point value is a focal point value obtained by correcting a first focal point value extracted according to a first scheme of detecting a focal point value by using a phase difference of the image by using a second focal point extracted according to a second scheme of detecting a focal point by using a comparison value of the image.
US09681037B2 Imaging apparatus and its control method and program
An imaging apparatus includes an imaging unit for picking up an optical image of an object and generating image pickup data which can be refocused, a detection unit for detecting a focus state of the optical image of the object, a prediction unit for predicting an in-focus position of the optical image of the object on the basis of a detection result of the detection unit, and a focus adjustment unit for driving a focus lens on the basis of the in-focus position predicted by the prediction unit, wherein in a case where the imaging unit picks up a plurality of images from the object, the focus adjustment unit drives the focus lens to a position deviated from the in-focus position predicted by the prediction unit by a predetermined amount, and has a plurality of patterns of a position deviated by the predetermined amount.
US09681035B2 Method and apparatus for external control of a mobile device using an electromagnetic signal independently of whether the signal is compliant with proximity communications supported by the mobile device
A method and apparatus (100) are disclosed for wirelessly communicating by a proximity communication circuitry comprising an antenna with a proximate device (200) according to a proximity communication protocol. The proximity circuitry is disabled when not needed. Voltage in the antenna caused by an electromagnetic power signal (222) is detected when the proximity communication circuitry is disabled. The detection of voltage is independent of whether the electromagnetic signal (222) complies with the proximity communication protocol. An event is triggered in response to the detected voltage. Correspondingly a method and device (200) for externally controlling the apparatus (100) are disclosed in which a user command is detected and responsively to the user command, an electromagnetic signal (222) is transmitted to the apparatus (100) for triggering the event. The electromagnetic signal (222) has a regular wave form.
US09681034B2 Integrated substrate for anti-shake apparatus
An integrated substrate for an anti-shake apparatus defined with an optical axis includes: a substrate, a lens module, an anti-shake apparatus and an image-sensing module. The substrate includes a frame having a predetermined thickness. The frame includes a first surface, a second surface, a first circuit layout, and a second circuit layout. The lens module is located above the substrate on the optical axis. The anti-shake apparatus is furnished between the lens module and the substrate. The image-sensing module has an active side and an inactive side, and the inactive side is furnished onto the second surface. The active side is located on the optical axis in a manner of facing the lens module. The anti-shake apparatus is coupled to the first circuit layout, while the image-sensing module is coupled to the second circuit layout. The first and second circuit layouts comprise a plurality of first and second metal leads, respectively.
US09681031B2 Moving magnet for auto-focus
In some embodiments, the actuator module includes an voice coil motor base, a coil rigidly attached to the voice coil motor base, a lens movement mechanism suspended on the voice coil motor base by a suspension means configured to limit relative motion in linear directions orthogonal to an optical axis of the miniature camera, and a plurality of magnets rigidly mounted to the lens movement mechanism.
US09681024B2 Image processing apparatus, control method, and computer-readable recording medium configured to perform error diffusion process having and adder to add an error intergrated value diffused to the target pixel, the green noise and the predetermined noise, to the pixel value of the target pixel
An image processing apparatus receiving a pixel value of a multivalue image includes: an input noise generating section that generates a noise; a green noise generating section that generates a green noise from an output value of a binarized processed pixel; an adder section that adds an error integrated value, the green noise and the noise, to the pixel value of the target pixel; the threshold value processing section that binarizes the pixel value of the target pixel after adding the error integrated value, the green noise and the noise; a subtractor section that calculates an error value by calculating a difference between an output value of the binarized target pixel and the pixel value of the target pixel including the error integrated value and the noise; and an error integrating section that outputs the error integrated value by using the error value of the binarized processed pixel.
US09681022B2 Image processing apparatus, image processing method, and recording medium
An image processing apparatus includes a geometric correction unit to generate a plurality of pieces of pixel value corrected image data having different pixel values based on object information of input image data, a synthesizer to select a pixel value to be applied to each pixel from the plurality of pieces of pixel value corrected image data to generate corrected image synthesized data, and a pseudo grayscale processor to perform a pseudo grayscale process on the corrected image synthesized data.
US09681021B2 Printing device, printing system, control method of a printing device, and storage medium
Terminating a wireless connection is simplified. A printer has a print unit configured to print on a recording medium; a wireless communication unit configured to connect wirelessly and communicate wirelessly with an external device; and a control unit configured to control the print unit based on print data received from the external device, and execute a communication termination process to terminate the wireless connection when a command instructing terminating the wireless connection is received from the external device.
US09681020B2 Creation and identification of unforgeable printable image information data
The present application relates to a method for producing and authenticating unforgeable printable image comprising information color values and inference color values. The present application further provides for unforgeable printed images.
US09681019B2 Control device and image processing system
A control device is configured to: control the scanner unit, when a first instruction is received from a user to insert a first scanned data in a first file stored in a file storage server, to scan a document to generate the first scanned data; and to provide a first insertion request to the file storage server through a communication interface, the first insertion request requesting the file storage server to insert the first scanned data at a target location in the first file, the target location being a location designated by the user through a terminal device that is configured separately from the control device.
US09681018B2 Information processing device and non-transitory computer-readable medium storing instructions for print control
An information processing device is connected to a printing device, and has a storage device. Multiple pieces of application-generated data corresponding to multiple documents are generated by an application program. When a piece of application-generated data is obtained, it is temporarily stored in a storage device every time. When a particular print instruction is received, multiple pieces of application-generated data stored in the storage device are combined to generate a single piece of combined print data. The combined print data representing a combination of the multiple pieces of application-generated data respectively corresponding to multiple documents. The pages of images represented by the combined print data are continuously arranged, and is output to the printing device.
US09681017B2 Arrangement for image processing
A method and an apparatus arranged to obtain raw image data acquired by an image sensor to be applied in an image processing algorithm; adjust, in the processor miming the image processing algorithm, logical dimensions of the image such that logical width of the image is doubled and logical height of the image is halved; adjust the image processing algorithm to take into account the adjusted logical dimensions of the image; and apply the image processing algorithm with the adjusted logical dimensions of the image.
US09681016B2 Methods and systems for capturing, sharing, and printing annotations
Embodiments of the disclosure disclose methods, and systems for capturing, sharing and printing annotations. The method includes receiving a physical document including hand-written annotation, the hand-written annotation is made by a user corresponding to at least a portion of the physical document. The method further includes capturing the hand-written annotation and corresponding position information of the hand-written annotation, wherein capturing further includes capturing position information of the at least portion of the physical document. Further, the method includes storing the captured hand-written annotation, position information of the hand-written annotation and position information of the at least portion of the physical document. Moreover, the method includes associating the hand-written annotation to the at least portion of the physical document. Additionally, the method includes sharing the hand-written annotation with other users.
US09681014B2 Image reading apparatus and image forming apparatus equipped therewith
An image reading apparatus has a light source unit for illuminating an object to be illuminated, a reading unit for reading the object illuminated by the light source unit, a reflective unit, having at least a first reflection mirror, for reflecting reading light reflected by the object toward the reading unit, and a first light blocking portion for partially blocking light except the reading light. The first reflection mirror has a reflecting surface for reflecting the reading light, and an end surface substantially orthogonal to the reflecting surface. The first light blocking portion extends in a longitudinal direction of the first reflection mirror toward the end surface of the first reflection mirror, with a tip end of the first light blocking portion being opposed to the end surface of the first reflection mirror with a gap therebetween.
US09681013B2 Methods and systems facilitating generation of digital representations of objects
Disclosed herein is a system, method and computer implemented method of facilitating generation of a digital representation of one or more physical objects. The method may include scanning a first part of the one or more physical objects to obtain image data corresponding to the first part. The scanning may be performed based on a first set of values corresponding to one or more parameters. The image data corresponding to the first part may be a digital representation of the first part. The method may further include determining a size of image data corresponding to the first part. Additionally, the method may include displaying information based on the size of the image data corresponding to the first part, prior to receiving image data corresponding to a second part of the one or more physical objects.
US09681012B2 Colour measurement device and colour measurement method
A color measurement device acquires an image of a relative position calibration chart. The relative position calibration chart includes a calibration figure having a given calibration feature that has a position that is detectable along at least one of a first and a second direction. A color measurement of the relative position calibration chart is performed. Relative position relationship-related information is derived based on the calibration feature in the image of the relative position calibration chart and the calibration feature in the color measurement of the relative position calibration chart. A color of each patch of a number of patches of a color chart is measured at a position corresponding to one of the patches while correcting the position of the patch based on the position relationship-related information.
US09681008B2 Sheet conveying apparatus and image reading apparatus
An operation panel is integrated into a conveying unit, and the operation panel and a conveying roller are displaced with respect to each other in a sheet width direction crossing a sheet conveying direction. The operation panel and the conveying roller are located in a manner at least partly overlapping each other in the sheet conveying direction and a height direction in the conveying unit. Further, the operation panel and the conveying roller are at least partly located within a range of a width of a sheet conveying area by the conveying unit.
US09681002B2 Improving charging information accuracy in a telecommunications network
A method for improving charging information accuracy in a telecommunications network with respect to a target user equipment includes: in case of a handover or cell change procedure from a first base transceiver station to a second base transceiver station regarding the target user equipment, transmitting first non-delivered packet data volume information from the first base transceiver station to the second base transceiver station using at least one of the following: an X2 interface between the first base transceiver station and the second base transceiver station, an S1 interface between the first base transceiver station and the core network and the S1 interface between the core network and the second base transceiver station, and user equipment history information regarding the target user equipment; and determining, based on the first non-delivered packet data volume information, the second non-delivered packet data volume information.
US09680987B2 Mobile terminal and controlling method thereof
A mobile terminal and controlling method thereof are disclosed. The present invention includes a wireless communication unit configured to perform a wireless communication, a touchscreen having a front output unit exposed from a front side of the touchscreen and at least one lateral output unit exposed from a lateral side of the touchscreen, and a controller, if an event occurs, controlling an object to be displayed on the lateral output unit to notify that the event occurs, the controller controls a detailed information on the event to be displayed through at least one of the front output unit and the lateral output unit in response to a input to the lateral output unit. Accordingly, the present invention outputs an alarm indicating an occurrence of an event and facilitates a content or substance of the occurring event to be checked.
US09680986B2 Automatically disabling the on-screen keyboard of an electronic device in a vehicle
A keyboard deactivation module includes a processor configured to generate an on-screen keyboard control signal, a CAN bus interface configured to connect to a CAN bus of a vehicle, and obtain vehicle speed information indicating a current speed of the vehicle from the vehicle via the CAN bus, and a Bluetooth radio configured to transmit the on-screen keyboard control signal to a target electronic device. An on-screen keyboard of the target electronic device is enabled in response to receiving the on-screen keyboard control signal while the vehicle speed information indicates that the current speed of the vehicle is below a specified threshold, and the on-screen keyboard of the target electronic device is disabled in response to receiving the on-screen keyboard control signal while the vehicle speed information indicates that the current speed of the vehicle is above a specified threshold. The keyboard deactivation module is mounted in the vehicle.
US09680982B2 Emergency communication device
An emergency communication system for use with a home network manager having one or more associated network elements. The system may comprise a processor that may communicate with at least one of the home network manager and the associated network elements, a input interface that may receive a plurality of sequential inputs and/or a management interface that may enable a user to program a plurality of programmable responses to a number of the sequential inputs, wherein each programmable response may include a user-programmable action to be activated via at least one of the emergency communication system, the home network manager and/or the associated network elements when, for example, the input interface receives the number of the sequential inputs, wherein when the input interface receives the number of the sequential inputs, the processor may communicate a corresponding user-programmed action to the at least one of the emergency communication system, the home network manager and/or the associated network elements.
US09680980B2 Electronic device accessory
Electronic devices and accessories such as headsets for electronic devices are provided. A microphone may be included in an accessory to capture sound for an associated electronic device. Buttons and other user interfaces may be included in the accessories. An accessory may have an audio plug that connects to a mating audio jack in an electronic device, thereby establishing a wired communications link between the accessory and the electronic device. The electronic device may include power supply circuitry for applying bias voltages to the accessory. The bias voltages may bias a microphone and may adjust settings in the accessory such as settings related to operating modes. User input information may be conveyed between the accessory and the electronic device using ultrasonic tone transmission. The electronic device may also gather input from the accessory using a voltage detector coupled to lines in the communications path.
US09680979B1 Telephone number adjustment
A method to adjust a phone number is provided. The method may include receiving a first phone call at a telephonic device and obtaining a phone number from the first phone call. In some embodiments, the phone number may identify an origin of the first phone call. The method may further include prepending a digit to the phone number and storing the phone number with the prepended digit in a memory in the telephonic device. In some embodiments, the method may further include using the stored phone number to initiate automatic placement of the second phone call.
US09680978B2 Apparatus and method for providing incoming and outgoing call information in a mobile communication terminal
Methods and apparatuses are provided for providing information. Phone numbers are stored in an address book in a memory of the terminal. Call history information for a phone number together with a first option for editing of information associated with the phone number are displayed on a display of the terminal, if the phone number is in the address book.
US09680975B2 Electronic device with reworkable midplate attachment structures
An electronic device may be provided with a display mounted in a display frame assembly that includes a plastic structure overmolded over a display frame. A housing midplate may be used to provide the electronic device with mechanical rigidity and strength, and may also be used as a sensor plane. For sensor plane applications, accurate placement and assembly of the midplate in the housing can be critical. The housing midplate may be accurately assembled to the display frame using connections formed using welded tabs, welded and screwed nuts, overmolded plastic heat stake structures, or overmolded plastic structures and adhesive. Rework and repair operations may be performed by disconnecting connections such as welds using cutting equipment, by using solvent to dissolve adhesive, by unscrewing welded nuts, or by removing heat stake structures. Following rework or repair, a fresh midplate and associated components may be attached to the display frame.
US09680974B2 Unibody contact features on a chassis shell of a mobile device
Several embodiments include a mobile device. The mobile device can include a circuit board configured to interconnect one or more electronic components and a chassis shell adapted to form an outer perimeter of the mobile device and to enclose the circuit board. The chassis shell can have an integral unibody that includes a contact feature integral to the chassis shell. A sensor system can be in contact with the chassis shell on an opposite side of the contact feature. The contact feature enables the sensor system to detect touch events when a user interacts with the contact feature.
US09680969B2 Communication device, communication method, and program
A duplication identifier, a substitutor, and a memory controller perform the steps of: comparing information newly acquired by an acquirer and information stored in an operation data memory; determining whether or not at least a portion of the newly acquired information matches a portion of the information stored in the operation data memory; when it is determined that there is no matching portion causing the information acquired by the acquirer to be stored in the operation data memory; and when it is determined that at least a portion of the newly acquired information matches a portion of the information stored in the operation data memory, substituting the information of the portion determined to match the information stored in the operation data memory among the newly acquired information with predetermined information with a smaller volume than the information of the portion, and storing the information in the operation data memory.
US09680965B2 Software upgrades for offline charging systems within a network
Systems and methods for performing a software upgrade for a first offline charging system (OFCS) having a plurality of virtual machines implementing charging functions for offline charging. For the upgrade, a controller identifies a subset of the virtual machines in the first OFCS to remove from service, transmits a request to a distributor to reduce the distribution of the accounting requests in proportion to the number of the virtual machines removed from service, and removes the subset of virtual machines from service in the first OFCS. The controller also constructs updated virtual machines having the software upgrade in a second OFCS to replace the virtual machines removed from the first OFCS, and transmits a request to the distributor to increase distribution of the accounting requests to the second OFCS in proportion to the number of the updated virtual machines constructed in the second OFCS.
US09680964B2 Programming model for installing and distributing occasionally connected applications
An application executing in a virtual environment, such as a web browser, may be serviced by an application host, such as a webserver that maintains application resources or provides runtime services to the application. However, it may be difficult to configure the application to operate suitably when the application host is unavailable. Techniques for facilitating such operation include the storing of application resources in a computing environment (such as the local file system or a deployable mesh or cloud environment) while also initiating the application within the virtual environment in the context of the application host, which may reduce difficulties with isolation policies imposed by the virtual environment (e.g., cross-domain restrictions imposed by the web browser.) This configuration may promote the servicing of the application alongside other applications and data objects, e.g., the automated deployment and synchronization of the application among all devices comprising the user's mesh environment.
US09680961B1 Dynamic scheduling of electronic content updates
A method comprises a server receiving a message from a device requesting content, reading a first time record for the previous receipt of content, comparing the first time record with a second time record for the content stored in cache, and sending, when the second time record is newer than the first time record, the requested content. When time records match, the device is advised of refresh time and to request later. When the message lacks a time record, the requested content is sent. When cache does not contain requested content, a data loader obtains content from a server. A message to the device advises the time to obtain the content and to request again later. When cache does not contain the content and the server is unavailable, the data loader determines the time of network availability. A message then advises of availability time and to request again later.
US09680959B2 Recommending content based on intersecting user interest profiles
This technology may generate recommendations of relevant content, based on determining intersections among one or more user interest profiles of users, who interact either synchronously or asynchronously. This technology may retrieve interest profiles for particular users, determine intersections among all user interest profiles (or among individual content recommendations), and create a group interest profile, update the particular users' interest profiles based on the group interest profile created, and generate recommendations of content that is determined to be relevant based on the group interest profile. A user may select items from these recommendations of content, add the user-selected content recommendations to a common group pool, generate a group interest profile based on the common group pool, and generate recommendations of content based on the group interest profile. Scores for the recommendations of content may be calculated and the top scoring ones may be displayed to the users in the group.
US09680958B2 System and method for programmable radio access networks
Disclosed is a novel base station that has a layer 1-3 protocol stack to control and process incoming/outgoing flows with user equipment (UE) and a Random Access Network (RAN) hypervisor virtualizing one or more instances, each instance corresponding to an active profile associated with the base station. Each such instance is associated with a given profile comprising: (1) an admission control module, (2) a handoff control module, and (3) a scheduling module. Also provided is a controller having: (1) an interface to communicate over a network with such base stations over a communication protocol to send the details of new profiles or modifications of existing profiles to such base stations, (2) a profile management application managing a database of a plurality of active profiles associated with the one or more base stations, and (3) a controller operating system that ensures that no two active profiles in said profile management application create conflicts in any of the one or more base stations.
US09680957B2 Adaptive bandwidth consumption optimization for wireless data connections
Embodiments are disclosed for caching multimedia content. An example in-vehicle computing system that adaptively caches multimedia data, the in-vehicle system including a memory, a position sensor, a receiver, and a processor. The position sensor provides a position signal indicative of a present location of the system. The receiver wirelessly receives multimedia data from a remote multimedia data source. The processor stores the received multimedia data in the memory, transfers multimedia data in the memory to a queue for playback when an amount of multimedia data saved in the memory is at least a first threshold value, and adjusts a size of the memory when a wireless communication channel is not available between the system and a remote multimedia data source.
US09680953B2 Cache and delivery based application data scheduling
A device receives configuration information that instructs the device about when to send content to a user device. The device also receives content from an application server at a first time, and stores the content. The device determines, based on the configuration information, that the content is to be sent to the user device, and sends the content to the user device based on the determination. The content is sent to the user device at a second time that is later than the first time.
US09680952B2 Content delivery network (CDN) cold content handling
A method of content delivery in a content delivery network (CDN), where the CDN is deployed, operated and managed by a content delivery network service provider (CDNSP). The CDN comprises a set of content servers and a domain name system (DNS). For a given content provider, a determination is first made whether the content provider has “cold content” delivery requirements by evaluating one or more factors that include: total content size, size of content objects expected to be served, uniqueness of content, total number of content objects, and a percentage of the total content size that is expected to account for a given percentage of traffic. Upon a determination that the content provider has cold content delivery requirements, a subset of the CDN content servers are configured to implement a set of one or handling rules for managing delivery of the cold content from the CDN content servers.
US09680949B2 Remote selection and authorization of collected media transmission
A personal media system implemented as a tuple service allows remote access, selection, authorization, and transmission of personal media stored in a collection on a home network across a network to a guest network. A mobile client device enables browsing/searching for content, shows media players within a domain, finds a media player within a domain for a given media type, gets a media object, and renders a media object on a given media player within a domain. Each gateway has an agent that registers to the server and responds to commands from the server. The server acts as a hub for moving digital content objects between domains, provides media services on behalf of domains (e.g., transcoding, proxy streaming, etc.), provides a web interface to mobile client devices for control over user domains, sends commands to the personal media agents, and creates an accessible set of domains for a user.
US09680948B2 System and method for device failure notification
A method and apparatus of a device that notifies another device of a failed device is described. In an exemplary embodiment, a network element detects that a first device is unavailable, where the network element couples the first device to the second device. In response to detecting that the first device is unavailable, the network element configures a proxy for the first device. The network element additionally receives network data that is destined for the first device, where the second device originated the network data. If the proxy can process the network data, the network element transmits a response to the second device from the proxy, where the response indicates that the first device is unavailable, where the first response includes an address of the first device. If the proxy cannot process the network data, the network element drops the network data.
US09680947B2 Aggregated actions
Exemplary methods, apparatuses, and systems receive a first plurality of actions from a first entity with respect to a first plurality of objects. A global object related to each of the first plurality of objects is determined and a representation of the global object is displayed in association with a representation of the first entity. Additionally, in response to receiving user feedback on the representation of the global object displayed in association with the representation of the first entity, an instance of the global object that is unique to the first entity is created. The displayed representation of the global object is converted into a representation of the instance of the global object that is unique to the first entity.
US09680943B1 Proximity and time based content downloader
Methods and systems for transmitting content to a device are described herein. Methods include receiving location information relating to a device that is usable to identify an approximate location of the device; comparing the approximate location of the device with a location of a venue; and transmitting content to the device if the approximate location of the device is within a pre-determined range of the location of the venue for a predetermined range of time. The user can receive the content without the need for the user to be aware of and seek out that content. The transmission of content to the device may depend not only on the user's location, but also on the amount of time the user is at the location. Content may be selected based upon whether the approximate location of the device is within pre-determined ranges of the location of the venue.
US09680942B2 Data verification using access device
An embodiment of the invention is directed to a method comprising receiving, at a server computer, information for a portable device that includes a mobile device identifier and storing, by the server computer, the information for the portable device that includes the mobile device identifier in a database associated with the server computer. The method further comprising receiving, by the server computer, transaction data from an access device for a transaction conducted at the access device, determining, by the server computer, from the transaction data that the transaction is associated with the portable device, determining, by the server computer, a location of the access device, determining, by the server computer, a location of a mobile device associated with the mobile device identifier, determining, by the server computer, that the location of the mobile device matches the location of the access device, and marking, by the server computer, the stored information for the portable device as authentication verified.
US09680937B2 Communication method and apparatus
A method of, and apparatus for, network communication between a client computer initiator and a target data store. The method includes requesting, by the initiator, a data transfer session between the initiator and the target over a network. The request specifies quality of service parameters for the data transfer session. The method further includes receiving, from the target, a response accepting or denying the data transfer session based on the quality of service parameters; and establishing the data transfer session between the initiator and the target if the request is accepted. An advantage in communicating QoS requirements automatically on a per session basis between a client computer initiator and a target data storage resource is that QoS guarantees can be improved because the QoS determination can be carried out at the time the data transfer session is required. This enables the current access patterns on the storage resource to be monitored and an accurate determination regarding whether the QoS parameters of a desired data transfer session can be met.
US09680936B2 Rail systems mark-up language
A train control operation system, the system comprising a data collection server for collecting data relating to one or more elements of trains, a network for distributing data relating to the elements to subscribers and a subscription server for hosting definitions of elements which is accessible by subscribers of the system, so as to enable each subscribers to access the definitions from a single source.
US09680935B2 Grid gateway and transmission tower management system with multiple grid gateways
A grid gateway and a transmission tower management system having a plurality of the grid gateways are disclosed. The grid gateways are connected with one another to form a mesh network. A plurality of sensors are provided within a wireless transmission range of the grid gateways. The sensors collect and send environmental parameters to the corresponding grid gateway within the wireless transmission range, in order to choose an optimal transmission path in the mesh network through grid gateways to transmit. The environmental parameters are transmitted through the optimal transmission path to a server for storage and analysis. A grid gateway and a transmission tower management system having a plurality of the grid gateways have broad and local area wireless transmission ability, so as to overcome restrictions of topography and communication to execute broad area management and monitor tasks.
US09680927B2 Cloud tabs
The presently disclosed techniques related to data transfer and synchronization between multiple electronic devices. The multiple electronic devices may be logged onto a user's account with a cloud computing service so that they may transfer data relating to websites that they have accessed to the cloud computing service so that such data may be synchronized amongst the multiple electronic devices. A tab screen on each electronic device may allow a user to view the other linked devices as well as the websites that they have accessed so that the user may select such websites if so desired.
US09680921B2 Method, apparatus, and system for controlling voice data transmission
A method, apparatus, and system are provided for controlling data transmission in the field of voice communication. In the method: a server device receives a blocking request sent by a first terminal corresponding to a first user in a user group, where the blocking request carries an ID of a second user in the user group. The server device receives the voice data sent by a second terminal corresponding to the second user who is identified by the ID in the blocking request, and transmitting the voice data to terminals corresponding to other users in the user group apart from the first user and the second user. The voice data sent by any terminal corresponding to the second user is transmitted to the terminals corresponding to other users apart from the first user and the second user after receiving the blocking request carrying the ID of the second user.
US09680915B2 Methods for clustering networks based on topology discovery and devices thereof
A method, non-transitory computer readable medium, and device for clustering a network includes obtaining information regarding a network including relationship information for a plurality of nodes of the network. A weight value for each of a plurality of directly connected pairs of the plurality of nodes is determined, wherein the directly connected pair are identified based on the relationship information. At least one topology score is generated for each of the plurality of nodes. A plurality of clusters is generated using the topology scores and one of the plurality of nodes as a seed node for each of the clusters. At least the seed node used to generate at least a subset of the plurality of clusters is output.
US09680911B2 Method and apparatus of short uniform resource locator lookup and feedback
A method of short uniform resource locator (URL) lookup and feedback of various examples may include: receiving a request related with a short URL associated with a target URL; identifying resource information of the short URL which is descriptive of credibility of network resources pointed to by the target URL; and making the resource information provided to a user. Another method of short URL lookup and feedback of various examples may include: receiving a request related with a long URL; identifying an identity of a website providing network resources pointed to by the long URL, the identity is a character string or a logo; generating a short URL which includes the identity; and making the short URL provided to the user.
US09680903B1 Delivery of video mail to controlled-environment facility residents via podcasts
Delivery of video to controlled-environment facility residents via podcasts may include accepting a digital video file or series of digital image files, such as from a non-resident, indicated as directed to a resident of the controlled-environment facility. Such video or image files may be uploaded, such as by the non-resident, via a provided user interface. The video file or series of digital image files are converted into a podcast. The podcast is cached in controlled-environment facility content server storage and the resident is notified of availability of the podcast. The podcast may be streamed and/or downloaded, within the controlled-environment facility, to one of the controlled-environment facility resident media devices.
US09680902B2 Media streaming method and device using the same
A media streaming method and a device using the same are introduced herein. The disclosure introduces a method for smooth and flawless playback of live media streaming in dynamic network environment. When network congestion occurs for a period, a media receiver may play media data as more as possible by adjusting the transmission order of media data meaningful to the receiver or a provider for providing the media data. In one embodiment, the disclosure introduces a method for smooth and flawless playback of live media streaming by caching a certain amount of media data and then playing them at an appropriate speed to catch up to the progress of the live media streaming, or by dynamically changing bit rates of the live media streaming in time by the provider to meet the most acceptable bit rate according to the network environment between the provider and the receiver.
US09680888B2 Private interaction hubs
A mobile device has memory storage to maintain hub data that is associated with a private interaction hub, where the hub data includes multiple types of displayable data that is editable by different types of device applications. The memory storage at the device also maintains private data that is displayable and is viewable with one of the device applications. The mobile device also includes a display device to display the multiple types of the hub data in a hub user interface of a hub application. The display device can also display the private data and a subset of the hub data that are both associated with a device application in a device application user interface.
US09680887B2 Autonomic collaborative workspace creation
Systems and methods provide for autonomic collaborative workspace creation. Patterns of artifact usage for a plurality of workspaces over a plurality of collaborative interactions may be determined. Some of the multitude of collaborative interactions may be between a subset of the plurality of workspaces. A workspace may be initialized with artifacts for a scheduled collaboration based on the patterns of artifact usage.
US09680884B2 Synchronized wireless display devices
This disclosure relates to techniques for synchronizing playback of media data between a source device and one or more sink devices in a Wireless Display (WD) system. WD systems enable mobile devices to share a local display of the source device with remote sink devices. The techniques of this disclosure include a management procedure at the source device to select a universal queue size for the source device and the participating sink devices. The source device selects the universal queue size based at least on supported queue sizes of the source device and the sink devices. The media packets are then held in queues having the universal queue size at the source device and the sink devices. The uniform queue size combined with compensation for transmission delay enables each of the devices to begin processing the media packets at the same time.
US09680879B2 Electronic messaging exchange
A computer-implemented system and method for secure electronic message exchange including coupling a control platform to a workstation of a plurality of workstations via a communications medium, where the control platform includes one or more apparatuses for monitoring, controlling, conversion, and billing, related to messages exchanged between a plurality of local users and a plurality of remote users. The system prevents forwarding or copying of a message sent by a local user of the plurality of local users and received by a remote user of the plurality of remote users, to another party by the control platform. The system and method also provides for authenticating the remote user with the control platform.
US09680877B2 Systems and methods for rule-based anomaly detection on IP network flow
A system to detect anomalies in internet protocol (IP) flows uses a set of machine-learning (ML) rules that can be applied in real time at the IP flow level. A communication network has a large number of routers equipped with flow monitoring capability. A flow collector collects flow data from the routers throughout the communication network and provides them to a flow classifier. At the same time, a limited number of locations in the network monitor data packets and generate alerts based on packet data properties. The packet alerts and the flow data are provided to a machine learning system that detects correlations between the packet-based alerts and the flow data to thereby generate a series of flow-level alerts. These rules are provided to the flow time classifier. Over time, the new packet alerts and flow data are used to provide updated rules generated by the machine learning system.
US09680876B2 Method and system for protecting data flow at a mobile device
A method and system for evaluating and enforcing a data flow policy at a mobile computing device includes a data flow policy engine to evaluate data access requests made by security-wrapped software applications running on the mobile device and prevent the security-wrapped software applications from violating the data flow policy. The data flow policy defines a number of security labels that are associated with data objects. A software application process may be associated with a security label if the process accesses data having the security label or the process is in communication with another process that has accessed data having the security label.
US09680875B2 Security policy unification across different security products
A management entity receives from multiple security devices corresponding native security policies each based on a native policy model associated with the corresponding security device. Each security device controls access to resources by devices associated with the security device according to the corresponding native security policy. The management entity normalizes the received native security policies across the security devices based on a generic policy model, to produce a normalized security policy that is based on the generic policy model and representative of the native security polices.
US09680873B1 Trusted network detection
Approaches for processing network requests based upon the perceived trustworthiness of the network. A software component renders a judgment, based on a policy that weighs one or more factors, about whether a network accessible to a device should be trusted. If the software component renders a judgment that the network should be trusted, then a network resource identified on a white list of trusted resources is allowed to be retrieved within a host operating system or in a first virtual machine. Conversely, if the software component renders a judgment that the network should not be trusted, then the network resource identified on the white list of trusted resources is prevented from be retrieved within the host operating system or the first virtual machine, and may instead be retrieved within a second virtual machine, which has a more restrictive set of access privileges than the first virtual machine.
US09680871B2 Adopting policy objects for host-based access control
A policy manager running on a client device receives policy data from a domain controller comprising a directory server and a file server. The client device runs an operating system that does not natively support policy retrieval from the directory server and file server. The policy manager identifies a policy type of the received policy data and identifies a policy processing plug-in associated with the identified policy type. The policy processing plug-in is connected to the operating system on the client device through a plug-in interface. The policy manager provides the received policy data to the identified policy processing plug-in for processing.
US09680867B2 Network stimulation engine
Methods, devices, and systems are disclosed for simulating a large, realistic computer network. Virtual actors statistically emulate the behaviors of humans using networked devices or responses and automatic functions of networked equipment, and their stochastic actions are queued in buffer pools by a behavioral engine. An abstract machine engine creates the minimal interfaces needed for each actor, and the interfaces then communicate persistently over a network with each other and real and virtual network resources to form realistic network traffic. The network can respond to outside stimuli, such as a network mapping application, by responding with false views of the network in order to spoof hackers, and the actors can respond by altering a software defined network upon which they operate.
US09680864B2 Remediating rogue applications
In one example embodiment, a remediating system may include a mobile communication device, to which an application is to be installed, and a remediator that may be configured to remediate the application and transmit the remediated version of the application to the mobile communication device for installation.
US09680863B2 Automated responses to security threats
Systems, methods, and software described herein provide security actions to computing assets of a computing environment. In one example, a method of operating an advisement system to manage security actions for a computing environment includes identifying a security incident for an asset in the environment, and obtaining enrichment information about the security incident. The method further includes identifying a rule set based on the enrichment information, identifying an action response based on the rule set, and initiating implementation of the action response in the computing environment.
US09680862B2 Trusted threat-aware microvisor
A trusted threat-aware microvisor may be deployed as a module of a trusted computing base (TCB) that also includes a root task module configured to cooperate with the microvisor to load and initialize one or more other modules executing on a node of a network environment. The root task may cooperate with the microvisor to allocate one or more kernel resources of the node to those other modules. As a trusted module of the TCB, the microvisor may be configured to enforce a security policy of the TCB that, e.g., prevents alteration of a state related to security of the microvisor by a module of or external to the TCB. The security policy of the TCB may be implemented by a plurality of security properties of the microvisor. Trusted (or trustedness) may therefore denote a predetermined level of confidence that the security property is demonstrated by the microvisor.
US09680859B2 System, method and apparatus to visually configure an analysis of a program
A method extracts views from an application program, where at least some extracted views include at least one view component, and presenting the extracted views to a user. In response to the user selecting a view component in a presented extracted view, the method presents a form to the user having a plurality of vulnerability types indicated for the selected view component and, for each vulnerability type, provides an ability for the user to set an indicator in the form as to indicate whether the view component is at least one of a source or a sink. The method further includes saving the form containing the user's input in conjunction with a user-provided label for the selected view component and a unique identification of the selected view component, and deriving an analysis policy configuration from the saved form that is formatted for use by a program security analyzer.
US09680858B1 Annotation platform for a security risk system
Among other things, information is acquired and stored that is indicative of security risks associated with security subjects and with entities to which the security subjects belong. The stored information is analyzed by computer to derive security indicators for the entities. With respect to entities selected by the users, security information is presented by computer to users. The security information includes security indicators for the entities and security information for security subjects. The security information for security subjects includes annotations provided by users. The annotations are managed by computer based on communications from the users.
US09680857B1 Cyber intelligence clearinghouse
Systems, methods, and computer-readable and executable instructions are provided for providing a cyber intelligence clearinghouse (CIC). Providing a CIC can include generating analysis data from intelligence information collected from a number of sources. In addition, providing a CIC can include calculating a number of fidelity scores from the analysis data, wherein the number of fidelity scores represent a trustworthiness of the number of sources. In addition, providing a CIC can include determining a number of events to block based on the number of fidelity scores. Furthermore, providing a CIC can include providing feedback data to the number of sources based on the number of fidelity scores and the number of events to block.
US09680856B2 System and methods for scalably identifying and characterizing structural differences between document object models
A security auditing computer system efficiently evaluates and reports security exposures in a target Web site hosted on a remote Web server system. The auditing system includes a crawler subsystem that constructs a first list of Web page identifiers representing the target Web site. An auditing subsystem selectively retrieves and audits Web pages based on a second list, based on the first. Retrieval is sub-selected dependent on a determined uniqueness of Web page identifiers relative to the second list. Auditing is further sub-selected dependent on a determined uniqueness of structural identifiers computed for each retrieved Web page, including structural identifiers of Web page components contained within a Web page. The computed structural identifiers are stored in correspondence with Web page identifiers and Web page component identifiers in the second list. A reporting system produces reports of security exposures identified through the auditing of Web pages and Web page components.
US09680854B2 Malware and anomaly detection via activity recognition based on sensor data
A system for malware and anomaly detection via activity recognition based on sensor is disclosed. The system may analyze sensor data collected during a selected time period from one or more sensors that are associated with a device. Once the sensor data is analyzed, the system may determine a context of the device when the device is in a connected state. The system may determine the context of the device based on the sensor data collected during the selected time period. The system may also determine if traffic received or transmitted by the device during the connected state is in a white list. Furthermore, the system may transmit an alert if the traffic is determined to not be in the white list or if the context determined for the device indicates that the context does not correlate with the traffic.
US09680852B1 Recursive multi-layer examination for computer network security remediation
Computer-implemented methods and apparatuses for recursive multi-layer examination for computer network security remediation is provided herein. Exemplary methods may include: receiving a first identifier associated with a first node; retrieving first metadata using the first identifier; identifying a second node in communication with the first node using the first metadata; ascertaining a first characteristic of each first communication between the first and second nodes using the first metadata; examining each first communication for malicious behavior using the first characteristic; receiving a first risk score for each first communication responsive to the examining; determining the first risk score associated with one of the second communications exceeds a first predetermined threshold and indicating the first and second nodes are malicious. Exemplary methods may further include: providing the identified malicious nodes and communications originating from or directed to the malicious nodes.
US09680842B2 Detecting co-occurrence patterns in DNS
Techniques for inferring the existence of suspicious software by detecting multiple name server requests for the same sets of non-existent domains. Implementations can allow for detecting the existence of malware or other suspicious software without requiring reverse engineering of the malware's domain generation algorithm.
US09680840B2 Password protected device unlock based on motion signature and proximity
A method is provided for the authentication of an electronic device using an authenticated wearable device. The method includes wirelessly connecting a wearable device and an electronic device. The method also includes detecting a movement on a touchscreen of the electronic device. The method also includes detecting a movement of the wearable device. The method also includes comparing the movement on the touchscreen and the movement of the wearable device. The method also includes unlocking the electronic device when the movement on the touchscreen matches the movement of the wearable device.
US09680839B2 Access permissions management system and method
An access permissions management system including a hierarchical access permissions repository including access permissions relating to data elements arranged in a data element hierarchy, wherein some of the data elements have only access permissions which are inherited from ancestral data elements, some of the multiplicity of data elements are prevented from having inherited access permissions and thus have only unique access permissions which are not inherited and some of the data elements are not prevented from having inherited access permissions and have not only inherited access permissions but also unique access permissions which are not inherited, some of which unique access permissions possibly being redundant with inherited access permissions, and an access permissions redundancy prevention engine operative to ascertain which of the unique access permissions are redundant with inherited access permissions and not to store the unique access permissions which are redundant with inherited access permissions in the repository.
US09680835B1 Proactive intrusion protection system
A system for proactive intrusion protection comprises a memory operable to store data identifying a plurality of compromising entities, comprising at least one of a device identifier or a contact identifier, and a processor communicatively coupled to the memory and operable to receive, from a remote application associated with a remote device and with the system, information regarding a source of the incoming communication. The processor is further operable to determine an entity associated with the source of the incoming communication and to determine that the entity associated with the source matches at least one of the plurality of compromising entities based on comparing the data identifying the plurality of compromising entities and the entity associated with the source of the incoming communication. Furthermore, the processor is operable to send to the remote application a signal configured to block the incoming communication.
US09680831B2 Data permission management for wearable devices
Methods and apparatus for providing rule-based access to data stored on wearable devices are provided. A wearable computing device can store data that includes data about a wearer of the wearable computing device. The wearable computing device can receive a request for a portion of the stored data. The wearable computing device can determine a designated role associated with the request for the portion of the stored data. The wearable computing device can determine one or more rules regarding access to the portion of the stored data based on the designated role. The wearable computing device can determine a response to the request for the portion of the stored data by at least: determining whether the request is validated by at least applying the one or more rules to the request, and after determining that the request is validated, providing the requested portion of the stored data.
US09680829B2 Broadcast-based trust establishment
A method and apparatus for device authentication are provided. In the method and apparatus, authentication data for a first device is received. The first device is then authenticated based at least in part on demonstrated access to authentication data prior to broadcast of the authentication data. One or more actions may be taken in response to the authentication of the first device based at least in part on the demonstrated access to the authentication data.
US09680827B2 Geo-fencing cryptographic key material
In representative embodiments, a geo-fence cryptographic key material comprising a geo-fence description defining a geographic area and associated cryptographic key material is assigned to an entity for use in authenticated communications. The validity of the cryptographic material changes state based on whether the entity is inside or outside the geographic area. This is accomplished in a representative embodiment by suspending the validity of the cryptographic key material when the entity is outside the geographic area and reinstating the validity of the cryptographic key material when the entity is inside the geographic area. A geographic update service determines the validity of the cryptographic material in part using location updates sent by the entity. Entities that are not geo-aware can delegate the location update to a geo-aware device. Encryption can be used to preserve privacy.
US09680821B2 Resource access control for virtual machines
To provide enhanced operation of virtualized computing systems, various systems, apparatuses, methods, and software are provided herein. In a first example, a method of operating a computing system to control access to data resources by virtual machines is provided. The method includes receiving an access token and an instantiation command from an end user system. Responsive to the instantiation command, the method includes instantiating a virtual machine identified by the instantiation command using the access token as user data for the virtual machine during instantiation. The method also includes, in the virtual machine, executing a security module responsive to instantiation that transfers the access token for delivery to an authorization system, receiving credentials responsive to the access token, and accessing a data resource using the credentials.
US09680818B2 Method and apparatus for bulk authentication and load balancing of networked appliances
A new approach is proposed that contemplates systems and methods to support bulk authentication of an appliance associated with a user to all cloud-based services the appliance intends to access in one transaction instead of authenticating the appliance against each of the services individually. First, the appliance generates and transmits to an authentication service cluster an authentication request that includes its identification and authentication credentials in order to access to a plurality of services. Upon receiving the authentication request, the authentication service cluster authenticates the appliance for all of the services to be accessed based on the information in the authentication request. Once the appliance is authenticated, the authentication service cluster then retrieves entitlement information of the services to be accessed by the appliance, and identifies the service clusters/nodes that the appliance will connect to for the services with the fastest response time.
US09680815B2 Method and system for transmitting authentication context information
A system of the present invention uses an identity provider to provide the authentication services for multiple service providers. An identity provider communicates with one or more service providers. A user that wishes to gain access to a service provider is authenticated through the use of the identity provider. A user desiring to access a service provider is first authenticated by the identity provider. The identity provider determines if the user meets the desired class level and provides various information related to the authentication. When the user attempts to access a second service provider that is associated with the same identity provider, the second service provider accesses the identity provider and determines that the user was recently authenticated. The identity provider then transmits the relevant information regarding the authentication process to the second service provider, which can then allow or deny the user access to the second service provider.
US09680814B2 Method, device, and system for registering terminal application
Embodiments of the present invention disclose a method, a device, and a system for registering a terminal application. In the embodiments of the present invention, a download address information recommending request that is sent by a first terminal and carries a terminal identifier of a second terminal is received; and recommended download address information is returned to the first terminal, where the recommended download address information includes a terminal application download address and authentication information used for performing registration, so that the first terminal sends, to the second terminal, a recommending message carrying the recommended download address information, so as to make the second terminal register according to the terminal application download address and the authentication information used for performing registration. In this solution, less time is consumed and a registration success rate is high, which helps to improve an application activating rate for a user.
US09680812B1 Enrolling a user in a new authentication procdure only if trusted
A technique is directed to operating an authentication system. The technique involves receiving an enrollment request to enroll a user in a new authentication procedure in place of an earlier-established authentication procedure. The earlier-established authentication procedure is operative to authenticate the user at a first security level within a range of security levels. The new authentication procedure is operative to authenticate the user at a second security level within the range of security levels, the first security level being at least as high as the second security level within the range of security levels. The technique further involves, in response to the enrollment request, initiating the earlier-established authentication procedure to authenticate the user. The technique further involves, in response to completion of the earlier-established authentication procedure, performing an authentication enrollment operation associated with the new authentication procedure.
US09680809B2 Secure data storage on a cloud environment
A method for secure data storage in a cloud storage infrastructure comprises providing a set of first upload files to be stored in the cloud storage infrastructure, providing a set of first random noise files, splitting each file of the two sets into a group of fragments, recombining the fragments by randomly intermixing fragments from different groups thus generating a set of second upload files, encrypting each second upload file with a first encryption key and storing each first encryption key in a secure storage location, storing reconstruction information about the set of first upload files, the splitting, the recombining and the first encryption keys in the secure storage location, uploading each second upload file to a respective temporary cloud storage location, repeatedly moving each uploaded second upload file to a new temporary cloud storage location in predetermined intervals of time.
US09680807B2 Secure session capability using public-key cryptography without access to the private key
A server establishes a secure session with a client device where a private key used in the handshake when establishing the secure session is stored in a different server. During the handshake procedure, the server receives a premaster secret that has been encrypted using a public key bound with a domain for which the client device is attempting to establish a secure session. The server transmits the encrypted premaster secret to the different server for decryption along with other information necessary to compute a master secret and session keys for the secure session. The different server decrypts the encrypted premaster secret, generates the master secret, and generates session keys that are used in the secure session for encrypting and decrypting communication between the client device and the server and transmits those session keys to that server.
US09680804B2 Distributed learning and aging for management of internet protocol (IP) addresses
A device includes a security process unit (SPU) associated with a logical ring of SPUs. The SPU receives a packet with an address associated with a malicious source, and creates, based on the packet, an entry in a data structure associated with the SPU. The entry includes information associated with the packet. The SPU provides an install message to a next SPU in the logical ring. The install message instructs the next SPU to create the entry in another data structure, and forward the install message to another SPU. The SPU receives the install message from a last SPU, and sets a state of the entry to active in the data structure based on receiving the install message from the last SPU. The SPU performs a particular action on another packet, associated with the malicious source, based on the setting the state of the entry to active.
US09680797B2 Deep packet inspection (DPI) of network packets for keywords of a vocabulary
An aspect of the present disclosure provides deep packet inspection (DPI) of network packets for keywords of a vocabulary. In one embodiment, a mapping specifying association of respective keywords to corresponding unique pattern codes is maintained, with each pattern code being shorter in length compared to the corresponding keyword and being computed based on a formula. Upon receiving a network packet, a token (containing a sequence of characters) present in the network packet is first identified and the formula then applied to the identified token to generate a token code. The token is determined to match a specific keyword when the token code equals the pattern code corresponding to the specific keyword in the mapping.
US09680795B2 Destination domain extraction for secure protocols
Techniques for destination domain extraction for secure protocols are disclosed. In some embodiments, destination domain extraction for secure protocols includes monitoring network communications between a client and a remote server; determining if the client sends a request to create a secure connection with the remote server (e.g., in which the network communications are initiating a setup for a secure protocol-based connection); and extracting a destination domain from the request to create the secure connection with the remote server. In some embodiments, the secure protocol is a secure sockets layer (SSL) protocol or transport layer security (TLS) protocol, and the destination domain is extracted from the server name indication (SNI) of a client hello message sent from the client to the remote server. In some embodiments, destination domain extraction for secure protocols further includes applying a policy (e.g., a security policy) based on the destination domain to filter traffic using a security device.
US09680786B2 Communication and notification system and method thereof
The invention generally relates to a communication and notification system and method thereof, and more particularly to a method and system for providing, tracking, sending reminders, and receiving communications/notifications in response to end-users in a variety of commercial market segments, e.g., medical, governmental compliance and criminal.
US09680784B2 Messaging in attention critical environments
A method, executed by one or more processors, includes receiving a message that is addressed to a user, determining, via one or more sensors, whether the user is occupied with an attention critical situation, and conducting a user-directed response process responsive to determining that the user is not occupied with an attention critical situation. In some embodiments, the user-directed response process includes conducting a text substitution process on the message, presenting an abbreviated version of the message and a list of response options to the user, determining a response option that is selected by the user, and sending a response to the message that corresponds to the response option that is selected by the user. In some embodiments, the list of response options includes a plurality of message-dependent formulated responses, a null response, and a spoken response. A corresponding apparatus and computer program product are also disclosed herein.
US09680782B2 Identifying relevant content in email
Message management services can include processing an email to identify relevant content from among all content in the email and converting the identified relevant content into a simple, easy-to-read format. For example, message management services can apply multiple parsing strategies to an email. Each strategy can attempt to parse the email to identify relevant content and to output results that include any identified relevant content and an associated confidence score. The results having the highest confidence score can be selected. The identified relevant content included in the selected results can be converted into a flat string with stylings and links for displaying relevant content of the email in a simple, easy-to-read format.
US09680778B2 System and method using a simplified XML format for real-time content publication
A system and method for delivering content in real-time using advanced messaging technology that reduces the risk of content being lost or dropped in transmission. The system and method utilize a custom, simplified XML format to deliver real-time textual, numeric, and metadata content directly to subscribers. The XML tag set specifies all of the information needed to package, process, and distribute real-time content messages and includes an advanced tagging structure that allows granular content customization. Messages are built on the fly using multi-channel data processing techniques. The XML delivery system and method offers an array of real-time market-specific page-based “Alert” services and aggregated newswires with accompanying real-time numeric data feeds. These feeds contain proprietary assessments and other price data across a broad spectrum of global and regional commodity markets, including oil, petrochemicals, metals, electric power, natural gas, coal, and risk.
US09680777B2 Method, devices and system having out of office based presence
A communication device receives an out-of-office message regarding a first contact. An application executing on the communication device displays a name of the first contact and an out-of-office indication regarding the first contact without displaying said out-of-office message.
US09680776B2 Method and apparatus for instant messaging based on user interface
A method and apparatus for instant messaging based on a user interface is provided. The method comprises providing a window having a plurality of regions in the user interface, wherein the plurality of regions comprise at least one navigation region, and at least one message region to display one or more dialog windows; receiving a navigation input within navigation region; navigating among the one or more dialog windows based on the navigation input; and displaying the one or more dialog windows in the message region.
US09680775B2 Event scheduling
In one aspect, the invention is a computer program product residing on a computer readable medium having a plurality of instructions stored thereon. The instructions when executed by the processor, cause that processor to schedule a network-based media event; and to invite an attendee to attend the network-based media event. Other aspects of the invention includes a process and a method.
US09680772B2 System and method for managing configuration of virtual switches in a virtual machine network
Techniques for managing configuration of virtual switches in a virtual machine network are disclosed. In an embodiment, a virtual machine network that includes virtual switches is configured to revert back to a saved network configuration if a configuration change causes the connection between the VM management system and a managed node to be lost. For example, before any configuration changes are made, the active configuration is saved. If the new configuration supports a working connection between the managed node and the VM management system, then the saved configuration is no longer needed and can be flushed from memory. If, however, the new configuration causes the managed node to be disconnected from the VM management system, then the system reverts back to the saved configuration that was previously known to work. The saved configuration is used to reestablish the connection so that the network continues to function.
US09680769B2 Method for implementing E-tree service and provider edge device
The present invention discloses a method for implementing an E-tree service and a provider edge device, and relates to the field of network communications technologies. A local PE device obtains leaf PE attribute information of a peer provider edge PE device; when the leaf PE attribute information of the peer PE device indicates that the peer PE device is a leaf PE device and the local PE device is a leaf PE device, the local PE device forbids a pseudo-wire connection between the local PE device and the peer PE device. The technical solution of the present invention implements effective isolation between leaf nodes supporting an E-Tree service and therefore implements the E-Tree service in a VPLS network.
US09680767B2 Session admission in a communications network
A session admission process is provided which identifies the weakest link in a route between a first node and a second node and determines if the route is able to cope if the session is admitted. The suitability of a link is determined on the basis of: historical link performance; the predicted future performance of the link; and the predicted future demands on the link from other sessions supported by that link.
US09680765B2 Spatially divided circuit-switched channels for a network-on-chip
An apparatus may comprise a plurality of ports and a plurality of channel reservation banks. A channel reservation bank is to be associated with a port of the plurality of ports. The channel reservation bank is to comprise a plurality of channel reservation slots. The port of the plurality of ports is to comprise a plurality of circuit-switched channels through the port. The configuration of each of the plurality of circuit-switched channels to be based on information stored in a channel reservation slot of the channel reservation bank to be associated with the port.
US09680762B2 Method and system for providing QoS for in-band control traffic in an openflow network
A method for guaranteeing control traffic throughput in an in-band network configured for delivering control and data traffic, and considering both local and global views of the communication network. The method includes determining an initial configuration for forwarding first control traffic from the packet forwarding device, wherein the initial configuration comprises a first in-band queue for receiving the first control traffic that is delivered over the control path to the controller via a port in the packet forwarding device, and a first bandwidth reserved for the first queue. The method includes performing handshaking with the controller by sending a request to the controller confirming the initial configuration using a network control protocol, and receiving a response from the controller in association with the request. The method includes confirming or modifying the initial configuration based on the response.
US09680761B2 Consolidating messages in a message queue
In some implementations, state messages can be queued at a server device for transmission to a disconnected client device when the client device reconnects to the server device. To conserve resources, queued state messages can be consolidated, combined and/or deleted.
US09680750B2 Use of tunnels to hide network addresses
For a managed network including first and second managed switching elements that implement logical data path sets, some embodiments provide a method that establishes, from the first managed switching element, a network tunnel through a network to the second managed switching element. The network includes a set of unmanaged switching elements. Through the network tunnel, the network forwards logical network data to the set of unmanaged switching elements for the set of unmanaged switching elements to forward to the second managed switching element. The logical network is hidden from the set of unmanaged switching elements when the logical network data is forwarded through the tunnel.
US09680748B2 Tracking prefixes of values associated with different rules to generate flows
Some embodiments provide a method for a forwarding element that forwards packets. The method receives a packet and consults a tree structure to identity a prefix length associated with an IP address in the packet header. The method skips lookup of each subtable with a set of IP addresses that have a different prefix length than the identified prefix length. The method identifies a matching rule from a particular subtable. The method generates a flow based on the matching rule. The flow is used to process packets that have the same prefix.
US09680746B2 Source routing with fabric switches in an ethernet fabric network
In one embodiment, a computer program product includes a computer readable storage medium having program instructions embodied therewith. The embodied program instructions are readable/executable by a processor to receive, by the processor, a packet via a network fabric, the network fabric having a plurality of interconnected fabric switches. The embodied program instructions are also readable/executable by the processor to determine, by the processor, a path through the network fabric by consulting a source-routing table. Moreover, the embodied program instructions are readable/executable by the processor to store, by the processor, source-routing information to a packet header for the packet, the source-routing information including the path. In addition, the embodied program instructions are readable/executable by the processor to send, by the processor, the packet according to an indication in the source-routing information.
US09680737B2 Telecommunications networks
A mobile telecommunications network includes a core network operable to provide core network functions; and a radio access network having control means, and radio means for wireless communication with terminals registered with the telecommunications network. In some embodiments the control means includes a client function operable to cause routing of traffic within the control means.
US09680732B2 Identifying influence paths in a communication network
A method for identifying influence paths in a communication network comprising a plurality of users is disclosed. The method comprises identifying network parameters indicative of a strength of connection between users of the network, combining the identified parameters to calculate a connection strength between users of the network, storing the calculated connection strengths as edge weights between the users of the network, identifying a source user and a target user for a path, and calculating a path between the source user and the target user according to the stored edge weights. Also disclosed is a method for compression of a network and a network element and computer readable medium.
US09680729B2 Deploying operators of a streaming application based on physical location attributes of a virtual machine
A streams manager monitors operator performance of a streaming application to determine when the performance of an operator needs to be improved or optimized. The streams manager in conjunction with a cloud manager automatically determines one or more preferred virtual machines in a cloud with a specified streams infrastructure that best meet the needs of the underperforming operator or application component based on physical location attributes of the preferred virtual machines. The cloud manager determines the physical location attributes of the candidate virtual machines. The streams manager or the cloud manager can then determine a preferred virtual machine of the candidates to deploy the operator based on the physical location attributes. The streams manager then modifies the flow graph so one or more operators of the streaming application are deployed to a preferred virtual machine determined according to the physical location attributes of the preferred virtual machine.
US09680728B2 Arrangements for monitoring network traffic on a cloud-computing environment and methods thereof
A method for monitoring data associated with a virtual computing environment is provided. The method includes receiving virtually-originated data, wherein the virtually-originated data originated from a virtual server in the virtual computing environment and transmitted in the form of data packets. The method also includes encapsulating the virtually-originated data using a tunneling protocol, forming encapsulated traffic. The method further includes transmitting the encapsulated traffic to a tap device, wherein the tap device decapsulates the encapsulated traffic to recover a version of the virtually-originated data and forwards the version of the virtually-originated data to a monitoring device.
US09680725B2 Method and apparatus for measuring a packet throughput in wireless communication system
A method and apparatus of measuring a packet throughput in a wireless communication system are provided. When determining a reference time for estimating packet throughput, a receiver determines the time that a data burst starts or ends in order to estimate the packet throughput considering a change in the data burst of the transmitter buffer. A measurement period is defined through the determined start time and end time of the data burst, and packet throughput is measured considering the total amount of the received data burst. The throughput of packet data may be estimated by each base station based on the same standard rule, so that the measured packet throughput values may be reliable, thus allowing the operator to make use of it as a parameter for MDT.
US09680723B2 Location-based website hosting optimization
A hosting provider may host a website at a first hosting location based on initial business information received from a hosting customer, perhaps while the hosting customer created an account. The initial business information may include, as non-limiting examples, whether the business is a local or non-localized business, business addresses and/or registered domain names. A domain name, particularly if it resolves to the website, may be analyzed for incorporated words, spelling, characters and/or top-level domain that may point to, or be more commonly used in, one or more geographical regions. The website may be moved to a second location based on the initial business information combined with subsequently collected business information, such as, as non-limiting examples, updated address information, marketing campaigns aimed at particular locations and/or based on the originating location of traffic to the website.
US09680718B2 Multifusion of a stream operator in a streaming application
Embodiments of the present disclosure include a method, a system, and a computer program product for fusing a stream operator into more than one processing element within a streaming application. The method includes receiving an instruction to concurrently fuse, into a second processing element, a stream operator of interest that is fused into a first processing element. The method includes determining whether the stream operator of interest is stateful. The method includes compiling, in response to determining the stream operator of interest is stateful, a clone of the stream operator of interest into the second processing element so that the clone is synchronized with the stream operator of interest.
US09680715B2 Assessing a service offering in a networked computing environment
An approach for assessing a service offering selected by a user in a networked computing environment (e.g., a cloud computing environment) is provided. In one aspect, a network environment containing the service offering is monitored for a software configuration activity performed by the user. This software configuration activity is analyzed to identify the software application that is being configured. A set of provider-managed service offerings can be searched for any provider-managed service offering that contains an offered application corresponding to that of the software application. This managed service offering can be included in an alternative suggestion for the service offering.
US09680714B2 Methods, systems, and fabrics implementing a distributed network operating system
Methods, systems, and computer programs are presented for managing network switching. A network device operating system (ndOS) program includes instructions for exchanging switching policy regarding switching network packets in a plurality of ndOS devices having ndOS programs. The first ndOS program is executed in a first ndOS device, and the switching policy is exchanged with other ndOS programs via multicast messages. Further, the ndOS program includes instructions for exchanging resource control messages with the other ndOS devices to implement service level agreements in the switching fabric, where the ndOS switching devices cooperate to enforce the service level agreements. Further yet, the ndOS program includes instructions for receiving changes to the switching policy, and instructions for propagating the received changes to the switching policy via message exchange between the ndOS programs. The ndOS devices are managed as a single logical switch that spans the plurality of ndOS devices.
US09680712B2 Hardware management and control of computer components through physical layout diagrams
In one aspect, a system includes a service processor (SP), having a processor, a non-volatile memory and a communication interface. The SP receives a component information of components of a host computer from a basic input/output system (BIOS) being executed at a central processing unit (CPU) of the host computer through the communication interface, and stores the received component information in the non-volatile memory. When the SP receives a managing instruction from a remote management computer to change the component information of at least one designated component of the components of the host computer, the SP updates the corresponding component information stored in the non-volatile memory based on the managing instruction. Once the component information is updated, the SP may, in response to receiving the component information from the BIOS, send the updated component information back to the host computer through the communication interface.
US09680708B2 Method and apparatus for cloud resource delivery
A multi-cloud fabric includes an application management unit responsive to one or more applications from an application layer. The multi-cloud fabric further includes a controller that is in communication with resources of a cloud. The controller is responsive to the applications and includes a processor operable to analyze the application relative to the resources to cause delivery of the applications to the resources dynamically and automatically.
US09680706B2 Federated firewall management for moving workload across data centers
A method of providing firewall support for moving a data compute node (DCN) across data centers. The method receives a set of global firewall rules to enforce across multiple data centers. The set of global firewall rules utilize unique identifiers that are recognized by the network manager of each data center. The method distributes the specified set of global firewall rules to the network managers. The method receives an indication that a DCN operating on a first host in a first data center is migrating to a second host operating in a second data center. The method sends a set of firewall session states to the network manager of the second data center. The method receives an indication that the DCN on the second host has started and enforces firewall rules for the DCN on the second host by using the firewall session states and the global firewall rules.
US09680704B2 Compact and integrated key controller apparatus for monitoring networks
Compact and integrated local key controller apparatuses for remotely managing a network of wireless devices that are connected to a computer network switch. These apparatuses (including devices and systems) and methods of using them may provide secure and fully integrated, stand-alone wireless network controllers that may be accessed remotely without compromising the integrity of the network's firewall.
US09680703B2 Configuration command template creation assistant using cross-model analysis to identify common syntax and semantics
In one embodiment, a method for creating a configuration template for a set of devices includes determining command information for a plurality of devices, identifying a command structure from the command information which is common to a set of devices from the plurality of devices, and associating the set of devices to a common configuration template.
US09680701B2 Differentiating image files in a networked computing environment
In general, embodiments of the invention provide an approach to differentiate and/or customize image files in a networked (e.g., cloud) computing environment. Specifically, a plurality of images corresponding to a requested instance, and all configuration files corresponding to the plurality of images, will be identified. In identifying the configuration files, a first subset of configuration files that are common to all of the plurality of images, and a second subset of configuration files that are unique to individual images will be determined. The user can then individually select configuration files from the two subsets, and the requested instance can be generated based thereon.
US09680699B2 Evaluation systems and methods for coordinating software agents
A device, method, computer program product, and network subsystem are described for associating a first mobile agent with a first security policy and a second mobile agent with a second security policy or for providing a first agent with code for responding to situational information about the first agent and about a second agent and for evaluating a received message at least in response to an indication of the first security policy and to an indication of the second security policy or for deploying the first agent.
US09680698B2 Operations, administration, and management (OAM) functions in a software defined network
Communication of a module to a datapath node is disclosed. A controller node receives connection information identifying a first datapath node in communication with a network. The controller node obtains Operations, Administration, and Management (OAM) information including an OAM action set that identifies one or more OAM actions the first datapath node is capable of implementing at the first datapath node. A first OAM tool module is determined that is operative to perform at least one of the one or more OAM actions identified in the OAM action set to implement a first OAM tool function. The first OAM tool module is communicated to the first datapath node.
US09680693B2 Method and apparatus for network anomaly detection
A network anomaly detector evaluates two complementary measurements of network statistics, a time variation and correlation among those statistics, to provide an extremely robust detection of network anomalies. In one embodiment, the variability and correspondence are compared against historically derived thresholds to provide for a system that accommodates to local network conditions and evolving network qualities.
US09680691B2 Connection abnormality detection method, network system, and master device
A technique is provided for detecting a connection abnormality of a slave device, in a network system including a master device and slave devices. The technique includes a connection abnormality detection method in a network system including a master device and a plurality of slave devices. In the network system, data is transmitted from the master device and then returned to the master device through respective slave devices. Each slave device has an upstream-side port and a downstream-side port. The connection abnormality detection method includes acquiring topology information of the network system, closing or opening the port of each slave device such that a serial topology is formed to include a target slave device located on the downmost stream side, transmitting inspection data after the control of the port, and detecting a connection abnormality of the device on the basis of a status of return of the inspection data.
US09680689B2 Fragmenting media content
Systems and methods relating to fragmenting content based on metadata are disclosed. In one embodiment, metadata is obtained from data that is accessible from an interface. A content descriptor, based on at least a portion of the metadata, may be utilized to determine fragment size. The content descriptor value may be derived from multiple forms of metadata, such as for example, genre, sub-genre, presence of live media, and combinations thereof. The fragments may be either virtual or physically discrete segments or files. In one aspect, the value may be the sole basis for determining the fragment lengths. In another aspect of the embodiment, the division of the content is conducted such that each resultant fragment comprises a single frame type.
US09680685B2 System and method for managing video content feeds
There is disclosed a method of distributing streamed content in a network, the network having a central server and at least a first node and a second node communicatively coupled to the central server, the streamed content transcoded at the central server as a first transcoded stream and a second transcoded stream, the first transcoded stream and the second transcoded stream being different in at least a bitrate used for transcoding. The method is executable at the central server. The method comprises receiving from a client device, via the network, a request for a portion of the streamed content, the request including an indication of an operational parameter associated with the client device; determining one of the first node and the second node best suited to deliver content to the client device; based on the indication of the operational parameter, determining one of the first transcoded stream and the second transcoded stream best suited for the client device; transmitting to the client device a connection signal, the connection signal including identification of (i) the one of the first node and the second node and (ii) the indication of the one of the of the first transcoded stream and the second transcoded stream.
US09680676B2 Communication system, communication device and communication method that can improve frequency use efficiency
A communication device receives a reception signal including at least a first reception signal and a second reception signal, where the first reception signal is a signal to be transmitted using a first set of subcarriers and the second reception signal is a signal to be transmitted using a second set of subcarriers which overlaps with at least one end of the first set of subcarriers in a time frame. The communication device also demodulates information indicating data included in the first reception signal after reducing the second reception signal transmitted by using one or more overlapping subcarriers of the second set of subcarriers from the reception signal.
US09680675B1 Methods and apparatus for automated adaptation of transmitter equalizer tap settings
One embodiment relates to a method of automated adaptation of a transmitter equalizer. A multi-dimensional search space of tap settings for the transmitter equalizer is divided into multiple single-dimensional search spaces, each single-dimensional search space being associated with a single tap of the transmitter equalizer. The multiple single-dimensional search spaces are searched in series, and a tap for a single-dimensional search space is set before searching a next single-dimensional search space. Another embodiment relates to a transceiver with adaptation circuitry configured to implement the above-described method. Other embodiments, aspects, and features are also disclosed.
US09680672B2 Haptic actuator including pulse width modulated waveform based coil movement and related methods
A haptic actuator may include a housing, at least one permanent magnet carried by the housing, a field member movable within the housing and comprising at least one coil cooperating with the at least one permanent magnet, and at least one mechanical limit stop between the housing and the field member. The haptic actuator may also include circuitry capable of generating a pulse width modulated (PWM) waveform for the at least one coil to move the field member from an initial at-rest position and without contacting the at least one mechanical limit stop.
US09680668B2 Delay resilient decision feedback equalizer
Described is an apparatus which comprises a decision feedback equalizer (DFE) having a first DFE tap path and non-first DFE tap paths, wherein the DFE includes a variable delay circuit in a signal path of the non-first DFE tap paths. In some embodiment, an apparatus is provided which comprises: a summer; a slicer to receive input from the summer; a first feedback loop to cancel a first post-cursor, the first feedback loop forming a loop by coupling the slicer to the summer; and a second feedback loop to cancel a second post-cursor, the second feedback loop forming a loop by coupling an input of the first feedback loop to the summer, wherein the second feedback loop having a programmable delay at its input.
US09680663B2 Tunnel endpoint device, communication device, communication system, communication method, and program
A tunnel endpoint device includes a control unit configured to establish a communication tunnel with a tunnel endpoint device as a communication peer and an interface configured to access a storage device including communication state information about a tunnel communication. The control unit is configured to be adapted to take over state information about a tunnel communication of another tunnel endpoint device via the storage device when receiving an externally supplied switching instruction.
US09680660B2 Self-service terminal
A self-service terminal comprises a plurality of devices, each device providing management information. A management agent is installed in the terminal and adapted to monitor the plurality of devices. In the event that management information from a device indicates that there is a fault, the management creates and transmits a notification. A communications stack is adapted to receive the transmitted notification from the management agent. A self-service terminal application is adapted to (i) monitor the communications stack to receive the transmitted notification, (ii) package the notification within a host message conforming to a host messaging format, and (iii) transmit the host message to a remote host via a legacy network.
US09680657B2 Cost optimization in dynamic workload capping
A mainframe computing system includes a central processor complex, a plurality of billing entities, each billing entity having a respective capacity limit, and a workload manager that schedules work requested by the plurality of billing entities on the central processor complex and tracks, by billing entity, a rolling average of millions of service units. The mainframe also includes a dynamic capping policy that identifies a maximum MSU limit, a maximum cost limit, a subset of the plurality of billing entities, and, for each billing entity in the subset, information from which to determine a MSU entitlement value and cost entitlement value. The mainframe also includes a dynamic capping master that adjusts the respective capacity limits of the subset of the plurality of billing entities at scheduled intervals based on the dynamic capping policy to favor billing entities having high-importance workload within the maximum MSU limit and maximum cost limit.
US09680654B2 Systems and methods for validated secure data access based on an endorsement provided by a trusted third party
Methods, systems, and techniques for securing access to stored data are provided. Example embodiments provide a Storage Management System (“SMS”) that is configured to facilitate protected information sharing. The SMS may restrict access to shared information based on one or more criteria that validate an entity's right to access the information. For example, the SMS may restrict access to entities that are located in a particular geographic region, that are using a particular type of hardware or software, that hold particular credentials, or the like. In some cases, the SMS may require that an entity's claim to meet on or more required criteria be validated by a trusted third party.
US09680647B2 Method of using a token in cryptography
Disclosed herein are techniques related to predetermining a token for use in a cryptographic system. A method includes providing a memento, mapping the memento to a candidate token according to a rule that updates a parameter, predetermine the token to be the candidate token, if the candidate token meets a test condition according to the rule, identifying a parameter value of the parameter, and providing the memento and the parameter value for future use as an input to re-generate the token. Another method disclosed herein is to re-generate the predetermined token for use in a cryptographic system. The method includes providing a memento associated with the predetermined token, providing a parameter value associated with the predetermined token, and providing a precept for mapping the memento to a candidate token. Further disclosed is instruction code for performing the techniques disclosed herein.
US09680645B2 Integrity verification of cryptographic key pairs
Method of integrity verification of cryptographic key pairs, the method including an integrity test with: at least one first step implementing one of the private and public keys and an initial test datum, the first step making it possible to generate a first result, at least one second step implementing at least the first result and the key not used during the at least one first step, the second step making it possible to generate a second result, and a comparison of the second result and of the initial test datum, characterized in that the test is re-executed upon each positive comparison, and in that the test is executed at least 2 times.
US09680643B2 System and method for the secure transmission of data
A system for securely transmitting data includes a control device and at least one security module. The control device is configured for producing a cryptographic key using a physically unclonable function (PUF). The at least one security module is configured for communicating with the control device at least one of confidentially and authentically using the cryptographic key. The control device has no storage for storing the cryptographic key. The control device includes at least one hardware device that is configured for providing a specific feature combination. The control device also includes a calculation unit that is configured for producing the cryptographic key using the specific feature combination and the physically unclonable function (PUF). The control device further includes a program-controlled device that is configured for executing a first computer program product, which is configured for performing the encrypted/authenticated communication with the security module via a first and second communication interfaces.
US09680641B2 Quantum key distribution using card, base station and trusted authority
Techniques and tools for quantum key distribution (“QKD”) between a quantum communication (“QC”) card, base station and trusted authority are described herein. In example implementations, a QC card contains a miniaturized QC transmitter and couples with a base station. The base station provides a network connection with the trusted authority and can also provide electric power to the QC card. When coupled to the base station, after authentication by the trusted authority, the QC card acquires keys through QKD with a trust authority. The keys can be used to set up secure communication, for authentication, for access control, or for other purposes. The QC card can be implemented as part of a smart phone or other mobile computing device, or the QC card can be used as a fillgun for distribution of the keys.
US09680640B2 Secure multi-party communication with quantum key distribution managed by trusted authority
Techniques and tools for implementing protocols for secure multi-party communication after quantum key distribution (“QKD”) are described herein. In example implementations, a trusted authority facilitates secure communication between multiple user devices. The trusted authority distributes different quantum keys by QKD under trust relationships with different users. The trusted authority determines combination keys using the quantum keys and makes the combination keys available for distribution (e.g., for non-secret distribution over a public channel). The combination keys facilitate secure communication between two user devices even in the absence of QKD between the two user devices. With the protocols, benefits of QKD are extended to multi-party communication scenarios. In addition, the protocols can retain benefit of QKD even when a trusted authority is offline or a large group seeks to establish secure communication within the group.
US09680638B2 Non alterable structure including cryptographic material
The present invention relates to a method to build a non-alterable structure and to such a non-alterable structure including data relative to a set of cryptographic material generated randomly or derived from a secret key linked to a business use, the non-alterable structure being intended to be transferred from a first entity to a second entity, the entities sharing at least an encryption/decryption key and a signature key, the structure comprising at least business data relative to the intended use of cryptographic material, an encrypted protection key encrypted with the encryption key, an encrypted set of cryptographic material encrypted with the protection key, a signature of the set of cryptographic material, the protection key and the data relative to the intended use of cryptographic material signed with the signature key.
US09680634B2 Synchronous transfer of streaming data in a distributed antenna system
Method and apparatus for generating a jitter reduced clock signal from signal transmitted over a communication medium includes receiving, with high speed data interface circuitry, a modulated signal that includes a binary encoded data stream. A recovered clock signal is generated from the modulated signal and tracks the long-term drift in the modulated signal. A jitter reduced clock signal is generated by filtering the recovered clock signal with a filtering circuit having a bandwidth sufficient to remove jitter while allowing the jitter reduced clock signal to track the drift in the modulated signal.
US09680633B2 Method and device for transmitting data by inductive coupling with controlled self-oscillation
In a general aspect, a method for transmitting data by inductive coupling can include applying, at a rate of a data-carrying signal, a plurality of bursts of a periodic signal to a tuned inductive antenna circuit. The method can further include producing, in the tuned inductive antenna circuit, an antenna signal, the antenna signal generating a magnetic field. The method can further include delimiting an amplitude of each burst of the plurality of bursts of the periodic signal in accordance with an envelope signal, the envelope signal having a rising edge and a falling edge. The delimiting can include shaping the falling edge of the envelope signal using one of a digital shaping circuit and an analog shaping circuit, such that a slope of the falling edge of the envelope signal is flattened as compared to a square envelope signal.
US09680632B2 Systems and methods for symbol time tracking
A method for communications is described. The method includes determining a symbol timing drift elimination amount for a received signal. The method further includes eliminating part of the symbol timing drift by adjusting a reference clock for the modem. Determining the symbol timing drift elimination amount may be based on at least one of a symbol timing drift estimate, a symbol timing error, a packet acquisition indicator, a packet validity indicator, demodulated bits or a carrier presence indicator.
US09680631B2 Signal recovery circuit and signal recovery method
A signal recovery circuit includes: a data acquisition circuit configured to collect a received data signal according to a transition edge of a received signal recovery clock; and a phase adjustment circuit configured to adjust a phase relationship between the transition edge of the received signal recovery clock and the received data signal according to a data value of the received data signal to be acquired by the data acquisition circuit.
US09680628B2 Method and apparatus for transmitting control channel in intra-cell carrier aggregation system
A method for receiving control channel and an apparatus in a wireless communication system are provided. The method includes transmitting, at a base station, information on a primary cell operating in a frequency division duplexing (FDD) mode and a secondary cell operating in a time division duplexing (TDD) mode, transmitting, at the base station, downlink scheduling information for downlink data, transmitting, at the base station, the downlink data in a first subframe according to the downlink scheduling information, and receiving, at the base station, control information corresponding to the downlink data on the primary cell, from a terminal. The control information is transmitted using a physical uplink control channel (PUCCH) format determined based on a type of the first subframe of the secondary cell.
US09680626B2 Methods and systems for frequency multiplexed communication in dense wireless environments
Systems, methods, and devices for high-efficiency wireless frequency division multiplexing are provided. A method includes exchanging, at an access point, at least one frame reserving a wireless medium with at least one of a first and second wireless device. The method further includes receiving a first communication on a first set of wireless frequencies from the first wireless device. The method further includes receiving a second communication, at least partially concurrent with the first communication, on a second set of wireless frequencies from the second wireless device. The method further includes transmitting at least one acknowledgment of the first and second communication. The first set and the second set are mutually exclusive subsets of a set of wireless frequencies available for use by both the first and second wireless device.
US09680625B2 Method and node for listening
Embodiments of the present invention disclose a method and a node for listening. The method includes: receiving a listening reference signal in a listening pilot time slot; analyzing the listening reference signal received to obtain interference information of a node sending the listening reference signal and/or a resource configuration of a node sending the listening reference signal. By adopting the present invention, the node in the embodiments of the present invention receives the listening reference signal in the listening pilot time slot, and analyzes the received listening reference signal to obtain the interference information of a node sending the listening reference signal and/or the resource configuration of the node sending the listening reference signal, so as to listen to an interference condition and/or a resource configuration of an adjacent node.
US09680624B2 Method and system for mapping uplink control information
An uplink grant transmitted to a subscriber station indicates a first modulation and coding scheme (MCS) value for a first codeword transmission and a second MCS value for a second codeword transmission. A multiple-input multiple-output (MIMO) uplink subframe received from the subscriber station has a first subset of layers used for first codeword transmission and a second subset of layers used for second codeword transmission. Rank indication (RI) information is mapped onto both the first subset of layers and the second subset of layers. Channel quality information (CQI) is only mapped onto either the first subset of layers or the second subset of layers. If the first MCS value is different from the second MCS value, the CQI is mapped onto the subset of layers having a higher MCS value.
US09680619B2 Method and apparatus for operating sounding in wireless communication system in which uplink control channel resource dynamically changes
The present invention relates to a procedure for transceiving a sounding reference signal and to a method for operating sounding in a wireless communication system in which an uplink control channel resource dynamically changes. More particularly, the method for transmitting a sounding reference signal by a terminal in a wireless communication system according to the present invention comprises the steps of: receiving uplink/downlink configuration information transmitted from a base station; checking whether a conflict occurs between a physical uplink control channel (PUCCH) resource region based on the uplink/downlink configuration information and a sounding reference signal (SRS); and skipping the transmission of the SRS upon the occurrence of a conflict. The present invention has the advantage of efficiently solving the problem of conflicts between the SRS and the uplink control channel resource without increasing the power consumption burden in the terminal or without excessive restrictions on an SRS transmission subframe or sounding band.
US09680617B2 Method of transmitting reference signal in unlicensed spectrum for LTE-LAA system and wireless device using the same
The disclosure is directed to method of transmitting a reference signal used by a wireless device in an unlicensed spectrum for a LTE-LAA communication system, and a wireless communication device using the same method. In one of the exemplary embodiments, the method would include not limited to receiving, via a first wireless receiver tuned to a licensed spectrum, a control message which at least indicates a pattern of a reference signal to be received; receiving, via a second wireless receiver tuned to an unlicensed spectrum, a first message which comprises the reference signal in the unlicensed spectrum; performing a measurement of the reference signal; generating a feedback based on the measurement of the reference signal; and transmitting, via a wireless transmitter tuned to the licensed spectrum, a second message which comprises the feedback of the reference signal in the licensed spectrum.
US09680613B2 Method and apparatus for transmitting sounding reference signal in radio communication system
Disclosed is a method for transmitting a sounding reference signal from a terminal to a base station in a radio communication system. More specifically, the method comprises the steps of: receiving a transmission instruction signal for transmitting a non-periodic sounding reference signal from a base station; determining a time resource for transmitting said non-periodic sounding reference signal based on a specific subframe for transmitting the preset periodic sounding reference signal; and transmitting said non-periodic sounding reference signal to the base station using said determined time resource.
US09680609B2 Transmitting device, receiving device, controlling node, and methods therein, for transmitting a block to the receiving device
Method performed by a transmitting device (101) for transmitting a block to a receiving device (102). The transmitting device (101) and the receiving device (102) operate in a wireless communications network (100). The transmitting device (101) transmits a block to the receiving device (102). The block comprises four bursts. The four bursts further comprise Uplink State Flag, USF, Stealing Flag, SF, and data and header fields. The USF and the SF fields are interleaved and mapped over the four bursts. The data and header fields are interleaved over one burst but repeated over the four bursts. The data and header fields are overlapping with and overridden by bits from the USF field in different positions in each burst. In a method performed by the receiving device (102), the receiving device (102) receives the transmitted block. In a method performed by a controlling node (140), the controlling node (140) selects a block format for transmission by the transmitting device.
US09680608B2 Communication protocol with reduced overhead
An apparatus includes a transceiver having a MAC controller and a PHY controller. The MAC controller is configured to selectively omit at least a portion of a field of a media access control (MAC) frame. The PHY controller is configured to insert the MAC frame into a physical protocol data unit and to selectively configure a portion of the physical protocol data unit to indicate omission of at least the portion of the field from the MAC frame.
US09680597B2 Optical branching/coupling device and optical branching/coupling method
In order to add a CDC function to a ROADM system currently incompatible with CDC, without requiring any service outage, an optical communication system of the present invention includes: an optical demultiplexing unit 1-1 and 1-2 which each demultiplexes a wavelength-multiplexed optical signal inputted thereto and an optical multiplexing unit 2-1 and 2-2 which each multiplexes together some of, specifically at least two or more of, the components of the wavelength-multiplexed optical signal having been demultiplexed by the optical demultiplexing unit 1-1 or 1-2; and an optical path selection unit 3 which selectively outputs either the optical signal multiplexed by the optical multiplexing unit 2-1 or that by the optical multiplexing unit 2-2, in a form of at least two or more output optical signals.
US09680590B2 Method and apparatus for transmitting and receiving signals in wireless communication system
An apparatus and a method for allocating resources for transmitting an HARQ ACK/NACK signal for a downlink subframe using a PUCCH format 3 in a time division duplex (TDD) system using a single carrier are provided. Since the resources are allocated through a resource indicator transmitted using a power control field transmitted on a PDCCH of the downlink subframe, the resources for transmitting the HARQ ACK/NACK signal may be allocated by effectively using resources allocated to a duplicately transferred control signal.
US09680589B2 Method and apparatus for transmitting ACK/NACK in a wireless communication system based on TDD
Provided is a method of transmitting ACK/NACK in a TDD-based wireless communication system. The method includes: receiving M downlink subframes associated with an uplink subframe n in each of two serving cells; determining four candidate resources based on the M downlink subframes received in each of the two serving cells; and transmitting an ACK/NACK response for the M downlink subframes by using one resource selected from the four candidate resources in the uplink subframe n, wherein the two serving cells includes a first serving cell and a second serving cell, and wherein among the four candidate resources, a first resource and a second resource are associated with a PDSCH or a SPS release PDCCH for releasing semi-persistent scheduling received in the first serving cell, and a third resource and a fourth resources are associated with a PDSCH received in the second serving cell.
US09680587B2 Traffic differentiation in a transport network
A Layer 1 transport network, such as an Optical Transport Network (OTN), transports traffic in Layer 1 data transport units. Traffic received at a node of the transport network is mapped to Layer 1 data transport units according to destination such that each Layer 1 data transport unit carries traffic for a particular destination of the transport network. The Layer 1 transport network can carry a plurality of different traffic types and the node can map the received traffic to Layer 1 data transport units according to destination and traffic type. Identification information can be added to an overhead section associated with the Layer 1 data transport unit to indicate at least one of: traffic type and destination of the traffic carried within the data transport unit. At a subsequent node, the Layer 1 data transport units are received and switched such that Layer 1 data transport units carrying traffic destined for other nodes bypass higher layer processing at the node and Layer 1 data transport units carrying traffic destined for the node are switched to a local output of the node.
US09680580B2 Wireless communication methods and apparatus
A method in a wireless system, including: receiving, at a wireless device, over first and second networks, from each of plural radios of the first and second networks, respective first and second sets of reference signals received from first radios of the first and second networks, and plural further reference signals received from remaining radios of plural radios of the first and second networks, the first radios of the first and second networks located at a common location; calculating first and second sets of normalized reference signals from ratios for each further reference signal of the first and second sets of reference signals with the first and second reference signals of the first and second sets of reference signals; comparing predictions of signal loss based on the first and second sets of normalized reference signals; and determining an estimate of shadow fading or signal reflectors using the comparison result.
US09680579B2 Dynamically adaptive frequency adjustments
Systems and methods may provide for implementing dynamically adaptive frequency adjustment. In one example, the method may include analyzing a first set of transmission information and a second set of transmission information based on a likelihood of transmission interference, and determining a dynamically adapted camera frequency, wherein the dynamically adapted camera frequency is to minimize the transmission interference.
US09680575B2 Relay device, station side device, and communication system and communication method using relay device
A relay device includes a relay processing unit that relays a downstream frame received by a first transceiver to a second transceiver, and relays an upstream frame received by the second transceiver to the first transceiver; and a control unit that follows upstream multiple access control performed by a station side device in a first line, for transmission of the upstream frame to be transmitted by the first transceiver to the station side device, and independently performs upstream multiple access control for reception of the upstream frame received by the second transceiver from a home side device in a second line. The control unit reports an amount of data that the home side device in the second line will be allowed to transmit, to the station side device in the first line before the data arrives at the second transceiver.
US09680574B1 Frequency domain optical channel estimation
An optical transceiver in an optical communications network, comprising a receiver configured to receive an optical signal comprising an X-polarization component that comprises a first frame and a Y-polarization component that comprises a second frame. The optical transceiver also comprises a processor coupled to the receiver and configured to determine, in a time domain, a phase estimate according to the first frame and the second frame, determine, in a frequency domain, a channel estimate for the optical signal according to a relationship between the first frame, the second frame, and the phase estimate, and determine a compensated optical signal according to the channel estimate. The optical transceiver further comprises a transmitter coupled to the processor and configured to transmit the compensated optical signal to a downstream component in the optical communications network.
US09680573B2 Optical transceiver
An optical transceiver includes a main board, a fiber joint, a circuit board, a transfer board, metal traces, photoelectric elements, a lens set, a connection base, and an amplifier. The fiber joint is coupled to the lens set and connection base for positioning plural optical fibers. The connection base is coupled to the main board, and the circuit board is electrically connected to the main board. The transfer board is disposed between the fiber joint and circuit board. Each of the metal traces is arranged on both of two neighboring surfaces of the transfer board. The photoelectric elements are respectively coupled to metal traces on the surface of the transfer board facing the fiber joint, and axially aim to the optical fibers, respectively. The amplifier electrically connects the circuit board and the photoelectric elements via the metal traces.
US09680572B2 Information communication device
An information communication method is provided that includes continuously capturing an image of a subject that transmits a signal by changing luminance, with an image sensor. The method also includes displaying a captured image that includes a box and a subject image for identifying the subject, while continuously updating a position of the subject image on the captured image, according to a positional relationship between the image sensor and the subject established when the image of the subject is captured. The method further includes determining whether the subject image is in the box, and receiving the signal transmitted by the subject when it is determined that the subject image is in the box. In the receiving, information is obtained by demodulating a bright line pattern that appears in a second image data and corresponds to the plurality of exposure lines.
US09680570B2 Optical channel monitor for a wavelength selective switch employing a single photodiode
A method of monitoring at least one optical wavelength component of a WDM optical signal being routed through a wavelength selective switch (WSS) includes directing an optical wavelength component from a given input port of the WSS to a selected output port with a selected amount of attenuation. A rejected portion of the optical wavelength component giving rise to the selected amount of attenuation is directed to an optical monitor associated with another output port of the WSS. A power level of the optical wavelength component is determined by pre-calibrating a proportionality between the power level of the wavelength component and the power level of the rejected portion that is directed to the optical monitor.
US09680569B2 Method and system for optical connection validation in a reconfigurable optical add-drop multiplexer (ROADM) node
A method of validating connections in an optical add/drop multiplexer (OADM) that includes a plurality of modules configured to route optical signals through the OADM, and at least one multi-fiber cable connecting modules of the OADM. A light source coupled to a first port of a first module is controlled to emit a test light. A determination is made whether or not the test light is received at a first photo-detector connected to a second port. Continuity of a connection between the first port and the second port is validated when the test light is received at the first photo-detector.
US09680561B2 Situational awareness and position information for satellite communication terminals
An efficient and reliable way to send various information including position location information (PLI) and emergency messages (EM) using or within a mobile satellite system (MSS) using different message formats including short message (e.g., short burst data (SBD), etc.), between mobile users as provided. Embodiments also use global positioning systems (GPS) used in some cases with the PLI system. Various embodiments improve communications efficiency and reliability of message transmission through various types of MSS. Embodiments include a method or approach to interface SBD PLI messages from mobile end user terminals (EUT) to common operating picture (COP) application programs as provided. Exemplary methods interface and translate MSS short messages (e.g., SBD) to extensible markup language (XML) message format and communicate converted messages to COP application program within a computer using a TCP/IP interface.
US09680557B2 Method of operating relay station in wireless communication system
A method of operating a relay station in a wireless communication system is provided. The method includes operating in a first mode comprising a first sub-mode and a second sub-mode, in the first sub-mode a first downlink and a first uplink between a base station and the relay station being simultaneously activated, in the second sub-mode a second downlink and a second uplink between the relay station and a mobile station being simultaneously activated, and operating in a second mode comprising a third sub-mode and a fourth sub-mode, in the third sub-mode the first downlink and the second uplink being simultaneously activated, in the fourth sub-mode the first uplink and the second downlink being simultaneously activated.
US09680555B2 Apparatus and method for multiple antenna systems
An apparatus including a plurality of radio ports for interconnection with radio circuits, a plurality of antenna ports for interconnection with antennas, interconnection circuitry configured to enable interconnection of each of one or more radio ports to different non-overlapping sets of P antenna ports, where P is controllable and P=2p, p being a whole number; and at least one control port configured to receive a control signal for determining P.
US09680552B2 Method and apparatus for reporting channel state information in wireless communication system
The present invention relates to a wireless communication system and, more specifically, to a method and an apparatus for reporting channel state information (CSI). Particularly, the method comprises the steps of: receiving a reference signal (RS) from a base station; and reporting, to the base station, the CSI generated by using the RS, wherein the CSI is measured on the basis of a specific CSI-RS set among a plurality of CSI-RS sets, beamforming weight vectors in a vertical domain which are set differently for each of horizontal domain antenna ports to which the same beamforming weight vectors in a vertical domain is applied.
US09680551B2 Method of determining two-stage codebook set applicable to 4TX cross-polarized antenna configuration
The invention provides a solution of designing a two-stage codebook set applicable to 4Tx cross-polarized antenna configuration and a method of determining a codebook in a multi-input multi-output communication system based upon the designed two-stage codebook set applicable to 4Tx cross-polarized antenna configuration. The first stage codebook relates long-term/wideband channel information and is based on DFT vectors, whereas the second stage codebook relates to short-term/narrowband channel information and is base on selecting columns of the first stage codebook and providing inter-polarization phase information.
US09680550B2 Method and apparatus for transmitting feedback about channel having spatial correlation
A method for a data signal on channels having spatial correlations by a Base Station (BS) is provided. The method includes estimating the spatial correlations of the channels, selecting a part of the channels based on a result of the estimation and transmitting a signal for channel estimation on the selected partial channels, and receiving channel estimation information estimated based on the signal from a User Equipment (UE) and generating a data signal to be transmitted to the UE on the channels using the channel estimation information.
US09680537B2 Radio base station, user terminal, radio communication system and radio communication method
The present invention is designed to reduce the increase in the amount of the calculation process in a mobile station and the amount of CSI feedback data, and also prevent the amount of overall system capacity from decreasing. This radio communication system (1) has a radio base station (200) which can form a plurality of beams that are vertically sectorized. The radio base station (200), using an array antenna (10), forms at least the first beam that is directed to the cell edge side and a second beam that is directed to the cell center side, in parallel. A mobile station (100) measures channel quality by extracting reference signals from each of the first beam and the second beam, generates a communication quality feedback signal including channel quality measured from at least one of the beams, and feeds this back to the radio base station (200) via the uplink.
US09680536B2 System and method for supporting antenna beamforming in a cellular network
The present invention is a method and system for supporting a beamforming antenna system in a mobile broadband communication network with an improved beam pattern, beam sweep pattern, pilot channel design with feedback and reporting rules, and control signaling design. Specifically, the improved beam pattern includes a method of supporting wireless communications in a wireless network forming at least two spatial beams within a cell segment where the at least two spatial beams are associated with different power levels, and separately, where at least two spatial beams can be moved across the cell segment according to a unique sweep pattern. The pilot channel design improves network bandwidth performance and improves user mobility tracking Feedback and reporting rules can be established using a particular field designator, CQI, in the preferred embodiment.
US09680535B2 Method and apparatus for reduced feedback FD-MIMO
A method for operating a base station includes receiving an uplink signal from a user equipment (UE), wherein the uplink signal includes a precoding matrix indicator (PMI) associated with a first precoder index of a codebook determined by a first and a second precoder indices, and a channel quality indicator (CQI). The method includes applying an open-loop diversity operation to at least one data stream including quadrature amplitude modulation (QAM) symbols to generate N_B signal streams and applying a precoding matrix to the N_B signal streams to generate a larger number of N_TX data streams to be transmitted via a plurality of antennas.
US09680533B2 Computational bluetooth tag with backscatter
A backscatter modulation radio-frequency (RF) sensor and method for using the same are disclosed herein. In one embodiment, the RF sensor comprises: an energy harvesting unit operable to convert incident RF energy to direct current (DC); a storage unit operable to store recovered DC power; one or more sensors for sensing; a backscatter communication interface to backscatter energy to communicate one or more packets using a frequency-shift keying (FSK) modulator; and a microcontroller coupled to the energy harvesting and storage units, the one or more sensors, and the backscatter communicator, the microcontroller operable to cause the backscatter communication interface to communicate sensed data from at least one of the one or more sensors while powered by energy previously harvested and stored by the energy harvesting and storage unit.
US09680532B2 Docking station for inductively charged portable electronic device
A docking station that securely holds a portable electronic device in a desired location with respect to a primary power coil for inductive charging of a battery of the portable electronic device is provided. In one embodiment the docking station includes a pair of opposed end stops spaced apart longitudinally along a base and a primary coil of an inductive charging system positioned below the base. The end stops are longitudinally adjustable to properly align a secondary coil of the portable electronic device with a primary coil. A flexible retention wall may be deflected to provide a biasing force on the portable electronic device. Walls of the end stops are generally curved toward each other and provide downward pressure to prevent vertical and horizontal movement. In another embodiment, a retainer clip is movably coupled with and selectively slides along the base to securely hold the portable electronic device.
US09680529B2 Electronically enabled in-person social networking
Techniques and devices for electronically enabled in-person social networking are disclosed. A device is worn on a first user's wrist or otherwise placed on or near a first user. The device is associated with the user and a user profile is established. When another user wearing or holding a similar device comes in close proximity to the first user, the profiles of the two users are compared to see if any attributes from both users' established profiles have a strong correlation or match. If so, an indication is displayed on the device, indicating to both users that a match between the two users has been determined.
US09680528B2 Communication between capacitive-isolated devices
Aspects of the present disclosure are directed to circuits, apparatuses and methods for communicating data between capacitive-isolated devices. According to an example embodiment, an apparatus includes a transmitter circuit configured to transmit a first single-ended data signal over a first signal path. The apparatus also includes a receiver circuit. The receiver circuit includes a differential amplifier having a first input coupled to receive a second single-ended signal from a second signal path of the plurality of signal paths and includes a second input coupled to receive a reference signal from a third signal path of the plurality of signal paths. The differential amplifier outputs a third single-ended signal indicative of a voltage difference between the first and second inputs. The receiver circuit also includes a common mode suppression circuit configured to remove a common mode voltage from the first and second inputs of the differential amplifier.
US09680526B2 Phase error detector and optical disc device
A phase error detector includes an N counter configured to frequency-divide a first clock by N, and output a signal at predetermined timing, an M counter configured to frequency-divide a second clock by M, and output a signal at predetermined timing, a comparator configured to perform phase comparison between a phase when a value of the N counter is 0 and a phase when a value of the M counter is 0, and perform phase comparison between a phase when a value of the N counter is equal to a value obtained by dividing N into a substantially predetermined value and a phase when a value of the M counter is equal to a value obtained by dividing M into a substantially predetermined value and a synthetic circuit configured to generate a phase error, based on comparison results of the comparator.
US09680524B2 Method of transmitting signal, and apparatus for performing the same
A signal transmission method and apparatus are provided. A signal transmission apparatus may include a time hopping apparatus configured to calculate a difference between values of time hopping patterns corresponding to adjacent symbol transmission periods, and to determine, based on the calculated difference, whether a position of a time hopping pattern corresponding to one of the adjacent symbol transmission periods is to be adjusted, and a transmitter configured to transmit a signal in the adjacent symbol transmission periods based on a determination result obtained by the time hopping apparatus. Additionally, a related signal reception apparatus is provided.
US09680523B1 System and method for transmitting ancillary data
A method and system for encoding ancillary information at a transmitter in a high-speed communications network, the method comprising: generating an electromagnetic interference (EMI) reduction signal; receiving an ancillary data symbol; generating an EMI reduction signal variation based on the ancillary data symbol; and varying a characteristic of the EMI reduction signal based on the generated EMI reduction signal variation to encode the ancillary data symbol in the varied EMI reduction signal.
US09680521B2 Transceiver front-end for blocking transmit or receive frequency signals
A transceiver front-end is connectable to a signal transmission and reception arrangement adapted to transmit and receive with respective frequencies. The transceiver front-end comprises at least one of a transmit frequency blocking arrangement and a receive frequency blocking arrangement. For instance, the transmit frequency blocking arrangement has a blocking and non-blocking frequency interval associated with the transmit frequency and receive frequency, respectively, and is adapted to block passage of transmit frequency signals between the signal transmission and reception arrangement and the receiver. At least one of the transmit frequency blocking arrangement and the receive frequency blocking arrangement comprises a network of passive components comprising at least one transformer and a frequency translated impedance adapted to have a higher impedance value in the blocking frequency interval than in the non-blocking frequency interval.
US09680520B2 Ambient backscatter tranceivers, apparatuses, systems, and methods for communicating using backscatter of ambient RF signals
Apparatuses, systems, ambient backscatter transceivers, and methods for modulating a backscatter of an ambient RF signal are described. An example system may include an ambient backscatter transceiver comprising an antenna that is configured to receive a backscattered ambient radio frequency (RF) signal. The ambient backscatter transceiver is configured to demodulate the backscattered ambient RF signal to retrieve first data. The backscattered ambient RF signal is generated by backscattering an ambient RF signal at a first frequency. The ambient RF signal is encoded with modulated to provide second data at a second frequency.
US09680519B2 Protective case for mobile device with integrated latch
A protective case for a mobile device is disclosed. The protective case includes a front cover, a back cover, and a relatively rigid shell. The front cover includes multiple fold lines that extend across the cover and allow adjacent regions of the cover to rotate or move relative to each other. The shell is configured to receive and retain the mobile device while providing user access to the mobile device. The shell has an outer surface configured to include a latch with an integrated hook. In operation, the latch hooks and retains one end section of the front cover to maintain the device in an angled use position when open. When in the fully closed position the latch fits within an aperture defined within a back end region of the front cover. Magnets incorporated into the front cover assist in maintaining the case in the fully closed position.
US09680517B2 Optimized wireless charging system
A transmission device that includes a fixed support for receiving an electronic appliance. The transmission device has at least one first and one second retaining elements defining between them a receiving space, the second retaining element being movable with respect to the fixed support along a main direction so as to give the possibility of adapting the size of the receiving space. The transmission device includes a transmission element attached to the retaining elements by a mechanism that includes a first return element connecting the transmission element to the first retaining element and a second return element connecting the transmission element to the second retaining element. The stiffness of the first return element is equal to the stiffness of the second return element.
US09680505B2 Transmitting apparatus and interleaving method thereof
A transmitting apparatus is provided. The transmitting apparatus includes: an encoder configured to generate a Low Density Parity Check (LDPC) codeword by LDPC encoding based on a parity check matrix; an interleaver configured to interleave the LDPC codeword; and a modulator configured to map the interleaved LDPC codeword onto a plurality of modulation symbols, wherein the modulator is configured to map bits included in a predetermined bit group from among a plurality of bit groups constituting the LDPC codeword onto a predetermined bit of each of the modulation symbols.
US09680503B2 LDPC code matrices
An LDPC parity check matrix, includes a systematic portion having a plurality of systematic elements and a parity portion having a plurality of parity elements. The value of each systematic element determines a cyclic shift to be applied to rows of an identity submatrix corresponding to that element. The value of each parity element determines a cyclic shift to be applied to rows of an identity submatrix corresponding to that element. The weights of two or more columns of the parity portion are the same.
US09680502B2 Message page integrity verification in automotive network auto-negotiation
A transmitting device may implement a checksum for integrity verification for a message page during an auto-negotiation period. The checksum may provide redundancy to ensure the integrity of the message page after transmission. The checksum may be calculated based on the message page and appended to the message page for transmission. A receiving device may receive the message page with the appended checksum and calculate a checksum locally using the received message page. The calculated and received checksum may be compared by the receiving device to verify the integrity of the message.
US09680501B1 De-serialization circuit and method of operating the same
A de-serialization circuit includes a clock generation circuit, a first and a second latch circuit. The clock generation circuit is configured to generate a set of phase clock signals based on a first clock signal and a control signal. Each phase clock signal of the set of phase clock signals being offset from adjacent phase clock signals of the set of phase clock signals by a phase value. The first latch circuit is configured to generate a first set of data signals based on the set of phase clock signals and an input data signal. The second latch circuit is configured to generate a second set of data signals based on a first phase clock signal of the set of phase clock signals and the first set of data signals. Each signal of the second set of data signals being aligned with each other, wherein the first clock signal is non-continuous.
US09680498B2 Sampling/quantization converters
Provided are, among other things, systems, apparatuses, methods and techniques for converting a continuous-time, continuously variable signal into a sampled and quantized signal. One such apparatus includes an input line for accepting an input signal that is continuous in time and continuously variable, multiple processing branches coupled to the input line, and an adder coupled to outputs of the processing branches. Each of the processing branches includes a continuous-time quantization-noise-shaping circuit, a sampling/quantization circuit coupled to an output of the continuous-time quantization-noise-shaping circuit, a digital bandpass filter coupled to an output of the sampling/quantization circuit, and a line coupling an output of the digital-to-analog converter circuit back into the continuous-time quantization-noise-shaping circuit. A center frequency of the digital bandpass filter in each the processing branch corresponds to a minimum in a quantization noise transfer function for the continuous-time quantization-noise-shaping circuit in the same processing branch.
US09680495B1 Data conversion
A data conversion system and method are described. A first phase locked loop includes a controllable frequency oscillator circuit to receive a digital data stream and output a reference frequency signal, and includes an oscillator and at least one variable load connected to the oscillator which is controllable to tune the oscillator frequency and vary the frequency of the reference frequency signal. A second phase locked loop includes a divide by N function in a feedback loop (where N has an integer value), and receives the reference frequency signal and outputs a recovered clock signal corresponding to an original clock signal associated with the digital data stream. The recovered clock signal is used to clock a data converter to convert the digital data into an analog output signal.
US09680494B2 Photoelectric conversion apparatus and image pickup system
When a level of a signal output from a pixel is higher than a comparison level, the signal output from the pixel is converted into a digital signal during a first period by using a first reference signal. If the level of the signal output from the pixel is lower than the comparison level, the signal output from the pixel is converted into a digital signal during a second period that is longer than the first period by using a second reference signal.
US09680490B2 Background calibration of interleaved timing errors in digital to analog converters
System and method for the calibration of interleave time errors in an n-level PAM Digital to Analog Converter (DAC), according to which a set of two samplers with adjustable sample time and threshold are introduced at the output of the DAC, which are separated in time. The set of samplers is swept through a n unit interval (UI) window and the n-UI window is classified to periods of transitions and non-transitions on an eye diagram. The relative timing of the lower rate clocks into an n:1 multiplexer is controlled using a control loop, to force equal eye width within the n-UI window and the interleaved timing errors are measured and corrected, until the uneven distribution is being reduced below a predetermined level.
US09680487B2 RF circuit, DCO, frequency divider with three divided clock outputs
A phase locked loop circuit (30, 100, 110) includes a controllable oscillator (42) for generating an output signal of desired frequency responsive to a control signal, a first phase detection circuit (32, 102, 112) for generating an output indicative of phase differential responsive to the output signal and a first edge of a reference signal and a second phase detection circuit (34, 104, 114) for generating an output indicative of phase differential responsive to the output signal and a second edge of a reference signal. The control signal to the controllable oscillator (42) is driven by the outputs of the first and second phase detections circuits.
US09680480B1 Fractional and reconfigurable digital phase-locked loop
A reconfigurable digital phase-locked loop integrated circuit is disclosed which is coupleable to a reference frequency generator to generate an input signal having a reference frequency. A representative embodiment of the reconfigurable digital phase-locked loop integrated circuit may include a first digital phase-locked loop circuit configured to generate a first signal having a first frequency which is an integer multiple of the reference frequency; and a second digital phase-locked loop circuit coupled to the first digital phase-locked loop, the second digital phase-locked loop configured to generate a second, output signal having a second output frequency in response to a plurality of configuration parameters, the second frequency having a configurable fractional offset from the integer multiple of the reference frequency, and to match a phase of the second output signal with a first signal phase.
US09680473B1 Ultra dense vertical transport FET circuits
Logic circuits, or logic gates, are disclosed comprising vertical transport field effect transistors and one or more active gates, wherein the number of CPP's for the logic circuit, in isolation, is equal to the number of active gates. The components of the logic circuit can be present in at least three different vertical circuit levels, including a circuit level comprising at least one horizontal plane passing through a conductive element that provides an input voltage to the one or more gate structures and another conductive element that provides an output voltage of the logic circuit, and another circuit level that comprises a horizontal plane passing through a conductive bridge from the N output to P output of the field effect transistors. Such logic circuits can include single-gate inverters, two-gate inverters, NOR2 logic gates, and NAND3 logic gates, among other more complicated logic circuits.
US09680464B2 Semiconductor switch circuit
A semiconductor switch circuit includes a plurality of switching units connected in series between a high-voltage node and a low-voltage node, and a plurality of diodes provided in association with the plurality of switching units, respectively. Respective cathodes of the plurality of diodes are connected to the plurality of switching units, respectively, and the anode of the diode associated with the switching unit connected to the low-voltage node receives a predetermined power supply voltage. Each switching unit includes a semiconductor switching device, a gate drive circuit driving the semiconductor switching device, and a DC-DC converter receiving a DC voltage from a cathode of the associated diode and supplying drive power to the gate drive circuit.
US09680463B2 System and method for a radio frequency switch
A circuit includes multiple switching networks coupled between corresponding multiple RF ports and a common RF port. Each of the multiple switching networks includes a first switch between its corresponding RF port and the common RF port. At least one of the multiple switching networks includes a selectable network between the first switch and the common RF port. The selectable network provides a DC path in a first state and a series capacitance in a second state. A control circuit is configured to establish an RF path by activating a first switch and by deactivating other first switches. The control circuit is also configured to establish an RF path by placing a selectable network in the first state when the control circuit operates in a first mode and by placing a selectable network in the second state when the control circuit operates in a second mode.
US09680461B1 Generating local oscillator signals in a wireless sensor device
In some aspects, a local oscillator includes a voltage controlled oscillator, a multi-stage frequency divider including first and second stages, and a duty-cycle converter. An output node of the voltage controlled oscillator is coupled to an input node of the first stage. An output node of the first stage is coupled to an input node of the second stage. The first stage is configured to output a first signal from one of a first plurality of signal paths, each configured to provide a signal having a distinct frequency. The second stage is configured to output a second signal from one of a second plurality of signal paths, each configured to provide a signal having a distinct frequency. An output node of the multi-stage frequency divider is coupled to an input node of the duty-cycle converter.
US09680455B2 Clamping circuit, power supply device including the same and driving method of power supply device
A power supply includes a power switch and a switch control circuit controlling a switching operation of the power switch using a comparison voltage generated according to an output, determining a clamping voltage by sensing an input voltage during a start-up period, and clamping the comparison voltage to the clamping voltage during the start-up period.
US09680452B1 Sum frequency generator in the microwave domain for quantum communication and computation applications
A technique relates to a circuit for a sum frequency generator. A first resonator is connected to a Josephson ring modulator (JRM), and the first resonator is configured to receive a first photon at a first frequency. A second resonator is connected to the JRM, and the second resonator is configured to have a first harmonic and no second harmonic. The second resonator is configured to receive a second photon at a second frequency, and the first resonator is configured to output an up-converted photon. The up-converted photon has an up-converted frequency that is a sum of the first frequency and the second frequency.
US09680448B2 Gain-boosted n-path passive-mixer-first receiver with a single mixing step
The present invention discloses a gain-boosted n-path passive-mixer-first receiver. According to another aspect of the present disclosure, a gain-boosted n-path passive-mixer-first receiver is provided. The receiver includes a number n of switch-capacitor (sc) sets, a resistor, and a transconductance amplifier. The sc sets connect in parallel, and the sc sets have a first node and a second node. The resistor connects to the first node. The transconductance amplifier connects to the resistor and the second node.
US09680446B2 Demultiplexing apparatus with heat transfer via electrodes
An elastic wave filter includes a transmission circuit provided on a first main surface of a first piezoelectric substrate and a reception circuit provided on a second main surface of a second piezoelectric substrate. A mounting board on which the elastic wave filter is mounted includes a first ground electrode opposed to the transmission circuit; a first rear surface ground electrode overlapped with the transmission circuit in plan view of a rear surface; a second ground electrode opposed to the reception circuit; a second rear surface ground electrode overlapped with the reception circuit in plan view of the rear surface; a line electrode used for connection between the first ground electrode and the second ground electrode; and a first via electrode and a second via electrode passing through the mounting board. An amount of heat transfer per unit time of the second via electrode is greater than an amount of heat transfer per unit time of the first via electrode.
US09680445B2 Packaged device including cavity package with elastic layer within molding compound
A device includes a substrate; a cavity package having a first surface attached to the substrate, the cavity package enclosing an electronic circuit; an elastic layer formed on a second surface of the cavity package, opposite the first surface; and a molding compound formed on the substrate, encasing the cavity package and the elastic layer. The elastic layer decouples stress between the cavity package and the molding compound encasing the cavity package, for maintaining structural integrity of the cavity package and for preventing separation of the cavity package from the substrate.
US09680440B2 Multi-band impedance tuners using weakly-coupled LC resonators
Radio frequency (RF) filter structures and related methods and RF front-end circuitry are disclosed. In one embodiment, an RF filter structure includes a first terminal and a first tunable RF filter path defined between the first terminal and a second terminal. The first tunable RF filter path is tunable to provide impedance matching between the first terminal and the second terminal at a first frequency. The first frequency may be provided within a first frequency band. Additionally, the RF filter structure includes a second tunable RF filter path defined between the first terminal and the second terminal. The second tunable RF filter path is tunable to provide impedance matching between the first terminal and the second terminal at a second frequency. The second frequency may be within a second frequency band. In this manner, the RF filter structure is configured to provide impedance tuning for multiple impedance bands simultaneously.
US09680434B2 Method and apparatus for calibrating an envelope tracking system
A method of calibrating an envelope tracking system for a supply voltage for a power amplifier module within a radio frequency (RF) transmitter of a wireless communication unit is described. The method comprising, within at least one signal processing module of the wireless communication unit, applying a training signal comprising an envelope that varies with time to an input of the RF transmitter, receiving at least an indication of instantaneous output signal values for the power amplifier module in response to the training signal, calculating instantaneous gain values based at least partly on the received output power values, and adjusting a mapping function between an instantaneous envelope of a waveform signal to be amplified by the power amplifier module and the power amplifier module supply voltage to achieve a power amplifier module gain, for example that is monotonically increasing as a function of power amplifier output power.
US09680432B2 Power amplifier and input signal adjusting method
A power amplifier includes a class-D amplifier and an input signal supplier. The class-D amplifier includes an input portion and a switching device. The switching device is switched according to an input signal that is input to the input portion so that a current is supplied to a load from a power source via the switching device. The input signal supplier supplies the input signal to the input portion of the class-D amplifier, calculates a virtual output voltage to be output from a virtual power source having a prescribed internal impedance characteristic when a current to flow through the load is output from the virtual power source, and adjust an amplitude of the input signal according to the virtual output voltage.
US09680430B2 Mismatched differential circuit
A differential amplifier including: a first amplifier leg including a first transistor, and a second amplifier leg including a second transistor. Here, the first transistor is configured to have a bulk potential different from a bulk potential of the second transistor. The first amplifier leg and the second amplifier leg, together, may be configured to differentially amplify a received differential input signal. The differential amplifier may be configured to have an input offset voltage, which corresponds to the difference between the bulk potential of the first transistor and the bulk potential of the second transistor. The differential amplifier may be at an input stage of a comparator.
US09680428B2 Reduced crosstalk and matched output power audio amplifier using a triangle wave generator
A multi-channel Class D audio amplifier is provided to substantially reduce channel-to-channel crosstalk by employing in each channel a local triangle ramp generator controlled by a single global digital timing signal. The noise critical timing/integrating capacitor for the triangle ramp generator resides locally in each channel and adjacent to the PWM comparator of that channel and referenced to the local ground of that channel. The amplifier can also include a duty cycle limitation circuit to limit output power availability depending on the impedance of any attached loads (speakers).
US09680426B2 Power amplifiers with tunable notches
A power amplifier is described. A power amplifier includes at least a first amplifier stage. The power amplifier also includes a first notch filter coupled with the first amplifier stage. The first notch filter is configured to tune to a first frequency. The first notch filter including at least one first set of metal oxide semiconductor variable capacitor arrays. Moreover, the power amplifier includes a first mirrored notch filter coupled with said first amplifier stage. The first mirror notch filter is configured to tune to the mirror of the first frequency. The first mirror notch filter including at least one second set of metal oxide semiconductor variable capacitor arrays.
US09680425B2 Driver circuit and associated power amplifier assembly, radio base station and method
A driver circuit for a power amplifier of a radio base station. The driver circuit comprises a radio frequency input, an output for connection to a power amplifier, a combiner connected to the radio frequency input and a first bias leg. The first bias leg comprises a bias source input, a first capacitor leg and a second capacitor, wherein the first capacitor leg is connected between the combiner and ground, and the second capacitor is connected between the combiner and ground. The first capacitor leg comprises a first switch and a first capacitor, the first switch being provided between the combiner and the first capacitor such that, in a first state, the first capacitor is connected to the combiner and, in a second state, the first capacitor is disconnected from the combiner. A corresponding power amplifier assembly, radio base station and method are also presented.
US09680422B2 Power amplifier signal compensation
Exemplary embodiments are related to power amplifier power level compensation in a pre-distortion system. A method may include applying digital pre-distortion (DPD) of a power amplifier at a frequency channel, a fixed input power value, and a fixed temperature. The method may also include determining an optimal input power value for the power amplifier in response to a change in at least one of frequency and temperature.
US09680421B2 Ground fault circuit interrupter and method
A method and circuit for dynamically correcting offsets associated with an AC power system. In an embodiment, a first offset current generated in response to a ground to neutral fault stimulus is decreased and a second offset current generated in response to a differential fault stimulus is decreased. In another embodiment, the circuit includes an offset correction circuit that has one of a chopper circuit or an auto-zeroing circuit. An amplifier is connected to the offset correction circuit and an output connected to the offset correction circuit. A signal generator is switchably coupled to a first input of the offset correction circuit and a bias generator is switchably coupled to the first input of the offset correction circuit.
US09680418B2 Variable gain amplifier with improved power supply noise rejection
A voltage gain amplifier (VGA) configured to have reduced supply noise. The VGA includes first resistor, first FET, and a first current-source coupled between first and second voltage rails. The VGA includes second resistor, second FET, and second current-source coupled between the voltage rails. A variable resistor is coupled between the respective sources of the first and second FETs. Variable capacitors are coupled between the first or a third voltage rail and the sources of the first and second input FETs, respectively. If capacitors are coupled to the first voltage rail, noise cancellation occurs across the gate-to-source voltages of the FETs if an input differential signal applied to the gates of the FETs is derived from a supply voltage at the first voltage rail. If capacitors are coupled to the third rail, supply noise is reduced if the supply voltage at the third rail is generated by a cleaner regulator.
US09680416B2 Integrated RF front end with stacked transistor switch
A monolithic integrated circuit (IC), and method of manufacturing same, that includes all RF front end or transceiver elements for a portable communication device, including a power amplifier (PA), a matching, coupling and filtering network, and an antenna switch to couple the conditioned PA signal to an antenna. An output signal sensor senses at least a voltage amplitude of the signal switched by the antenna switch, and signals a PA control circuit to limit PA output power in response to excessive values of sensed output. Stacks of multiple FETs in series to operate as a switching device may be used for implementation of the RF front end, and the method and apparatus of such stacks are claimed as subcombinations. An iClass PA architecture is described that dissipatively terminates unwanted harmonics of the PA output signal. A preferred embodiment of the RF transceiver IC includes two distinct PA circuits, two distinct receive signal amplifier circuits, and a four-way antenna switch to selectably couple a single antenna connection to any one of the four circuits.
US09680411B2 Method and device for the industrial wiring and final testing of photovoltaic concentrator modules
The invention relates to a method and to a device for the industrial wiring and final testing of photovoltaic concentrator modules, comprising a module frame, a lens disc, a sensor carrier disc, and electrical cable routing, having the following features: a) a laser contacting device for contactless connection of connecting lines between the individual sensor (11) and of connection elements (17) and of collector contact plates (19), wherein the cable routing on the sensor carrier disc (13) has in each case 5 CPV sensors connected in parallel as the basic structure, and said parallel circuits are connected in series, b) a device for testing electrical properties, wherein the CPV sensors (11) per se have a specific voltage applied thereto, and the light emitted therefrom via the lenses (15) is detected and evaluated, and c) a device for testing the tightness (5) of finished concentrator modules, wherein compressed air is applied to the interior of said modules and testing for the emission of compressed air is carried out.
US09680406B2 Variable-flux motor drive system
A variable-flux motor drive system including a permanent-magnet motor including a permanent magnet, an inverter to drive the permanent-magnet motor, and a magnetize device to pass a magnetizing current for controlling flux of the permanent magnet. The permanent magnet is a variable magnet whose flux density is variable depending on a magnetizing current from the inverter. The magnetize device passes a magnetizing current that is over a magnetization saturation zone of magnetic material of the variable magnet. This system improves a flux repeatability of the variable magnet and a torque accuracy.
US09680405B2 Onboard motor controller
There is provided an onboard motor controller that starts a failsafe process in short time at a vehicle collision. A control circuit in the motor controller acquires an acceleration detected by an acceleration sensor. When the acceleration is equal to or higher than a prescribed value, the control circuit determines that a collision of the vehicle has occurred, and executes a switching process of a control mode of a motor. The control circuit immediately switches the control mode of a motor from voltage phase control to current vector control when the collision is detected. The control circuit reads current values from current detectors. When an overcurrent is detected, the control circuit executes a failsafe process to turn off the MOSFETs of an inverter. The control circuit stops a supply of electricity to the inverter by turning off a power supply relay, thereby stopping the rotation of the motor.
US09680399B2 Linear ultrasonic motor and lens apparatus and image pickup apparatus using the same
A linear ultrasonic motor includes a vibrator having a piezoelectric element, a movable part applying a pressing force to the vibrator and bringing the vibrator into pressed contact with a base part, a cover part being fixed to the base part, a rolling part being rollably held between a movable guide part of the movable part and a cover guide part of the cover part, and a body to be driven having a transmission member that is pivotably supported and able to move only in the movable direction. The transmission member includes a bias part that abuts on a transmission part of the movable part and applies a biasing force of biasing the movable part to the rolling part to the transmission part. The rolling part is held by a resultant force of the pressing force or a reaction force of the pressing force, and the biasing force.
US09680398B2 Multi-bridge topology
A power supply with a multi-bridge topology configured to provide multiple different bridge topologies during operation. The power supply includes a plurality of half-bridge circuits connected to a controller. The controller can selectively configure the power supply between a plurality of different bridge topologies during operation by controlling the half-bridge circuit.
US09680397B2 Three-phase inverting apparatus and control method and paralleled power conversion system thereof
A three-phase inverting apparatus and a control method and a paralleled power conversion system thereof are provided. The control method is suitable for controlling a three-phase inverter having a plurality of switch sets, a first inductor, a second inductor, and a third inductor. The control method includes following steps: obtaining a DC bus voltage, a plurality of phase voltages, and a plurality of phase currents; obtaining inductances of the first, the second, and the third inductors; calculating a plurality of switch duty ratios by a division-summation control means according to the DC bus voltage, the phase voltages, current variations of the phase currents, the inductances, and a switching cycle based on a sinusoidal pulse width modulation (SPWM); and generating corresponding control signals based on the switch duty ratios so as to control a switching of the switch sets.
US09680394B2 Energy voltage regulator and control method applicable thereto
A control method for an energy voltage regulator includes: detecting an output AC signal of a current cycle to generate a reference current command; comparing the reference current command with a reference upper power limit; and if the reference current command is lower than the reference upper power limit, generating a first current command based on the reference current command, to perform a discontinuous conduct control and to operate the energy voltage regulator under a discontinuous conduct state.
US09680393B1 Systems and methods for a transformerless power supply to limit heat generation at an output transistor via time varying current draws
Systems and methods are provided for a transformerless power supply configured to limit heat generation. A system includes a power supply input configured to receive power from a time-varying input voltage source. A phase control circuit is configured to generate a current control signal, where the current control signal commands power to be drawn from the power supply through an output transistor, where the current control signal commands the drawn power to have a minimum current when the time-varying input voltage is at a maximum, and where the current control signal commands the drawn power to have a maximum current when the time-varying input voltage is at a minimum. A power supply output is responsive to the output transistor, where the power supply output is configured to output power drawn from the power supply input via the output transistor, wherein the outputted power is at a consistent power level.
US09680390B1 Multi-source power supply
A multi-source power supply for supplying power that includes a first rectifier configured to convert a first AC power signal from a first source to a first DC power signal, a second rectifier configured to convert a second AC power signal from a second source to a second DC power signal and a common bus operatively connected to the first rectifier and the second rectifier and configured to combine a the DC power signals into a combined DC power signal, where the common bus distributes the combined DC power signal to at least one server.
US09680386B2 Minimum duty cycle control for active snubber
This application provides methods and apparatus for controlling aspects of a synchronous rectifier power converter. In an example, an apparatus can include a minimum duty cycle control circuit configured to receive first control signals for one or more switches associated with the synchronous rectifier power converter, to compare a duty cycle of the first control signals to a minimum duty cycle threshold, and to provide second control signals having at least the minimum duty cycle for an active snubber switch of the synchronous rectifier power converter.
US09680384B2 Controller for a power supply with transition region regulation
Energy in a power converter is regulated by receiving a first signal representative of an output voltage and a second signal representative of a current of the power converter. An output current of the power converter is determined in response to at least one of the first and second signals. An inner maximum output power point corresponding to a first value of output voltage and a first value of output current is determined. An outer maximum output power point corresponding to a second value of output voltage and a second value of output current is determined. A maximum capability boundary between the inner maximum output power point and the outer maximum output power point is determined. A power switch is switched to regulate the output voltage and the output current of the power converter such that the maximum output power is lower than the maximum capability boundary.
US09680381B1 Circuit including rectifying elements and a charge storage element and a method of using an electronic device including a circuit having switching elements
A circuit can include a switching element, a charge storage element, a first rectifying element, and a second rectifying element. A current-carrying electrode of the switching element and a terminal of the charge storage element are coupled to each other. The other terminal of the charge storage element, an anode of the first rectifying element, and a cathode of the second rectifying element are coupled to a floating node. A cathode of the first rectifying element is coupled to an input terminal, and an anode of the second rectifying element is coupled to a reference node. In a particular embodiment, the circuit can be part of a power converter. The charge storage element can help to capture charge during a switching operation and release the captured charge during a subsequent switching operation. The charge storage element can help the circuit to operate more efficiently.
US09680377B2 Inverting buck-boost converter drive circuit and method
A driver circuit includes a high-side power transistor having a source-drain path coupled between a first node and a second node and a low-side power transistor having a source-drain path coupled between the second node and a third node. A high-side drive circuit, having an input configured to receive a drive signal, includes an output configured to drive a control terminal of said high-side power transistor. The high-side drive circuit is configured to operate as a capacitive driver. A low-side drive circuit, having an input configured to receive a complement drive signal, includes an output configured to drive a control terminal of said low-side power transistor. The low-side drive circuit is configured to operate as a level-shifting driver.
US09680371B2 Charge pumps having variable gain and variable frequency
In one embodiment, a circuit comprises a charge pump. A gain control circuit is configured to detect an input voltage and generate a gain control signal to change a gain of the charge pump to maintain the output voltage of the charge pump in a voltage range. A voltage to frequency converter is configured to detect the input voltage and change a frequency of a frequency control signal applied to the charge pump based in the detected input voltage to maintain the frequency in a frequency range so that the output voltage of the charge pump is maintained in the voltage range.
US09680370B2 Power converting system and method of controlling the same
A power converting system and method of controlling the same disclosed. In one aspect, the power converting system includes first and second power converters electrically connected to each other, a current controller configured to determine first and second efficiencies of the power converting system, modify an amount of a first current configured to flow into the first power converter and an amount of a second current configured to flow into the second power converter in one of a first mode and a second mode, compare the first efficiency to the second efficiency, and determine the first mode or the second mode as a current adjustment mode based at least in part on the comparison result. The power converting system also includes a current distributor configured to distribute the amounts of the first and second currents based at least in part on the determined current adjustment mode.
US09680368B2 Power converter installed between an electric power system and an energy storage device
A power converter with a simple configuration capable of controlling a rush current is provided. The power converter is installed between an electric power system and a power storage device, includes a harmonic filter in an AC circuit on the electric power system side and a DC capacitor and a DC breaker in a DC circuit on the power storage device side, and performs AC/DC conversion processing using an inverter. The power converter is configured in such a way that, when the power storage device starts running, a current limited by a limiting resistor is given from the electric power system side to the DC capacitor, the difference between the voltage of the DC capacitor and the voltage of the power storage device is monitored, and the power converter is connected to the power storage device by switching on the DC breaker on the basis of the difference.
US09680364B2 Distributed power generation interface
Described herein are methods, systems, and apparatus for a controller for a power circuit that interfaces distributed power generation with a power distribution grid, comprising: a first portion, including a maximum power point tracker, that receives signals corresponding to the distributed power generation voltage and current, and outputs to the power circuit a signal for controlling the voltage of the distributed power generation; a second portion, including a current reference generator, a current controller, and a dc voltage controller, that receives signals corresponding to a dc voltage of the power circuit, the power distribution grid voltage and current, and the inverter current, and outputs signals for controlling the power circuit output voltage; wherein the current reference generator includes nonlinear circuit elements and generates a current reference signal from the dc voltage of the power circuit and the grid voltage and current; such that substantially harmonic-free power is injected into the power distribution grid. The distributed power generation may be, for example, a photovoltaic module or a wind turbine.
US09680361B2 Pulley electric motor
An electric motor apparatus that includes a disk with an increased mechanical advantage to the attached axle, with donut-shaped permanent magnets, windings, a fulcrum (A.K.A. axle), bearings, a commutator, and a single bearing conductor that replaces the brushes. The center axis consists of the windings and spools with the axis of the windings placed coradial in orbit around the fulcrum of a disk. The donut-shaped permanent magnets are cut with a slot to allow passage of the disk, spools, and windings. When windings of magnet wire are inserted with windings around the spools such that the center points of the faces of the spools are concentric to the same radius of the disk and pass through the center of a donut-shaped permanent magnet, and the windings are electrified with the correct polarity, the windings are repulsed magnetically in the direction of rotation of the orbit around the fulcrum (A.K.A. axle) causing the disk and axle to rotate. Upon completion of the fractional rotation, the original set of windings is deenergized and another set of windings is energized further rotating the disk and axle.
US09680359B2 Drive device for electric vehicle with respective motor generators having a coprime number of fasteners relative to each other
An electric vehicle drive device includes a casing; and a plurality of motor generators mounted in the casing, each of the motor generators including a plurality of fastening portions at which a stator of the motor generator is fixed to the casing, and a number of the fastening portions of one of the motor generators being coprime to a number of the fastening portions of at least one of the rest of the motor generators.
US09680358B2 Method for manufacturing a winding body that is used in an armature winding for an electric machine
A method for manufacturing a winding body includes: a bulging portion forming step in which bulging portions are formed by bending at a set pitch on a conductor wire; a crank portion forming step in which the crank portions are formed by bending on central portions of the bulging portions; an inclined portion and rectilinear portion forming step in which inclined portions and rectilinear portions are formed by bending on the conductor wire on which the bulging portions are formed at a set pitch and on which the crank portions are formed on each of the bulging portions after completion of the bulging portion forming step and the crank portion forming step; and a circular arc portion forming step in which the inclined portions are bent and formed into a circular arc shape.
US09680355B2 Grounding device for brushless electric motor
A motor includes a rotor assembly includes a rotor and a motor shaft secured to the rotor. The motor further includes stator coils. Circuitry of the motor includes electronic components that cooperatively operate to activate and deactivate the coils to cause the rotor assembly to rotate, and first and second power terminals. An electrically conductive outer housing surrounds the motor. An electrically conductive grounding tab is electrically connected to the first power terminal. The tab contacts a radially-inwardly facing surface of the outer housing to provide a electrostatic discharge path from the outer housing to the ground terminal.
US09680353B2 Electric machine and method for cooling an electric machine
An electric machine includes an inner fan in an inner cooling circuit and an outer fan for producing an outer coolant flow that is separate from the inner cooling circuit. The inner and outer fans are connected to a common shaft of the electric machine and have opposite delivery directions along an axial direction of the electric machine. The outer fan is arranged in a fan housing which has an inlet opening for the inward flow of a coolant of the outer coolant flow, and includes an air directing device, which guides the coolant in a line section which extends in the radial direction of the electric machine from the inlet opening towards the outer fan.
US09680351B2 Electrical machine having cooling features
An electrical machine has passages in the rotor. The passages have an inlet port and an exit port disposed at different locations. The passages remove heat from the electrical machine during operation. Another embodiment is an electrical machine rotor. The rotor has passages that remove heat from an electrical machine during operation. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for electrical machines and the cooling of electrical machine rotors and/or stators.
US09680350B2 Air separation power generation integration
The present invention provides a method and apparatus for separating air and generating electrical power. A compressed air stream produced in a main air compressor is introduced into an air separation unit that cryogenically rectifies the air into component products. During turndown conditions of the air separation unit, a combustion air stream formed from all or part of the compressed air stream is introduced into a combustor in which a fuel is combusted to produce a heated and pressurized combustion stream. Such stream is introduced to a turbine connected to an electrical generator to generate electrical power. The combustion air stream can be saturated with moisture to increase power output. Further, the combustion air stream can also be preheated with an exhaust of a gas turbine.
US09680346B2 Screw motor and method of manufacturing the same
A screw motor includes a stator, a rotor that is rotatably received in the stator and includes a rotor core, and a screw shaft that is coupled to the rotor core to contact the rotor core.
US09680345B2 Stator for rotating electric machine
A stator for a rotating electric machine, including an annular stator core having a plurality of slots circumferentially arranged in the stator core, and a stator winding wound around the stator core and comprised of a plurality of U-shaped conductor segments inserted in the slots and connected to each other. Each conductor segment includes a conductor and a bilayer insulative coating comprised of an insulating layer covering a peripheral surface of the conductor and a protective layer covering a peripheral surface of the insulating layer. The protective layer is formed of a material having a Young's modulus that is equal to or greater than a Young's modulus of the insulating layer at room temperature and less than the Young's modulus of the insulating layer in high temperature environments caused by heat generation of the stator winding.
US09680343B2 Method and kit for upgrading a generator to enhance operation of the generator
In certain exemplary embodiments, a generator field upgrade kit includes a design modification package configured to be installed in a generator field of a generator as a retrofit to mitigate damage of the generator field due to high cyclic duty of the generator. The design modification package includes a plurality of individual modifications that are selectable based on specific operational and performance parameters of the generator.
US09680337B2 Multi-protocol ubiquitous wireless power transmitter
A multi-mode multi-coupling multi-protocol wireless power transmitter (WPT) and its embodiments transmit power to a wireless power receiver (WPR) in a power transfer mode (PTM) and a wireless power protocol (WPP) of the WPR. A first circuit of the WPT includes inductors or capacitors emanating power via a magnetic field or electric field PTM respectively. The WPT sequentially parses a test condition to identify a PTM, a power coupling linkage (PCL) between the WPT and the WPR, and a WPP of the WPR. The WPT identifies a match if the PTM of the first circuit and the WPP of the switch network, the variable matching circuit, a modulator/demodulator block or an out-of-band communication block, and a control logic circuit of the WPT match the PTM and the WPP of the WPR to transmit power to the WPR based on the match.
US09680336B2 Wireless power repeater and method thereof
Disclosed is a wireless power transmission apparatus to wirelessly transmit power to a wireless power receiving apparatus by using resonance. The wireless power transmission apparatus includes a transmission part including a transmission coil to receive the power from a power supply to generate a magnetic field, a transmission resonance coil to transmit power received therein from the transmission coil, and a plurality of repeating coils placed in the transmission resonance coil to repeat the power, a detection part to detect a position of the wireless power receiving apparatus placed on the transmission part, and a controller to determine a repeating coil corresponding to the position of the wireless power receiving apparatus and perform a control operation to transmit power through the repeating coil.
US09680335B2 Apparatus for transmitting and receiving wireless power
An apparatus for transmitting and receiving wireless power may include: a transmission module receiving power from an external device to charge a battery; a reception module providing power from the battery to the external device; a switching unit performing switching so as to select the transmission module or the reception module; a switching control unit performing Bluetooth communications with the external device and controlling the switching of the switching unit; and a host control unit creating operating mode information so as to provide the operating mode information to the switching control unit. The switching control unit may perform Bluetooth communications with the external device so that data is transmitted or received depending on the operating mode.
US09680334B2 Distribution board and battery pack
A distribution board includes: a pack housing unit which houses a battery pack and includes a connecting unit; and a charge control unit. The battery pack includes a connecting terminal unit for charge and discharge of power and can supply power to the distribution board and another device different from the distribution board. The connecting unit is connectable to and disconnectable from the connecting terminal unit. The charge control unit converts AC power supplied from a power system into DC power, and supplies the DC power to the battery pack housed in the pack housing unit to charge the battery pack.
US09680332B2 Wireless battery charger with wireless control system and method for control thereof
A wireless electrical charging system and a method of operating same wherein operating parameters from a remote portion of the system are wirelessly transmitted to a charging controller controlling the output voltage of an alternating power supply. The charging controller executes an adaptive model control algorithm that allows the charging controller to update the output voltage at a greater rate than the transmission rate of the operating parameters from the remote portion of the system.
US09680322B2 Compulsory charging and protective circuit for secondary battery after being over discharged
A compulsory charging and protective circuit for secondary battery after being over discharged is disclosed. The circuit includes a circuit conducting switch, a releasing unit, a triggering unit and a comparing unit. When the secondary battery is over discharged, a temporary electrical connection is provided by the present invention. The loop of the secondary battery and a charger keeps. When the secondary battery recovers from abnormal status, the temporary electrical connection is called off so that the secondary battery can keep normal operation. Thus, when the secondary battery is under over-discharge, it doesn't have to be unloaded for repair to settle the issue. Maintenance costs can be saved.
US09680316B2 Wireless charging system
A system comprising a plurality of electronic devices, each comprising a device housing and a rechargeable battery, and a charger comprising a charger housing and arranged for charging said rechargeable batteries, wherein said charger comprises at least one, preferably a plurality of wireless power transmitting coils in said housing and said electronic devices each comprise a wireless power receiving coil in said housing, wherein said power transmitting coils are arranged in an array along an axis, and wherein said charger housing and said device housings are formed such that the power receiving coils of said electronic devices can be placed and held in an array along said axis by placing said electronic devices in an array against each other, such that each power receiving coil has a corresponding power transmitting coil in its vicinity.
US09680312B2 System and method for reactive power control in dynamic inductive power transfer systems
Systems and methods for dynamically tuning reactive power in an inductive power transfer system are disclosed. The system comprises a first plurality of coils operably coupled to a respective ferromagnetic material, configured to receive wireless power via the ferromagnetic material from a power source. The system further comprises a plurality of switches configured to selectively control power received by certain of the first plurality of coils. The system further comprises a second plurality of coils configured to receive current from respective ones of the first plurality of coils and deliver wireless power to a wireless power receiver. The system further comprises at least one control unit configured to selectively activate the switches. The switches may be set to provide power from the power source to a portion of the plurality of the second coils or selectively increase or decrease the reactive power load of the power source.
US09680311B2 Wireless power supply system
A wireless power system for wirelessly transferring power to a remote device from a wireless power supply at a range of distances. Various embodiments are contemplated in which reflected impedance from the remote device can be reduced by reducing coupling outside the desired wireless power transfer path, allowing delivery of wireless power over a range of distances. For example, a system incorporating one or more of shielding, spacing, and offsetting may be used to reduce reflected impedance from the remote device. An adapter may also be used to extend the range of wireless power transfer.
US09680309B2 Auto load switch detection for wireless power receiver
Apparatus and methods are provided to automatically detect and control a load switch for a wireless power receiver. In one novel aspect, a method is provided to adaptively control the load switch based on the output condition of a rectified output according to a predefined criteria. In one embodiment of the invention, the methods to adaptively control the load switch comprises a first stage that turns on the load switch quickly; a second stage that stops turning on the load switch and holds the load switch at its current value; a third stage that slowly pulls down the load switch; and a fourth stage that quickly turns off the load switch. In another embodiment, an integrated circuit for a wireless power pick up unit is provided to control the load switch adaptively based on a rectified output feedback and a predefined criteria.
US09680303B2 Power storage system and power source system
A power storage system is provided with charge switches, discharge switches, a bidirectional DC/DC converter and a power storage system controller connecting all the battery packs to an external circuit to achieve parallel charge and discharge, and the power storage system starts the charge by setting a rated charge current value per one battery pack to Iset and setting the rated charge current value Iset as an initial value of a charge current command value Iref(1), thereafter monitor the charge current of each of the battery packs after elapse of a predetermined time so as to subtract its maximum value Ibmax(1) from the charge current command value Iref(1), and add the rated charge current value Iset to result of subtraction Ierr (Iref(1)−Ibmax(1)) so as to set as a new charge current command value Iref(2) and carry out pre-charge in such a manner as to carry on the charge.
US09680300B2 Hot switch protection circuit
A switch protection circuit includes a discharging circuit and, optionally, a clamping circuit. The discharge circuit operates prior to the switch completing the switching action to discharge capacitance from a signal line of a cable connected to a device under test to a ground voltage. When not discharging, the discharge circuit presents low leakage to a measurement circuit so as not to interfere with such measurement. If present, the clamping circuit clamps a signal line of the cable to a guard structure of the cable so that the discharge circuit can couple both the signal line and the guard structure to ground. The protection circuit operates without significantly worsening low current performance of the measurement instrument.
US09680298B2 Input redundant circuit
An input redundant circuit according to the present disclosure may include: a core power supply unit; a first input port connected to a first input voltage; a second input port connected to a second input voltage; a relay unit connected to the first input port and the second input port to supply one of the first input voltage and the second input voltage to the core power supply unit; and a surge current limiting unit coupled to the relay unit, configured to limit a surge current generated when the relay unit is switched between the first input voltage and the second input voltage.
US09680297B2 Current differential relay
MUs and IEDs are included. Each of the IEDs includes a signal control unit that derives the time difference between the sampling timings in the MUs on the basis of digital data from one end of a protection area and digital data from the other end of the protection area, controls the cycle of a sampling-timing control signal to eliminate this time difference, and outputs this controlled sampling-timing control signal to a merging unit corresponding to each computation unit. Each of the MUs includes a control-signal output circuit that generates a sampling signal synchronized with the sampling-timing control signal from the IEDs and outputs this sampling signal as a control signal, and a data output unit that converts an electrical input to digital data and outputs the digital data.
US09680296B2 Fault detection protecting circuit
In a fault detection protecting circuit, an overheat detection unit is provided for each of communication channels on an IC chip, and detects the temperature in each communication channel as the detected temperature. A chip temperature detection unit detects the temperature at an arbitrary position on the IC chip as a reference temperature. A detection unit sets a predetermined ratio value regarding the difference between an overheat protective temperature and a reference temperature based on the detected temperature in each communication channel and the reference temperature, and identifies that the communication channel is in a state before overheat detection when the detected temperature exceeds a threshold value. A stop-control unit stops the output from one of the communication channels when the detection unit identifies that the communication channel is in a state before overheat detection and when it is identified that the communication channel is in an overcurrent state.
US09680292B2 Electrical device protective housing
Protective housings for an electrical device, such as a switches or receptacle, and methods for installing protective housings are disclosed. A protective housing for an electrical device includes a baseplate with an internal opening and first arcuate cutout along the internal opening. The protective housing also includes a first insert with a second arcuate cutout and at least one aperture. The first insert fits within the opening. The first and second arcuate cutouts form a through hole when the first insert is fitted within the opening.
US09680287B2 Opto-optical modulation of a saturable absorber for high bandwidth CEO stabilization of a femtosecond laser frequency comb
A laser source that generates an optical frequency comb, comprising a pumped laser medium placed inside an optical cavity that incorporates at least one optically-controlled modulator, a detector generating an error signal, and a modulation optical source that is controlled by the error signal and whose radiation is directed onto said optically-controlled modulator thereby stabilizing the Carrier-Envelope Offset (CEO) frequency and/or the CEO phase and/or the repetition rate of said source.
US09680282B2 Laser aiming for mobile devices
Aiming a device at a target within a use environment is described. An intensity level of ambient lighting associated with the use environment is detected and a corresponding signal is generated. An emission of a beam operable for the aiming of the device is controlled. Upon the generated signal corresponding to a first detected ambient lighting intensity level, a first laser is activated to emit the aiming beam at a first power intensity level. Upon the generated signal corresponding to a second detected ambient lighting intensity level, which exceeds the second detected ambient lighting intensity level, a second laser is activated to emit the aiming beam at a second power intensity level. The first power intensity level exceeds the second power intensity level.
US09680279B2 Ruggedized fiber optic laser for high stress environments
A fiber optic laser for use in high stress environments is provided. The fiber optic laser comprises a hollow spool structure housing a fiber in a spiral groove in an interior surface of said hollow spool structure, wherein the fiber is mechanically supported along an entirety of its length within the hollow spool structure. Fluid channels are formed within the hollow spool structure, wherein a quantity of coolant is movable through the fluid channels to provide high-precision thermal management of the fiber.
US09680274B2 Electrical connector having insulative housing and method of making the same
An electrical connector (100) includes a shielding plate (1), a base portion (2) insert molded with the shielding plate and defining two rows of passageways (21), two rows of terminals (3) affixed to the base portion, and an insulative housing (4) over molded with the base portion. The two rows of passageways extend through the base portion along a front-to-back direction and exposed completely upwardly and downwardly. Each terminal includes a contacting beam (31) having a contacting portion (311). The shielding plate is located between the two rows of terminals.
US09680271B2 Sensor systems and methods for analyte detection
Systems for analyte detection are disclosed. The system includes absorption channels positioned along a surface of an object. The absorption channels are configured to trap an analyte. The system further includes a sensor embedded in the object and configured to detect the presence of the analyte. The sensor includes a light source configured to transmit light and a detector configured to detect a change in an intensity of light transmitted by the light source. The sensor further includes a cable configured to connect the light source to the detector, wherein the cable comprises detection regions, and wherein the detection regions include a portion of the cable exposed to the analyte in the absorption channel.
US09680269B2 Electrical contactor with header connectors
A disclosed electrical contactor may include a line-side electrical terminal adapted for connection to an electrical conductor carrying an electrical voltage, multiple load-side connectors each having a housing and multiple electrical terminals arranged within a cavity of the housing, a switching element, and a control unit. Each of the load-side connectors is adapted to receive a plug connector. The switching element electrically connects the line-side electrical terminal to electrical terminal(s) of at least one of the load-side connectors when enabled. The control unit enables the switching element in response to a control signal. Each of the load devices may have a plug connector, and each of the load-side connectors may be mechanically coded to receive the plug connector of a corresponding load device. An electrical configuration of electrical terminals of a line-side connector may allow a crankcase heater, or a crankcase heater with thermostat, to receive electrical power.
US09680267B2 Downsized connector having a structure that is tolerant of twist
A connector comprises first contacts, second contacts and a housing. The first contacts have first contact portions which come into contact with first mating contacts. The second contacts have second contact portions which come into contact with second mating contacts. The housing has at least two long wall portions and at least one supporting portion. The long wall portions extend in an X-direction and are disposed apart from each other in a Y-direction to form a slot between the two of the long wall portions. The supporting portion protrudes in a Z-direction from one of the long wall portions and has a plate-like shape extending in the X-direction. The first contact portions are supported by the supporting portion. The second contact portions are located in the slot at least in part.
US09680264B2 Multi-contact audio jack connector assembly
Disclosed is an audio jack assembly that reduces or eliminates signal loss with an audio jack by reducing or eliminating the resistance with a conventional audio plug. The jack assembly employs a support housing having a passageway sized to receive the audio plug with an insulated first connector having first and second terminal strips, each formed integral to a first disk base and positioned to engage the grooved tip of an audio plug when engaged. A second isolated connector includes first and second terminal strips positioned to engage each side of a sleeve when the audio plug is engaged. The second connector is electrically isolated from the first connector wherein the second connector is fastened to the support housing securing the first connector therebetween.
US09680262B2 Retractable cable and cable rewind spool configuration
A spool apparatus is described to include in one particular example a cable spool with a first cylindrical lip and a second cylindrical lip on an opposite side of the cable spool. A center of the spool includes a clutch bearing in the center of both the first cylindrical lip and the second cylindrical lip that provides a rotational axis for the cable spool to rotate around. The apparatus may also include a feed slot near the first cylindrical lip that provides a passage for cable to pass from the second cylindrical lip to the first cylindrical lip.
US09680260B2 Cable connector assembly with improved grounding structure
A cable connector assembly including: an electrical connector including an insulative housing, a number of contacts retained in the insulative housing and arranged in two rows apart from each other along a vertical direction, and a latch retained in the insulative housing, wherein the contacts arranged in an upper row include a pair of high-frequency signal contacts and the contacts arranged in a lower row include a pair of high-frequency signal contacts, the two pairs of high-frequency signal contacts disposed relative to each other along the vertical direction; and a cable including a number of wires electrically connected with the contacts of the electrical connector; wherein the electrical connector further includes a grounding plate, the grounding plate including a shielding sheet extending between the two pairs of high-frequency signal contacts.
US09680254B1 Connector and connector assembly
A connector includes a holding member which is formed with two accommodation portions, a middle portion and regulating portions. Flat plate portions which form a mid-plate are accommodated by the accommodation portions, respectively. Each of the flat plate portions has a base portion, a press-fit portion, a spring portion, a lock portion and a regulated portion. The press-fit portion protrudes from the base portion in a pitch direction and is pressed against the holding portion. The spring portion extends forward from the base portion and has resilience. The spring portion is apart from the regulating portion in the pitch direction. The lock portion is supported by the spring portion and protrudes outside the mating portion in the pitch direction. The regulated portion extends forward from the base portion and is situated inward of the regulating portions in the pitch direction.
US09680246B2 Method for manufacturing plated laminate, and plated laminate
A tin-plated/silver-plated laminate which has excellent abrasion resistance, electrical conductivity and slidability and a low frictional property is provided, which prevents the embrittlement of a plating layer contained therein. A method for producing the laminate involves forming a silver plating layer on a tin plating layer that is formed on the surface of a metallic base material by subjecting an arbitrary region in the surface of a tin plating layer to a nickel plating treatment to form a nickel plating layer; subjecting an arbitrary region in the surface of the nickel plating layer to a silver strike plating treatment; and subjecting at least a part of the surface region of the nickel plating layer, which has been subjected to the silver strike plating treatment, to a silver plating treatment.
US09680245B2 Singulated elastomer electrical contactor for high performance interconnect systems and method for the same
A method and an electrical interconnect mechanism in which elastomeric pins are printed onto metal retainer tabs having at least one protrusion or tab extending laterally therefrom to engage a catch or recess of the laminated housing so as to locate each of the elastomeric pins and secure them within the housing. In one embodiment a champher may be employed with a catch or recess to engagely secure a second protrusion or tab extending laterally from another side of said elastomeric pin. In another embodiment the elastomeric pin may have a solid metal ring or a slide collar around the center of the pin wherein the ring has one or two tabs for engaging the recess in the housing and if preferred also the recess of a champfer.
US09680244B1 Header apparatus for providing electrical connection to a printed circuit board, and daughter card and circuit assembly incorporating the header apparatus
A header apparatus for providing electrical connection between a daughter card and a printed circuit board. The header apparatus may include a body having a base and a backing portion extending outwardly from the base portion. The header apparatus may include at least one pin extending through the base in a direction substantially parallel to the backing portion, and a gap formed between opposing surfaces of the backing portion and the at least one pin. The header apparatus may be configured to receive at least a portion of the daughter card at the gap to connect the header apparatus and the daughter card. The header apparatus may be connected to a daughter card and/or main printed circuit board, and may communicatively couple the daughter card and main printed circuit board.
US09680242B2 Flap for terminal
A flap is provided for closing off a cavity of a terminal, which includes a memory card reader. The flap includes at least one slot for inserting a memory card, and the slot is obtained by a difference in height between a base plane and an insertion plane, and the slot has a guiding profile.
US09680232B2 Graded-ground design in a millimeter-wave radio module
A millimeter-wave radio frequency (RF) module is provided. The RF module includes a multilayer substrate having at least a front layer, a back layer, a plurality of middle layers, a first ground layer, and a second ground layer, wherein the first ground layer includes a graded-ground plane having a pair of non-overlapping ground lines connected at a single connection point through a graded connection, and wherein the second ground layer includes a double graded-ground plane having a pair of overlapping ground lines connected at a single connection point through a graded connection, wherein the first ground layer and the second ground layer provide a reference ground to a transmission line included in the multilayer substrate.
US09680231B2 Proximity wireless communication device
A proximity wireless communication device includes a first housing and a second housing, and they are provided with respective two antennas. In the first housing, a first antenna and a second antenna are configured to be disposed on different parallel planes, and in the second housing, a third antenna and a fourth antenna are configured to be disposed on different parallel planes. Then, the first antenna and the third antenna carry out non-contact near-field wireless communication facing in proximity and the second antenna and the fourth antenna carry out non-contact near-field wireless communication facing in proximity.
US09680229B2 Modular reflector assembly for a reflector antenna
An modular reflector assembly may include a shell and a support frame. The modular reflector assembly may also include a plurality of support links that mechanically couple the shell to the support frame. The shell may be thermally decoupled from the support frame by the plurality of support links.
US09680227B2 Ultra-wideband antenna assembly
An antenna assembly having a pair of feed conductive elements directed in divergent directions, with each pair of conductive elements including a conical sheet conductor and a cylindrical sheet conductor, and radiating wire conductors extending away from each cylindrical sheet conductor. A balun feed system is defined between the pair of conical sheet conductors. A plurality of ferrite-cored inductors are provided on the wire conductors. A tubular radome assembly protects at least the radiating wire conductors from damage from external forces.
US09680224B2 Multiple polarization loop antenna and associated methods
The multiple polarization loop antenna includes a circularly polarized loop antenna, which may utilize a loop electrical conductor and two signal feedpoints along the loop electrical conductor separated by one quarter of the length of the loop circumference for a signal feedpoint phase angle input difference of 90 degrees. Each of the signal feedpoints may include a loop discontinuity, so that at least one signal source coupled thereto provides circular polarization from the loop electrical conductor. The circularly polarized loop antenna provides an increase in gain and decrease in size relative to the dipole turnstile. It can provide two orthogonal polarizations from two isolated ports, and the polarizations may be dual linear or dual circular.
US09680221B2 Configurable segmented antenna
A configurable segmented antenna is described herein. A monitor component can be configured to detect at least one parameter corresponding to one or more segments of an antenna integrated with a communications device. An antenna component can be configured to select at least one segment of the one or more segments in response to the at least one parameter. A control component can be configured to modify a quality of a signal according to the at least one parameter. Further, a transmission component can be configured to transmit the signal from the at least one segment based on the quality.
US09680213B2 Antenna element for wireless communication
The invention relates to an improved antenna element. Such an antenna element comprises a substrate, a first conductor and a second conductor. The substrate has at least a first lateral surface. The first conductor is provided on the first lateral surface, and includes a feed line portion and a monopole portion. The second conductor is provided at least partially on the same, first lateral surface, and includes: two ground planes which are disposed on the first lateral surface adjacent to the feed line portion of the first conductor at opposite sides thereof, and two stubs which are disposed on the first lateral surface at opposite sides of the respective of the two ground planes, and which extend in a direction parallel to the feed line portion of the first conductor. The two ground planes and the two stubs of the second conductor are arranged to form a coplanar waveguide.
US09680211B2 Ultra-wideband antenna
The present invention relates to ultra-wideband (UWB) directional circular-field-polarization antennae. The technical result consists in development of a UWB antenna in which a unidirectional radiation is naturally generated within a wide or ultra-wide frequency band and generally does not require the use of an absorber on a back side of a radiating element. The UWB antenna comprises: a dielectric substrate; at least one feed line formed on the dielectric substrate; a spiral radiating element formed on the substrate and coupled to said at least one feed line; at least one additional dielectric substrate arranged in parallel with and above said dielectric substrate, wherein a flat printed cavity of an axially-symmetric shape is formed on said at least one additional dielectric substrate, said cavity being arranged coaxially with the spiral radiating element.
US09680207B2 Antenna module
An antenna module applied to an electronic device including a wireless communication controller and a body that includes an opening. The antenna module includes a first inductance component and a metal case. The first inductance component includes a first end and a second end, and the first end of the first inductance component is electrically connected to an end of the wireless communication controller. The metal case includes a first connection point and a second connection point. The first connection point is electrically connected to the second end of the first inductance component, and the second connection point is a preset distance away from the first connection point and electrically connected to the wireless communication controller.
US09680206B2 Mobile terminal
A mobile terminal includes a metal frame including a base portion and an edge portion formed along the outer edge of the base portion, first and second cases bonded to the front and back sides of the metal frame so as to expose the edge portion to the outside, first and second waterproof layers formed between the cases and the metal frame, conductive members that operate a radiator for antennas, together with the edge portion, and are formed on one side of the second case, and feeding portions for feeding the conductive members, the feeding portions being disposed in an enclosed space formed by the waterproof layers.
US09680203B2 Antenna structure and wireless communication device
An antenna structure includes a metal member, an extending section, and a metal sheet. The metal member defines a gap. The gap divides the metal member into a first portion and a second portion. The extending section is connected to the first portion of the metal ember to cooperatively form a first antenna. The first antenna, the metal sheet and the second portion of the metal portion cooperatively form a second antenna.
US09680201B2 Antenna device
The antenna device disclosed includes an insulating antenna case, an antenna base, and an umbrella-type element. A lower surface of the insulating antenna case is open and a housing space is formed in the insulating antenna case. The antenna base includes an insulation base on which the antenna case is fitted, and a conductive base which is smaller than the insulation base and is fixed to the insulation base. The umbrella-type element is provided on the antenna base in such a way that a rear section thereof is located above the insulation base and a front section thereof is located above the conductive base.
US09680200B2 TP on/in cell-type thin-film transistor display device having integrated NFC antenna
A thin-film transistor displayer integrated with an NFC antenna, is a TP on/in cell thin-film transistor displayer. The NFC antenna is arranged on a display screen of the thin-film transistor displayer, where the NFC interface is built in an output circuit of the display screen and connected to a control mainboard of the display screen. The display screen and NFC antenna features are combined into one, and the NFC antenna is arranged directly on the thin-film transistor displayer, avoiding problems of signal quality deterioration and reception failure due to wearing of the NFC antenna interface and inaccurate alignment. In addition, a solution is provided for facilitating reception of an NFC signal from a display panel and touch panel of the displayer, or for the case that the NFC signal must be received from the display panel and touch panel of the displayer.
US09680196B2 On-chip differential wilkinson divider/combiner
The present disclosure provides for a fabrication layout and design for transmission lines that are implemented as part of a differential Wilkinson power divider/combiner. The transmission lines are configured and arranged in a poly-loop line geometry. The poly-loop line geometry includes overlapping transmission lines to route differential signals within the differential Wilkinson power divider/combiner. The overlapping transmission lines each include a crossover region to route the differential signals. The crossover represents a spacing between the overlapping transmission lines that encompasses a magnetic flux of the overlapping transmission lines.
US09680192B2 Air battery and air battery stack
There is provided an air battery having a power generation body, the power generation body comprising: a laminate in which a negative electrode, a separator, a positive electrode having a catalyst layer and a positive electrode current collector, and an oxygen diffusion membrane are laminated in this order; and an electrolyte being in contact with the negative electrode, the separator and the positive electrode, wherein one of main surfaces of the oxygen diffusion membrane is arranged facing one of main surfaces of the positive electrode current collector; and at least a part of a peripheral edge part of the oxygen diffusion membrane is in contact with atmospheric air.
US09680191B2 Electrolyte for lithium air battery and lithium air battery including the same
A lithium air battery including an electrolyte including lithium ion conductive polymers and lithium salts between a positive electrode and a lithium ion conductive solid electrolyte membrane. The lithium ion conductive polymers are hydrophilic matrix polymers.
US09680188B2 Portable and modular energy storage for multiple applications and electric vehicles
A removable modular battery pack may include a first housing having a volume of at least 0.125 cubic feet, and a plurality of battery cells providing at least 1 kW of power. The modular battery pack may also include a processing system that aggregates power from the plurality of battery cells, and a first interface that communicates a status of the modular battery pack to a second housing. The modular battery pack may further include a second interface that transmits the aggregated power to the second housing, and a thermal material enclosed in the first housing. The thermal material may be arranged in the housing adjacent to the plurality of battery cells to transfer heat away from the plurality of battery cells and to transfer the heat to the second housing.
US09680186B2 Method for manufacturing sealed battery
Provided is a method for manufacturing a sealed battery, capable of reducing an erroneous determination rate in a leak testing step. A manufacturing step including a leak testing step for detecting leak of helium gas introduced into an exterior, including a step for pouring an electrolytic solution into the exterior, a step for reducing the pressure inside the exterior down to a predetermined pressure, and a step for introducing the helium gas in a quantity corresponding to the predetermined pressure into the exterior. Preferably, the predetermined pressure is set to a pressure higher than the saturated steam pressure of the electrolyte solution.
US09680181B2 Solid polymer electrolyte composition and lithium secondary battery including the same
The present disclosure provides a solid polymer electrolyte composition including a polymer matrix, an organic solvent, and an additive agent containing polyhedral silsesquioxane, and also provides a lithium secondary battery including the same.
US09680180B2 Solid-state electrolytes based on fluorine-doped oxides
The use of particles of at least one crystalline oxide, preferably metal oxide, having an average particle size of less than 500 nm and a fluorine content of between 0.5 and 30% by weight, preferably between 0.5 and 5%, even more preferably between 1.0 and 4%, for the preparation of solid-state electrolytes, is described. Also described is a solid-state electrolyte, containing particles of at least one crystalline oxide, preferably metal oxide, having an average particle size of less than 500 nm, preferably between 10 and 500 nm, even more preferably between 50 and 300 nm; a fluorine content as noted above; an alkali or alkaline-earth metal content of between 0.5 and 10% by weight, preferably between 0.5 and 5%, even more preferably between 1 and 4%. Furthermore an inorganic-organic hybrid electrolyte obtainable by means of reaction of the aforementioned solid-state electrolyte with ionic liquids is described.
US09680178B2 Restraining of battery cells by way of a cambered design of the battery housing
The invention relates to a battery cell (1) for pre-stressed battery modules (13). The invention further relates to corresponding pre-stressed battery modules (13) and corresponding production methods. The battery cell (1) has a cell housing (3) and a chemicals carrier (9). The chemicals carrier (9) is arranged in the cell housing (3). The cell housing (3) has a bulging design.
US09680177B2 All-solid-state thin-film battery
An all-solid-state thin-film battery according to an aspect of the present disclosure includes: a solid electrolyte layer; a cathode active material layer; a cathode current collector layer including a first portion and a second portion; an anode terminal layer; and an anode layer including a third portion and a fourth portion. The first contact surface between the solid electrolyte layer and the cathode active material layer, the second contact surface between the solid electrolyte layer and the first portion of the cathode current collector layer, and the third contact surface between the third portion of the anode layer and the anode terminal layer are located within a single plane.
US09680172B2 Flow-type electrochemical cell
Flow type electrochemical cells are disclosed. The electrochemical cell has an anode half-cell, a cathode half-cell, and permeable separating layer. The half-cells are bounded by side elements. Respective porous electrodes are housed in the half-cells. The permeable separating layer is disposed between the anode half-cell and the cathode half-cell. An electrolyte region connected to an electrolyte feed and an electrolyte outflow region connected to an electrolyte drain are further provided. An electrolyte inflow region and an electrolyte outflow region are disposed on opposite sides of the porous electrodes such that inflowing electrolyte flows through the porous electrode perpendicularly to the permeable separating layer.
US09680169B2 Humidification device, in particular for a fuel cell
A humidification device is provided with at least one stacked unit of water vapor-permeable membranes and of support frames. The support frames are stacked on each other. The membranes each are positioned between two of the support frames, respectively, and have edges clamped between the two support frames. The membranes are arranged parallel and spaced apart relative to each other. Between the two support frames, a supply air flow path extends on a first lateral face of the membrane and, angularly displaced to the supply air flow path, an exhaust air flow path extends on a second lateral face of the membrane facing away from the first lateral face. A flow opening of the supply air flow path and a flow opening of the exhaust air flow path are delimited by the two support frames and extend parallel to a plane of the membrane clamped between them.
US09680166B2 Integrated gas diffusion layer with sealing function and method of making the same
Techniques and implementations pertaining to an integrated gas diffusion layer with a sealing function are described. A method for making the integrated gas diffusion layer with the sealing function may involve placing a gas diffusion member inside a mold followed by injecting a sealing material into the mold. The method may also involve having the sealing material substantially covers a peripheral portion of the gas diffusion member and at least partially penetrates into a peripheral portion of the gas diffusion member. The method may further involve curing the sealing material to form a sealing member having a lip ring. A height of a portion of the mold corresponding to a non-lip ring portion of the sealing member is less than or equal to a thickness of the gas diffusion member.
US09680164B2 Current collector for fuel cell and stack structure including the same
Provided are a current collector for a fuel cell and a stack structure having the same. The fuel cell includes an electrolyte layer, and an air electrode layer and a fuel electrode layer on both surfaces of the electrolyte layer and generates electricity, and the current collector includes an even surface configured to electrically surface-contact with the air electrode layer or the fuel electrode layer; and a plurality of openings punched so that air or a fuel gas directly contacts with the air electrode layer or the fuel electrode layer.
US09680163B2 Fuel cell and method for production thereof
A fuel cell (1) has a plate (2) produced by powder metallurgy which comprises in one piece a porous substrate area (4) to which the electrochemically active cell layers (6) are applied, and a gastight edge area (5) which is provided with gas passages (17, 18).
US09680161B2 Noble metal-based electrocatalyst and method of treating a noble metal-based electrocatalyst
A noble metal-based electrocatalyst comprises a bimetallic particle comprising a noble metal and a non-noble metal and having a polyhedral shape. The bimetallic particle comprises a surface-segregated composition where an atomic ratio of the noble metal to the non-noble metal is higher in a surface region and in a core region than in a sub-surface region between the surface and core regions. A method of treating a noble metal-based electrocatalyst comprises annealing a bimetallic particle comprising a noble metal and a non-noble metal and having a polyhedral shape at a temperature in the range of from about 100° C. to about 1100° C.
US09680159B2 Mesoporous carbon materials comprising bifunctional catalysts
The present application is directed to mesoporous carbon materials comprising bi-functional catalysts. The mesoporous carbon materials find utility in any number of electrical devices, for example, in lithium-air batteries. Methods for making the disclosed carbon materials, and devices comprising the same, are also disclosed.
US09680153B2 Nonaqueous electrolyte secondary battery
A nonaqueous electrolyte secondary battery includes a power generating element including a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer. A main plane having the smaller area, between a main plane of the positive electrode active material layer and a main plane of the negative electrode active material layer, has an approximately rectangular shape with a short side having a length of 132 mm or more. The positive electrode active material layer and the negative electrode active material layer are provided such that the main plane of the positive electrode active material layer and the main plane of the negative electrode active material layer face each other with a separator interposed therebetween, and the positive electrode active material layer contains a binder in an amount of 2 mass % or more and 3.5 mass % or less.
US09680151B2 Sub-stoichiometric, chalcogen-containing-germanium, tin, or lead anodes for lithium or sodium ion batteries
The disclosure relates to an anode or an electrolytic capacitor electrode including an active anode material containing a chalcogen-containing-germanium composition in which the germanium:chalcogen atom ratio is between 80:20 and 98:2. The disclosure also relates to an anode including an active anode material containing a lithium and germanium-containing alloy wherein the lithium:germanium atom ratio is 22:5 or less. The anode also includes a non-cycling lithium chalcogenide. The disclosure further relates to lithium ion batteries including such anodes. The disclosure additionally relates to capacitor electrodes containing similar materials and capacitors containing such electrodes.
US09680150B2 Electrical device
To provide a means by which an electrical device such as a lithium ion secondary battery that has a positive electrode using a solid solution positive electrode active material can be provided with satisfactory performance in terms of rate characteristics while sufficiently making use of the high capacity characteristics that characterize solid solution positive electrode active materials.An electrical device that has a power generating element containing a positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of a positive electrode current collector, a negative electrode in which a negative electrode active material layer containing a negative electrode active material is formed on the surface of a negative electrode current collector, and a separator, in which the coating amount of the negative electrode active material layer is 3 to 11 mg/cm2, the negative electrode active material layer contains the negative electrode active material represented by the formula (1), the positive electrode active material layer contains the positive electrode active material represented by the formula (2) (solid solution positive electrode active material), and, as a solid solution positive electrode active material to be contained in the positive electrode active material layer, the material having composition represented by the formula (3) is used.
US09680147B2 Battery having an electrode structure comprising long metal fibers and a production method therefor
The present invention relates to a battery having an electrode structure using long metal fibers, and to a production method therefor. According to one embodiment of the present invention, the battery has an electrode structure comprising: an electrically-conductive network which is formed by physical connection or chemical bonding between one or more long metal fibers; and a first electrically active material which is bound to the electrically-conductive network.
US09680146B2 Apparatus and method for filling a cell of a rechargeable battery with electrolyte liquid
A device (1) and method for filling at least one cell (2) of a rechargeable battery (3) with electrolyte liquid (30) has an evacuatable sealing container (20) to accommodate a filling apparatus (10) and the rechargeable battery (3). A feed means (11) passes through the container wall (21) to supply the filling apparatus (10) with electrolyte liquid (30). The filling apparatus (10) has at least one reservoir (13) for electrolyte liquid (30) that is in a state of pressure balance with the interior of the sealing container (20) when filled above the level (31) of the electrolyte liquid. Via at least one outlet (12) located below the level (31) of the electrolyte liquid, the reservoir (13) can be flow-connected to a filling opening (4) of the cell (2) that is to be filled, while the interior (5) of the cell (2) is sealed so as to be pressure-tight vis-à-vis the interior (22) of the sealing container (20).
US09680143B2 Polymer-bound ceramic particle battery separator coating
Porous, electrically insulating, and electrochemically resistant surface coatings that strengthen and protect separators and that improve the operational safety of electrochemical devices using such separators, the use of ultraviolet (UV) or electron beam (EB) curable binders to secure an electrically insulating, porous, ceramic particle coating on separators, and methods of producing polymer-bound ceramic particle separator coatings, separators and electrochemical devices by UV or EB curing slurries of reactive liquid resins and ceramic particles.
US09680139B2 Low-floor electric vehicle
The invention provides for a high occupancy or heavy-duty vehicle with a battery propulsion power source, which may include lithium titanate batteries. The vehicle may be all-battery or may be a hybrid, and may have a composite body. The vehicle battery system may be housed within the floor of the vehicle and may have different groupings and arrangements.
US09680137B2 Battery device and electronic apparatus
A battery charger includes a battery attachment section configured to have a rechargeable battery releasably attached thereto. The battery attachment section includes a flat attachment surface having a width corresponding to a width of a bottom surface of a case of the battery to be charged and a length greater than a length of the bottom surface of the case of the battery to be charged; a plurality of locking hooks provided on the attachment surface; a charger terminal configured to contact a terminal of the battery to be charged, the charger terminal including a plurality of plate-shaped contact pieces configured to be inserted into engaging grooves of the battery to be charged; and an attachment projection adjacent to the attachment surface and configured to secure the battery to the charger.
US09680136B2 Rechargeable battery
A rechargeable battery including a case; a cap plate installed on the case; and a terminal, the terminal including a terminal pillar protruding from the cap plate, and a terminal plate coupled to the terminal pillar, wherein the terminal pillar includes a first pillar coupled to the terminal plate; second pillar coupled to the first pillar, and a welding member on an exterior of the first pillar or the second pillar.
US09680129B2 Method for manufacturing organic light emitting element including light extracting layer formed by irradiating coating solution
A method of manufacturing an organic light emitting element equipped with a transparent substrate, an internal light extracting layer, and a transparent metal electrode includes: forming the internal light extracting layer on the transparent substrate, and forming the transparent metal electrode on the internal light extracting layer. The step of forming the internal light extracting layer includes: applying a coating solution onto the transparent substrate into a predetermined pattern, the coating solution containing a light scattering particle having an average particle size of 0.2 μm or more and less than 1 μm and a refractive index of 1.7 or more and less than 3.0 and a hydroxy-containing solvent, and drying the applied patterned coating solution through irradiation with infrared light having a proportion of 5% or less of a spectral radiance at a wavelength of 5.8 μm to a spectral radiance at a wavelength of 3.0 μm.
US09680125B2 Organic electroluminescent lighting device and method for manufacturing the same
The present invention is to provide an organic electroluminescent lighting device that can reduce the occurrence of short-circuiting caused by inrush current. The organic electroluminescent lighting device includes: transparent substrate 1; positive electrode film 2 that is formed on the surface of transparent substrate 1 and includes terminal 2a formed at one end or both ends and electrode 2b formed continuously from terminal 2a; negative electrode terminal film 3 that is formed separate from positive electrode film 2 on the surface of transparent substrate 1 and includes first resistive region 7; organic light emitting film 4 formed on the surface of electrode 2b of positive electrode film 2; and negative electrode film 5 continuously formed from the surface of organic light emitting film 4 to the surface of negative electrode terminal film 3. When viewed from a first cut surface that is along a thickness direction of negative electrode terminal film 3, a conductor's cross-sectional area in first resistive region 7 is smaller than a negative electrode terminal film's cross-sectional area at boundary 11a with outer peripheral part of negative electrode film 5.
US09680116B2 Carbon nanotube vacuum transistors
Vacuum transistors with carbon nanotube as the collector and/or emitter electrodes are provided. In one aspect, a method for forming a vacuum transistor includes the steps of: covering a substrate with an insulating layer; forming a back gate(s) in the insulating layer; depositing a gate dielectric over the back gate; forming a carbon nanotube layer on the gate dielectric; patterning the carbon nanotube layer to provide first/second portions thereof over first/second sides of the back gate, separated from one another by a gap G, which serve as emitter and collector electrodes; forming a vacuum channel in the gate dielectric; and forming metal contacts to the emitter and collector electrodes. Vacuum transistors are also provided.
US09680113B2 Organic electroluminescent materials and devices
Phosphorescent metal complexes comprising a pendant redox-active metallocene are disclosed. These complexes are useful as emitters for phosphorescent OLEDs.
US09680112B2 Semiconductor composition
An electronic device, such as a thin-film transistor, includes a semiconducting layer formed from a semiconductor composition. The semiconductor composition comprises a polymer binder and a small molecule semiconductor. The small molecule semiconductor in the semiconducting layer has a crystallite size of less than 100 nanometers. Devices formed from the composition exhibit high mobility and excellent stability.
US09680109B2 Organic light emitting diode and organic light emitting display device including the same
An organic light emitting diode and an organic light emitting device, the organic light emitting diode including a first compound represented by the following Formula 1; and a second compound represented by the following Formula 2,
US09680103B2 Organic photoelectric conversion element composition, thin film and photovoltaic cell each containing the same, organic semiconductor polymer and compound each for use in these, and method of producing the polymer
An organic photoelectric conversion element composition including a p-type-and-n-type linked organic semiconductor polymer represented by any one of formulas (1) to (5), a thin film and a photovoltaic cell each containing the same, an organic semiconductor polymer and a compound each for use in these, and a method of producing the polymer: wherein, in formulas, A to A4 represent a group of a p-type organic semiconductor unit, and B to B3 represent a group of an n-type organic semiconductor unit; L1 to L4 represent a divalent or trivalent linking group; herein, in the formulas, at least one bonding hand represented by -* in the structures shown upperward and downward, and in the case of formula (4), L4 and (b), and L1 or L2 and (a), bond directly or through a divalent linking group; l, n, r, t, u and v represent an integer of 1 to 1,000; m and s represent an integer of 1 to 10; and p, q, l′ and n′ represent an integer of 0 to 1,000; in which p and q do not simultaneously represent 0.
US09680102B2 Formation of conjugated polymers for solid-state devices
Disclosed herein is a facile process for the formation of conjugated polymers inside or outside assembled solid-state devices. One process generally involves applying a voltage to a device comprising at least two electrodes, a combination of an electrolyte composition and a electroactive monomer disposed between the electrodes, and a potential source in electrical connection with the at least two electrodes; wherein the applying voltage polymerizes the electroactive monomer into a conjugated polymer. Also disclosed are electrochromic articles prepared from the process and solid-state devices comprising a composite of an electrolyte composition and a conjugated polymer.
US09680099B2 Method for forming organic semiconductor film
A method for forming an organic semiconductor film includes: forming a solution film by applying a solution containing an organic semiconductor material and a solvent to at least a part of a substrate; and drying the solution film by irradiating at least a part of the solution film with electromagnetic waves with a wavelength of at least 8 μm and an energy density of from 0.1 to 10 J/cm2 on the surface of the solution film before the solution film dries. An organic semiconductor film having good crystallinity can be formed by the method.
US09680096B2 Tunable voltage margin access diodes
The present invention relates generally to high current density access devices (ADs), and more particularly, to a structure and method of forming tunable voltage margin access diodes in phase change memory (PCM) blocks using layers of copper-containing mixed ionic-electronic conduction (MIEC) materials. Embodiments of the present invention may use layers MIEC material to form an access device that can supply high current-densities and operate reliably while being fabricated at temperatures that are compatible with standard BEOL processing. By varying the deposition technique and amount of MIEC material used, the voltage margin (i.e. the voltage at which the device turns on and the current is above the noise floor) of the access device may be tuned to specific operating conditions of different memory devices.
US09680093B2 Nonvolatile memory element, nonvolatile memory device, nonvolatile memory element manufacturing method, and nonvolatile memory device manufacturing method
A nonvolatile memory element including: a first electrode; a second electrode; a variable resistance layer that is between the first electrode and the second electrode and includes, as stacked layers, a first variable resistance layer connected to the first electrode and a second variable resistance layer connected to the second electrode; and a side wall protecting layer that has oxygen barrier properties and covers a side surface of the variable resistance layer. The first variable resistance layer includes a first metal oxide and a third metal oxide formed around the first metal oxide and having an oxygen deficiency lower than that of the first metal oxide, and the second variable resistance layer includes a second metal oxide having an oxygen deficiency lower than that of the first metal oxide.
US09680090B2 Plasma etching method
In a plasma etching method of plasma-etching a sample which has a first magnetic film, a second magnetic film disposed above the first magnetic film, a metal oxide film disposed between the first magnetic film and the second magnetic film, a second metal film disposed over the second magnetic film and forming an upper electrode, and a first metal film disposed below the first magnetic film and forming a lower electrode, the plasma etching method includes the steps of: a first process for etching the first magnetic film, the metal oxide film, and the second magnetic film by using carbon monoxide gas; and a second process for etching the sample by using mixed gas of hydrogen gas and inactive gas after the first process. In this case, the first metal film is a film containing therein tantalum.
US09680088B2 Ferromagnetic tunnel junction element and method of driving ferromagnetic tunnel junction element
In a tunnel junction element having a ferromagnetic free layer, an insulating layer and a ferromagnetic fixed layer, in order to reduce the current necessary for spin-transfer magnetization reversal operation in the tunnel junction element, the ferromagnetic free layer comprises first and second ferromagnetic layers, a nonmagnetic metal layer is provided between these ferromagnetic layers, the nonmagnetic metal layer is such that magnetic coupling is preserved between the first and second ferromagnetic layers, also such that there is no influence on the crystal growth of the first and second ferromagnetic layers, the first ferromagnetic layer and the second ferromagnetic layer are placed such that the first ferromagnetic layer is in contact with the insulating layer, and the second ferromagnetic layer has a smaller magnetization than the first ferromagnetic layer.
US09680087B2 Methods for manufacturing carbon ribbons for magnetic devices
In one embodiment of the invention, there is provided a method for manufacturing a magnetic memory device, comprising: depositing a carbon layer comprising amorphous carbon on a substrate; annealing the carbon layer to activate dopants contained therein; and selectively etching portions of the carbon layer to forms lines of spaced apart carbon conductors.
US09680086B2 Piezoelectric material, piezoelectric element, and electronic apparatus
The present invention provides a piezoelectric material which has excellent insulating and piezoelectric properties and which contains no lead and potassium and also provides a piezoelectric element and a multilayered piezoelectric element each using the above piezoelectric material. The piezoelectric material is a perovskite-type metal oxide represented by the following general formula (1). (1−x){(NayBa1-z)(Nb7Ti1-z)O3}-xBiFeO3  (1) In the formula, 0
US09680083B2 Composite substrate, piezoelectric device, and method for manufacturing composite substrate
A composite substrate 10 includes a piezoelectric substrate 12 and a support layer 14 bonded to the piezoelectric substrate 12. The support layer 14 is made of a material having no crystalline anisotropy in a bonded surface thereof and has a smaller thickness than the piezoelectric substrate 12. The piezoelectric substrate 12 and the support layer 14 are bonded together with an adhesive layer 16 therebetween. The composite substrate 10 has a total thickness of 180 μm or less. The base thickness ratio Tr=t2/(t1+t2) is 0.1 to 0.4, where t1 is the thickness of the piezoelectric substrate 12, and t2 is the thickness of the support layer 14. The thickness t1 is 100 μm or less. The thickness t2 is 50 μm or less.
US09680080B2 Thermoelectric conversion of waste heat from generator cooling system
An electrical generator includes a rotor, a stator core disposed axially around the rotor, a stator sleeve assembly disposed axially around the stator core, and a stator housing disposed axially around the stator sleeve assembly. The stator sleeve assembly includes a cylindrical stator sleeve and thermoelectric elements. The cylindrical stator sleeve has a radially inward facing surface and a radially outward facing surface. The thermoelectric elements are affixed to the radially outward facing surface of the cylindrical stator sleeve. The stator housing includes at least one coolant channel. The coolant channel is in thermal contact with the thermoelectric elements. The thermoelectric elements generate power as a function of the temperature difference between the cylindrical stator sleeve and the coolant channel.
US09680076B2 Light-emitting device, illumination device and backlight for display device
An LED chip (3) is disposed in a recessed portion (21p) formed by bending a metal lead frame (2). A reflector (4) has a resin reflection surface (4a) and the recessed portion (21p) has a metal reflection surface (21a). When the inclination angle of at least one metal reflection surface (21a) is θs2(°), the resin reflection surface (4a) has a sloped resin surface with an inclination angle of θs1(°) that is smaller than θs2(°). With θc(°) defined as the critical angle of light emitted from an LED chip (3) and incident on the interface between a light-transmissive resin (5) and an air layer, the sloped resin surface and metal reflection surface having a relationship of θs1<θs2, satisfies both a conditional expression (1): 45°−θc/2<θs1<θc and a conditional expression (2): 35°≦θs2≦55°.
US09680075B2 Light-emitting device
A light-emitting device in accordance with the present invention includes a mounting substrate; an LED chip bonded to a surface of the mounting substrate with a bond; and an encapsulating portion covering the LED chip. The bond transmits light from the LED chip. The mounting substrate includes: a light-transmissive member having a planar size larger than that of the LED chip; and first and second penetrating wirings which penetrate the light-transmissive member in the thickness direction thereof and are electrically connected to first and second electrodes of the LED chip via first and second wires, respectively. The light-transmissive member includes at least two light-transmissive layers with different optical properties which are stacked in the thickness direction. A light-transmissive layer of the light-transmissive layers which is farther from the LED chip is higher in reflectance to the light.
US09680074B2 Optical device and light emitting device package including the same
An optical device may include a first surface having a shape of a quadrangle; and a second surface disposed to be opposite to the first surface and comprising a convex curved surface. The optical device has an aspherical shape in a cross-section taken along a diagonal direction of the quadrangle and has a semicircular shape in a cross-section taken along a direction connecting a central portion of a first side of the quadrangle and a central portion of a second side opposite to the first side of the quadrangle. In a cross-sectional view of the optical device, the second surface is continuously varied between the semicircular shape of the cross-section and the aspherical shape of the cross-section.
US09680073B2 Light emitting module
A light emitting module includes: a substrate having a recess part formed thereon; a body surrounding some of side surfaces and an upper surface of the substrate; a light emitting diode chip positioned on the recess part of the substrate; and a lens positioned on the body, wherein the substrate includes a first step part positioned along an edge of the recess part and a second step part positioned along an edge of a lower surface thereof, and the lower surface of the substrate is exposed to the outside.
US09680072B2 Quantum dot (QD) delivery method
An LED is fabricated with a composite layer including quantum dots (QDs), wherein the QDs are provided in a silicone paste. A plurality of QD silicone paste reservoirs each contain a provided silicone paste with QDs of different wavelengths. Further, a silicone paste reservoir containing a clear silicone paste. A paste mixing chamber, in to which the QD paste reservoirs and the silicone paste reservoir supply their respective pastes, mixes together the pastes and form a mixed QD silicone paste. A silicone mixing and metering component receives the mixed QD silicone paste from the paste mixing chamber, and further receives A silicone and B silicone from a respective A silicone reservoir and a B silicone reservoir, measures, and mixes the mixed QD silicone paste with the A and B silicones to form a silicone polymer composite. A dispensing component receives to the silicone polymer composite from the mixing and metering component and dispenses the composite to a molding tool.
US09680070B2 LED light source performance compensation apparatus, device and application thereof
An LED light source performance compensation apparatus and a white-light LED light-emitting device. The LED light source performance compensation apparatus comprises: a light transmissive supporting member (101), wherein the light transmissive supporting member (101) is provided with a light performance parameter regulation member (102); and after secondary light of which the wavelength is 380 nm-780 nm and which is emitted by an LED light source (103) passes through the performance compensation apparatus, light performance parameters are adjusted. The LED light source performance compensation apparatus can effectively regulate the light performance parameters of the LED light source, thereby remedying the defects of the secondary light emitted by an existing finished LED light source in terms of light performance parameters.
US09680067B2 Heavily phosphor loaded LED packages having higher stability
Heavily phosphor loaded LED packages having higher stability and a method for increasing the stability of heavily phosphor loaded LED packages. A silicone overlayer is provided on the phosphor silicone blend layer.
US09680058B2 Group-III nitride structure including a fine wall-shaped structure containing a group-III nitridesemiconductor crystal and method for producing a group-III nitride structure including a fine wall-shaped structure containing a group-III nitride semiconductor crystal
A group-III nitride structure includes a substrate 102 and a fine wall-shaped structure 110 disposed to stand on the substrate 102 in a vertical direction relative to a surface of the substrate 102 and extending in an in-plane direction of the substrate 102. The fine wall-shaped structure 110 contains a group-III nitride semiconductor crystal, and h is larger than d assuming that the height of the fine wall-shaped structure 110 is h and the width of the fine wall-shaped structure 110 in a direction perpendicular to the height direction and the extending direction is d.
US09680057B2 Ultraviolet light-emitting devices incorporating two-dimensional hole gases
In various embodiments, light-emitting devices incorporate graded layers with compositional offsets at one or both end points of the graded layer to promote formation of two-dimensional carrier gases and polarization doping, thereby enhancing device performance.
US09680055B2 Hetero-substrate, nitride-based semiconductor light emitting device, and method for manufacturing the same
A hetero-substrate, a nitride-based semiconductor light emitting device, and a method of manufacturing the same are provided. The hetero-substrate may include a substrate including a silicon semiconductor, a buffer layer disposed on the substrate, a first semiconductor layer disposed on the buffer layer and including a nitride semiconductor, a second semiconductor layer disposed on the first semiconductor layer and including a first conductive type nitride semiconductor having a first doping concentration, and a stress control structure disposed between the first semiconductor layer and the second semiconductor layer and including at least one stress compensation layer and at least one third semiconductor layer including a first conductive type nitride semiconductor having a second doping concentration that is the same or lower than the first doping concentration.
US09680054B2 Quantum dot light enhancement substrate and lighting device including same
A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein. In certain embodiments, a lighting device includes a component described herein.
US09680052B2 Optoelectronic gan-based component having increased ESD resistance via a superlattice and method for the production thereof
An optoelectronic component includes a semiconductor layer structure having a quantum film structure, and a p-doped layer arranged above the quantum film structure, wherein the p-doped layer includes at least one first partial layer and a second partial layer, and the second partial layer has a higher degree of doping than the first partial layer.
US09680046B2 High sensitivity sensor device and manufacturing thereof
A sensing device able to do concurrent real time detection of different kinds of chemical, biomolecule agents, or biological cells and their respective concentrations using optical principles. The sensing system can be produced at a low cost (below $1.00) and in a small size (˜1 cm3). The novel sensing system may be of great value to many industries, for example, medical, forensics, and military. The fundamental principles of this novel invention may be implemented in many variations and combinations of techniques.
US09680041B2 Three-dimensional thin-film semiconductor substrate with through-holes and methods of manufacturing
A three-dimensional thin-film semiconductor substrate with selective through-holes is provided. The substrate having an inverted pyramidal structure comprising selectively formed through-holes positioned between the front and back lateral surface planes of the semiconductor substrate to form a partially transparent three-dimensional thin-film semiconductor substrate.
US09680040B2 Semiconductor device and method for manufacturing the same
A semiconductor device and the like having high quantum efficiency or high sensitivity in a near-infrared to infrared region is provided. The semiconductor device includes: a substrate; a multiple quantum well structure disposed on the substrate, and including a plurality of pairs of a layer a and a layer b; and a crystal-adjusting layer disposed between the substrate and the multiple quantum well structure. The crystal-adjusting layer includes a first adjusting layer which is made of the same material as the substrate and is in contact with the substrate, and a second adjusting layer which is made of the same material as the layer a or the layer b of the multiple quantum well structure and is in contact with the multiple quantum well structure.
US09680039B2 Nanostructures and methods for manufacturing the same
A resonant tunneling diode, and other one dimensional electronic, photonic structures, and electromechanical MEMS devices, are formed as a heterostructure in a nanowhisker by forming length segments of the whisker with different materials having different band gaps.
US09680034B2 Manufacturing method for semiconductor device with point defect region doped with transition metal
A simplified manufacturing process stably produces a semiconductor device with high electrical characteristics, wherein platinum acts as an acceptor. Plasma treatment damages the surface of an oxide film formed on a n− type drift layer deposited on an n+ type semiconductor substrate. The oxide film is patterned to have tapered ends. Two proton irradiations are carried out on the n− type drift layer with the oxide film as a mask to form a point defect region in the vicinity of the surface of the n− type drift layer. Silica paste containing 1% by weight platinum is applied to an exposed region of the n− type drift layer surface not covered with the oxide film. Heat treatment inverts the vicinity of the surface of the n− type drift layer to p-type by platinum atoms which are acceptors. A p-type inversion enhancement region forms a p-type anode region.
US09680033B2 Semiconductor device and manufacturing method thereof
A semiconductor device and a manufacturing method thereof is disclosed in which the semiconductor device includes a p-type anode layer formed by a transition metal acceptor transition, and the manufacturing process is significantly simplified without the breakdown voltage characteristics deteriorating. An inversion advancement region inverted to a p-type by a transition metal acceptor transition, and in which the acceptor transition is advanced by point defect layers, is formed on the upper surface of an n-type drift layer. The inversion advancement region configures a p-type anode layer of a semiconductor device of the invention. The transition metal is, for example, platinum or gold. An n-type semiconductor substrate with a concentration higher than that of the n-type drift layer is adjacent to the lower surface of the n-type drift layer.
US09680032B2 Transistor with curved active layer
In a cross section in a channel width direction, a semiconductor layer includes a first region of which one end portion is in contact with an insulating layer and which is positioned at one side portion of the semiconductor layer; a second region of which one end portion is in contact with the other end portion of the first region and which is positioned at an upper portion of the semiconductor layer; and a third region of which one end portion is in contact with the other end portion of the second region and the other end portion is in contact with the insulating layer and which is positioned at the other side portion of the semiconductor layer. In the second region, an interface with a gate insulating film is convex and has three regions respectively having curvature radii R1, R2, and R3 that are connected in this order from the one end portion side toward the other. R2 is larger than R1 and R3.
US09680023B1 Method of manufacturing a dual-gate FinFET
A method of manufacturing a dual-gate FinFET is provided. The method includes: forming a fin structure on the semiconductor substrate, depositing an oxide layer and planarizing until the top of the fin structure is exposed, depositing a hard mask layer and patterning, preforming a first etch back process to one side of the oxide layer, and then removing the rest of the hard mask layer, preforming a second etch back process to the oxide layers at both sides of the fin structure simultaneously, forming a gate dielectric layer on surface of the fin structure, then depositing gate material on the gate dielectric layer and patterning, removing gate material on top of the fin structure, forming a drive gate and a control gate at two sides of the fin structure respectively; wherein height of the control gate is higher than height of the drive gate.
US09680022B1 Semiconductor device having silicon-germanium layer on fin and method for manufacturing the same
A semiconductor device is provided, including a substrate with an isolation layer formed thereon, wherein the substrate has a fin protruding up through the isolation layer to form a top surface and a pair of lateral sidewalls of the fin above the isolation layer; a silicon-germanium (SiGe) layer epitaxially grown on the top surface and the lateral sidewalls of the fin; and a gate stack formed on the isolation layer and across the fin, wherein the fin and the gate stack respectively extend along a first direction and a second direction. The SiGe layer formed on the top surface has a first thickness, the SiGe layer formed on said lateral sidewall has a second thickness, and a ratio of the first thickness to the second thickness is in a range of 1:10 to 1:30.
US09680021B2 Passivated and faceted fin field effect transistor
A fin field effect transistor (FinFET), and a method of forming, is provided. The FinFET has a fin having one or more semiconductor layers epitaxially grown on a substrate. A first passivation layer is formed over the fins, and isolation regions are formed between the fins. An upper portion of the fins are reshaped and a second passivation layer is formed over the reshaped portion. Thereafter, a gate structure may be formed over the fins and source/drain regions may be formed.
US09680020B2 Increased contact area for FinFETs
A method for forming fin field effect transistors includes epitaxially growing source and drain (S/D) regions on fins, the S/D regions including a diamond-shaped cross section and forming a dielectric liner over the S/D regions. A dielectric fill is etched over the S/D regions to expose a top portion of the diamond-shaped cross section. The fins are recessed into the diamond-shaped cross section. A top portion of the diamond-shaped cross section of the S/D regions is exposed. A contact liner is formed on the top portion of the diamond-shaped cross section of the S/D regions and in a recess where the fins were recessed. Contacts are formed over surfaces of the top portion and in the recess.
US09680017B2 Semiconductor device including Fin FET and manufacturing method thereof
A semiconductor device includes a fin structure for a fin field effect transistor (FET). The fin structure includes a base layer protruding from a substrate, an intermediate layer disposed over the base layer and an upper layer disposed over the intermediate layer. The fin structure further includes a first protective layer and a second protective layer made of a different material than the first protective layer. The intermediate layer includes a first semiconductor layer disposed over the base layer, the first protective layer covers at least side walls of the first semiconductor layer and the second protective layer covers at least side walls of the first protective layer.
US09680016B2 Method for improving transistor performance through reducing the salicide interface resistance
An embodiment of the invention reduces the external resistance of a transistor by utilizing a silicon germanium alloy for the source and drain regions and a nickel silicon germanium self-aligned silicide (i.e., salicide) layer to form the contact surface of the source and drain regions. The interface of the silicon germanium and the nickel silicon germanium silicide has a lower specific contact resistivity based on a decreased metal-semiconductor work function between the silicon germanium and the silicide and the increased carrier mobility in silicon germanium versus silicon. The silicon germanium may be doped to further tune its electrical properties. A reduction of the external resistance of a transistor equates to increased transistor performance both in switching speed and power consumption.
US09680015B2 Dual epitaxy CMOS processing using selective nitride formation for reduced gate pitch
A method of forming a complementary metal oxide semiconductor (CMOS) device structure includes forming a spacer layer material over a substrate and over gate structures defined in a first polarity type region and a second polarity type region; selectively etching the spacer layer material in the first polarity type region to form first gate sidewall spacers; forming first epitaxially grown source/drain (SD) regions in the first polarity type region; selectively forming a protection layer only on exposed surfaces of the first SD regions, so as not to increase a thickness of the spacer layer material in the second polarity type region; forming a masking layer over the first polarity type region, and etching the spacer layer material in the second polarity type region to form second gate sidewall spacers; and removing the masking layer and forming second epitaxially grown SD regions in the second polarity type region.
US09680013B2 Non-planar device having uniaxially strained semiconductor body and method of making same
A method and a device made according to the method. The method comprises providing a substrate including a first material, and providing a fin including a second material, the fin being disposed on the substrate and having a device active portion, the first material and the second material presenting a lattice mismatch between respective crystalline structures thereof. Providing the fin includes providing a biaxially strained film including the second material on the substrate; and removing parts of the biaxially strained film to form a substantially uniaxially strained fin therefrom.
US09680011B2 Self-adjusted isolation bias in semiconductor devices
A device includes a semiconductor substrate, a doped isolation barrier disposed in the semiconductor substrate to isolate the device, a drain region disposed in the semiconductor substrate and to which a voltage is applied during operation, and a depleted well region disposed in the semiconductor substrate, and having a conductivity type in common with the doped isolation barrier and the drain region. The depleted well region is positioned between the doped isolation barrier and the drain region to electrically couple the doped isolation barrier and the drain region such that the doped isolation barrier is biased at a voltage level lower than the voltage applied to the drain region.
US09680008B2 Laterally diffused metal oxide semiconductor device and method of forming the same
A transistor advantageously embodied in a laterally diffused metal oxide semiconductor device having a gate located over a channel region recessed into a semiconductor substrate and a method of forming the same. In one embodiment, the laterally diffused metal oxide semiconductor device includes a source/drain having a lightly doped region located adjacent the channel region and a heavily doped region located adjacent the lightly doped region. The laterally diffused metal oxide semiconductor device further includes an oppositely doped well located under and within the channel region, and a doped region, located between the heavily doped region and the oppositely doped well, having a doping concentration profile less than a doping concentration profile of the heavily doped region.
US09680006B2 Silicon carbide semiconductor device and method of manufacturing the same
A silicon carbide semiconductor device includes a silicon carbide layer having a first main surface and a second main surface opposite to the first main surface. In the second main surface of the silicon carbide layer, a trench having a depth in a direction from the second main surface toward the first main surface is provided, and the trench has a sidewall portion where a second layer and a third layer are exposed and a bottom portion, where a first layer is exposed. A position of the bottom portion of the trench in a direction of depth of the trench is located on a side of the second main surface relative to a site located closest to the first main surface in a region where the second layer and the first layer are in contact with each other, or located as deep as the site in the direction of depth.
US09680005B2 Semiconductor device having an active trench and a body trench
A semiconductor substrate having a first main surface and a transistor cell includes a drift region, a body region between the drift region and the first main surface, an active trench at the first main surface extending into the drift region, a gate insulating layer at sidewalls and a bottom side of the active trench, a gate conductive layer in the active trench, a source region in the body region, and adjacent to the active trench, a body trench at the first main surface extending into the drift region, the body trench being adjacent to the body region and to the drift region, an insulating layer at sidewalls and at a bottom side of the body trench, the insulating layer being asymmetric with respect to an axis extending perpendicular to the first main surface at a center of the body trench, and a conductive layer in the body trench.
US09680003B2 Trench MOSFET shield poly contact
A recess is formed at a semiconductor layer of a device to define a plurality of mesas. An active trench portion of the recess residing between adjacent mesas. A termination portion of the trench residing between the end of each mesa and a perimeter of the recess. The transverse spacing between the mesas and the lateral spacing between the mesas and an outer perimeter of a recess forming the mesas are substantially the same. A shield structure within the trench extends from the region between the mesas to the region between the ends of the mesas and the outer perimeter of the recess forming the mesas. A contact resides between a shield electrode terminal and the shield portion residing in the trench.
US09679999B2 Bidirectional bipolar transistors with two-surface cellular geometries
A two-surface bidirectional power bipolar transistor is constructed with a two-surface cellular layout. Each emitter/collector region (e.g. doped n-type) is a local center of the repeated pattern, and is surrounded by a trench with an insulated field plate, which is tied to the potential of the emitter/collector region. The outer (other) side of this field plate trench is preferably surrounded by a base connection region (e.g. p-type), which provides an ohmic connection to the substrate. The substrate itself serves as the transistor's base.
US09679995B2 Method for manufacturing thin film transistor and pixel unit thereof
The present invention is suitable to the field of electronic technology, and provides a method of manufacturing a thin film transistor and a pixel unit thereof, wherein when the thin film transistor is manufactured, the gate metal layer is used as a mask, and exposed from the back of the substrate to position the channel and the source and drain of the thin film transistor, so that the channel is self-aligned with the gate, and the source and drain are self-aligned with the gate and are symmetrical, and the thin film transistor thus manufactured has a small parasitic capacitance, and the circuit manufactured therewith is fast in operation, and less prone to occurring short circuit or open circuit. In the present invention, the characteristics that the channel is self-aligned with the gate, and the source and drain are self-aligned with the gate and are symmetrical avoid the alignment precision requirement on the mask plate in the production, thus reducing the need for the high precision lithographic apparatus, and reducing the costs and increasing the yield. In addition, the present process is suitable for manufacturing a pixel unit of a thin film transistor, the manufacturing process only requires four mask sets which do not require the critical alignment. As compared with other four mask processes which use the gray tone masks, the present process can increase the yield and reduce the costs.
US09679993B2 Fin end spacer for preventing merger of raised active regions
After formation of gate structures over semiconductor fins and prior to formation of raised active regions, a directional ion beam is employed to form a dielectric material portion on end walls of semiconductor fins that are perpendicular to the lengthwise direction of the semiconductor fins. The angle of the directional ion beam is selected to be with a vertical plane including the lengthwise direction of the semiconductor fins, thereby avoiding formation of the dielectric material portion on lengthwise sidewalls of the semiconductor fins. Selective epitaxy of semiconductor material is performed to grow raised active regions from sidewall surfaces of the semiconductor fins. Optionally, horizontal portions of the dielectric material portion may be removed prior to the selective epitaxy process. Further, the dielectric material portion may optionally be removed after the selective epitaxy process.
US09679988B2 Polysilicon design for replacement gate technology
The present disclosure provides an integrated circuit. The integrated circuit includes a semiconductor substrate; and a passive polysilicon device disposed over the semiconductor substrate. The passive polysilicon device further includes a polysilicon feature; and a plurality of electrodes embedded in the polysilicon feature.
US09679984B2 Metal gate structure with multi-layer composition
The present disclosure provides a semiconductor structure. The semiconductor structure includes a semiconductor substrate and a gate stack disposed on the semiconductor substrate. The gate stack includes a high-k dielectric material layer, a titanium-rich TiN layer over the high-k dielectric layer, and a metal layer disposed over the titanium-rich TiN layer. The metal layer includes aluminum.
US09679982B2 Semiconductor device and method of manufacturing the same
According to a method of manufacturing a semiconductor device, hard mask lines are formed in parallel in a substrate and the substrate between the hard mask lines is etched to form grooves. A portion of the hard mask line and a portion of the substrate between the grooves are etched. A top surface of the etched portion of the substrate between the grooves is higher than a bottom surface of the groove. A conductive layer is formed to fill the grooves. The conductive layer is etched to form conductive patterns in the grooves, respectively.
US09679981B2 Cascode structures for GaN HEMTs
A multi-stage transistor device is described. One embodiment of such a device is a dual-gate transistor, where the second stage gate is separated from a barrier layer by a thin spacer layer and is grounded through a connection to the source. In one embodiment the thin spacer layer and the second stage gate are placed in an aperture in a spacer layer. In another embodiment, the second stage gate is separated from a barrier layer by a spacer layer. The device can exhibit improved linearity and reduced complexity and cost.
US09679980B2 Common source oxide formation by in-situ steam oxidation for embedded flash
The present disclosure relates to an embedded flash memory cell having a common source oxide layer with a substantially flat top surface, disposed between a common source region and a common erase gate, and a method of formation. In some embodiments, the embedded flash memory cell has a semiconductor substrate with a common source region separated from a first drain region by a first channel region and separated from a second drain region by a second channel region. A high-quality common source oxide layer is formed by an in-situ steam generation (ISSG) process at a location overlying the common source region. First and second floating gate are disposed over the first and second channel regions on opposing sides of a common erase gate having a substantially flat bottom surface abutting a substantially flat top surface of the common source oxide layer.
US09679976B2 Semiconductor device and method of manufacturing the same
According to one embodiment, a semiconductor device includes a semiconductor substrate in which a recess is provided on a back surface thereof, and a shape of the recess is reflected on a surface of a metal film which is also provided on the back surface of the semiconductor substrate.
US09679975B2 Semiconductor devices including field effect transistors and methods of forming the same
A semiconductor device includes an active pattern provided on a substrate and a gate electrode crossing over the active pattern. The active pattern includes a first buffer pattern on the substrate, a channel pattern on the first buffer pattern, a doped pattern between the first buffer pattern and the channel pattern, and a second buffer pattern between the doped pattern and the channel pattern. The doped pattern includes graphene injected with an impurity.
US09679969B2 Semiconductor device including epitaxially formed buried channel region
A semiconductor device includes at least one semiconductor fin on an upper surface of a substrate. The at least one semiconductor fin includes a channel region interposed between opposing source/drain regions. A gate stack is on the upper surface of the substrate and wraps around sidewalls and an upper surface of only the channel region. The channel region is a dual channel region including a buried channel portion and a surface channel portion that completely surrounds the buried channel.
US09679965B1 Semiconductor device having a gate all around structure and a method for fabricating the same
A semiconductor device includes a wire pattern spaced apart from a substrate and extended in a first direction, a gate electrode disposed around a circumference of the wire pattern and extended in a second direction that is different from the first direction, a source disposed on a first side of the gate electrode, a drain disposed on a second side of the gate electrode, the source and the drain connected to the wire pattern and a gate spacer disposed on first and second sidewalls of the gate electrode, on the source and on the drain.
US09679963B2 Semiconductor structure and a method for processing a carrier
According to various embodiments, a semiconductor structure may include: a first source/drain region and a second source/drain region; a body region disposed between the first source/drain region and the second source/drain region, the body region including a core region and at least one edge region at least partially surrounding the core region; a dielectric region next to the body region and configured to limit a current flow through the body region in a width direction of the body region, wherein the at least one edge region is arranged between the core region and the dielectric region; and a gate structure configured to control the body region; wherein the gate structure is configured to provide a first threshold voltage for the core region of the body region and a second threshold voltage for the at least one edge region of the body region, wherein the first threshold voltage is less than or equal to the second threshold voltage.
US09679961B2 Transistor with wurtzite channel
A device includes a source region, a drain region, and a wurtzite semiconductor between the source region and the drain region. A source-drain direction is parallel to a [01-10] direction or a [−2110] direction of the wurtzite semiconductor. The device further includes a gate dielectric over the wurtzite semiconductor, and a gate electrode over the gate dielectric.
US09679938B2 Semiconductor device, manufacturing method thereof, and electronic apparatus
A semiconductor device having a first semiconductor section including a first wiring layer at one side thereof; a second semiconductor section including a second wiring layer at one side thereof, the first and second semiconductor sections being secured together with the respective first and second wiring layer sides of the first and second semiconductor sections facing each other; a conductive material extending through the first semiconductor section to the second wiring layer of the second semiconductor section and by means of which the first and second wiring layers are in electrical communication; and an opening, other than the opening for the conductive material, which extends through the first semiconductor section to the second wiring layer.
US09679937B2 Semiconductor device and method for production of semiconductor device
A semiconductor device with a connection pad in a substrate, the connection pad having an exposed surface made of a metallic material that diffuses less readily into a dielectric layer than does a metal of a wiring layer connected thereto.
US09679936B2 Imaging systems with through-oxide via connections
An imaging system may include an image sensor package with through-oxide via connections between the image sensor die and the digital signal processing die in the image sensor package. The image sensor die and the digital signal processing die may be attached to each other. The through-oxide via may connect a bond pad on the image sensor die with metal routing paths in the image sensor and digital signal processing dies. The through-oxide via may simultaneously couple the image sensor die to the digital signal processing die. The through-oxide via may be formed through a shallow trench isolation structure in the image sensor die. The through-oxide via may be formed through selective etching of the image sensor and digital signal processing dies.
US09679931B2 Curved image sensor systems
A curved image sensor system includes (a) an image sensor substrate having a concave light-receiving surface, a pixel array located along the concave light-receiving surface, and a planar external surface facing away from the concave light-receiving surface, (b) a light-transmitting substrate bonded to the image sensor substrate by a bonding layer, and (c) a hermetically sealed cavity, bounded at least by the concave light-receiving surface, the light-transmitting substrate, and the bonding layer.
US09679924B2 Array substrate and manufacturing method thereof, display device
An array substrate and manufacturing method thereof, a display device are provided. The array substrate includes a display region and a non-display region; the non-display region includes a first laminated structure and a second laminated structure that are separately disposed on a base substrate, a gap between the first laminated structure and the second laminated structure constitutes a connecting hole; the first laminated structure includes a first via hole provided for exposing a first metal layer, the second laminated structure includes a second via hole provided for exposing a second metal layer, the first via hole and the second via hole are connected to a connecting hole via breaches on corresponding walls, and the first metal layer and the second metal are electrically connected with a conductive film.
US09679923B2 Array substrate, method for manufacturing the same and display device
An array substrate includes a base substrate, a gate electrode, a gate insulating layer and an active layer arranged on the base substrate in a laminated way. The array substrate further includes a passivation layer, a source electrode, a drain electrode, a first electrode and a second electrode. A first via hole arranged in the passivation layer may include two sloped lateral faces arranged opposite to each other. The first electrode may at least partially cover one lateral face of the first via hole. The second electrode electrically connected to a common electrode lead may at least partially cover the other lateral face of the first via hole. The source electrode and the drain electrode may be connected to the active layer through a second via hole which is arranged in the passivation layer. The first electrode is electrically connected to the source electrode or the drain electrode.
US09679921B2 Display substrate and method of fabricating the same
Disclosed are a display substrate, of which productivity is improved by decreasing five mask (M) processes utilized for fabricating the display substrate used in a liquid crystal display device in a horizontal field (Plane to Line Switching (PLS)) mode to four mask processes, and a method of fabricating the same.
US09679913B1 Memory structure and method for manufacturing the same
A memory structure includes a 3D array of memory cells, a plurality of first conductive lines disposed on the 3D array, a plurality of second conductive lines disposed on the first conductive lines, a top metal plate disposed on the second conductive lines, and at least one strapping structure. The second conductive lines and the first conductive lines extend on different directions. The at least one strapping structure is configured for the first conductive lines and correspondingly disposed on at least one dummy region of the 3D array. Each strapping structure includes a connecting structure and a jumping line. The jumping line is disposed on and coupled to the connecting structure, and coupled to the top metal plate. The jumping line and the second conductive lines extend on the same direction.
US09679908B2 Method of manufacturing semiconductor device
Provided is a semiconductor device having improved performance. In a semiconductor substrate located in a memory cell region, a memory cell of a nonvolatile memory is formed while, in the semiconductor substrate located in a peripheral circuit region, a MISFET is formed. At this time, over the semiconductor substrate located in the memory cell region, a control gate electrode and a memory gate electrode each for the memory cell are formed first. Then, an insulating film is formed so as to cover the control gate electrode and the memory gate electrode. Subsequently, the upper surface of the insulating film is polished to be planarized. Thereafter, a conductive film for the gate electrode of the MISFET is formed and then patterned to form a gate electrode or a dummy gate electrode for the MISFET in the peripheral circuit region.
US09679905B1 Integrated circuits with non-volatile memory and methods of producing the same
Integrated circuits and methods of producing the same are provide. In an exemplary embodiment, a method includes determining a memory area of the integrated circuit, and forming a select layer overlying the substrate. A portion of the select layer is selectively etched to form a select gate within the memory area. A concentration of an indicator is measured in an etch off-gas during the selective etching of the select layer, and the selective etching of the select layer is terminated when the concentration of the indicator crosses an end point determination concentration.
US09679900B2 Semiconductor arrangement comprising first semiconductor device and second semiconductor device that share active area and third semiconductor that shares another active area with first semiconductor device
A semiconductor arrangement and method of formation are provided. A semiconductor arrangement includes a first semiconductor device adjacent a second semiconductor device. The first semiconductor device includes a first gate over a first shallow well in a substrate. A first active area is in the first shallow well on a first side of the first gate. The second semiconductor device includes a second gate over a second shallow well. A third active area is in the second shallow well on a first side of the second gate. The second shallow well abuts the first shallow well in the substrate to form a P-N junction. The P-N junction increases capacitance of the semiconductor arrangement, as compared to a device without such a P-N junction.
US09679899B2 Co-integration of tensile silicon and compressive silicon germanium
Integrated circuits are disclosed in which the strain properties of adjacent pFETs and nFETs are independently adjustable. The pFETs include compressive-strained SiGe on a silicon substrate, while the nFETs include tensile-strained silicon on a strain-relaxed SiGe substrate. Adjacent n-type and p-type FinFETs are separated by electrically insulating regions formed by a damascene process. During formation of the insulating regions, the SiGe substrate supporting the n-type devices is permitted to relax elastically, thereby limiting defect formation in the crystal lattice of the SiGe substrate.
US09679896B2 Moisture blocking structure and/or a guard ring, a semiconductor device including the same, and a method of manufacturing the same
A moisture blocking structure includes an active fin disposed on a sealing region of a substrate, the substrate including a chip region and the sealing region surrounding a periphery of the chip region, the active fin continuously surrounding the chip region and having a winding line shape in a plan view. A gate structure covers the active fin and surrounds the periphery of the chip region. A conductive structure is disposed on the gate structure, the conductive structure surrounding the periphery of the chip region.
US09679893B2 Semiconductor device and transistor
This disclosure provides a negative capacitance gate stack structure with a variable positive capacitor to implement a hysteresis free negative capacitance field effect transistors (NCFETs) with improved voltage gain. The gate stack structure provides an effective ferroelectric negative capacitor by using the combination of a ferroelectric negative capacitor and the variable positive capacitor with semiconductor material (such as polysilicon), resulting in the effective ferroelectric negative capacitor's being varied with an applied gate voltage. Our simulation results show that the NCFET with the variable positive capacitor can achieve not only a non-hysteretic ID-VG curve but also a better sub-threshold slope.
US09679892B2 Method of manufacturing a reverse blocking semiconductor device
A reverse blocking semiconductor device is manufactured by introducing impurities of a first conductivity type into a semiconductor substrate of the first conductivity type through a process surface to obtain a process layer extending into the semiconductor substrate up to a first depth, and introducing impurities of a second, complementary conductivity type into the semiconductor substrate through openings of an impurity mask provided on the process surface to obtain emitter zones of the second conductivity type extending up to a second depth deeper than the first depth and channels of the first conductivity type between the emitter zones. Exposed portions of the process layer are removed above the emitter zones.
US09679888B1 ESD device for a semiconductor structure
An electrostatic discharge (ESD) device for an integrated circuit includes a substrate having a longitudinally extending fin dispose thereon. A first n-type FinFET (NFET) is disposed within the fin. The NFET includes an n-type source, an n-type drain and a p-well disposed within the substrate under the source and drain. A p-type FinFET (PFET) is disposed within the fin. The PFET includes a p-type source/drain region and an n-well disposed within the substrate under the source/drain region. The n-well and p-well are located proximate enough to each other to form an np junction therebetween. The p-type source/drain region of the PFET and the n-type drain of the NFET are electrically connected to a common input node.
US09679886B2 Electrostatic discharge protection device
An electrostatic discharge (ESD) protection device includes a substrate including a plurality of active fins and a plurality of grooves. The ESD protection device includes an insulation layer on the active fins and the grooves, and a gate electrode on the active fins. The ESD protection device includes a first impurity region adjacent to a first side of the gate electrode, and a second impurity region adjacent to a second side of the gate electrode. The second side of the gate electrode may be arranged opposite to the first side. The ESD protection device includes an electrode pattern of a capacitor overlapping the first impurity region, a resistor overlapping the second impurity region, and a connection structure electrically connecting the electrode pattern, the gate electrode, and the resistor to each other.
US09679881B2 Semiconductor device and method of forming cavity adjacent to sensitive region of semiconductor die using wafer-level underfill material
A semiconductor wafer has a plurality of first semiconductor die with a stress sensitive region. A masking layer or screen is disposed over the stress sensitive region. An underfill material is deposited over the wafer. The masking layer or screen prevents formation of the underfill material adjacent to the sensitive region. The masking layer or screen is removed leaving a cavity in the underfill material adjacent to the sensitive region. The semiconductor wafer is singulated into the first die. The first die can be mounted to a build-up interconnect structure or to a second semiconductor die with the cavity separating the sensitive region and build-up interconnect structure or second die. A bond wire is formed between the first and second die and an encapsulant is deposited over the first and second die and bond wire. A conductive via can be formed through the first or second die.
US09679880B2 Cascode power transistors
A semiconductor device according to an embodiment includes a normally off transistor having a first source, a first drain, a first gate connected to a common gate terminal, and a body diode, a normally on transistor having a second source connected to the first drain, a second drain, and a second gate, a capacitor provided between the common gate terminal and the second gate, a first diode having a first anode connected to between the capacitor and the second gate and a first cathode connected to the first source, and a second diode having a second anode connected to the first source and a second cathode connected to the second drain.
US09679879B2 LED light-emitting device
Provided is a LED light-emitting device including: a carrier, which is a transparent body, and on a carrying surface of which conductors are provided; a plurality of LED chips, which are electrically connected to the conductors by way of eutectic bonding, so as to realize electrical connection among the plurality of LED chips; an encapsulation structural member, which is a transparent body and encapsulates on the periphery of the carrier and the LED chips; and a pair of electrodes, wherein positive electrode/negative electrodes in the pair of electrodes are electrically connected to the LED chips located at the most upstream/most downstream of a current transmission in the plurality of LED chips by means of the conductors, and extend to the outside of the encapsulation structural member.
US09679873B2 Low profile integrated circuit (IC) package comprising a plurality of dies
An integrated circuit (IC) package that includes a first die, a wire bond coupled to the first die, a first encapsulation layer that at least partially encapsulates the first die and the wire bond, a second die, a redistribution portion coupled to the second die, and a second encapsulation layer that at least partially encapsulates the second die. In some implementations, the wire bond is coupled to the redistribution portion. In some implementations, the integrated circuit (IC) package further includes a package interconnect that is at least partially encapsulated by the second encapsulation layer. In some implementations, the integrated circuit (IC) package further includes a via that is at least partially encapsulated by the second encapsulation layer. In some implementations, the integrated circuit (IC) package has a height of about 500 microns (μm) or less.
US09679868B2 Ball height control in bonding process
A package includes a first package component, a second package component over the first package component, and a solder region bonding the first package component to the second package component. At least one ball-height control stud separates the first package component and the second package component from each other, and defines a standoff distance between the first package component and the second package component.
US09679865B2 Substrate for semiconductor package and semiconductor package having the same
A semiconductor package includes a substrate including a core layer having a first surface and a second surface which is opposite to the first surface, a wiring layer formed over the first and second surfaces and in an inside of the core layer, and having a first electrode disposed in the inside of the core layer and exposed from the core layer and a second electrode disposed over the first surface, and a passivation layer formed over the first and second surface of the core layer such that the first and the second electrodes are exposed; a first semiconductor chip disposed over the first surface of the core layer; a second semiconductor chip stacked over the first semiconductor chip; a first connection member for connecting the first semiconductor chip with the first electrode; and a second connection member for connecting the second semiconductor chip with the second electrode.
US09679862B2 Semiconductor device having conductive bumps of varying heights
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a substrate including a plurality of conductive traces and a semiconductor chip. The semiconductor chip includes a surface facing the plurality of conductive traces and a plurality of conductive pads on the surface and correspondingly electrically connected with the plurality of conductive traces through a plurality of conductive bumps. A height of each of the plurality of conductive bumps is determined by a minimum distance between the plurality of conductive pads and the corresponding conductive traces thereof.
US09679861B1 Integrated circuit package with active warpage control printed circuit board mount
An integrated circuit package may include a package substrate having a surface, first interconnects of a first size that are arranged in a substantially circular shape that is centered on the surface of the package substrate, and second interconnects of a second size that is different from the first size, where the second interconnects are arranged in a ring shape on the surface of the package substrate. The ring shape of the second interconnects is concentric with the substantially circular shape of the first interconnects. The integrated circuit package may further include third interconnects of a third size that are arranged in peripheral corner regions on the surface of the package substrate. The third size may be smaller or bigger than at least one of the first and second sizes.
US09679860B2 Bump-equipped electronic component and method for manufacturing bump-equipped electronic component
A bump-equipped electronic component includes a circuit substrate and first and second bumps which are disposed on a principal surface of the circuit substrate and have different cross-sectional areas in a direction parallel or substantially parallel to the principal surface. One of the first and second bumps having a smaller cross-sectional area includes a height adjustment layer disposed in a direction perpendicular or substantially perpendicular to the principal surface.
US09679852B2 Semiconductor constructions
Some embodiments include a construction having conductive structures spaced from one another by intervening regions. Insulative structures are within the intervening regions. The insulative structures include dielectric spacers and air gaps between the dielectric spacers. Dielectric capping material is over the air gaps. The dielectric capping material is between the dielectric spacers and not over upper surfaces of the dielectric spacers. Some embodiments include a construction having a first conductive structure with an upper surface, and having a plurality of second conductive structures electrically coupled with the upper surface of the first conductive structure and spaced from one another by intervening regions. Air gap/spacer insulative structures are within the intervening regions. The air gap/spacer insulative structures have dielectric spacers along sidewalls of the second conductive structures and air gaps between the dielectric spacers. Dielectric capping material is over the air gaps.
US09679850B2 Method of fabricating semiconductor structure
A semiconductor structure having tapered damascene aperture is disclosed. The semiconductor structure including an etching stop layer over an inter-layer dielectric (ILD) layer, a low-k dielectric layer over the etching stop layer, and a tapered aperture at least going into the low-k dielectric layer; wherein the tapered aperture is filled with copper (Cu), a width of a mouth surface portion of the aperture tapers inwardly from a first, wider width to a second, narrower width at a bottom surface portion of the aperture, and the width of the bottom surface portion of the tapered aperture is less than 50 nm. Associated methods of fabricating a semiconductor structure are also disclosed.
US09679843B2 Localized high density substrate routing
Embodiments of a system and methods for localized high density substrate routing are generally described herein. In one or more embodiments an apparatus includes a medium, first and second circuitry elements, an interconnect element, and a dielectric layer. The medium can include low density routing therein. The interconnect element can be embedded in the medium, and can include a plurality of electrically conductive members therein, the electrically conductive member can be electrically coupled to the first circuitry element and the second circuitry element. The interconnect element can include high density routing therein. The dielectric layer can be over the interconnect die, the dielectric layer including the first and second circuitry elements passing therethrough.
US09679837B2 Electrical interconnect for an integrated circuit package and method of making same
An electrical interconnect assembly includes an insulating substrate, upper conductive pads coupled to a top surface of the insulating substrate, and lower conductive pads coupled to a bottom surface of the insulating substrate. The upper conductive pads and the lower conductive pads comprise an electrically conductive material. A metallization layer is deposited on the top surface of the insulating substrate and the upper conductive pads. The metallization layer extends through vias formed through a thickness of the insulating substrate to contact a top surface of the lower conductive pads.
US09679834B2 Semiconductor dies with recesses, associated leadframes, and associated systems and methods
Semiconductor dies with recesses, associated leadframes, and associated systems and methods are disclosed. A semiconductor system in accordance with one embodiment includes a semiconductor die having a first surface and a second surface facing opposite from the first surface, with the first surface having a die recess. The system can further include a support paddle carrying the semiconductor die, with at least part of the support paddle being received in the die recess. In particular embodiments, the support paddle can form a portion of a leadframe. In other particular embodiments, the support paddle can include a paddle surface that faces toward the semiconductor die and has an opening extending through the paddle surface and through the support paddle.
US09679830B2 Semiconductor package
A semiconductor package includes a packaging substrate having a first surface and a second surface opposite to the first surface; and a semiconductor die assembled on the first surface of the packaging substrate. The semiconductor die includes a plurality of first bump pads and second bump pads on an active surface of the semiconductor die, a plurality of first copper pillars on the first bump pads, and a plurality of second copper pillars on the second bump pads. The first copper pillars have a diameter that is smaller than that of the second copper pillars.
US09679824B2 Semiconductor device and method of forming bond-on-lead interconnection for mounting semiconductor die in Fo-WLCSP
A semiconductor die has a conductive layer including a plurality of trace lines formed over a carrier. The conductive layer includes a plurality of contact pads electrically continuous with the trace lines. A semiconductor die has a plurality of contact pads and bumps formed over the contact pads. A plurality of conductive pillars can be formed over the contact pads of the semiconductor die. The bumps are formed over the conductive pillars. The semiconductor die is mounted to the conductive layer with the bumps directly bonded to an end portion of the trace lines to provide a fine pitch interconnect. An encapsulant is deposited over the semiconductor die and conductive layer. The conductive layer contains wettable material to reduce die shifting during encapsulation. The carrier is removed. An interconnect structure is formed over the encapsulant and semiconductor die. An insulating layer can be formed over the conductive layer.
US09679823B2 Metric for recognizing correct library spectrum
A method of controlling polishing of a substrate is described. A controller stores a library having a plurality of reference spectra. The controller polishes a substrate and measures a sequence of spectra of light from the substrate during polishing. For each measured spectrum of the sequence of spectra, the controller finds a best matching reference spectrum from the plurality of reference spectra and generates a sequence of best matching reference spectra. The controller uses a cell counting technique for finding the best matching reference spectrum. The controller determines at least one of a polishing endpoint or an adjustment for a polishing rate based on the sequence of best matching reference spectra.
US09679818B2 Semiconductor device structure and method for forming the same
A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate. The semiconductor device structure includes a first gate stack positioned over the semiconductor substrate. The semiconductor device structure includes a first doped structure and a second doped structure positioned at two opposite sides of the first gate stack and embedded in the semiconductor substrate. The semiconductor device structure includes a second gate stack positioned over the semiconductor substrate and adjacent to the second doped structure. The semiconductor device structure includes a third gate stack positioned over the semiconductor substrate. The semiconductor device structure includes an isolation structure embedded in the semiconductor substrate and between the second gate stack and the third gate stack. The isolation structure is wider and thinner than the second doped structure, and the isolation structure is made of an epitaxial material.
US09679817B2 Semiconductor structures and methods of forming the same
A method of forming a semiconductor structure may include: forming a first dielectric layer having a first thickness over a substrate; removing a first portion of the first dielectric layer to expose a second region of the substrate; forming a second dielectric layer having a second thickness over the second region of the substrate; removing a second portion of the first dielectric layer to expose a third region of the substrate; forming a third dielectric layer having a third thickness over the third region of the substrate; and forming a first plurality of gate stacks comprising the first dielectric layer in a first region of the substrate, a second plurality of gate stacks comprising the second dielectric layer in the second region of the substrate, and a third plurality of gate stacks comprising the third dielectric layer in the third region of the substrate.
US09679811B2 Semiconductor device and method of confining conductive bump material with solder mask patch
A semiconductor device has a semiconductor die having a plurality of die bump pad and substrate having a plurality of conductive trace with an interconnect site. A solder mask patch is formed interstitially between the die bump pads or interconnect sites. A conductive bump material is deposited on the interconnect sites or die bump pads. The semiconductor die is mounted to the substrate so that the conductive bump material is disposed between the die bump pads and interconnect sites. The conductive bump material is reflowed without a solder mask around the die bump pad or interconnect site to form an interconnect structure between the semiconductor die and substrate. The solder mask patch confines the conductive bump material within the die bump pad or interconnect site. The interconnect structure can include a fusible portion and non-fusible portion. An encapsulant is deposited between the semiconductor die and substrate.
US09679810B1 Integrated circuit having improved electromigration performance and method of forming same
An aspect of the disclosure is directed to a method of forming an interconnect for use in an integrated circuit. The method comprises: forming an opening in a dielectric layer on a substrate; filling the opening with a metal such that an overburden outside of the opening is created; subjecting the metal to a microwave energy dose such that atoms from the overburden migrate to within the opening; and planarizing the metal to a top surface of the opening to remove the overburden, thereby forming the interconnect.
US09679808B2 Selective formation of metallic films on metallic surfaces
Metallic layers can be selectively deposited on surfaces of a substrate relative to a second surface of the substrate. In preferred embodiments, the metallic layers are selectively deposited on copper instead of insulating or dielectric materials. In preferred embodiments, a first precursor forms a layer or adsorbed species on the first surface and is subsequently reacted or converted to form a metallic layer. Preferably the deposition temperature is selected such that a selectivity of above about 90% is achieved.
US09679807B1 Method, apparatus, and system for MOL interconnects without titanium liner
Methods, apparatus, and systems for fabricating a semiconductor device comprising a semiconductor substrate; an oxide layer above the semiconductor substrate; a first metal component comprising tungsten disposed within the oxide layer; an interlayer dielectric (ILD) above the oxide layer, wherein the ILD comprises a trench and a bottom of the trench comprises at least a portion of the top of the first metal component; a barrier material disposed on sidewalls and the bottom of the trench; and a second metal component disposed in the trench.
US09679803B2 Method for forming different patterns in a semiconductor structure using a single mask
The present disclosure provides a method for forming an integrated circuit (IC) structure. The method comprises providing a semiconductor structure including a substrate, a dielectric layer formed over the substrate, and a hard mask region formed over the dielectric layer; forming a first photoresist layer over the hard mask region; performing a first lithography exposure using a photomask to form a first latent pattern; forming a second photoresist layer over the hard mask region; and performing a second lithography exposure using the photomask to form a second latent pattern. The photomask includes a first mask feature and a second mask feature. The first latent pattern corresponds to the first mask feature, and the second latent pattern corresponds to the first mask feature and the second mask feature.
US09679795B2 Article storage facility
An article storage facility is provided which is relatively simple in structure and in which it is easier to perform maintenance work of apparatus provided to each zone. A first switching valve is provided in each of a plurality of zone gas supply portions whereas a second switching valve is provided in each of a plurality of storage section gas supply portions. A plurality of relief passages is provided with each relief passage connected to the inactive gas supply passage on a downstream side, with respect to a gas supplying direction, of the position in which the first switching valve is provided and on an upstream side, with respect to the gas supplying direction, of the position in which the second switching valve is provided in the inactive gas supply passage. A zone relief switching valve is provided to each of the plurality of relief passages.
US09679794B2 Spacer, spacer transferring method, processing method and processing apparatus
According to an embodiment of present disclosure, a spacer is provided. The spacer includes at least a protrusion formed to protrude from an outer periphery of the spacer. The protrusion serves to locate the spacer in place in a transfer mechanism configured to transfer the spacer when the spacer is fixed by the transfer mechanism in such a way that the protrusion comes in contact with the transfer mechanism, and configured to allow the spacer to rotate or move in case the spacer is deviated from a predetermined transfer position when the spacer is engaged with the transfer mechanism.
US09679793B2 Optical monitoring system for coating processes
The invention concerns an optical monitoring system for the measurement of layer thicknesses of thin coatings applied in a vacuum, particularly on moving substrates, during the coating process, in which the light intensity of the light of a light source injected into a reference light guide and released by a first piezoelectric or electrostrictive or magnetostrictive light chopper is registered by a light detector unit in a reference phase, the light of the light source in a measuring phase is injected into a first measuring light guide and the light released by a second piezoelectric or electrostrictive or magnetostrictive light chopper is directed to the substrate, and the light intensity of the light reflected or transmitted from the substrate is registered by the light detector unit through a second measuring light guide, and a remaining light intensity is registered by the light detector unit in at least one dark phase, wherein the reference phase, the measuring phase, and the dark phase are shifted in time by the light chopper and are digitally adjusted depending on the position of the substrate.
US09679792B2 Temperature control system for electrostatic chucks and electrostatic chuck for same
A temperature control system, a wafer chuck, a thermal module for use with the chuck, and an apparatus for use in semiconductor manufacture are disclosed herein. The temperature control system includes: a target having a temperature, a fluid circulation loop coupled to the target for controlling the temperature of the target, a heating heat exchanger coupled to the fluid circulation loop for selectively providing heat to the fluid circulation loop, a cooling heat exchanger coupled to the fluid circulation loop for selectively providing cooling to the fluid circulation loop and a plurality of thermal electric elements carried by the target for selectively providing heating or cooling to the target. The heating heat exchanger and cooling heat exchanger provide gross control of the temperature of the target, and the plurality of thermal electric elements provide fine control of the temperature of the target.
US09679788B2 Apparatus and method for treating substrate
Provided are an apparatus and method for treating a substrate, and more particularly, to an apparatus and method for treating a substrate using a supercritical fluid. The apparatus for treating a substrate includes a process chamber in which an organic solvent remaining on a substrate is dissolved using a fluid provided as a supercritical fluid to dry the substrate and a recycling unit in which the organic solvent is separated from the fluid discharged from the process chamber to recycle the fluid.
US09679787B2 Spin treatment apparatus
A spin treatment apparatus includes an annular liquid receiver, an annular cup body and an annular partitioning member. The annular liquid receiver surrounds a rotating substrate at a distance from an outer periphery of the substrate and is configured to receive liquid flying from the rotating substrate and accommodate the liquid. The annular cup body surrounds the liquid receiver at a distance from an outer periphery of the liquid receiver and forms an annular outer exhaust flow channel for generating an airflow along an upper surface to an outer peripheral surface of the liquid receiver. The annular partitioning member is provided inside the annular liquid receiver and forms an annular inner exhaust flow channel for generating an airflow along an inner peripheral surface to a lower surface of the liquid receiver.
US09679786B2 Packaging module of power converting circuit and method for manufacturing the same
The disclosure discloses a packaging module of a power converting circuit and a method for manufacturing the same. The packaging module of the power converting circuit includes a substrate, a molding layer and a plurality of pins. A power device is assembled at the substrate, a plurality of pins electrically are coupled to the power device, the molding layer covers the surface of the substrate with the power device, and at least a contact surface of the pins configured to electrically connect an external circuit is exposed. The molding layer includes a main hat-body part and a hat-brim part, the main hat-body part and the hat-brim part form a hat-shaped molding layer, and the hat-brim part is used to increase a creepage distance between the contact surfaces of the pins located at the top of the molding layer and the bottom of the substrate.
US09679778B2 Methods of forming memory cells with air gaps and other low dielectric constant materials
Various embodiments include apparatuses and methods of forming the same. One such apparatus can include a first dielectric material and a second dielectric material, and a conductive material between the first dielectric material and the second dielectric material. A charge storage element, such as a floating gate or charge trap, is between the first dielectric material and the second dielectric material and adjacent to the conductive material. The charge storage element has a first surface and a second surface. The first and second surfaces are substantially separated from the first dielectric material and the second dielectric material, respectively, by a first air gap and a second air gap. Additional apparatuses and methods are disclosed.
US09679777B2 Process, stack and assembly for separating a structure from a substrate by electromagnetic radiation
A method for separating a structure from a substrate through electromagnetic irradiations (EI) belonging to a spectral range comprises the steps of a) providing the substrate, b) forming an absorbent separation layer on the substrate, c) forming the structure to be separated on the separation layer, d) exposing the separation layer to the electromagnetic irradiations (EI) via the substrate such that the separation layer breaks down under the effect of the heat stemming from the absorption, the method being notable in that it comprises a step b1) of forming a transparent thermal barrier layer on the separation layer, the exposure period and the thickness of the thermal barrier layer being adapted such that the temperature of the structure to be separated remains below a threshold during the exposure period, beyond which threshold, faults are likely to appear in the structure.
US09679770B2 Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
A semiconductor device manufacturing method of the present invention includes forming a base film having a water-repellent surface on a substrate; forming a photosensitive film having a water-repellent surface on the base film; developing the photosensitive film to expose the base film, thereby forming a photosensitive film pattern; supplying a first spacer material on the photosensitive film and on the exposed base film; and removing at least a part of the first spacer material formed on a top surface of the photosensitive film and a top surface of the base film.
US09679766B2 Method for vertical and lateral control of III-N polarity
Disclosed herein is a method of: depositing a patterned mask layer on an N-polar GaN epitaxial layer of a sapphire, silicon, or silicon carbide substrate; depositing an AlN inversion layer on the open areas; removing any remaining mask; and depositing a III-N epitaxial layer to simultaneously produce N-polar material and III-polar material. Also disclosed herein is: depositing an AlN inversion layer on an N-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce III-polar material. Also disclosed herein is: depositing an inversion layer on a III-polar bulk III-N substrate and depositing a III-N epitaxial layer to produce N-polar material. Also disclosed herein is a composition having: a bulk III-N substrate; an inversion layer on portions of the substrate; and a III-N epitaxial layer on the inversion layer. The III-N epitaxial layer is of the opposite polarity of the surface of the substrate.
US09679762B2 Access conductivity enhanced high electron mobility transistor
A high electron mobility transistor (HEMT) device with enhanced conductivity in the transistor's non-gated access regions and a method for making the HEMT device is disclosed. In one embodiment, the HEMT device includes a heterojunction comprising a barrier layer formed on a channel layer. One or more intervening layers comprising a material suitable for increasing a fixed charge at the heterojunction is formed on a substantially planar surface of the barrier layer opposite the channel layer in the non-gated access region.
US09679761B2 Method for preparing a nanoporous ultra-low dielectric thin film including a high-temperature ozone treatment and a nanoporous ultra-low dielectric thin film prepared by the same method
The present invention provides a method for preparing a nanoporous ultra-low dielectric thin film including a high-temperature ozone treatment and nanoporous ultra-low dielectric thin film prepared by the same method. The method includes preparing a mixture of an organic silicate matrix-containing solution and a reactive porogen-containing solution; coating the mixture on a substrate to form a thin film; and heating the thin film with an ozone treatment. The prepared nanoporous ultra-low dielectric thin film could have a dielectric constant of about 2.3 or less and a mechanical strength of about 10 GPa or more by improving a pore size and a distribution of pores in the thin film by performing an ozone treatment with high temperature and optimization of the ozone treatment temperature.
US09679753B2 Peltier-cooled cryogenic laser ablation cell
Peltier-cooled cryogenic laser ablation cells for sample preparation.
US09679748B2 Multi charged particle beam writing apparatus, and multi charged particle beam writing method
A multi charged particle beam writing apparatus includes a dividing circuitry to divide first irradiation time data into k pieces of second irradiation time data, where each of the k pieces of second irradiation time data has a different number of bits and the total of different numbers of bits is n-bits, in multi-pass writing of k or more passes by using multi charged particle beams, a data transmission circuitry to transmit, for each of k passes, corresponding second irradiation time data, for a beam concerned in multi charged particle beams, a resolution information transmission circuitry to transmit, for each of k passes, corresponding resolution information, and an irradiation time calculation circuitry to calculate an irradiation time of a corresponding beam in the multi charged particle beams of a pass concerned by using input second irradiation time data and resolution information.
US09679743B2 Sample processing evaluation apparatus
A sample processing evaluation apparatus includes a charged particle beam column that irradiates a sample with charged particle beam, a sample holder that holds both ends of the sample, and a sample stage on which the sample holder is placed, in which the sample holder is configured to rotate the sample about a rotation axis between the sample stage and the charged particle beam column.
US09679739B2 Combined electrostatic lens system for ion implantation
A system and method are provided for implanting ions at low energies into a workpiece. An ion source configured to generate an ion beam is provided, wherein a mass resolving magnet is configured to mass resolve the ion beam. The ion beam may be a ribbon beam or a scanned spot ion beam. A mass resolving aperture positioned downstream of the mass resolving magnet filters undesirable species from the ion beam. A combined electrostatic lens system is positioned downstream of the mass analyzer, wherein a path of the ion beam is deflected and contaminants are generally filtered out of the ion beam, while concurrently decelerating and parallelizing the ion beam. A workpiece scanning system is further positioned downstream of the combined electrostatic lens system, and is configured to selectively translate a workpiece in one or more directions through the ion beam, therein implanting ions into the workpiece.
US09679737B2 Spark gap
A spark gap comprising a cathode and an anode is provided. The spark gap is divided into two partial spark gaps by means of a central piece, namely a high-pressure spark gap and an effective spark gap. The effective spark gap can for example, be used to generate monochromatic x-rays. In order to guarantee a defined switching time, the high pressure spark gap which is initially switched to defined, is used. The switching initiates a potential so high on the centre piece that, when the high pressure spark gap is switched, the effective spark gap can also be switched in a defined manner without significant delays, to a visibly higher voltage.
US09679734B2 Fuse link
A fuse link used in alternate current medium- or high-voltage systems with a current frequency of 50 Hz includes a spring-type striker pin and is designed for the protection of electrical devices against consequences of short circuits and overloads. A porcelain housing with a star-core, external end caps closed by plugs, star-core end caps with a ring-shaped first tap designed to ensure electric contact between the star-core end cap and the external end cap of the fuse link is also included. A spring-type striker pin is positioned along the axis of the star-core. Each of the end caps of the star-core is provided with an additional second tap designed to centre the star-core relative to the axis of the fuse link. The spring-type striker pin is centred along the longitudinal axis of the fuse link.
US09679732B2 Break away door, trip unit and circuit breaker assembly including same
A hinge assembly includes a first portion having first and second receptacles and a second portion having first and second cylindrical members extending in opposite directions along a hinge axis and a thickened portion having a contoured outer surface disposed adjacent the cylindrical members. The second portion is moveable from: a first state wherein the first and second cylindrical members are disposed in the first and second receptacles such that the second portion is coupled to the first portion and generally free to rotate about the hinge axis through at least a predetermined degree range, and a second state in which the second portion is decoupled from the first portion responsive to the second portion being rotated beyond the predetermined degree range and the contoured outer surface interacting with a portion of the first portion.
US09679727B2 Switch assembly
A switch assembly (1) for switching electric circuits comprises a contributory switch (3), a main switch (2), and a flexible element (4). The contributory switch (3) and the main switch (2) are connected electrically in series, the contributory switch (3) and the main switch (4) each comprise at least one movable contact and the flexible element is connected to one movable contact of the contributory switch, a first contact (5a), and one movable contact of the main switch, a second contact (6a).
US09679724B2 Component for electric power system, and contact assembly and open air arcing elimination method therefor
A contact assembly for an electrical component includes: a bus member; and a switching assembly structured to move between first and second positions. The switching assembly includes: a stationary contact extending from the bus member, a movable contact engaging the stationary contact when the switching assembly is in the first position and disengaging the stationary contact when the switching assembly moves toward the second position, and a switching device coupled to the bus member. When the switching assembly is in the first position, the switching device and the stationary contact are electrically connected in parallel with the bus member and the movable contact. When the switching assembly moves from the first position toward the second position, the switching device disconnects power after the movable contact disengages the stationary contact in order that electrical disconnection between the bus member and the movable contact occurs within the switching device.
US09679723B2 Vacuum switching apparatus and contact assembly therefor
A contact assembly for a vacuum switching apparatus includes a contact member and a reinforcing member adapted to structurally reinforce the contact member. The contact member includes first and second opposing sides, and a contact thickness. The reinforcing member has a reinforcement thickness, which is less than the contact thickness. The contact member is made from a first material having a first coefficient of thermal expansion, and the reinforcing member is made from a second different material having a second coefficient of thermal expansion. The first coefficient of thermal expansion is substantially the same as the second coefficient of thermal expansion.
US09679721B2 Air break electrical switch having a blade toggle mechanism
A high voltage/high current air break switch, the switch including a support frame and a blade pivotally supported by the support frame, so as to be pivotable relative to the support frame. The blade includes a load interrupter between a blade support and the distal end of the blade. And a method of operating an air break electrical switch with a swinging blade mounted on a support and having blade contacts brought into and out of engagement with a terminal with terminal contacts, and a load interrupter with contacts in a vacuum bottle, the method steps comprising turning the support to move the blade relative to the terminal, then turning the support to move the vacuum bottle electrical contacts and to move the blade contacts relative to the terminal contacts.
US09679717B2 Switch device
A switch device includes a knob member rotatably fitted to and supported by a middle serving as a fixing portion, and a rotor member integrally mounted to the knob member and rotatably supported by the middle. A rotation regulating portion that regulates a rotatable range of the knob member with respect to the middle and rotation sliding surfaces in a rotational axis direction of the middle and the knob member are collectively formed.
US09679715B2 Vehicle switch device
A vehicle switch device has a selection switch having an operation part that, when operated, selects at least one of a plurality of driving target vehicle components mounted on a vehicle, and an operation switch that is separately operable from the selection switch, and drives the selected driving target vehicle component when operated. The operation switch has a single holding operation knob that swings so as to have a front portion thereof pushed down or pulled up. The single holding operation knob is structured to allow a palm of a hand to be placed on an upper face thereof, and fingers of the hand other than a thumb to be placed on the front portion. The operation part is disposed on a side face of the holding operation knob.
US09679714B2 Multi-use switch for electronic device
A multi-use switch for an electronic device includes a pressing piece configured to be pressed by an external force, a number of conducting elements located on the pressing piece and electrically coupled to a number of functional circuits of the electronic device one-to-one, and at least one coupling element configured to be electrically coupled to the conducting elements. The multi-use switch is partially received inside a housing. The coupling element is fixed to the housing. The pressing piece moves along an axis to move the conducting elements relative to the coupling element. The coupling element completes an electric circuit of one of the functional circuits when the corresponding conducting element is moved to electrically couple to the at least one coupling element. One electric circuit of the functional circuits is able to be completed at any one time.
US09679711B1 Portable programmable display and control module
A portable programmable display and control module which serves as a basic light switch and a digital custom light switch display. The control module can be removed from the electrical box when power fails to provide for an emergency flashlight. The control module can be provided with a mini-hard drive and microprocessor in order to be able to download digital content and display it on a lighted touch screen. The control module can also be controlled and programmed wirelessly by a computer or smart phone to control light switches, outlets, and other devices. The control module can also include a built-in solar cell to charge the module for prolonged power failures. A battery back-up can also be provided.
US09679705B2 Method for fabrication of ceramic dielectric films on copper foils
The present invention provides copper substrate coated with a lead-lanthanum-zirconium-titanium (PLZT) ceramic film, which is prepared by a method comprising applying a layer of a sol-gel composition onto a copper foil. The sol-gel composition comprises a precursor of a ceramic material suspended in 2-methoxyethanol. The layer of sol-gel is then dried at a temperature up to about 250° C. The dried layer is then pyrolyzed at a temperature in the range of about 300 to about 450° C. to form a ceramic film from the ceramic precursor. The ceramic film is then crystallized at a temperature in the range of about 600 to about 750° C. The drying, pyrolyzing and crystallizing are performed under a flowing stream of an inert gas.
US09679703B2 Carbon surface modification for three-volt ultracapacitor
An electric double-layer ultracapacitor configured to maintain desired operation at an operating voltage of three volts, where the capacitor includes a housing component, a first and a second current collector, a positive and a negative electrode electrically coupled to one of the first and second current collectors, and a separator positioned between the positive and the negative electrode. At least one of the positive electrode and the negative electrode can include a treated carbon material, where the treated carbon material includes a reduction in a number of hydrogen-containing functional groups, nitrogen-containing functional groups and/or oxygen-containing functional groups.
US09679701B2 Tantalum capacitor
A tantalum capacitor includes a capacitor body containing a tantalum powder and having a tantalum wire protruding to one side surface thereof, a molding part enclosing the tantalum wire and the capacitor body so as to allow an end portion of the tantalum wire to be exposed through one side surface thereof, a positive electrode terminal extended from one side surface of the molding part to a portion of a lower surface thereof and connected to the end portion of the tantalum wire, and a negative electrode terminal extended from the other side surface of the molding part to a portion of the lower surface thereof and connected to the other side surface of the capacitor body.
US09679694B2 Manufacturing method of a reactor
A manufacturing method of a reactor includes: assembling an assembly constituted by a coil and a bobbin by inserting the bobbin, which includes a tube portion and a flange portion, through the coil so that a tip of the tube portion protrudes from the coil; forming a cavity by installing the assembly in a first die so that a portion of a coil lateral face comes into contact with a cavity face of the first die, and closing a second die so that the second die is opposed to the first die; and extending first press rods from a cavity face of the second die toward the bobbin in the cavity, and injecting a resin into the cavity while pressing both ends of the bobbin in an axial direction of the coil from an opposite side to the portion of the coil lateral face.
US09679687B2 Fe-based metal plate and method of manufacturing the same
On at least one surface of a base metal plate (1) of an α-γ transforming Fe or Fe alloy, a metal layer (2) containing ferrite former is formed. Next, the base metal plate (1) and the metal layer (2) are heated to an A3 point of the Fe or the Fe alloy, whereby the ferrite former are diffused into the base metal plate (1) to form an alloy region (1b) in a ferrite phase in which an accumulation degree of {200} planes is 25% or more and an accumulation degree of {222} planes is 40% or less. Next, the base metal plate (1) is heated to a temperature higher than the A3 point of the Fe or the Fe alloy, whereby the accumulation degree of the {200} planes is increased and the accumulation degree of the {222} planes is decreased while the alloy region (11b) is maintained in the ferrite phase.
US09679686B2 Process tunable resistor with user selectable values
A process tunable resistor is fabricated by adjusting elements of the resistor during a fabrication process. The elements include legs, turns, and elements such as a parallel sub-legs, that are adjusted in the fabrication process to provide a specific user defined resistance value. The process tunable resistor provides for fixed contact points in order to support pre-existing or define circuit designs.
US09679685B2 Voltage nonlinear resistive element and method for manufacturing the same
The voltage nonlinear resistive element includes a resistor containing a joined body in which a zinc oxide ceramic layer composed mainly of zinc oxide and having a volume resistivity of less than 1.0×10−2 Ωcm is joined to a rare-earth metal oxide layer composed mainly of a rare-earth metal oxide, and a pair of electrodes disposed on the resistor such that an electrically conductive path passes through a junction between the zinc oxide ceramic layer and the rare-earth metal oxide layer. In this element, the zinc oxide ceramic layer of the joined body has a lower volume resistivity than before. This can result in a lower clamping voltage in a high electric current region than before.
US09679684B2 Voltage nonlinear resistive element and method for manufacturing the same
A voltage nonlinear resistive element includes a resistor containing a joined body in which a zinc oxide ceramic layer composed mainly of zinc oxide and having a volume resistivity of 1.0×10−1 Ωcm or less is joined to a bismuth oxide layer composed mainly of bismuth oxide, and a pair of electrodes disposed on the resistor such that an electrically conductive path passes through a joint surface between the zinc oxide ceramic layer and the bismuth oxide layer. In this element, the zinc oxide ceramic layer of the joined body has a lower volume resistivity than before. This can result in a lower clamping voltage in a high-current region than before.
US09679681B2 Hybrid cable including fiber-optic and electrical-conductor elements
A hybrid cable includes a first jacket and a second jacket with webbing connecting the first and second jackets, where the second jacket has a larger cross-sectional area than the first jacket. Optical fibers extend through a cavity of the first jacket. Conductive wires extend through a cavity of the second jacket. Metallic shielding surrounds the conductive wires, positioned between the conductive wires and the second jacket within the cavity of the second jacket.
US09679680B1 Extension cord with graduated colors and indicators
A system and method for assisting users of electrical extensions cords to detangle the cords as quickly and efficiently as possible. The improved extension cords features markings on regions of the cord to assist the user in locating the part or section of the cord associated with a single end.
US09679673B2 Conductive composition, conductor and solid electrolytic capacitor using conductive composition
A conductive composition according to the present invention contains a conductive polymer (A) having a sulfonic acid group and/or a carboxyl group; and an alkali metal hydroxide and/or an alkaline earth metal hydroxide (B). In such a conductive composition, the amount of the hydroxide (B) is set at 0.2˜0.65 mol per 1 mol of a repeating unit that contains a sulfonic acid group and/or a carboxyl group in the conductive polymer (A).
US09679670B2 Aggregate of radioactive material removing particles and method of producing the same, and method of removing contaminant
There is provided an aggregate of radioactive material removing particles in which two or more radioactive material removing particles having magnetic particles and a radioactive material adsorption component are assembled, wherein a pore volume in the aggregate is 0.5 mL/g or more and 5.0 mL/g or less, and the pore volume means a cumulative value obtained by a mercury press-in method.
US09679668B2 Spent fuel storage rack
A spent fuel storage rack that accommodates and stores spent fuels in a large number of cells formed in a grid pattern includes a flat rectangular plate-shaped base forming the bottom of the rack, columnar members extending upward from the four corners of the base, and at least a pair of upper and lower grid-shaped frame plates disposed above the base and fixed to and supported by the columnar members. Each of the cells is formed by assembling metal plates to which boron is added to a density greater than 1% into a polygonal tube, and the cells are arranged contiguously at fixed intervals in the grid-shaped frame plates.
US09679665B2 Method for performing built-in self-tests
A method including determining a test duration for testing each of a plurality of memory arrays individually coupled to a plurality of array built-in-self test (ABIST) engines, the test duration is equal to a time period required by each of the plurality of ABIST engines to test each of the plurality of memory arrays, determining a corresponding delay value for each of the plurality of ABIST engines, each of the corresponding delay values is based on the test duration for each of the plurality of memory arrays, and consecutively delaying the start of processing of each of the plurality of ABIST engines by providing each of the corresponding delay values to each of a plurality of programmable delay units individually coupled to each of the plurality of ABIST engines, the start of processing of each of the plurality of ABIST engines is delayed by a different corresponding delay value.
US09679664B2 Method and system for providing a smart memory architecture
A smart memory system preferably includes a memory including one or more memory chips, and a processor including one or more memory processor chips. The system may include a smart memory controller capable of performing a bit error rate built-in self test. The smart memory control may include bit error rate controller logic configured to control the bit error rate built-in self test. A write error rate test pattern generator may generate a write error test pattern for the bit error rate built-in self test. A read error rate test pattern generator may generate a read error test pattern for the built-in self test. The smart memory controller may internally generate an error rate timing pattern, perform built-in self test, measure the resulting error rate, automatically adjust one or more test parameters based on the measured error rate, and repeat the built-in self test using the adjusted parameters.
US09679661B1 Non-volatile storage system with self-test for read performance enhancement feature setup
Performance improvement features can improve the performance of read processes under the right conditions. In order to selectively use the performance improvement features, the system conducts active read sampling to obtain information about bit error rate and then enables the performance improvement feature(s) for future read processes based on the information about bit error rate.
US09679655B2 Row decoder for a non-volatile memory device, and non-volatile memory device
A non-volatile memory device includes a memory array having memory cells arranged in wordlines and receiving a supply voltage. A row decoder includes an input and pre-decoding module, which is configured to receive address signals and generate pre-decoded address signals at low voltage, in the range of the supply voltage. A driving module is configured to generate biasing signals for biasing the wordlines of the memory array starting from decoded address signals, which are a function of the pre-decoded address signals, at high voltage and in the range of a boosted voltage higher than the supply voltage. A processing module is configured to receive the pre-decoded address signals and to jointly execute an operation of logic combination and an operation of voltage boosting of the pre-decoded address signals for generation of the decoded address signals.
US09679654B2 Continuous-time floating gate memory cell programming
Aspects of a continuous-time memory cell circuit are described. In various embodiments, the memory cell circuit may comprise a memory cell, a current source coupled to the memory cell, and circuitry for programming the memory cell at an adaptive rate, based on a target voltage for programming, using a feedback loop between a gate terminal of the memory cell and a reference control input. Based on the circuitry for programming, the memory cell may be programmed according to various voltage and/or current references, by linear injection and/or tunneling mechanisms. According to various aspects, the circuitry for programming drives a memory cell to converge to a voltage target for programming within a short period of time and to a suitable level of accuracy.
US09679651B2 Semiconductor memory device capable of determining an initial program condition for different memory cells
A semiconductor memory device includes a first memory string including a first memory cell and a second memory cell, a second memory string including a third memory cell, a bit line connected to both one end of the first memory string and one end of the second memory string, a first word line connected to gates of the first and third memory cells, a second word line connected to a gate of the second memory cell, and a control circuit configured to determine a program condition of the first memory cell that have been selected for a write operation, and perform the write operation for the third memory cell based on the program condition of the first memory cell.
US09679650B1 3D NAND memory Z-decoder
Apparatus and methods are disclosed, including an apparatus having first and second units of vertically arranged strings of memory cells, each unit including multiple tiers of a semiconductor material, each tier including an access line of at least one memory cell and a channel of a decoder transistor, wherein the channel of the decoder transistor of each of the multiple tiers of the first unit of memory cells is coupled to the channel of the decoder transistor of a corresponding tier of the second unit of memory cells. Methods of forming such apparatus are disclosed, as well as methods of operation, and other embodiments.
US09679649B2 Reconfigurable cam
A content addressable memory having at least one CAM cell including first and second inverters cross-coupled between first and second storage nodes; a first transistor coupling the first storage node to a bitline, the first transistor being controlled by a first control signal; a second transistor coupling the second storage node to the bitline, the second transistor being controlled by a second control signal; and a control circuit adapted to perform a CAM read operation by pre-charging the bitline to a first voltage level, and then selectively activating either the first or second transistor based on a bit of input data.
US09679640B1 Multi-level reversible resistance-switching memory
A non-volatile storage system is provided that includes a reversible resistance-switching memory cell and a controller coupled to the reversible resistance-switching memory cell. The controller is configured to program the reversible resistance-switching memory cell to three or more memory states while limiting the current through the memory cell to less than between about 0.1 microamp and about 30 microamps.
US09679639B2 Two part programming and erase methods for non-volatile charge trap memory devices
A semiconductor memory device includes a memory cell array including a plurality of memory cells, a peripheral circuit performing a program operation or erase operation of the memory cell array; and a control logic controlling the peripheral circuit. The control logic controls the peripheral circuit such that a first program allowable voltage applied to bit lines of the memory cell array during a first program operation of the program operation and a second program allowable voltage applied during a second program operation of the program operation are different from each other.
US09679634B2 Semiconductor device
Provided is a semiconductor device including: a memory cell array including a plurality of memory cells disposed in a matrix; and a peripheral circuit adjacent to the memory cell array. Each of the memory cells includes: a capacitive element including a lower electrode having a cylinder shape extending in a direction perpendicular to a principal surface of a substrate; and a switch transistor provided between the capacitive element and a bit line, turning on/off of the switch transistor being controlled based on a potential of a word line. The peripheral circuit includes a signal line that is adjacent to the lower electrode in a horizontal direction parallel to the principal surface and is supplied with a fixed potential, or a pair of signal lines respectively supplied with complementary potentials.
US09679633B2 Circuits and methods for DQS autogating
In one aspect, a method includes receiving a differential strobe signal including first and second components; buffering, by a first buffer, both the first and second components; and buffering, by a second buffer, the first component. The method includes receiving, by a control logic block, the output of the second buffer. The method includes, after a period when the values of both the first and second components are at a first logic state, but before receiving a burst of clock edges in the differential strobe signal, detecting a transition in the first component from the first logic state to a second logic state, and in response to the detected transition, asserting an enable signal. The method further includes receiving, by a gating logic block, the enable signal and the output of the first buffer, and, when the enable signal is asserted, un-gating the output of the first buffer.
US09679631B2 Systems and methods involving multi-bank, dual- or multi-pipe SRAMs
Systems and methods are disclosed for increasing the performance of static random access memory (SRAM). Various systems herein, for example, may include or involve dual- or multi-pipe, multi-bank SRAMs, such as Quad-B2 SRAMs. In one illustrative implementation, there is provided an SRAM memory device including a memory array comprising a plurality of SRAM banks and pairs of separate and distinct pipes associated with each of the SRAM banks, wherein each pair of pipes may provide independent access to its associated SRAM bank.
US09679628B2 Semiconductor memory device
To provide a memory cell for storing multilevel data that is less likely to be affected by variations in characteristics of transistors and that is capable of easily writing multilevel data in a short time and accurately reading it out. In writing, a current corresponding to multilevel data is supplied to the transistor in the memory cell and stored as the gate-drain voltage of the transistor in the memory cell. In reading, a current is supplied to the transistor in the transistor with the stored gate-drain voltage, and the multilevel data is obtained from the voltage supplied to generate a current that is equal to the current.
US09679626B2 Self-referenced magnetic random access memory
The present disclosure concerns a magnetic random access memory cell containing a magnetic tunnel junction formed from an insulating layer comprised between a sense layer and a storage layer. The present disclosure also concerns a method for writing and reading the memory cell comprising, during a write operation, switching a magnetization direction of said storage layer to write data to said storage layer and, during a read operation, aligning magnetization direction of said sense layer in a first aligned direction and comparing said write data with said first aligned direction by measuring a first resistance value of said magnetic tunnel junction. The disclosed memory cell and method allow for performing the write and read operations with low power consumption and an increased speed.
US09679625B2 Perpendicular magnetic tunnel junction (pMTJ) with in-plane magneto-static switching-enhancing layer
An STTMRAM element includes a magnetic tunnel junction (MTJ) having a perpendicular magnetic orientation. The MTJ includes a barrier layer, a free layer formed on top of the barrier layer and having a magnetic orientation that is perpendicular and switchable relative to the magnetic orientation of the fixed layer. The magnetic orientation of the free layer switches when electrical current flows through the STTMRAM element. A switching-enhancing layer (SEL), separated from the free layer by a spacer layer, is formed on top of the free layer and has an in-plane magnetic orientation and generates magneto-static fields onto the free layer, causing the magnetic moments of the outer edges of the free layer to tilt with an in-plane component while minimally disturbing the magnetic moment at the center of the free layer to ease the switching of the free layer and to reduce the threshold voltage/current.
US09679623B2 Stacked clock-generation circuit
An electronic circuit is disclosed for dividing the frequency of a periodic signal, wherein at least one of the memory elements is arranged with its output terminal connected to the input terminal of another memory element wherein the electronic circuit is configured to generate an output signal having a smaller fundamental frequency than the clock signal at at least one of the output terminals. Each memory element is configured to change and hold a voltage at the output terminal based on a voltage at the input terminal at times controlled by a clock signal received at the clock terminal. At least two of the memory elements are stacked in the sense that the bottom terminal of a first memory element is connected to the top terminal of a second memory element to enable the charge to flow from the first memory element to the second memory element.
US09679621B2 Semiconductor device and semiconductor system
A semiconductor system may include a first semiconductor device configured to output commands, addresses and data. The semiconductor system may include a second semiconductor device configured to convert a logic level combination of the data when only any one of bits of the data is a different logic level, and store the data in response to the commands and the addresses, in a write operation.
US09679619B2 Sense amplifier with current regulating circuit
A sense amplifier includes a cross latch, a first pass gate, a second pass gate, a first data line, a second data line, a first circuit, and a second circuit. The cross latch has a first input/output (I/O) node and a second I/O node. The first pass gate is coupled between the first data line and the first I/O node. The second pass gate is coupled between the second data line and the second I/O node. The first circuit is coupled with the first I/O node and the second data line. The second circuit is coupled with the second I/O node and the first data line. The first circuit is configured to be turned off when the second data line has a first logical value and to be at least lightly turned on when the second data line has a voltage level between the first logical value and a second logical value different from the first logical value. The second circuit is configured to be turned off when the first data line has the first logical value and to be at least lightly turned on when the first data line has a voltage level between the first logical value and the second logical value.
US09679612B2 Techniques for providing a direct injection semiconductor memory device
Techniques for providing a direct injection semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a direct injection semiconductor memory device including a first region coupled to a source line, a second region coupled to a bit line. The direct injection semiconductor memory device may also include a body region spaced apart from and capacitively coupled to a word line, wherein the body region is electrically floating and disposed between the first region and the second region. The direct injection semiconductor memory device may further include a third region coupled to a carrier injection line configured to inject charges into the body region through the second region.
US09679611B2 Method for displaying status associated with a storage device, computer system and status-monitoring device thereof
A method implemented by a status-monitoring device connected between a storage device and a corresponding output unit includes: a) determining presence of a storage device according to a first packet from the storage device; b) when it is determined that the storage device is present, generating a pulse signal according to a second packet from the storage device; c) generating a driving signal indicating a status associated with the storage device according to at least a logic level of the pulse signal; and d) sending the driving signal to the output unit for driving the output unit to output an output signal indicating the status.
US09679600B2 Mechanical pre-fetching of cold storage media
Some embodiments include a cold storage system that processes an input/output (I/O) request. The cold storage system can have a buffer rack and one or more archival storage racks. The buffer rack can be closer to an I/O drive of the cold storage system than the archival storage racks. The cold storage system can operate a fetcher robot to pre-fetch a first data storage medium from the archival storage racks to the buffer rack. The cold storage system can operate a buffer robot to move a second data storage medium from a slot in the buffer rack to the I/O drive. The cold storage system can execute, according to the I/O request, an I/O operation on the second data storage medium at the I/O drive.
US09679592B2 Flexure of disk drive suspension, and method of manufacturing conductive circuit portion of flexure
A suspension includes a load beam and a flexure. The flexure has a metal base and a conductive circuit portion. The conductive circuit portion has an insulating layer formed on the metal base, and a conductor formed on the insulating layer. The conductive circuit portion includes a first region which constitutes a part of the conductive circuit portion in the longitudinal direction, and a second region which constitutes another part of the same in the longitudinal direction. The conductor includes a thin conductor portion having a first thickness arranged in the first region, and a thick conductor portion having a second thickness arranged in the second region. The second thickness is greater than the first thickness.
US09679591B1 Magnetic scissor sensor with closed-loop side shield
A scissor type magnetic sensor for magnetic data recording having a flux closure magnetic side shield structure. The magnetic sensor has a magnetic side shield structure that includes a non-magnetic layer within a magnetic material layer, with the non-magnetic layer being removed from the sensor stack so as to define upper and lower magnetic portions of the magnetic structure that are separated from one another at a region away from the sensor stack. The upper and lower magnetic portions are connected with one another in a region near the sensor stack so as to magnetic flux closure structure. The novel magnetic side shield structure provides net neutral magnetization that does not provide an inadvertent biasing to the magnetic free layers of the magnetic sensor.
US09679590B2 Magnetic devices including film structures
A device including a magnetic structure, the magnetic structure having a substrate adjacent surface and a second, opposing surface, the magnetic structure having a near field transducer (NFT), wherein the NFT includes gold or an alloy thereof, and is positioned at the second surface an overcoat structure; and a film structure, the film structure positioned between the magnetic structure and the overcoat structure, the film structure having a total thickness of not greater than about 100 Å, and the film structure including: a first interfacial structure having a first and a second opposing surface; a second interfacial structure having a first and a second opposing surface; and an intermediate structure wherein the first surface of the first interfacial structure is positioned adjacent the NFT of the magnetic structure, and the second surface of the second interfacial structure is positioned adjacent the overcoat structure, and the intermediate structure is positioned between the first interfacial structure and the second interfacial structure, and wherein the first interfacial structure includes one or more rare earth elements, one or more alkaline earth metals, one or more alkali metals, or a combination thereof.
US09679588B1 Corrosion resistance in air bearing surfaces
A structure includes an air bearing surface including a plurality of material layers arranged in at least one dimension on the air bearing surface. The structure further includes a microelectronic device and a resistive heating element, which each include at least one of the plurality of material layers. The resistive heating element is electrically isolated from the microelectronic device. The microelectronic device is heated by said resistive heating element. Optionally, a structure includes a tape reader or a tape writer, located at an air bearing surface. A resistive heating element is electrically isolated from the tape reader or writer and heats the tape reader or the tape writer. Optionally, a method includes identifying a microelectronic device located at an air bearing surface, identifying a resistive heating element, which is electrically isolated from the microelectronic device, applying a bias current through the resistive heating element to heat the microelectronic device.