Document Document Title
US09020072B2 Method for modulating navigation signal
The present invention provides a method for modulating a navigation signal, comprising: multiplying a data channel difference signal between upper and lower sidebands by a sine binary subcarrier to obtain an odd timeslot baseband signal of a branch Q, and multiplying a data channel sum signal of the upper and lower sidebands by a cosine binary subcarrier to obtain an odd timeslot baseband signal of a branch I of the data channel; multiplying a pilot channel difference signal between the upper and lower sidebands by the sine binary subcarrier to obtain an even timeslot baseband signal of the branch Q, and multiplying a pilot channel sum signal of the upper and lower sidebands by the cosine binary subcarrier to obtain an even timeslot baseband signal of the branch I; and performing QPSK modulation on the baseband signals of the branch I and branch Q to obtain a TD-AltBOC modulation signal. The present invention can implement transmission of different navigation services at two adjacent frequency bands, and each navigation service comprises a data channel and a pilot channel. The navigation signal of each sub-band may be received independently, or signals of the upper and lower sidebands may be jointly received to obtain high-precision navigation performance.
US09020067B2 Distortion and aliasing reduction for digital to analog conversion
Distortion and aliasing reduction for digital to analog conversion. Synthesis of one or more distortion terms made based on a digital signal (e.g., one or more digital codewords) is performed in accordance with digital to analog conversion. The one or more distortion terms may correspond to aliased higher-order harmonics, distortion, nonlinearities, clipping, etc. Such distortion terms may be known a priori, such as based upon particular characteristics of a given device, operational history, etc. Alternatively, such distortion terms may be determined based upon operation of a device and/or based upon an analog signal generated from the analog to conversion process. For example, frequency selective measurements made based on an analog signal generated from the digital to analog conversion may be used for determination of and/or adaptation of the one or more distortion terms. One or more DACs may be employed within various architectures operative to perform digital to analog conversion.
US09020059B1 System and method for diversity coded orthogonal frequency division multiplexing (OFDM)
The present invention provides a Diversity Coding—Orthogonal Frequency Division Multiplexing (DC-OFDM) system and method that applies diversity coding to OFDM-based systems and provides improved probability of successful reception at the receiver and transparent self-healing and fault-tolerance. Diversity coding is well suited for OFDM-based systems because of its spatial diversity nature (parallel links). DC-OFDM provides the best performance when the probability of link error is high or when a link (sub-channel) fails. Also, by implementing diversity coding in OFDM-based systems, a reliable communication can be provided that is quite tolerant of link failures, since data and protection lines are transmitted via multiple sub-channels.
US09020051B2 Method and base station for receiving reference signal, and method and user equipment for receiving reference signal
A base station does not transmit any reference signal (RS) for channel measurement in a subframe in which transmission of an RS collides with transmission of a synchronization signal or a broadcast signal or in a resource block including the synchronization signal or the broadcast signal in the subframe. A user equipment assumes that any RS for channel measurement is not transmitted in a subframe or in a resource block when transmission of an RS collides with transmission of a synchronization signal or a broadcast signal in the subframe or in the resource block.
US09020048B2 Dynamically modifying video and coding behavior
A system and method that provides a connection path between a video source such as a personal computer (PC) and a high-definition television (HDTV). A control is provided for varying a quality level of a video signal with respect to latency of activities provided through the video signal channel. Output picture quality versus latency is adjusted on a dynamic basis. Observed mouse activities causes the output picture quality to be decreased rapidly with an attendant decrease in latency. A decrease in output picture quality and latency is maintained until the occurrence of a particular event, such as the expiration of a time interval from a last observed mouse event. If a limited number of mouse events are observed, then the output picture quality is increased to a point at which the limited mouse activity can be accommodated with an acceptable level of latency. If limited or no mouse events are observed for a given period of time, the output picture quality is increased, either rapidly or gradually, until output picture quality is restored or another mouse event is observed.
US09020047B2 Image decoding device
An image decoding apparatus includes a plurality of decoders and (i) divides image data to decode into a plurality of pieces of partial data, (ii) acquires attribute information pieces each affecting decoding processing time of a corresponding one of the plurality of pieces of partial data, (iii) determines which of the plurality of decoders is caused to decode which of the plurality of pieces of partial data based on the attribute information pieces on the plurality of pieces of partial data and (iv) causes two or more of the plurality of decoders to decode two or more corresponding pieces of the partial data in parallel.
US09020045B1 Progressive block encoding using region analysis
Methods of encoding an image stream. In one embodiment, the method comprises generating, by a computer, a lossless encoding of a first portion of a frame of an image based on identifying the first portion as (i) changed since a previous frame of the image and (ii) comprising a first image type; generating an initial quality lossy encoding of a second portion of the frame based on identifying the second portion as (iii) changed since the previous frame and (iv) comprising a second image type; and generating a quality improvement encoding of a third portion of the frame based on identifying the third portion as (v) unchanged since the previous frame and (vi) encoded to less than a defined quality.
US09020037B2 Motion vector coding and decoding methods
A motion vector coding apparatus includes a motion vector coding unit that codes a motion vector inputted from a motion vector detecting unit. A motion vector for each current block is coded based on a difference between the motion vector and a predicted vector obtained from motion vectors for previously coded neighboring blocks. The predicted vector is generated by one of: the motion vectors referring to the same picture are selected from among the motion vectors for the neighboring blocks; the motion vectors for neighboring blocks are ordered in the predetermined order and the motion vectors of the same order rank are selected; and the predicted vector for a second motion vector of the current block is the first motion vector, and when the second motion vector and the first motion vector refer to different pictures, the first motion vector is scaled based on temporal distance between the pictures.
US09020036B2 Motion vector coding and decoding methods
A motion vector coding apparatus includes a motion vector coding unit that codes a motion vector inputted from a motion vector detecting unit. A motion vector for each current block is coded based on a difference between the motion vector and a predicted vector obtained from motion vectors for previously coded neighboring blocks. The predicted vector is generated by one of: the motion vectors referring to the same picture are selected from among the motion vectors for the neighboring blocks; the motion vectors for neighboring blocks are ordered in the predetermined order and the motion vectors of the same order rank are selected; and the predicted vector for a second motion vector of the current block is the first motion vector, and when the second motion vector and the first motion vector refer to different pictures, the first motion vector is scaled based on temporal distance between the pictures.
US09020034B2 Motion vector coding and decoding methods
A motion vector coding apparatus includes a motion vector coding unit that codes a motion vector inputted from a motion vector detecting unit. A motion vector for each current block is coded based on a difference between the motion vector and a predicted vector obtained from motion vectors for previously coded neighboring blocks. The predicted vector is generated by one of: the motion vectors referring to the same picture are selected from among the motion vectors for the neighboring blocks; the motion vectors for neighboring blocks are ordered in the predetermined order and the motion vectors of the same order rank are selected; and the predicted vector for a second motion vector of the current block is the first motion vector, and when the second motion vector and the first motion vector refer to different pictures, the first motion vector is scaled based on temporal distance between the pictures.
US09020030B2 Smoothing overlapped regions resulting from geometric motion partitioning
In one example, an apparatus includes a video encoder configured to partition a block of video data into a first partition and a second partition using a geometric motion partition line, calculate a prediction value of a pixel in a transition region of the block using a filter that applies a value for at least one neighboring pixel from the first partition and a value for at least one neighboring pixel from the second partition, calculate a residual value of the pixel in the transition region of the block based on the prediction value of the pixel in the transition region, and output the residual value of the pixel. In one example, a video decoder may use a similar filter to decode an the encoded block after receiving the residual value for the encoded block, and using a definition of the geometric motion partition line.
US09020029B2 Arbitrary precision multiple description coding
In one aspect, an encoder comprises arbitrary precision multiple description generation circuitry configured to produce multiple descriptions of a given signal by processing the signal using at least one matrix having a dimension which is selected as a function of a designated number of transmission resources, such as OFDM subcarriers or TDM time slots, that are allocated for transmission of the multiple descriptions. For example, the signal may comprise a vector x of dimension N and the arbitrary precision multiple description generation circuitry may be configured to generate M descriptions of the vector x where the value of M is selected to satisfy a particular one of three possible cases M=N, M>N and M
US09020024B1 Rate-adaptive equalizer that automatically initializes itself based on detected channel conditions, and a method
A rate-adaptive equalizer automatically initializes its tap coefficients to values. During an initialization process, a linear search algorithm is performed that sweeps the tap coefficients through different combinations of tap coefficients while assessing information about an eye associated with an input signal received over a communications channel. When the eye information indicates that the eye is open, the current tap coefficients are selected as the initial tap coefficients to be used at the beginning of the main adaptation algorithm.
US09020020B2 System and method for a Krylov Method Symbol equalizer
Disclosed are various embodiments for a symbol level Krylov method equalizer implemented in a wireless communications device. An HSDPA or WCDMA signal is input to the wireless communications device. A conjugate gradient method is applied to symbol-level samples of the signal until a termination condition is met. The termination condition may comprise having zero residual error, residual error below a threshold, or a specified number of iterations. Additionally, a preconditioning matrix may be applied to the inputs of the conjugate gradient method.
US09020019B2 Computing I/Q impairments at system output based on I/Q impairments at system input
Systems and methods for measuring transmitter and/or receiver I/Q impairments are disclosed, including iterative methods for measuring transmitter I/Q impairments using shared local oscillators, iterative methods for measuring transmitter I/Q impairments using intentionally-offset local oscillators, and methods for measuring receiver I/Q impairments. Also disclosed are methods for computing I/Q impairments from a sampled complex signal, methods for computing DC properties of a signal path between the transmitter and receiver, and methods for transforming I/Q impairments through a linear system.
US09020017B2 Signal processing method, device and system
A signal processing method, device, and system are provided. The method includes: sending, through a first user port, a crosstalk detection signal in a connected line, and receiving, through a second user port, an error sample of an actual downlink signal fed back by a terminal side in a connected line; and estimating, according to the actual downlink signal and the crosstalk detection signal, a coefficient of a pre-coder of a DSLAM to obtain an estimated coefficient of the pre-coder, where the coefficient of the pre-coder is used to cancel far-end crosstalk on the line connected to the second user port when the first user port sends an SELT signal.
US09020012B1 Oversampled receiver for transition encoded signaling
A receiver includes a multiphase clock having multiple clock edges, the clock edges being time staggered for the multiphase clock. The receiver further includes circuitry configured to receive a multi-wire transitional coded signal, sample, at each clock edge of the multiphase clock, the multi-wire transitional coded signal to obtain a sample sequence, and output a symbol for each transition in the sample sequence to obtain an output receiver sequence. The number of clock edges is greater than the number of symbols.
US09020009B2 Inserted pilot construction for an echo cancellation repeater
In one embodiment, a device for constructing a pilot signal for use in a wireless repeater where the pilot signal is added to a transmit signal includes one or more pilot generators. Each pilot generator generates a carrier pilot signal associated with a single carrier of the transmit signal and the carrier pilot signals generated by the one or more pilot generators are summed to generate the pilot signal. Each of the one or more pilot generators includes a pilot symbol unit providing multiple data symbols having a predetermined data structure as the carrier pilot signal, a pilot scrambler, a filter, a pilot power determination unit, and a cyclic prefix insertion unit for inserting a cyclic prefix to the carrier pilot signal. In another embodiment, the pilot symbol unit providing multiple data symbols in frequency domain as the carrier pilot signal.
US09020007B2 Laser device
An object of the invention is to provide a laser device having high optical amplification efficiency. A laser device includes: an optical fiber which includes a core and a clad and through which seed light and pumping light propagate; and a glass rod which is doped with rare earth elements, has a diameter larger than that of the core, wherein the seed light and the pumping light output from the optical fiber are input to the glass rod to have increased diameters, and output light including at least the amplified seed light is output from the glass rod.
US09020005B2 Multicolor photonic crystal laser array
A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.
US09020001B2 Tunable laser using III-V gain materials
Disclosed herein are techniques, methods, structures and apparatus that provide a laser monolithically integrated in a silicon photonic integrated circuit (PIC) that is suitable for high-performance coherent fiber-optic telecommunications and other applications. Among the features of a laser according to the present disclosure, and in particular a hybrid InGaAsP/Si laser, is an integrated Si isolator to protect the laser from back reflections; optical, rather than electrical pumping; and coupling the optical pump using an InGaAsP grating coupler that acts simultaneously as a WDM coupler and laser mirror.
US09020000B2 Flexible and stable supercontinuum source
Optical pulse source comprising optical pump laser for generating optical pump pulses at repetition rate Rf; a nonlinear optical element comprising an optical fiber for generating supercontinuum pulses; a gating device provided operable to selectively control the launch of pump pulses into the optical fiber at a reduced, lower repetition rate Rr=Rf/N in order to generate supercontinuum pulses at different user selectable repetition rates lower than the pump pulse repetition rate; first and second optical amplifiers; wavelength tunable optical bandpass filter; wherein the optical fiber can generate supercontinuum pulses having a supercontinuum spanning from below 450 nm to greater than 2000 nm; and wherein said optical pulse source comprises an all-fiber source wherein said optical pump laser comprises a fiber oscillator, said gating device comprises a fiber coupled optical modulator, and the optical pump pulses are launched into the optical fiber without the use of free space optics.
US09019994B2 Single wire signal regeneration transmitting apparatus and method and serially connected single wire signal regeneration transmitting apparatuses
A single wire signal regeneration transmitting apparatus receives a serial packet including a plurality of signal segments, and each of the signal segments includes a data field and a stuff time symbol. Each of the data fields, which is followed by each of the stuff time symbols, includes multiple logic 0/1 signal symbols, with accumulated numbers of the logic 0/1 signal symbols in each of the data fields being the same. The single wire signal regeneration transmitting apparatus is adapted to process the serial packet to sequentially output the signal segments, and after the single wire signal regeneration transmitting apparatus outputs the data field from a previously received signal segment, the single wire signal regeneration transmitting apparatus continues outputting the stuff time symbol until starting to process a next received signal segment received subsequent to a currently received signal segment in the received serial package.
US09019993B2 Method for sending an acknowledgement to an ingress mesh point in a mesh network and a medium access control frame format
The present invention relates to a method for confirming the delivery of a data packet in a mesh network by sending an acknowledgement (ACK) to an ingress mesh point (IMP). A mesh network comprises a plurality of mesh points that are wirelessly linked together. A data packet sent by a station (STA) is received by an IMP. A MAC frame is generated for transmission of the data packet and the frame is forwarded to an egress mesh point (EMP) in order to provide a service by the mesh network. The MAC frame includes a field comprising an IMP address and an EMP address. When the EMP, (or optionally an intermediate mesh point), receives a data packet successfully, the EMP or the intermediate mesh point sends an ACK to the IMP or preceding mesh point.
US09019990B2 Using encapsulation headers to indicate internet protocol packet fragmentation in cellular networks
A method of an aspect is performed in an Internet Protocol (IP) packet fragment reassembly system of a cellular network. The method is one of reassembling IP packet fragments that are destined for wireless devices. The method includes a step of receiving a plurality of encapsulated IP packet fragments. Each of the encapsulated IP packet fragments have an encapsulation header, an outer IP header, and an inner IP header. The method also includes a step of determining that the encapsulation headers indicate that the IP packet fragments are encapsulated. The method further includes a step of reassembling the IP packet fragments into a reassembled IP packet. A more fragments (MF) bit is set in the inner IP header of each, except for a last one, of the IP packet fragments.
US09019988B2 Communication system and apparatus for providing supplementary service in femto cell
When a femto cell base station used for a communication system provided with a function of providing a predetermined supplementary service receives first information indicating supplementary service control from a radio terminal, the femto cell base station converts the received information to a SIP (Session Initiation Protocol) message including the first information and transmits the SIP message to a higher apparatus in the communication system.
US09019978B2 Port mirroring at a network interface device
A notification from a source host is received at a network interface device that indicates that a data packet is ready for transmission to a destination host. The data packet may be transmitted to the destination host via the network interface device, and a first completion queue event is generated. The first completion queue event may be used as a trigger to re-transmit the data packet to a port mirroring destination via the network interface device. In another example, a network interface device receives a data packet transmitted from a source host to a destination host. A first completion queue event is generated based on the receipt of the packet, and is used as a trigger to re-transmit the data packet to a port mirroring destination via the network interface device.
US09019974B2 Multiple access point name and IP service connectivity
A mobile device may communicate through multiple access point names (APNs) through wireless local area network (WLAN) protocols. The APNs are data routes that may be accessible to a device through other non-WLAN networks (e.g. cellular), but can be accessed with a WLAN device through WLAN protocols. A sub network access protocol (SNAP) header may be modified and used for routing traffic.
US09019971B2 Systems, methods and algorithms for named data network routing with path labeling
A computer-implemented system and computer program product for routing at least one interest packet in a named data network including a plurality of nodes. The system comprises a mapping unit configured for mapping each of a plurality of names of a respective plurality of the data objects to one of a plurality of path labels, wherein each path label uniquely identifies a path between a source node and a destination node; and a node in operative communication with the mapping unit configured for providing an interest packet having both the name of a requested data object and one of the path labels, wherein the path label provided with the interest packet points to the requested data object at the destination node of the path label provided with the interest packet.
US09019969B2 Gateway for interconnecting a wireless access function with a network access function
A gateway for interconnecting different networks includes a network access means for interconnecting a first network that provides a wireless access function to a mobile station with a second network that provides a network access function to the mobile station. The gateway further includes a first tunnel establishment means for establishing, in the first network, a first tunnel between the gateway and a base station accessing one or more mobile stations via wireless communications, for transmission of different packets to the respective mobile stations. The gateway further includes a second tunnel establishment means for establishing a second tunnel between the gateway and the second network, for packet transmission, a tunnel-mobile station connecting means for connecting the first tunnel with the mobile station, and a tunnel-to-tunnel interworking means for interworking the second tunnel with the first tunnel.
US09019964B2 Methods and systems for routing application traffic
Methods and systems for routing application traffic to an operable system manager are provided. In particular, an arbiter application is provided to identify a currently active system manager. The arbiter application provides an address for the active system manager to a routing node. Applications send communications to the active system manager by associating such communications with a virtual system manager address. Such communications are delivered to the routing node, which associates the actual address for the currently active system manager with the communication. The communications are then delivered to the active system manager using the actual address.
US09019963B2 Method and apparatus for direct frame switching using frame contained destination information
Frame contained destination information may be used by a switch to identify an appropriate output port for a given frame without performing a table access operation. This reduces the processing requirements of the switch to enable the switch to handle frames more efficiently. The frame contained destination information may be contained in the frame's local destination MAC addresses (DA) such that a portion of the DA directly indicates, for each switch that handles the frame, an output port for that switch. Different portions of the DA may be used by different switches, depending on where they are in the network hierarchy. Large switches may also use sub-fields within their allocated portion in the DA to identify internal switching components. A location resolution server may be provided to store and distribute IP and MAC addresses and respond to local ARP requests on the local domain.
US09019957B2 Network telephony system
The present invention includes a network telephone having a microphone coupled to provide voice data to a network, a speaker coupled to facilitate listening to voice data from the network, a dialing device coupled to facilitate routing of voice data upon the network, a first port configured to facilitate communication with a first network device, a second port configured to facilitate communication with a second network device and a prioritization circuit coupled to apply prioritization to voice data provided by the microphone.
US09019952B2 Method and apparatus for forwarding multicast traffic
Embodiments of the present invention provide a method and an apparatus for forwarding multicast traffic. The method includes: receiving a third multicast join message; in response to the third multicast join message, sending a first multicast join message to a first upstream router, and establishing an active path; in response to the third multicast join message, sending a second multicast join message to a second upstream router, and establishing a standby path; and sending multicast traffic to the multicast receiver through the active path, where the standby path does not forward the multicast traffic. In the foregoing embodiments, the standby path that does not forward the multicast traffic is established beforehand, so that when a fault occurs in the active path, the standby path established beforehand can be used to forward the multicast traffic.
US09019947B2 Method and apparatus for transmitting uplink control information in a wireless communication system
A method and an apparatus for transmitting uplink control information (UCI), performed by a user equipment, in a wireless communication system are provided. The method comprising: generating encoded information bits by performing channel coding on information bits of the UCI; generating a modulation symbol sequence by modulating the encoded information bits; generating a spread sequence by block-wise spreading on the modulation symbol sequences with an orthogonal sequence; and transmitting the spread sequence to a base station through an uplink control channel, wherein the information bits of the UCI comprises a first UCI bit sequence and a second UCI information bit.
US09019940B2 Method for using a base station to selectively utilize channels to support a plurality of communications
A method for using a wireless digital base station to receive, process and transmit a plurality of communications having independent data rates establishing a first communication channel having a first data communication rate to support a first communication; determining the data rate required to support the first communication; selecting one or more transmission channels, from a plurality of available transmission channels, required to support said required data rate; and transmitting the first communication using one or more selected transmission channels. The plurality of available transmission channels includes at least one B or D channel.
US09019939B2 Apparatus and method for WCMDA frequency scan optimization
Methods and apparatus for wireless communication, in a mobile device, that includes receiving a signal from a network and obtaining pruned autocorrelation for specific channel delays of the received signal. Aspects of the methods and apparatus include determining pruned autocorrelation properties of the received signal. Aspects of the methods and apparatus also include comparing the pruned autocorrelation properties of the received signal against a reference threshold. Aspects of the methods and apparatus also include verifying that the received signal is a valid signal for WCMDA processing.
US09019936B2 Wireless access point protocol method
The performance and ease of management of wireless communications environments is improved by a mechanism that enables access points (APs) to perform automatic channel selection. A wireless network can therefore include multiple APs, each of which will automatically choose a channel such that channel usage is optimized. Furthermore, APs can perform automatic power adjustment so that multiple APs can operate on the same channel while minimizing interference with each other. Wireless stations are load balanced across APs so that user bandwidth is optimized. A movement detection scheme provides seamless roaming of stations between APs.
US09019935B2 Radio network control
In connection with a mobile wireless subnetwork having multiple radio network controllers and multiple radio nodes, a session established for an access terminal is associated with a serving radio network controller. The association is maintained as the access terminal moves from the coverage area of one radio node to the coverage area of another radio node within the same subnetwork. Access channel packets are routed from an access terminal having an existing session to the serving radio network controller by determining the IP address of the serving radio network controller using a session identifier.
US09019933B2 Method, and associated apparatus, for communicating data at reduced transmission latency in radio communication system having slotted interface
Method and associated apparatus for communicating data at reduced transmission latency in a radio communication system having a slotted interface are described. An example network device includes an assignor to receive an indication of an amount of data to be communicated by a first communication station, and assign communication resources to convey all of the indicated data amount, the assigned communication resources comprising a plurality of time slots within one time frame and one radio carrier and a data scheduler to receive an indication of assigned communication resources, and to schedule communication of the data block in conformity with the assigned communication resources and in response to a communication station minimum tuning latency period, wherein the schedule of the communication of the data block provides for completion of the communication of the data block and acknowledgement of successful delivery of the data block within the one time frame.
US09019932B2 Signalling of channel information
An apparatus and a method are described by which a request for providing aperiodic channel information with respect to a selected downlink component carrier of a plurality of component carriers is received, the selected downlink component carrier is determined, channel information with respect to the selected downlink component carrier is established, and the channel information with respect to the selected downlink component carrier is sent.
US09019929B2 Distributed antenna system for MIMO technologies
The invention is directed to a method and system for supporting MIMO technologies which can require the transport of multiple spatial streams on a traditional Distributed Antenna System (DAS). According to the invention, at one end of the DAS, each spatial stream is shifted in frequency to a pre-assigned band (such as a band at a frequency lower than the native frequency) that does not overlap the band assigned to other spatial streams (or the band of any other services being carried by the DAS). Each of the spatial streams can be combined and transmitted as a combined signal over a common coaxial cable. At the other “end” of the DAS, the different streams are shifted back to their original (overlapping) frequencies but retain their individual “identities” by being radiated through physically separate antenna elements.
US09019926B2 Apparatus and method for allocating resources for logical channels in wireless communication system
A method and apparatus of allocating a resource for a plurality of logical channels is provided. A transmitter acquires a plurality of available resources for a plurality of component carriers, and allocates the plurality of available resources to the plurality of logical channels based on the priority of each of the plurality of logical channels. The resources are further allocated based on a first amount of data associated with each of the plurality of logical channels. Any remaining resources are allocated based on a second amount of data associated with each of the plurality of logical channels.
US09019925B2 Integrated circuit for channel arrangement and radio communication
Provided is a radio communication base station device which can prevent lowering of use efficiency of a channel communication resource for performing a frequency diversity transmission when simultaneously performing a frequency scheduling transmission and the frequency diversity transmission in a multicarrier communication. In the device, a modulation unit (12) executes a modulation process on Dch data after encoded so as to generate a Dch data symbol. A modulation unit (22) executes a modulation process on the encoded Lch data so as to generate an Lch data symbol. An allocation unit (103) allocates the Dch data symbol and the Lch data symbol to respective subcarriers constituting an OFDM symbol and outputs them to a multiplexing unit (104). Here, when a plurality of Dch are used for a Dch data symbol of one mobile station, the allocation unit (103) uses Dch of continuous channel numbers.
US09019924B2 High-order multiple-user multiple-input multiple-output operation for wireless communication systems
Methods and apparatuses schedule resources and identify resource scheduling in a MU MIMO wireless communication system. A method for identifying resource scheduling for a UE includes receiving downlink control information; identifying, from the downlink control information, one or more DM-RS ports assigned to the UE and a PDSCH EPRE to DM-RS EPRE ratio; and identifying data intended for the UE in a resource block in a downlink subframe using the one or more DM-RS ports and the PDSCH EPRE to DM-RS EPRE ratio. A method for scheduling resources includes identifying one or more DM-RS ports to assign to a UE and a PDSCH EPRE to DM-RS EPRE ratio for identifying data intended for the UE in a resource block in a downlink subframe; and including an indication of the one or more DM-RS ports and the PDSCH EPRE to DM-RS EPRE ratio in downlink control information.
US09019923B2 Network devices and method for supporting downlink paging for LIPA or SIPTO
A method for supporting downlink paging for LIPA or SIPTO while a first UE has been moved to an idle mode may include monitoring UE traffic while the first UE is in the active state and storing a UE IP address for a default EPS bearer of the first UE in a node and in a gateway for LIPA or SIPTO service. A downlink datagram for paging activation is sent towards the first UE over an existing tunnel, wherein the tunnel was established for a second UE being in an active state, wherein the tunnel may be established for the second UE or any other UE served by the same node and the same gateway, and activating a paging procedure by receiving the downlink datagram via the tunnel in a gateway, which gateway is serving the first UE for the default EPS bearer service of the first UE.
US09019922B2 Base station, terminal, transmission method and reception method
In the base station (100), a search space setting unit (103) sets a search space on the basis of a search space setting rule in accordance with R-PDCCH range of a setting target slot, and an allocating unit (108) places DCI in one of a plurality of candidates of to-be-decoded unit range included in the set search space. The search space setting rules are associated with respective numbers of candidates of to-be-decoded unit range corresponding to the respective ones of a plurality of numbers of connections for R-CCE, and a first search space setting rule of a slot 0 and a second search space setting rule of a slot 1 are different from each other in terms of the patterns related to the numbers of candidates of to-be-decoded unit range corresponding to the plurality of numbers of connections for R-CCE.
US09019921B2 Method and apparatus for transmitting data between wireless devices in wireless communication system
A method for transmitting data between wireless devices in a wireless communication system is provided. A first wireless device acquires downlink reception timing with a base station. The first wireless device determines transmission timing for direct communication with a second wireless device based on the downlink reception timing with the base station. The first wireless device transmits data for the direct communication to the second wireless device at the transmission timing for the direct communication.
US09019918B2 Transmission spectrum selection for locomotive consist communications
A method for transmitting data between access points in a locomotive consist is disclosed. The method may include determining, at a sending access point, the number of locomotives across which a communication signal will be sent. The method may also include selecting, based on the number of determined locomotives, a first transmission spectrum from among one or more transmission spectrums. The method may further include equalizing the communication signal using the selected first transmission spectrum and sending the equalized communication signal to a receiving access point.
US09019913B2 Methods and apparatus for providing D2D system information to a UE served by a home evolved Node-B
A method, an apparatus, and a computer program product for wireless communication are provided in which a network entity may be operable to communicate D2D resource allocations to a UE supported by a HeNB. In one example, the network entity may be operable to determine whether a HeNB is operable to communicate system information to a UE. As used herein, system information may include, but is not limited to, D2D resource allocations, paging information, etc. When the network entity determines that a HeNB is operable to communicate system information to a UE, then it may transmit the system information to the HeNB to allow the HeNB to convey the system information to the UE. When the network entity determines that a HeNB is not operable to communicate system information to a UE, then it may transmit the system information to the UE via one or more other network entities.
US09019908B2 Apparatus and method for power adjustment for link imbalances
Methods and devices for dynamically controlling a transmission power of an HS-DPCCH are disclosed. A wireless user equipment receives downlink transmissions on a data channel from a serving cell, and determines a rate of duplicate packets on the data channel. The UE interprets a high rate of duplicate transmissions as an indication that the HS-DPCCH is not being successfully decoded, and therefore increases the transmission power of the HS-DPCCH. Correspondingly, the UE interprets a low rate of duplicate transmissions as an indication that the HS-DPCCH may have too high a transmission power, and therefore decreases the transmission power of the HS-DPCCH.
US09019907B2 Radio base station
A radio base station BTS includes an estimation unit 13 configured to estimate a time when a buffer of a scheduled mobile station UE becomes empty based on a remaining amount of data in the buffer of the mobile station UE, the remaining amount reported by the mobile station, and a sending unit 15 configured to send the mobile station UE a Zero Grant instructing to stop transmission of a data signal via an E-DPDCH based on the estimated time.
US09019905B2 Uplink interference reduction at base station with restricted wireless access
According to a particular embodiment, a method in a macro base station of a heterogeneous wireless communication system, includes reducing uplink interference at a radio base station with restricted wireless access. The uplink interference is caused by a user equipment served by the network node, which has a restricted wireless access to the radio base station. The method comprises receiving measurement reports from user equipments served by the network node, and identifying a user equipment causing uplink interference at the radio base station among the user equipments, based on the received measurement reports. The method also comprises obtaining information relating to a total uplink received interference from the radio base station via the identified user equipment, and adjusting a transmit power, a transmission activity, and/or a scheduling of the identified user equipment based on the obtained information, such that the uplink interference caused by the identified user equipment is reduced.
US09019902B2 Channel quality feedback in multicarrier systems
A wireless communication system facilitates multichannel periodic and aperiodic feedback (e.g., Channel Quality Indicator (CQI), Rank indicator (RI), Precoding Matrix Indicator (PMI)) from a population of user equipment while facilitating legacy single carrier communication. Paired downlink (DL)/uplink (UL) or many-to-one mapping communication can be established by common system information or dedicated signaling. In one aspect, a flag sent by system information or by dedicated signaling can indicate which means controls. Feedback can be configured for each carrier independently reported in a concatenated in frequency fashion, reported in a cycle in time fashion, or reported in a staggered in time and frequency fashion. Feedback can be reported jointly as one wide bandwidth. Feedback can be a single report perhaps reported on a data channel for more capacity or by cycled carrier/subband reporting.
US09019901B2 Method and apparatus for transmitting and receiving packet data unit in mobile communication system
The present invention relates to a mobile communication system, and in particular, to a method and apparatus for transmitting and receiving a PDU including an Extension Bit field and a Length Indicator field in a UE or a Node B. A method for transmitting a PDU generated with more than two SDUs and a header having information on each SDU in a transmitter of a mobile communication system is provided. The method includes generating, in the header, a Length Indicator (LI) indicating an end point of each of remaining SDUs except for the last SDU and an Extension Bit indicating the presence/absence of another LI after each LI, and generating the header so that the LI succeeds the Extension Bit associated therewith; generating the PDU with the generated header and the SDUs; and transmitting the PDU.
US09019900B2 Device and system for implementing multi-carrier high speed downlink packet access service
The invention discloses a device and a system for implementing a multi-carrier high speed downlink packet access service, thereby accomplishing multi-carrier high speed downlink packet access service transmission by means of multi-carrier high speed downlink packet processing devices provided in a base station and a user equipment in the system and managing high speed downlink packets corresponding to the carriers separately by means of hybrid automatic repeat request modules corresponding to the carriers. The invention further discloses a method for implementing a multi-carrier high speed downlink packet access service, thereby allocating a separate transmitting hybrid automatic repeat request process and corresponding receiving hybrid automatic repeat request process for each carrier to accomplish transmission and receiving of high speed downlink packet access data. With the invention, the downlink data transmission rate in a radio mobile communication system supporting multiple carriers can be improved.
US09019893B2 Method for configuring neighbor list and femtocell core processor using the same
A method for configuring a neighbor list is provided. The method is applied to a femtocell to establish a neighbor list. The method includes steps of: accessing a Public Land Mobile Network (PLMN) list in the femtocell, the PLMN list recording a circuit-switched (CS)/packet-switched (PS) service weighting; determining a weighting parameter with reference to history CS/PS amount information and the CS/PS service weighting of the femtocell; selecting n macrocells from the PLMN list according to the weighting parameter, n being a natural number; and filling the n macrocells into the neighbor list.
US09019892B2 Access system and method for transmitting Ethernet signal and mobile communication signal
An access system and method for transmitting Ethernet signals and mobile communication signals. The system includes a near-end host unit and remote-end user units. Through the near-end host unit, the Ethernet signals and mobile communication signals can be combined. The near-end and remote-end host units are connected through four pairs of twisted pairs. The combined Ethernet and mobile communication signals are sent to a user terminal for providing broadband access service and wireless access service. Premises network resources can be used without re-laying category 5 cables, so the investment is less and it is quick and convenient to provide service. Furthermore there needs to be added only one host unit beside the optical network unit equipment, and replace the user terminal simultaneously. Power is not needed to be taken at the user's home. The placement position of the terminal is flexible without being limited by the power-taking positions.
US09019891B2 Providing a data function in an access gateway node
An access gateway node couples a control node to an external data network, where the control node and access gateway node are for use in a wireless communications network. The access gateway node comprises a data function to route packets containing traffic data between the control node and the external data network. An interface to the control node enables exchange of control messages between the data function and a control function in the control node.
US09019887B2 Access admission control method and system for mobile communication system
An access admission control method and system for and SAE/LTE system is provided for determining whether to accept or reject an access of a User Equipment (UE) to a Home evolved Node B (HeNB) based on the subscriber information of the UE. In an access admission control method according to the present invention, a HeNB or HeNB Gateway (HGW) transmits, when an access request message is received from a UE, the access request message to a Mobility Management Entity (MME) together with a CSG ID of the HeNB, and the MME determines, whether to accept or reject the access of the UE to the HeNB based on whether the CSG ID is contained in a white list associated with the UE.
US09019883B2 TTI adaptation in E-DCH
An apparatus, comprising at least one processor configured to dynamically change a timing parameter, such as a Transmission Timing Interval for an E-DCH resource for a second apparatus in a cell.
US09019880B2 Methods and apparatus for overload mitigation using uplink transmit power backoff
Certain aspects of the disclosure relate generally to uplink flow control of wireless devices for mitigation of overload issues. A user equipment (UE) may reduce an average transmit power for the uplink channel based on whether an overload metric (e.g., temperature metric) exceeds a threshold value. The UE may perform duty cycling for an uplink control channel when an overactive uplink control channel is a dominating factor in a thermal issue. The UE may further reduce a maximum power transmit limit (MTPL) for one or more uplink channels, such as physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH).
US09019878B2 Phone supporting mode conversion
A mechanism for a wireless device to obtain access to network connectivity through a WAN-enabled device. The wireless device may use peer-to-peer communication to request the WAN-enabled device enter a mode in which it serves as an access point to its WAN. The wireless device may then associate with the WAN-enabled device in its role as an access point to access connectivity services. Such a capability may be used, for example, to allow a wireless computing device to gain access to the Internet through a smartphone or other device that has Internet access, and can also be configured to communicate in accordance with the Wi-Fi and Wi-Fi Direct standards.
US09019875B2 System, terminal and method for transmitting 1x messages
The disclosure provides a system, end and method for transmitting 1x messages. The method comprises: when a sending terminal needs to send a plurality of 1x messages to a receiving terminal through a non-1x network, carrying the plurality of 1x messages in one message. With the technical solution of the disclosure, the problem that it is unable to ensure that a plurality of 1x Layer3 messages is transmitted synchronously under the related inter-working situation and the problem of the processing time sequence of messages are solved.
US09019874B2 Method, apparatus, and computer program product for resolving hidden node in synchronized DCF based channel access
Embodiments of the invention provide signaling mechanisms for wireless networks composed of a large number of stations. An example method embodiment comprises: receiving by a wireless terminal device, a first message from an access point, the first message comprising information indicating a plurality of restricted access windows, each allocated for a different group of terminal devices associated to a wireless network managed by the access point; receiving by the terminal device, a second message from the access point, within a restricted access window of the plurality of restricted access windows, the restricted access window allocated to a group of terminal devices of which the terminal device is a member, the second message comprising information indicating that a communications channel is available; and determining by the terminal device, based on the second message, that the communications channel is not occupied by hidden ones of the terminal devices associated to the network.
US09019873B2 Communication method and apparatus
Methods and apparatus for communicating between a first node and a plurality of second nodes in a network, including a first uplink mode in which a first message is transmitted from multiple second nodes in sequence, and a second uplink mode in which a second message is sent from only a subset of nodes. A first receiving node evaluates communication path information based on messages received in the first uplink mode and returns this information via an acknowledgement to allow the subset to be selected. The first message from multiple nodes includes sequence information to allow the first node to acknowledge at an appropriate point in time. This is particularly applicable where multiple spatially separated antennas offer a receiver several observations of the same signal in an antenna diversity scheme.
US09019865B2 Advertising traffic engineering information with the border gateway protocol
In general, techniques are described for distributing traffic engineering (TE) link information across network routing protocol domain boundaries using a routing protocol. In one example, a network device logically located within a first routing protocol domain includes a routing protocol module executing on a control unit to execute an exterior gateway routing protocol. The routing protocol module of the network device receives an exterior gateway routing protocol advertisement from a router logically located within a second routing protocol domain and decodes traffic engineering information for a traffic engineering link from the exterior gateway routing protocol advertisement. A path computation module of the network device computes a traffic engineered path by selecting the traffic engineering link for inclusion in the traffic engineered path based on the traffic engineering information.
US09019861B2 Base station and communication system
Disclosed is a technique to provide a base station and the like capable of flexibly distributing traffic for terminals of a plurality of network-sharing communication operators. According to the technique, the base station to which a plurality of mobile terminals connect and that relays a communication between the plurality of mobile terminals and a communication device as a correspondent node of the plurality of mobile terminals, includes a configuration unit that configures, on a basis of policy information, a desired communication path between the mobile terminals and the communication device, a communication path from the base station itself to a gateway managing an access to a network to which the communication device belongs; and a storage unit that stores in a storage area, as association information, content of the policy information and identification information that identifies the communication path corresponding to the content.
US09019860B2 Method, terminal and communication system for starting compressed mode
The present invention discloses a method, a terminal and a communication system for starting a compressed mode, wherein the method comprises: a terminal receiving information of a target cell to be measured from a radio network controller; according to the information of the target cell to be measured, the terminal determining a transmission gap pattern sequence; according to the determined transmission gap pattern sequence, the terminal starting a compressed mode to perform a measurement to the target cell. In accordance with the present invention, the problem that a compressed mode can not be started in the case of load balancing mechanism or service bearer feature mechanism is solved, and the Quality of Service (QoS) of the terminal as well as the performance of the system are enhanced.
US09019854B2 Method for setting and adjusting a parameter dependent on a round trip time
An arrangement (17) is provided for setting and adjusting at least one parameter in a radio communication network (11), which is used in control of communication in the radio communication network and which is dependent on a round trip time for a signal travelling from a radio network controller (13) to a user equipment (16) and back to the radio network controller. The arrangement comprises a module (17a) for initially estimating a maximum value of the round trip time; a setting module (17b) for initially setting the parameter depending on the initially estimated maximum value of the round trip time; a module (17c) for measuring the round trip time; and a module (17d) for adjusting the parameter depending on the measured round trip time, wherein the measured round trip time is expected to be shorter than the initially estimated maximum value of the round trip time.
US09019853B2 Process for performing cubic metric computation in the transmitter of a UE for a wireless communication system, and apparatus for performing the same
A process for computing cubic metric used for performing Maximum Power Reduction (MPR) in the transmitter of a User Equipment communicating with a base station (BS), said cubic metric computation being performed before each time slot of said uplink transmission of data; said process being characterized in that it involves the steps of: —using PN generators (1-4) for generating random data which are used for performing said cubic metric computation, and —using the result of said computation for applying said Maximum Power Reduction (MPR) for each time slot of said uplink transmission.
US09019852B2 Method and device for adjusting service processing resources of a multi-mode base station system
A method and a device for adjusting service processing resources of a multi-mode base station system are provided, which relate to the wireless communication technology, so as to reduce the operation difficulty and the maintenance cost of the multi-mode base station system. The method includes: periodically acquiring traffic model data of each wireless access standard of the multi-mode base station system; determining service processing resources required by each wireless access standard according to the traffic model data; and adjusting service processing resources of each wireless access standard according to the determined service processing resources required by each wireless access standard. The device and method are mainly used in the multi-mode base station system.
US09019848B2 Method of maintaining a quality of service (QOS) in a wireless communication system
The present invention relates to a wireless communication system and user equipment providing wireless communication services, and a method of transmitting and receiving data between a terminal and a base station in an evolved Universal Mobile Telecommunications System (UMTS) that has evolved from a Universal Mobile Telecommunications System (UMTS) or a Long Term Evolution (LTE) system, and more particularly, to a method of maintaining a Quality of Service (QoS) in an optimized manner, such that the effective data transmission can be performed with a good quality of service data.
US09019847B2 Method for transmitting effective channel status information in wireless communication system supporting multiple carriers
A method and apparatus for transmitting effective channel status information (CSI) in a wireless communication system supporting multiple carriers are disclosed. The method for indicating CSI transmission in a wireless communication system supporting multiple carriers includes transmitting downlink control information (DCI) including a channel quality information (CQI) request field to a user equipment (UE) over a physical downlink control channel (PDCCH), and receiving CSI reporting of a single downlink carrier or multiple downlink carriers from the UE over a physical uplink shared channel (PUSCH) without receiving uplink data. If the CSI for the single downlink carrier is reported, the number (NPRB) of resource blocks (RBs) established for the CSI reporting is identical to or less than X (NPRB≦X), and if the CSI for the multiple downlink carriers is reported, NPRB is identical to or less than M (where M>X).
US09019842B2 Relay device, network system, and network failure detection method
A relay device comprises: a packet type determining unit that determines: whether a received packet is a monitoring packet, sent by a first communication device that monitors a network connection state, set the first communication device as the sending source, and set a second communication device that is monitored as the sending destination; and whether the received packet is a monitoring response packet sent as the response to the monitoring packet with sending source address and destination address of monitoring packet interchanged; a transfer processing unit that receives the monitoring packet and transfers it to a destination; a monitoring unit that monitors receipt of the monitoring response packet within a specified period; and a failure notification packet sending unit that generates a failure notification packet and sends it to a specified destination, when the monitoring response packet is not received within the specified period.
US09019840B2 CFM for conflicting MAC address notification
In one embodiment, an aggregation device is configured to aggregate traffic of a plurality of customer edge (CE) devices into a single bridge-domain. The aggregation device receives connectivity fault management (CFM) packets of a CFM protocol from the plurality of CE devices. Each received CFM packet includes a media access control (MAC) address of an access port of the CE device from which the CFM packet was transmitted. The aggregation device detects conflicting MAC addresses between access ports of CE devices by comparing MAC addresses of the received CFM packets. The aggregation device notifies one or more of the plurality of CE devices of the conflict.
US09019836B2 Downlink data transfer flow control during carrier aggregation
Techniques are provided for controlling downlink data transfer during carrier aggregation. For example, a method may control a secondary component carrier downlink (DL) in a wireless communication network using carrier aggregation. The method may include detecting, by a mobile entity, an event indicating a resource constraint at the mobile entity related to a data transmission from a base station to the mobile entity on a secondary component carrier of a carrier aggregation enabled connection. The method may include, in response to detecting the event, controlling the data transmission by signaling a status of the secondary component carrier DL to the base station.
US09019833B2 Service processing switch
Methods and systems for providing IP services in an integrated fashion are provided. According to one embodiment, packets are load balanced among virtual routing processing resources of an IP service generator of a virtual router (VR) based switch. A packet flow cache is maintained with packet flow entries containing information indicative of packet processing actions for established packet flows. Deep packet classification is performed to determine whether a packet is associated with an established packet flow. If so, the packet is directed to one of multiple virtual services processing resources representing application-tailored engines configured to provide managed firewall services. If the packet is allowed, it is returned to the source virtual routing processing resource for forwarding.
US09019830B2 Content-based routing of information content
A system to route media information content may include a router that analyzes predetermined content of a plurality of data packets of the media information content and prioritizes forwarding the plurality of data packets from the router based on applying at least one rule to the predetermined content.
US09019829B2 Scheduling data transmissions in a wireless communications network
A method of scheduling transmission of data in a wireless communication network comprising: establishing a data channel for transmitting user data from a user equipment to a network entity, establishing a signaling channel for transmitting signaling data from a user equipment to a network entity, transmitting over said signaling channel from the user equipment a first rate request message requesting additional resources from the network for transmission of data at an increased data rate over said data channel, maintaining said signaling channel for a period awaiting a rate grant message, and transmitting a second rate request message over said signaling channel during said period.
US09019828B2 Data rate determination based on radio frequency device feedback
A device may receive information that identifies a radio frequency condition of a user device, where the radio frequency condition indicates a quality of a radio access network connection of the user device. The device may determine a radio frequency parameter value based on the radio frequency condition, and may set a data rate for a transmission control protocol (“TCP”) communication with the user device based on the radio frequency parameter value.
US09019827B1 Throughput optimization for bonded variable bandwidth connections
The present disclosure provides for devices, systems, and methods which optimize throughput of bonded connections over multiple variable bandwidth logical paths by adjusting a tunnel bandwidth weighting schema during a data transfer session in response to a change in bandwidth capabilities of one or more tunnels. By making such adjustments, embodiments of the present invention are able to optimize the bandwidth potential of multiple connections being used in a session, while minimizing the adverse consequences of reduced bandwidth issues which may occur during the data transfer session.
US09019826B2 Hierarchical allocation of network bandwidth for quality of service
Network bandwidth is allocated to virtual machines (VMs) according to a node hierarchy that includes a root node, intermediate nodes, and leaf nodes, wherein each leaf node represents a queue of packet transmission requests from a VM and each intermediate node represents a grouping of leaf queues. As VMs generate requests to transmit packets over the network, the network bandwidth is allocated by queuing packets for transmission in the leaf nodes, and selecting a leaf node from which a packet is to be transmitted based on tracking data that represent how much network bandwidth has been allocated to the nodes. Upon selecting the leaf node, the tracking data of the selected leaf node and the tracking data of an intermediate node that is a parent node of the selected leaf node are updated, and a command to transmit the packet of the selected leaf node is issued.
US09019825B2 Scheduled grant handling
The present invention relates to a network node and a method in a radio communications network for providing a radio interface between the radio base station and a mobile terminal, provided to assign transmission rates to the mobile terminal to be used in an uplink packet data channel from the mobile terminal to the radio base station. A receiver is provided to receive at least a first rate request from the mobile terminal requesting increased transmission rate, a measurement device is provided to measure the utilised transmission rate for the packet data transmission from the mobile terminal to the radio base station, and a message transmitter is provided to send a new grant message to the mobile terminal repeating the first transmission rate, if the measured transmission rate is lower than a first specified fraction of the assigned first transmission rate.
US09019819B2 Exchange of access control lists to manage femto cell coverage
System(s) and method(s) provide access management to femto cell service through access control list(s) (e.g., white list(s), or black list(s)). White list(s) includes a set of subscriber station(s) identifier numbers, codes, or tokens, and also can include additional fields for femto cell access management based on desired complexity. White list(s) can have associated white list profile(s) therewith to establish logic of femto coverage access based on the white list(s). Access lists exchange among subscribers that posses provisioned femto access points and elect to share access lists also is provided. Transference of access list(s) among subscribers is secured and based at least in part on subscriber privacy policy. Subscribers can be prompted to opt in access list sharing, or to update privacy policies to allow reciprocate sharing and update privacy settings. Based at least in part on association criteria, component identifies femto access points for a subscriber to access lists with.
US09019818B2 Dynamic buffer status report selection for carrier aggregation
In one exemplary aspect of this invention a method includes buffering data in a user equipment and, in response to an amount of buffered data exceeding a threshold value, triggering the generation of a buffer status report and the sending of the buffer status report to a network access node, where the threshold value is a function of the capacity of a currently allocated uplink data transmission resource and some certain amount of time. In another exemplary embodiment the triggering of the generation of the buffer status report and the sending of the buffer status report to a network access node occurs when an amount of buffered data in a buffer of a particular logical channel group exceeds a maximum value associated with one of a plurality of buffer status report tables that is currently in use.
US09019816B2 Communication system, communication method, and communication apparatus
Provided is a relay system having a first node and a second node, and a third node and a fourth node provided opposing thereto with connected by VLAN paths, in which the first node notifies, via a second VLAN path, the fourth node of the APS packet in which a state of a first group is stored. The third node notifies, via a third VLAN path, the second node of the APS packet in which a state of a second group is stored. The second node and the fourth node use a fourth VLAN path and exchange the state of the first group and the state of the second group, and, when the states of the first group and the second group are SF-W of a first VLAN path and the self apparatus is master, switch the first VLAN path to the second VLAN path or the third VLAN path.
US09019814B1 Fast failover in multi-homed ethernet virtual private networks
In general, techniques are provided for receiving a first control plane message that indicates the reachability of the second PE network device as a designated forwarder in an Ethernet segment. The techniques include receiving a second control plane message comprising information that indicates, in the event of a network failure at the second PE router, that the third PE network device of the plurality of PE network devices is the designated forwarder in the layer two segment. The techniques also include forwarding layer two frames to the second PE network device identified as the designated forwarder in the layer two segment; and responsive to determining a network failure at the second PE network device, configuring, based at least in part on the second control plane message, a forwarding plane of the first PE network device to forward layer two frames to the third PE network device as the designated forwarder.
US09019811B2 Method and apparatus for generating ranging preamble code in wireless communication system
A method and apparatus of generating a ranging preamble code in a wireless communication system comprises generating a Zadoff-Chu (ZC) sequence in which a cyclic shift is applied to each of a plurality of orthogonal frequency division multiple access (OFDMA) symbols as a ranging preamble code, wherein the cyclic shift is applied for each OFDMA symbol.
US09019810B2 Method of allocating walsh codes and quasi-orthogonal functional codes in a CDMA network
A method of allocating Walsh codes and Quasi-orthogonal Functional, QoF, codes in a CDMA system in which a finite number of Walsh codes are defined, and some mobile terminals operating in the CDMA system are capable of supporting Advanced Quasi-Linear Interference Cancellation, AQLIC, and some mobile terminals operating in the CDMA system are non-AQLIC-capable. Walsh codes are allocated to control channels. A code allocation unit then determines a threshold number of Walsh codes to reserve for non-AQLIC-capable mobile terminals. When a current Walsh code usage level is less than the threshold, the unit allocates Walsh codes to both the AQLIC-capable mobile terminals and the non-AQLIC-capable mobile terminals. When the current Walsh code usage level is greater than the threshold, the unit allocates QoF codes only to AQLIC-capable mobile terminals, and allocates Walsh codes to non-AQLIC-capable mobile terminals.
US09019809B2 Noise power estimation method
A method for estimating noise power in a received signal that was transmitted using an orthogonal frequency division multiple access (OFDMA) modulation scheme in which pilot symbols are transmitted during OFDM symbol periods of the transmitted signal, the method comprising: interleaving a de-patterned pilot symbol that was transmitted in an OFDM symbol period of the transmitted signal with a de-patterned pilot symbol that was transmitted in a previous OFDM symbol period of the transmitted signal to generate an interleaved de-patterned pilot symbol; filtering the de-patterned interleaved pilot symbol to remove a signal component of the interleaved pilot symbol to leave a noise component of the interleaved de-patterned pilot symbol; and processing the noise component generated by the filtering to generate an estimate of the noise power in the interleaved de-patterned pilot symbol.
US09019807B2 Optical disc with pre-recorded and recordable regions and method of forming the disc
An optical disc having a region with pre-recorded data and a recordable region, a method of fabricating the disc, a stamper for forming a disc master, and a recording device for use with the disc are disclosed. Data recorded in the recordable region may be used for activation of the disc, providing unique identification or enhancing program content on the disc.
US09019803B1 Laminated plasmon generator with cavity process
A plasmon generator (PG) is disclosed with a laminated structure of non-planar X and Y layers formed between a waveguide and write pole. Each X layer is made of a noble metal such as Au while each Y layer is a non-noble metal or dielectric material to improve durability. As a result, the PG has a peg portion at an air bearing surface with improved reliability compared with pegs made entirely of a noble metal. Non-planarity of X and Y layers improves diffusion of Y material between X grains thereby minimizing X grain growth to enhance thermal stability. The laminated PG is formed by a process sequence that involves forming and filling a cavity, and concludes with a chemical mechanical polish process to form a planar top PG surface that faces a write pole leading side.
US09019801B2 Electromechanical timepiece provided with an additional function
Electromechanical timepiece fitted with a gear train including an hour hand and a minute hand for the current time display on the dial side of the timepiece. The timepiece is arranged to provide at least one additional piece of information relating to a magnitude of time, or to a non-time related piece of information. The timepiece further includes an additional indicator hand arranged to display the additional information, the additional indicator hand being mounted on the back cover side of the timepiece on an arbour of the gear train of the timepiece, so that the additional indicator hand and the hour hand and/or minute hand rotate at the same time and at the same angle, the hour hand and/or the minute hand being driven either to display the current time, or to enable the additional indicator hand to indicate the additional information.
US09019796B2 Streamer spread with reduced drag
A method and a marine front-end gear for connecting a set of streamers to a towing vessel. The front-end gear includes ropes for connecting a first sub-set of streamers to the vessel; lead-ins for connecting a second sub-set of streamers to the vessel; and a back loop cable electrically connected between tails of first and second adjacent streamers. The first streamer belongs to the first sub-set of streamers and the second streamer belongs to the second sub-set of streamers, and streamers of the first sub-set are interspersed with streamers of the second sub-set.
US09019795B2 Method of object tracking using sonar imaging
An object is measured to record the relative surface coordinates. Then, a portion of the object “the front side” immersed in a fluid is imaged by directing a sonar pulse at the object and recording sonar signals reflected from the object with a sonar imaging array. Then, the recorded relative surface coordinates are iteratively fit to coordinates calculated from the sonar image. Thereafter, the coordinates of the surface of the “backside” of the object that is not observable in the sonar image are known, and a computer generated image of the backside is stitched to sonar image so that the object can be viewed from a plurality of viewpoints separated from the sonar imaging array.
US09019791B2 Low-pin-count non-volatile memory interface for 3D IC
A low-pin-count non-volatile (NVM) memory to be provided in an integrated circuit for a 3D IC to repair defects, trim devices, or adjust parameters is presented here. At least one die in a 3D IC can be built with at least one low-pin-count OTP memory. The low-pin-count OTP memory can be built with a serial interface such as I2C-like or SPI-like of interface. The pins of the low-pin-count OTP in at least one dies can be coupled together to have only one set of low-pin-count bus for external access. With proper device ID, each dies in a 3D IC can be accessed individually for soft programming, programming, erasing, or reading. This technique can improve the manufacture yield, device, circuit, or logic performance or to store configuration parameters for customization after 3D IC are built.
US09019783B2 Semiconductor memory device including write driver and method of controlling the same
Disclosed is a method of controlling a semiconductor memory device including a write driver. A method of controlling a phase change memory device includes turning on switches connected to a global bit line and a local bit line, respectively, enabling a write driver connected to the switches, enabling a word line, and enabling a memory cell to be accessed by the word line, wherein control is performed so that electric charges supplied from the write driver through the switches are charged when the write driver is enabled.
US09019782B2 Dual rail memory architecture
A memory macro comprises a plurality of memory cells, a plurality of first amplifying circuits, a first driver circuit, and a first level shifter. The plurality of memory cells is arranged in groups of a first direction and groups of a second direction. Each amplifying circuit is coupled to a plurality of first memory cells arranged in a first group of the first direction via a first data line. The first driver circuit is configured to drive the plurality of first amplifying circuits. The first level shifter is configured to level shift an input signal operating in a first power domain to an output signal operating in a second power domain. The output signal of the first level shifter is for use by the first driver circuit. The first driver circuit and a sense amplifier of an amplifying circuit operate in the second power domain.
US09019780B1 Non-volatile memory apparatus and data verification method thereof
A non-volatile memory apparatus and a data verification method thereof are provided. The non-volatile memory apparatus includes a plurality of memory cells, a page buffer, a write circuit, a sense amplifier, and a sense and compare circuit. The page buffer stores a plurality of buffered data and programs the plurality of memory cells according to the plurality of buffered data. The write circuit receives a program data or a rewrite-in data and writes the program data or the rewrite-in data to the page buffer. The sense amplifier senses data read from the memory cells for generating a read-out data. The sense and compare circuit reads the buffered data, and compares the read-out data and a compared buffered data to generate a rewrite-in data. The sense and compare circuit determines the rewrite-in data to be the buffered data or an inhibiting data according to the compared result.
US09019779B2 Apparatus and methods for a physical layout of simultaneously sub-accessible memory modules
A layout for simultaneously sub-accessible memory modules is disclosed. In one embodiment, a memory module includes a printed circuit board having a plurality of sectors, each sector being electrically isolated from the other sectors and having a multi-layer structure. At least one memory device is attached to each sector, the memory devices being organized into a plurality of memory ranks. A driver is attached to the printed circuit board and is operatively coupled to the memory ranks. The driver is adapted to be coupled to a memory interface of the computer system. Because the sectors are electrically-isolated from adjacent sectors, the memory ranks are either individually or simultaneously, or both individually and simultaneously accessible by the driver so that one or more memory devices on a particular sector may be accessed at one time. In an alternate embodiment, the printed circuit board includes a driver sector electrically isolated from the other sectors and having a multi-layer structure, the driver being attached to the driver sector.
US09019776B2 Memory access circuit for double data/single data rate applications
A memory access circuit includes a write data circuit and a first write switch circuit. The write data circuit is used for receiving double data rate data or single data rate data, and outputting odd term data and even term data of adjusted double data rate data or adjusted single data rate data. The first write switch circuit is used for outputting the odd term data of the adjusted double data rate data to an odd block of a memory and outputting the even term data of the adjusted double data rate data to an even block of the memory when the write data circuit receives the double data rate data, and outputting the adjusted single data rate data to the even block or the odd block of the memory when the write data circuit receives the single data rate data.
US09019774B2 Method and system for minimizing number of programming pulses used to program rows of non-volatile memory cells
A flash memory device programs cells in each row in a manner that minimizes the number of programming pulses that must be applied to the cells during programming. The flash memory device includes a pseudo pass circuit that determines the number of data errors in each of a plurality of subsets of data that has been programmed in the row. The size of each subset corresponds to the number of read data bits coupled from the memory device, which are simultaneously applied to error checking and correcting circuitry. During iterative programming of a row of cells, the pseudo pass circuit indicates a pseudo pass condition to terminate further programming of the row if none of the subsets of data have a number of data errors that exceeds the number of data errors that can be corrected by the error checking and correcting circuitry.
US09019769B2 Semiconductor device and manufacturing method and operating method for the same
A semiconductor device and a manufacturing method and an operating method for the same are provided. The semiconductor device comprises a substrate, a doped region and a stack structure. The doped region is in the substrate. The stack structure is on the substrate. The stack structure comprises a dielectric layer, an electrode layer, a solid electrolyte layer and an ion supplying layer.
US09019767B2 Nonvolatile memory device and operating method thereof
A nonvolatile memory device includes a channel vertically extending from a substrate, a plurality of memory cells stacked along the channel; a source region connected to a first end portion of the channel, and a bit line connected to a second end portion of the channel, wherein the first end portion of the channel that adjoins the source region is formed as an undoped semiconductor layer or a semiconductor layer doped with P-type impurities.
US09019762B2 Methods of operating memory devices
Methods of operating a memory device include determining whether each memory cell selected for a sense operation has any data state of a first subset of data states of a plurality of data states, wherein whether a memory cell has a data state that is a member of the first subset of data states determines a data value of a first portion of the data state of that memory cell. The methods further include initiating a transfer of the data values of the first portions of the data states of the selected memory cells and continuing the particular sense operation to sense for additional data states of the plurality of data states.
US09019759B2 Techniques for providing a semiconductor memory device
Techniques for providing a semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor memory device including a plurality of memory cells arranged in an array of rows and columns. Each memory cell including a first region, a second region, and a body region capacitively coupled to at least one word line and disposed between the first region and the second region. Each memory cell also including a third region, wherein the third region may be doped differently than the first region, the second region, and the body region.
US09019755B2 Memory unit and method of operating the same
A memory unit includes memory cells each having a memory element and a transistor, word lines and first and second bit lines, and a drive section. In performing setting operation for a first memory element located on one word line and in performing resetting operation for a second memory element located on the one word line, the drive section applies a given word line electric potential to the one word line, and sets an electric potential of a bit line on a lower electric potential side out of the first and the second bit lines corresponding to the first memory element to a value higher than a value of an electric potential of a bit line on the lower electric potential side corresponding to the second memory element by an amount of given electric potential difference.
US09019754B1 State determination in resistance variable memory
An evaluation signal is applied to a memory cell in an array of resistance variable memory cells. The evaluation signal is configured to cause the memory cell to switch from a first state to a second state. Responses from the memory cell are sensed at three or more sample points. Differences between the responses are determined. For example, with three sample points, a first delta is determined between the first two responses and a second delta is determined between the last two responses. A difference of deltas is determined as a difference between the first and second delta, or vice versa. It is determined that the memory cell changes from the first to the second state if the difference of deltas is above a threshold. It is determined that the memory cell remains in the second state if the difference of deltas is below the threshold.
US09019753B2 Two-port SRAM write tracking scheme
A write tracking control circuit includes an input node, and a first transistor configured to pre-charge a word bit line connected to at least two memory cells. The write tracking control circuit further includes a second transistor configured to pre-charge a read bit line connected to the at least two memory cells. The write tracking control circuit further includes a first delay circuit between the input node and the first transistor, the first delay circuit configured to introduce a first delay time, wherein a gate of the first transistor is connected to the first delay circuit. The write tracking control circuit further includes a second delay circuit between the input node and the second transistor, the second delay circuit configured to introduce a second delay time different from the first delay time, wherein a gate of the second transistor is connected to the second delay circuit.
US09019745B1 Verify pulse delay to improve resistance window
Structures and methods for controlling operation of a programmable impedance element are disclosed herein. In one embodiment, a method of programming/erasing the programmable impedance element can include: (i) receiving a program/erase command to be executed on the programmable impedance element; (ii) generating, in response to the program/erase command, a program/erase pulse for performing a program/erase operation on the programmable impedance element; (iii) generating a time delay from the program/erase pulse, where the time delay includes additional delay to allow for at least partial dissipation of one or more effects caused by the program/erase operation; and (iv) performing, after the time delay has elapsed, a verify operation to determine if the program/erase operation has successfully programmed/erased the programmable impedance element.
US09019744B2 Barrier design for steering elements
Steering elements suitable for memory device applications can have low leakage currents at low voltages to reduce sneak current paths for non selected devices, and high leakage currents at high voltages to minimize voltage drops during device switching. In some embodiments, the steering element can include a first electrode, a second electrode, and a graded dielectric layer sandwiched between the two electrodes. The graded dielectric layer can include a varied composition from the first electrode to the second electrode. Graded energy level at the top and/or at the bottom of the band gap, which can be a result of the graded dielectric layer composition, and/or the work function of the electrodes can be configured to suppress tunneling and thermionic current in an off-state of the steering element and/or to maximize a ratio of the tunneling and thermionic currents in an on-state and in an off-state of the steering element.
US09019741B2 One-time programmable memory cell, memory and manufacturing method thereof
The present invention pertains to the technical field of one-time programmable memory (OTP), and in particular to a one-time programmable memory unit, OTP, and method of fabricating the same. The OTP unit comprises a lower electrode, an upper electrode and a storage medium layer placed between the upper electrode and the lower electrode, the storage medium layer comprises a first metal oxide layer and a second metal oxide layer, wherein an adjoining area for programming is formed between the first metal oxide layer and the second metal oxide layer. The OTP comprises a plurality of the above-described one-time programmable memory units arranged in rows and columns. The OTP unit and the OTP have such characteristics as low programming voltage, small unit area, being able to integrate into a back-end structure of integrated circuit, great process flexibility, and the method of fabricating the OTP unit and the OTP is relatively simple and low in cost.
US09019740B2 Memory and method of operating the same
A memory includes an array of memory cells including a plurality of memory cells with a common source, wherein each of the plurality of memory cells with a common source includes two sub-memory cells, each of the sub-memory cells corresponds to a bit line, and the respective bits are electrically independent. Each of the sub-memory cells in the memory according to the disclosure corresponds to a bit line, and the respective bit lines are electrically independent, thereby effectively avoiding interference to other memory cells which will not be programmed during a program operation.
US09019739B2 Three-dimensional semiconductor devices and methods of fabricating the same
According to example embodiments of inventive concepts, a three-dimensional semiconductor device may include: a memory cell array including memory cells that may be arranged three-dimensionally, the memory cell array including a left side opposite a right side, and a top side opposite a bottom side in a plan view; at least one word line decoder adjacent to at least one of the left and right sides of the memory cell array; a page buffer adjacent to the bottom side of the memory cell array; and a string selection line decoder adjacent to one of the top and bottom sides of the memory cell array.
US09019738B2 Memory device having sequentially cascading dices
A memory device is provided. The memory device is used for data transmission at around 1600 megahertz (MHz). A wire layout is used to sequentially cascade memory dices with greatly shortened distances between the wire layout and the memory dices. At the same time, distances between the wire layout and UA controllers are shortened as well for effectively simplifying the design of wires.
US09019737B2 Power savings in a content addressable memory device using masked pre-compare operations
A CAM device for comparing a search key with a plurality of ternary words stored in a CAM array includes one or more population counters, a pre-compare memory, and a pre-compare circuit. The present embodiments reduce the power consumption of CAM devices during compare operations between a search key and ternary words stored in a CAM array by selectively enabling the match lines in the CAM array in response to pre-compare operations between a set of population counts corresponding to the masked search key and a set of population counts corresponding to the ternary words stored in the CAM array.
US09019735B2 Power factor correction circuit and method for controlling power factor correction
A power factor correction circuit may include a boost converter circuit in which a plurality of boost circuits including a boost inductor, a rectifying diode, and a boost switch are connected with each other; and a snubber circuit including a snubber inductor and a snubber switch so as to snubber the boost converter circuit. The snubber inductor may be controlled so as to be turned on before the boost inductor is turned on to apply zero voltage to the boost inductor. It is possible to reduce switching loss occurring when the boost switch is turned on and increase efficiency of an AC-DC power supply apparatus.
US09019734B2 Solid state switch gate firing with phase shift delay line
A gate firing phase shift delay line technique is described for use in DC motor drive systems and is easily adaptable for controlling a plurality of electronically coupled power modules. A drive regulator is configured to produce a master gate firing timing signal for controlling the gate firing pattern of switching devices for a first power module. One or more delay blocks are configured to generate slave gate firing timing signals that are phase locked and identical but delayed in time with respect to the master signal. Each additional delay block is coupled to an additional power module having a set of switching devices controllable by the slave signals. The current output of each power module is summed via summing circuitry to deliver an output suitable to drive motors or other electrical loads in high power applications. The power modules can also be connected in series to combine (sum) the voltages for delivery to an electrical load. The present technique allows for DC motor drive systems to be tuned to a higher bandwidth level due to increased stability, resulting in increased drive performance and production speed.
US09019730B2 Power converting apparatus and filter switch
A power converting apparatus includes a switching element, a filter substrate, a housing, a main body, an air duct, and a filter switch. The switching element is configured to convert and output power. The filter substrate includes a filter circuit configured to reduce transmission of noise generated in the switching element to an input power source. The housing includes a housing base having a first surface and a second surface. The main body is on the first surface of the housing base, and includes the filter substrate and a plurality of electronic components. The air duct is disposed on the second surface of the housing base, and cooling air flows through the air duct. The filter switch is on the first surface of the housing base. The filter switch is configured to switch between making and breaking electrical conduction between the filter circuit and the housing.
US09019726B2 Power converters with quasi-zero power consumption
A power converter system, method and device powers a load when coupled to the load and draws a quasi-zero amount of power from the power supply when not coupled to the load. The power converter system maintains an output voltage such that the power converter system is able to properly “wake-up” when a load is coupled by intermittently operating the power converter for a preselected number of cycles when it is detected that the output voltage has fallen below a threshold level.
US09019725B2 Control device for a resonant converter
A control device for a resonant converter is described. The converter comprises a switching circuit adapted to drive a resonant circuit that includes at least one capacitor. The converter is adapted to convert an input signal into an output signal and the switching circuit includes at least a half bridge of first and second switches, the central point of said half bridge being connected to the resonant circuit. The control device comprises a controller adapted to generate at least a control signal of the switching circuit by comparing a signal representative of the energy of the resonant circuit with at least another signal.
US09019724B2 High power converter architecture
The power converter is an integration of three topologies which include a forward converter topology, a flyback converter topology, and a resonant circuit topology. The combination of these three topologies functions to transfer energy using three different modes. A first mode, or forward mode, is a forward energy transfer that forwards energy from the input supply to the output load in a manner similar to a forward converter. A second mode, or flyback mode, stores and releases energy in a manner similar to a flyback converter. A third mode, or resonant mode, stores and releases energy from the resonant tank using a resonant circuit and a secondary side forward-type converter topologies. An output circuit of the power converter is configured as a forward-type converter including two diodes and an inductor. The output circuit is coupled to a secondary winding of a converter transformer.
US09019722B2 Flexible printed circuit board harness
A gas turbine engine installation is provided that has a plurality of flexible printed circuit board (FPCB) harnesses to transfer electrical signals, including electrical power, around a gas turbine engine. The plurality of FPCB harnesses is held to the gas turbine engine installation using clips that have at least two jaws. Each jaw has two sets of opposing teeth that do not intermesh, and cannot intermesh when pushed together. This allows more than one FPCB harness to be held by one clip without the risk of damaging the FPCB harnesses. Preventing the teeth from intermeshing also allows subsequent FPCB harnesses to be inserted into the clip without undue difficulty even after a first FPCB harness has already been inserted.
US09019716B2 Plate member, bus bar and electric junction box having the bus bar
The present invention is to provide a plate member which can improve material yield. The plate member forms a bus bar attached to a box main body of an electric junction box and includes a first terminal portion, a second terminal portion, and a connection coupling the first terminal portion to the second terminal portion. The plate member includes a first terminal portion equivalent corresponding to the first terminal portion, a second terminal portion equivalent corresponding to the second terminal portion, and arranged with a space against the first terminal portion equivalent along a longitudinal direction of a first terminal equivalent, and a connection equivalent corresponding to the connection. The connection equivalent couples the first terminal equivalent to the second terminal equivalent so that longitudinal directions of the first and second terminal equivalents are arranged parallel to each other.
US09019715B2 Touch panel and touch display panel
A touch panel includes a substrate, a transparent sensor electrode pattern, a patterned compensation electrode, a passivation layer, a transparent shielding electrode and at least one connection structure. The substrate has a surface and includes a sensor region and a peripheral region. The transparent sensor electrode pattern is disposed on the surface of the substrate and in the sensor region. The patterned compensation electrode is disposed on the surface of the substrate and in the peripheral region, and the patterned compensation electrode and the transparent sensor electrode pattern are electrically isolated. The passivation layer is disposed on the surface of the substrate, covers the transparent sensor electrode pattern, and at least partially exposes the patterned compensation electrode. The transparent shielding electrode is disposed on the passivation layer. The connection structure is electrically connected to the transparent shielding electrode and the patterned compensation electrode exposed by the passivation layer.
US09019711B2 Electronic device and connection structure for circuit board
There is provided an electronic device that includes a housing including six sides at right angles to each other, a first side of the six sides including an opening, a first backplane arranged on a second side so as to oppose to the opening, a second backplane arranged on a third side adjacent to the second side, a circuit board which is inserted toward the first backplane through the opening to be coupled with both of the first backplane and the second backplane with use of a plurality of connectors, the circuit board including a specified corner, and a guide. The guide is configured to shift the circuit board toward the second backplane while the specified corner slides with contacting a portion of the guide which is arranged on a fourth side of the six sides opposed to the third side.
US09019706B2 Server cabinet
A server cabinet, for containing a removable server including a power input port and a connecting element, includes a container, an electrically conductive component, a power supply, a signal connecting base and a rack management controller. The electrically conductive component is connected to the power input port. The power supply is connected to the electrically conductive component to supply power. The signal connecting base includes connectors connected to the connecting element. With the server removed, the power input port and the connecting element are separated from the electrically conductive component and the connector, respectively. The rack management controller is electrically connected to the signal connecting base. With the connecting element electrically connected to the connector, the rack management controller communicates with the server via the connecting element and the one connector and determines the position of the server according to the position of the connector connected to the server.
US09019705B2 Server system and server thereof
A server system and a server thereof are provided. The server system includes a rack, a server, and a fan module, wherein the server and the fan module are located in the rack. The server includes a chassis, a circuit board, a first heat source, a second heat source, a liquid cooling device, and a shielding cover. The circuit board is disposed on the chassis, and the first heat source and the second heat source are disposed on the circuit board. The liquid cooling device is thermally connected to the second heat source covered by the shielding cover. When the fan module is in operation, outside air is taken into the server by the fan module. The flow rate of an air flow passing by the first heat source is greater than that of another air flow passing by the second heat source capped by the shielding cover.
US09019703B2 Modular re-configurable computers and storage systems
In at least one embodiment, the invention includes a modular re-configurable computer and storage system and method of configuring the system. The system includes a chassis having a plurality of slots for blocks that in at least one embodiment include processor blocks, storage blocks, power blocks, communications blocks, cooling blocks, application service blocks such as cloud blocks, and special-purpose blocks. In a further embodiment, the chassis includes at least one wiring harness with a plurality of connection points for any blocks present in the chassis to facilitate communication, power, and user interaction.
US09019701B2 Rack server system
A rack server system includes a container, an electrically conductive component, a power supply, a signal connecting base, a server, and an RMC. The electrically conductive component and the signal connecting base are fixed in the container. The power supply is electrically connected to the electrically conductive component for supplying a direct current power. The signal connecting base includes multiple connectors. The server, disposed in the container removably, includes a power input port and a connecting element. The power input port is electrically connected to the electrically conductive component removably. The connecting element is connected to the connector removably. When the connecting element is electrically connected to the connector, the RMC communicates with the server via the connecting element and the one of the connectors and determines the position of the server in the container according to another position of the connector which is electrically connected to the server.
US09019698B2 Mounting system for electronic device
A mounting system for an electronic device may include a dock interface assembly and a case assembly. The dock interface assembly may include a dock housing having one or more contacts. The case assembly may include an alignment feature and a case printed circuit board having one or more conductive traces corresponding to the contacts. The dock interface assembly and/or the case assembly may have a metallic element configured complementary to one or more magnets provided with a remaining one of the dock interface assembly and the case assembly for magnetic coupling of the case assembly to the dock interface assembly. The dock housing may be configured to be received by the alignment feature such that at least one of the contacts is electrically coupled to a corresponding one of the conductive traces.
US09019697B2 Electronic device
An electronic device includes a case, a board disposed inside the case and including a board main body section, a plurality of internal devices that are disposed inside the case at different positions to the board in plan view of the board and that are thicker than the board, a board extension portion that extends out from the board main body section between the plurality of internal devices, a board-side connection terminal that is provided to the board extension portion and is employed to connect to one of the internal devices or to an external device external to the case; and an internal device-side connection terminal that is provided to the internal device and is connected to the board-side connection terminal.
US09019695B2 Support stand and electronic device having the same
A support stand is disclosed. The support stand includes a first base body, a connecting member, a second base body, and a support member. The first base body includes an input device and a first electric connector, wherein the first electric connector is electrically connected to the input device. The connecting member is connected with the first base body. The second base body is connected with the connecting member, and the second base body is rotatable relative to the first base body via the connecting member. The support member is connected with the first base body, and it can balance the support stand when the first base body is not located on the same plane.
US09019694B2 Portable keyboard
A portable keyboard is disclosed, by which portability can be enhanced with a simple configuration. The present invention includes a plurality of key assemblies, a body part and a flexible connecting member. When the portable keyboard is carried, a plurality of the key assemblies are rolled up around an outer circumference of the body part in a manner that the flexible connecting member between a plurality of the key assemblies is folded. When the portable keyboard is used, a plurality of the key assemblies are unfolded by being rolled down centering on the body part in a manner that the flexible connecting member between a plurality of the key assemblies is unfolded.
US09019687B2 Systems and methods for current density optimization in CMOS-integrated MEMS capacitive devices
The present subject matter relates to the use of current splitting and routing techniques to distribute current uniformly among the various layers of a device to achieve a high Q-factor. Such current splitting can allow the use of relatively narrow interconnects and feeds while maintaining a high Q. Specifically, for example a micro-electromechanical systems (MEMS) device can comprise a metal layer comprising a first portion and a second portion that is electrically separated from the first portion. A first terminus can be independently connected to each of the first portion and the second portion of the metal layer, wherein the first portion defines a first path between the metal layer and the first terminus, and the second portion defines a second path between the metal layer and the first terminus.
US09019685B2 Inductor comprising arrayed capacitors
A spiral capacitor-inductor device in which an array of unit capacitors 101 is arranged in a loop along the length is provided as the fourth circuit element. An input signal is applied to one end of the array of the unit capacitors, an output signal is taken out from the other end, an electric charge stored in each unit capacitor increases or decreases in accordance with increase or decrease in the bias applied to the device, the increase or decrease in the electric charge causes the current of the loop to increase or decrease, and, as a result, the magnetic flux 103 generated in the device varies. Accordingly, the fourth circuit element is provided that follows after an inductor, a capacitor, and a resistor is provided in which the electric charge stored determines the magnitude of its magnetic flux.
US09019684B2 Electrostatic chuck and method for manufacturing electrostatic chuck
An electrostatic chuck plate is connected to a base plate, which includes a cooling mechanism, by an adhesive layer. The electrostatic chuck plate includes a substrate setting surface on which a processed substrate is set, an electrostatic electrode capable of attracting the processed substrate, and a resistance heat generation body capable of heating the processed substrate. The electrostatic electrode and the resistance heat generation body are incorporated in the electrostatic chuck plate. An adjustment portion is arranged at a position according to a temperature distribution of the substrate setting surface in at least one of the upper surface of the base plate and a lower surface of the electrostatic chuck plate that faces the upper surface through the adhesive layer. The adjustment portion is filled with a resin having a heat conductivity according to the temperature distribution.
US09019683B2 Seal with energy-absorbing filler and method of manufacture
A method for sealing an interface to attenuate high energy currents and voltages traveling thereacross may include forming a cover defining an inner volume shaped to enclose the interface; forming a filled sealant including a semi-rigid sealant mixed with a filler having a multiplicity of discrete particles of different composition than the semi-rigid sealant; placing the filled sealant within the inner volume; and placing the cover containing the filled sealant over the interface such that the filled sealant is adjacent the interface.
US09019679B2 Arrangement for energy conditioning
Circuit arrangement embodiments that use relative groupings of energy pathways that include shielding circuit arrangements that can sustain and condition electrically complementary energy confluences.
US09019677B2 Semiconductor switching element drive circuit
A semiconductor switching element drive circuit includes a semiconductor that passes main current between first and second terminals when voltage is imposed to a gate terminal, and an over current protection circuit that decreases the main current when the main current is judged to become over current for a certain period when exceeding a predetermined current value when current value or voltage value proportional to an amplitude of the main current exceeds a threshold value. The circuit also includes a short circuit protection circuit that decreases gate voltage imposed to the gate terminal earlier than a fall of the main current produced by the over current protection circuit when the main current becomes larger than the over current in a period shorter than the certain period, and a threshold value change circuit that decreases a threshold value when the short circuit protection circuit decreases the main current.
US09019676B2 System and method for protecting an appliance junction
A system for protecting an electrical junction having a first pin and a second pin is provided. The system includes a first circuit protection device coupled to the first pin and configured to sense at least a first current and a second circuit protection device coupled to the second pin and configured to sense at least a second current. Each of the first circuit protection device and the second circuit protection device includes a trip mechanism configured to interrupt current flowing through a respective circuit protection device and a trip unit operatively coupled to the trip mechanism. The trip unit is configured to activate the trip mechanism based on a determination that a respective current exceeds a predetermined threshold.
US09019673B2 Fault detection and short circuit current management technique for inverter based distributed generators (DG)
Systems, methods, and devices relating to fault detection and short circuit current management support in power transmission and distribution networks using multiple inverter based power generation facilities. A fault detection process uses the waveshape (or the rate of change of the current) of the distributed generator output short circuit current to determine if a trip signal is required to disconnect the inverter based power generation facility from the transmission and distribution network. The process operates on DGs such as photovoltaic (PV) based solar farm. The present invention applies to the entire 24-hour period operation of inverter based DGs (e.g., solar farms, wind farms, fuel cell based DGs, etc.).
US09019668B2 Integrated circuit having a charged-device model electrostatic discharge protection mechanism
An integrated circuit having charged-device model (CDM) electrostatic discharge (ESD) protection includes an I/O circuit, at least one CDM ESD protection device, and at least one internal circuit. The integrated circuit further includes at least one TSV (Through Silicon Via) each being coupled between a ground of at least one ground of the input/output circuit and one of the at least one ESD protection device, wherein each of the at least one ESD protection device is coupled between one of the at least one TSV and a ground of one of the at least one internal circuit.
US09019666B2 Electronic device, in particular for protection against electrostatic discharges, and method for protecting a component against electrostatic discharges
The electronic device includes a first (BP) and a second (BN) terminal and electronic means coupled between said two terminals; the electronic means include at least one block (BLC) comprising an MOS transistor (TR) including a parasitic bipolar transistor, the MOS transistor having the drain (D) thereof coupled to the first terminal (BP), the source (S) thereof coupled to the second terminal (BN) and being additionally configured, in the event of a current pulse (IMP) between the two terminals, to operate in a hybrid mode including MOS operation in a subthreshold mode and operation of the parasitic bipolar transistor. The device can comprise two blocks (BLC1, BLC2) connected symmetrically between the two terminals (BP, BN) with a triac (TRC) the trigger of which is connected to the common terminal (BC) of the two blocks.
US09019664B2 Magnetoresistive sensor with variable shield permeability
Implementations disclosed herein allow a signal detected by a magnetoresistive (MR) sensor to be improved by providing for one or more regions of reduced anisotropy proximal to a sensor stack within a shielding structure.
US09019662B2 Head stack assembly and disk drive with the same
According to an embodiment, a head stack assembly includes an arm including a swaged seat surface with swaged hole, a load beam supporting a head, and a baseplate secured to a proximal end portion of the load beam, including an annular protrusion secured to the swaged hole of the arm by swaging, and secured to the swaged seat surface. The arm includes a distal end portion located on a longitudinal end side of the arm with respect to the center of the swaged hole and being less rigid than the other portion of the arm around the swaged hole.
US09019656B2 Disk drive unit having gas-liquid interface between fixed body and rotor
A disk drive unit includes a rotor configured to rotate a disk accommodated within a disk accommodating space and set thereon, a fixed body configured to rotatably support the rotor, a fluid dynamic pressure generating part provided between the fixed body and the rotor, and a plurality of ring-shaped members, provided in an overlapping manner along a direction of a rotational axis of the rotor within a space that communicates the disk accommodating space and a gas-liquid interface of the lubricant, and covering a gap between the rotor and the fixed body.
US09019655B1 Hard disk drive disk clamp having reduced radial stiffness
A hard disk drive disk clamp is described, in which flex is introduced into the clamp in the radial direction so that, for example, as the disk expands radially at a different rate than the clamp as the temperature increases, less distortion is affected to the disk because the clamp can flex radially. With less disk distortion there is less repeatable runout (RRO) and more precise track following. The disk clamp may have an I-shaped cross-section along the outer portion of the disk clamp, at the contact area with the disk, to provide the radial flex.
US09019651B2 Determining a skew error signal (SES) offset used to determine an SES to adjust heads in a drive unit
Provided are a computer program product, system, and method for determining a skew error signal (SES) offset used to determine an SES to adjust heads in a drive unit. A determination is made of a first difference in a first orientation with respect to a direction of movement of the recordable storage media based on first and second position information read by first and second servo read elements on a first head. A determination is made of a second difference in a second orientation with respect to the direction of movement of the recordable storage media based on third and fourth position information read by the first servo read element and a third servo read element on a second head. An offset, calculated based on the determined first and second difference, is used to generate an error signal to adjust the first and second heads.
US09019649B2 Error recovery based on applying current/voltage to a heating element of a magnetic head
In one embodiment, a magnetic disk device includes a magnetic disk medium, at least one magnetic head having at least one of: a magnetic read element configured to read data from the magnetic disk medium and a magnetic write element configured to write data to the magnetic disk medium, and a heating element configured to generate heat upon application of a voltage/current thereto, wherein the heating element is positioned on, near, or within the magnetic head, a drive mechanism for passing the magnetic disk medium over the at least one magnetic head, and a controller electrically coupled to the at least one magnetic head for controlling operation of the at least one magnetic head, wherein the controller is configured to retract the at least one magnetic head from a flying state above the magnetic disk medium and apply the voltage/current to the heating element while the magnetic head is retracted.
US09019648B1 Magnetic disc device and self servo writing method
According to one embodiment, a magnetic disc device includes a magnetic disc in which servo data is recorded in a servo area; a magnetic head provided for the magnetic disc; a determination unit that determines an SSW range in the servo area; and a servo control unit that performs servo control of the magnetic head based on the servo data recorded in the SSW range.
US09019634B2 Imaging lens and imaging apparatus
An imaging lens substantially consists of six lenses of a negative first lens, a negative second lens, a positive third lens, a positive fourth lens, a negative fifth lens and a positive sixth lens in this order from an object side. An object-side surface of the second lens is concave, and an object-side surface of the third lens is concave. A predetermined conditional formula about a combined focal length of the fourth lens and the fifth lens is satisfied.
US09019629B2 Four-lens module for image capture
An optical module having an object side and an image side; the module comprising, from the object side to the image side: a first positive meniscus lens having a convergence C1, made of a material having a refractive index Nd1 and an Abbe number Vd1, a second negative meniscus lens having a convergence C2 made of a material having a refractive index Nd2 and an Abbe number Vd2, a third positive meniscus lens having a convergence C3, made of a material having a refractive index Nd3 and an Abbe number Vd3, a fourth negative lens having a convergence C4, made of a material having a refractive index Nd4 and an Abbe number Vd4, wherein: 1.12 0.5
US09019628B1 Mobile device and optical imaging lens thereof
Present embodiments provide for a mobile device and an optical imaging lens thereof. The optical imaging lens comprises five lens elements positioned in an order from an object side to an image side. Through controlling the convex or concave shape of the surfaces of the lens elements to allow the thickness of the second lens element and the sum of all air gaps between all five lens elements along the optical axis satisfying the relation: 0.20
US09019627B2 Lens assembly
A lens assembly includes a first lens, a second lens, a third lens, a fourth lens and a fifth lens, all of which are arranged in sequence from an object side to an image side along an optical axis. The first lens is with positive refractive power and includes a convex surface facing the object side. The second lens is a meniscus lens with negative refractive power and includes a convex surface facing the object side. The third lens is with positive refractive power and includes a convex surface facing the image side. The fourth lens is with positive refractive power and includes a convex surface facing the image side. The fifth lens is a biconcave lens with negative refractive power.
US09019626B2 Photographing lens assembly
A photographing lens assembly includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element and a sixth lens element. The first lens element with positive refractive power has a convex object-side surface at a paraxial region. The second through the sixth lens elements have refractive power. The fourth lens element has a concave object-side surface at a paraxial region and a convex image-side surface at a paraxial region. The fifth lens element has an aspheric object-side surface and an aspheric image-side surface. The sixth lens element has a concave image-side surface at a paraxial region, wherein the image-side surface thereof has a convex shape at an off-axis region, and both surfaces thereof are aspheric. The photographing lens assembly has a total of six lens elements with refractive power.
US09019625B2 Lens advancing device, imaging device equipped with lens advancing device, and portable electronic device
A lens advancing device of the present invention includes an advancing ring holding the lens unit; a holder supporting the advancing ring; an operation unit; and a came surface formed on one of the advancing ring and the holder, and an abutting part formed on the other of the advancing ring and the holder and is engageable with the cam surface. The lens unit is disposed along an optical axis by rotating the advancing ring and thereby changing the engaging position between the cam surface and the abutting part. The lens advancing device further includes a pressing part retaining the elastic body be abutment to make the elastic body exert the elastic force upon the advancing ring and press the abutting part against the came surface. This reduces changes of resistance in rotational operation of the advancing ring between photographing modes, which makes the user feel less uncomfortable.
US09019623B2 Imaging zoom lens and imaging apparatus including the same
The imaging lens substantially consists of a front group having positive refractive power, an aperture stop, and a rear group having positive refractive power in this order from the object side. The front group includes two positive meniscus lenses with convex surfaces toward the object side, and one negative meniscus lens with a convex surface toward the object side; and the rear group includes an aspheric lens and a three-cemented lens in this order from the object side.
US09019621B2 Objective optical system and observation apparatus provided with the same
An objective optical system of an embodiment according to the present invention is formed in such a way that: the objective optical system includes an immovable lens group which is arranged nearest to the object side, which is immovable in focusing, and which has negative power, and first and second movable lens groups at least one of which moves along the optical axis in focusing; and an amount of variation in magnification per movement of the first movable lens group is different from an amount of variation in magnification per movement of the second movable lens group.
US09019620B2 Zoom lens, image sensing optical device and digital appliance
In a zoom lens, at least a first group of negative optical power and a second group of positive optical power are included from an object side, when zooming is performed from a wide-angle end to a telephoto end, a distance between the first and the second groups is reduced and an aperture is moved together with the second group. The first group is formed with a front group composed of only negative lenses and a rear group which is composed of two lenses, a positive and a negative from the object side and which has a positive optical power as a whole and the zoom lens satisfies a conditional formula: 0.06
US09019619B2 Zoom lens and image projection apparatus including zoom lens
A zoom lens includes a front group, an aperture stop, and a rear group. The front group includes a lens unit configured not to move during zooming and a front variable power lens unit including one or more lens units and configured not to move during zooming. The rear group includes, in order from a magnification conjugate side to a reduction conjugate side, a rear variable power lens unit having one or more lens units and configured to move during zooming, and a lens unit configured not to move during zooming. The aperture stop moves during zooming, and the front group has an auxiliary stop which moves during zooming. A length from a focal point position of the front group to the aperture stop, and imaging magnifications of the rear group, at a wide angle end and a telephoto end, are set to adequate values.
US09019613B2 Pixel mapping and printing for micro lens arrays to achieve dual-axis activation of images
A visual display assembly adapted for use as an anti-counterfeiting device on paper currency, product labels, and other objects. The assembly includes a film of transparent material including a first surface including an array of lenses and a second surface opposite the first surface. The assembly also includes a printed image proximate to the second surface. The printed image includes pixels of frames of one or more images interlaced relative to two orthogonal axes. The lenses of the array are nested in a plurality of parallel rows, and adjacent ones of the lenses in columns of the array are aligned to be in a single one of the rows with no offset of lenses in adjacent columns/rows. The lenses may be round-based lenses or are square-based lenses, and the lenses may be provided at 200 lenses per inch (LPI) or a higher LPI in both directions.
US09019612B2 WSS using multiple technology switching elements
A wavelength selective switch for selectively switching optical wavelength components of an optical signal uses both LCoS and MEMs switching technologies to improve device performance. Specific performance improvements may include more ports, better spectral performance and isolation, improved dynamic crosstalk, more flexible attenuation options, integrated channel monitoring and compressed switch heights.
US09019611B2 Optical module and electronic apparatus
An optical module (colorimetry sensor) includes an interference filter, and a transparent substrate to which a first substrate of the interference filter is fixed, having a second thermal expansion coefficient which has a value different from a first thermal expansion coefficient. The interference filter is fixed to the transparent substrate through an adhesive layer made of gel-like resin, and the adhesive layer alleviates stress generated due to a difference in the thermal expansion coefficients between the interference filter and the transparent substrate.
US09019610B2 Zoom lens and image pickup apparatus including the zoom lens
A zoom lens includes, in order from an object side to an image side, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third lens unit having a positive refractive power, and a fourth lens unit having a positive refractive power. In the zoom lens, each lens unit moves to perform zooming. In addition, an amount of movement Mm of the fourth lens unit when zooming from a wide angle end to an intermediate zooming position, an amount of movement Mt of the fourth lens unit when zooming from the wide angle end to a telephoto end, a focal length fw of an entire system at the wide angle end, and focal lengths f3 and f4 of the respective third lens unit and fourth lens unit are properly set.
US09019609B2 Continuous roll of optical function film, method of manufacture of liquid crystal display element employing same, and optical function film laminating device
An objective of the present invention is to alleviate streaky display unevenness that occurs in liquid crystal display elements when feeding optical function film from a continuous roll having score lines in the width direction thereof and bonding the optical function film on a liquid crystal panel. A continuous roll comprises an optical film laminate (15) that is in the form of a continuous web wound into a roll and comprises at least an optical function film (10) and a carrier film (13) releasably placed on the optical function film (10). The optical function film (10) is divided into a plurality of cut pieces by score lines (16) formed along a widthwise direction of the optical film laminate (15). It is possible to resolve the problem by making the bending rigidity per unit longitudinal length of the optical function film fall within a specific range.
US09019608B2 Continuous roll of optical function film, method of manufacture of liquid crystal display element employing same, and optical function film laminating device
An objective of the present invention is to alleviate streaky display unevenness that occurs in liquid crystal display elements when feeding optical function film from a continuous roll having score lines in the width direction thereof and bonding the optical function film on a liquid crystal panel. A continuous roll comprises an optical film laminate (15) that is in the form of a continuous web wound into a roll and comprises at least an optical function film (10) and a carrier film (13) releasably placed on the optical function film (10). The optical function film (10) is divided into a plurality of cut pieces by score lines (16) formed along a widthwise direction of the optical film laminate (15). It is possible to resolve the problem by making the bending rigidity per unit longitudinal length of the optical function film fall within a specific range.
US09019606B2 Multilayer thin film attenuators
An optical element has layers formed on a substrate, including alternating first and second layers having first and second refractive indices, nL and nH that exhibit a spectral characteristic, providing, for incident light at a predetermined wavelength and directed toward the optical element within a range of angles bounded by first and second incident angles θ1 and θ2, between 0 and 80 degrees and differing by at least 1 degree, substantially linear polarization-averaged attenuation of the incident light energy wherein, for any incident angle θn between θ1 and θ2, Aθn is the corresponding polarization-averaged attenuation, and wherein the polarization-averaged attenuation at Aθn at angle θ1 is less than or equal to an optical density value of 0.2 and the polarization-averaged attenuation Aθn at angle θ2 exceeds an optical density value of 4.
US09019600B2 Microscope system
A microscope system includes a microscope body having a base portion forming a foundation, an arm portion extending substantially parallel to a bottom surface of the base portion, and a frame portion connecting ends of the base portion and the arm portion, having substantially a C shape in side view and holding an illumination optical system ejecting illumination light from a light source to a specimen. A light source unit is connected with the microscope body and radiates illumination light to the illumination optical system. A focusing unit supports a stage for placing the specimen and at least holding an objective lens focusing the specimen by collecting observation light from the specimen on the stage. The microscope body and the focusing unit do not contact each other in a state where an optical axis of the objective lens coincides with an optical axis of the illumination light.
US09019598B2 Light stimulus apparatus and observing apparatus with light controlling unit
A proposition is to reduce a waiting time during a light stimulus observation. In order to achieve the proposition, a light stimulus apparatus is characterized in that it includes a light path controlling unit that controls an irradiating position of light for stimulus on a specimen, and a controlling unit that generates a selected position signal of a selected position and an executive instruction signal for irradiation of the light for stimulus onto the specimen in conjunction with a confirm operation regarding the selected position performed by a pointing device on an image of the specimen displayed on a displaying unit, controls the light path controlling unit based on the selected position signal, and controls a light source which emits the light for stimulus based on the executive instruction signal.
US09019596B2 Catadioptric projection objective with intermediate images
A catadioptric projection objective has a first objective part, defining a first part of the optical axis and imaging an object field to form a first real intermediate image. It also has a second, catadioptric objective part forming a second real intermediate image using the radiation from the first objective part. The second objective part has a concave mirror and defines a second part of the optical axis. A third objective part images the second real intermediate image into the image plane and defines a third part of the optical axis. Folding mirrors deflect the radiation from the object plane towards the concave mirror; and deflect the radiation from the concave mirror towards the image plane. The first part of the optical axis defined by the first objective part is laterally offset from and aligned parallel with the third part of the optical axis.
US09019593B2 Optical amplification apparatus
An optical amplification apparatus includes a front-stage semiconductor optical amplifier which amplifies an input light and a rear-stage semiconductor optical amplifier which amplifies an amplified light outputted from the front-stage semiconductor optical amplifier. The front-stage semiconductor optical amplifier exercises auto level control of an output light by exercising variable control of driving current which flows according to applied voltage higher than light emitting threshold voltage of an internal optical amplification element. The rear-stage semiconductor optical amplifier performs gate switching of a transmitted light by exercising switching control of driving current. By doing so, distortion of a waveform is controlled and optical communication quality can be improved.
US09019592B2 System and method for emitting optical pulses in view of a variable external trigger signal
Method and system for emitting optical pulses in view of a desired output energy of the optical pulses and a variable external trigger signal, using a laser system having a seed laser oscillator optically coupled to one or more cascaded optical amplification stages. For each amplification stage, a plurality of sets of pump pulse parameters are provided, each associated with specific values of the output energy and the trigger period. Proper pumping parameters associated with the received desired value of the output energy and the trigger period of the received trigger signal are selected for each amplification stage, which is pumped accordingly before a seed optical pulse is launched through the system.
US09019591B2 Burst mode rare earth-doped fiber amplifier
It is an object of the present invention to provide a rare earth doped fiber whose transient response is suppressed and an optical amplifier for optical packet communication having a good characteristic even if there is little traffic.The above-mentioned problem is solved by an optical amplifier for optical packet communication comprising a first rare earth doped fiber (EDFA) having an active region whose diameter is between 3.4 μm and 10 μm, inclusive, an intermediate gain equalizing filter, and a second EDF, wherein the first EDFA is shorter than the second EDFA, and wherein the intermediate gain equalizing filter adjusts the intensity of each wavelength channel so as to equalize the light intensity of each wavelength channel having transmitted through the second EDF.
US09019590B2 Spatial light modulator with integrated optical compensation structure
A spatial light modulator comprises an integrated optical compensation structure, e.g., an optical compensation structure arranged between a substrate and a plurality of individually addressable light-modulating elements, or an optical compensation structure located on the opposite side of the light-modulating elements from the substrate. The individually addressable light-modulating elements are configured to modulate light transmitted through or reflected from the transparent substrate. Methods for making such spatial light modulators involve fabricating an optical compensation structure over a substrate and fabricating a plurality of individually addressable light-modulating elements over the optical compensation structure. The optical compensation structure may be a passive optical compensation structure. The optical compensation structure may include one or more of a supplemental frontlighting source, a diffuser, a black mask, a diffractive optical element, a color filter, an anti-reflective layer, a structure that scatters light, a microlens array, and a holographic film.
US09019588B2 Connectors for smart windows
This disclosure provides connectors for smart windows. A smart window may incorporate an optically switchable pane. In one aspect, a window unit includes an insulated glass unit including an optically switchable pane. A wire assembly may be attached to the edge of the insulated glass unit and may include wires in electrical communication with electrodes of the optically switchable pane. A floating connector may be attached to a distal end of the wire assembly. The floating connector may include a flange and a nose, with two holes in the flange for affixing the floating connector to a first frame. The nose may include a terminal face that present two exposed contacts of opposite polarity.
US09019580B2 Image forming apparatus that performs gradation correction, method of controlling the same, and storage medium
An image forming apparatus capable of performing gradation correction without causing a user to perform a troublesome operation. The image forming apparatus includes an image reading unit that reads an original. A chart is formed on a recording material, and the recording material having the chart formed thereon is conveyed to the image reading unit via a shared conveying path used for both of reading the original and forming an image on the recording material. The conveyed recording material is read by the image reading unit, and gradation correction is performed based on the chart read by the image reading unit.
US09019579B2 Image reading apparatus
An image reading apparatus includes: a cover; a conveyor disposed to the cover and including a conveyance mechanism; a first platen configured to come into contact with a first side of the document conveyed by the conveyance mechanism; a first presser disposed below the first platen for pressing a second side of the document conveyed by the conveyance mechanism toward the first platen; a movable reading device for reading an image of the document on a document table while moving below the document table; a stationary reading device disposed above the first platen for reading an image of the document conveyed by the conveyance mechanism; and a first urging member for urging the first presser toward the first platen. The first platen and the first presser are spaced from each other when the document cover is opened.
US09019574B2 Sheet feeding apparatus
A sheet feeding apparatus includes a first tray, a second tray disposed above the first tray, a feeding portion configured to feed a sheet in a feed direction, and a first wall portion disposed at one end of the second tray in a width direction and fixed relative to the first tray. The first tray has a first end on a side far from the feeding portion. The second tray has, on the side far from the feeding portion, a second end, which is closer to the feeding portion than the first end of the first tray. The first end of the first tray is located above the second end of the second tray. An upper end of the first wall portion is higher than the second tray, and extends from a side closer to the second end of the second tray toward the first end of the first tray.
US09019571B2 Image reading device
A reading device comprising a connection unit configured to be connected with a storage medium, a determination unit configured to determine whether or not the storage medium is connected to the connection unit, a judging unit configured to judge if there is a document to be read by a reading unit and an execution unit configured to execute the advising process when the judgment unit judges that there is the document to be read and the determination unit determines that the storage medium is connected to the connection unit.
US09019560B2 Image forming method
An image forming method which is capable of preventing occurrence of moire and forming images having sufficient color saturation and a sufficient gloss is provided. The color toner image is formed in accordance with a color image signal obtained through screen processing using a screen pattern having a screen line count of 50 to 270 lpi on manuscript image data, and the clear toner image is formed in accordance with a clear image signal obtained through contone processing on the manuscript image data. The clear image signal is controlled so that, according to the amount of the color toner per unit area of the stacked toner image obtained by the color toner image being superimposed with the clear toner image, the less the amount of the color toner, the more the amount of the clear toner becomes.
US09019558B2 Image processing system, image recommendation method, information processing apparatus, and storage medium
An image processing system includes a first determination unit configured to determine a relationship between a user and another person established through utilization of a predetermined service, a second determination unit configured to determine a relationship between a first image, which is of the user and has been subjected to image correction processing, and a second image, which is of the another person, and a recommendation unit configured to, based on a determination result of the first determination unit and a determination result of the second determination unit, recommend image correction processing performed on the second image to the user.
US09019550B2 Print label producing apparatus
This disclosure discloses print label producing apparatus comprising a controller, a memory including a first sub memory, a second sub memory, and a third sub memory, and the controller being configured to execute a decoration setting process to perform at least one of a first sub decoration setting process for setting a decoration style randomly, a second sub decoration setting process for setting a frame randomly, and a third sub decoration setting process for setting a symbol randomly, a first print data generating process for generating first print data, by means of including at least one or more results of the decoration setting process of any of the decoration style of one or more types randomly set, the frame of one type randomly set, or the symbol of one type randomly set, and a first coordination control process for controlling the feeder and the printing head.
US09019537B2 Systems and methods for providing status monitor capability to printing devices
Methods and systems are described for providing status monitor capability to a networked printer. The methods and systems, upon receipt of a print job, embed status monitor instructions in print data of the print job, send the print data from an information server to the printer while monitoring the status of the printer, and return status monitor information regarding the printer.
US09019536B2 Print system, image forming device, intermediate processing device, web service provision device, method of controlling print system, and storage medium
An image forming device provided in a print system displays a shared use request screen operated by a user other than a manager of the image forming device, and for a request shared use of the image forming device. The external print service provided in the print system receives the shared use request of the image forming device by the user through the shared use request screen, and generates a setting screen for setting by the manager of whether or not to approve the received shared use request of the image forming device.
US09019531B2 Host computer, print control system, control method for print control system, and program
A host computer acquires a usage amount of a memory of a printing apparatus upon accepting a print instruction, and if the acquired free capacity of the memory is greater than a predetermined value, transmits generated print data based on the accepted print instruction. If the acquired free capacity of the memory is less than the predetermined value, the host computer displays a message before transmitting the print data.
US09019526B2 Image examination apparatus, image examination system, and image examination method
An image examination apparatus includes a generation unit configured to generate an examination image for examining a read image; an extraction unit configured to extract, from the examination image, multiple reference points used for alignment between the examination and read images; a calculation unit configured to calculate information on misalignment between positions of the reference points and positions corresponding respectively to the reference points in the read image; an excluding unit configured to exclude a reference point from the multiple reference points, based on the information on misalignment; an alignment unit configured to perform alignment between the examination and read images based on the reference points other than the excluded reference point; and an examination unit configured to perform examination for determining whether there is a defect in the read image on the basis of a difference between the read and examination images.
US09019524B2 Image forming apparatus, image forming system, method of controlling the same, and storage medium
An image forming apparatus and image forming system for communicating with a network via a server are disclosed. The server responds to an inquiry about device information of the image forming apparatus based on device information stored in a memory in a case that the server is in a power saving mode, and also updates device information in the memory upon receiving device information from the image forming apparatus. In addition, the server updates device information in the memory by requesting the image forming apparatus for the device information of the image forming apparatus in a case where the server shifts to the power saving mode. In a case that the device information of the image forming apparatus has changed, the image forming apparatus transmits the changed device information to the server.
US09019521B2 DMA transfer of data
An apparatus comprising a first transfer unit configured to DMA-transfer input data to a holding unit, a second transfer unit configured to DMA-transfer the input data held by the holding unit to at least one unit, a notification unit configured to notify, in accordance with the DMA transferring of the first transfer unit, that the input data held by the holding unit is updated, and a transfer control unit configured to control so as to operate the second transfer unit in one of a first mode for transferring the input data from the holding unit to the at least one unit in response to the notification and a second mode for transferring the input data independently of the notification, wherein the transfer unit performs the switching to the second mode after the operation in the first mode.
US09019520B2 Information processing apparatus, computer-readable storage medium, and method that generate a screen based on stored screen information and functional information
A printer driver includes an assigning unit that assigns a setting value based on storage location information specifying a storage location for each setting value; a compressing unit that converts each of the setting values thus assigned to have a format identifying each storage location, and generates compressed data therefrom; a storage unit that stores each piece of the compressed data compressed by the compressing unit in a storage location specified by the storage location information; a first decompressing unit and a second decompressing unit that decompress the compressed data stored in the storage location; a setting window displaying unit that displays a print setting window using each of the setting values obtained by decompression performed by the first decompressing unit; and a print data generating unit that generates print data using each of the setting values obtained by decompression performed by the second decompressing unit.
US09019519B2 Recording apparatus
An ink jet printer is a multifunctional recording apparatus in which a scanner unit is coupled to a recording unit in a rotationally movable manner. The scanner unit includes a protrusion. A carriage, the protrusion, and a rotational movement shaft of the scanner unit are arranged in this order from the unit front side to the unit rear side in the unit depth direction.
US09019514B2 Halftone printing of metal-pigmented inks to produce various metallic appearances
A system and method for producing a wide range of metallic appearances using halftones of a nano-particle metallic ink, such as, for example, nano-silver, are presented. In exemplary embodiments of the present invention, a nano-particle metallic ink, such as, for example, nano-silver, can be made to produce a range of appearances from, for example, bright silver to dull oxidized aluminum, by changing halftone level of the silver inks, changing the substrate surface properties and introducing small amounts of other colored inks, such as process or spot, in either an underprinting or overprinting of the metallic ink. In exemplary embodiments of the present invention, InkJet printing of a single metal-pigmented ink can be effected, and its metallic appearance can very quickly be adjusted to match a given package design.
US09019509B2 Chip-scale star tracker
A chip scale star tracker that captures plane-wave starlight propagating in free space with a wafer-thin angle-sensitive broadband filter-aperture, and directs the light into a waveguide structure for readout. Angular information about the star source is determined from characteristics of the starlight propagating in the waveguide. Certain examples include internal propagation-constant-based baffling to elimination stray light from extreme angles.
US09019508B2 Fiber optic gyroscope arrangements and methods
This disclosure provides methods, systems and devices that may be used to measure, calculate, and orient a device such as a drill bit in a downhole environment. To that end, disclosed are fiber optic gyroscopes, wherein the fiber optic gyroscopes comprise elliptical fiber optic cable coils in a mutually orthogonal arrangement that is tilted relative to a longitudinal axis of a supporting shaft, e.g., tube. Light travels in opposite directions within each of the elliptical fiber optic cable coils, and, subsequently, sensors detect differences in time for each light path of the light that traveled in opposite directions within each one of the elliptical fiber optic cable coils. The elliptical nature of the fiber optic cable coils minimizes the cross-sectional area of the mutually orthogonal arrangement, and thereby makes it well-suited for use in downhole environments where space is at a premium. This disclosure also may provide an inertial measurement unit.
US09019507B2 Optical apparatus
A signal is amplified by making a CARS beam from an observed body and a reference beam which is a portion of a super continuum beam and has a frequency of ωAS=2ωP−ωST interfere with each other and taking out the signal from an interference beam of the CARS beam and the reference beam.
US09019505B2 Temperature control system including sub-chiller
The temperature control system includes: a susceptor which allows an object to be processed to be held on a top surface thereof and includes a flow path, through which a temperature adjusting medium flows, formed therein; a temperature measuring unit which measures a temperature of the object to be processed held on the top surface of the susceptor; a first temperature adjusting unit which adjusts a temperature of the temperature adjusting medium flowing through the flow path; and a second temperature adjusting unit which is disposed between the susceptor and the first temperature adjusting unit, and adjusts a temperature of the temperature adjusting medium based on a result of the measurement of the temperature measuring unit.
US09019504B2 Portable goniospectrometer with constant observation centre
A transportable goniospectrometer with a constant observation center for a radiometric measurement of the reflection of a natural surface includes a spectrometer having an optical unit and a sensor. A main pillar has a lower and an upper pillar end. An arc has a fixed and a free arc end. A slide is disposed displaceably and fixably along the arc. The slide carries the optical unit orientated towards the observation center. A cantilever has a fixed cantilever end connected to the upper pillar end via a screw connection, and a free cantilever end which has a suspension that is rotatable and fixable about a vertical axis. The suspension is connected to the sensor and to the fixed arc end of the arc. The suspension is configured to position the arc at a distance of the arc radius of the arc above the natural surface.
US09019501B2 Methods and devices for optically determining a characteristic of a substance
Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
US09019500B2 Heat lamp test for identification of oil spots
A system for differentiating between oil spots and non-oil spots in a wrapped article comprising a web and a wrapped material. The system includes a heat source that applies heat to a wrapped article for a predetermined amount of time when the wrapped article is placed in a sample area on a surface that is arranged at a predetermined distance away from a heating element of the heat source; and a light source that provides backlighting to the web of the wrapped article when the web has been separated from the wrapped material and placed on a viewing surface of the light source. A method for differentiating between oil spots and non-oil spots in wrapped articles and a field test kit are also provided.
US09019495B2 Apparatus for performing spectroscopy having a porous membrane
According to an example, an apparatus for performing spectroscopy includes a structure having an opening. The apparatus also includes a plurality of surface-enhanced Raman spectroscopy (SERS) elements positioned within the structure and a porous membrane covering the opening and the plurality of SERS elements. The porous membrane is to allow a predetermined analyte to reach the SERS elements while substantially preventing other analytes from reaching the SERS elements.
US09019493B2 Method and device for the characterization of multiple samples of one or various dispersions
A method and a device for the automatic determination of selected physical and colloidal chemistry parameters by determining the attenuation of radiated waves through monodisperse or polydisperse dispersion samples subjected to gravitation or centrifugation, wherein during the segregation by means of centrifugation or gravitation, the instantaneous transmission IT(t, r) characterizing the current segregation status of the waves radiated with the intensity Io(t, r) and/or the instantaneous scattering IS(t, r) as a function of the position within the samples is repeatedly determined and recorded at high resolution at any arbitrary time for one or more wavelengths over the entire length of the sample or in selected partial sections of it, simultaneously for multiple and even concentrated samples with known and/or unknown physical and colloidal chemistry properties.
US09019492B2 Defect inspection device and defect inspection method
To prevent overlooking of a defect due to reduction in a defect signal, a defect inspection device is configured such that: light is irradiated onto an object to be inspected on which a pattern is formed; reflected, diffracted, and scattered light generated from the object by the irradiation of the light is collected, such that a first optical image resulting from the light passed through a first spatial filter having a first shading pattern is received by a first detector, whereby a first image is obtained; the reflected, diffracted, and scattered light generated from the object is collected, such that a second optical image resulting from the light passed through a second spatial filter having a second shading pattern is received by a second detector, whereby a second image is obtained; and the first and second images thus obtained are processed integrally to detect a defect candidate(s).
US09019491B2 Method and apparatus for measuring shape and thickness variation of a wafer
The invention provides a new dual-sided Moiré wafer analysis system that integrates wafer flatness measurement capability with wafer surface defect detection capability. The invention may be, but is not necessarily, embodied in methods and systems for simultaneously applying phase shifting reflective Moiré wafer analysis to the front and back sides of a silicon wafer and comparing or combining the front and back side height maps. This allows wafer surface height for each side of the wafer, thickness variation map, surface nanotopography, shape, flatness, and edge map to be determined with a dual-sided fringe acquisition process. The invention also improves the dynamic range of wafer analysis to measure wafers with large bows and extends the measurement area closer to the wafer edge.
US09019490B2 Surface-defect inspection device
A data processing and controlling portion calculates the amounts of coordinate deviations between artificial defects on a standard sample and detected defects on an inspected sample, checks the sensitivity (instrumental sensitivity (luminance, brightness, or the like)), and proceeds to execution of hardware corrections. If the coordinate deviation is less than a certain value, software corrections are carried out. In the case of the software corrections, coordinate corrections are made for the whole standard sample. The amounts of coordinate deviations are computed and checked. If the amounts of coordinate deviations are outside a tolerance, coordinate corrections are made for each region obtained by dividing the standard sample.
US09019488B2 Wheel toe and camber measurement system
A method for measuring wheel alignment of a test wheel rotating about a z-axis using at least one camera and a processor includes obtaining a calibration point from a calibration image of a zero-offset wheel that is the same size as the test wheel and that rotates about the z-axis, obtaining at least one test image of the test wheel with the camera and a non-structured light source, and locating a measurement point in the test image. The measurement point coincides with a radius that the calibration point is offset from the z-axis and the angular displacement of the calibration point from the vertical diameter of the zero-offset wheel. The measurement point is further located based on a change of reflectivity between other points in the test image adjacent the measurement point.
US09019486B2 Multi-light fiber source for fiber end-surface inspection
A fiber end-surface inspection device and method illuminates the fiber end-surface from at least 2 different illumination angles, taking observations at the different angles, for detection of fiber end-surface imperfections, scratches or the like.
US09019482B2 Optical device with fiber Bragg grating and narrowband optical source
In certain embodiments, an optical device and a method of use is provided. The optical device includes a fiber Bragg grating having a substantially periodic refractive index modulation along a length of the fiber Bragg grating. The fiber Bragg grating has a power transmission spectrum with a plurality of local transmission minima, wherein each pair of neighboring local transmission minima has a local transmission maximum therebetween. The local transmission maximum has a maximum power at a transmission peak wavelength. The optical device further includes a narrowband optical source in optical communication with a first optical path and a second optical path. The narrowband optical source is configured to generate light having a wavelength at or in the vicinity of a local transmission maximum or at or in the vicinity of a wavelength at which the power transmission spectrum has a maximum slope between a local transmission maximum and either one of two local transmission minima neighboring the local transmission maximum.
US09019480B2 Time-of-flight (TOF) system, sensor pixel, and method
A time-of-flight (TOF) sensor pixel is provided that performs in-pixel subtraction. The TOF sensor pixel includes a photodetector, a capacitor, and circuitry. The photodetector detects light pulses emitted at a clock frequency, after a time of flight, to provide a photocurrent. The capacitor integrates the photocurrent over an integration period, while the circuitry reverses a flow direction of the photocurrent through the capacitor at twice the clock frequency. At the end of the integration period, the capacitor provides a differential photocharge, corresponding to a capacitor voltage. The capacitor voltage is related to the time of flight of the light pulses and may be used to determine a distance to a target.
US09019478B2 Range sensor and range image sensor
A range image sensor RS is provided with an imaging region consisting of a plurality of units arranged in a two-dimensional pattern, on a semiconductor substrate 1 and obtains a range image, based on charge quantities output from the units. One unit is provided with a photosensitive region, a plurality of third semiconductor regions 9a, 9b opposed to each other with a photogate electrode PG in between in a direction in which first and second long sides L1, L2 are opposed to each other, first and second transfer electrodes TX1, TX2 provided between the plurality of third semiconductor regions 9a, 9b and the photogate electrode PG, a plurality of fourth semiconductor regions 11a, 11b arranged with the third semiconductor regions 9a, 9b in between in the direction in which the first and second long sides L1, L2 are opposed to each other, and a plurality of third transfer electrodes TX3 provided respectively between the plurality of fourth semiconductor regions 11a, 11b and the photogate electrode PG.
US09019477B2 Laser scanner and method for detecting mobile object
A laser scanner comprises a light projecting optical system for projecting a distance measuring light, a deflecting optical member for deflecting and projecting the distance measuring light to a measurement area, a distance measuring unit for carrying out measurement based on a reflection light and for acquiring distance data of the measurement area, a second image pickup unit capable of continuously acquiring image data including the measurement area, and a control unit. The control unit has a first image processing unit for acquiring a three-dimensional image based on the image data and on the distance data, and also has a second image processing unit for detecting a mobile object by comparing image data being adjacent to each other in terms of time. The control unit controls the distance measuring unit so that measurement of the mobile object detected in the measurement area is restricted by the second image processing unit.
US09019476B2 Lithographic apparatus and device manufacturing method
A lithographic apparatus arranged to transfer a pattern from a patterning device onto a substrate is disclosed, the apparatus including a substrate table constructed to hold a substrate, a first clamping system configured to clamp the substrate table to a substrate table support structure, and a second clamping system configured to clamp a substrate to the substrate table after the substrate table has been clamped to the substrate table support structure.
US09019471B2 Maskless exposure apparatus and stitching exposure method using the same
Disclosed herein are a maskless exposure apparatus configured to perform exposure by tilting a beam spot array with respect to a scan direction (Y-axis direction) thus preventing stitching stripes and a stitching method using the same. A step distance, in which exposure dose uniformity in a stitching area is within a tolerance range, is calculated using actual position data of beam spots constituting the beam spot array on an exposure plane, and if necessary, using beam power data and/or beam size data. As exposure is performed based on image data conforming to the step distance, the stitching area has a uniform exposure dose, enabling exposure without stitching stripes.
US09019469B2 Exposure apparatus, exposure method, method for producing device, and optical part
An exposure apparatus (EX) is an apparatus which exposes a substrate (P) by irradiating exposure light (EL) onto the substrate (P) via a projection optical system (PL) and a liquid (1). The exposure apparatus (EX) has a substrate table (PT) for holding the substrate (P), and a plate member (30) having a liquid repellent flat surface (30A) is replaceably provided to the substrate table (PT) to prevent the liquid from remaining, maintaining excellent exposure accuracy.
US09019467B2 Exposure method, substrate stage, exposure apparatus, and device manufacturing method
An exposure apparatus exposes a substrate by projecting a pattern image onto the substrate through a liquid. The exposure apparatus includes a projection optical system by which the pattern image is projected onto the substrate, and a movable member which is movable relative to the projection optical system. A liquid-repellent member, at least a part of a surface of which is liquid-repellent, is provided detachably on the movable member, the liquid-repellent member being different from the substrate.
US09019464B2 Liquid crystal display device and method for repairing the same
A liquid crystal display device including a cut portion at a position not overlapping the gate electrode such the pixel electrode is floating and does not receive a voltage from the source electrode via the active layer and the drain electrode; a second insulating layer above the first insulating layer; a plurality of common electrodes on the second insulating layer; and a welded portion at a region where a corresponding common electrode overlaps the drain electrode. Further, the drain electrode and the pixel electrode are electrically connected to each other via a connection pattern formed in a contact hole such that the welded portion floats the pixel electrode.
US09019463B2 Adhesive agent
Provided are a pressure-sensitive adhesive having excellent durability and reliability under high-temperature or high-humidity conditions, adhesion strength, workability, re-movability, and the ability to inhibit light leakage; a method for preparing the pressure-sensitive adhesive; a polarizer including the pressure-sensitive adhesive; and a liquid crystal display incorporating the polarizer.
US09019458B2 Display device and manufacturing method thereof
A display device includes: a substrate, on which pixel areas arranged substantially in a matrix form having pixel rows and pixel columns are defined; a thin film transistor disposed on the substrate; a pixel electrode disposed in the pixel areas and connected to the thin film transistor; common electrodes disposed on the pixel electrode and spaced apart from the pixel electrode, where a microcavity is defined between the pixel electrode and the common electrodes; a roof layer disposed on the common electrodes, where a liquid crystal injection hole is defined through the common electrodes and the roof layer and exposes the microcavity; a liquid crystal layer disposed in the microcavity; and an encapsulation layer disposed on the roof layer, where the encapsulation layer covers the liquid crystal injection hole and seals the microcavity, where the common electrodes in the pixel rows are connected to each other.
US09019453B2 Liquid crystal display
A liquid crystal display includes a plurality of pixels, a first substrate, a second substrate, and a liquid crystal layer disposed between the first and second substrates. The first substrate includes a first base substrate and a pixel electrode provided on the first base substrate to correspond to each of the pixels. The second substrate includes a second base substrate facing the first base substrate and a common electrode provided on the second base substrate. The common electrode forms an electric field having an equipotential surface substantially parallel to an upper surface of the first base substrate in cooperation with the pixel electrode. The liquid crystal layer is disposed between the pixel electrode and the common electrode and includes a liquid crystal composition having an anisotropic dielectric constant equal to or smaller than −2.9 and equal to or larger than −1.7.
US09019451B2 Liquid-crystal display device
A liquid crystal display (LCD) device includes a birefringent layer that satisfies the relationship nx>ny≧nz and may be considered a first-class birefringent layer, a birefringent layer that satisfies the relationship nx
US09019446B2 Liquid crystal display device and manufacturing method thereof
A method for manufacturing a liquid crystal display device including first, second, and third pixels for displaying different colors comprises the steps of: forming a first electrode on a substrate; forming a liquid crystal layer including a cholesteric liquid crystal as a mixed material of a non-polymeric liquid crystal compound and a photosensitive chiral additive; irradiating a different intensity of light on the liquid crystal layer positioned on the first pixel, the liquid crystal layer positioned on the second pixel, and the liquid crystal layer positioned on the third pixel; and forming a second electrode facing the first electrode.
US09019444B2 Edge-type backlight module and liquid crystal display using the same
An edge-type backlight module and a liquid crystal display using the same. The edge-type backlight module comprising a printed circuit board having a supporting surface; plural light emitting diodes disposed on the supporting surface, each of the light emitting diodes comprising a light emitting surface and the light emitted by the light emitting diode being emitted from the light emitting surface; a reflective film disposed on the supporting surface; a light guide plate disposed above the reflective film so that the reflective film being disposed between the light guide plate and the supporting surface; a reflective surface disposed on a side edge of the light guide plate and kept a distance from the light emitting diode, the reflective surface used for reflecting the light emitted from the light emitting surface; and a dark surface disposed on the supporting surface for absorbing the light reflected by the reflective surface.
US09019443B2 Backlight unit comprising a plurality of slits formed on a bottom surface of at least one edge of a bottom cover and liquid crystal display device having the same
A backlight unit adapted to prevent light leakage and damage of its internal components due to a thermal deformation is disclosed.The backlight unit includes: a bottom cover with an opened upper surface; a printed-circuit-board disposed on at least one inner side surface of the bottom cover; a plurality of LEDs loaded on the printed-circuit-board; and a plurality of slits formed on at least one edge of the bottom cover opposite to the printed-circuit-board and configured to reduce thermal deformation of the bottom cover.
US09019440B2 Semiconductor device and method for manufacturing the same
An object is to reduce the number of photomasks used for manufacturing a transistor and manufacturing a display device to less than the conventional one. The display device is manufactured through, in total, three photolithography steps including one photolithography step which serves as both a step of forming a gate electrode and a step of forming an island-like semiconductor layer, one photolithography step of forming a contact hole after a planarization insulating layer is formed, and one photolithography step which serves as both a step of forming a source electrode and a drain electrode and a step of forming a pixel electrode.
US09019437B2 Laser based display method and system
The present invention is directed to display technologies. More specifically, various embodiments of the present invention provide projection display systems where one or more laser diodes are used as light source for illustrating images. In one set of embodiments, the present invention provides projector systems that utilize blue and/or green laser fabricated using gallium nitride containing material. In another set of embodiments, the present invention provides projection systems having digital lighting processing engines illuminated by blue and/or green laser devices. In one embodiment, the present invention provides a 3D display system. There are other embodiments as well.
US09019435B2 System and method for configuring controlling device functionality
A controlling device is automatically configured to issue a communication directly to a first controllable appliance to control a functional operation of the first controllable appliance in the event that the first controllable appliance is determined to be unresponsive to a command communication transmitted to the first controllable appliance via a digital communications link or to issue a communication to a second controllable appliance to control the functional operation of the first controllable appliance via a digital communications link in the event that first controllable appliance is determined to be responsive to a command communication transmitted to the first controllable appliance via a digital communications link.
US09019434B1 Digital broadcast receiver and method for processing caption thereof
A digital cable broadcast receiver and a method for automatically processing caption data of various standards and types, is disclosed. The digital broadcast receiver includes: a demultiplexer for dividing a received broadcast stream into video data, audio data, supplementary information; a controller for determining whether caption data included in the video data is digital caption data or analog caption data on the basis of caption information included in the supplementary information, and outputting a control signal according to a result of the determining; a digital caption decoder for extracting and decoding digital caption data from the video data according to the control signal; and an analog caption decoder for extracting and decoding analog caption data from the video data according to the control signal.
US09019433B2 Image processing apparatus and method
Gradation transform considering a scene transitional direction is executed for a video signal. The statistic of the luminance distribution of the input video signal is detected. The transitional direction of brightness of a scene of the input video signal is detected. A transform characteristic in transforming the gradation characteristic of the input video signal is set based on the detection results of the statistic and transitional direction.
US09019431B2 Portable video and imaging system
A portable video and imaging system includes a camera for capturing video of an event, and a video recording device for recording the captured video of the event. The camera is housed in a first housing, the recording device is housed in a second housing, and the first and second housings are physically separate. Various embodiments provide for the system to be mounted to a user's body, an article of clothing, such as a shirt or a hat, to a vehicle, or to an ancillary component carried by the user, such as a firearm.
US09019430B2 Image pickup apparatus having tripod base
An image pickup apparatus which is capable of protecting a flexible wiring plate during assembly of the image pickup apparatus, thus improving the ease of assembly and realizing cost reduction due to a decrease in the number of components. A cover member has an opening exposing an image display surface of the display which has a folded flexible wiring plate and covers the rear side of the image pickup apparatus main body. A tripod base member is disposed on a bottom and has an abutting portion and a guide portion. A folded portion of the flexible wiring plate comes into abutment with the abutting portion and covered with the tripod base member. The guide portion guides a leading end portion of the cover member on mounted on the image pickup apparatus main body, and hence the leading end portion of the cover member does not contact with the folded portion.
US09019422B2 Degree-of-focus determination module, position-of-best-focus selection modules, image processing module, imaging system, and corresponding method
A system for imaging a structure of an object is provided. The imaging system includes a degree-of-focus determination module that may comprise logic for taking into account at least one of a first and a second dimension of a topological element of the structure to be imaged. An image processing module of the system may comprise: a control module for controlling a motorized focus driver; a memory for storing images; and said degree-of-focus determination module. The imaging system may comprise: a stage; a motorized focus driver for driving the stage; at least one of microscope optics, a lens, an illumination system; a camera; and an image processing module.
US09019410B2 Image sensors comprising photodiodes and image processing devices including the same
An image sensor may include a photodiode configured to convert an optical signal into photogenerated charge, a sensing node adjacent to the photodiode and configured to sense the photogenerated charge, a read-out circuit configured to convert the photogenerated charge into an electrical signal and to output the electrical signal through an output line, and/or at least one capacitor formed between the sensing node and a conversion gain control line. The conversion gain control line corresponding to the at least one capacitor may be selectively connected to a ground line or the output line based on at least one control signal.
US09019407B2 Image processing apparatus and image processing method
An image processing apparatus comprises a first calculation unit which calculates information regarding a pixel whose pixel level is equal to or greater than a first threshold in an input image, and calculates a ratio of pixels whose signal levels are equal to or greater than a second threshold in pixel data of a detected person; a second calculation unit which calculates a control amount for a tone control based on information regarding the pixel whose pixel level is equal to or greater than the first threshold; a third calculation unit which calculates a correction amount for correcting the control amount in accordance with the ratio of pixels whose signal levels are equal to or greater than the second threshold; and a control unit which determines an input-output characteristic of an image, based on the control amount and correction amount.
US09019395B2 Image management apparatus and control method thereof for laying out an image shooting location on a map
An image management apparatus for managing an image, to which position information indicative of an image shooting location is appended, comprises a transmission unit configured to transmit map data corresponding to the position information to an information processing apparatus, and an identification unit configured to identify a user of the information processing apparatus, the transmission unit transmits, to the information processing apparatus, map data with a different scale in accordance with the user identified by the identification unit.
US09019392B1 Image capture system and method for gathering statistics for captured image data
An image capture system including a statistics module. An image processing module is configured to receive image data corresponding to a plurality of pixels of a captured image, wherein the image data includes respective locations of each of the plurality of pixels, and implement an image processing pipeline configured to modified image data. The statistics module is configured to gather a plurality of sets of statistics using the image data and the modified image data, each of the sets of statistics corresponding to a different one of a plurality of zones within the captured image. To gather the statistics, the statistics module is further configured to determine, based on the respective location of a first pixel, a first zone of the plurality of zones that the first pixel is located in, and store data in a corresponding set of statistics for the first pixel based on the determined first zone.
US09019391B2 Photographing apparatus of which image pickup area is divided, and image pickup device thereof
A photographing apparatus and an image pickup device thereof include an image pickup device of which an image pickup area includes a plurality of pixels and is divided into a plurality of sub-image pickup areas, and at least one pixel included in each of the sub-image pickup areas outputs image signals at a same time.
US09019390B2 Optical image stabilization using tangentially actuated MEMS devices
In one example, an actuator device useful in, e.g., a camera for, e.g., optical image stabilization (OIS), includes a stage resiliently supported for movement within a plane, three or more actuators, each coupled to an outer periphery of the stage and operable to apply a force acting in the plane and tangentially to the stage when actuated, and an outer frame surrounding and supporting the stage and the actuators.
US09019388B2 Imaging device capable of performing release operation by touch input, and imaging method and storage medium for the same
The present invention prevents unnecessary imaging operations when imaging is not required to be performed. In the present invention, a display panel includes a touch panel provided on the top surface thereof. An image sensor of an imaging section captures an image. A gyro sensor detects the movement of an imaging device. When the movement of the imaging device is detected by the gyro sensor, a control section prohibits an imaging operation by the imaging section in response to a touch operation performed on the touch panel. Conversely, when the movement of the imaging device is not detected by the gyro sensor, the control section performs an imaging operation by the imaging section in response to a touch operation on the touch panel.
US09019382B2 Diagnosis unit for an electronic camera and camera system
A diagnosis unit for an electronic camera comprises a housing and a coupling device for coupling the diagnosis unit to an objective connection of a camera or to a camera objective, wherein the coupling device surrounds a light exit opening of the housing. The diagnosis unit further comprises at least one light source arranged in the housing for outputting a diagnosis illumination through the light exit opening, and an interface for electrically connecting the diagnosis unit to a camera. A camera system comprises a diagnosis unit and an electronic camera having an image sensor.
US09019378B2 Imaging apparatus including a lens barrel holding an optical element
An imaging apparatus includes: a lens barrel which holds at least one optical element; an image sensor which converts an image of a photographic subject obtained by the optical element into an electrical signal; a circuit board on which the image sensor is mounted; and a fixing wall body which is a different body from the lens barrel, and where the lens barrel is mounted to an end part of the fixing wall body on a photographic subject side, and the circuit board is mounted to an end part of the fixing wall body on a side opposite to the photographic subject side by a bond structure by an adhesive agent.
US09019377B2 Drive recorder, drive recorder system, vehicle-mounted video recording apparatus, and vehicle-mounted video recording method
A drive recorder and a drive recorder system that can check the content of the image captured by an image capturing unit that outputs a video signal at a frequency not affected by LED traffic light flashing. The drive recorder includes an image converting unit for converting a received video signal into image information, and for outputting the image information in the form of a video signal, a storage unit for storing the converted image information, and a control unit for performing control so that the video signal is converted into the image information by using a first frequency not affected by LED traffic light flashing, and so that the image information stored in the storage unit is output in the form of a video signal by using a second frequency corresponding to a standard video signal.
US09019376B2 Computing device and method for controlling unmanned aerial vehicle to capture images
In a method for controlling an unmanned aerial vehicle (UAV) equipped with a camera to capture images of a target, the computing device sets coordinates of a target, initial coordinates of the camera, and an initial viewing direction of the camera. Real-time coordinates and a real-time viewing direction of the camera are obtained when the UAV flies around the target. Accordingly, adjustment parameters of the camera are calculated and transferred to a driver system connected to the camera, such that the driver system adjusts the camera to face the target according to the adjusting parameters.
US09019375B1 Target locator and interceptor imaging and sensing assembly, system and method
There is provided in one embodiment a target locator and interceptor imaging and sensing assembly. The assembly has a disc shaped aerodynamic member configured to spin and self-position in flight, a plurality of pulsed thrusters positioned on the member, and a plurality of imaging and sensing devices positioned along a perimeter of the member. The assembly further has one or more munitions devices coupled to one or more detonators, both being coupled to the aerodynamic member. The assembly further has one or more antenna devices positioned on the member and in communication with a first processor device on the member. The first processor device receives data obtained by the plurality of imaging and sensing devices and wirelessly transmits the data to a second processor device not positioned on the member. The assembly further has a power supply powering the assembly.
US09019372B2 Remote controlled studio camera system
A system for remotely controlling a camera is disclosed. The system includes five major subsystems; a first subsystem collocated with the camera; a second subsystem which serves as a gateway between the camera and the third subsystem; a third subsystem to remotely monitor the studio and control the camera; a fourth subsystem located at the destination of the video stream; and a fifth subsystem to receive and re-transmit a video control stream. This system allows the camera to be monitored and controlled by one location, while the primary video stream is transmitted to a different location. In some embodiments, the control video stream is a lower bandwidth signal than the primary video stream. Furthermore, the fifth subsystem is capable of receiving and re-transmitting control video streams from a plurality of cameras simultaneously. The second subsystem allows remote access to the first subsystem, based on approved credentials.
US09019365B2 Gob inspection system for glass product
The problem is solved by generating a gob image A by capturing, with a line scanning camera, an image of a falling gob that has been cut off at an orifice; generating an image B by binarizing the gob image A with a boundary value that turns a general part of the gob black and turns a peripheral lustrous portion and a defect of the gob white; generating an image C by binarizing the gob image A with a boundary value that turns the entire gob white and turns a background black and inverting the black and white; generating an image D by combining the image B and the image C together; setting a region located a given number of pixels inside an outer edge of the black area of the image D as an inspection region; and inspecting the inspection region of the gob image A to determine whether the gob is good.
US09019364B2 Remote visual inspection system
A visual inspection system [100] includes a remote end [110] that is moved through a conduit [1] with a flexible pushrod [400]. The remote end [110] having at least one carriage assembly [130] with encoders [140] indicating a distance traveled within the conduit [1]. The visual inspection device [100] has a longitudinal camera [150] to identify view down the length of the conduit [1], but also has at least one transverse camera [160] adapted to visually inspect an inside surface [3] of the conduit [1]. Also, the transverse camera [160] may be used to inspect other conduits that connect to conduit [1].
US09019363B2 Microscope stability using a single optical path and image detector
Stabilization, via active-feedback positional drift-correction, of an optical microscope imaging system in up to 3-dimensions is achieved using the optical measurement path of an image sensor. Nanometer-scale stability of the imaging system is accomplished by correcting for positional drift using fiduciary references sparsely distributed within or in proximity to the experimental sample.
US09019360B2 Microscope and a fluorescent observation method using the same
A microscope capable of controlling the position and fluorescent recording of an object under observation such as cells is provided with the fluorescent observation method using the microscope. The microscope 1 comprises: a stage 3 on which the object under observation 2 is placed; an illumination light source 4 for the object under observation 2; an excitation light source 5 for exciting fluorescent light F to the object under observation 2; an image information detecting part 16 for detecting the image information formed with the light T generated at the object under observation 2; a fluorescent image information detecting part 17 for detecting the fluorescent image information formed with fluorescent light F; and a control part 20, which determines the fluorescent observation area of the object under observation 2 based on the dynamic model of the object under observation 2 and its image information entered from the image information detecting part 16, and then obtains the image information of the object under observation 2 entered from the image information detecting part 16 and the fluorescent image information entered from the fluorescent image information detecting part 17 at specified interval within the fluorescent observation area.
US09019356B2 Display apparatus, and remote control apparatus for controlling the same and controlling methods thereof
A display apparatus, a control method thereof, a remote control apparatus, and a control method thereof are provided. The display apparatus includes: a display unit which outputs a plurality of content views using a plurality of image frames; a remote control signal receiver which receives a control command from a remote control apparatus; and a controller which, if a control command to control one content view from among the plurality of content views is received, selectively performs an operation from among control operation corresponding to the control command and an outputting operation to output a message notifying an input of the control command in accordance with a type of the received control command.
US09019353B2 2D/3D switchable image display apparatus and method of displaying 2D and 3D images
In a two-dimensional/three-dimensional (2D/3D) switchable image display apparatus and a method of displaying 2D and 3D images, the 2D/3D switchable image display apparatus may comprise: a data driver which outputs column data of an input image; a scan driver which controls a driving method of a plurality of odd scan lines and a plurality of even scan lines according to an input method and a display mode of the input image; a display panel which displays a 2D image or a 3D image by separately displaying the input image in odd lines and even lines; and a parallax device which generates binocular parallax between an image displayed in the odd lines and an image displayed in the even lines.
US09019336B2 Making calls using an additional terminal
A first terminal is coupled to a wide-area packet-based network and installed with first client application. One or more second terminals are coupled to the first terminal via a local wireless link, and each installed with an instance of a lightweight sub-client having reduced functionality relative to the first client. The first client establishes a call with a remote, third terminal over the network, based on a user credential identifying the first client. Each second terminal generates an audio or video stream, and each sub-client transmits the respective stream to the first client over the local wireless link for use in the call. The first client switches between a second state in which the call uses the streams from the sub-clients and a first state in which the call uses a stream generated by the first terminal without the streams from the sub-clients.
US09019334B2 Optical device and image forming apparatus having the optical device incorporated therein
An optical device is provided with an optical unit for forming an optical path of a laser beam, and a housing defining an internal space for accommodating the optical unit. The housing includes a partition for dividing the internal space into a first space and a second space. The optical unit includes a sensor arranged in the first space to detect the laser beam in the second space, a mirror arranged in the second space to define a direction of the optical path, a drive source arranged in the second space to operate the mirror to adjust the direction of the optical path, a power line for supplying power to the drive source, and a signal line for transmitting an output signal of the sensor. The signal line extends in the first space and the power line extends in the second space.
US09019333B2 Optical scanning apparatus and image forming apparatus utilizing a rotational polygon mirror
An optical scanning apparatus includes a light source; and a rotational polygon mirror having N reflecting surfaces, the rotational polygon mirror being configured to reflect a light flux emitted from the light source so that a scanning surface is scanned along a main-scanning direction with reflected from the rotational polygon mirror. A width of the light flux incident on the rotational polygon mirror in a direction corresponding to the main-scanning direction is smaller than a width of each reflecting surface of the rotational polygon mirror in the direction corresponding to the main-scanning direction.
US09019327B2 Display device
A display device which effectively reduces the occurrences of a false contour is provided. A driver digitally drives each pixel by obtaining a plurality of bit data from pixel data for one pixel to assign the plurality of bit data to a corresponding subframe; configuring one frame with a predetermined number of unit frames; and supplying corresponding bit data in each unit frame to each pixel. Specifically, an analyzing circuit 5-5 predicts a probability of occurrence of a false contour in one screen of the video signal based on the presence or absence of a true contour. A display method based on the video signal is set in accordance with an analysis result.
US09019326B2 Electro-optic apparatus, driving method therefor, and electronics device
A drive circuit is configured to, during a first period, sequentially select each of pairs of odd-number-th and even-number-th scanning lines and write an off electric potential into pixels corresponding the selected scanning lines; during a second period, sequentially select each of pairs of odd-number-th and even-number-th scanning lines and write gray-scale electric potentials in accordance with the selected odd-number-th scanning line into pixels corresponding to the selected odd-number-th and even-number-th scanning lines; and during a third period, sequentially select each of even-number-th scanning lines and write gray-scale electric potentials in accordance with the selected even-number-th scanning line into pixels corresponding to the selected scanning line. A common electric potential supply circuit reverses the polarity of a common electric potential during a polarity reverse period between the first period and the second period.
US09019318B2 Driving methods for electrophoretic displays employing grey level waveforms
This application is directed to driving methods for electrophoretic displays. The driving methods comprise grey level waveforms which greatly enhance the pictorial quality of images displayed. The driving method comprises: (a) applying waveform to drive each pixel to the full first color then to a color state of a desired level; or (b) applying waveform to drive each pixel to the full second color then to a color state of a desired level.
US09019316B2 Identifying a point of interest from different stations
A method for locating a point of interest in a plurality of images is provided where the plurality of images capture different views of a scene. At least portions of each of the views are displayed in separate windows on a display monitor. The method includes identifying the point of interest in a first view of the scene and identifying pixels of image data that correspond to the selected point on the display monitor. A line in each of the views is determined that extends along a ray that passes through the point of interest in the scene to pixels of an image sensor corresponding to the pixels of image data in the first view of the scene. The line is displayed in each of the views in which the line is visible.
US09019315B2 Method of controlling display
An exemplary information-processing device includes: a first display controller configured to display selectively on a display a first image and a second image including the first image in a reduced size; and a second display controller configured, while the second display is displayed on the display, to display an indicator image on the display, the indicator image indicating a position of an image to be displayed when display of the second image is changed to display of the first image.
US09019308B2 Display apparatus and computer-readable medium
In a display apparatus, a processor performs an information storing process of storing the displayed information to be correlated with the locus of the handwriting recognized by the recognition process in the memory, when it is determined by the handwriting position determining process that the locus of the handwriting position is superposed on the information which is displayed on the display unit, and an information output process of reading and outputting the information, which is stored in the memory to be correlated with the handwritten locus recognized by the recognition process by the information storing process, when it is determined by the handwriting position determining process that the locus of the handwriting position is not superposed on the information which is displayed on the display unit.
US09019306B2 Methods, apparatus and systems for generating searchable electronic records of underground facility locate and/or marking operations and assessing aspects of same
A method is disclosed for assessing an aspect relating to a locate and/or marking operation performed by a locate technician based on an electronic representation of the operation. The operation includes locating and/or identifying, using a physical locate mark, a presence or an absence of an underground facility within a dig area. A portion of the dig area may be excavated or disturbed during excavation activities. The method includes digitally representing, on a display device, the facility and/or the physical locate mark to generate an electronic visual representation of the operation. The method further includes determining a length associated with a portion of the digitally represented facility and/or physical locate mark in the electronic visual representation of the operation. The method further includes, based on the determined length, automatically assessing the aspect relating to the operation.
US09019304B2 Image processing apparatus and control method thereof
According to an image processing apparatus and a control method thereof of the present invention, a graphics drawing result is obtained in accordance with one or more graphics drawing commands included in drawing commands, a clipping command is generated from one or more moving image drawing commands included in the drawing commands, and clipped graphics is obtained by clipping the graphics drawing result using the clipping command. Further, moving image data processed in accordance with the one or more moving image drawing commands included in the drawing commands is generated, and the generated moving image data and the clipped graphics are composed and output.
US09019299B2 Filtering method and apparatus for anti-aliasing
A filtering method and apparatus for anti-aliasing takes advantage of improved existing hardware by using as input the data stored in the multisampling anti-aliasing (MSAA) buffers after rendering. The standard hardware box-filter is then replaced with a more intelligent resolve implemented using shader programs. Embodiments find scene edges using existing samples generated by Graphics Processing Unit (GPU) hardware. Using samples from a footprint larger than a single pixel, a gradient is calculated matching the direction of an edge. A non-linear filter over contributing samples in the direction of the gradient gives the final result.
US09019296B1 Customized color selection for a design project
A customized design service enables a user to customize color selection for a design project. The service receives multiple inputs from the user for a set of preselected topics (e.g., color, style and mood) associated with the design project. Based on the user inputs, the service develops a user compatibility profile for the project. The service selects a palette of potential colors for the design project responsive to the user's compatibility profile using a regression-based analysis of the compatibility profile and an expert color palette. The service derives a user's signature color palette for the design project based on the palette of potential colors. The service further offers products to the user that are compatible with the user's compatibility profile and the signature color palette.
US09019292B2 Reordering graph execution for processing optimization
Methods are provided for reordering operations in execution of an effect graph by graphics processing unit. Memory availability is evaluated for storing images rendered using the effect graph. Memory is allocated for multiple parallel intermediate textures that store images. Operations that write to these textures are executed. It is then determined that there is not sufficient memory to perform additional parallel operations. The memory currently allocated is flushed, and memory for an upper-level texture is allocated. The operations that write pixels to the upper-level texture are executed.
US09019291B2 Multiple quality of service (QoS) thresholds or clock gating thresholds based on memory stress level
In an embodiment, a display control unit is configured to transmit read operations to the memory in the system to read image data for processing, and may employ QoS levels with the read operations to ensure that enough data is provided to satisfy the real time display requirements. To determine which QoS level to use for a given read request, the display control unit may be configured to compare an amount of image data in the display control unit (e.g. in various input and/or output buffers in the display control unit) to one or more thresholds. The display control unit may also be configured to dynamically update the thresholds based on a memory stress level in the memory controller.
US09019290B2 Information processing apparatus, information processing system, information processing method and program
A detecting section which detects a carrier wave near the receiving section, a switching control section which controls a switching section so as to, when the detecting section detects the carrier wave, switch connecting destination of the first storage section into the receiving section, and when the detecting section does not detect the carrier wave, switch the connecting destination of the first storage section into the reading section, a second storage section which stores the data conversion information read by the reading section, and a display control section which converts the read display data using the data conversion information stored in the second storage section so as to display the information on the display section are provided.
US09019289B2 Execution of graphics and non-graphics applications on a graphics processing unit
The techniques described in this disclosure are directed to efficient parallel execution of graphics and non-graphics application on a graphics processing unit (GPU). The GPU may include a plurality of shader cores within a shader processor. The techniques may reserve one or more shader cores to execute the graphics application and reserve one or more other shader cores to execute the non-graphics application. In this manner, the execution of the non-graphics application may not interfere with the execution of the graphics application, and vice-versa.
US09019281B2 Mobile terminal, setting method, and storage medium
A mobile terminal including a display unit and communicably connected to a storage apparatus storing setting information of a user interface for an information processing terminal for receiving a user operation to data in the information processing terminal. The mobile terminal includes an acquisition unit and a control unit. The acquisition unit acquires the setting information from the storage apparatus. The control unit displays a user interface for the mobile terminal using the setting information on the display unit.
US09019278B2 Systems and methods for animating non-humanoid characters with human motion data
Systems, methods and products for animating non-humanoid characters with human motion are described. One aspect includes selecting key poses included in initial motion data at a computing system; obtaining non-humanoid character key poses which provide a one to one correspondence to selected key poses in said initial motion data; and statically mapping poses of said initial motion data to non-humanoid character poses using a model built based on said one to one correspondence from said key poses of said initial motion data to said non-humanoid character key poses. Other embodiments are described.
US09019276B2 Visualizing jobs in a distributed environment with limited resources
Visualization used to show resource usage over time by different entities or jobs allows a user to see the resource usage of entities over time. Entities or jobs may be shown as horizontal bundles, possibly expanding or contracting within the constraints of the capacity of the system. Bundles can expand or contract but maintain continuity in a direction, for example, a horizontal continuity. The visualization or layout in one embodiment is updated not only for new incoming events, but also retroactively for past events, thus achieving smooth horizontal bundles as much as possible.
US09019273B2 Sensor placement and analysis using a virtual environment
A process for sensor placement and analysis using a virtual environment includes receiving into a computer processor a model of an area, a position in the model that represents a placement of a virtual sensor, and an orientation of the virtual sensor. A shadow map of the area is generated as a function of the position and orientation of the virtual sensor. The shadow map is used to determine one or more portions of the area that can be sensed by the virtual sensor. The area of the model that is covered as a function of the position and orientation of the virtual sensor is determined, and information relating to the area of the model that is covered as a function of the position and orientation of the virtual sensor is transmitted to an output device.
US09019270B2 Generating informative viewpoints based on editing history
One embodiment of the invention is a collage engine that generates informative viewpoints of a 3D model based upon the editing history of the 3D model. In operation, the collage engine processes an editing log to identify segments of the 3D model that include related vertices. For a given segment, the collage engine selects a viewpoint used by the end-user to edit the 3D model and a viewpoint used by the end-user to inspect the 3D model. The collage engine may then present the informative viewpoints to the end-user for inclusion in a collage of 2D renderings based upon the informative viewpoints. Generally, the viewpoints used while editing and inspecting the 3D model are of importance in the overall presentation of the 3D model. Therefore, collages of 2D renderings based upon the informative viewpoints can be generated effectively.
US09019269B1 Interactive rendering of building information model data
A system, apparatus and method for interactively rendering building information modeling data.
US09019268B1 Modification of a three-dimensional (3D) object data model based on a comparison of images and statistical information
System and methods for rendering three-dimensional (3D) object data models based on a comparison of images. A 3D object data model of an object can be characterized by parameters defining rendering features of the 3D object data model. A comparison can be made of a first rendering of the 3D object data model to one or more reference images related to the object and, based on the comparison, the parameters of the 3D object data model can be modified. Following the modification, the 3D object data model can be rendered to generate a second rendering. Based on the second rendered 3D object data model, statistical information can be obtained and based on the statistical information, the parameters of the 3D object data model can be modified again to further adjust the appearance of the second rendering of the 3D object data model.
US09019266B2 Systems, methods, and computer program products for home and landscape design
This patent application relates generally to systems, methods, and computer program products for home and/or landscape design.
US09019265B2 Storage medium having stored therein display control program, display control apparatus, display control system, and display control method
A parallax with which a virtual world is stereoscopically displayed is set, and in accordance with the parallax, a level of blurring with which the virtual world is stereoscopically displayed is set. Then, a stereoscopic image in which the virtual world is stereoscopically displayed is generated on the basis of the parallax by blurring at least part of the virtual world in accordance with the level of blurring.
US09019259B2 Transmission apparatus, reception apparatus, transmission-reception system, and image display system
The present invention provides a transmission apparatus and a reception apparatus easy to sample data correctly by a clock in the reception apparatus. In a detection section 25 of a reception apparatus 20n, based on data output from a sampler section 23, both or either of detection of a phase difference between data received by a data reception section 21 and a clock received by a clock reception section 22, and/or waveform distortion of this data is performed. A detection signal indicating a result of detection by the detection section 25 is transmitted to a transmission apparatus 10 by a detection signal transmission section 26. In the transmission apparatus 10, by a control section 15, based on the detection signal received by a detection signal reception section 14, both or either of control of adjustment of a phase between data transmitted by a data transmission section 11 and a clock transmitted by a clock transmission section 12, and/or adjustment of an amplitude of the data is performed.
US09019256B2 Shift register and display apparatus that addresses performance problems caused by transistor leakage current
A shift register including a plurality of stages, each of them including a first node, a second node, and a third node being in a high-impedance state when the first node is in a high-impedance state. The shift register includes an input circuit unit inputting a driving voltage to the first node in response to an output signal of a previous stage, a driving circuit unit generating an output signal according to a voltage of the first node, and a holding unit holding the output signal at a level of a gate-off voltage according to a voltage of the second node in an inactive period of a current stage, in which the holding unit comprises a first diode which applies a clock signal to the second node.
US09019251B2 Light sensor arrangement
Ambient light is sensed for use in determining luminous flux. According to an example embodiment, ambient light is sensed using two light sensor arrangements that respectively respond differently to light of different relative wavelengths. The output of the sensors is nonlinearly combined to generate data indicative of the luminous flux. This luminous flux data is used to generate a control output for controlling an electronic display.
US09019249B2 Display panel driving device and driving method thereof for saving electrical energy
A display panel driving device and a driving method thereof are provided. The display panel driving device includes a host and a driving chip, in which the driving chip includes a store unit and a driving module. The host switches sources of image data received by the driving module according to content of the image data, so as to determine whether the driving module receives the image data from the store unit or not.
US09019246B2 Electronic writing system and operating method thereof
The present disclosure provides an electronic writing system including a holder, a light guide plate, at least one light source, and at least one optical film. The light guide plate is disposed in the holder, and the light guide plate has at least one light entrance surface and a light exit surface. The light source is disposed on the light entrance surface of the light guide plate, and is used for generating a light. The light enters the light guide plate through the light entrance surface, and the light emits out of the light guide plate from the light exit surface. The optical film covers the light exit surface of the light guide plate.
US09019243B2 Optical coordinate input device
An optical coordinate input device is disclosed. The optical coordinate input device includes a frame, a first touch detection area, a second touch detection area, a first detection module, a second detection module, and a processing module. The second touch detection area overlap the first touch detection area. The first detection module is disposed on the frame and adjacent to the second touch detection area for detecting the first touch detection area to generate a first touch coordinate signal. The second detection module is disposed on the frame and adjacent to the first touch detection area for detecting the second touch detection area to generate a second touch coordinate signal, wherein the first and second detection module are disposed on different surface of the frame. The processing is used for executing a coordinate calculation procedure base on the first and the second touch coordinate signal.
US09019242B2 Touch display device with dual-sided display and dual-sided touch input functions
A touch display device includes a first substrate, a second substrate, a plurality of sub-pixel regions, a plurality of display devices, a plurality of first optical touch sensor device and second optical touch sensor devices. The first substrate and the second substrate are disposed oppositely. The display devices are disposed in the sub-pixel regions, respectively, to provide images for a first display surface and a second display surface. The first optical touch sensor devices are disposed on the first substrate and at least corresponding to part of the sub-pixel regions for implementing touch input function on the first display surface. The second optical touch sensor devices are disposed on the first substrate and at least corresponding to part of the sub-pixel regions for implementing touch input function on the second display surface.
US09019240B2 Optical touch device with pixilated light-turning features
This disclosure provides systems, methods and apparatus for a touch screens configured to determine a position of a touch event by selectively redirecting light to correlated locations on a light sensor. In one aspect, the touch screen apparatus can include a light guide forming a touch interface, a light source for injecting light into the light guide, a light sensor for detecting the injected light, and a pixilated light-turning layer. The pixilated light-turning layer can include a plurality of light-turning features forming pixels. The pixels can receive incident light corresponding to the emitted light scattered by an object contacting the light guide. The pixels can redirect the incident scattered light towards the light sensor such that light selectively propagates to one or more correlated light receiving locations. A processor can map the light receiving location to an area contacted by the object, thereby determining a position of a touch event.
US09019236B2 Capacitive touch pad configured for proximity detection
The present disclosure relates to a method for controlling a touch pad, comprising an object locate mode for locating an object on the touch pad comprising steps of: determining a measurement of capacitance of each of the pairs of electrodes of the touch pad, each pair comprising a row electrode and a column electrode transverse to the row electrode, comparing each measurement with a first detection threshold, and if the comparison of at least one measurement with the first threshold reveals the presence of an object on the touch pad, locating the object on the touch pad according to the capacitance measurements, the method comprising a proximity detection mode comprising steps of: determining a measurement representative of the capacitance between one or two electrodes and one or two other electrodes of the touch pad, and comparing a measurement obtained with a second detection threshold different from the first threshold.
US09019230B2 Capacitive touchscreen system with reduced power consumption using modal focused scanning
Disclosed herein are various embodiments of a capacitive touchscreen system that is capable of sensing finger touches made on a capacitive touchscreen according to various scanning modes that reduce power consumption of the capacitive touchscreen system. The disclosed power saving scanning modes are modally focused, and can be used not only to reduce system power consumption, but also to enhance the user experience with the capacitive touchscreen system.
US09019226B2 Capacitance scanning proximity detection
A method and apparatus for scanning a first set of electrodes of a capacitive sense array using a first sensing mode to identify a presence of an object in proximity to the capacitive sense array, where scanning using the first sensing mode identifies objects not in physical contact with the capacitive sense array. The first set of electrodes is scanned using a second sensing mode to determine a location of the object in relation to the capacitive sense array, where rescanning using the second sensing mode determines locations of objects in physical contact with the capacitive sense array.
US09019225B2 Electromagnetic pointer control method
The invention disclosed an electromagnetic pointer control method, the method comprising the following steps. First of all, an electromagnetic pointer is applied upon an electromagnetic input apparatus. Then a corresponding distance table is generated according to the moving distance of electromagnetic pointer upon the electromagnetic input apparatus, and a pressure gradient value range corresponding to the distance table is generated. Finally, a tip pressure of the electromagnetic pointer is calculated according to a maximum pressure gradient value in the pressure gradient value range and a pressure gradient value corresponding to the moving distance of electromagnetic pointer.
US09019224B2 Low-latency touch sensitive device
Disclosed are a sensor and method that provide detection of touch events from human fingers on a two-dimensional manifold with the capability for multiple simultaneous touch events to be detected and distinguished from each other. In accordance with an embodiment, the touch events are detected, processed and supplied to downstream computational processes with very low latency, i.e. on the order of one millisecond or less. Disclosed is a projected capacitive method that has been enhanced for high update rate and low latency measurements of touch events. The technique can use parallel hardware and higher frequency waveforms to gain the above advantages. Also disclosed are methods to make the measurements sensitive and robust, allow the technique to be used on transparent display surfaces and permit economical manufacturing of products which employ the technique.
US09019219B2 Touch screen panel
Touch screen panels are provided. The touch screen panel may include a first hybrid electrode including first electrode cells arranged on a substrate in a first direction and first connection electrodes connecting the first electrode cells to each other in the first direction, and a second hybrid electrode spaced apart from the first hybrid electrode on the substrate. The second hybrid electrode may include second electrode cells arranged in a second direction crossing the first direction and second connection electrodes connecting the second electrode cells to each other in the second direction. The second electrode cells are disposed between the first connection electrodes. The first hybrid electrode may include a first lower transparent layer and a first metal layer which are sequentially stacked, and the second hybrid electrode may include a second lower transparent layer and a second metal layer which are sequentially stacked.
US09019216B2 Touch panel and method of detecting coordinate position
Disclosed is a touch panel including an upper conductive layer; a lower conductive layer facing the upper conductive layer with an interval between the upper conductive layer; a capacitive sensing unit that detects a coordinate position by a capacitive coupling under a condition where a predetermined electric potential is applied to the upper conductive layer; and a resistive sensing unit that detects a coordinate position based on an electric potential at a position where the upper conductive layer and the lower conductive layer contact under a condition where a potential gradient is generated on either one of the upper conductive layer and the lower conductive layer.
US09019215B2 Display with integrated touch sensor for detecting a touch by mutual capacitance and method thereof
A display with integrated touch sensor and a driving method thereof are provided. The display comprises a display data driving circuit that supplies analog video data voltages to data lines of a display panel during a display period and maintains the voltage of the data lines at the same specific DC voltage during a touch sensor driving period; a display scan driving circuit that sequentially supplies scan pulses synchronized with the analog video data voltages to the gate lines of the display panel during the display period; a touch sensor driving circuit that sequentially supplies driving pulses to the Tx lines of the display panel during the touch sensor driving period; and a touch sensor readout circuit that receives a touch signal from the mutual capacitances via the Rx lines of the display panel during the touch sensor driving period.
US09019211B2 Methods and apparatus for providing touch sensitive displays
Methods and apparatus provide for a touch sensitive display, which may include: a display layer; a cover glass layer formed from ion exchanged glass; and an optional touch glass layer, where, either on a first side of the touch glass or on a first side of the cover glass, a grid of electrode traces is disposed, which is sensitive to distortions of a local electrostatic field caused by a touching event, and the grid may be positioned between the display layer and the cover glass layer.
US09019206B2 User-interface for controlling a data processing system using a joystick
A user-interface for controlling a data processing system using a joystick includes a joystick for controlling input to the data processing system. The joystick has a pivoting component for assuming tilted positions by tilting in directions that lie in a reference plane associated with the component, and a sensor for sensing at succeeding sampling moments the direction corresponding to succeeding tilted positions of the component, and a difference determination device for determining a difference in direction between a first direction sensed at a first sampling moment and a second direction sensed at a second sampling moment after the first moment, and a parameter modifier for modifying a value of a parameter of the data processing system by adding or subtracting a difference value that depends upon the difference in direction.
US09019204B2 Electronic apparatus and control method therefor
An electronic apparatus and a control method are provided that are capable of reducing power consumption. The electronic apparatus having a normal mode in which first electric power is consumed and a power-saving mode in which second electric power lower than the first electric power is consumed includes a first sensor and a second sensor whose power consumption is lower than that of the first sensor. In the power-saving mode, supply of power to the first sensor is restricted, the second sensor is set to the power-saving mode, a trigger for restoring the power-saving mode to the normal mode is detected by using the second sensor set to the power-saving mode, and the power-saving mode is restored to the normal mode based on the detected trigger.
US09019196B2 Liquid crystal display device
In a liquid crystal display device, a second substrate has detection electrodes of a touch panel, each of pixels has a pixel electrode and a counter electrode divided into a plurality of blocks. The counter electrodes of the respective blocks are commonly provided for the respective pixels of plural continuous display lines, the counter electrodes of the respective blocks double scanning electrodes of the touch panel, and a driver circuit that applies a counter voltage and a touch panel scanning voltage to the counter electrodes of the respective blocks is provided. The driver circuit sequentially applies the touch panel scanning voltage to the counter electrodes of the respective blocks in plural times, while a drive pulse for displaying an image on a liquid crystal display panel is not varied, and drive frequencies of the respective touch panel scanning voltages are different from each other.
US09019195B2 Apparatus and method for driving backlight using scanning backlight scheme, liquid crystal display device and its driving method using scanning backlight scheme
A backlight driving apparatus and method, and an LCD device using the same and a driving method thereof are discussed. The backlight driving apparatus includes a backlight unit, a backlight driver, and a backlight controller. The backlight unit includes a plurality of light sources irradiating light on a liquid crystal display panel which displays an image according to a response of liquid crystal. The backlight driver sequentially turns on the light sources in units of a frame, according to a backlight dimming signal having a duty-on period and a duty-off period. The backlight controller generates the backlight dimming signal having a frequency equal to or higher than a frequency of a frame sync signal for the liquid crystal display panel by analyzing the image, according to external duty-on information.
US09019190B2 Altering frame rates in a MEMS display by selective line skipping
Systems and methods for improving frame rate in electromechanical display devices are disclosed. Rows or columns in a display device are given priorities and are selected for updating or for skipping during updates based on the priorities, the target frame rate, and the visual effect of skipping the particular line.
US09019189B2 Image display device and driving method thereof that varies driving frequency according to frequency of data received
Disclosed is an image display device capable of reducing power consumption and improving display quality. The image display device includes pixels disposed at portions at which scanning lines and data lines intersect with each other; a scanning driving unit driving the scanning lines; a data driving unit driving the data lines; a driving frequency selecting unit generating a selecting signal including information on a driving frequency using data supplied from an external system; and a timing controlling unit controlling the scanning driving unit and the data driving unit using the driving frequency included in the selecting signal.
US09019188B2 Display device for varying different scan ratios for displaying moving and still images and a driving method thereof
A display device including a display panel displaying a still image and a moving image and a signal controller controlling signals to drive the display panel, wherein the signal controller includes a frame memory storing image data of the still image and providing the image data to the display panel, and the display panel is driven with a first scan ratio when displaying the moving image and is driven with a second scan ratio that is lower than the first scan ratio when displaying the still image.
US09019187B2 Liquid crystal display device including TFT compensation circuit
The present invention relates to a liquid crystal display (LCD) device. More particularly, the present invention relates to an LCD device including a thin film transistor (TFT) compensation circuit in an LCD device which implements a driving circuit by using an oxide TFT, the LCD device capable of compensating for degraded characteristics of a TFT due to threshold voltage shift. As the compensation circuit including a dummy TFT is formed on a non-active area of the LC panel, the degree of threshold voltage shift of the DT due to a DC voltage can be sensed. Based on the sensed result, a threshold voltage of a second TFT can be compensated. This can reduce lowering of a device characteristic.
US09019185B2 Method, device and liquid crystal display for reducing crosstalk of shutter-type 3D liquid crystal displays
A method for reducing crosstalk of a liquid crystal display is disclosed. The method includes receiving digital information of an original left eye image and an original right eye image, determining if the gray level values of the pixels in each scanning lines of the left eye image is the same with that of a corresponding pixel in the right eye image, adjusting the gray level values of the pixels to be a first target gray level value of a first gray level table when the comparing result is the same, adjusting the gray level values of the pixels to be a second target gray level value combination of a second gray level table when the comparing result is not the same, and transmitting the digital information of the sorted left eye image and the right eye image after the adjusting steps are executed.
US09019184B2 Liquid crystal display device including specific subpixel arrangement
A liquid crystal display device includes a plurality of subpixels arranged in one column and n rows (where n is an even number ≧ four) within each pixel. In two of the pixels, which are adjacent to each other in the row direction, subpixels that represent the same color belong to the same row. If two of the pixels, which are adjacent to each other in the column direction, are called first and second pixels, respectively, a first half of the subpixels having a combination of first colors are located in odd-numbered rows in the first pixel and in even-numbered rows in the second pixel, while a second half of the subpixels having a combination of second colors, the second colors being different from the first colors, are located in even-numbered rows in the first pixel and in odd-numbered rows in the second pixel.
US09019183B2 Optical loss structure integrated in an illumination apparatus
Various embodiments of a display device described herein include an optical propagation region, at least one optical loss structure, an optical isolation layer, and a plurality of display elements. The propagation region includes a light guide in which light is guided via total internal reflection and turning features configured to redirect the light out of the propagation region. The loss structure would disrupt the total internal reflection of at least some of the light guided within the propagation region if disposed directly adjacent thereto. The optical isolation layer includes a non-gaseous material between the propagation region and the loss structure, and is configured to increase an amount of light that is totally internal reflected in the propagation region. The plurality of display elements are positioned to receive the light redirected out of the propagation region. The loss structure is positioned between the plurality of display elements and the propagation region.
US09019179B2 Pixel circuit of organic light emitting diode
A pixel circuit of an organic light emitting diode (OLED) is provided. The pixel circuit includes an OLED, a first transistor, a second transistor and a capacitor. The OLED receives a first voltage. A terminal of the first transistor is coupled to the OLED, and another terminal of the first transistor receives a second voltage. A terminal of the second transistor is coupled to the terminal of the first transistor, another terminal of the second transistor is coupled to a control terminal of the first transistor, a control terminal of the second transistor receives a scan signal. The capacitor is coupled between the control terminal of the first transistor and a third voltage. When the scan signal is enabled, the second voltage is set to a data voltage, the third voltage is set to a reference voltage, and the first voltage is set to a low voltage.
US09019177B2 Storage medium storing image processing program and image processing apparatus
An image is placed, based on a predetermined designation input, on a predetermined placement position in relation to a display area, and displayed. The image is enlarged and reduced in accordance with an enlargement ratio of the image, and an area within which the placement position can be set is changed in relation to the display area in accordance with the enlargement ratio. Then, based on an obtained designation input, a position within the area, which position corresponds to the designation input, is calculated as a placement position, and the image having been enlarged and reduced is placed on the placement position. The image is then displayed on a display device.
US09019175B2 Optical device for virtual image display with unequal focal length and high magnification
An optical device for virtual image display with unequal focal length and high magnification, comprising an image display, an optically transparent material and a mirror; the optically transparent material being disposed at an oblique angle between the image display and the mirror, and, on the optically transparent material, the side opposite the image display being coated with a reverse anti-reflective film, the other side being coated with a polarizing film or successively with a polarizing film and a forward anti-reflective film; and the included angle between the mirror and the optically transparent material together with the deposition angle M of the reverse anti-reflective film being 90°. The present invention is an optical device structural design with a virtual image optical design including a birefringence function, providing a new design with innovative and improved optics. When magnifying a spatial and virtual image to an even greater extent, the image is larger and clearer, and the planarity of the image is greater, there is no distortion, and user requirements for a head mounted display in the HMD product market can be met.
US09019173B2 Method for generating manoeuvre graphics in a navigation device
A technique for controlling a navigation device to generate a navigation maneuver graphics for a road junction maneuver is proposed. A device embodiment of this technique comprises a routing module adapted to provide routing information pertaining to a scheduled route, with the scheduled route comprising the road junction. Furthermore, an interface to a map database is provided, with the map database containing road data pertaining to the upcoming road junction. A processor of the navigation device analyzes the road data to determine one or more junction geometry parameters of the road junction and to compose, based on the junction geometry parameters and from a plurality of pre-defined graphical junction elements, junction graphics data representative of the road junction. The processor is further adapted to generate, from the routing information and the junction geometry parameters, maneuver indication graphics data representative of the junction maneuver. A display module may then render navigation maneuver graphics based on the junction graphics data and the maneuver indication graphics data.
US09019170B2 Display device and method for controlling the same
A display device and a method for controlling the same are disclosed, in which some area of a curved area is used as an additional display area of the other display area in accordance with a location of a user if a area where image data are displayed includes the curved area.
US09019168B2 Frequency stabilization circuit, frequency stabilization device, antenna apparatus and communication terminal equipment, and impedance conversion element
A frequency stabilization device includes a first radiating element, a second radiating element, a feeding circuit connected to the first and second radiating elements, and a frequency stabilization circuit disposed between the feeding circuit and the first radiating element. The frequency stabilization circuit includes a primary-side series circuit connected to the feeding circuit and a secondary-side series circuit coupled to the primary-side series circuit via an electric field or a magnetic field. A first inductance element and a second inductance element are connected in series to each other, and a third inductance element and a fourth inductance element are connected in series to each other. The first and third inductance elements are coupled to each other, and the second and fourth inductance elements are coupled to each other.
US09019160B2 CSRR-loaded MIMO antenna systems
The CSRR-loaded MIMO antenna systems provide highly compact designs for multiple-input-multiple-output (MIMO) antennas for use in wireless mobile devices. Exemplary two element (2×1), and four element (2×2) MIMO antenna systems are disclosed in which complementary split-ring resonators load patch antennas elements. The overall dimensions of the exemplary MIMO antenna system designed for operation from 750 MHz to 6 GHz band remain within 100×50×0.8 mm2.
US09019159B2 Ranging diversity-reception method and receiver
Method for determining an arrival time of a RF ranging signal at a ranging receiver, comprising receiving at least one RF ranging signal via a plurality of antennas comprised by the ranging receiver, providing a plurality of antenna signals, each comprising at least a section of the ranging signal as received either by a respective one of the antennas or by a linear combination of at least two of the antennas, determining respective candidate arrival times of the at least one ranging signal from at least two of the antenna signals and determining the arrival time of the at least one ranging signal as the earliest candidate arrival time.
US09019155B2 Global positioning system (GPS) and doppler augmentation (GDAUG) and space location inertial navigation geopositioning system (SPACELINGS)
A global positioning system (GPS) and Doppler augmentation (GDAUG) end receiver (GDER) can include a GDAUG module. The GDAUG module can generate a GDER position using a time of flight (TOF) of a transponded GPS signal and a Doppler shift in a GDAUG satellite (GSAT) signal. The transponded GPS signal sent from a GSAT to the GDER can include a frequency shifted copy of a GPS signal from a GPS satellite to the GSAT. The GSAT signal can include a signal generated by the GSAT to the GDER.
US09019154B2 Radar circuit, radar system and method for testing
A radar circuit for controlling a radar antenna in a vehicle comprises an antenna connection for connection of a radar antenna, a transmitting and receiving circuit for transmission and reception of a radar signal, wherein the transmitting and receiving circuit is connected to the antenna connection. A test circuit is provided, wherein the test circuit is likewise connected to the antenna circuit, and the test circuit is designed to use a test signal to test whether a radar antenna is functionally correct connected.
US09019152B2 Standard wafer and its fabrication method
A standard wafer is provided including a substrate; a first layer of semiconductor material formed on the substrate; a bar formed over the first layer of semiconductor material with an interlayer interposed therebetween; and a first sidewall spacer and a second sidewall spacer formed on the opposite sides of the bar respectively, in which the bar and the first layer of semiconductor material are formed of a same semiconductor material, and the interlayer interposed between the first layer of semiconductor material and the bar is formed of a first oxide, and the first sidewall spacer and the second sidewall spacer are formed of a second oxide. A corresponding fabrication method of the standard wafer is also provided.
US09019151B2 Method and device for determining the distance between a radio beacon and an onboard unit
System and method for determining the distance between a radio beacon and a vehicle device passing in the radio beacon, in a road toll system. A signal having a known temporal profile is emitted by one of the radio beacon and vehicle device. The signal is captured in the other component during the passing of the device and the temporal profile of the frequency is recorded in relation to the known temporal profile; a modification in the recoded frequency profile exceeding a first threshold value is detected; two distant wave zones in the frequency profile, lying temporally in front of and behind the detected modification are determined, the zones displaying a frequency modification below a second threshold value are searched for; the recorded frequency profile is scaled in such a way that the distant wave zones take the predetermined values; and the distance is determined from the scaled frequency profile.
US09019149B2 Method and apparatus for measuring the motion of a person
One or more micro-impulse radars (MIRs) are configured to determine the movement of at least one person. Media can be output to the person responsive to the movement.
US09019148B1 Remote sensing using MIMO systems
A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.
US09019145B1 Ground clutter rejection for weather radar
A weather radar system is coupled to a weather radar antenna. The weather radar system includes a processor for combining or summing portions of the radar return data to obtain a null. The processor associates the null with the ground (e.g., steers the null toward ground or processes data so that the null corresponds to ground) to obtain a null to alleviate ground clutter when sensing weather. The null can be a single null or multiple nulls associated with different ranges.
US09019144B2 Acquisition of SAR images for computing a height or a digital elevation model by interferometric processing
The present invention relates to a method for acquiring SAR images for interferometric processing. The method comprises acquiring, by one or more airborne SAR sensors, SAR images of one and the same area with an acquisition geometry such that to enable interferometric processing of said SAR images. The method is characterized by an acquisition geometry in which each SAR image of the area is acquired in a respective direction of acquisition that defines a respective squint angle with respect to the direction of flight, and in which the squint angles are such that to determine a mean squint angle different from zero.
US09019143B2 Spectrometric synthetic aperture radar
This invention relates to improved ultra-wideband synthetic aperture radar and inverse synthetic aperture radar, capable of simultaneously and independently imaging a plurality of spectral and polarimetric channels covering multiple radio frequency octaves. Advances in technologies relating to signal processing, graphical user interfaces, color representations of multi-spectral radar images, low aerodynamic drag polarimetric SAR antenna systems, and synthetic aperture radar aircraft platforms are some of the advancements disclosed herein.
US09019140B2 System and method for analog to digital (A/D) conversion
In one embodiment, a method for converting an analog input value to a digital output value is disclosed. A successive approximation is performed. The analog input is quantized to a first quantized value, which is converted to a first analog value using a DAC. The first analog value is subtracted from the analog input value to form a first residue. The first residue is quantized to form a second quantized value, and a second residue is formed by converting the second quantized value to a second analog value using the DAC and subtracting the second analog value from the first residue value. The second residue is then quantized to form a third quantized value. The first, second and third quantized values are converted into a digital output value. The first, second and third quantized values each have at least three levels.
US09019139B2 Analog to digital converter with built-in data compression based on shot noise of image sensor
An A/D converter system that has a ranging detector that receives and characterizes an input signal. The characterizing sets a coarse range selection based on a level of the input signal. A higher level input signal has a higher level ranging. An A/D converter includes a compression system that compresses based on the ranging output signal by converting different numbers of bits for different level ranging output signal. A higher level input signal is more higher compressed and produces a digital output indicative of the input signal, which is compressed by different amounts based on the ranging output signal. By scaling in this way, the resolution of the A/D converter is scaled on the basis of shot noise level of the image sensor.
US09019131B2 Terminal and method for executing function using human body communication
Methods and apparatus for human body communication are provided. A communication signal for transmission through the human body is generated. The communication signal is transmitted when the terminal is in contact with the human body. The touch is detected, and a communication signal is determined based on a number of the touch and a duration of the touch. A function corresponding to the communication signal is executed.
US09019128B1 Augmented reality aircraft management system
A method and apparatus for providing assistance to a flight crew during flight. An image of a group of instruments on a flight deck of an aircraft is generated with an image sensor in a data processing system. Assistance information configured to assist the flight crew from flight information displayed by the group of instruments in the image is generated. The assistance information is displayed on a display device in the data processing system.
US09019122B2 Information retrieval for boundary reading processing
Information in a data store may be efficiently accessed to perform boundary reading processing. In one example, register readings of one or more register channels that are linked to one or more interval channels may be retrieved from the data store to determine whether or not a boundary reading of a time span is missing. If a boundary reading is missing, but a proximate register reading exists, the boundary reading may be estimated from the proximate register reading and at least one interval reading.
US09019121B1 Configuration over power distribution lines
Aspects of the present disclosure are directed toward the use of broadcast transmissions to multiple endpoint devices. These broadcast transmissions can be particularly useful for reducing the communication bandwidth used during transmission of configuration data to the endpoint devices. In order to implement the broadcast communications, the present disclosure describes a mechanism for configuring targeted endpoint devices to be responsive to the broadcast communications. For instance, a configuration command can be sent to each of the targeted endpoint devices. The configuration command can include a virtual ID. The targeted endpoint devices can configure themselves to listen for subsequent broadcast messages addressed to the virtual ID. Configuration data can then be sent using the virtual ID and associated broadcast messages.
US09019116B2 Signaling device comprising an audio signaling unit and comprising a light signaling unit
A signaling device includes an audio signaling unit for emitting an acoustic signal and a light signaling unit for emitting a visual signal. A base housing body is provided, upon which the signaling device is arranged on an accommodating body. An upper housing part is provided, arranged on the base housing body, for forming a receiving space. The base body of the light signaling unit is formed of a light-transparent signal cap, that includes a base area which is spanned by a connection frame. The light signaling unit further includes an electrical switching unit, which is disposed in the connection frame. The base housing body includes a side wall, and the signal cap is attached to the outer side of the side wall with the base area and is disposed on the base housing body.
US09019114B1 Device management module, remote management module and device management system employing same
A device management system includes a bus bar, a device management module, and a remote management module. The device management module includes at least one remotely-controllable switching circuit and a detecting circuit. When a device is installed in the rack cabinet, the remotely-controllable switching circuit connected with the device is enabled by the detecting circuit. The remote management module is in communication with the remotely-controllable switching circuit and the detecting circuit through the bus bar. The information of the device is acquired by the remote management module through the remotely-controllable switching circuit. A switch element of the remotely-controllable switching circuit which is connected to the device is selectively turned on or turned off by the remote management module. When the switch element is turned on, the DC power is transmitted to the device through the switch element.
US09019113B2 Circuit, system and/or method for detecting an electrical connection between an electrical device and a power supply
A circuit, a system and/or a method detect a passive electrical connection and/or an active electrical connection between an electrical device and a power supply. An integrity of the electrical connection between the electrical device and the power supply is monitored to determine if the electrical device may have access to power and/or to determine if the electrical device may be secure while on display. A high frequency AC signal is modulated onto a positive power rail between the electrical device and the power supply. Capacitance circuitry of the electrical device may remove the high frequency signal from the positive power rail. An absence of the high frequency signal on the positive power rail indicates that the electrical connection exists between the electrical device and the power supply. A presence of the high frequency signal on the positive power rail indicates that the electrical connection does not exist between the electrical device and the power supply.
US09019112B2 Systems and methods for optimizing low battery indication in alarms
A method and apparatus for utilizing a timing component to optimize low battery indication in alarm devices. The method and apparatus may set a timing component based on a condition detected by a alarm device. Upon detection of a low battery condition within the alarm device, the alarm device can delay low battery indication, using the timing component, until a time of day with a higher probably of user suitability.
US09019108B2 Thermal measurement system for fault detection within a power generation system
A system includes a radiation sensor configured to direct a field of view toward a conduit within a heat recovery steam generator, and to output a signal indicative of a temperature of the conduit. The system also includes a controller communicatively coupled to the radiation sensor. The controller is configured to determine the temperature based on the signal, and to compare the temperature to a threshold value.
US09019106B2 Adaptive wearable device for controlling an alarm based on user sleep state
A method is provided for dismissing or altering a user-configured alarm upon detection of the user's sleep state. The method includes associating an alarm device with the user's body by securing a wearable device to the user's wrist, placing the device in a pocket, integrating the device into the user's clothing such as a belt, or otherwise placing the device in contact with or adjacent to the user. The device includes one or more sensors for detecting physiological and/or environmental parameters such as heart, respiration, or pulse rate, body movements, eye movements, ambient light, and the like. If the user is asleep, the alarm is actuated in a typical manner. If the user is awake, the alarm is suppressed. If the user is neither asleep nor fully awake, the alarm is adjusted to provide an appropriate level of stimulation.
US09019105B2 Animal emotion display system and method
An animal emotion display system 100 including: a transmitter 10 which is attached to an animal; and a receiver 20 which is capable of communicating with the transmitter, wherein the transmitter 10 includes: a tail wagging detection sensor 12 to detect a plurality of kinds of tail wagging of the animal as a plurality of kinds of emotion of the animal, respectively; and a transmitting section 15 to transmit emotion data corresponding to the respective kinds of tail wagging detected by the tail wagging detection sensor 12 to the receiver 20, and the receiver 20 includes: a receiving section 22 to receive the emotion data transmitted by the transmitting section 15; a display section 25; and a display control section 24 to display a display content corresponding to the emotion data received by the receiving section 22 on the display section 25.
US09019095B2 Systems and methods for integrating alarm processing and presentation of alarms for a power generation system
Systems and methods for integrating alarm processing and presentation of alarms for a power generation system are described. A template or graphical user interface (GUI) for displaying information associated with alarms may be generated for various types of alarms. Information associated with an alarm may be identified based on certain criteria and stored in a template associated with the alarm for presentation to a user. One or more status messages may be output to a display such a that a user or other person responsible for responding to an alarm may receive a current status associated with an alarm, including that an alarm has been processed and is ready to be acted upon. An alarm may be analyzed, categorized, and escalated based on historical information associated with the alarm, as well as determinations made by a user based on information stored in a template associated with alarm.
US09019089B2 User interface for an SST
The present invention provides a method and apparatus for assisting a user of a Self-Service Terminal (SST). The apparatus provides a user interface for an SST, comprising a media slot for dispensing and/or depositing a media item to a user, a pair of spaced apart edges extending across a substantial portion of the user interface and converging in the vicinity of a transaction activation region to provide a tactile path to assist the user in locating the transaction activation region, and an illuminated guide to provide a visual path to further assist the user in locating the transaction activation region.
US09019086B2 Universal wireless trainable transceiver unit with integrated bidirectional wireless interface for vehicles
The invention relates to a universal wireless trainable transceiver unit with integrated bidirectional wireless interface functionality, and a method for same. Using a scan, push button or untrained channel mode, a user may enter into a wireless bidirectional interface mode of a trainable transceiver. The interface mode allows a user to select a sub-set of modes that include diagnostics, flash and vehicle interface. Each mode provides the trainable transceiver to communicate wirelessly in a bidirectional manner with another remote device.
US09019085B2 Anti-disassembling device for electronic products
An anti-disassembling device for an electronic product includes a case, a linear movement device, a circular movement device and an optical encoder. At least one retractable transmission member is connected to the case. The circular movement device is located in the case and has an encoding disk, which has multiple slots defined therethrough and teeth are defined in the periphery thereof. The at least one retractable transmission member is engaged with the teeth to rotate the encoding disk. The optical encoder has a lighting module which emits light beams through the slots of the encoding disk and a photosensitive module receives the light beams and sends a signal to the storage unit of the electronic product. The retractable device rotates when the electronic product is disassembled.
US09019081B2 Tag detacher with haptic feedback
An electronic article surveillance (“EAS”) system tag detacher for unlocking an EAS tag is provided. The EAS tag includes a housing and a locking mechanism disposed within the housing. The EAS system tag detacher includes an EAS tag receiving area configured to receive the EAS tag. The EAS system tag detacher further includes a detaching element configured to unlock the EAS tag; and a haptic feedback element. The haptic feedback element is configured to generate haptic feedback when energized, the haptic feedback element being energized when the EAS tag has been unlocked by the detaching element.
US09019078B2 Surgical object tracking system
A method and apparatus for identifying and tracking surgical objects is disclosed. More specifically, a method and apparatus for identifying and tracking surgical objects such as needles, scalpels, blades, sponges and instruments in a medical industry using an identifier encoded on a fluorescent paint attached to the surgical object combined with detectors and software capable of retrieving the identifying information on the identifier.
US09019068B2 Method, apparatus and system for automated change of an operating mode relating to a wireless device
A method, apparatus, and system for automatically changing the operating mode of a wireless device are provided. A determination is made whether at least one state of the wireless device has changed. This determination is performed using at least one integrated device of the wireless device. A determination is made whether the change in the state of the wireless device indicates that the first operating mode should be changed. The operating mode is changed to a second operating mode of the wireless device in response to a determination that the change in the state of the wireless device indicates that the first operating mode should be changed. Changing to the second operating mode includes altering at least one wireless communication operation of the wireless device. Examples of the second operating mode may include, but is not limited to, an airplane mode, a train mode, a vehicle mode, an environmental condition mode; or a device-access mode.
US09019057B2 Galvanic isolators and coil transducers
Disclosed herein are various embodiments of coil transducers and galvanic isolators configured to provide high voltage isolation and high voltage breakdown performance characteristics in small packages. A coil transducer is provided across which data or power signals may be transmitted and received by primary and secondary coils disposed on opposing sides thereof without high voltage breakdowns occurring therebetween. At least portions of the coil transducer are formed of an electrically insulating, non-metallic, non-semiconductor, low dielectric loss material. Circuits are disclosed herein that permit high speed data signals to be transmitted through the coil transducer and faithfully and accurately reconstructed on the opposing side thereof. The coil transducer may be formed in a small package using, by way of example, printed circuit board, CMOS and other fabrication and packaging processes.
US09019056B2 Coil component, mounting structure thereof, and electronic device including the same
Disclosed are a coil component capable of securing insulation between primary and secondary coils while being miniaturized, a mounting structure thereof, and an electronic device having the same. The coil component includes a bobbin including a winding part around which coils are wound and first terminal fastening parts fastened to a plurality of first connection terminals; and a second terminal fastening part including terminal blocks protruded from the bobbin and a plurality of second connection terminals fastened to the terminal blocks, wherein the second terminal fastening part is mounted on a substrate while being spaced apart from the bobbin after the coils are wound therearound.
US09019054B2 Magnet apparatus
A magnet apparatus which comprises a first vacuum chamber, a second vacuum chamber, a first magnet disposed within the first vacuum chamber such that the first magnet can be thermally isolated from the exterior of the first vacuum chamber, and a load connector extending from the first vacuum chamber into the second vacuum chamber so that a load on the first magnet can be transferred to the second vacuum chamber, wherein the load connector is in thermal contact with the first magnet and can be thermally isolated from the exterior of the first vacuum chamber and the exterior of the second vacuum chamber.
US09019052B2 Magnetic switch device and electronic device having the same
A magnetic switch device and an electronic device having the same are disclosed. The electronic device includes an upper case which includes a first element and a lower case. The magnetic switch device includes a switch part and a driving part, wherein the switch part is mounted on the lower case and includes a second element that can be attached to the first element through magnetic force. The driving part is mounted on the lower case, such that when the driving part is moved, the switch part is enabled by the driving part to make the second element correspond to the first element, allowing the upper case to attach to the lower case; or the switch part is disabled by the driving part to not make the second element correspond to the first element, allowing the upper case not to attach to the lower case.
US09019051B2 Attachment/detachment structure for electromagnetic contactor and accessory unit and assembly method for movable hook portion provided in accessory unit
A movable hook portion (13) provided in a unit side coupling surface (2a) of an accessory unit (2) includes a hook portion main body (14), which is formed with a movable claw (23a) and a pressed piece (22), and a straight spring (15), slidably accommodates the hook portion main body (14) in a main body accommodation concave portion (16) formed in the unit side coupling surface (2a), and accommodates the straight spring (15) in a spring accommodation concave portion (17a) formed in the unit side coupling surface (2a) so as to be orthogonal to a sliding direction of the hook portion main body (14), with a middle portion in a length direction of the spring being engaged with the hook portion main body (14). When the hook portion main body (14) is slid in a disengaging direction which brings the movable claw (23a) and a hooking hole (8a) of an electromagnetic contactor (1) into a disengaged state by pressing the pressed piece (24), an elastic restoring force of the straight spring (15) elastically deformed into a bow-like shape acts on the hook portion main body (14) in a direction opposite to the disengaging direction.
US09019047B2 Waveguide E-plane filter structure with controllable size
The present invention relates to a waveguide E-plane filter component (1) comprising a first and second main part (2: 4) with a corresponding first and second waveguide section part (3, 5). The main parts (2, 4) are arranged to be mounted to each other, such that an open side (8) of the first waveguide section part (3) is arranged to face an open side (9) of the second waveguide section part (5). The E-plane filter component (1) further comprises at least one electrically conducting foil (10, 11) that is arranged to be placed between the main part (2, 4), Said foil (10, 11) have a longitudinal extension (L) and comprises a filter part (12) that is arranged to run between the waveguide section parts (3, 5), and is divided into a first filter part (13) and a second filter part (14) by an imaginary symmetry line (15) running along the longitudinal extension (L) in the middle of the filter part (12). The filter part (12) comprises at least a first aperture (16a) and a second aperture (16b), where the major part of the first aperture (16a) is positioned in the first filter part (13) and the major part of the second aperture (16b) is positioned in the second filter part (14). All parts of the apertures are separated along the longitudinal extension (L).
US09019045B2 Filter circuit having improved filter characteristic
A ladder-type-like filter circuit is specified with improved filter behavior. Inductive elements that interconnect parallel resonators with ground are electromagnetically coupled to one another.
US09019044B2 Filter for a magnetron power supply lead
An inductive filter for a magnetron power supply lead comprises an electrically insulating tube; a power lead located partially within the electrically insulating tube, and coaxial therewith, for supplying power from a magnetron power supply to a magnetron, a first core of a first magnetic material and a second core of a second magnetic material coaxially located on the electrically insulating tube; an insulating disc of same external diameter as the first core and the second core and coaxially located on the electrically insulating tube between the first core and the second core. The inductive filter is arranged to filter noise of a first frequency band and noise of a second, different, frequency band different from being transmitted along the power lead and to absorb a predetermined transient voltage from being transmitted along the power lead.
US09019040B2 Elastic wave branching filter
An elastic wave surface acoustic wave duplexer includes an antenna terminal, a transmission filter, a reception filter, and a plurality of elastic wave resonators connected in series between the antenna terminal and the reception filter. The reception filter is a longitudinally coupled resonator-type surface acoustic wave filter including a plurality of IDT electrodes and arranged along a propagation direction of elastic wave. A combined capacitance of the plurality of surface acoustic wave resonators is smaller than a capacitance of the IDT electrodes and included in the plurality of IDT electrodes and connected to the antenna terminal.
US09019039B1 Frequency and bandwidth tunable microwave filter
An RF bandpass filter includes a cascaded series of a first subfilter and a second subfilter. Each subfilter includes a respective inverter, voltage-controlled capacitor and inductor. A first selected one of the first subfilter and the second subfilter is a pseudo low pass filter and a second selected one of the first subfilter and the second subfilter is a pseudo high pass filter. The RF bandpass filter is configured to separately control a bandwidth and center frequency of output RF energy. The bandwidth may be controlled to be substantially fixed over a significant substantial range. The center frequency and bandwidth are controlled by adjusting a voltage input to one or more of the voltage-controlled capacitors.
US09019027B2 Oscillation device
An oscillation device is provided. The oscillation device includes: a main circuit portion, a heating unit, first and second crystal units, first and second oscillator circuits, a frequency difference detector, a first addition unit, an integration circuit unit, a circuit unit configured to control an electric power to be supplied to the heating unit, a compensation value obtaining unit, and a second addition unit. The compensation value obtaining unit is configured to obtain a frequency compensation value for compensating an output frequency of the main circuit portion based on an integrated value output from the integration circuit unit, and based on a change in the clock signal due to a difference between the temperature of the atmosphere and the temperature setting value of the heating unit. The second addition unit is configured to add the frequency compensation value to a frequency setting value.
US09019026B2 Circuit and method for generating oscillating signals
An oscillator module includes a first MOS transistor and a capacitor. The capacitor is coupled between a gate and source of the first MOS transistor. The drain of the first MOS transistor receives a first bias current and generates an oscillating output signal. A switching circuit operates in response to the oscillating output signal to selective charge and discharge the capacitor. A current sourcing circuit is configured to generate the bias current. The current sourcing circuit includes a second MOS transistor which has an identical layout to the first MOS transistor and receives a second bias current. A resistor is coupled between a gate and source of the second MOS transistor. The current sourcing circuit further includes a current mirror having an input configured to receive a reference current passing through the resistor and generate the first and second bias currents.
US09019025B2 Oscillator
An oscillator configured to oscillate an electromagnetic wave, including: a negative resistance device; a microstrip resonator configured to determine an oscillation frequency of an electromagnetic wave excited by the negative resistance device; a resistance device and a capacitance device, which form a low-impedance circuit configured to suppress parasitic oscillation; and a strip conductor configured to connect the capacitance device of the low-impedance circuit and the microstrip resonator to each other, in which an inductance L of the strip conductor and a capacitance C of the microstrip resonator produce a resonance frequency of ½π√LC, and ¼ of an equivalent wavelength of the resonance frequency is larger than a distance between the negative resistance device and the resistance device of the low-impedance circuit via the strip conductor, is provided.
US09019024B2 Quantum interference device, atomic oscillator, and moving object
An atomic oscillator includes: a gas cell which includes two window portions having a light transmissive property and in which metal atoms are sealed; a light emitting portion that emits excitation light to excite the metal atoms in the gas cell; a light detecting portion that detects the excitation light transmitted through the gas cell; a heater that generates heat; and a connection member that thermally connects the heater and each window portion of the gas cell to each other.
US09019021B2 Multi-phase voltage-controlled oscillator
Embodiments provide a multi-phase voltage controlled oscillator (VCO) that produces a plurality of output signals having a common frequency and different phases. In one embodiment, the VCO may include a passive conductive structure having a first ring and a plurality of taps spaced around the first ring. The VCO may further include a capacitive load coupled to the passive conductive structure, one or more feedback structures coupled between a pair of opposing taps of the plurality of taps, and one or more current injection devices coupled between a pair of adjacent taps of the plurality of taps.
US09019018B2 Integrated circuit with an internal RC-oscillator and method for calibrating an RC-oscillator
An integrated circuit (10) has an internal RC-oscillator (20) for providing an internal clock signal (CLI) having an adjustable oscillator frequency. The integrated circuit (10) further comprises terminals (101, 102) for connecting an external LC tank (30) having a resonance frequency and a calibration circuit (40) which is configured to adjust the oscillator frequency based on the resonance frequency of the LC tank (30) connected during operation of the integrated circuit (10). An internal auxiliary oscillator (46) is connected to the terminals (101, 102) in a switchable fashion and is configured to generate an auxiliary clock signal (CLA) based on the resonance frequency. The calibration circuit (40) comprises a frequency comparator (47) which is configured to determine a trimming word (TRW) based on a frequency comparison of the internal clock signal (CLI) and the auxiliary clock signal (CLA). The LC tank (30) to be connected is an antenna for receiving a radio signal.
US09019011B2 Method of power amplifier calibration for an envelope tracking system
A method for power amplifier (PA) calibration for an envelope tracking system of a wireless device is disclosed. The method involves measuring an output power of a PA that is a part under test (PUT) at a predetermined input power. Another step includes calculating a gain equal to the output power of the PA divided by the predetermined input power. A next step involves calculating a gain correction by subtracting the calculated gain from a desired gain. Other steps include determining an expected supply voltage for the PA at the desired gain using the gain correction applied to a nominal curve of gain versus PA supply voltage, and then storing the expected supply voltage for the PA versus input power in memory.
US09019008B2 Class D amplifiers
A 3-level class D amplifier circuit comprises a first comparator for comparing an input with a first triangular reference and a second comparator for comparing the input with a second triangular reference. A phase relationship between the signals to the first comparator is 180 degrees shifted relative to a phase relationship between the signals to the second comparator. An amplifier stage generates a three-level PWM output signal using the outputs of the first and second comparators. A shared feedback path is used from the three-level PWM output signal.
US09019004B2 System and method for distributed regulation of charge pumps
A system for providing a load current at a specific voltage to a circuit block of an integrated circuit (IC) includes a plurality of charge pumps and a control circuit to generate a control signal for each of the charge pumps. The control signal causes each of the charge pumps to be enabled, partially enabled, or disabled, and controls at least one of the charge pumps independently of the other charge pumps.
US09019002B2 Self-scaled voltage booster
Various technologies described herein pertain to automatically adjusting the strength of a voltage booster of an image sensor. A self-scaled voltage booster includes a regulator, a controller, and two or more charge pumps that can be selectively enabled and disabled by the controller. The controller generates controller signals for the charge pumps based on a duty cycle of a regulator signal generated by the regulator. Moreover, the controller can maintain the controller signals without modification for at least a predetermined minimum period of time after a prior modification of at least one of the controller signals. Further, the controller can include a duty cycle and delay module (or a plurality of duty cycle and delay modules) that detects the duty cycle of the regulator signal and maintains the controller signals without modification for at least the predetermined minimum period of time.
US09019000B2 Driver circuit having a storage device for driving switching device
A driver circuit for a semiconductor switching device includes a drive power source, a capacitor and four switches, which form a bridge circuit. The capacitor is provided between the four switches. In one cycle of application of a voltage to a gate of the semiconductor switching device to turn on the semiconductor switch, the first and the second switches, which are diagonal, are turned off and the third and the fourth switches, which are diagonal, are turned on to charge the capacitor. Then only the first switch is turned on to apply the voltage to the gate, and lastly only the second switch is turned on to discharge the capacitor thereby to apply a negative voltage to the gate of the semiconductor switching device.
US09018999B2 Multi-point analog to single-line input for a PLC system
A hardware/PLC logic combination which enables measurement of a plurality of analog voltage points (e.g., multiples of 8 points) on a single high speed PLC input without separate synchronization inputs or outputs. This is accomplished through the use of a multiplexer circuit [clock, binary counter, analog multiplexer, voltage to frequency converter], and a high speed counter function at the PLC. Synchronization between the PLC and circuit is through the detection of a fixed voltage on channel “one” of the circuit, which is set well above the typical range (e.g., 0-10V) of the remaining analog inputs.
US09018997B2 Semiconductor device
A semiconductor device includes conducting lines of a first group and a second group arranged in parallel, a plurality of first internal elements respectively coupled to the conducting lines of the first group and the second group and a plurality of first contact pads arranged between and along the conducting lines of the first group and the second groups, wherein at least a part of the plurality of first contact pads are respectively coupled to control terminals of the plurality of first internal elements, and the part of the plurality of first internal elements receive a plurality of first control signals through corresponding control terminals, respectively.
US09018994B2 Duty cycle correction circuit and operation method thereof
A duty cycle correction circuit includes a clock adjustment unit configured to adjust a duty ratio of an input clock signal in response to a duty control signal and generate an output clock signal, a tracking type setting unit configured to generate an tracking type selection signal for setting a first or second tracking type based on a duty locking state of the output clock signal, and a control signal generation unit configured to generate the duty control signal, into which the first or second tracking type is incorporated, in response to the tracking type selection signal and the output clock signal.
US09018993B1 Self-feedback random generator and method thereof
A self-feedback random generator comprises a digital-to-analog converter, a digital oscillator, a frequency-modulating unit and a first D-type flip-flop. The digital-to-analog converter receives a digital random-code signal and the digital random-code signal is converted to corresponding analog random signal. The frequency-modulating unit modulates frequency of first digital oscillating signal so as to increase random of frequency of first digital oscillating signal according to voltage value of the analog random signal, and accordingly outputs a second digital oscillating signal. The first D-type flip-flop receives the second digital oscillating signal and a clock signal, and reads the second digital oscillating signal through utilizing the clock signal so as to outputs the digital random-code signal, wherein frequency of the clock signal is smaller than frequency of the first digital oscillating signal, and random of frequency of the second digital oscillating signal corresponds to random of the digital random-code signal.
US09018992B1 Systems and methods involving phase detection with adaptive locking/detection features
Systems and methods associated with control of clock signals are disclosed. In one exemplary implementation, there is provided a delay-lock-loop (DLL) and/or a delay/phase detection circuit. Moreover, such circuit may comprise digital phase detection circuitry, digital delay control circuitry, analog phase detection circuitry, and analog delay control circuitry. Implementations may include configurations that prevent transition back to the unlocked state due to jitter or noise.
US09018988B2 Methods and architectures for extended range arbitrary ratio dividers
One of the most important RF building blocks today is the frequency synthesizer, or more particularly the programmable frequency divider (divider). Such dividers preferably would support unlimited range with continuous division without incorrect divisions or loss of PLL lock. The inventors present multi-modulus dividers (MMDs) providing extended division range against the prior art and without incorrect divisions as the division ratio is switched back and forth across the boundary between two different ranges. Accordingly, the inventors present MMD frequency dividers without the drawbacks within the prior art.
US09018981B2 Latch circuit and clock control circuit
A latch circuit includes a latch unit and a clock propagation suppressing unit. The latch circuit holds and outputs input data of 0 or 1. The clock propagation suppressing unit compares the input data input to the latch unit with output data output from the latch unit. When it is detected that the input data matches the output data at 0, or that the input data matches the output data at 1, an externally input clock signal is prevented from propagating to the latch unit.
US09018978B2 Runtime loading of configuration data in a configurable IC
A novel configurable integrated circuit (IC) that has several configurable circuits for configurably performing different operations is provided. During the operation of the IC, each particular configurable circuit performs a particular operation that is specified by a particular configuration data set for the particular configurable circuit. While the IC operates and a first set of configurable circuits performs a first set of operations, configuration data is loaded from the outside of the IC for configuring a second set of configurable circuits. The configurable IC includes a configuration network for rapid loading configuration data in the IC from outside of the IC. The configuration network is a pipelined network.
US09018976B2 Dual-port positive level sensitive reset preset data retention latch
In an embodiment of the invention, a dual-port positive level sensitive reset preset data retention latch contains a clocked inverter and a dual-port latch. Data is clocked through the clocked inverter when clock signal CKT goes high, CLKZ goes low, preset control signal PRE is low, rest control signal REN is high and retention control signal RET is low. The dual-port latch is configured to receive the output of the clocked inverter, a second data bit D2, the clock signals CKT and CLKZ, the retain control signals RET and RETN, the preset control signal PRE and the control signals SS and SSN. The signals CKT, CLKZ, RET, RETN, PRE, REN, SS and SSN determine whether the output of the clocked inverter or the second data bit D2 is latched in the dual-port latch. Control signals RET and RETN determine when data is stored in the dual-port latch during retention mode.
US09018973B2 Semiconductor device
A device, comprising an output terminal; an output circuit coupled to the output terminal and having an adjustable impedance; and an impedance adjustment circuit adjusting stepwise the adjustable impedance so as to head toward a first reference impedance. The impedance adjustment circuit changes the adjustable impedance by a first amount when the adjustable impedance is within a first range, and changes the adjustable impedance by a second amount when the adjustable impedance is out of the first range. The first amount is smaller than the second amount.
US09018965B2 Method and system to verify the reliability of electronic devices
To verify robustness with respect to electrical overstresses of an electronic circuit under test, the latter is exposed to electrical overstresses, and the behavior thereof is monitored. In particular, both the testing of the electronic circuit in dynamic conditions is performed by causing it to be traversed by the currents that characterize operation thereof, and by exposing at least one supply line of the electronic circuit under test to electrical overstresses and the testing of the electronic circuit under test in static conditions, without causing it to be traversed by the currents that characterize operation thereof, and by exposing to electrical overstresses both the supply and the input and/or output lines of the electronic circuit under test. The device for generating the overstresses can be mounted on a circuit board, which can be coupled as daughter board to a mother board, on which the electronic circuit under test is mounted.
US09018961B2 Diagnosing injector failure via stack voltage response analysis
A system and method for determining whether an anode injector that injects hydrogen gas into an anode side of a fuel cell stack has failed. The method includes monitoring a voltage of the fuel cell stack and performing spectral analysis of the stack voltage to identify amplitude peaks in the stack voltage. The method further includes determining whether the spectral analysis of the stack voltage has identified an amplitude peak at a location where an amplitude peak should occur if the injector is operating properly. If no amplitude peak is identified at that location, then the method determines that the injector is not operating properly. If an amplitude peak is identified at that location, then the method compares the amplitude peak to the desired amplitude peak to identify if it is within a threshold to determine if the injector is operating properly.
US09018959B2 Insulating state detection unit having failure detector
An insulating state detection unit is configured to perform failure detection for switches, which connect a flying capacitor to a sample hold circuit for acquiring a charge voltage and a ground potential, by using a failure determination threshold value according to a variable value. That is to say, the insulating state detection unit is configured to decide the failure determination threshold value by taking, as a reference, a charge voltage of a capacitor of the sample hold circuit charged with electric charge amount corresponding to a charge voltage of the flying capacitor when the flying capacitor is charged with electric charge amount corresponding to an output voltage of a DC power supply.
US09018957B2 Method and system for diagnostic measurement of motor vehicle restraint system squib loop resistance
A method of measuring squib loop resistance including non-linear elements in a restraint control module is disclosed by the present invention. The squib loop resistance is comprised of both linear and non-linear elements. The non-linear elements are linearized into resistive components about the bias points used to make the squib loop resistance measurement. The calculation of the linear squib loop resistance is provided by comparing the complete squib loop resistance and the linearized value of the non-linear elements.
US09018953B2 Magnetic resonance imaging apparatus and magnetic resonance imaging method
According to one embodiment, a magnetic resonance imaging apparatus includes a data acquiring unit and an image generating unit. The data acquiring unit is configured to acquire a signal train of magnetic resonance signals from an object by a spin echo method for applying a refocus pulse repeatedly following an excitation pulse with changing a flip angle of the refocus pulse. The image generating unit is configured to generate frames of image data having different contrasts, based on different portions of the signal train of the magnetic resonance signals.
US09018952B2 Method for self-calibrated parallel magnetic resonance image reconstruction
A method for producing a time-series of images of a subject with a magnetic resonance imaging (MRI) system is provided. The MRI system is used to acquire a time-series undersampled k-space data set, in which a selected number of k-space data subsets in the time-series data set includes both image data and calibration data. Moreover, the calibration data in each of these selected number of k-space data subsets includes a portion of a desired total amount of calibration data. For example, each of these selected number of k-space data subsets include calibration data that is acquired by sampling a different partition of a calibration data sampling pattern. A time-series of images of the subject is then produced by reconstructing images of the subject from the acquired time-series of undersampled k-space data sets. These images are substantially free of undersampling artifacts.
US09018949B2 Sensor
A sensor comprises a housing which defines a measuring side and a connection side, a coil (6) which is arranged in the housing (1) on the measuring side, and a cover (14) for closing the housing on the measuring side. The housing (1) consists of ferromagnetic material, in particular ferromagnetic steel. The coil (6) is positioned and fixed in the housing close to the cover (14) or directly on the cover (14).
US09018947B2 Pixel and array test method for the same
A pixel includes an organic light emitting diode, a first transistor that is connected to a first power source and that supplies a driving current according to a corresponding data voltage to the organic light emitting diode, a second transistor that is connected to a scan line and that transmits the corresponding data voltage from a data line to a driving transistor according to a scan signal transmitted from the scan line, and a first capacitor including one electrode connected to a gate electrode of the first transistor. The first capacitor stores the corresponding data voltage as a first voltage and a size of the first capacitor is in a range of about 2 times to about 4 times a size of a gate insulating layer of the first transistor.
US09018943B2 Magnetically coupled rotary magnetic encoder with angle error reduction
A rotary magnetic encoder assembly of noncontact or “contactless” construction having an internally disposed first exciter or sensor magnet magnetically coupled to an externally disposed second application or drive magnet attached to an encoder shaft that rotates the sensor magnet substantially in unison therewith during encoder shaft rotation. The sensor magnet is rotatively supported by a friction reducer that is a bearing arrangement that provides point bearing contact preventing stiction and reducing dynamic friction of the sensor magnet minimizing angle error and helping to prevent “Quiver.” In one embodiment, the friction reducer is a spherical ball bearing. In another embodiment, the friction reducer is a thrust bearing that includes a spindle carrying the sensor magnet. A magnetic anchor can be disposed between the sensor magnet and drive magnet to help keep the sensor magnet in point bearing contact during rotation further minimizing angle error.
US09018941B2 Biasing circuit for a magnetic field sensor, and corresponding biasing method
Described herein is a biasing circuit for a magnetic-field sensor; the magnetic-field sensor is provided with a first detection structure, which generates a first electrical detection quantity as a function of a first component of an external magnetic field, and a second detection structure, which generates a second electrical detection quantity as a function of a second component of an external magnetic field. The biasing circuit electrically supplies the first detection structure and the second detection structure in respective biasing time intervals, at least partially distinct from one another, which preferably do not temporally overlap one other.
US09018940B2 Bicycle rotation detecting device
A bicycle rotation detecting device is provided with a first electrical connector, a second electrical connector, a rotation detecting circuit and an output part. The second electrical connector is electrically connected to the first electrical connector by an electrical path. The rotation detecting circuit detects a waveform of alternating current in the electrical path and produces a rotation detection signal. The output part is electrically connected to the rotation detecting circuit. The output part outputs either the rotation detection signal of the rotation detecting circuit or a signal based on the rotation detection signal of the rotation detecting circuit.
US09018935B2 Method for operating a metal detection apparatus and apparatus
A method for operating a metal detection apparatus that comprises a transmitter unit with a drive circuit that alternately applies two different drive voltages via a first set of two drive switches to a first tail and via a second set of two drive switches to a second tail of a transmitter coil that is coupled to a receiver coil, which is connected to the input of a receiver unit. A system adapted to operate according to an exemplary method is also provided. In one embodiment, at least a first waveform is generated for controlling the first set of drive switches and at least a second waveform is generated for controlling the second set of drive switches, wherein the first and second waveforms that correspond to a selected operating frequency are shifted relative to one another in order to allow a desired drive current to flow through the transmitter coil.
US09018933B2 Voltage buffer apparatus
The present invention relates to a voltage bandgap buffer apparatus. This apparatus includes a voltage processing module to produce a bandgap buffer voltage in response to an input voltage and a feedback signal and a symmetry circuit. This symmetry circuit is coupled to the voltage processing module for producing the feedback signal and for regulating the feedback signal in response to the input voltage.
US09018928B2 Relative efficiency measurement in a pulse width modulation system
A pulse width modulation (PWM) power conversion system has improved efficiency over a wide operating input voltage and load range. Being able to measure relative efficiency of an analog PWM system allows enhanced control while maintaining the benefits of analog control. An analog low pass filter produces an average value of the PWM pulse train, then this analog average value is converted into digital values with an analog-to-digital converter and stored so that relative efficiencies of the PWM power conversion system may be compared for various combinations of operating parameters.
US09018925B2 Load control apparatus
A load control apparatus is provided in which a circuit of detecting an overcurrent can be correctly operated even if a first capacitor (C1) for noise measures is disposed. Since a second capacitor (C2) is provided between a gate and a drain of an FET (T1), when the voltage (V1) of a point (P1) decreases, a part of the gate current of the FET (T1) bypasses the FET (T1) and flows to the capacitor (C2), and the amount of charge supplied to the gate of the FET (T1) decreases. Therefore, the increase of the drain current of the FET (T1) can be suppressed and a sudden change of the voltage (V1) can be prevented. As a result, the voltage (V1) can be prevented from decreasing to such a degree that the comparator (CMP1) cannot operate, and the comparator (CMP1) can be prevented from malfunctioning.
US09018924B2 Low dropout regulator
Aspects are directed to low dropout regulation. In accordance with one or more embodiments, an apparatus includes a charge pump that generates an output using a reference voltage, a low dropout (LDO) regulator circuit, current-limit and a voltage-limit circuit. The LDO circuit includes an amplifier powered by the charge pump and that provides an LDO voltage output. The voltage-limit circuit includes a transistor coupled between a voltage supply line and the LDO regulator circuit and a gate driven by the charge pump. The voltage-limit circuit limits voltage coupled between the voltage supply line and the LDO regulator circuit based upon the output of the charge pump, such as by coupling the voltage at the voltage supply line via source/drain connection of the transistor under low-voltage conditions, and providing a limited voltage to the LDO regulator circuit under high voltage conditions on the voltage supply line.
US09018923B2 Dynamic bias soft start control apparatus and methods
Apparatus and methods operate to disable a dynamically biased apparatus and a dynamic bias current source providing dynamic bias current to the apparatus at the beginning of a static bias startup period shortly after power-on. The dynamically biased apparatus is then gradually enabled in a static bias mode of operation during the static bias startup period. Following the end of the static bias startup period, operation of the dynamically biased apparatus in a dynamic transconductance mode is gradually enabled during a dynamic bias startup period. Such startup sequence operates to prevent damaging in-rush currents in a system employing the dynamically biased apparatus in a feedback control loop.
US09018920B2 Information processing apparatus, and control method and storage medium therefor
An information processing apparatus capable of suppressing a secondary battery from being charged with an amount of charge current that can apply excessive load on the secondary battery, without a backup power source function of the secondary battery being impaired. When determining that a predetermined type of data is stored in a DRAM to be backed up by the secondary battery, the information processing apparatus selects a first constant current circuit and quickly charges the secondary battery with a large charge current output from the first constant current circuit. When determining that the predetermined type of data is not stored in the DRAM, the information processing apparatus selects a second constant current circuit and normally charges the secondary battery with a small charge current output from the second constant current circuit.
US09018914B2 Low side NMOS protection circuit for battery pack application
An electric circuit comprising means for communicating with an external device coupled to means for measuring the charge condition of an external battery. In some embodiments, the circuit comprises at least one level shifter for changing the reference voltage of communication signals. In some embodiments, the circuit comprises a first driver and a second driver for driving external switching elements for the controlled charge and discharge of the battery.
US09018913B2 System for determining battery impedance
A method for real-time characterization of a battery includes providing electric power to one or more electrical power loads, charging and discharging the battery based on power needs of the one or more electrical power loads, and monitoring for a circumstance where charging and discharging of the battery results in terminal voltage of the battery substantially equaling open-circuit voltage of the battery and recording the measured terminal voltage as a first measured voltage. The method may also include monitoring for a subsequent circumstance subsequent when charging and discharging the battery results in battery current larger than a predetermined value and recording an existing terminal voltage as a second measured voltage. The method may also include using the first and second measured voltages to determine a measured internal impedance of the battery. These actions may be performed between startup and shutdown of the power system.
US09018911B2 Electric circuit, charge control device, charge system, and control method
There is provided an electric circuit including a semiconductor switch that is inserted in a positive side power line; and converting means for converting an input voltage input to an input side terminal to a predetermined output voltage and for outputting the output voltage from an output side terminal, wherein the output side negative terminal of the converting means is connected to the positive side power line, and the output side positive terminal of the converting means is connected to a terminal that controls an opening and closing of the semiconductor switch.
US09018908B2 Rechargeable battery module and battery charging method
An embodiment of the invention provides a rechargeable battery module including a battery bank having serial connected battery units, a charging transistor providing a charging current to the battery bank, a balancing circuit for detecting and balancing voltage values of battery units and battery bank and a control chip. When a first voltage value of a first battery unit reaches a charge-off voltage, the control chip estimates a first unbalanced voltage difference between the first voltage and the minimal voltage among battery units. The control chip disables the charging transistor and estimates a second unbalanced voltage difference between voltages of the first battery unit and the battery unit having a minimal voltage. The control chip enables the balancing circuit to balance the first battery unit. When the voltage of the first battery is dropped by a calibration target, the charging transistor is enabled.
US09018906B2 Battery pack
The battery pack that recognizes operation voltage of a corresponding device according to a unique resistance of the connected device and sensed through a third external terminal of the battery pack, the battery pack having a plurality of cells that can be coupled in series or in parallel to be suitable for an operation voltage of the corresponding device. The battery pack can be sold to a consumer to enable the consumer to power a variety of different electrical appliances. Alternatively, the battery pack can be incorporated into a chassis of an electrical apparatus so that the battery pack can be sold to many different manufacturers of electrical appliances.
US09018903B2 Lithium-based battery pack for a hand held power tool
A method for conducting an operation including a power tool battery pack. The battery pack can include a housing, a first cell supported by the housing and having a voltage, and a second cell supported by the housing and having a voltage. The battery pack also can be connectable to a power tool and be operable to supply power to operate the power tool. The method can include discharging one of the first cell and the second cell until the voltage of the one of the first cell and the second cell is substantially equal to the voltage of the other of the first cell and the second cell.
US09018897B2 Electric storage device condition determination device, electrically chargeable device, and method of determining electric storage device condition
A condition determination device for determining a condition of an electric storage device includes a current detector, a voltage detector, and a controller. The controller is configured to: determine a level of a first electric factor based on at least one of a charging current detected by the current detector and a charging voltage detected by the voltage detector; obtain first charging time while the level of the first electric factor is constant; determine a level of a second electric factor based on the charging voltage detected by the voltage detector; obtain second charging time while the level of the second electric factor is constant; calculate a determination value based on the first charging time and the second charging time; and determine a condition of the electric storage device based on the determination value.
US09018889B2 Hardware-based, redundant overvoltage protection
A generator system includes a generator and a generator control unit (GCU). The GCU is connected to monitor and regulate the generator output voltage. The GCU includes a protection signal processor that receives monitored generator voltages and executes software to detect an overvoltage condition. The GCU further includes redundant, hardware based overvoltage detection that detects a peak voltage value associated with the monitored generator voltage and includes a fast overvoltage detection circuit that generates a first overvoltage fault signal if the peak voltage value is greater than a first threshold value and includes an inverse overvoltage detection circuit that generates a second overvoltage fault signal if the peak voltage value is greater than a second threshold value for a duration of time that varies with a magnitude of the peak voltage value.
US09018885B2 Motor controller and motor control method
A motor controller receiving as input an encoder signal changing in response to a driving position of a motor, outputting a motor driving command in response to the encoder signal to control at least one of the driving position or a driving velocity of the motor, includes an interrupt processing section to execute interrupt operations every prescribed interrupt cycle, a low-frequency processing section to selectively execute a subset of the interrupt operations every prescribed number of the interrupt cycles, and a high-frequency processing section to execute another subset of the interrupt operations every prescribed interrupt cycle, wherein the high-frequency processing section executes at least an operation to detect the driving position indicated by the encoder signal, wherein the low-frequency processing section executes at least an operation to generate the motor driving command.
US09018883B2 Motor drive circuit
A motor drive circuit operates in a first mode in which the output current flowing to a first output terminal from a second output terminal is increasing or in a second mode in which the output current flowing to the first output terminal from the second output terminal is decayed. In the first mode, a first voltage signal is output from the first signal terminal and the ground voltage output from the second signal terminal and, in the second mode, a ground voltage is output from the first signal terminal and a second voltage signal is output from the second signal terminal. The motor drive circuit compares the signals output from the first and second signal terminals and output comparison results to a control unit for controlling the output current through the motor coil.
US09018875B2 Method for controlling rotation rate of electric motor
A method for controlling a rotation rate of an electric motor includes the s following steps: determining if an absolute value of a difference between an objective rotation rate of the electric motor and an actual rotation rate of the electric motor is greater than or equal to a predetermined value, and if yes, compensating a q axis current of the electric motor to adjust the rotation rate.
US09018869B2 Motor control device and seat control device for vehicle
A motor control device includes an acceleration portion for increasing a target number of rotations of a motor every predetermined calculation cycle until the target number of rotations of the motor reaches an upper limit number of rotations, which is set on the basis of a reached position of a driven object from a reference position, the driven object is driven by the motor so that a position of the driven object is changed, a deceleration portion for decreasing the target number of rotations of the motor every calculation cycle after the target number of rotations reaches the upper limit number of rotations, and a main control portion for controlling a drive of the motor on the basis of the target number of rotations.
US09018867B2 Generator drive system for an internal combustion engine
A generator drive system for the generator (3) of an internal combustion engine (1), including a flexible drive having a traction mechanism (5) which is guided across a generator pulley (6) driving the generator (3). The generator (3) is configured and electrically wired such that the generator (3) can be temporarily driven as a motor, and the generator (3) is coupled to the generator pulley (6) or the crankshaft pulley (7) is coupled to the crankshaft (8) via an overrunning clutch (4) which allows the generator (3), when operated as a motor, running faster than the generator pulley (6) or, taking into consideration a gear ratio, the crankshaft (8).
US09018866B2 Electrical storage system and processing method
At least one of a current value and a voltage value of an electrical storage device which is charged and discharged is detected with the use of each of a plurality of sensors. A predetermined process is executed on the basis of the detected values of the plurality of sensors The predetermined process is executed without using the detected values of the sensors in the predetermined process when a difference between a frequency of each of the detected values, which varies with a rotation speed of a motor that operates upon reception of an output power of the electrical storage device, and a resonance frequency of a step-up circuit, which varies with operation of the step-up circuit that steps up an output voltage of the electrical storage device and outputs the stepped-up electric power to the motor, is smaller than a threshold.
US09018858B2 Calibration method for LED lighting systems
A method of operating a lighting fixture comprising a plurality of discrete illumination sources of distinguishably different color coordinates comprises determining target color coordinates and luminous flux at which to operate the lighting fixture, determining input electrical power values for each of the plurality of discrete illumination sources that substantially produce the target color coordinates and luminous flux by referencing a calibration data lookup table having calibration data based on measurements of the plurality of discrete illumination sources, determining a color mixing zone defined by three distinguishably different color coordinates of the plurality of discrete illumination sources within which the target color coordinates lie according to the calibration data, determining luminous flux ratios for each of the plurality of discrete illumination sources having one of the three distinguishably different color coordinates defining the color mixing zone that substantially produces the target color coordinates, and determining input electrical power levels for each of the plurality of discrete illumination sources that generate the determined luminous flux ratios.
US09018854B2 Lighting system with reduced physioneural compression and associate methods
A system for generating light with reduced physioneural compression. The system includes a first light source operable to emit light within a first wavelength range corresponding to a first photoreceptor and a second light source operable to emit light within a second wavelength range corresponding to a second photoreceptor. The system includes a controller functionally coupled to each of the first light source and the second light source. The controller is configured to alternately operate one of the first light source and the second light source with a duty cycle that is less than a response time of the visual cortex, but greater than a response time of physioneural cells, optionally including a latency between operation of light sources. The system may further include a third light source corresponding to a third photoreceptor.
US09018853B2 Methods, apparatus and articles of manufacture to calibrate lighting units
A system and appertaining method calibrate a color LED light unit comprising at least first-, second-, and third-color LEDs, comprising: a) defining a target color on a color map to calibrate; b) selecting initial calibration coefficients associated with the target color; c) storing the initial or updated calibration coefficients in a non-volatile memory of the light unit; d) controlling the light unit to drive the LEDs to attempt to emit the target color, producing an attempted color, utilizing the calibration coefficients; e) measuring the attempted color to determine if it matches the target color within a predefined tolerance; f) if the attempted color matches the target color, then terminating the method; g) if the attempted color does not match the target color, then performing the following; h) selecting a color component; i) adapting at least one calibration coefficient associated with the selected color component; and j) performing (c)-(i) again.
US09018851B1 Boost and linear LED control
A light emitting diode (LED) lighting system includes a switching power converter having an input for coupling to an alternating current (AC) power source, an output, and a switch. The LED lighting system also includes an LED lighting subsystem coupled to receive power from the output of the switching power converter. The LED lighting subsystem includes a current source for one or more LEDs, and the current source has a control node and a sense node. The LED lighting system additionally includes a switch state controller coupled to the switching power converter and coupled to the LED lighting subsystem. The switch state controller controls switching of the switch and varies a control current provided to the control node of the current source based on at least a parameter sensed from the sense node.
US09018847B2 Thyristor dimming circuit with lossless discharging circuit and method thereof
Thyristor dimming circuits and methods are disclosed herein. In one embodiment, a thyristor dimming circuit can include: (i) a thyristor and a rectifier bridge configured to receive a sinusoidal AC voltage, and to generate a phase-loss input voltage; (ii) a power stage circuit configured to have the phase-loss input voltage applied thereto, the power stage circuit having a main switch and being configured to drive a lamp load through electrical conversion; and (iii) a discharging circuit configured, during a first predetermined time interval, to control the main switch to operate with a fixed duty cycle at a fixed frequency, where the first predetermined time interval begins prior to an absolute value of the sinusoidal AC voltage being reduced to zero, the first predetermined time interval ending when the phase-loss input voltage is again applied to the power stage circuit.
US09018844B2 Controllers and light modules with light emitting diodes
Disclosed are a controller and a relevant LED lighting module. A disclosed controller comprises a high-voltage power terminal and a low-voltage power terminal, a major switch circuit, an upward-connection terminal and a downward-connection terminal, and a management circuit. The major switch circuit is coupled between the high-voltage and low-voltage power terminals, and has a driving terminal for coupling to at least one LED. The management circuit is coupled to control the major switch circuit, and configured to communicate with an upstream controller via the upward-connection terminal and to communicate with a downstream controller via the downward-connection terminal. The upward-connection terminal is coupled to the downward-connection terminal of an upstream controller. The downward-connection terminal is coupled to the upward-connection terminal of a downstream controller. The management circuit is capable of operating in one of operation conditions.
US09018842B2 Driving circuit and method for pixel unit, pixel unit and display apparatus
The present invention provides a driving circuit and method for a pixel unit, a pixel unit and a display apparatus. The driving circuit for a pixel unit comprises: a driving thin-film transistor, a first switching element, a storage capacitor and a driving control unit; said driving control unit is used to control said storage capacitor to be charged/discharged so as to control said driving thin-film transistor to operate in a saturation region, so that the threshold voltage Vth of said driving thin-film transistor is compensated by utilizing the gate-source voltage of said driving thin-film transistor. The present invention can address the problems of ununiformity and attenuation of the brightness of OLED panel.
US09018841B2 Electrical wiring device
The present invention is directed to an electrical wiring device that includes at least one circuit configured to provide an output signal in response to at least one external input signal. The device further comprises a light emission and detection assembly that includes: a lamp sub-assembly coupled to the at least one circuit, the lamp subassembly including at least one light emitting element configured to emit light in response to the output signal; and an ambient light sensor sub-assembly coupled to the at least one circuit and including an ambient light sensor and a sensor housing assembly, the ambient light sensor being configured to generate the at least one external input signal in response to sensing an ambient light level in the space, the sensor housing assembly being configured to substantially isolate the ambient light sensor from the light emitted by the lamp sub-assembly.
US09018840B2 Systems and methods for providing a lighting effect
Systems and methods for creating and previewing a lighting effect, such as displaying an array of colors across a number of lighting fixtures are provided. A user may specify some of the colors for the array, as well as relative positions of the colors. A lighting management system determines transitional or intermediary colors and assigns the colors specified by the user, as well as the intermediary colors to the lighting fixtures. The resulting lighting effect may be displayed in a preview bar. The colors and the order of the colors may be edited to obtain a desired lighting effect.
US09018839B2 LED cooling system
An LED cooling system comprising of a Peltier cooler. The Peltier cooler comprising of a top cooling plate and bottom heating plate. The top cooling plate is capable of directly contacting an LED housing such that heat generated by an LED in the LED housing can be transferred from the LED housing by said Peltier cooler; A control circuit electrically connected to said Peltier cooler to control the amount of power is supplied to said Peltier cooler; said amount of power supplied to said Peltier cooler is determined by the temperature of said LED housing.
US09018838B2 High intensity gas-discharge lamp
The invention describes a high intensity gas-discharge lamp (1) comprising a discharge vessel (5, 5′) enclosing a fill gas in a discharge chamber (2) and comprising a pair of electrodes (3, 3′, 4, 4′) extending into the discharge chamber (2), and wherein the fill gas includes a halide composition comprising a halide of sodium and, optionally, scandium iodide to a total proportion of at least 30 wt %, and a halide of terbium and/or gadolinium to a proportion of at least 5 wt %.
US09018835B2 Organic EL device, electronic device, and process for production of organic EL device
An organic EL device (1) includes: a substrate (11); a plurality of lower electrodes (14) formed on the substrate (11) and corresponding to luminescence regions, respectively; a dividing wall (17) formed so as to surround the luminescence regions; light-emitting layers (19) formed on the lower electrodes (14) in the luminescence regions, respectively; and an upper electrode (20) formed on the dividing wall (17) and the light-emitting layers (19). The dividing wall (17) is conductive and electrically connected to the upper electrode (20).
US09018829B2 Excited gas injection for ion implant control
An ion source includes an ion chamber housing defining an ion source chamber, the ion chamber housing having a side with a plurality of apertures. The ion source also includes an antechamber housing defining an antechamber. The antechamber housing shares the side with the plurality of apertures with the ion chamber housing. The antechamber housing has an opening to receive a gas from a gas source. The antechamber is configured to transform the gas into an altered state having excited neutrals that is provided through the plurality of apertures into the ion source chamber.
US09018828B2 Light emitting element lamp and lighting equipment
A light emitting element lamp and a lighting equipment for suppressing a temperature rising of a substrate on which a light emitting element is mounted by using a reflector is described. Aspects relate to a lamp including a heat-conductive reflector, a base connected to the reflector, a heat-conductive heat radiating member, a substrate having a light emitting element mounted thereon and attached to the heat radiating member and a lighting circuit housed in the cover to light the light emitting element. Other components and features may also be included.
US09018825B2 Piezoelectric device and manufacturing method of piezoelectric device
A piezoelectric device, in which one of a first plate, a second plate, and an adhesive agent is colored for confirming a bonding status of the adhesive agent, and a manufacturing method thereof, are provided. A piezoelectric device includes a piezoelectric vibrating piece that vibrates by applying a voltage; a first plate and a second plate formed of glass and seal the piezoelectric vibrating piece; and an adhesive agent which bonds the first plate with the second plate, wherein one of the first plate, the second plate, and the adhesive agent is colored.
US09018823B2 Apparatus and method for electromechanical positioning
Provided is a device comprising at least one tubular piezo element for the electro mechanical positioning of a slider within the piezo element. The device has least one elastic friction means for exerting a normal force on the slider, the friction means being connected to the piezo element. A method for controlling the device is also disclosed.
US09018818B2 Insulating cap for an end winding of an electrical machine working at high voltage and machine having such an insulating cap
An insulating cap is provided for an end winding of an electrical machine working at a high voltage, the end winding including a plurality of insulated winding bars protruding from respective winding slots and electrically conductively connected to one another in pairs at their ends so as to form a plurality of electrical connections. The cap includes an opening allowing the insulating cap to be pushed over a region of one of the electrical connections such that the insulating cap insulates an outside of the electrical connection. An interior includes a layer configured to gradually dissipate a high electrical field in the region of the electrical connection to an outside of the insulating cap, the outside of the insulating cap being at earth potential.
US09018816B2 Rotor of motor having interpole magnets in holding member
A rotor includes first and second rotor cores, a field magnet, interpole magnets and holding members. The first and second rotor cores each have claw-like magnetic poles arranged in the circumferential direction in an outer periphery of a core base at even intervals and formed to protrude radially outward. The field magnet is placed between the core bases in the axial direction of the rotor and magnetized in the axial direction to cause the magnetic poles of the first and second rotor cores to function as first and second magnetic poles, respectively. The interpole magnets are each arranged between a circumferentially adjacent pair of the magnetic poles and magnetized in the circumferential direction so as to have the same polarity as the magnetic poles, which are opposed thereto in the circumferential direction. The holding members hold the interpole magnets to restrict radially outward movement of the interpole magnets.
US09018815B2 Generator
The generator comprises a stator (10) having a plurality of protruding portions for stator pole (12) on the outer peripheral surface of the stator main unit (11), and a rotor (20) having a plurality of protruding portions for rotor (22) mounted around the stator (10) in a rotatable state. Since the height of the plurality of protruding portions for stator pole (12) decreases along the rotational or reverse rotational direction of the rotor (20), a torque waveform containing odd-order components is generated when the rotor (20) is rotated coaxially around the stator (10). The plurality of protruding portions for stator pole (12) comprises a first protrusion group for stator pole (12A) and a second protrusion group for stator pole (12B), and the first protrusion group for stator pole (12A) and the second protrusion group for stator pole (12B) are formed with the protruding portions for stator pole (12) laid out along the circumferential direction spaced apart from each other. The rotor (10) has a first ring member (21A) and a second ring member (21B) separated from each other in the axial direction at a given distance, a first protrusion group for rotor pole (22A) having half of the plurality of protruding portions for rotor poles (22) aligned along the inner peripheral surface of the first ring member (21A) spaced apart from each other, and a second protrusion group for rotor pole (22B) having half of the plurality of protruding portions for rotor poles (22) aligned along the inner peripheral surface of the second ring member (21B) spaced apart from each other. By placing the first protrusion group for stator pole (12A) and the second protrusion group for stator pole (12B) in the same phase, and shifting the second protrusion group for rotor (22B) from the first protrusion group for rotor (22A) by a mechanical angle allowing their electrical phases to deviate by 180°, odd-order components of the torque waveform can be canceled, and torque ripple can be reduced.
US09018812B2 Transportation device with reciprocating part and kinetic storage
Manual drive energy is input into a transport device of one embodiment by linearly reciprocating a first drive member that couples by way of a ratchet mechanism (or other mechanical motion rectifier means) and a mechanical motion amplifier means to one or more faster spinning flywheel masses. The one or more flywheel masses are formed in part by a combination electric motor/generator and it has rechargeable electric batteries distributively provided about a flywheel mass portion thereof. Tapered roller bearings having ferromagnetic material are interposed between the one or more flywheel masses and/or between one of the flywheels and a stationary frame of the transport device so as to repeatedly make and break closed magnetic flux conducting loops and thus provide at least one of an electric motoring and electricity generating function.
US09018807B2 Inverter device
An inverter includes a plurality of switching elements that convert between DC and AC power. A base plate includes a surface on which the switching elements are placed. Heat dissipating fins are provided on the opposite side of the base plate. Power is input and output through AC power terminals to and from a rotary electric machine to drive a vehicle. The terminals are electrically connected to the switching elements. A capacitor smoothes the DC power. The inverter is fixed to a case of the rotary electric machine. A rotating shaft of the rotary electric machine extends in a width direction of the vehicle. The base plate is disposed adjacent to the AC terminals in the width direction. A plurality of AC phase-terminals is sequentially arrayed perpendicular to the rotating shaft. The capacitor is disposed adjacent to the heat dissipating fins on the rear side of the vehicle.
US09018805B2 Superconducting machines
A machine such as a ship's engine has a superconducting component requiring cooling for its operation, and includes a cooling system. The cooling system is operable in first and second modes. In a cool-down phase the cooling system is run in the first mode providing relatively high heat transfer from the superconducting component. On attainment of a desired operating temperature the cooling system is run in the second mode, providing lower heat transfer. This enables a reduced cool-down time of the machine, while allowing economical operation in normal service. The higher level of cooling in the first mode used during the start-up procedure can involve a colder cryogen, or a greater flow of coolant. One way of achieving the latter is to circulate the coolant in normally evacuated regions during the cool-down phase, and then re-establishing the vacuum in these regions for normal service operation.
US09018804B2 Controlling of a power state under extreme temperatures
A system for controlling a network access device is provided. The system includes a processor, the network access device, and a control circuit. The processor being in communication with the network access device through a communication link. The control circuit monitoring a temperature of the network access device and activating or deactivating the network access device based on the temperature.
US09018800B2 High efficiency wide load range buck/boost/bridge photovoltaic micro-converter
Series strings of photovoltaic (PV) modules with integrated dc-dc microconverters that can function in buck, boost, or an intermediate bridge mode based on the load can harvest more energy than conventional central-inverter architectures, especially when the arrays are partially shaded or when the modules are mismatched. The integrated multi-mode dc-dc converter includes a maximum power point tracking (MPPT) algorithm that can track the true MPP, even when a PV module becomes partially-shaded, without scanning the entire output voltage range. The algorithm compares power levels only at a voltage that occurs when a bypass diode bypasses a portion of an associated PV module, and multiples thereof.
US09018797B2 Power distribution management
A method for power distribution management includes receiving data specifying a group of Power Distribution Units (PDUs) from which an electronic device powered by at least one of the group of PDUs draws power; and automatically determining whether the electronic device is redundantly powered.
US09018794B2 Electric power controller for vehicle with stop start system
An electric power controller for a vehicle with stop-start system is provided to prevent electric energy from being decreased in a power capacitor when an engine is in an idle-stop state. The engine is in the idle-stop state by idle-stop control means, the transfer of the electric energy between the power capacitor and a vehicle-mounted battery is stopped by power control means connected between the power capacitor and the vehicle-mounted battery.
US09018793B2 Routing structure of high-voltage cable in vehicle
A routing structure of a high-voltage cable of a vehicle has a high-voltage cable (18) connected to an end surface of a motor (10) and routed along a motor case (13) by being extended from the connecting portion in one direction and then extended in the direction reverse to the one direction, and in which structure a first protector (41) configured to hold the high-voltage cable (18) and extended along the motor case (13) is supported on the motor case (13).
US09018789B2 Drive train for a wind turbine
A wind turbine drive train (1) comprising a gearbox (2), a generator (3) and a coupling (4) located between an output shaft (5) and a rotor shaft (6). The gearbox and the generator are separate components which have their own housings (7, 8). The output and rotor shafts are respectively supported by a shaft bearing arrangement (15) and a generator rotor shaft bearing arrangement (18a, 18b). The generator housing is directly connected to the gearbox housing. The drive train further comprises a gearbox output module (14), which comprises the output shaft, the shaft bearing arrangement and an output shaft bearing housing (16). The gearbox output module at least partly extends into the generator and the gearbox output module at least partly extends beyond a plane (P) defined by the generator. The coupling extends through the rotor shaft and is coupled, on a generator side (G), to the generator rotor shaft.
US09018786B2 Water current power generating device
A water current power generating device for generating electric power from water current power includes a sway vibrating body which bends in a response to a fluid force exerted on a circumference surface thereof by a water current, sways in a bending state, and generates tension in a response to a deflection angle from a direction of the water current, and at least one tension power generating unit for converting electro-magnetically or piezoelectrically the tension transferred from the sway vibrating body into the electric power such that a stable electric power can be generated from water current power in a variety of water areas of slow-moving water current to fast-moving water current.
US09018784B2 Wind turbine control method
A wind turbine control method is described based on the performance of various measurements of the oscillations of the nacelle of the wind turbine for the purpose of carrying out a series of calculations, the results of which allow parameterization of certain actions on different wind turbine elements in order to dampen oscillations. In summary, it may be said that the object of the invention described herein is a wind turbine control method whereby the oscillations of the nacelle of the wind turbine are dampened in the presence of voltage dips in particular and, in general, in any event that is susceptible of reducing active current generation capacity.
US09018774B2 Chip package
A Chip Scale Package (CSP) and a method of forming the same are disclosed. Single chips without the conventional ball mountings, are first attached to an adhesive-substrate (adsubstrate) composite having openings that correspond to the input/output (I/O) pads on the single chips to form a composite chip package. Ball mounting is then performed over the openings, thus connecting the I/O pads at the chip sites to the next level of packaging directly. In another embodiment, the adhesive layer is formed on the wafer side first to form an adwafer, which is then die sawed in CSPs. Then the CSPs with the adhesive already on them are bonded to a substrate. The composite chip package may optionally be encapsulated with a molding material. The CSPs provide integrated and shorter chip connections especially suited for high frequency circuit applications, and can leverage the currently existing test infrastructure.
US09018770B2 Chip package
A chip package includes: a substrate having a first surface, a second surface, and a side surface connecting the first and the second surfaces; a dielectric layer located on the first surface; conducting pads comprising a first and a second conducting pads located in the dielectric layer; openings extending from the second surface towards the first surface and correspondingly exposing the conducting pads, wherein a first opening of the openings and a second opening of the openings next to the first opening respectively expose the first and the second conducting pads and extend along a direction intersecting the side surface of the substrate to respectively extend beyond the first and the second conducting pads; and a first and a second wire layers located on the second surface and extending into the first the second openings to electrically contact with the first and the second conducting pads, respectively.
US09018769B2 Non-lithographic formation of three-dimensional conductive elements
A method of forming a conductive element on a substrate and the resulting assembly are provided. The method includes forming a groove in a sacrificial layer overlying a dielectric region disposed on a substrate. The groove preferably extends along a sloped surface of the substrate. The sacrificial layer is preferably removed by a non-photolithographic method, such as ablating with a laser, mechanical milling, or sandblasting. A conductive element is formed in the groove. The grooves may be formed. The grooves and conductive elements may be formed along any surface of the substrate, including within trenches and vias formed therein, and may connect to conductive pads on the front and/or rear surface of the substrate. The conductive elements are preferably formed by plating and may or may not conform to the surface of the substrate.
US09018768B2 Integrated circuit having through silicon via structure with minimized deterioration
A semiconductor device includes a circuit pattern over a first surface of a substrate, an insulating interlayer covering the circuit pattern, a TSV structure filling a via hole through the insulating interlayer and the substrate, an insulation layer structure on an inner wall of the via hole and on a top surface of the insulating interlayer, a buffer layer on the TSV structure and the insulation layer structure, a conductive structure through the insulation layer structure and a portion of the insulating interlayer to be electrically connected to the circuit pattern, a contact pad onto a bottom of the TSV structure, and a protective layer structure on a second surface the substrate to surround the contact pad.
US09018766B2 Semiconductor device and method for manufacturing the same
A semiconductor device includes: a contact hole formed over a structure including a conductive pattern; a contact plug formed in the contact hole; a first metal silicide film surrounding the contact plug; and a second metal silicide film formed over the contact plug.
US09018765B2 Preventing shorting dendritic migration between electrodes
In a general aspect, an integrated circuit package includes a first electrode and a second electrode on a support substrate. The first electrode and the second electrode are configured to be electrically coupled to a voltage differential. A dendritic migration of a migratory species can develop under the voltage differential and a non-hermetic environment. The dendritic migration is interrupted by a floating electrical barrier mounted onto the support substrate between the first electrode and the second electrode. The electrical barrier includes a dam for preventing the metal migration. The dam has a height approximately equal to or greater than the largest dimension of a single atom of the migratory species. The first electrode and the second electrode can be mounted on the same side of the support substrate, or on two opposite sides of the support substrate.
US09018761B2 Semiconductor device
A semiconductor device of the present invention includes a circuit board having a number of electrode portions on the front side and the underside, an electronic circuit element such as a semiconductor chip bonded to the electrode portions on the front side of the circuit board and composing an electronic circuit; and a plurality of ball electrodes for external connection, the ball electrodes being formed on the electrode portions on the underside of the circuit board. Of the electrode portions on the underside of the circuit board, an electrode portion on the outer periphery is formed larger than an electrode portion on the inner periphery. The plurality of ball electrodes are solder balls heated and melted on the electrode portions on the underside of the board so as to form an alloy on the interfaces, the solder balls containing tin and silver but not containing lead.
US09018758B2 Cu pillar bump with non-metal sidewall spacer and metal top cap
A bump has a non-metal sidewall spacer on a lower sidewall portion of Cu pillar, and a metal top cap on a top surface and an upper sidewall portion of the Cu pillar. The metal top cap is formed by an electroless or immersion plating technique after the non-metal sidewall spacer formation.
US09018751B2 Semiconductor module system having encapsulated through wire interconnect (TWI)
A semiconductor module system includes a module substrate and a semiconductor substrate having a through wire interconnect bonded to an electrode on the module substrate. The through wire interconnect includes a via, a wire in the via having a first end bonded to a substrate contact on the semiconductor substrate and a polymer layer at least partially encapsulating the wire. The semiconductor module system can also include a second substrate stacked on the semiconductor substrate having a second through wire interconnect in electrical contact with the through wire interconnect.
US09018748B2 Power semiconductor housing with contact mechanism
A housing for a power semiconductor, providing a compartment for installation of a power semiconductor, and including a first and a second terminal. The terminals are for connection of a power semiconductor installed in the compartment, and for leading current to and from the compartment. The housing includes a contact mechanism for bypassing the compartment, the contact mechanism including at least one movable contact arranged for electrically connecting the first and second terminal, the at least one movable contact being movable between a disconnected first position and a connected second position. The contact mechanism further includes a bypass actuator arranged inside the compartment and provided for transforming a pressure from an exploding semiconductor into motion, the bypass actuator is operatively connected to the movable contact and arranged to move the movable contact from the first to the second position when subjected to the pressure of an exploding semiconductor.
US09018747B2 Optical semiconductor apparatus
An optical semiconductor apparatus includes a lid body bonded to an upper surface of a frame body, the lid body having an opening at a position vertically overlapping with an optical semiconductor device. The lid body has a first portion which is positioned to surround the opening and has an upper surface to which a light-transmissive member is bonded, a second portion which is positioned to surround the first portion, and a third portion which is positioned to surround the second portion and has a lower surface to which the frame body is bonded. The upper surface of the first portion is positioned lower than an upper surface of the third portion. The second portion has a thin-walled portion positioned to surround the first portion, the thin-walled portion having a thickness thinner than that of the first portion as well as thinner than that of the third portion.
US09018743B2 Semiconductor device
Provided is a semiconductor device in which misalignment between a semiconductor die and a substrate (e.g., a circuit board) can be prevented or substantially reduced when the semiconductor die is attached to the circuit board. In a non-limiting example, the semiconductor device includes: a semiconductor die comprising at least one bump; and a circuit board comprising at least one circuit pattern to which the bump is electrically connected. In a non-limiting example, the circuit board comprises: an insulation layer comprising a center region and peripheral regions around the center region; a plurality of center circuit patterns formed in the center region of the insulation layer; and a plurality of peripheral circuit patterns formed in the peripheral regions of the insulation layer. The center circuit patterns may be formed wider than the peripheral circuit patterns, formed in a zigzag pattern, and/or may be formed in a crossed shape.
US09018739B2 Semiconductor device and method of fabricating the same
The present application discloses a semiconductor device and a method for manufacturing the same. The semiconductor device comprises a semiconductor substrate; a first semiconductor layer on the semiconductor substrate; a second semiconductor layer surrounding the first semiconductor layer; a high k dielectric layer and a gate conductor formed on the first semiconductor layer; source/drain regions formed in the second semiconductor layer, wherein the second semiconductor layer has a slant sidewall in contact with the first semiconductor layer. The semiconductor device has an increased output current, an increased operating speed, and a reduced power consumption due to the channel region of high mobility.
US09018737B2 Submount assembly integration
In accordance with one embodiment, an apparatus is disclosed that comprises a submount operable to integrate with a laser as a laser submount assembly; a predetermined portion of the submount configured to bond with the laser; a bonding pad positioned on the predetermined portion of the submount for integrating the laser with the submount.
US09018736B2 Semiconductor device and method of manufacturing semiconductor device
A semiconductor device includes a substrate having a hexagonal crystalline structure and a (0001) surface, and conductive films on the surface of the substrate. The conductive films include a first conductive film and a second conductive film located above the first conductive film with respect to the surface, wherein the first conductive film has a crystalline structure which does not have a plane that has a symmetry equivalent to the symmetry of atomic arrangement in the surface of the substrate, the second conductive film has a crystalline structure having at least one plane that has a symmetry equivalent to the symmetry of atomic arrangement in the surface of the substrate, and the second conductive film is polycrystalline and has a grain size no larger than 15 μm.
US09018731B2 Method for fabricating inductor device
Various embodiments provide inductor devices and fabrication methods. An exemplary inductor device can include a plurality of planar spiral wirings isolated by a dielectric layer. The planar spiral wirings can be connected by conductive pads formed over the dielectric layer and by conductive plugs formed in the dielectric layer. In one embodiment, a third planar spiral wiring can be formed over a second planar spiral wirings that is formed over a first planar spiral wiring. The third planar spiral wiring can be configured in parallel with the first third planar spiral wiring. The second planar spiral wiring can be configured in series with the first and third planar spiral wirings configured in parallel.
US09018725B2 Stepped package for image sensor and method of making same
An image sensor package includes a crystalline handler having opposing first and second surfaces, and a cavity formed into the first surface. At least one step extends from a sidewall of the cavity, wherein the cavity terminates in an aperture at the second surface. A cover is mounted to the second surface and extends over and covers the aperture. The cover is optically transparent to at least one range of light wavelengths. A sensor chip is disposed in the cavity and mounted to the at least one step. The sensor chip includes a substrate with front and back opposing surfaces, a plurality of photo detectors formed at the front surface, and a plurality of contact pads formed at the front surface which are electrically coupled to the photo detectors.
US09018723B2 Infrared camera sensor
The present disclosure is directed to an infrared sensor that includes a plurality of pairs of support structures positioned on the substrate, each pair including a first support structure adjacent to a second support structure. The sensor includes plurality of pixels, where each pixel is associated with one of the pairs of support structures. Each pixel includes a first infrared reflector layer on the substrate between the first and the second support structures, a membrane formed on the first and second support structures, a thermally conductive resistive layer on the membrane and positioned above the first infrared reflector layer, a second infrared reflector layer on the resistive layer, and an infrared absorption layer on the second infrared reflector layer.
US09018717B2 Pull up electrode and waffle type microstructure
The present invention generally relates to MEMS devices and methods for their manufacture. The cantilever of the MEMS device may have a waffle-type microstructure. The waffle-type microstructure utilizes the support beams to impart stiffness to the microstructure while permitting the support beam to flex. The waffle-type microstructure permits design of rigid structures in combination with flexible supports. Additionally, compound springs may be used to create very stiff springs to improve hot-switch performance of MEMS devices. To permit the MEMS devices to utilize higher RF voltages, a pull up electrode may be positioned above the cantilever to help pull the cantilever away from the contact electrode.
US09018710B2 Semiconductor device with metal gate and high-k materials and method for fabricating the same
A semiconductor device includes a substrate including first and second regions. A first gate stack structure containing a first effective work function adjust species is formed over the first region and a second gate stack structure containing a second effective work function adjust species is formed over the second region. A channel region is formed under the first gate stack structure and contains a threshold voltage adjust species.
US09018709B2 Semiconductor device
A semiconductor device includes: a first field-effect transistor of a first conductivity type formed on a first active region of a semiconductor substrate. The first field-effect transistor includes a first gate insulating film formed on the first active region, and a first gate electrode formed on the first gate insulating film. The first gate electrode includes a first metal electrode formed on the first gate insulating film, a first interface layer formed on the first metal electrode, and a first silicon electrode formed on the first interface layer.
US09018707B2 Semiconductor device
A semiconductor device includes a first transistor group including first transistors, wherein each of the first transistors includes a first gate, and a first source and a first drain disposed symmetrically at both sides of the first gate and having a bent form; and a second transistor group including second transistors, wherein each of the second transistors includes a second gate, and a second source and a second drain disposed symmetrically at both sides of the second gate and having a bent form, wherein the first source and the first drain are bent in a direction opposite to a direction in which the second source and the second drain are bent.
US09018703B2 Hybrid high voltage device and manufacturing method thereof
The present invention discloses a hybrid high voltage device and a manufacturing method thereof. The hybrid high voltage device is formed in a first conductive type substrate, and includes at least one lateral double diffused metal oxide semiconductor (LDMOS) device region and at least one vent device region, wherein the LDMOS device region and the vent device region are connected in a width direction and arranged in an alternating order. Besides, corresponding high voltage wells, sources, drains, body regions, and gates of the LDMOS device region and the vent device region are connected to each other respectively.
US09018701B2 Avalanche capability improvement in power semiconductor devices using three masks process
A power semiconductor device with improved avalanche capability is disclosed by forming at least one avalanche capability enhancement doped region underneath an ohmic contact doped region. Moreover, a source mask is saved by using three masks process and the avalanche capability is further improved.
US09018700B2 Direct-drain trench FET with source and drain isolation
In a general aspect, an apparatus can include a semiconductor layer of a first conductivity type, the semiconductor layer having a top-side surface. The apparatus can also include a well region of a second conductivity type opposite the first conductivity type, the well region being disposed in an upper portion of the semiconductor layer. The apparatus can further include a gate trench disposed in the semiconductor layer, the gate trench extending through the well region, and a drain contact disposed, at least in part, on the top-side surface of the semiconductor layer, the drain contact being adjacent to the well region. The apparatus can still further include an isolation trench disposed between the drain contact and the gate trench in the semiconductor layer, the isolation trench extending through the well region.
US09018699B2 Silicon carbide semiconductor element and method for fabricating the same
A SiC semiconductor element includes: a SiC substrate which has a principal surface tilted with respect to a (0001) Si plane; a SiC layer arranged on the principal surface of the substrate; a trench arranged in the SiC layer and having a bottom, a sidewall, and an upper corner region located between the sidewall and the upper surface of the SiC layer; a gate insulating film arranged on at least a part of the sidewall and on at least a part of the upper corner region of the trench and on at least a part of the upper surface of the SiC layer; and a gate electrode arranged on the gate insulating film. The upper corner region has a different surface from the upper surface of the SiC layer and from a surface that defines the sidewall. The gate electrode contacts with both of a first portion of the gate insulating film located on the upper corner region and a second portion of the gate insulating film located on the sidewall. The first portion of the gate insulating film is thicker than a third portion of the gate insulating film located on the upper surface of the SiC layer. And an end portion of the gate electrode is located on the upper corner region.
US09018697B2 fin FET and method of fabricating same
A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
US09018688B2 Solid-state imaging device and imaging apparatus
The solid-state imaging device includes a semiconductor layer 11 in which a surface side becomes a circuit formation surface, photoelectric conversion units PD1 and PD2 of two layers or more that are stacked and formed in the semiconductor layer 11, and a longitudinal transistor Tr1 in which a gate electrode 21 is formed to be embedded in the semiconductor layer 11 from a surface 15 of the semiconductor layer 11. The photoelectric conversion unit PD1 of one layer in the photoelectric conversion units of the two layers or more is formed over a portion 21A of the gate electrode 21 of the longitudinal transistor Tr1 embedded in the semiconductor substrate 11 and is connected to a channel formed by the longitudinal transistor Tr1.
US09018684B2 Chemical sensing and/or measuring devices and methods
Methods for fabricating silicon nanowire chemical sensing devices, devices thus obtained, and methods for utilizing devices for sensing and measuring chemical concentration of selected species in a fluid are described. Devices may comprise a metal-oxide-semiconductor field-effect transistor (MOSFET) structure.
US09018682B2 Semiconductor memory device
According to one embodiment, a semiconductor memory device includes a stacked body including a plurality of electrode layers stacked alternately with a plurality of insulating layers on the substrate, a channel body provided inside a hole piercing the stacked body, and a memory portion provided between the channel body and each of the plurality of electrode layers. The hole has a large diameter portion and a small diameter portion. The diameter of the hole is smaller at the small diameter portion than at the large diameter portion. A thickness of the electrode layer adjacent to the small diameter portion is thicker than a thickness of the electrode layer adjacent to the large diameter portion.
US09018680B2 Non-planar semiconductor device having active region with multi-dielectric gate stack
Non-planar semiconductor devices having group III-V material active regions with multi-dielectric gate stacks are described. For example, a semiconductor device includes a hetero-structure disposed above a substrate. The hetero-structure includes a three-dimensional group III-V material body with a channel region. A source and drain material region is disposed above the three-dimensional group III-V material body. A trench is disposed in the source and drain material region separating a source region from a drain region, and exposing at least a portion of the channel region. A gate stack is disposed in the trench and on the exposed portion of the channel region. The gate stack includes first and second dielectric layers and a gate electrode.
US09018673B2 Zener diode device and fabrication
A disclosed Zener diode includes, in one embodiment, an anode region and a cathode region that form a shallow sub-surface latitudinal Zener junction. The Zener diode may further include an anode contact region interconnecting the anode region with a contact located away from the Zener junction region and a silicide blocking structure overlying the anode region. The Zener diode may also include one or more shallow, sub-surface longitudinal p-n junctions at the junctions between lateral edges of the cathode region and the adjacent region. The adjacent region may be a heavily doped region such as the anode contact region. In other embodiments, the Zener diode may include a breakdown voltage boost region comprising a more lightly doped region located between the cathode region and the anode contact region.
US09018672B2 Semiconductor device comprising a semiconductor element having two electrodes
Provided is a semiconductor device including: a semiconductor element arranged on a substrate and having two electrodes; a conductive strip in contact with one of the two electrodes; and a dielectric arranged between another one of the two electrodes and the conductive strip, in which the conductive strip has an opening formed therein, the dielectric has a void formed therein, and the opening and the void are connected to each other.
US09018669B2 Light emitting diode having electrode pads
A substrate, a first conductive type semiconductor layer arranged on the substrate, a second conductive type semiconductor layer arranged on the first conductive type semiconductor layer, an active layer disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer, a first electrode pad electrically connected to the first conductive type semiconductor layer, a second electrode pad arranged on the second conductive type semiconductor layer, an insulation layer disposed between the second conductive type semiconductor layer and the second electrode pad, and at least one upper extension electrically connected to the second electrode pad, the at least one upper extension being electrically connected to the second conductive type semiconductor layer.
US09018667B2 Semiconductor chip assembly with post/base heat spreader and dual adhesives
A semiconductor chip assembly includes a semiconductor device, a heat spreader, a conductive trace and first and second adhesives. The semiconductor device is electrically connected to the conductive trace and thermally connected to the heat spreader. The heat spreader includes a post and a base. The post extends upwardly from the base through an opening in the first adhesive, and the base extends laterally from the post. The first adhesive extends between the base and the conductive trace and the second adhesive extends between the post and the conductive trace. The conductive trace provides signal routing between a pad and a terminal.
US09018666B2 Semiconductor light emitting device
There is provided a semiconductor light emitting device that minimizes reflection or absorption of emitted light, maximizes luminous efficiency with the maximum light emitting area, enables uniform current spreading with a small area electrode, and enables mass production with high reliability and high quality. A semiconductor light emitting device according to an aspect of the invention includes first and second conductivity type semiconductor layers, an active layer formed therebetween, first electrode layer, and a second electrode part electrically connecting the semiconductor layers. The second electrode part includes an electrode pad unit, an electrode extending unit, and an electrode connecting unit connecting the electrode pad unit and electrode extending unit.
US09018665B2 Semiconductor light emitting device and method for manufacturing the same
Certain embodiments provide a method for manufacturing a semiconductor light emitting device, including: providing a first stack film on a first substrate, the first stack film being formed by stacking a p-type nitride semiconductor layer, an active layer having a multiquantum well structure of a nitride semiconductor, and an n-type nitride semiconductor layer in this order; forming an n-electrode on an upper face of the n-type nitride semiconductor layer; and forming a concave-convex region on the upper face of the n-type nitride semiconductor layer by performing wet etching on the upper face of the n-type nitride semiconductor layer with the use of an alkaline solution, except for a region in which the n-electrode is formed.
US09018662B2 Multichip package structure
A multichip package structure includes a metal substrate, a circuit substrate and a light-emitting module. The metal substrate has a first mirror plane area and a second mirror plane area. The circuit substrate is disposed on the metal substrate. The circuit substrate includes a plurality of first conductive pads, a plurality of second conductive pads, a first passing opening for exposing the first mirror plane area, and a second passing opening for exposing the second mirror plane area. The light-emitting module includes a plurality of light-emitting units disposed on the first mirror plane area. Each light-emitting unit includes a plurality of LED chips disposed on the first mirror plane area. The LED chips of each light-emitting unit are electrically connected between the first conductive pad and the second conductive pad in series. Thus, the heat-dissipating efficiency and the light-emitting effect of the multichip package structure can be increased.
US09018660B2 Lighting devices
A device includes a light emitting assembly including at least one light panel including at least one phosphorescent organic light emitting device. A total light emitting area of the light emitting assembly is greater than 1000 cm2. The device exhibits a luminous emittance of at least 7000 lm/m2 and a peak luminance of less than 5000 cd/m2. The light emitting assembly has a luminaire emissive utilization of at least 60 percent.
US09018652B2 Light emitting device
Disclosed are a light emitting device, a method of manufacturing the same, a light emitting device package, and a lighting system. The light emitting device includes: a substrate; a first conductive semiconductor layer on the substrate; an active layer on the first conductive semiconductor layer; a second conductive semiconductor layer; and a nitride semiconductor layer having a refractive index less than a refractive index of the second conductive semiconductor layer on the second conductive semiconductor layer.
US09018647B2 Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
A thin film deposition apparatus, a method of manufacturing an organic light-emitting display device by using the thin film deposition apparatus, and an organic light-emitting display device manufactured by using the method. A thin film deposition apparatus for forming a thin film on a substrate includes a first chamber in a vacuum state; first and second stages arranged in parallel in the first chamber wherein the substrate is fixable to at least one of the first and second stages; a mask contactable with the substrate; and a first deposition source and a second deposition source that are movable relative to the first and second stages and are configured to discharge a deposition material onto the substrate.
US09018639B2 Flat SiC semiconductor substrate
Methods for manufacturing silicon carbide wafers having superior specifications for bow, warp, total thickness variation (TTV), local thickness variation (LTV), and site front side least squares focal plane range (SFQR). The resulting SiC wafer has a mirror-like surface that is fit for epitaxial deposition of SiC. The specifications for bow, warp, total thickness variation (TTV), local thickness variation (LTV), and site front side least squares focal plane range (SFQR) of the wafer are preserved following the addition of the epitaxy layer.
US09018636B2 Semiconductor device having a plurality of transistors with different crystal face
According to one embodiment, a semiconductor device includes a first and a second transistor. The first transistor includes a first and a second region of a first conductivity type and a third region of a second conductivity type. The first region is disposed along a first crystal face of a silicon carbide region. The silicon carbide region has the first crystal face and a second crystal face. The second and the third region are disposed along the first face. The third region is provided between the first and the second region. The second transistor includes a fourth and fifth region of the second type and a sixth region of the first type. The fourth, the fifth and the sixth region are disposed along the second face of the silicon carbide region. The sixth region is provided between the fourth and the fifth region.
US09018630B2 Heterocyclic dinaphtho thieno thiophene (DNTT) compounds for use as organic semiconductor thin films in field effect transistors and related methods
Provided are a novel heterocyclic compound represented by formula (1), and a field-effect transistor having a semiconductor layer comprising the aforementioned compound. Also provided is a method for producing an intermediate enabling the production of the aforementioned novel heterocyclic compound. (In the formula, R1 and R2 represent a hydrogen atom, a C2-16 alkyl group or an aryl group. However, when R1 each independently represents a C2-16 alkyl group or an aryl group, R2 represents a hydrogen atom or each independently represents an aryl group; and when R1 represents a hydrogen atom, R2 each independently represents an aryl group.)
US09018629B2 Semiconductor device and method for manufacturing semiconductor device
To provide a miniaturized transistor having high electric characteristics. A conductive film to be a source electrode layer and a drain electrode layer is formed to cover an oxide semiconductor layer and a channel protection layer, and then a region of the conductive film, which overlaps with the oxide semiconductor layer and the channel protection layer, is removed by chemical mechanical polishing treatment. Precise processing can be performed accurately because an etching step using a resist mask is not performed in the step of removing part of the conductive film to be the source electrode layer and the drain electrode layer. With the channel protection layer, damage to the oxide semiconductor layer or a reduction in film thickness due to the chemical mechanical polishing treatment on the conductive film can be suppressed.
US09018627B2 Inspection apparatus
In semiconductor surface inspection apparatus, foreign matter that sticks to the wafer can reduce the quality of the wafer. The present invention is directed to improving the internal cleanliness of the apparatus. Specifically, during rotation of a semiconductor wafer, foreign matter suspended in an atmosphere surrounding the wafer is attracted to a central section of the wafer, and that while heading from the central section of the wafer, towards an outer edge thereof, the foreign matter is most likely to stick to the wafer. In conventional techniques, sufficient consideration is not given to such likelihood of foreign matter sticking. This invention supplies a medium from two directions to an inner circumferential section of a substrate. In accordance with the invention, foreign matter that sticks to a wafer can be reduced more significantly than in the conventional techniques.
US09018626B2 ZnO film structure and method of forming the same
Disclosed herein are a ZnO film structure and a method of forming the same. Dislocation density of a ZnO film grown through epitaxial lateral overgrowth (ELOG) is minimized. In order to block a chemical reaction between the ZnO film and a mask layer at the time of performing the ELOG, a material of the mask layer is AlF3, NaF2, SrF, or MgF2. Therefore, the chemical reaction between ZnO and the mask layer is blocked and a transfer of dislocation from a substrate is also blocked.
US09018623B2 Array substrate, display panel having the same and method of manufacturing the array substrate
An array substrate includes a thin film transistor which includes a gate electrode electrically connected to a gate line, a source electrode electrically connected to a data line, a drain electrode and an active layer, a first electrode electrically connected to the drain electrode and disposed at a pixel area, and a second electrode covering an upper and a side surface of the source electrode. The second electrode is spaced apart from the first electrode.
US09018622B2 Method for manufacturing organic semiconductor element
A method for manufacturing an organic semiconductor element, capable of obtaining an organic semiconductor element in which an organic semiconductor layer is easily patterned without being lowered in mobility, which includes: a source electrode and drain electrode formation step; an organic semiconductor layer formation step of forming an organic semiconductor layer having the liquid crystal organic semiconductor material on the alignment layer to cover the source electrode and the drain electrode; a dielectric layer formation step of forming a dielectric layer on the organic semiconductor layer to be positioned at least on a channel region between the source electrode and the drain electrode; and an annealing step of annealing the organic semiconductor layer, on which the dielectric layer is formed, at a liquid crystal phase temperature of the liquid crystal organic semiconductor material.
US09018621B2 Organic light emitting diode display device and method of fabricating the same
An organic light emitting diode display device, comprises: a thin film transistor on a substrate; a first insulating layer on the thin film transistor; a connecting electrode connected to the thin film transistor and a first auxiliary electrode on the first insulating layer; a second insulating layer on the connecting electrode and the first auxiliary electrode; an anode connected to the connecting electrode and a second auxiliary electrode spaced apart from the anode and connected to the first auxiliary electrode on the second insulating layer; a bank layer having a first contact hole exposing the anode and a second contact hole exposing the second auxiliary electrode on the anode and the second auxiliary electrode; an organic emitting layer on the anode in the first contact hole; and a cathode electrically connected to the second auxiliary electrode on the organic emitting layer.
US09018617B2 Topological insulator structure having magnetically doped topological insulator quantum well film
A topological insulator structure includes an insulating substrate and a magnetically doped TI quantum well film located on the insulating substrate. A material of the magnetically doped TI quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3. 0
US09018615B2 Resistor random access memory structure having a defined small area of electrical contact
A memory cell device, of the type that includes a memory material switchable between electrical property states by application of energy, includes first and second electrodes, a plug of memory material (such as phase change material) which is in electrical contact with the second electrode, and an electrically conductive film which is supported by a dielectric form and which is in electrical contact with the first electrode and with the memory material plug. The dielectric form is wider near the first electrode, and is narrower near the phase change plug. The area of contact of the conductive film with the phase change plug is defined in part by the geometry of the dielectric form over which the conductive film is formed. Also, methods for making the device include steps of constructing a dielectric form over a first electrode, and forming a conductive film over the dielectric form.
US09018612B2 Access device having counter doping layer and semiconductor memory device having the same
An access device having a reduced height and capable of suppressing leakage current, a method of fabricating the same, and a semiconductor memory device including the same, are provided. The access device may include a stacked structure including a first-type semiconductor layer having a first dopant, a second-type semiconductor layer having a second dopant, and a third-type semiconductor layer. A first counter-doping layer, having a counter-dopant to the first dopant, is interposed between the first-type semiconductor layer and the third-type semiconductor layer. A second counter-doping layer, having a counter-dopant to the second dopant, is interposed between the third-type semiconductor layer and the second-type semiconductor layer.
US09018611B2 Semiconductor storage device and manufacturing method the same
A semiconductor storage device according to an embodiment includes a first conductive layer, a variable resistance layer, an electrode layer, a first liner layer, a stopper layer, and a second conductive layer. The variable resistance layer is provided above the first conductive layer. The electrode layer contacts an upper surface of the variable resistance layer. The first liner layer contacts the upper surface of the electrode layer. The stopper layer contacts the upper surface of the first liner layer. The second conductive layer is provided above the stopper layer. The first liner layer is made of a material having a property for canceling an influence of an orientation of a lower layer of the first liner layer, the property of the first liner layer being superior compared with that of the stopper layer.
US09018608B1 Optical sensor for detecting liquid
An optical liquid sensor utilizing a light source, fiber optic cables, a light detector and an irregular transparent surface is provided to detect the presence of liquid in mist and continuous form. The sensor may be integrated into a probe designed for insertion into a pressurized fluid process.
US09018598B2 Aerosol ionizer
A system and method comprising an ion production chamber having a plasma source disposed in said chamber, a harvest gas disposed to flow through the chamber from an inlet to an outlet, and a jet, said jet operable to introduce a sample into the harvest gas flow. In some embodiments the system includes using helium as the harvest gas. Certain embodiments include introducing a sample perpendicular to the harvest gas flow and using multiple sample introduction jets to increase mixing efficiency. The charge sample may be coupled to a MEMS-based electrometer.
US09018595B2 2-D-TOF-pulse neutron detector
[Problem to be Solved] The present invention presents a 2-D-TOF-pulse neutron detector which is able to measure accurate energy spectra, doses, 2-D incident positions and transmission image by measuring TOF of pulse neutron for BNCT and to display the result of the measurement on the transmission image.[Solution to Problem] The 2-D-TOF-pulse neutron detector includes a GEM-detector being put in a chamber filled with electrolytic-dissociative gas, 2-D-TOF readout integrated circuit and image processor.
US09018587B2 Radiation detection apparatus with noise compensation and a method of using the same
A radiation detection apparatus includes a sonde having a housing and comprising a scintillator disposed within the housing and a calibration source coupled to the scintillator to fluoresce the scintillator at a known wavelength of electromagnetic radiation. The radiation detection apparatus further includes an electromagnetic radiation sensing device coupled to the scintillator and disposed within the housing and a first programmable/re-programmable processing module (PRPM) coupled to the electromagnetic radiation sensing device and disposed within the housing. The PRPM can be programmed to use state information when analyzing pulses corresponding to shock, vibration, or another noise source. In another embodiment, the PRPM can be used to monitor the health of the radiation detection apparatus.
US09018586B2 Apparatuses for large area radiation detection and related method
Apparatuses and a related method relating to radiation detection are disclosed. In one embodiment, an apparatus includes a first scintillator and a second scintillator adjacent to the first scintillator, with each of the first scintillator and second scintillator being structured to generate a light pulse responsive to interacting with incident radiation. The first scintillator is further structured to experience full energy deposition of a first low-energy radiation, and permit a second higher-energy radiation to pass therethrough and interact with the second scintillator. The apparatus further includes a plurality of light-to-electrical converters operably coupled to the second scintillator and configured to convert light pulses generated by the first scintillator and the second scintillator into electrical signals. The first scintillator and the second scintillator exhibit at least one mutually different characteristic for an electronic system to determine whether a given light pulse is generated by the first scintillator or the second scintillator.
US09018581B2 Transmission electron microscope
A transmission electron microscope (100) includes an electron beam source (2), an illumination lens (10), an objective lens (20), an intermediate lens system (30), a pair of transfer lenses (40) located behind the intermediate lens system (30), and an energy filter (60) for separating the electrons of the beam L transmitted through the specimen (S) according to energy. The transfer lenses (40) transfer the first image to the entrance crossover plane (S1) of the energy filter (60) and to transfer the second image to the entrance image plane (A1) of the filter (60). An image plane (A3) is formed between the first transfer lens (40a) and the second transfer lens (40b).
US09018579B2 Atom interferometry having spatially resolved phase
In an atom interferometer, improved results are obtained by configuring the interferometer to have a baseline fringe pattern, in combination with spatially resolved measurements at the interferometer ports. Two aspects of this idea are provided. In the first aspect, the atoms are configured to expand from an initial point-like spatial distribution. The result is an informative correlation between atom position and interferometer phase. In the second aspect, a phase shear is applied to the atom ensemble of an atom interferometer. In both cases, spatially resolved measurements at the interferometer ports can provide enhanced interferometer performance, such as single-shot operation.
US09018578B2 Adaptable resolution optical encoder having structured illumination and spatial filtering
A flexible optical displacement encoder configuration uses a source grating to illuminate a scale with structured light such that light from the scale is modulated with a beat frequency envelope which may have a relatively coarse pitch that matches a desired detector pitch. An imaging configuration provides spatial filtering to remove the high spatial frequencies from the modulation envelope to provide a clean signal in the detected fringe pattern. This combination of elements allows an incremental scale track pattern with a relatively finer pitch (e.g., 4, 5, 8 microns) to provide fringes with a coarser pitch (e.g., 20 microns) at a detector. Various scale resolutions can use a corresponding source grating such that all combinations can produce detector fringes that match the same economical detector component.
US09018576B2 Low drop-out regulator with distributed output network
Disclosed is a low drop-out voltage regulator circuit with a distributed output network coupled to a pixel array for use in image sensor circuitry. The regulator circuit comprises voltage regulating circuitry and a distributed output network, wherein the distributed output network comprises drive transistors disposed along and connected between a supply track and an output track. The spatial distribution of the drive transistors improves heat dissipation within the regulator circuit, and a combination of low current flow and regulated output voltage reduces IR drop across the output track. The improved heat dissipation increases device lifespan and performance, whereas the reduction in IR drop across the output track provides better pixel response, readout uniformity, and image quality.
US09018574B2 Driving an image apparatus by simultaneous application of two reset voltages
A driving method of an imaging apparatus comprises: horizontally transferring, by a horizontal scanning circuit, a signal based on a photoelectric conversion portion of a first pixel unit held in a signal holding capacitor to a common line; before ending of the horizontal transfer; applying, by a reset switch of a second pixel unit, a selection reset voltage to a floating diffusion region of the second pixel unit; and after the horizontal transfer, transferring, by a transfer switch of the second pixel unit, a signal of a photoelectric conversion portion of the second pixel unit to the floating diffusion region of the second pixel unit and amplifying, by an amplification transistor of the second pixel unit, a signal of the floating diffusion region of the second pixel unit to output the signal to an output line.
US09018573B2 Solid-state image sensing device with a change-over switch
A solid-state image sensing device comprises a unit pixel containing a photoelectric conversion element for detecting a light to generate photoelectrons and at least one electrode for forming an MOS diode structure, a first contact point connected to a first voltage supply for supplying a first voltage to the electrode, a second contact point connected to a second voltage supply for supplying a second voltage higher than the first voltage to the electrode, a first capacitor disposed between the first and second contact points, a change-over switch connected to one of the first and second contact points to selectively switch a voltage applied to the electrode to the first voltage or the second voltage, and pixel drive circuits for driving the change-over switch, thereby alternately applying the first voltage and the second voltage to the electrode to generate, hold, transfer, reset, or discharge the photoelectrons.
US09018560B2 Repair alignment method and apparatus for turbine components
A turbine component repair apparatus includes: a first die having male and female halves for clamping a first section of a turbine blade with a platform and a root portion of an airfoil, the first die having a recess shaped to receive the root portion and retain a faying surface thereof in predetermined alignment; and a second die having male and female halves for clamping a repair section which defines a tip portion of the airfoil, the second die having a second recess shaped to receive the tip portion and retain a faying surface of the tip portion in predetermined alignment. The first and second dies have mating front faces configured to align their bottom surfaces in a common plane. A alignment device is removably attached to the second die to temporarily align the repair section in the absence of the male half of the second die.