Document Document Title
US08644535B2 Method for adjusting a hearing device and corresponding hearing device
A method for adjusting a hearing device, in particular a hearing aid, to an individual user, includes firstly recording data relating to at least one setting of the hearing device together with direct or indirect temporal information. Thereupon, a period of time during which the at least one setting was/is active is automatically determined. Finally, at least one parameter of the hearing device is automatically adapted as a function of the determined period of time and the at least one setting. This affords the possibility of adapting, for example, time constants according to individual usage. A corresponding hearing device is also provided.
US08644534B2 Recording medium
A recording medium is provided that records a separating step of separating a mixed sound signal in which a plurality of excitations are mixed into the respective excitations, and a step of performing speech detection on the plurality of separated excitation signals, judging whether or not the plurality of excitation signals are speech and generating speech section information indicating speech/non-speech information for each excitation signal. The recording medium also includes at least one of a step of calculating and analyzing an utterance overlap duration using the speech section information for combinations of the plurality of excitation signals and a step of calculating and analyzing a silence duration. The recording medium further includes a step of calculating a degree of establishment of a conversation indicating the degree of establishment of a conversation based on the extracted utterance overlap duration or the silence duration.
US08644533B2 Method and apparatus for hearing assistance device microphones
One embodiment of the present subject matter includes an apparatus, including: a microphone to convert sound into a signal; and an electrically adjustable shutter including conductive polymer, the shutter in acoustic communication with the microphone and configured to provide an adjustable acoustic resistance to the microphone. Variations include conductive traces adapted to apply an electric signal to the conductive polymer. In some embodiments a diaphragm in acoustic communication with the shutter configured to detect acoustic energy is included. The present subject matter also provides methods including, but not limited to a method for operating a microphone in a hearing assistance device, including measuring acoustic energy detected by a diaphragm in acoustic communication with a shutter via a conduit, and controllably adjusting an acoustic resistance of the shutter with an electric signal to change directionality of the microphone.
US08644532B2 Channel coordination between a wireless earphone and a transmitter
A method of the present invention includes coordinating tuning to the same channel of a radio band wherein the following steps are performed: tuning to a channel, within a radio band, that uses a side band; receiving control information in the side band of the channel; and processing the received audio information in the channel using the control information.
US08644531B2 Information processing system and information processing method
An information processing system includes a display, a display sensor that detects a movement or a rotation of the display, a transducer unit as an earphone unit or a headphone unit, a sound processing part that processes an audio signal so as to localize a sound image in a position outside a head of a listener wearing the transducer unit and listening to sound, and an operation controller that computes an output from the display sensor to obtain a moving direction and a moving distance, or a rotation direction and a rotation angle of the display, and controls sound processing performed by the sound processing part in accordance with a result of the computation so that a positional relation between the display and the head of the listener is mapped as a positional relation between an image display surface and the head of the listener in a virtual viewing space.
US08644528B2 Microfabricated microphone
The present invention provides a microfabricated microphone that can mitigate negative effects caused by residual stress in its sensing diaphragm. In particular, a center-supported diaphragm is provided to allow residual stress to relax through the radial expansion or contraction of the diaphragm. The diaphragm is suspended by an anchor that is attached to a supporting beam. The supporting beam is situated in between one or more sections of a back-plate electrode. The supporting beam is mechanically and electrically separated from the back-plate electrode. Various mechanical dimensions of the aforementioned components are also disclosed to optimize performance of a microfabricated microphone in different operational conditions. Further, a method and system for fabricating a microfabricated microphone with a center-supported diaphragm is also disclosed.
US08644522B2 Method and system for modeling external volume changes within an acoustic echo canceller
A method and system are provided in which a device, such as an acoustic echo canceller, may reduce the residual echo that may be heard at the far end of a conversation when an external speaker volume is changed. The device may compute a gain based on an echo estimate produced by a filter and on a near-end signal comprising audio information. The gain may be based on a correlation of the echo estimate and the near-end signal that tracks the changes in volume. Once computed, the gain may be validated to ensure that it is being applied when appropriate. The echo estimate may be adjusted by first applying the gain to an output of the filter and subsequently scaling a value of each of the coefficients of the filter based on the gain. The gain may be smoothed out over consecutive frames based on several adaptation schemes.
US08644518B2 Audio broadcast collecting method
An audio broadcast collecting method includes a plurality of steps. In one step, an audio broadcast collecting system simultaneously receives a single audio broadcast in a plurality of audio systems. In another step, the audio broadcast collecting system outputs from each of the plurality of audio systems separate audio performances corresponding to the single audio broadcast. In yet another step, the audio broadcast collecting system records an audio sample of the separate audio performances outputted by the plurality of audio systems simultaneously to obtain recorded samples from the plurality of audio systems.
US08644517B2 System and method for automatic disabling and enabling of an acoustic beamformer
A system and method that automatically disables and/or enables an acoustic beamformer is described herein. The system and method automatically generates an output audio signal by applying beamforming to a plurality of audio signals produced by an array of microphones when it is determined that such beamforming is working effectively and generates the output audio signal based on an audio signal produced by a designated microphone within the array of microphones when it is determined that the beamforming is not working effectively. Depending upon the implementation, the determination of whether the beamforming is working effectively may be based upon a measure of distortion associated with the beamformer response, an estimated level of reverberation, and/or the rate at which a computed look direction used to control the beamformer changes.
US08644515B2 Display authenticated security association
A system and method for establishing a mutual entity authentication and a shared secret between two devices using displayed values on each device. Unique first private keys and first public keys are assigned to both devices. The public keys are exchanged between the two devices. Both devices compute a shared secret from their own private keys and the received public keys. Both devices compute, exchange, and verify their key authentication codes of the shared secret. If verification is successful, both devices use the shared secret to generate a displayed value. One or more users compare the displayed values and provide an indication to the devices verifying whether the displays match. If the displays match, then the devices compute a shared master key, which is used either directly or via a later-generated session key for securing message communications between the two devices.
US08644512B2 Mission planning interface for accessing vehicle resources
In an aspect, the invention features a method for mission planning. The method includes displaying a graphical representation of a geographical area and displaying a graphical representation of one or more regions within the geographical area. The method also includes accepting a specification of geographical regions from a user, accepting a specification of a set of one or more receivers from the user, and accepting a specification of resource access rights associated with the specific one of the geographical regions from the user. The method also includes remotely causing access to a vehicle's resources to be provided or denied to the specified set of one or more receivers based on their association with the specific one of the geographical regions specified by the user when the vehicle is within the specific one of the geographical regions specified by the user.
US08644511B2 System and method for providing digital content
A method of providing access to content based upon one or more adequately-credentialed keys being proximate to a certain location. The method includes a first step of acquiring credential information from at least one key tagged with credential information using a credential acquisition device (CAD) at the certain location. The method also includes a second step of confirming that the credential information meets requirements for receiving the content. Further, the method includes a step of providing access to the content after performing the first and second steps.
US08644505B2 Remote entitlement processing module integration processing device and method
There is provided a remote entitlement processing module integration processing device. The remote entitlement processing module integration processing device includes: a remote entitlement processing module generating and managing remote smart cards (RSCs) having the number corresponding to the number of host terminals managed by the remote entitlement processing module integration processing device; and a descrambler transferring channel selection information in response to a selection of a pay channel by a user to the remote entitlement processing module and descrambling a scrambled channel signal using a control word (CW) received as a response to the channel selection information, thereby making it possible to minimize dependency between a subscriber device and a conditional access system.
US08644504B2 Method, apparatus, and system for deciphering media content stream
A method, apparatus and system for media content deciphering is disclosed. In one embodiment, a first content stream is received at a receiver device from a transmitter device coupled to the receiver device, wherein the first content stream having media content formatted in a particular package structure, the media content is associated with High-Definition Content Protection (HDCP) values. The first content stream is deciphered into a second content stream by removing the HDCP values from the first content stream, while the package structure of the media content is maintained.
US08644503B2 Content server systems and methods
A content server system includes a remote content server including content license information and a local content player coupled to the remote content server by a network, the local content player requiring verification of a license by a user of the local content player as administered by the remote content server. In an alternate embodiment the network includes a local area network. In another alternate embodiment, the network includes the Internet.
US08644501B2 Paired carrier and pivot steganographic objects for stateful data layering
A system, method and program product for utilizing a steganographic process to hide data element in a carrier object. A system is disclosed that includes: a pivot object generator that generates a pivot object having a key hidden therein, wherein the key is hidden in the pivot object based on an inputted salt; and a carrier object generator that generates a carrier object having a data element hidden therein using a steganographic hiding system, wherein the steganographic hiding system requires utilization of the key to extract the data element from the carrier object.
US08644498B2 Electronic device
An easy to use electronic device is provided. The electronic device functions as a telephone and has a display portion, an audio input portion, an audio output portion, and operation keys. The display portion has a passive element, and the operation keys have LEDs. The direction of an image displayed by the LEDs is switchable.
US08644495B2 Echo canceler
An echo canceler 10 generates an echo elimination signal by filtering through adaptive filters 101 and 102 reference signals input from sound sources causing echoes. It includes a sound source number detecting unit 103 for detecting the number of the sound sources causing echoes from the reference signals, and a control unit 105 for making the number of taps of the adaptive filters 101 and 102 variable in accordance with the number of the sound sources detected by the sound source number detecting unit 103.
US08644485B1 Intelligent softswitch for managing a call
Systems, methods and computer program products for managing a call are described. In some implementations, an intelligent softswitch can be used to communicate with a provider system that can relay or switch one or more outbound calls initiated by a caller and intended for a subscriber to the intelligent softswitch. Upon receiving the relayed call, the intelligent softswitch can process the relayed call using one or more call handling rules that have been specified by the subscriber. After processing, the relayed call is routed back to the provider system for completing the call.
US08644484B2 System and method for active mobile collaboration
A communication system is provided that uses loosely-coupled client-server architectures to improve the efficiency of communications. The communication system includes client and facilitator applications. The client application is a component of processor-based mobile communication devices. The facilitator application is hosted on one or more servers or other processor-based devices, and communicates with the client application via one or more couplings. The facilitator application can also be distributed among one or more portable processor-based devices including the communication devices hosting the client application. The communication system improves efficiency of voice communications by allowing communication device users to dynamically manage how and when mobile calls take place, intelligently screen calls based on caller identity, urgency, and subject matter, determine which contacts in a directory are available to talk and which ones choose not to be disturbed, and increase accessibility of enterprise and personal contact information from mobile phones.
US08644482B2 Method and apparatus for implementing and filtering customized ringing signals
A method for implementing Customized Ringing Signal (CRS) services is provided. The method includes: receiving a call request initiated by a caller terminal; obtaining a policy of playing a CRS tone according to the call request, where the policy is a policy of playing a CRS tone, namely, a caller CRS tone or a callee CRS tone, or a policy of filtering the CRS tone; and playing the CRS tone to a callee according to the policy. By setting a policy of playing the CRS tone to the callee in the network or the callee terminal, the users enjoy the CRS services at their own discretion.
US08644480B2 Telephone call processing
Disclosed embodiments allow telephony services of different types to be provided by a telephone company at a service platform for telephone calls received at a local telephone exchange belonging to the telephone company, but which does not itself support services those different types of services. Additional embodiments allow for disabling a subscriber-configurability feature for a service of a first service type on the local exchange so as to prevent or inhibit a subscriber from configuring a setting which may interfere with services provided on the service platform.
US08644479B2 Method and apparatus for protecting moderator access for a conference call
A method for protecting moderator access using a communication device. The method includes: displaying an interface for editing a conference call profile, the conference call profile including conference call scheduling information including one or more addressees for communicating with a conference call server, wherein the conference call scheduling information further includes a moderator access code and a participant access code; generating an indicator for the conference call profile for excluding sending of the moderator access code to invited participants; and storing the conference call profile including the indicator in a memory of the communication device. A communication device can be configured to perform the method.
US08644476B2 Method and system for providing a value added service that is available in a first network to a subscriber in a second network
Method and communication system for providing a value added service, such as an intelligent network (IN) service, which is available in a first network (5), to a subscriber (3) in a second network (7). The first network (5) comprises a first network node (11) for executing the value added service. The method comprises detecting in a terminating call to the subscriber (3) that the subscriber (3) desires to use the value added service, forwarding control of the call towards the first network node (11) associated with a forwarding number in the first network (5), executing the value added service by the first network node (11), and, when necessary, further directing the call towards the subscriber (3) associated with the terminating call. The present method can also be applied to originating calls from a subscriber. In this case, the call is further directed towards a destination associated with the call.
US08644471B1 Caller name detection and export
Methods, media, and network devices are provided for detecting errors in caller identifier records. A caller name provider is identified for a terminating endpoint that is a recipient of a communication from a transmitting device. The caller name provider receives queries for caller identifier information that will be transmitted to the terminating endpoint. The caller name provider returns records having the caller identifiers in response to the queries. When the records contain an error, the caller name providers receive update requests from a calling party of the transmitting device. The update requests include changes to the records that correct the errors.
US08644469B2 Methods, systems, and products for monitoring service usage
Usage information is received that describes usage of communication services by a communications device. The usage information is compared to monitoring criteria. When the monitoring criteria is satisfied, an electronic notification message is sent to the communications device. The electronic notification message when a communications service is initiated and before an additional charge for the communications service is incurred.
US08644466B1 Interjurisdictional recording mechanism
The present invention provides a system for recording an interaction including, a telephone call between a caller and a digital processing system placed over an interjurisdictional boundary, and may include a telephone call placed to at least one called recipient. For example, a caller may place a telephone call over an interjurisdictional boundary to a remote computer server. The server may use an interactive voice response (IVR) unit to obtain caller identification information, provide recording identification information to the caller, and receive authorization from the caller to record an interaction between the caller and a call recipient. The server can also obtain testamentary intent information. A telephone call may then be placed by the server to the recipient, and a two-party digital voice recording can be made on the remote server of a three-way telephone call, in which the server is one of the parties.
US08644463B2 System and method for delivery of voicemails to handheld devices
Briefly, a variety of embodiments, including the following, are described: a system embodiment and methods that allow random access to voice messages, in contrast to sequential access in existing system embodiments; a system embodiment and methods that allow for the optional use of voice recognition to enhance usability; and a system embodiment and methods that apply to the area of voicemail.
US08644460B2 Application service invocation
An Internet Protocol Multimedia Subsystem (IMS) includes a Serving-Call Session Control Function (S-CSCF). The S-CSCF includes a Service Capability Interaction Manager (SCIM) configured to invoke one or more application services in response to a message being received by the S-CSCF.
US08644455B2 High availability architecture for computer telephony interface driver
Systems, method, and media for providing communication services between an application and a computer telephony interface server are provided. One of a plurality of computer telephony interface drivers is launched as a primary computer telephony interface driver to interface the application with the computer telephony interface server. The computer telephony interface drivers are monitored with a plurality of monitors. Each of the monitors is associated with one of the computer telephony interface drivers and monitors a status of another of the computer telephony interface drivers. A failure of the primary computer telephony interface driver is detected with a secondary monitor. The secondary monitor monitors the primary computer telephony interface driver and is associated with a secondary computer telephony interface driver. The secondary computer telephony interface driver is launched with the secondary monitor in response to the secondary monitor detecting the failure of the primary computer telephony interface driver.
US08644454B2 Radiation image capturing system
A radiation image capturing system including a CR cassette and a FPD cassette, and the icon corresponding to the bucky device is displayed in a different manner according to the type of cassette loaded on the bucky device. When the icon of the bucky device showing that the FPD cassette is loaded is selected, the icon corresponding to the FPD cassette does not need to be selected.
US08644452B2 Delivery system for radiation therapy
A device is used to precisely deliver the treatment plan created by an automatic planning system by positioning a single low energy radiation source, or a plurality of low energy sources connected to each other, in a predetermined parallel, planar, or similar geometry, each source equipped with blocking and attenuation mechanisms, thereby delivering a plurality of parallel overlapping beams indexed on a millimeter or submillimeter grid such that a concentration of dose is achieved at a variable depth in tissue relative to the dose where the radiation first enters the tissue. A plurality of overlapping beams indexed on a millimeter or submillimeter grid can converge on a target volume loaded with gold nanoparticles to deliver a tumorcidal dose of radiation in as little as a single session to tumor cells but not to normal cells or to deliver serial radiosurgical treatments.
US08644449B2 X-ray imaging apparatus and method of X-ray imaging
Provided is an X-ray imaging apparatus and a method of X-ray imaging, with which the apparatus can be reduced in size and a with which differential phase image or a phase image with consideration of an X-ray absorption effect of an object can be obtained.A displacement of X-rays that have been split by a splitting element and have passed through an object is measured. The displacement can be measured by using a first attenuation element having a transmission amount that continuously changes in accordance with the incident position of X-rays. At this time, an X-ray transmittance of an object that is calculated by using a second attenuation element having a transmission amount that does not change in accordance with the incident position of X-rays is used.
US08644446B2 Spacer grid with saddle-shaped supports and corresponding nuclear fuel assembly
A spacer grid for a nuclear fuel assembly for a light water reactor delimits a substantially regular array of cells housing nuclear fuel rods. The spacer grid further including supporting members which project into the cells from the peripheral belt of walls. The inner surface of at least one supporting member has before irradiation a concave shape in a plane transverse to the longitudinal direction. The inner surface of the contact part of the supporting member also has a convex shape in a longitudinal plane orientated radially with respect to the central axis of the corresponding cell before irradiation.
US08644444B2 Nuclear fuel assembly for boiling water reactor
An assembly of the type having a water channel extending along a longitudinal axis and having an upper section of larger cross-section area than a lower section and at least one fuel rod receiving groove extending longitudinally on the outer surface of the lower section, fuel rods extending longitudinally and disposed around the water channel and fixing members for fixing at least one fuel rod to the water channel in the at least one groove below the upper section.According to one aspect of the invention, the at least one groove extends along the upper section such that a fuel rod received in fixing members is longitudinally extractable or insertable from the upper end side of the fuel assembly.
US08644443B2 Gamma thermometer axial apparatus and method for monitoring reactor core in nuclear power plant
A pair of linear arrays of gamma thermometer (GT) sensors arranged in a nuclear reactor core including: a first linear array of GT sensors, wherein the GT sensors are arranged asymmetrically along a length of the first linear array; a second linear array of GT sensors, wherein the GT sensors are arranged asymmetrically along the second linear array and wherein the second linear array of GT sensors is asymmetrical with respect to the first linear array of GT sensors, and the first linear array positioned in the reactor core at a first core location and the second instrument housing positioned at a second core location, wherein a line of symmetry of the core extends through a center of the core and the first core location is the same horizontal distance from the line of symmetry as the second core location.
US08644440B1 Apparatus and methods for detection and correction of transmitter duty cycle distortion
One embodiment relates to an integrated circuit which includes a transmitter buffer circuit, a duty cycle distortion (DCD) detector, correction logic, and a duty cycle adjuster. The DCD detector is configured to selectively couple to the serial output of the transmitter buffer circuit. The correction logic is configured to generate control signals based on the output of the DCD detector. The duty cycle adjuster is configured to adjust a duty cycle of the serial input signal based on the control signals. Another embodiment relates to a method of correcting duty cycle distortion in a transmitter. Other embodiments and features are also disclosed.
US08644439B2 Circuits and methods for signal transfer between different clock domains
In certain embodiments, a circuit for transferring signals from a source clock domain to a destination clock domain comprises a first pulse generation circuit, a hold flip-flop circuit, a clocked synchronizer circuit and a second pulse generation circuit. The first pulse generation circuit, operable in the source clock domain, generates a source data pulse from a source data signal. The hold flip-flop circuit, operable in the source clock domain, is configured to hold the source data pulse. The clocked synchronizer circuit, operable in the destination clock domain, samples the source data pulse received from the hold flip-flop circuit, where source data pulse held at the output of the hold flip-flop circuit is cleared when the source data pulse is sampled by the clocked synchronizer circuit. The second pulse generation circuit, operable in the destination clock domain, is configured to generate a destination data pulse from the sampled source data pulse.
US08644431B2 Parallel execution of trellis-based methods
A receiver system and method for recovering information from a symbol data sequence Y. The symbol data sequence Y corresponds to a symbol data sequence X that is transmitted onto the channel by a transmitter. The symbol data sequence X is generated by the transmitter based on associated information bits. At the receiver, a set of two or more processors operate in parallel on two or more overlapping subsequences of the symbol data sequence Y, where each of the two or more overlapping subsequences of the symbol data sequence Y corresponds to a respective portion of a trellis. The trellis describes redundancy in the symbol data sequence Y. The action of operating in parallel generates soft estimates for the associated information bits. The soft estimates are useable to form a receive message corresponding to the associated information bits.
US08644427B2 Radio frequency receiver with dual band reception and dual ADC
A radio frequency receiver with dual band reception and dual analog-to-digital converters (ADCs) can be configured to operate in a single channel mode or a dual channel mode to receive a single RF input channel or two RF input channels at the same or different frequency bands. In the single channel mode, the dual ADCs can be used to improve the performance of the receiver for the single input signal or the dual ADCs can be configured for reduced power consumption. In the dual channel mode, the dual ADCs operate on the individual RF input signals to realize dual band reception. In one embodiment, the receiver is configured for asymmetric dual band reception to receive a wideband input signal on a first input signal path and a narrow band input signal on a second input signal path.
US08644422B2 Low overhead PMI and CQI feedback and pairing schemes for MU-MIMO
A method is provided for searching for a pairing PMI including estimating a MIMO wireless propagation channel from an access point transmitter to a receiver at a UE; quantizing the estimated channel with a codebook consisting of a plurality of codewords, the result being an actual SU-MIMO PMI currently applicable to the UE; estimating the channel quality corresponding to the actual SU-MIMO PMI, resulting in at least one CQI for the UE; constructing a plurality of subsets from a codebook of codewords, wherein each subset comprises potential MU-MIMO PMIs that represent channels that have reduced interference with a channel represented by one of the potential SU-MIMO PMIs; associating each potential SU-MIMO PMI with the subset that comprises the potential MU-MIMO PMIs that represent channels that have reduced interference with the channel represented by that potential SU-MIMO PMI; searching for an appropriate pairing PMI and the associated CQI for the UE.
US08644419B2 Periodic calibration for communication channels by drift tracking
A method and system that provides for execution of a first calibration sequence, such as upon initialization of a system, to establish an operation value, which utilizes an algorithm intended to be exhaustive, and executing a second calibration sequence from time to time, to measure drift in the parameter, and to update the operation value in response to the measured drift. The second calibration sequence utilizes less resources of the communication channel than does the first calibration sequence. In one embodiment, the first calibration sequence for measurement and convergence on the operation value utilizes long calibration patterns, such as codes that are greater than 30 bytes, or pseudorandom bit sequences having lengths of 2N−1 bits, where N is equal to or greater than 7, while the second calibration sequence utilizes short calibration patterns, such as fixed codes less than 16 bytes, and for example as short as 2 bytes long.
US08644415B2 Method for precoding using a block diagonal matrix
An objective problem of the invention is to provide a mechanism for improving the performance of a radio access network. According to a first aspect of the present invention, the object is achieved by a method in a first node for adapting a multi-antenna transmission to a second node over an effective channel. The first node and the second node are comprised in a wireless communication system. The method comprises the steps of obtaining at least one symbol stream and determining a precoding matrix having a block diagonal structure. The method comprises the further steps of precoding the at least one symbol stream with the determined precoding matrix, and transmitting the at least one precoded symbol stream over the effective channel to the second node.
US08644414B2 Codebook design method for multiple input multiple output system and method for using the codebook
A multiple input multiple output (MIMO) communication method using a codebook is provided. The MIMO communication method may use one or more codebooks and the codebooks may change according to a transmission rank, a channel state of a user terminal, and/or a number of feedback bits. The one or more codebooks may be adaptively updated according to a time correlation coefficient of a channel.
US08644413B2 Implementing blind tuning in hybrid MIMO RF beamforming systems
A system and a method for applying a blind tuning process to M antennas coupled via N beamformers to a multiple input multiple output (MIMO) receiving system having N channels, wherein M>N, are provided herein. The method includes the following steps: Periodically measuring channel fading rate at a baseband level to determine the number of antennas L out of K antennas connected to each one of the beamformers, to be combined at each one of the N beamformers; assigning the antennas to the subset L according to some criteria such as best quality indicator; repeatedly applying a tuning process to L antennas in each one of the N beamformers.
US08644409B2 Method and apparatus for modulation and layer mapping in a wireless communication system
Systems and methodologies are described herein that facilitate improved modulation and coding techniques for a multiple-in multiple-out (MIMO) communication system. As described herein, data to be transmitted over a set of physical layers (e.g., corresponding to antennas, beams, etc.) can be processed such that encoding is performed on a per-codeword basis and modulation is performed on a per-layer basis, thereby mitigating performance degradation experienced by traditional systems due to layer imbalance. As further described herein, per-codeword code rate parameters and per-layer modulation parameters can be signaled to a device in various manners, such as through modulation and coding scheme (MCS) signaling, explicit code rate and/or modulation scheme signaling, relative code rate and/or modulation scheme signaling, or the like.
US08644407B2 Apparatus, and associated method of phase-offset modulation, for space-time coded wireless communication systems
An apparatus, and an associated methodology, for facilitating communication of data in a wireless communication systems. Binary data are modulated to form modulated symbols on parallel paths. The symbols formed on one of the parallel paths are phase-offset by a phase rotator to form phase-offset symbols. The parallel paths of symbols provide the symbols, both the phase-offset symbols and the symbols that are not phase-offset, to an Alamouti encoder. As a result, the dynamic range of the transmitted RF signals is reduced due to the introduction of the phase offset between the symbols of the parallel paths applied to the Alamouti encoder.
US08644402B2 Apparatus and method for compressive sensing tap identification for channel estimation
An apparatus and method for compressive sensing tap identification for channel estimation comprising identifying a set of significant taps in the time domain; representing a time-flat channel response using a Taylor series expansion with the set of significant taps; converting the time-flat channel response to a vectorized channel response; transforming the vectorized channel response to a compressive sensing (CS) polynomial frequency response; aggregating the CS polynomial frequency response into a stacked frequency response; converting the stacked frequency response into a measured pilot frequency response; estimating a channel parameter vector based on the measured pilot frequency response; and generating a reconstructed channel response from the channel parameter vector.
US08644399B2 Transmission apparatus, transmission method, reception apparatus, reception method, and transmission system
It is desired to suitably carry out transmission processing and reception processing carried out when transmitting a multicarrier signal where specific subcarriers are omitted. Therefore, the present invention carries out transmission avoidance processing operable when transmitting a multicarrier signal to replace signals corresponding to subcarriers, in a plurality of subcarriers, at frequency positions where transmission is avoided with a null signal. Subsequently, an inverse Fourier transform is carried out on the output of the transmission avoidance processing, the transmission power of the multicarrier signal that has been transformed is amplified in accordance with the number of subcarriers replaced with the null signal and the multicarrier signal is transmitted. When this multicarrier signal is received, subcarriers where transmission was avoided are estimated, and when it is estimated in the estimation that subcarriers where transmission was avoided are present, despreading and demodulation are carried out without using the subcarriers where transmission was avoided.
US08644393B2 Multilevel data compression using a single compression engine
A single compression engine transmits first and second discrete cosine transform (DCT)-encoded signals. The first DCT-encoded signal uses at most t coefficient bits to represent each of a plurality of DCT coefficients. The second DCT-encoded signal uses at most u coefficient bits, where u is less than t, to represent each of the plurality of DCT coefficients.
US08644383B2 Mean absolute difference prediction for video encoding rate control
Mean absolute difference (MAD) prediction for video encoding may be provided. Upon receiving a video stream comprising a plurality of quality layers, a first quantization parameter (QP) may be selected for a first frame of the video stream according to a second QP associated with a second frame and a third QP associated with a third frame. The first frame may then be encoded according to the selected first QP.
US08644380B2 Integer pixel motion estimation system, motion estimation system for quarter-pixel luminance, motion estimation system for quarter-pixel chrominance, motion estimation system for combined luminance, motion estimation system for combined luminance and chrominance, and motion estimation system for quarter-pixel luminance and chrominance
A RAM_HIME used for integer pixel motion estimation by an IME stores integer pixel luminance data from a SDRAM while satisfying the conditions that improve efficiency in reading an extracted rectangular area. A RAM_HSME used for motion estimation of quarter-pixel accuracy by a SME stores partial quarter-pixel luminance data while satisfying the conditions that improve efficiency in obtaining a rectangular area after calculation by calculation. A RAM_HMEC used for chrominance data generation of quarter-pixel accuracy by a QPG stores integer pixel chrominance data from the SDRAM while satisfying the conditions that improve efficiency in obtaining rectangular areas after calculation by calculation.
US08644371B2 Transmitter control in communication systems
Techniques are described to adaptively adjust the equalizer settings of each transmitter in a transmitter-receiver pair. The transmitter-receiver pair can be used at least with implementations that comply with 40GBASE-CR4 or 100GBASE-CR10. For implementations that comply with 40GBASE-CR4, equalizer settings of four transmitters may be independently established.
US08644367B2 Antenna beam scan unit and wireless communication system using antenna beam scan unit
An antenna beam scan unit includes: a Rotman lens that performs power division and synthesis between plural antenna ports and three or more beam ports; plural antenna elements which are connected to the respective antenna ports and to or from which radio waves are inputted or outputted; plural amplifiers that are connected to the respective beam ports of the Rotman lens and perform amplitude modulation on a signal; input paths for a transmission signal disposed in association with the amplifiers; switches for switching the input paths; and a beam control unit. The input paths include first paths and second paths on which a signal that is out of phase with a signal on the first paths is produced. The beam control unit selects two adjoining beam ports, and can switch the first paths and second paths as the input paths for the two beam ports.
US08644366B2 Method and apparatus for transmitting urgent data
A method and apparatus for transmitting urgent data by embedding the urgent data in normal data is provided. An urgent data signal is embedded in a normal data signal in such a way that the normal data signal is not affected, and then the urgent data signal is transmitted together with the normal data signal thereby stably transmitting urgent data without using a separate urgent data line.
US08644362B1 Hybrid pseudo-random noise and chaotic signal implementation for covert communication
A method and system for covert communication is provided by using a hybrid approach of pseudo-random noise (PN) sequencing with chaotic signals to make a transmitted waveform both hard to detect and hard to intercept by an unintended receiver. The method and system makes a covert communication system with chaotic signals practical for in-field use, including operation in a high noise power environment and allowing for easily changing between different security keys to maintain covertness.
US08644355B2 Methods, systems, and computer readable media for modifying a diameter signaling message directed to a charging function node
Methods, systems, and computer readable media for modifying a Diameter signaling message directed to a charging function node are disclosed. In one example, the method comprises receiving, at a Diameter routing node, a Diameter signaling message that is associated with a mobile subscriber and is directed to a destination charging function node. The method further includes accessing mobile subscriber related information that is associated with the Diameter signaling message. The method also includes modifying the Diameter signaling message to include the mobile subscriber related information and routing the modified Diameter message to the destination charging function node.
US08644354B2 Methods and systems for automatically registering a mobile phone device with one or more media content access devices
An exemplary method includes a media content access device detecting a request provided by a mobile phone device to register the mobile phone device with the media content access device, registering the mobile phone device with the media content access device in response to the detected request, and automatically registering the mobile phone device with one or more additional media content access devices within the local area network. Corresponding methods and systems are also described.
US08644350B2 Packet-based timing measurement
A slave communication device may transmit a packet to the master communication device, with the packet including a transmission time field and a correction field. The transmission time field may contain a value indicative of an approximate time of transmission of the packet by the slave communication device, and the correction field may contain a value indicative of a difference between the approximate time of transmission and an actual time of transmission of the packet by the slave communication device.
US08644341B1 MAC structure with packet-quasi-static blocks and ARQ
A MAC layer protocol that converts packets into a data stream is presented. The protocol layer accepts packets (like Ethernet packets) and converts them into blocks. The packets may be segmented into multiple hocks and multiple packets or packet fragments may be contained in a block. The blocks contain information for reassembling the data. All blocks may be exactly the same size and format, with the same coding. This allows blocks to be precisely recovered even when some of the bits on the stream have errors on them. The blocks may be interleaved and coded. Each block may be decoded independently of other blocks. The blocks may be numbered, so an ARQ mechanism may request that any missing blocks be resent without asking for a whole packet to be resent. The data stream may be passed to a physical layer like an OFDM or WOFDM stream of data.
US08644339B1 In-line packet reassembly within a mobile gateway
In one example, a serving gateway device includes one or more network interfaces configured to receive a packet fragment from a packet data network gateway (PGW) device, and a control unit configured to hash a source Internet protocol (IP) address, a destination IP address, and a fragment identifier value for the packet fragment to determine an entry of a hash table, wherein the entry of the hash table includes data defining a next expected offset, a next expected fragment identifier, and a reference to a fragment table comprising data for at least one previous packet fragment corresponding to the packet fragment, to compare a length of the packet fragment to the next expected offset and the fragment identifier value for the packet fragment to the next expected fragment identifier, and store the packet fragment using the fragment table based on the comparison.
US08644337B2 Authorizing QoS per QCI
The invention is directed to 3GPP-compliant networks wherein a Policy and Charging Rules Function (PCRF) node provides a subscriber's maximum allowed Authorized Quality-of-Service (QoS) per QoS Class Identifier (QCI) to a Policy and Charging Enforcement Function (PCEF) as the authorized QoS per QCI, such that the PCEF node can then allocate resources and bandwidth over one or more Internet Protocol Connectivity Access Network (IP-CAN) bearers with the same QCI.
US08644336B2 Diagnostic imaging apparatus, medical system and protocol managing method
A diagnostic imaging apparatus includes a protocol alteration history recording unit, a protocol alteration information detecting unit and a protocol alteration information displaying unit. The protocol alteration history recording unit records alteration histories according to protocols as protocol alteration history data. The protocol alteration information detecting unit detects an alteration about a designated protocol as protocol alteration information in accordance with the protocol alteration history data. The protocol alteration information displaying unit displays the protocol alteration information.
US08644335B2 Access node for a communications network
An access node such as an OLT or DSLAM for use in a communications network. The access node performs a plurality of functions using in a number of function modules, each divided into one or more sub-modules. The status of the sub-modules is controlled by a controlled by a controller that reviews load statistics and other inputs and determines whether the configuration of the function module should be changed. If so, individual sub-modules are powered down, clock-gated, or returned to operational status. A traffic dispatcher positioned before each function module distributes the data traffic to available sub-modules for processing, after which it is aggregated by a traffic aggregator and passed on to the next stage. A number of circuit boards may be used, each containing only one or two function modules. The boards are connected by short, high-speed serial lines, which may have multiple links whose status may also be controlled.
US08644333B2 Method and apparatus for realizing cross-connect of optical channel data unit-K
The present invention discloses a method for realizing cross-connect of optical channel data units (ODUk), which comprises: mapping the accessed services to the ODUk, and mapping the services mapped to the ODUk to the ODUk time slot frames according to the requirements of the time slot frames; mapping the ODUk time slot frames to the intermediate frame structures; performing the cross-connect for ODUk services in the intermediate frame structures. The present invention also discloses an apparatus for realizing cross-connect of ODUk. The present invention directly supports cross-connect of ODUk, so as to realize simple scheduling for the Optical Transport Network (OTN) services, and improve the resource utilization factor and the integration level.
US08644332B1 System, method and device for high bit rate data communication over twisted pair cables
The invention provides for a system, method, and device for using the existing copper loop plant of twisted pair wiring for data communication by using a plurality of pairs in a cable bundle of twisted pair for the downstream data direction simultaneously, as if the plurality of twisted pair in the cable bundle were a broadcast medium. Between an individual subscriber's access pair and the cable bundle, an aggregation device is used to combine all received signals from the plurality of twisted pairs in the cable bundle and to make the entire downstream bandwidth of the plurality of pairs available to the subscriber.
US08644329B2 Power aware point-of-presence design and auto-configuration
A power aware Point-Of-Presence design and auto-configuration method is disclosed for configuring which network elements within a point-of-presence are powered so as to accommodate anticipated traffic while minimizing power consumption. The IP power aware Point-Of-Presence design and auto-configuration method includes a set of activation thresholds associated with each port in the Point-of-Presence that indicates that the port should be activated when the traffic demand exceeds the threshold. The power aware Point-Of-Presence design and auto-configuration method is particularly useful for providing a configuration which accounts for both external and internal link traffic demand and has the further advantage of ordering the port activation such that only a minimum number of activation and deactivation operations to satisfy a new demand is required. This property is advantageous for limiting the routing instabilities caused by topological changes in response to varying demand.
US08644324B2 Methods, systems, and computer readable media for providing priority routing at a diameter node
Methods, systems, and computer readable media for providing priority routing at a Diameter node are disclosed. One exemplary method includes receiving, at a Diameter message processor associated with a DSR, a Diameter message from a first Diameter node. The method further includes assigning, at the Diameter message processor, a priority level indicator to the Diameter message. The method also includes routing the Diameter message with the priority level indicator to a second Diameter node. A second exemplary method includes receiving, at a Diameter message processor associated with a DSR, a Diameter message that includes a priority level indicator from a first Diameter node. The second method further includes applying, at the Diameter message processor, a routing action to the Diameter message based at least in part on the priority level indicator contained in the Diameter message.
US08644322B2 Communication system
A communication system is provided having a plurality of FlexRay network nodes by which respective user data packets are provided in an IP data packet format or an Ethernet data packet format, and having a FlexRay bus system, by whose physical layer data are transmitted between the FlexRay network nodes. The IP data packet format or the Ethernet data packet format each having a plurality of bit positions. The FlexRay network nodes are set up such that contents of the bit positions of the user data packets are each converted onto corresponding signals of the physical layer of the FlexRay bus system.
US08644321B2 Scheduling packet transmissions
This disclosure provides a synchronous packet manager containing a data structure for scheduling future synchronous packet transmissions and arbitrating between synchronous and asynchronous packet transmissions. Slots required for transmitting a synchronous packet are reserved by marking the corresponding entries in a synchronous packet reservation table. Rather than writing packets to many different queues, the application software fills in a single reservation table per BTS sector.
US08644318B2 Systems and methods for asynchronous handshake-based interconnects
Certain aspects of the present disclosure provides techniques for a handshaking protocol, and corresponding circuit elements, for an asynchronous network. The techniques utilize a clock-less delay insensitive data encoding scheme. The proposed network may operate correctly regardless of the delay in the interconnecting wires.
US08644314B2 Protocol and method of VIA field compression in session initiation protocol signaling for 3G wireless networks
As SIP usage becomes prolific in 3G wireless communications, challenges are presented to using the current SIP protocols for real-time communications due to the limited signaling compression offered via SIP become. Signaling introduces unwanted delays on limited bandwidth and increases the call setup time. Additionally, SIP messages are large—from a few hundred bytes to several kilobytes—and compression is not offered on all available fields. The invention provides for compression of the VIA field of SIP messages through several techniques and thereby achieves lower signaling delays that reduce complex call setup delays and reduce the loss of bandwidth to necessary in-call signaling.
US08644311B2 Hardware-accelerated packet multicasting in a virtual routing system
Methods and systems are provided for hardware-accelerated packet multicasting in a virtual routing system. According to one embodiment, a virtual routing engine (VRE) including virtual routing processors and corresponding memory systems are provided. The VRE implements virtual routers (VRs) operable on the virtual routing processors and associated routing contexts utilizing potentially overlapping multicast address spaces resident in the memory systems. Multicasting of multicast flows originated by subscribers of a service provider is simultaneously performed on behalf of the subscribers. A VR is selected to handle multicast packets associated with a multicast flow. A routing context of the VRE is switched to one associated with the VR. A packet of the multicast flow is forwarded to multiple destinations by reading a portion of the packet from a common buffer for each instance of multicasting and applying transform control instructions to the packet for each instance of multicasting.
US08644310B2 Method for managing multicast traffic between equipment in a multicast data network
In one implementation a method is provided that involves receiving in a network interface of a first router one or more PIM type messages from one or more second routers requesting one or more types of multicast traffic, storing in the first router a record for each network interface and each type of multicast traffic information that individually identifies the one or more second routers requesting the type of multicast traffic, and determining in the first router whether to transmit from the interface the one or more types of multicast traffic by use of the record. A method is also provided that involves individually tracking in an upstream PIM router the join membership of one or more individual downstream PIM routers that are coupled to a network interface of the upstream PIM router via a multi-access network without disabling Join message suppression in all the individual downstream PIM routers.
US08644308B2 Network interface card device and method of processing traffic using the network interface card device
Disclosed are a network interface card device and a traffic processing method using the network interface card device, the method including receiving a packet from a network, determining, by a first chipset, whether a detailed analysis is performed by verifying the received packet, and analyzing in detail, by a second chipset, with respect to a packet using the detailed analysis.
US08644306B2 Method and apparatus for VoIP video communication
In a Voice over Internet Protocol (VoIP) video communication method and apparatus, first and second VoIP-based terminals store video event indexes and images mapped thereto with respect to state information of a user and terminal, and establish a session using session establishment information defining the video event. The first terminal then transmits a data packet including the video event index, and the second terminal receives the data packet and outputs an image mapped to the video event index of the images stored in advance. Thus, by transmitting and receiving a predefined index alone without transmitting user and terminal states as a real time data-type image, the VoIP video communication method and apparatus prevent unnecessary waste of bandwidth in video communication.
US08644301B2 Systems and methods of supporting emergency communications
Systems and methods for supporting E911 for VoIP mobile communications are provided. A mobile station formats a call setup message by including particular information in a header portion of the call setup message that is used by the wireless network to select an appropriate PSAP and route the call to the appropriate PSAP.
US08644298B1 Adding a service control channel after session establishment
For an IMS session that employs a CS bearer path that supports a local user element for at least a portion of the overall bearer path, the present invention provides for establishing and using the IMS session without providing a service control signaling channel when the IMS session is initially established. After the IMS session is established and supporting communications between the local and remote user elements, a service control signaling channel for the local user element may be established and associated with the IMS session to facilitate IMS services requiring service control signaling. Before or when a service is invoked, the local user element, the network, or an agent thereof may establish the service control signaling channel wherein the IMS will associate the service control signaling channel with the current IMS session and employ service control signaling over the service control signaling channel to facilitate IMS services.
US08644296B1 Method and apparatus for establishing a media path between a gateway system and a border element
The invention comprises a method and apparatus for establishing at least one media path. Specifically, the method comprises receiving at least one connection request message, generating at least one connection setup message in response to each of the at least one connection request message, and transmitting the at least one connection setup message towards at least one communication network comprising at least one call control element, each of the at least one connection setup message operable to establish the at least one media path between at least one gateway system and at least one border element.
US08644294B2 Methods and apparatus to use window alignment information to process acknowledgment information associated with transmitted data blocks
Methods and apparatus to use window alignment information to process acknowledgment information associated with transmitted data blocks are disclosed. An example method disclosed herein comprises receiving acknowledgment information piggy-backed with data when a first previously transmitted block is associated with at least one of a tentative acknowledgment state or a pending acknowledgment state, and advancing a transmit window when the acknowledgment information indicates that all previously transmitted data blocks including the first previously transmitted block have been positively acknowledged.
US08644279B2 SR/RACH transmission strategy for half-duplex UEs in LTE
A method of avoiding collision between uplink and downlink data of a user equipment includes verifying existence of data in an uplink buffer, determining a time instant for transmission of the uplink data, determining a likelihood for reception of downlink data at the determined time instant and selectively transmitting the uplink data based on the likelihood of reception wherein the user equipment is a half duplex (HD) equipment.
US08644271B2 Communication protocol for a wireless mesh architecture
A wireless mesh communication protocol that dynamically assigns communication time-slots and frequencies to mesh nodes. A first node is established as a PC that sequentially polls other nodes. A second node responds at a predetermined time with information that includes database records, and then a third node responds similarly. The second node is then established as the PC and the first node is polled during dynamically allocated time-slots and on a frequency that depend on the second node's database records. The third node is then established as a PC and acts similarly. In both cases the first node responds by sending information and data records. The first node is then re-established as the PC. The first node then polls the second and third nodes at times and frequencies that depend on the first node's database records.
US08644268B2 TD-LTE hetnet partition
Downlink (DL) subframes and DL hybrid automatic repeat request (HARQ) messages may be protected by time division multiplexing (TDM) partitioning. However, TDM partitioning may not be required for uplink (UL) subframes in general. For example, information carried over a physical uplink control channel (PUCCH), may be protected by frequency division multiplexing (FDM) partitioning. In fact, one UL subframe may correspond to eNBs of multiple power classes. Since TDM partitioning may be required for DL transmissions, one DL sub frame may not correspond to the eNBs of multiple power classes. For some embodiments, groups of subframes may be allocated to the different power classes. Therefore, subframes allocated to an eNB of a power class may observe reduced or no interference from eNBs of other power classes.
US08644259B2 Methods and apparatus for selecting or reselecting a home node-B (closed subscriber group (CSG) cell) among cells having colliding physical layer signals
A method and apparatus for selecting or reselecting a home Node-B (HNB), (i.e., a closed subscriber group (CSG) cell), among cells having colliding physical layer signals are disclosed. Once the identity (ID) of an HNB is determined, measurements needed to support cell selection or reselection are performed. A broadcast channel that broadcasts an HNB ID is detected and synchronized to, and information obtained from the broadcast channel is forwarded to a non-access stratum (NAS). The broadcasted HNB ID is checked against an HNB white-list provided by the NAS to determine whether the HNB is suitable for a wireless transmit/receive unit (WTRU). The WTRU selects the HNB to camp on, or changes from a cell currently serving the WTRU to the HNB if it is determined to be more suitable than the current serving cell.
US08644258B2 Method and apparatus for reducing break duration in handover of VoIP conversation
The invention proposes a method and an apparatus for reducing break duration in handover of a VoIP conversation from a packet switch domain to a circuit switch domain. The main idea is that a synchronization mechanism is introduced between the session handover procedure at IP multimedia subsystem IMS layer and a cell handover procedure at layer 2, so that enable the two handover procedures to start at or almost at the same time. When a Mobile Switching Center MSC server receives a request of handover from the source Mobility Management Entity MME, the time required from the time the MSC server transmitting a message to this message arriving at a remote end user equipment UE is computed first, and then is compared with a predetermined time required from the time the MSC server transmitting a message to this message arriving at the local UE. According to the comparison result, determining an order and time for the MSC server transmitting a request of session handover to the Service Centralization and Continuity Application Server (SCC AS) and transmitting a request of cell handover to the source MME, and transmitting above two requests in according to the order and time, to ensure that the time that the request of session handover arrives at the remote end communication terminal is the same or almost same as the time that the request of cell handover arrives at the local communication terminal.
US08644257B2 Base station system and method for call setting up, handing over and releasing in hybrid network
A base station system and method for call setting up, handing over and releasing in hybrid network are disclosed. The base station system consists of BSC, TC, several BTSs and a band-width guaranteed IP network. IP mode transport and traditional TDM mode transport between BSC and TC are simultaneity supported in the system, and BTS supports TDM mode or IP mode. The invention provides: compatibility with TDM, which protects the providers' investment; smooth transition from TOM to IP, which decreases investing risk; flexible choice for different physical layer or data link layer transmission apparatuses to bear IP message, which facilitates the providers to constitute their networks. In IP mode, data service can share bandwidth with the mute frames of voice service, the system can coexist with different IP networks, and the control user planes are independent so as to simplify the developing procedure and reduce the maintaining cost.
US08644254B2 Handover procedure and method and apparatus for controlling transmitter power of femto base station in broadband wireless communication system
A method and an apparatus for controlling transmitter power of a femto base station in a broadband wireless communication system are provided. In the method, a femto base station receives a signal having an intensity of a threshold or more from UE and transmits a message reporting power-on of a transmitter to a femto base station controller. The UE transmits a message reporting downlink signal measurement results of femto base stations to the femto base station controller via a macro base station. The femto base station controller determines a femto base station which becomes a handover target of the UE using report messages of the femto base stations and the UE. The femto base station controller transmits a handover procedure start message to the macro base station and the determined femto base station.
US08644249B2 Telecommunication system and method for controlling switching of user terminal between two networks
A user terminal is switched between a cellular network and a worldwide interoperability for microwave access radio network within a telecommunication system. An authentication, authorization and accounting (AAA) server which is designed for use with both of these networks is disposed in the telecommunication system in such a way that user data of the user terminal stored in the AAA server can be accessed from both of these networks, thereby advantageously ensuring uninterrupted switching between the two networks free of loss.
US08644243B2 Mobile communication system, base station apparatus, and mobile station apparatus
A mobile communication system in which a mobile station apparatus transmits, to a base station apparatus, uplink data using a physical uplink shared channel assigned by an uplink data transmission permission signal, wherein the base station apparatus: transmits, to the mobile station apparatus, a radio resource control signal including information for specifying a physical format in transmitting reception quality information together with uplink data; and transmits, to the mobile station apparatus, the uplink data transmission permission signal including a transmission instruction of reception quality information, and wherein the mobile station apparatus transmits, to the base station apparatus, reception quality information together with uplink data using the physical uplink shared channel according to information for specifying the physical format in case that a transmission instruction of the reception quality information is included in the uplink data transmission permission signal.
US08644241B1 Dynamic voltage-frequency management based on transmit buffer status
A method in a mobile communication terminal includes intercepting a message in which the terminal indicates to a base station a fill level of a buffer holding data that is pending for transmission to the base station. A future processing power, which will be required by processing circuitry in the terminal for transmitting the data to the base station, is predicted based on the intercepted message. An operating point of the processing circuitry is set corresponding to the predicted future processing power, by configuring at least one parameter selected from among a supply voltage and a clock frequency of the processing circuitry. The processing circuitry is operated at the set operating point to process the data pending in the buffer.
US08644239B2 Method and apparatus for allocating and processing sequences in communication system
A method and apparatus for allocating and processing sequences in a communication system is disclosed. The method includes: dividing sequences in a sequence group into multiple sub-groups, each sub-group corresponding to its own mode of occupying time frequency resources; selecting sequences from a candidate sequence collection corresponding to each sub-group to form the sequences in the sub-group by: the sequences in a sub-group i in a sequence group k being composed of n sequences in the candidate sequence collection, the n sequences making a |ri/Ni−ck/NP1| or |(ri/Ni−ck/NP1) modu mk,i| function value the smallest, second smallest, till the nth smallest respectively; allocating the sequence group to cells, users or channels. It prevents the sequences highly correlated with the sequences of a specific length from appearing in other sequence groups, thus reducing interference, avoiding the trouble of storing the lists of massive sequence groups.
US08644237B2 Uplink load generation in communication networks
Uplink load generation and control simplify network testing and other tasks. For example, a network operator can decide to test the network by imposing a test load in a selected uplink. The operator can suitably configure an appropriate Mobility Management Entity (MME) with information using a network Operations and Maintenance Support System. In due course, the MME informs the selected user equipment (UE): if the UE is in Idle mode, the network sends a page message; if the UE is in Active mode, with an on-going communication session, the page message is sent after the session ends; and if the UE is detached from the network, the UE is informed during the initial network attach procedure. Thus, uplink load generation is controllable by the network operator, enabling the operator to adjust an existing network and perform realistic simulations on a “green field” network, i.e., a network before launch.
US08644233B2 Method of transmitting control information and terminal thereof
A terminal transmits control information to a base station by using a periodically allocated dedicated channel. In further detail, the terminal checks control information that needs to be transmitted, detects a priority of the checked control information, and selects control information to be transmitted to the base station based on the detected priority. The terminal forms a PDU by multiplexing the selected control information, and transmits the PDU to the base station.
US08644229B2 Scheduling data transmission by medium access control (MAC) layer in a mobile network
A method for determining padding compatibility is disclosed. A determination is made of a number of protocol data units (PDUs) for a logical channel mapped to a transport channel such that, for a logical channel allowing segmentation, calculate n wherein n=service data unit size/transport block size (SDU size/TB size), and on a condition that n is an integer, setting the number of PDUs=n.
US08644224B2 Mobile communication method, mobile station, and radio base station
In the mobile communication system according to the present invention, when the RSRP or RSRQ in a non-serving cell of SCC within “MeasObject” is larger than the sum of the RSRP or RSRQ in an Scell within the “MeasObject” and a predetermined offset value (Offset) for a predetermined period (Time-To-Trigger), the mobile station UE determines that “ReportConfig-A6” is satisfied.
US08644221B2 Telecommunications network
A method of operating a mobile wireless network, in which, when there is a relocation, the connection may be continued directly from the latest state before the relocation. User data is transmitted between a mobile station and a first base station, the user data being combined into data units. For transmission of data units, transmission-specific information describing an instantaneous state of the transmission is stored in the mobile station, as well as in a first network unit at a higher level than the first base station. With the relocation of the mobile station from the first base station to a second base station having a second higher-level network unit, the transmission-specific information stored in the first higher-level network unit is transmitted to the second higher-level network unit to continue the transmission after the relocation essentially directly from its latest state.
US08644220B2 Multi-tier wireless home mesh network with a secure network discovery protocol
An apparatus, system and method for a multi-tier wireless home mesh network is described. The method may include formation of an infrastructure-less wireless home mesh networking environment comprising a collection of nodes that operate as a decentralized, ad hoc wireless network with multiple sub-networks or tiers that are responsible for different functions within the network. Each node of the multi-tier network is configured to forward data to other nodes and is assigned to a particular tier based on the node's performance capabilities. A further embodiment includes identification of a wireless home mesh network. Once identified, one or more proprietary messages may be exchanged in a secure manner to establish connections with a home electronics device as either a mobile node or a stationary node of the home network. A home electronics device may wirelessly communicate to route data within one or more nodes of the wireless home mesh network. Other embodiments are described and claimed.
US08644213B2 Mobile data communication method and system using improved medium access control protocol
A data communication method and system for a mobile communication network includes an improved medium access control mechanism for improving QoS and power efficiency of network components while maintaining channelization effects. A data communication method for a wireless communication network includes a coordinator and at least one network node according to the present invention includes the steps of broadcasting, at the coordinator, a beacon frame for informing the at least one network node of a duration of a superframe; transmitting a Guaranteed Time Slot (GTS) from the coordinator to the at least one network node for allocating timeslots; and transmitting a data frame from the coordinator to the at least one wireless network through the timeslots allocated to the at least one wireless network node.
US08644210B2 Method and apparatus of transmitting and receiving backhaul downlink control information in a wireless communication system
The present invention relates to a method and an apparatus of transmitting and receiving backhaul downlink control information in a wireless communication system. In the method for transmitting backhaul downlink control information from a base station in a wireless communication system according to one aspect of the present invention, the base station transmits resource allocation information to at least one terminal and at least one relay node via a relay-physical downlink control channel (hereinafter referred to as “R-PDCCH”); transmits backhaul system information to the at least one relay node and the at least one terminal via a relay physical downlink shared channel (hereinafter referred to as “R-PDSCH”) which is determined according to the resource allocation information; and changes a backhaul downlink resource block according to the backhaul system information.
US08644209B2 Method of relaying data
A method of relaying data in a relay station of a wireless communication system based on a radio frame consisting of a plurality of downlink subframes and a plurality of uplink subframes is provided. The method includes receiving, from a base station, a scheduling message at a downlink subframe and transmitting, to the base station, uplink data at a first uplink subframe or a second uplink subframe according to the scheduling message, wherein the first uplink subframe is an uplink subframe shifted by 4 subframes from the downlink subframe, and wherein when the scheduling message includes a scheduling field which indicates decreasing or increasing a time interval between a time of receiving the scheduling message and a time of transmitting the uplink data, the uplink data is transmitted at a second uplink subframe indicated by the scheduling field.
US08644207B1 Mixed carrier communication channel management
Active devices in communication with an access node of the wireless communication system through a mixed carrier are determined. Based on determined channel conditions, a determined RF load, and a determined load ratio of the at least one mixed carrier, a modulation and coding scheme and a frequency band are selected. Using the selected modulation and coding scheme and frequency band, a mixed broadcast is transmitted on the mixed carrier.
US08644206B2 Ad hoc service provider configuration for broadcasting service information
An ad hoc service provider includes a processing system configured to enable access by one or more mobile clients to a first wireless network via a second wireless network. The processing system is further configured to assemble service information for broadcasting to one or more mobile clients. The service information includes attributes of access to the first wireless network, the access being offered by the ad hoc service provider to one or more mobile clients.
US08644205B2 Transmission of multimedia contents to a plurality of mobile users
A method of transmitting information content to a plurality of mobile equipment, in which information related to the capability of properly decoding the content from a p-t-m radio bearer is collected by the radio network controller from the UEs that have joined the service. The proper configuration for the transmission of the content is then selected based on the collected information.
US08644204B2 Systems and methods for operation mode transition in wireless communications
A method for a base station to instruct a mobile station to perform an operation mode transition, the method including: receiving battery level information from the mobile station, the battery level information being included in a signaling header; determining, based on the battery level information, if the mobile station can perform an operation mode transition; and instructing the mobile station to perform the operation mode transition, if it is determined that the mobile station can perform the operation mode transition.
US08644199B2 Indexing resources for transmission of acknowledgement signals in multi-cell TDD communication systems
Methods and apparatus are described for a User Equipment (UE) to determine a set of resources available for transmitting an acknowledgement signal in an UpLink (UL) Component Carrier (CC) in response to reception of multiple DownLink (DL) Scheduling Assignments (SAs) transmitted from a base station with each DL SA being associated with a respective DL CC. The UL CC and a first DL CC establish a communication link when the UE is configured for communication over a single UL CC and a single DL CC.
US08644198B2 Split-band power amplifiers and duplexers for LTE-advanced front end for improved IMD
A front end radio architecture (FERA) is disclosed that includes a transmitter block coupled to a power amplifier (PA) via first and second input terminals. A first split-band duplexer is coupled to a first output terminal of the PA and a second split-band duplexer is coupled to a second output terminal of the PA. The PA includes a first amplifier cell and a second amplifier cell that when coupled to the first and second split-band duplexers makes up first and second transmitter chains. Only one of the first and the second transmitter chains is active when a first carrier and a second carrier have a frequency offset that is less than an associated half duplex frequency within a same split-band duplex band, thus preventing third order inter-modulation (IMD) products from falling within an associated receive channel. Otherwise, the first and the second transmitter chains are both active.
US08644196B2 Router and method for routing data
A device and method for routing network data through a network. The device comprises an end cap assembly which includes an end cap coupled to a wiring card having an interposer board. The method includes processing a plurality of network transmissions through an end cap, and routing the network transmissions to an interposer board.
US08644194B2 Virtual switching ports on high-bandwidth links
Method and apparatus for managing traffic of a switch include logically partitioning a physical port of the switch into a plurality of virtual ports. One or more virtual output queues are uniquely associated with each virtual port. Switching resources of the switch are assigned to each of the virtual ports. A source virtual port is derived from a frame arriving at the physical port. The frame is placed in a given one of the one or more virtual output queues uniquely associated with the source virtual port derived from the frame. A destination virtual port for the frame is determined. The frame is transferred from the virtual output queue in which the frame is placed to an egress queue associated with the destination virtual port and forwarded from the egress queue to a destination physical port of the switch.
US08644193B2 Method, system and device for configuring topology or a wireless network
Methods, devices and computer program products facilitate self-configuration and self-optimization of radio networks. An internal topology discovery is performed to assess characteristics of a plurality of access points within an internal network. An external cell discovery can also be performed to identify one or more access points operating within an external network. Based on the assessments obtained through the internal and/or external topology discovery processes, operational parameters are assigned to each access point within the internal network. Such operational parameters can include a transmit power associated with each radio node.
US08644192B2 Wireless transmitter initiated communication methods
Wireless communication systems using transmitter initiated communications methods. Several devices in the system listen by following a common frequency hopping sequence. When communication is desired, a transmitting device sends a request to send signal to an addressee; if available, the addressee sends a clear to send signal, and the transmitting device and the addressee then perform communications using a separate frequency hopping sequence. Methods for adding new devices are also included. In an example, a new device uses a discovery frequency hopping sequence to ping a number of frequencies until the common frequency hopping sequence is discovered. In another example, a new device listens on a single frequency forming part of the common frequency hopping sequence until the common frequency hopping sequence overlaps the single frequency.
US08644188B1 Providing virtual networking functionality for managed computer networks
Techniques are described for providing virtual networking functionality for managed computer networks. In some situations, a user may configure or otherwise specify one or more virtual local area networks (“VLANs”) for a managed computer network being provided for the user, such as with each VLAN including multiple computing nodes of the managed computer network. Networking functionality corresponding to the specified VLAN(s) may then be provided in various manners, such as if the managed computer network itself is a distinct virtual computer network overlaid on one or more other computer networks, and communications between computing nodes of the managed virtual computer network are handled in accordance with the specified VLAN(s) of the managed virtual computer network by emulating functionality that would be provided by networking devices of the managed virtual computer network if they were physically present and configured to support the specified VLAN(s).
US08644183B2 Systems and methods for memory-efficient storage and extraction of maximum power reduction (MPR) values in two-carrier wireless data systems
Systems and methods for memory-efficient storage and extraction of maximum power reduction (MPR) values in two-carrier wireless data systems are presented. A wireless broadband device can operate under the HSUPA Category 9 standard, in which two carriers can be employed for data uplinks. Due to power saturation, interference, and other factors, transmission output power is limited to various levels depending on channel configuration. Under previous standards using one carrier, the maximum power reduction (MPR) needed to address those issues could be stored on the device, since the total number of MPR values was limited. With the introduction of dual carriers in HSUPA-9, storing all possible MPR values is no longer feasible. Platforms and techniques are disclosed which allow accurate generation of MPR values in a two-carrier system, utilizing the 2nd, 4th, and 6th moments of the complex signals to derive MPR values without attempting to store all possible carrier combinations.
US08644180B2 MU-MIMO-OFDMA methods and systems for signaling multi-rank CQIs and precoders
Methods and systems for determining attributes of communication channels of MU-MIMO users in an OFDMA system are disclosed. One method includes receiving from a base station, for at least one sub-band of contiguous sub-carriers, an indication of an estimate of or an upper-bound on a total number of streams that are co-scheduled by the base station on the at least one sub-band and an indication of a fraction of a transmit power at the base station that is applied to streams that are scheduled for transmission to a particular user. The method further includes determining one or more signal quality measures for the at least one sub-band based on at least one of the fraction or the estimate of or the upper-bound on the total number of streams that are scheduled by the base station on the at least one sub-band. In addition, an indication of the one or more signal quality measures is transmitted to the base station in the method.
US08644177B2 Methods and apparatus for use in controlling data traffic for a wireless mobile terminal using a wireless access point (AP)
Techniques for use in controlling data traffic in a wireless local area network (WLAN) which includes at least one access point (AP) are described. In one illustrative example, the terminal is associated with the AP and receives data traffic from a source device via the AP. The terminal identifies whether a processing requirement of the terminal for processing data traffic exceeds a predetermined threshold. In response to such identifying, the terminal produces a control message which includes a source address corresponding to the source device and a destination address corresponding to the terminal, and sends the control message to the AP. The control message is defined to instruct the AP to prohibit transmission of the data traffic originating from the source address and destined to the destination address. In one scenario, the control message further includes a time value indication, for instructing the AP to prohibit transmission of the data traffic only for a time period indicated by the time value indication.
US08644170B2 Rate selection for an OFDM system
Techniques to determine the rate for a data transmission in an OFDM system. The maximum data rate that may be reliably transmitted over a given multipath (non-flat) channel by the OFDM system is determined based on a metric for an equivalent (flat) channel. For the given multipath channel and a particular rate (which may be indicative of a particular data rate, modulation scheme, and coding rate), the metric is initially derived from an equivalent data rate and the particular modulation scheme. A threshold SNR needed to reliably transmit the particular data rate using the particular modulation scheme and coding rate is then determined. The particular rate is deemed as being supported by the multipath channel if the metric is greater than or equal to the threshold SNR. Incremental transmission is used to account for errors in the determined data rate.
US08644168B2 Communication apparatus, communication system, conference system, and program product therefor
A communication apparatus includes a determination portion determining a communication path over which first information to be communicated is routed, on the basis of second information corresponding to communication qualities of multiple communication paths provided between a first site and a second site.
US08644161B2 Congestion management in a shared network
A shared channel used to communicate between a cable modem termination system and multiple cable modems is managed to prevent and/or reduce the impact of congestion. If the average channel utilization is above a near-congestion threshold, a cable modem in an extended high consumption state is assigned a reduced data transmission priority for managed traffic. Priority for that cable modem is restored to a default preferred level when the channel usage by that cable modem drops below a predetermined level or when the average aggregate channel utilization by all cable modems drops below the near-congestion threshold.
US08644157B2 Systems and methods for handling NIC congestion via NIC aware application
The present solution is directed to a system for handling network interface card (NIC) congestion by a NIC aware application. The system may include a device having a plurality of network interface cards (NICs), a transmission queue corresponding to a NIC of the plurality of NICs; and an overflow queue for storing packets for the NIC when congested. The system may also include an application executing on the device outputting a plurality of packets to the transmission queue responsive to detecting that the NIC is identified as not congested. The device identifies the NIC as congested responsive to determining that a number of packets stored in the transmission queue has reached a predetermined threshold and responsive to detecting identification of the NIC as congested, the application stores one or more packets to the overflow queue. The device transmits one or more of the plurality of packets stored in the transmission queue and transmits a predetermined number of packets from the overflow queue.
US08644156B2 Load-balancing traffic with virtual port channels
Techniques are provided to load-balance traffic across a plurality of virtual PortChannel links (ports) at a switch device. The switch device interfaces to the plurality of virtual PortChannel links and receives packets to be routed of the plurality of links. The switch device routes the packets of the links so as to favor certain links over others based on operation conditions of the respective links.
US08644155B2 Multi-hop wireless terminal and traffic control method thereof
A multi-hop wireless terminal having a user application section, a traffic control section and a wireless transmitting/receiving section, the traffic control section enqueuing a packet of a transmission flow from the user application section and a packet of a forward flow from the wireless transmitting/receiving section in queues different for each flow and performing traffic control, where the traffic control section includes a queue manager for sorting a packet of each input flow into a corresponding queue and enqueuing the packet, and a packet scheduler for dequeuing a packet from each queue and outputting the packet, and where the packet scheduler selects from the queues a queue from which a packet is to be dequeued and output, based on transmission information of each of the flows.
US08644153B2 Infrastructure for mediation device to mediation device communication
Methods and apparatus for providing a mediation device infrastructure that allows a mobile node to be tapped while roaming among and within service providers are disclosed. In one embodiment, a method includes determining when a node that is tapped by a first mediation device has moved from a first domain associated with the first mediation device into a second domain associated with a second mediation device. A first packet is sent to the second mediation device if the node has moved. The first packet provides an indication that the second mediation device is to tap the node. The method also includes opening a call data channel to the second mediation device, and receiving information from the second mediation device on the call data channel that is obtained by the second mediation device from the node. Finally, the method includes providing the information to the first mediation device.
US08644151B2 Processing packet flows
In one embodiment, an apparatus comprises a first logic configured to determine an identifier associated with a packet and determine a flow count index associated with the identifier, and a flow counter, coupled to the first logic and configured to count a number of packet flows associated with the flow count index. The embodiment also includes a second logic, coupled to the first logic and the flow counter, wherein the second logic is configured analyze the packet to determine if the packet is a part of a new packet flow that has not been counting in the flow counter, and if it has not been counted, incrementing the flow counter.
US08644150B2 Admission control in a telecommunication network
A method and system for performing admission control in a packet-based telecommunication network includes a backbone network coupled between at least two access networks. When a first user on a first access network wants to communicate with a second user located on a different access network, a request is made to a quality server whether network resources are available. The quality server separately monitors both access networks and the backbone network and determines whether network resources are available to satisfy the request. In one embodiment, a two-tier approach is used wherein a coordinator module interacts with an admission control subsystem including a plurality of subsystem modules. Each admission control subsystem module is responsible for monitoring a part of the network, such as, one access network or a backbone network. The coordinator module determines which subsystem modules are associated with the user request and interrogates such subsystem modules as to resource availability.
US08644149B2 Mechanism for packet forwarding using switch pools in flow-based, split-architecture networks
Method and apparatus for reducing forwarding table sizes in flow switches in a flow-based, split-architecture network is described. In an embodiment, a set of flow switches along a flow path is identified to form a switch pool. The forwarding table of only one of the flow switches in the switch pool is configured to have a flow entry that is associated with a particular flow. The flow entry includes a set of match fields for identifying packets belonging to that particular flow, and a set of actions to be performed on the packets belonging to that particular flow.
US08644148B2 Method and apparatus for using layer 4 information in a layer 2 switch in order to support end-to-end (layer 4) flow control in a communications network
Apparatus configured to receive a first end-to-end flow control representation for at least one logical connection from a first further apparatus to a second further apparatus, update at least one end-to-end credit value for the at least one logical connection from the first further apparatus to the second further apparatus dependent on the first end-to-end flow control representation, select at least one logical connection to the second further apparatus dependent on the end-to-end credit value, generate a second end-to-end flow control representation for the at least one logical connection to the second further apparatus, and transmit the second end-to-end flow control representation addressed to the second further apparatus.
US08644141B2 Method and system for optimizing network coverage and capacity
A method and system for optimizing network coverage and capacity are provided. The method comprises that: judging whether there is a problem of coverage and capacity according to the threshold set in a NodeB for the collected coverage and capacity optimizing data; if yes, the NodeB provides a solution strategy according to the problem of coverage and capacity as well as the coverage and capacity optimizing data causing the problem. The method achieves the automation of network coverage and capacity, saves a great deal of manpower and material resource needed by the traditional optimizing method, and decreases the cost of network operation and maintenance.
US08644140B2 Data switch with shared port buffers
A communication apparatus includes a plurality of switch ports, each switch port including one or more port buffers for buffering data that traverses the switch port. A switch fabric is coupled to transfer the data between the switch ports. A switch control unit is configured to reassign at least one port buffer of a given switch port to buffer a part of the data that does not enter or exit the apparatus via the given switch port, and to cause the switch fabric to forward the part of the data to a destination switch port via the at least one reassigned port buffer.
US08644136B2 Sideband error signaling
Fast error reporting is provided in networks that have an architected delayed error reporting capability. Errors are detected and reported without having to wait for a timeout period to expire. Further, failures of other components caused by the delay are avoided, since the delay is bypassed.
US08644135B2 Routing and topology management
A method for routing communications on a network node in a communications network includes: updating a central domain master regarding changes detected in topology, receiving a routing plan from the central domain master, where the routing plan is calculated at least in accordance with the changes, and transmitting data as necessary in accordance with the routing plan. A method implementable on a central domain master for routing communications between network nodes in a communications network includes receiving transmissions regarding changes detected in topology from the network nodes, calculating a routing plan based on at least the transmissions, and distributing the routing plan to the network nodes, where the central domain server is one of the network nodes.
US08644133B2 Method and system for utilizing a reserved channel to manage energy efficient network protocols
Aspects of a method and system for utilization of a reserved and/or out of band channel for managing a data rate of an Ethernet channel are provided. In this regard, a data rate of a network link may be managed via traffic communicated over a reserved and/or out of band channel on said network link. The reserved and/or out of band channel may be an auxiliary channel established in the IEEE 802.11AN standard. Traffic communicated over the reserved and/or out of band channel may enable negotiating a data rate for the link, scheduling a change in the data rate on the link, exchanging link state information, configuring a number of active physical channels on the link, configuring a signal constellation utilized for representing data on said the link, configuring an inter-frame or inter-packet gap, and/or configuring signal levels utilized for signaling on the link.
US08644132B2 Maintaining a communication path from a host to a storage subsystem in a network
Provided are a method, system, computer storage device, and storage area network for maintaining a communication path from a host to a storage subsystem in a network. A storage subsystem controls data transfer and access to a storage devices in a network, wherein the storage subsystem is coupled to a switch and the switch is coupled to a host in the network. A topological storage is coupled to the host, the switch and the storage subsystem, for storing a topological coupling relationship between the host and the switch and a topological coupling relationship between the switch and the storage subsystem. In response to determining a failed path between the storage subsystem and the switch coupled to the storage subsystem, the storage subsystem determines a first port on the storage subsystem in the failed path. The storage subsystem determines from the topology storage the topological coupling relationship between the host and the switch and the topological coupling relationship between the switch and the storage subsystem. The storage subsystem redirects, based on the topological coupling relationships, a message sent to the first port of the storage subsystem to an operational second port in the storage subsystem coupled to the switch.
US08644129B2 Random access preamble transmission
A wireless device receives a control command to transmit a random access preamble on a second carrier. The wireless device repeatedly transmits the random access preamble until a random access response corresponding to the random access preamble is received or a predefined number of transmissions is reached. If the predefined number of transmissions is reached without receiving the random access response, the wireless device keeps an RRC connection with the base station active.
US08644128B2 Multi-clock PHY preamble design and detection
In a method for generating a data unit for transmission via a communication channel, a first preamble portion of the data unit is generated based on whether a physical layer (PHY) mode is a first PHY mode or a second PHY mode. An OFDM portion of the data unit is generated. The OFDM portion follows the first preamble portion, includes a second preamble portion including one or more long training fields, is clocked at a first clock rate when the PHY mode is the first PHY mode, and is clocked at a second clock rate lower than the first clock rate when the PHY mode is the second PHY mode.
US08644124B2 Optical devices including assist layers
A waveguide including a first cladding layer, the first cladding layer having an index of refraction, n3; an assist layer, the assist layer having an index of refraction, n2, and the assist layer including ASixOy, wherein A is selected from: Ta, Ti, Nb, Hf, Zr, and Y, x is from about 0.5 to about 2.0, y is from about 3.5 to about 6.5, and the atomic ratio of A/A+Si in ASixOy is from about 0.2 to about 0.7; and a core layer, the core layer including a material having an index of refraction, n1, wherein n1 is greater than n2 and n3, and n2 is greater than n3.
US08644123B2 Hologram generating device and hologram printer
The invention provides a hologram generating device and a hologram generating method that allows the generation of a hologram for reproducing an easily observable three-dimensional image without restrictions on object sizes. The hologram generating device includes an object light generation means, a reference light generation means, an irradiation means, a polarization light selecting reflection means, and a polarization conversion means, wherein the one of the object light and the reference light incident from the rear surface is made to interfere with the other of the object light and reference light incident from the front surface in the hologram recording layer to record a reflection type hologram on the hologram recording layer.
US08644122B2 Header region evaluation circuit, optical disk apparatus, and header region evaluation method
A header region evaluation circuit includes a difference signal detection unit that detects a difference signal proportional to a difference in amounts of received light from an optical disc, a high pass filter that switches a plurality of cutoff frequencies according to a passband control signal, removes a low frequency component from the difference signal, and generates a difference signal HPF output, a waveform shaping unit that generates a shaping signal to convert the difference signal HPF output into a pulse, and a physical header detection sequencer that generates a groove detection signal for evaluating whether the physical header region is either one of a groove and an inter-groove and generates a passband control signal for controlling the cutoff frequency to be reduced for a difference signal corresponding to at least a part of the physical header region.
US08644112B1 Flasher type fish sonar
A flasher type fish sonar includes a front case with a transparent display window, a signal transmitting element at a center thereof, a connecting base board having a first timing detecting portion mounted thereto, a signal receiving element mounted opposite the signal transmitting element, a receiving coil mounted at a periphery of the signal receiving element, a display LED attached opposite the display window, a display rotary disc having a second timing detecting portion mounted opposite the first timing detecting portion and near the display LED, an electric power transmitting coil mounted to the connecting base board opposite the receiving coil, a main base board fixed to the connecting base board and a motor on the main base board for rotating the display rotary disc, such that a a water surface, reflected echos of fishes and a water bottom of the sea are displayed in the display window.
US08644111B2 Method and system for transmission of seismic data
The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
US08644107B2 System with controller and memory
According to the system of the present invention, data (DQ) signals are outputted/received between a controller 100 and a memory 200 based on a data strobe signal sent out from the controller 100. The data strobe signal is independently and completely separated from a clock signal. The data strobe signal has a frequency different from a clock signal. Therefore, the memory 200 is not required to generate a read data strobe signal from the clock signal nor to send the read data strobe signal in synchronization with the clock signal.
US08644104B2 Memory system components that support error detection and correction
A memory system that includes a memory device and a memory bank. During operation, the memory device receives a request to concurrently access a data word at a first row in a first storage region of the memory bank and error information associated with the data at a second row in a second storage region of the memory bank. The memory request includes a first row address identifying the first row and a second row address identifying the second row. Next, the memory device routes the first row address and the second row address to a first row decoder and a second row decoder in the memory bank, respectively. Finally, the memory device uses the first row decoder to decode the first row address to access the first row and concurrently uses the second row decoder to decode the second row address to access the second row.
US08644098B2 Dynamic random access memory address line test technique
Verification of the address connections of a memory (14) having multiplexed banks rows and columns commences by selecting a first address location having a bank/row/column value and then writing a pattern to a second location corresponding to the first location where one of the column, row, bank addresses could become stuck high or low. A second pattern gets written to the first location and a comparison occurs between the second pattern and first pattern written to the second location. If the data is the same, then that particular row/column/bank addresses is stuck.
US08644097B2 Memory device
A memory device has: a plurality of memory cell blocks, the memory cell block including a plurality of memory cells, a redundancy memory cell, and a selector switching a defective memory cell among the plurality of memory cells to the redundancy memory cell; and a control circuit outputting control signals of the selectors of the plurality of memory cell blocks, based on defect information indicating whether or not each of the plurality of memory cell blocks has a defective memory cell and on specification information for specifying the defective memory cell in the memory cell block having the defective memory cell, wherein the control circuit has: a plurality of flip-flops provided in correspondence with respective bit lines of the control signals of the selectors of the plurality of memory cell blocks and for shifting the specification information serially.
US08644096B2 Command paths, apparatuses, memories, and methods for providing internal commands to a data path
Command paths, apparatuses, memories, and methods for providing an internal command to a data path are disclosed. In an example method, a command is received and propagated through a command path to provide an internal command. Further included in the method is determining a difference between a latency value and a path delay difference, the path delay difference representing a modeled path delay difference between the command path and the data path measured in terms of a number of clock periods. The propagation of the command through the command path to the data path is delayed by a delay based at least in part on the difference between the latency value and the path delay difference. The internal command is provided to the data path responsive to an internal clock signal.
US08644095B2 Input-output line sense amplifier having adjustable output drive capability
An input-output line sense amplifier configured to drive input data signals over an input-output signal line to an output driver circuit, the input-output line sense amplifier having an output driver stage having a plurality of different programmable output drive capacities to tailor the output drive of the sense amplifier.
US08644090B2 Semiconductor device
A data input buffer is changed from an inactive to an active state after the reception of instruction for a write operation effected on a memory unit. The input buffer is a differential input buffer having interface specs based on SSTL, for example, which is brought to an active state by turning on a power switch to cause a through current to flow and receives a signal therein while immediately following a small change in small-amplitude signal. Since the input buffer is brought to the active state only when the write operation's instruction for the memory unit is provided, it is rendered inactive in advance before the instruction is provided, whereby wasteful power consumption is reduced. In another aspect, power consumption is reduced by changing from the active to the inactive state in a time period from a write command issuing to a next command issuing.
US08644086B2 Semiconductor device having optical fuse and electrical fuse
A semiconductor device includes a plurality of first chips, a second chip that controls the first chips, and internal wiring that connects the first chips and the second chip. The first chips each include: an optical fuse; a first latch circuit that retains information on the optical fuse; a second latch circuit that retains information on an electrical fuse, the information being supplied from the second chip through the internal wiring; and a select circuit that selects the information retained in either one of the first and second latch circuits. A redundancy determination signal is generated from the information selected. The information on the electrical fuse is transferred from the second chip to the first chips through the internal wiring.
US08644082B2 Memory apparatus and method for controlling erase operation of the same
An erase operation of a memory apparatus is controlled by, inter alia, selecting one or more memory cell blocks to be erased among a plurality of memory cell blocks, performing an erase operation on the selected one or more memory cell blocks in response to an erase command, performing a first soft program operation on the selected one or more memory cell blocks if the erase operation is determined as passed, and performing a second soft program operation on the selected one or more memory cell blocks if the first soft program operation is determined as passed.
US08644081B2 Flash memory device and programming method thereof
A flash memory device including a memory array, a row decoder and M page buffers is provided, wherein M is a positive integer. The memory array includes a plurality of memory cells and is electrically connected to a plurality of word lines and a plurality of bit lines. The row decoder drives a specific word line among the word lines during an enabling period. The M page buffers divide the enabling period into N sub-periods, wherein N is an integer greater than 2. Furthermore, the ith, (i+N)th, (i+2N)th, . . . , (i+(M−1)*N)th bit lines are driven by the M page buffers during the ith sub-period, so as to program the memory cells electrically connected to the specific word line, wherein i is an integer and 1≦i≦N.
US08644073B2 Non-volatile memory device with improved programming management and related method
A non-volatile memory device includes a plurality of memory cells, with each memory cell for storing a bit having a first logic value or a second logic value. An input is for receiving a word defined by bits to be stored in the plurality of memory cells. Programming circuitry is for programming a corresponding memory cell for each bit having the first logic value. Forming circuitry is for receiving the word from the input and for providing to the programming circuitry at least one additional word defined by bits to also be stored in the plurality of memory cells. The forming circuitry includes processing circuitry for calculating a current maximum number of simultaneously programmable bits, and logic circuitry for generating the additional word, with the additional word having a number of bits having the first logic value equal to the current maximum number.
US08644070B2 Cell deterioration warning apparatus and method
Memory devices and methods adapted to process and generate analog data signals representative of data values of two or more bits of information facilitate increases in data transfer rates relative to devices processing and generating only binary data signals indicative of individual bits. Programming of such memory devices includes programming to a target threshold voltage range representative of the desired bit pattern. Reading such memory devices includes generating an analog data signal indicative of a threshold voltage of a target memory cell. Warning of cell deterioration can be performed using reference cells programmed in accordance with a known pattern such as to approximate deterioration of non-volatile memory cells of the device.
US08644069B2 Semiconductor memory device
According to one embodiment, there is provided a semiconductor memory device including a memory cell array, a plurality of signal lines, and a plurality of signal-line-lead-out portions. In the memory cell array, a plurality of memory cells are arranged. The plurality of signal lines connected to the plurality of memory cells. The plurality of signal-line-lead-out portions are arranged in a periphery of the memory cell array and are connected to the plurality of signal lines. Each of the plurality of signal-line-lead-out portions includes a plug as an electrode whose upper surface and side surface are covered with a passivation film.
US08644067B2 Systems and methods of decoding data using soft bits at a non-binary decoder that uses probabilistic decoding
A method includes reading a representation of a codeword stored in a multi-level-cell (MLC) memory by comparing cell threshold voltages in the MLC memory to hard bit thresholds to generate hard bit values and to soft bit thresholds to generate soft bit values. The hard bit values and the soft bit values are provided to a non-binary decoder that uses probabilistic decoding to obtain decoded data.
US08644065B2 Memory system with user configurable density/performance option
The memory system has one or more memory dies coupled to a processor or other system controller. Each die has a separate memory array organized into multiple memory blocks. The different memory blocks of each die can be assigned a different memory density by the end user, depending on the desired memory performance and/or memory density. The user configurable density/performance option can be adjusted with special read/write operations or a configuration register having a memory density configuration bit for each memory block.
US08644062B2 Multi-level memory device using resistance material
A multi-level memory device includes an insulating layer having an opening therein, and a multi-level cell (MLC) formed in the opening that has a resistance level varies based on the data stored therein. The MLC is configured to have a resistance level that varies as write pulses having the same pulse height and different pulse widths are applied to the MLC.
US08644058B2 Spin-injection element, and magnetic field sensor and magnetic recording memory employing the same
Provided are a spin-injection element having high spin-injection efficiency, and a magnetic field sensor and a magnetic recording memory employing the element. The element comprises a barrier layer, a magnetic conductive layer, and a spin accumulation portion comprised of non-magnetic conductive material. In the element, a first spin accumulation layer (103) and the barrier layer (102) have respectively a body-centered cubic lattice structure. Due to this, the first spin accumulation layer (103) and the barrier layer (102) come into contact with each other through a boundary face with improved crystalline symmetry. Thereby, lattice matching is improved and scattering of the tunnel electrons in the Δ1 band is prevented, resulting in improvement in the spin polarizability. Further, the characteristics of the device employing the spin injection element are improved.
US08644057B2 Magnetic memory and magnetic memory apparatus
A magnetic memory includes a first magnetic layer, a second magnetic layer, a third magnetic layer, a first intermediate layer, a second intermediate layer, an insulator film, and an electrode. The third magnetic layer is provided between the first magnetic layer and the second magnetic layer in a first direction being perpendicular to the plane of both the first magnetic layer and the second magnetic layer. The insulator film is provided on the third magnetic layer in a second direction perpendicular to the first direction. The electrode is provided on the insulator film so that the insulator is sandwiched between the third magnetic layer and the electrode in the second direction. In addition, a positive voltage is applied to the electrode and a first current passes from the first magnetic layer to the second magnetic layer, thereby writing information to the second magnetic layer.
US08644056B2 Magnetic random access memory apparatus, methods for programming and verifying reference cells therefor
A magnetic random access memory apparatus includes a memory cell array including a plurality of magnetic memory cells; a reference cell array including a pair of reference magnetic memory cells; a write driver configured to program data in the memory cell array and the reference cell array; and a first switching unit configured to form a current path which extends from a bit line connected to the write driver via the reference cell array including the pair of reference magnetic memory cells to a source line connected to the write driver or a current path which extends from a source line connected to the write driver via the reference cell array including the pair of reference magnetic memory cells to a bit line connected to the write driver.
US08644055B2 Nonvolatile memory with enhanced efficiency to address asymetric NVM cells
This application describes embodiments of MRAM cells that utilize a PMOS transistor as an access transistor. The MRAM cells are configured to mitigate the effects of applying asymmetric current loads to transition a Magnetic-Tunnel Junction of the MRAM cell between magnetoresistive states.
US08644054B2 Circuit
An object of the current invention is to provide DRAM that is not limited by capacitors.
US08644046B2 Non-volatile memory devices including vertical NAND channels and methods of forming the same
A non-volatile memory device can include a plurality of immediately adjacent offset vertical NAND channels that are electrically coupled to a single upper select gate line or to a single lower select gate line of the non-volatile memory device.
US08644043B2 Switching branch for three-level rectifier and method for controlling switching branch for three-level rectifier
A switching branch for a three-level rectifier and a method for controlling a switching branch for a three-level rectifier are provided. The switching branch includes a first diode and a second diode connected in series, a third diode and a fourth diode connected in series, a first controllable switch connected between a neutral DC output pole and a connection point between the first and the second diode, and a second controllable switch connected between the neutral DC output pole and a connection point between the third and the fourth diode. The switching branch controls the first controllable switch to be in a conductive state during a reverse blocking state of the first diode and the second diode, and controls the second controllable switch to be in a conductive state during a reverse blocking state of the third diode and the fourth diode.
US08644039B2 Voltage multiplying circuit utilizing no voltage stabling capacitors
A voltage multiplying circuit comprising: a first capacitor, comprising a first terminal and a second terminal, wherein the first terminal of the first capacitor is selectively coupled to a first voltage or a second voltage, and the second terminal is selectively coupled to the first voltage or a fourth voltage; a second capacitor, comprising a first terminal and a second terminal, wherein the first terminal of the second capacitor is selectively coupled to the second voltage or the fourth voltage, and the second terminal of the second capacitor is selectively coupled to a third voltage or the fourth voltage; and a third capacitor, comprising a first terminal and a second terminal, wherein the first terminal of the third capacitor is selectively coupled to the second voltage or the fourth voltage, and the second terminal of the third capacitor is selectively coupled to a third voltage or the fourth voltage.
US08644035B2 Load adaptive variable frequency phase-shift full-bridge DC/DC converter
Systems, methods, and circuits for providing zero voltage switching conditions across all load conditions in a full-bridge DC/DC converter. An asymmetric auxiliary circuit is provided and the reactive current due to the auxiliary circuit is controlled across various load conditions. This is done by adaptively adjusting the switching frequency of the converter as well as the phase shift of the rising edges of the waveforms for activating the gates in the leading and lagging legs of the full bridge converter.
US08644034B2 Shield and server having the same
A shield is adapted be locked to a casing. The casing is formed with an inserting space, an opening, and two engaging holes. The shield includes a shell body, two engaging members and two biasing springs. The shell body is inserted into the inserting space, and shields the opening. The shell body includes a base plate formed with a slot, and two side plates each formed with a through-hole. Each of the engaging members is slidable relative to the base plate, and includes an engaging portion extending through the corresponding through-hole and releasably engageable with the corresponding engaging hole. Each of the biasing springs biases the corresponding engaging member to move in a direction toward the corresponding through-hole.
US08644033B2 Handheld electronic device including multi-compartment shielding container and associated methods
A handheld electronic device may include a portable housing and a shielding container within the portable housing. The shielding container may include a shielding frame and a shielding lid carried thereby. A printed circuit board may be within the shielding container. The shielding frame may include a planar base with at least one opening therein, a pair of opposing side walls integrally formed with the base and extending upwardly therefrom, and a pair of opposing end walls integrally formed with the base and extending upwardly therefrom. Also, the shielding frame may include at least one intermediate partition wall integrally formed with the base and extending upwardly therefrom to define a plurality of container compartments. The partition wall may also extend only partway between the opposing side walls to define at least one partition end gap therewith.
US08644032B2 Electronic device with clip card installation assembly
An electronic device includes a housing and an installation assembly. The housing defines an opening. The installation assembly includes a fixing member and a holding member. The fixing member includes a base and a fixing portion protruding from the base. The base defines an entrance corresponding to the opening. The holding member comprising a holding portion and an engaging portion formed on an end of the holding portion. The fixing portion runs through the opening, and the base abuts against an outer surface of the housing with the entrance corresponding to the first opening. The engaging portion is engaged with the fixing portion to fix the holding member to the fixing member in the housing, and the engaging portion abuts against an inner surface of the housing, such that the installation assembly is fixed the housing surrounding the first opening.
US08644028B2 Microphonics suppression in high-speed communications systems
One design aspect in electronic systems, such as communication systems, is noise suppression. More particularly, this relates to microphonics suppression in high-speed communication systems, such as microwave wireless radio systems. The present invention contemplates system design for substantially eliminating microphonic behavior created by mechanical stimulus such as vibrations and the drum effect. A preferred approach includes isolating the motherboard from its mounting harnesses (mechanical interconnection) and adding an echo damping and shock absorption pad to the underside of the enclosure cover to stiffen the enclosure cover while maintaining its light weight. Preferably also, this approach isolates the entire motherboard rather than a particular component. A design using this approach is particularly useful in an outdoor unit (ODU) of a split-mount microwave radio system.
US08644026B2 Portable terminal
A portable terminal comprise a lower body, an upper body disposed to overlap the lower body, and formed to be in an open configuration which exposes a part of an upper surface of the lower body, and a closed configuration which covers the one part by a sliding motion, a flexible printed circuit board (FPCB) having one end connected to the lower body and another end connected to the upper body, and formed to be bent as the upper body moves with respect to the lower body, and an FPCB retention unit configured to elastically move one or more bent portions of the FPCB into an accommodation space formed in the upper body when the upper body moves from a closed configuration to an open configuration.
US08644019B2 Electronic device with cooling module
An electronic device includes a housing. A motherboard is arranged in a first end of the housing. A hard disk drive area is arranged at a second end of the housing. A cooling module is arranged at the housing between the motherboard and the hard disk drive area. The cooling module includes a chassis and a semiconductor chilling plate received in the chassis. An outside airflow flows through the hard disk drive area, and then flows through the semiconductor chilling plate to be cooled. The cooled airflow is driven to flow through the motherboard.
US08644018B2 Hinge device and docking station using the same
The disclosure provides a hinge device for installing a tablet computer and disposed at a base having a fixing hole. The hinge device includes a casing, an elastic element, a fixing pin, and a lifting pin. The casing is pivotally connected with the base thus to be capable of rotating relative to the base, and it has a through hole corresponding to the fixing hole. The elastic element and the fixing pin are disposed in the casing. The fixing pin has a first inclined surface. One end of the fixing pin is connected with the elastic element, and the other end corresponds to the through hole. The lifting pin is moveably disposed through and protrudes from the casing, and the lifting pin has a second inclined surface against the first inclined surface. A docking station using the aforementioned hinge device is also disclosed.
US08644012B2 Power feeding method to an antenna
An electronic apparatus may comprise a screen housing, an antenna, and a waveguide. The screen housing may have a display side and an opposing rear side wherein the display side is a side from which a screen in the screen housing is viewable. The antenna may be disposed on the display side of the screen housing. The waveguide may have a first end and a second end. The first end may be coupled to a feeding point of the antenna. The second end may be coupled to a coaxial cable.
US08644010B2 Wireless devices with flexible monitors and keyboards
A portable device (e.g., a wireless device such as a cell phone) is provided with a flexible keyboard and a flexible display screen. Such flexible components may be stored in the housing of the portable device when not in use. The flexible display screen and flexible keyboard may be expanded from the housing when the flexible components are utilized by a user. Non-flexible display and input components may be provided on the exterior of the portable device such that the device may be used, in some form, while the flexible components are stored. In one embodiment, a portion of the flexible display (or flexible keyboard) may be utilized when the flexible display (or flexible keyboard) is stored in said first housing.
US08644004B2 Electrolytic capacitor and method of manufacturing the same
A first cathode lead terminal is arranged closer to one end of a cathode foil than a second cathode lead terminal, and a first anode lead terminal is arranged closer to one end of an anode foil than a second anode lead terminal. In a cross-section perpendicular to an axis, a core has a first length along a first straight line passing through the axis and a second length along a second straight line passing through the axis and orthogonal to the first straight line, and the first length is smaller than the second length. When the cathode and the anode foils are together wound around the core from each one end, the first straight line lies between the first cathode lead terminal and the first anode lead terminal and the second straight line lies between the second cathode lead terminal and the second anode lead terminal.
US08643998B2 System for protecting wind turbines against atmospheric discharges
By means of a series of parameters taken by the plurality of sensors, the system of the invention makes it possible, via a central control unit provided with complementary programming firmware, to activate an electric-field compensating device (7) whenever there is a risk of lightning discharging over the wind turbine, in such a manner that, in the contrary case, said device remains inoperative. The electric-field compensating device (7) is associated not only with the nacelle (2) but also with the tower (1) and the blades (4) in such a manner that, between the rotor (3) and the nacelle unit (2) there is a first pair of rings (14), which are conducting, concentric and the dielectric of which is air, whilst, in the lower zone of the nacelle unit (2) there is a second pair of conducting rings (15) with similar features.
US08643997B2 Lightning current transfer assembly for a wind turbine
A lightning current transfer assembly (2) for a wind turbine (1) is arranged to transfer lightning current from a wind-turbine part (8) to another part (8) rotatable relative to it. The assembly comprises at least one electric contact arrangement (11′, 11″) comprising complementary contact members (12a′, 12b′, 12a″, 12b″) which provide electric connection by mechanically contacting each other while being movable relative to each; a spark gap (4) connected in series with the movement-enabling contact arrangement (11′, 11″); and a spark-gap-bridging resistance (6) connected parallel to the spark gap (4). Thereby, the assembly provides at least two alternative current paths: (i) a lightning current path across the at least one electric contact arrangement and the spark gap, and (ii) a permanent-discharge current path across the at least one electric contact arrangement and through the spark-gap-bridging resistance.
US08643988B1 ESD power clamp using a low-voltage transistor to clamp a high-voltage supply in a mixed-voltage chip
An electro-static-discharge (ESD) protection circuit is a power clamp between a high-voltage power supply VDDH and a ground. The power clamp protects high-voltage transistors in a first core and low-voltage transistors in a second core using a low-voltage clamp transistor. The low-voltage transistors have lower power-supply and snap-back voltages than the high-voltage transistors. Trigger circuits are triggered when an ESD pulse is detected on VDDH. One trigger circuit enables a gate of the low-voltage clamp transistor. A series of diodes connected between VDDH and a drain of the clamp transistor prevents latch up or snap-back during normal operation. During an ESD pulse, the series of diodes is briefly bypassed by a p-channel bypass transistor when a second trigger circuit activates an initial trigger transistor which pulses the gate of the p-channel bypass transistor low for a period of time set by an R-C network in the second trigger circuit.
US08643987B2 Current leakage in RC ESD clamps
Aspects of the invention provide an electrostatic discharge (ESD) protection device for eliminating current leakage, and a related method. In one embodiment, an ESD protection device includes: a resistor-capacitor (RC) circuit for receiving a power supply voltage; an ESD clamp including a plurality of n-type field-effect transistors (nFETs) for protecting the IC during an ESD event; a trigger circuit for receiving an output of the RC circuit and generating a trigger pulse to turn on the ESD clamp during the ESD event; and an nFET bias selection circuit connected to the trigger circuit, the nFET bias selection circuit for selecting one of: a low voltage supply or a negative bias voltage supply for the trigger circuit, such that the trigger circuit generates a trigger pulse, in response to selecting the negative bias voltage supply, to turn off the ESD clamp during normal operation.
US08643986B2 Bipolar photovoltaic array grounding apparatus and method
The invention is an apparatus and method for safely disconnecting a bipolar photovoltaic array from earth ground under normal static operating conditions. The invention senses the voltage to earth on all three terminals of a bipolar photovoltaic array and uses a set of operable contacts to selectively couple or uncouple the DC neutral point of the array (the center tap) to earth ground. When all three terminals of the bipolar array are within the rated voltage capability of the photovoltaic array the DC neutral point is allowed to float.
US08643978B1 Spindle motor and disk drive apparatus
A spindle motor and a disk drive apparatus include a base member, an armature positioned above the base member, and a circuit substrate electrically connected to coils of the armature. The base member includes a bottom portion positioned below the armature and a lower slant surface extending radially outward and upward from an outer peripheral portion of a lower surface of the bottom portion. The circuit substrate includes a plurality of land portions arranged on its lower surface. The lower slant surface includes a first slant surface and a second slant surface arranged along a circumferential direction. At least one land portion is respectively arranged on each of the first slant surface and the second slant surface.
US08643973B2 Method and apparatus for reflection cancellation
A method for calibrating a reflection compensator is provided. A delay is initially set to a predetermined minimum, and an input pulse is transmitted across a transmission line. A compensation current is then applied after the delay. The reflection from the transmission line is digitized to generate a measurement, and a determination is made as to whether the compensation current substantially compensates for the reflection. If the compensation current does not substantially compensate for the reflection, then the delay is adjusted, and the process is repeated until the compensation current substantially compensates for the reflection.
US08643965B2 Enhanced prism film
The present disclosure relates to an enhanced prism film comprising a plurality of column-like elements extending in a first direction. The plurality of column-like elements abut against one another in a second direction different form the first direction so as to form a light exiting surface of the enhanced prism film with converging effect in both the first and second direction.
US08643964B2 Lens driving device without permanent magnet
A lens driving device, which movably supports a lens assembly along a direction of an optical axis of a lens, includes an actuator base disposed to a lower side of the direction of the optical axis, a lens holder made of a ferromagnet that is disposed to an upper side of the actuator base and which has a tubular portion for holding the lens assembly, a ring-shaped driving coil fixed to the lens holder so as to be positioned around the tubular portion, a yoke covering the lens holder so as to be apart from the driving coil and to oppose to the lens holder in a state where the driving coil is sandwiched therebetween, and a guide arrangement guiding the lens holder along the direction of the optical axis.
US08643962B2 Lens moving mechanism
A lens moving mechanism includes a guide shaft extending in an optical axis direction and a lens frame. The lens frame includes a transfer portion which follows movement of the nut member, which is screw-engaged with a lead screw of a motor. An effective length of the guide shaft is greater than that of the lead screw so that an end of the guide shaft and the motor overlap each other. Part of the fit-on portion of the lens frame is positioned where the end of the guide shaft and the motor overlap each other when the lens frame is at a lens-frame moving end, and is positioned to face the lead screw in a direction orthogonal to the optical axis when the lens frame is at the opposite lens-frame moving end.
US08643958B2 Wide angle lens and imaging device
A wide angle lens whose field angle exceeds 160 degrees, includes a front group, an aperture stop, and a rear group arranged in this order from an object-side toward an image-side. The front group includes a first lens (negative meniscus) whose convex surface faces the object, a second lens (negative), a third lens (negative), and a fourth lens (positive), arranged in this order from the object-side toward the image-side. The rear group includes a fifth lens (positive), a sixth lens (negative), and a seventh lens (positive), arranged in this order from an aperture-side toward the image-side. The fifth and sixth lenses are combined, forming a cemented lens having positive refractive power. The fifth and sixth lenses are made of materials having Abbe numbers of greater than or equal to 50 and less than or equal to 30, respectively. A surface of the seventh lens facing the image is aspheric.
US08643957B2 Optical image system
An optical image system includes, in order from an object side to an image side, the first lens element with positive refractive power having a convex object-side surface; the second lens element with refractive power; the third lens element with positive refractive power having at least one surface being aspheric; the fourth lens element with refractive power having a concave object-side surface and a convex image-side surface, wherein at least one surface thereof element is aspheric; the fifth lens element with positive refractive power having a convex image-side surface; and the sixth lens element with negative refractive power made of plastic material and having a concave image-side surface, wherein at least one surface thereof is aspheric, and the image-side surface thereof changes from concave at a paraxial region to convex at a peripheral region.
US08643955B2 Image correction using individual manipulation of microlenses in a microlens array
A system constructs a composite image using focus assessment information of image regions.
US08643954B2 Zoom lens and photographing apparatus
A zoom lens and a photographing apparatus including the same. The zoom lens includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and an additional lens grouping having a positive refractive power, which are sequentially arranged from an object side, wherein the additional lens grouping comprises a third lens group having a positive refractive power.
US08643953B2 Manufacturing optical elements
A method of replicating at least one optical element is provided, the method including the steps of: providing a substrate with two large sides and at least one pre-defined replication site defined by a through hole or blind holes at corresponding locations on both large sides of the substrate; and adding, by replication, a replicated structure to the substrate, the replicated structure adhering to the substrate and having, at the replication site, replication material in the through hole or in the two blind holes, respectively and a first replicated surface and a second replicated surface, the first and second replication surfaces facing towards opposite sides.
US08643950B2 Lens-based image augmenting optical window with intermediate real image
An image augmenting window and method of operation. An image augmenting window has at least one selectably transmissive internally focused intermediate image lens with a first and rear side opposite one another. Each lens respectively has a first portion that receives light and focuses it into a focused image on an internal focal plane. Each lens also has a projecting output optical structure that refracts the focused image as a projected image exiting the rear side at an exit angle. A selectably transmissive shutter is located in the internal focal plane and is controllable to block at least a portion of light passing through the lens. At least one controllable light source, positioned adjacent to a lateral side of a respective selectably transmissive internally focused intermediate image lens, emits projected light parallel to the exit angle. A controller independently controls each shutter and each controllable light source.
US08643943B2 Tunable laser source using intracavity laser light outcoupling and module containing the same
A laser source includes a laser beam generating section for generating a laser beam in a cavity between first reflector and a second reflector; and a tap section provided in the cavity to take out a part of the laser beam. The laser source is a waveguide-based laser source.
US08643940B2 System for continuously generating polychromatic light by means of doped microstructured optical fibre
A system for generating polychromatic light, which includes: an optical pumping device suitable for continuously or quasi-continuously emitting a monochromatic or quasi-monochromatic radiation according to a pumping wavelength; a device for guiding light arranged such as to emit polychromatic radiation continuously or quasi continuously, at the output thereof, and a device for coupling between the pumping and coupling device. In the system, the guiding device, includes a microstructured optical fiber in which the core is at least partially doped with a material having a high intrinsic non-linear response, and the geometry of the optical fiber and the doping rate of the core thereof are predetermined such as to adapt the zero dispersion length of the optical fiber to the pumping wavelength.
US08643933B2 Connectors for smart windows
This disclosure provides connectors for smart windows. A smart window may incorporate an optically switchable pane. In one aspect, a window unit includes an insulated glass unit including an optically switchable pane. A wire assembly may be attached to the edge of the insulated glass unit and may include wires in electrical communication with electrodes of the optically switchable pane. A floating connector may be attached to a distal end of the wire assembly. The floating connector may include a flange and a nose, with two holes in the flange for affixing the floating connector to a first frame. The nose may include a terminal face that present two exposed contacts of opposite polarity.
US08643932B2 Reflection type display apparatus and method for driving this apparatus
A reflection type display apparatus includes an image display having a plurality of pixels, with each of the pixels including a first electrode having a light transmitting property, a second electrode disposed in opposition to the first electrode, and a third electrode disposed in opposition to the first or second electrode. An electrolytic solution containing a metal ion is disposed in contact with the first, second and third electrodes, and a control unit sets a direction of a current flowing between the first, second and third electrodes. The control unit sets a first state of forming a first electroplating of a first color on the first electrode using the first electrode as a negative electrode and using the second electrode as a positive electrode, a second state of forming a second electroplating of a second color on the second electrode using the second electrode as the negative electrode and using the first electrode as the positive electrode without forming the first electroplating, and a third state of forming a third electroplating of a third color on the third electrode using the third electrode as the negative electrode and using the first and second electrodes as the positive electrodes without forming the first and second electroplatings.
US08643931B2 Vehicle rearview mirror with spotter mirror
An exterior rearview mirror element including a front element having a first front surface and a second rear surface. A cross-section of the second rear surface defines a first line. A rear element includes a third front surface and a fourth rear surface. Electrochromic material is located between the front element and the rear element. A spotter optic is located in the second rear surface of the front element. A cross-section of the spotter optic defines a second line. A transition region is disposed between the spotter optic and the second rear surface of the front element. A distance from a surface of the transition region to an intersection of the first line and the second line is between about 0.001 mm and 0.034 mm. At least a portion of the spotter optic includes a first radius of curvature and at least a portion of the first front surface includes a second radius of curvature, the first radius of curvature being smaller than the second radius of curvature.
US08643928B2 Illumination systems for visual displays
Two or more spectral emitters are used to provide spectrally separated light illumination onto modulating pixels of a visual display. The spectral emitters may be lasers or LEDs, typically having coherent properties. Generally, a display system includes a spectral emitter array, a light collimating element, a lens array, and a light modulating panel. The spectral emitter array includes a first spectral emitter operable to emit light of a first wavelength and a second spectral emitter operable to emit light of a second wavelength. The light collimating element is operable to direct light from the spectral emitter toward the lens array, and the lens array is operable to direct light toward the light modulating panel.
US08643927B2 MEMS device and method of manufacturing MEMS device
A protrusion formation hole is provided so as to pierce a support substrate. A polysilicon film as an electrical conducting material is embedded in the protrusion formation hole through an oxide silicon film. The polysilicon film partially bulges out of the protrusion formation hole toward a movable section to form a protruding section. In other words, the polysilicon film bulges out of the protrusion formation hole toward the movable section to form the protruding section. Thereby, a movable section included in MEMS can be prevented from sticking to other members.
US08643925B2 Variable dispersion compensator
Exemplary methods and systems for applying a correction to an initiated signal are disclosed. In some examples the correction may be a compensation for dispersion present, e.g., in an optical signal. An exemplary method may include receiving an initiated signal, and forming a curved surface with a first array of discrete elements. The exemplary method may further include impinging the initiated signal upon the curved surface, thereby applying a correction to the initiated signal determined at least in part by the curved surface.
US08643922B2 Gamut clipping with preprocessing
A method is provided for gamut clipping with preprocessing enabled as software instructions stored in a computer-readable medium and executable by a processor. The instructions provide a color in a color space defined by at least three attributes. If the color lies outside a gamut boundary in the first color space, a distance is measured from the color to the gamut boundary. In response to the measured distance, a weight is calculated for an attribute of the color. Then, it is determined if the attribute of the color is to be shifted. If so, an attribute shift amount is derived. The attribute shift amount of the color is modified by applying the weighting. The attribute of the first color is shifted by the weighted attribute shift amount, creating a post-processed color. The post-processed color is then clipped.
US08643917B2 Light projection unit, image reading device including same, and image forming apparatus including the image reading device
A light projection unit includes a substrate, a plurality of light emitting elements arrayed on the substrate in a main scanning direction and including light emitting surfaces, a light guide facing the light emitting surfaces to direct light projected from the light emitting elements onto an illumination target and including a first positioning portion, and a holder including a second positioning portion that engages the first positioning portion of the light guide to position the light guide on the holder. The first positioning portion of the light guide is positioned between centers of light emission of adjacent light emitting elements in the main scanning direction of the substrate when the first positioning portion engages the second positioning portion of the holder.
US08643911B2 Image reading device having image sensor
The image reading device includes a first document member, a white reference plate, an image sensor, a conveying section, and a control section. A first document is placed on the first document member. The image sensor reads the first document placed on the first document member. The conveying section conveys the image sensor in a first direction and a second direction opposite to the first direction. The image sensor reads the first document while being moved in the first direction. The control section executes a first control. The first control executes a process to control the image sensor to read the white reference plate, to control the conveying section to move the image sensor in the second direction, to control the conveying section to start moving the image sensor in the first direction, and to control the image sensor to read the first document, in this order.
US08643910B2 Image forming apparatus and image forming method including a first measuring unit that measures invisible toner
An image forming apparatus includes an acquiring unit that acquires image data expressing an image region included in an image with a first value and a background region included in the image with a second value; a segmenting unit that segments the image region into multiple segments arranged in a fast scanning direction; a converting unit that converts a value of at least one of the segments into the second value; an output unit that generates an image signal on the basis of the image data and outputs the image signal; an exposure unit that exposes a charged image bearing member to light according to the output image signal by scanning the light thereto in the fast scanning direction so as to form a latent image; and a developing unit that forms the image by developing the latent image using an invisible toner that absorbs infrared light or ultraviolet light.
US08643909B2 Image reader
An image reader is provided, which includes a reference position determining unit configured to, in a state where a bright area and a dark area are formed on a reflection surface when a light projecting unit projects light toward a part of the reflection surface, receive the light reflected from the reflection surface with a light receiving portion of a reading unit while restricting a light emitting portion of the reading unit from emitting light, detect a position of the bright area and a position of the dark area in a main scanning direction, and determine a reference position in the main scanning direction based on the detected positions of the bright area and the dark area.
US08643905B1 Isolated hole detection and growth
The present disclosure relates to a method and system for processing isolated holes in an image to be printed or displayed. The method includes generating a random number lying in a finite range of numbers, determining whether a target pixel is to be turned off and enabled for printing as a hole, determining a sum of pixels surrounding a target pixel in a plurality of pixels in a scanline of the image, the target pixel corresponding to an isolated hole in an input image, that are in an on state, the on state defined by a higher binary logic level relative to a binary logic level corresponding to a turned off pixel, determining a numerical value stored in a lookup table in a memory unit coupled to the processor using the determined number of pixels that are in the turned on state surrounding the target pixel.
US08643893B2 Apparatus, method, system, and computer program product for creating operation definition file, and image forming apparatus
An operation-definition-file creating apparatus includes a setting data file in which setting data of a setting item that is to be set in an MFP is defined. A creating unit creates, on the basis of the setting data, an operation definition file in which an operation for reflecting the setting data in the MFP is described and a saving unit saves the created operation definition file in an external storage medium.
US08643886B2 System and methods for enhanced facsimile communication network and preference selection
Disclosed is a database management device that has a transmitting facsimile device and a receiving facsimile device to select between a default communications network and an alternate communications network based on advertised communication network capability and by a selection logic, this selection logic determined by color, resolution, baud rate, compression format; the communications network can be the public switched telephone network, the internet, or other networks.
US08643885B2 Printing control apparatus and non-transitory computer readable medium with setting authentication information in a devmode structure
A printing control apparatus includes an acquiring unit, a storage unit, a specifying unit, a setting unit, and a transmitting unit. The acquiring unit acquires information concerning a printer driver name in accordance with a received print instruction. The storage unit stores a table in which the printer driver name and definition information which defines a setting location of authentication information in a DEVMODE structure are associated with each other. The specifying unit specifies the setting location of the authentication information in accordance with the acquired information concerning the printer driver name and the table stored in the storage unit. The setting unit sets the authentication information in the specified setting location. The transmitting unit generates print data having the authentication information in accordance with setting content of the DEVMODE structure in which the authentication information has been set, and transmits the print data to an output destination printer.
US08643882B2 Print preview display of confirmation page with main page based on selected display method
A client PC 12 is capable of creating a job which can be processed by an image forming apparatus 10 where the image forming apparatus 10 prints and outputs a page for main printing included in the job received from the client PC 12 according to the job. The client PC 12 includes a CPU 201 that receives an instruction for setting confirmation printing in the image forming apparatus 10 so that a confirmation page is printed in addition to the page for main printing and output to a destination different from that of the page for main printing, and carries out the received instruction on each of the jobs; and an NC 212 that sends the job with settings for the confirmation printing provided to the image forming apparatus 10.
US08643879B2 Hosted print job ticket conversion
A computerized device receives a print job from a printing device. The computerized device is operatively connected to the printing device and to a plurality of different printing devices through a computerized network. Further, the print job has one of many file formats and one of many ticketing types. If the file format and/or the ticketing type of the print job do not match one of many acceptable format types and acceptable ticketing types acceptable to the printing device, the computerized device converts the file format and/or the ticketing type of the print job into one of the acceptable format types and/or the acceptable ticketing types to produce a converted print job. The computerized device sends the converted print job to the printing device over the computerized network to allow the printing device to print the converted print job.
US08643877B2 Image forming apparatus and control method therefor and storage medium
An image forming apparatus includes a sever access unit configured to acquire information representing an amount of use of a storage area from a document management server, and a determination unit configured to determine whether the amount of use exceeds a threshold when data is stored in the storage area by checking the size of the data. A document storage unit stores the data in a storage unit in the image forming apparatus when the amount of use exceeds the threshold, and stores management information relating to a storage location of the data in the storage unit in the document management server. The document storage unit stores the data in the storage area when the amount of use is the threshold or less.
US08643875B2 Receipt handling systems, print drivers and methods thereof
A method of processing receipts, including: obtaining transaction data including a plurality of categories of information necessary to describe a purchasing transaction of a customer at a store location; obtaining image data representing a receipt corresponding to the purchasing transaction of the customer at the store location; obtaining an e-mail address of the customer; providing an option to print the receipt at the store location and an option to e-mail the receipt to the customer; obtaining a selection of at least one of the provided options; if the option to print is selected, initiating printing of the image at the store location; and if the option to e-mail is selected, sending an e-mail to the e-mail address of the customer, the e-mail including providing at least one of the image data and the transaction data.
US08643867B2 Image forming apparatus, printing control method, recording medium, and data signal
There is provided an image forming apparatus including an added image detecting section that detects added image data contained in image data by analyzing input image data to be printed; an added image determination section that, when added image data is detected by the added image detecting section, determines whether the detected added image data corresponds to any post-processing on a post-processing apparatus which applies post-processing to a printing medium which has been subjected to printing; an image forming section that forms a printed image with the added image data removed from image data to be printed if the added image determination section determines that the added image data corresponds to post-processing on the post-processing apparatus; and a post-processing controller that instructs the post-processing apparatus to apply the post-processing for the added image data if the added image determination section determines that the added image data corresponds to post-processing on the post-processing apparatus.
US08643866B2 Electric energy consumption control system, electric energy consumption control method, and storage medium storing control program therefor
An electric energy consumption control system that is capable of maximizing convenience to users while controlling the system so that the electric energy consumption of the entire system in a period falls within a target electric energy. An electrical apparatus transmits electric energy consumption of a job with a user name to a control apparatus through the network. A restrictive period setting unit of the control apparatus starts a restrictive period when the electric energy consumption of the entire system is beyond a restriction starting value, and finishes it when the electric energy consumption of the entire system is below a restriction release value. A job restriction unit restricts the job of the user concerned when the accumulated electric energy consumption of the user is beyond the reference value in the restrictive period.
US08643858B2 Image forming apparatus with calibration function
An image forming apparatus with a plurality of reading units, which is capable of easily adding a recording sheet type usable for calibration. Calibration is executed using a specific recording sheet. Gradation patterns are formed on a recording sheet of a sheet type to be added, and are read by a reader unit. A first conversion table is configured based on information on the read image. A second conversion table is configured based on the first conversion table. When the reader unit is used to perform calibration using the added recording sheet, image forming conditions are set based on information on the image read by the reader unit and the first conversion table, and when the color sensor is used, the image forming conditions are set based on information on the image read by the color sensor and the second conversion table.
US08643857B2 Image processing apparatus, image processing method, and program and storage medium therefor
The objective of the present invention is to provide an image processing apparatus that can perform selective processing for a plurality of images stored in a multi-image file. To achieve this objective, the image processing apparatus according to the present invention includes a designation unit for designating an image file; a determination unit for determining whether the file designated by the designation unit is a multi-image file; an image information analyzing unit for analyzing image information, stored in the image file designated by the designation unit, when the designated image file is determined to be a multi-image file; a switching unit for switching between user selection and automatic selection of a multi-image file image to be output target; an image information notification unit; an output range designation unit; an output form designation unit; and an output unit.
US08643856B2 Methods and systems for network printing with user selectable settings
Methods and systems for network printing using user selectable printer settings for a variety of configurations of printing systems and finishers. A printing system such as a multi-function printer/device receives user input providing a document identifier (e.g., a release code) identifying a document stored in a network storage server. The printing system also identifies a finisher unit associated with the printing system. The printing system sends the document identifier and a finisher identifier to a print server. The print server determines available printer settings associated with the identified finisher unit and transmits a presentation to the printing system prompting the user to select a desired printer setting. The selected printer settings are transmitted to the print server. The print server retrieves a copy of the identified document and modifies the copy based on the selected printer setting. The modified copy of the document is sent to the printing system to be printed.
US08643855B2 Image forming system and method of controlling the image forming system for performing image formation by combination of an information processing apparatus, an image supply apparatus, and an image forming apparatus
An image forming system includes a selection unit configured to select an image supply apparatus for supplying image data and an image forming apparatus for forming an image based on the image data, a specification setting unit configured to set image formation specifications for image formation in the image forming apparatus selected by the selection unit, and a transmitting unit configured to transmit identification information generated to identify the image formation specifications set in the specification setting unit to the image supply apparatus selected by the selection unit.
US08643850B1 Automated system for load acquisition and engagement
A method for automatically guiding a lifting device on a lifting apparatus to a lifting point on a load is disclosed. A beacon is associated with the lifting point on the load has a plurality of lights arranged in a predetermined pattern. A sensor on the lifting apparatus detects the lights and provides signals to a processor. The processor calculates location of the lifting point, and develops signals that directs the lifting apparatus, or an operator of the lifting apparatus, to engage the lifting point with a lifter on the lifting apparatus. The load may then be lifted and moved.
US08643845B2 Interferometric surface inspection using a slit-shaped reference beam from inspection surface
Provided are a surface inspection apparatus and method capable of detecting foreign materials on the surface of a substrate, and a slit coater having the surface inspection apparatus. In the surface inspection apparatus, a slit lighting unit irradiates slit-shaped light. An optical system splits the slit-shaped light into two beams traveling along two different paths, is incident upon a subject, and extracts an interference image caused by combination of the two beams reflected from the subject. An imaging device captures the interference image to output an image signal. An analysis unit acquires a luminance value of the image signal, analyzes the luminance value in real time, and determines whether or not foreign materials are present.
US08643842B2 Method and system for use in monitoring properties of patterned structures
A method and system are presented for use in characterizing properties of an article having a structure comprising a multiplicity of sites comprising different periodic patterns, where method includes providing a theoretical model of prediction indicative of optical properties of different stacks defined by geometrical and material parameters of corresponding sites, said sites being common in at least one of geometrical parameter and material parameter; performing optical measurements on at least two different stacks of the article and generating optical measured data indicative of the geometrical parameters and material composition parameters for each of the measured stacks; processing the optical measured data, said processing comprising simultaneously fitting said optical measured data for the multiple measured stacks with said theoretical model and extracting said at least one common parameter, thereby enabling to characterize the properties of the multi-layer structure within the single article.
US08643840B2 Cell for light source
A cell for a vacuum ultraviolet plasma light source, the cell having a closed sapphire tube containing at least one noble gas. Such a cell does not have a metal housing, metal-to-metal seals, or any other metal flanges or components, except for the electrodes (in some embodiments). In this manner, the cell is kept to a relatively small size, and exhibits a more uniform heating of the gas and cell than can be readily achieved with a hybridized metal/window cell design. These designs generally result in higher plasma temperatures (a brighter light source), shorter wavelength output, and lower optical noise due to fewer gas convection currents created between the hotter plasma regions and surrounding colder gases. These cells provide a greater amount of output with wavelengths in the vacuum ultraviolet range than do quartz or fused silica cells. These cells also produce continuous spectral emission well into the infrared range, making them a broadband light source.
US08643839B2 Spectrometer
A spectrometer is provided with an integrating sphere 20, inside which a sample S of a measurement target is disposed and which is adapted for observing measured light emitted from the sample S, and a Dewar vessel 50 which retains a refrigerant R for cooling the sample S and at least a portion of which is located so as to face the interior of the integrating sphere 20. Gas generated from the refrigerant R is introduced through predetermined gaps G1-G6 functioning as a gas introduction path and through a plurality of communicating passages 64 formed in a support pedestal 61, into the integrating sphere 20. The gas introduced into the integrating sphere 20 absorbs water in the integrating sphere 20 to decrease the temperature in the integrating sphere 20, so as to prevent dew condensation from occurring on a portion of a second container portion 50b of the Dewar vessel 50 exposed in the integrating sphere 20. This can prevent occurrence of dew condensation even in the case where the sample S is measured in a cooled state at a desired temperature.
US08643838B2 Emission spectrophotometer
An emission spectrophotometer capable of inhibiting non-uniformity of spectral intensities of component elements is provided. The emission spectrophotometer generates pulse light emission by supplying an energy accumulated in an electricity accumulating and discharging unit to a gap between an electrode and a test material, and the emission spectrophotometer includes a detection unit, for detecting an energy charged to the electricity accumulating and discharging unit before the pulse light emission; and a detection unit, for detecting an energy remaining in the electricity accumulating and discharging unit after the pulse light emission. It is determined whether the detected light is emitted by fully using the energy accumulated in the electricity accumulating and discharging unit.
US08643834B2 Apparatus of inspecting defect in semiconductor and method of the same
When size of a defect on an increasingly miniaturized pattern is obtained by defect inspection apparatus in the related art, a value is inconveniently given, which is different from a measured value of the same defect by SEM. Thus, a dimension value of a defect detected by defect inspection apparatus needs to be accurately calculated to be approximated to a value measured by SEM. To this end, size of the defect detected by the defect inspection apparatus is corrected depending on feature quantity or type of the defect, thereby defect size can be accurately calculated.
US08643827B2 Method for measuring the propagation time of light
A method for measuring the transmit time of light, in particular for cameras. A first light signal is clocked by a first clock controller, input into a light system and reflected back to a receiver photodiode, which determines a reception signal as a result of the first light signal. A further light signal clocked by a further clock controller inputs the photodiode at an angle to the first light signal and is mixed at the photodiode with the first light signal to form a common reception signal, which is filtered with a filter whose frequency response corresponds to the frequency of the clock difference to form a filter signal, the first and further clock signals are also mixed in a mixer to form a mixed signal and the phase shift between the mixed signal and the filter signal is used to determine the transit time of light.
US08643824B2 Projection optics for microlithography
A projection optics for microlithography, which images an object field in an object plane into an image field in an image plane, where the projection optics include at least one curved mirror and including at least one refractive subunit, as well as related systems, components, methods and products prepared by such methods, are disclosed.
US08643823B2 Stress-decoupling devices and methods for cooled mirror systems
A stress-decoupling device and methods of using same in a cooled grazing-incidence collector (GIC) mirror system are disclosed. A method includes providing a cooled GIC shell, providing input and output primary cooling-fluid manifolds, and fluidly connecting the cooled GIC shell to the input and output primary cooling-fluid manifolds through respective stress-decoupling devices. An exemplary stress-decoupling device includes inner and outer bellows that define a sealed cavity filled with a gas. An expansion-limiting member within the sealed cavity limits the expansion of the inner bellows due to the pressure of the cooling fluid flowing therethrough. The stress-decoupling device reduces or prevents the communication of stress from parts of the GIC mirror system to the GIC shells. Stress-decoupling systems and methods for a cooled spider as used in a GIC mirror system are also disclosed.
US08643817B2 Lateral electric field display panel and display apparatus having the same
A display panel includes a first substrate including a plurality of pixels, a second substrate facing the first substrate, and a liquid crystal layer disposed between the first and second substrates. Each pixel includes a data line, a gate line insulated from the data line, a first signal line insulated from the data line, a second signal line insulated from the data line, a switching device connected to the data line and the gate line, a first pixel electrode connected to the switching device, and a second pixel electrode connected either the first signal line or the second signal line. The display panel displays an image according to an electric field generated between the first and second pixel electrodes.
US08643813B2 Liquid crystal display
A liquid crystal display includes: a first substrate and a second substrate facing each other; a liquid crystal layer between the first substrate and the second substrate; a lower pixel electrode positioned on the first substrate; a first passivation layer positioned on the lower pixel electrode; an upper pixel electrode positioned on the first passivation layer; and an opposing electrode positioned on the second substrate, wherein the upper pixel electrode comprises a stem and a plurality of minute branches extending outwardly from the stem, and the lower pixel electrode comprises a main body overlapping the plurality of minute branches and at least one bar-shaped portion extending along an edge of the main body maintaining a predetermined gap with the edge of the main body.
US08643812B2 Display substrate, method of manufacturing the same and display device having the same
A display substrate has first and second conductive layers separated from one another by an insulation layer. The first and second conductive layers are used to integrally form on the display substrate, pixel units in a relatively central display area of the substrate and integrated gate driving circuitry as well as associated wirings thereof in one or more peripheral areas. The first and second conductive layers are covered by a first protection layer made of a first electrically insulative material. A second and supplementing protection layer is provided on top of the first protection layer. The supplementing protection layer (buffer layer) is formed of a material different from that of the first protection layer so as to provide supplemental resistance against corrosive chemical agents and supplemental resistance against formation of cracks. In one class of embodiments, the supplementing protection layer is made of a same material as used form at least one of an alignment layer, sealing layer and spacer layer of the display substrate.
US08643804B2 Backlight unit and display device
A light generating device which may be used as a backlight unit and a display device including the light generating device are discussed. According to an embodiment, the light generating device can include a base layer; light source devices disposed on the base layer and configured to emit light, the light source devices being spaced apart from each other, at least one of the light source devices including a light emitting diode for generating the light; and a light shielding layer covering the light source devices and configured to control an amount of the light being transmitted through the light shielding layer, wherein the light shielding layer includes slits disposed spaced apart from each other.
US08643803B2 Liquid crystal display device
The liquid crystal display device is a liquid crystal display device having: a light guide plate for converting light from a light source into backlight for illumination; a first frame for containing the light guide plate; and a liquid crystal display panel provided over said light guide plate, wherein the liquid crystal display device further has a photosensor that is placed so as to face a sidewall of the light guide plate and detect an amount of the backlight, and the photosensor is placed so as to face the sidewall of the light guide plate through a hole or a notch created in a sidewall portion of the first frame.
US08643801B2 Display device and electronic apparatus including the same
A display device includes a substrate; a display element; a thin film transistor, and having a first semiconductor oxide film including a source region and a drain region, the first semiconductor oxide film having first low resistance areas each of whose oxygen concentration is lower than that of the channel region in parts of the source region and the drain region in a depth direction from upper surfaces thereof; a second semiconductor oxide film having a second low resistance area whose oxygen concentration is lower than that of the channel region in a part in the depth direction from the upper surface; and a high resistance film covering the thin film transistor, the second semiconductor oxide film, and the substrate, made of a metallic oxide, having a first translucent area in an area contacting the first low resistance area, and having a second translucent area.
US08643800B2 Liquid crystal display device and method of manufacturing the same
A liquid crystal display device includes an array substrate including: gate and data lines crossing each other on a first substrate to define a pixel region; a common line in parallel with the gate line; first and second common line patterns extending from the common line, wherein the data line is between the first and second common line patterns; a thin film transistor connected to the gate and data lines; a pixel electrode connected to the thin film transistor and in the pixel region; and an inorganic black matrix below the gate line, the common line, and the first and second common lines, wherein the inorganic black matrix below the first and second common lines shields the data line; an opposing substrate including a common electrode on a second substrate; and a liquid crystal layer between the array substrate and the opposing substrate.
US08643799B2 TFT-LCD array substrate and manufacturing method thereof
A TFT-LCD array substrate comprising a transparent substrate and a gate line, a data line, a thin film transistor, a pixel electrode and a passivation layer that are formed on the transparent substrate. The passivation layer includes a first region corresponding to the pixel electrode, a second region corresponding to the gate line and a third region corresponding to the data line, the first region has a first thickness, the second region has the second thickness, and the third region has the third region. The first thickness is smaller than the second thickness, the second thickness is smaller or equal to the third thickness.
US08643798B2 Electro-optic device and electronic apparatus
An electro-optic device includes a first insulating substrate where a pixel electrode and a signal line are arranged on one surface side, a conductive layer formed on another surface of the first insulating substrate, and a conductive tape adhered to the conductive layer along at least one side of the first insulating substrate, where the conductive layer maintains a constant potential via the conductive tape.
US08643792B2 Rear projection imaging system with image warping distortion correction system and associated method
A rear projection imaging system with an image warping distortion correction system using a camera and processing unit to generate a warping map that corrects for image distortion. The warping map is generated in an iterative process by displaying a known pattern on a viewing screen and, through the use of a camera, having a microprocessor determine the location and shape of the pattern on the screen. The microprocessor then compares the displayed image to the original reference image, calculates the distortion effects present in the projection optics, and generates a warping map.
US08643790B2 Remote controller, image processing apparatus, and imaging system comprising the same
A remote controller for remotely controlling an image processing apparatus having a receiving unit, including: a sensing unit having a region for sensing a position value corresponding to user's contact and movement; a data processing unit for detecting information on a user's movement direction to convert it into a control signal capable of being outputted in accordance with the position value sensed; and a transmitting unit for transmitting the control signal to the image processing apparatus.
US08643789B2 Television receiver, television controller circuitry and method
A television receiver for receiving TV signals when unknown interference is present in a predetermined bandwidth in which the TV signals are transmitted. The TV receiver comprises an input, a tuner, a configurable filter and a controller circuitry. The input receives a radio frequency (RF) signal comprising the terrestrial TV signals. The tuner is configured to detect the terrestrial TV signals, where the terrestrial TV signals include a plurality of frequency channels within a predetermined bandwidth and the plurality of frequency channels provide TV signals which communicate TV channels. The configurable filter is configurable to suppress signals received from one or more of the plurality of frequency channels within the predetermined bandwidth. The controller circuitry is operable to form a channel map of the TV channels detected by the tuner for selection by a user of the television set and consequent upon a TV channel not being detected on a frequency channel, configure the frequency domain filter to suppress signals received from the frequency channel.
US08643788B2 Image processing apparatus, image processing method, and image processing program
An image processing apparatus and method for generating a wide angle image from received images. Using an image signal of a received image, a scene change detection unit detects scene change of the received images. A movement detection unit detects a movement in each of the received images. A display position determination unit determines a display position of each of the received images based on the movement in each of the received images detected in a period of continuous scene. A wide field angle image generation unit superimposes the received images in said period of said continuous scene, a display position of which has been determined, to generate an image signal of the wide field angle image. A received image slide unit generates image signal wherein the received images are slid to the display positions. An image superimposition unit superimposes the received images whose display positions have been slid on the wide field angle image, to generate an image signal of a wide field angle display image in which the display position of each of the received images is slid in response to the movement in each of the received images.
US08643786B2 Program guide apparatus
A receiver acquires program guide information in an image signal receiver, and program guide method and apparatus using the same. In the program guide apparatus, information immediately required by a user is obtained first, and information of less preferential channels is obtained next, thus presenting a smooth interface to the user. The method of acquiring program guide information for channels includes acquiring the program guide information for each channel by scanning accessible channels while a received program is not displayed. The program guide apparatus includes a tuner tuning a channel, a program guide information detector, a memory, a key input, a microprocessor, and a character signal generator.
US08643784B2 Television system, television set and remote controller
In response to an operation such as power-on or power-off, channel change and sound volume change, a television set combined with a personal computer automatically makes e-mail with information in a predetermined format indicative of the operation attached. The e-mail is automatically sent to another television set to inform the other television set of operation of the own television set. On the other hand, the e-mail can be sent to a rating company for audience share survey. The television set automatically reads the received e-mail and attachment to change the indication of display. The television set has storage of the received information for analysis of an abnormality. Abnormality can be also sensed through abnormal act on the remote controller apt to be taken by a person in panic or off the truck. The television set refuses information from unknown address for blocking an attack of a stranger.
US08643783B2 Vertical field detection for television receivers
A method in a television receiver receiving interlaced analog modulated television signals includes: detecting an inactive video period in the television signal between two successive video display fields; generating a synchronization signal indicative of the detected inactive video period; and in response to the synchronization signal, performing measurement and adjustment operations on analog circuitry of the television receiver. In another embodiment, a method in a television receiver receiving interlaced analog modulated television signals includes: detecting an inactive video period between two successive video display fields using a not-fully-demodulated intermediate frequency (IF) signal; and generating a synchronization signal indicative of the detected inactive video period. In another embodiment, a vertical field detection circuit in a television receiver includes a vertical field detector circuit configured to detect an inactive video period in the television signal between two successive video display fields using a not-fully-demodulated intermediate frequency (IF) signal.
US08643781B1 Display interface methods and systems
Methods and systems for implementing video driving circuitry are disclosed. For example, in an embodiment, a system for driving a plurality of different types of video devices is disclosed. The system includes, for example, a System on a Chip (SoC) that itself includes a Liquid Crystal Display (LCD) controller circuit configured to generate digital video data, a first synchronization signal for controlling a first characteristic of the digital video data, and a second synchronization signal for controlling a second characteristic of the digital video data. The SoC further includes a delay circuit configured to variably delay the first synchronization signal and the second synchronization signal relative to the digital video data to generate a delayed first synchronization signal and a delayed second synchronization signal.
US08643778B1 Avoiding jitter in motion estimated video
A method includes receiving a digital video segment simulating motion at one speed, the frames in the segment spaced at a uniform time interval. The method further includes receiving a desired speed of motion, determining the appropriate uniform time interval corresponding to the desired speed, and generating a frame sequence simulating the motion at the desired speed, the frames in the generated sequence spaced at the determined appropriate uniform time interval. If the generated frame sequence includes a frame from the original segment, then only frames from the original segment are included in the generated frame sequence, and if the generated frame sequence includes an interpolated frame then only interpolated frames are included in the generated frame sequence.
US08643773B2 Manufacturing method of solid-state imaging apparatus, solid-state imaging apparatus, and electronic imaging apparatus
A manufacturing method of a solid-state imaging apparatus includes the steps of: preparing a solid-state imaging device having a light receiving region at a main surface thereof; preparing a light transmitting member having an extending portion extending from the solid-state imaging device; preparing a holding member having a space for holding the solid-state imaging device therein, and having a positioning portion for positioning the solid-state imaging device; fixing the light transmitting member to the main surface of the solid-state imaging device in parallel to each other to keep a constant interval therebetween; bringing a side of the solid-state imaging device to meet the positioning portion of the holding member; and fixing the extending portion of the light transmitting member to the holding member.
US08643768B2 Multiple lens imaging apparatuses, and methods and programs for setting exposure of multiple lens imaging apparatuses
When an exposure value calculated according to a result of photometric measurement for predetermined main imaging units among a plurality of imaging units is used for setting exposure of the main imaging units and sub-imaging units other than the main imaging units, judgment is carried out as to whether an image or images obtained in photography with the sub-imaging units by setting the exposure thereof according to the exposure value is/are saturated. In the case where a result of the judgment is affirmative, any one of the sub-imaging units having obtained the saturated image or images is designated as new main imaging units. The exposure value is calculated newly, and the exposure is set for the new main imaging units and for new sub-imaging units other than the new main imaging units.
US08643767B2 Imaging device and imaging method
An imaging device includes: an optical system which obtains an optical image of a photographic subject; an image sensor which converts the optical image to an electric signal; a digital signal processor which produces image data based on the electric signal; a display section which displays a photographic subject image expressed by the image data; and an operating section which performs a necessary setting regarding imaging, the digital signal processor including: an autofocus operation section which performs an autofocus operation based on data of an autofocus area set in the photographic subject image; a main area setting section which sets a main area in the photographic subject image; and a blurring operation section which performs a blurring operation on an area other than the main area in the photographic subject image, wherein the autofocus area is set automatically to overlap with at least a part of the main area.
US08643766B2 Autofocus system equipped with a face recognition and tracking function
An autofocus system which can prevent erroneous tracking of an unintended tracking target, is provided. In a recognition and tracking mode which uses an AF frame to automatically track a face of a specific person for which certification data is previously stored, a face of a specific person designated by an operator is detected by face authentication processing from a captured image obtained from a television camera. Thereafter, the face is detected from the captured image by a pattern matching processing in which an image of the face is used as a reference pattern for object tracking processing, and the AF frame is moved to the detected position. The face recognition processing is executed each time when the object tracking processing is executed a predetermined times, thereby preventing erroneous tracking by the object tracking processing.
US08643765B2 Image pick-up apparatus and image pick-up system with overlapping exposure areas
An output level difference in the case of using a joint line as a boundary, a bright line, a black bar, or the like is suppressed. A solid-state image pick-up apparatus in which, on a substrate having a plurality of photoelectric converting areas (photodiodes), a solid-state image pick-up element provided with at least one pattern layer formed by divisional exposure and a lens for introducing light into the plurality of photoelectric converting areas of the solid-state image pick-up element are formed. By setting a center of an optical axis of the lens to an approximate joint position between the pattern layers where the pattern layers have been joined by the divisional exposure, the output level difference of a pixel output of the solid-state image pick-up element on the right and left sides of the joint position is suppressed.
US08643763B2 Image pickup apparatus arranged to detachably mount a lens unit and lens unit
An image pickup apparatus arranged to detachably mount a lens unit including a focus lens, controls such that if the focus lens is movable by the amount of movement within a predetermined time, a next amount of movement of the focus lens is decided on the basis of a first focus signal extracted from an image signal corresponding to charges accumulated in a focus detection area at a first timing, and if the focus lens is not movable by the amount of movement amount within the predetermined time, a next amount of movement of the focus lens is decided after completion of the movement of the focus lens on the basis of a second focus signal extracted from the image signal corresponding to the charges accumulated in the focus detection area at a second timing at which the focus lens is stopped.
US08643759B2 Image pickup apparatus and control method therefor
The image pickup apparatus includes a finder optical system, a measuring part performing measurement relating to an object field image, a liquid crystal display element displaying in-finder information to be observed as an image superimposed on the object field image, and a temperature detector detecting temperature. A controller starts non-display control for causing the display element to change from a display state to a non-display state at a non-display control timing before start of the measurement, and starts display control for causing the display element to change from the non-display state to the display state at a display control timing before end of the measurement. The controller makes at least one of the non-display timing and the display timing earlier when a detected temperature acquired from the temperature detector is lower than a predetermined temperature as compared with when the detected temperature is higher than the predetermined temperature.
US08643758B2 Method for processing an image captured by an image sensor having a charge multiplication output channel and a charge sensing output channel
An image sensor includes a horizontal shift register electrically connected to a pixel array for receiving charge packets from the pixel array. A non-destructive sense node is connected to an output of the horizontal shift register. A charge directing switch is electrically connected to the non-destructive sense node. The charge directing switch includes two outputs. A charge multiplying horizontal shift register is electrically connected to one output of the charge directing switch. A discharging element is connected to the other output of the charge directing switch.
US08643755B2 Solid-state imaging device and camera system
A solid-state imaging device includes: a pixel circuit including a photoelectric conversion device and an amp device that outputs electric charges, which are photoelectrically converted by the photoelectric conversion device, through electric potential modulation of an output signal line; and a reading section including an AD (analog digital) conversion circuit that compares an output level of the signal line with a reference signal which changes with a regular slope and digitalizes an output signal on the basis of a timing at which a previously-defined relationship is satisfied between the output signal and the reference signal.
US08643746B2 Video summary including a particular person
A digital video camera system that provides a video summary using a method that includes: designating a reference image containing a particular person; capturing a video sequence of the scene using the image sensor, the video sequence including a time sequence of image frames; processing the captured video sequence using a video processing path to form a digital video file; during the capturing of the video sequence, analyzing the captured image frames using a person recognition algorithm to identify a subset of the image frames that contain the particular person; forming the video summary including fewer than all of the image frames in the captured video sequence, wherein the video summary includes at least part of the identified subset of image frames containing the particular person; storing the digital video file in the storage memory; and storing a representation of the video summary in the storage memory.
US08643741B2 Orientation detection using image processing
Devices, methods, and computer readable media for performing image orientation detection using image processing techniques are described. In one implementation, an image processing method is disclosed that obtains image data from a first image captured by an image sensor (e.g., from any image capture electronic device). Positional sensor data captured by the device and corresponding to the image data may also be acquired (e.g., through an accelerometer). If the orientation of the device is not reliably discernible from the positional sensor data, the method may attempt to use rotationally invariant character detection metrics to determine the most likely orientation of the image, e.g., by using a decision forest algorithm. Face detection information may be used in conjunction with, or as a substitute for, the character detection data based on one or more priority parameters. Image orientation information may then be included within the image's metadata.
US08643740B2 Image processing device and image processing method
An image processing device including a subject frame setting section which, by operating a subject detector which detects a subject captured in an image, sets a subject frame which surrounds a predetermined range of the subject detected from the image; an acceptance frame setting section which sets an acceptance frame with a range wider than the subject frame according to the context of the image; a position detecting section which detects a specified position on an image which is specified by a user; and a recognizing section which recognizes a subject which is a tracking target based on the acceptance frame set by the acceptance frame setting section and the specified position detected by the position detecting section.
US08643736B2 Method and apparatus for participating in a virtual community for viewing a remote event over a wireless network
An approach is provided for remotely participating over a wireless network in an event. Certification information corresponding to a ticket purchased for an event is received at a proxy server. The ticket permits control, via a mobile device over a wireless network, of a remote camera to view an event from a plurality of viewing perspectives. The proxy server maintains a plurality of communication sessions with the mobile devices over the wireless network, wherein the communication sessions correspond to the event and provide participation in a virtual community to experience the event.
US08643735B2 Transmission apparatus, method, and program
A transmission apparatus includes: selection means for selecting transmission data to be transmitted to a destination apparatus; setting means for setting a transmission target period during which the selected transmission data is transmitted; control means for resizing the transmission data in such a way that the size thereof becomes smaller than or equal to a total transfer data size of the transmission data, the total transfer data size determined based on the transmission target period; display control means for controlling display of transmission information on the transmission data resized by the control means on a screen; and transmission means for transmitting the transmission data resized by the control means to the destination apparatus.
US08643733B2 Imaging apparatus and method for controlling same
A direction instructing operation unit instructs a control unit to change a direction of a change in the photographic screen range. First motor drives a compensation optical system and second motor drives a compensation optical system in accordance with the control command given by the control unit. When the direction along which framing adjustment has been instructed by the direction instructing operation unit matches neither the drive direction of the first motor nor the drive direction of the second motor for driving the compensation optical system, the control unit matches a drive start time and a drive end time of both the first motor and the second motor, and then controls the ratio of the speed of the second drive unit to the speed of the first drive unit at a constant level to thereby control the moving direction of the photographic screen range.
US08643731B2 Image capturing device, control method thereof, and electronic device having the image capturing device
The present invention discloses an electronic device, an image capturing device and a control method thereof. The image capturing device comprises a vibration sensing unit, a storage unit and a processing unit. The vibration sensing unit detects the vibration of the image capturing device to generate the vibration information correspondingly. The storage unit stores a plurality personal setting files. The processing unit is electronically connected to the vibration sensing unit and the storage unit. Also, the processing unit, based on the vibration information, generates an analysis result automatically or upon receipt of the trigger signal, and stores the analysis result in one of the plurality of personal setting files.
US08643728B2 Digital photographing device, method of controlling the digital photographing device, and computer-readable storage medium for determining photographing settings based on image object motion
Provided is a method of controlling a digital photographing device, the method including: removing high-frequency components from a first input image and a second input image; calculating a differential image between the first input image and the second input image from which the high-frequency components are removed; calculating the frequency of each of the pixel values of the differential image; determining at lease one pixel value of the differential image having a frequency greater than a frequency threshold as a target motion range among the pixel values of the differential image greater than a motion threshold; and determining photographing settings corresponding to the target motion range.
US08643723B2 Lane-marker recognition system with improved recognition-performance
In a system installed in a vehicle, a pickup unit repeatedly picks up a frame image of a target region including a road ahead of the vehicle, and an extracting unit extracts an edge of a lane marker formed on the road from each of the frame images. A creating unit creates a history of the edges of the lane marker for the respective frame images. A detecting unit detects pitch of the vehicle. The creating unit omits, as a target edge, an edge from the history of the edges for the respective frame images. The target edge to be omitted is extracted from a frame image that is picked up by the pickup unit with the pitch being detected by the detecting unit. A recognizing unit recognizes a region of the lane marker based on the history of the edges of the lane marker.
US08643722B2 Rear-view display system for a bicycle
A display system for a bicycle is disclosed that comprises a camera selectively attachable to the bicycle and a display unit fixable to the handlebars of the bicycle. The camera includes a power source and a signaling means adapted for sending visual scene information from the camera, either wirelessly or through a plurality of conductive cables. The display unit includes a display means, a power source, and a signal receiving means. The signal receiving means is adapted for receiving the visual scene information of the signaling means so that the display unit may display the visual scene information on the display means.
US08643720B2 Computer system for continuous oblique panning
A computer system for continuously panning oblique images. More particularly, the computer system uses a methodology whereby separate oblique images are presented in a manner that allows a user to maintain an understanding of the relationship of specific features between different oblique images when panning.
US08643714B2 Test device and method for testing display parameters
A test device is for testing display parameters of an electronic product with a page browsing function. The electronic product stores display times of a number of standard frames which selected from a standard video file. The standard video file includes frames record the play process of a testing file being played by a standard electronic product. The test device controls a video capturing unit to capture an original video file which includes frames to records the playing process of the electronic product. The electronic product searches matching frames of the number of standard frames in the original video file. Thus the parameters of the electronic product can be determined by display times of the matching frames in the video file.
US08643710B2 Image pickup apparatus
An image pickup apparatus includes first and second irradiation units that emit first light and second light, respectively, an image pickup unit that outputs, as pixel information, an electrical signal after photoelectric conversion from a pixel arbitrarily designated as a read target among pixels, a setting unit that arbitrarily sets a pixel as the read target and a read order in the image pickup unit, a control unit that controls irradiation processes in the first and second irradiation units and changes the pixel as the read target and the read order according to a type of an irradiation unit that emits light, a reading unit that reads the pixel information by causing the pixel information to be output from the pixel set as the read target, in accordance with the read order, and an image processing unit that generates an image from the pixel information read by the reading unit.
US08643709B2 Endoscope
An endoscope includes an image pick-up unit extending in the axial direction within a distal end forming portion, and a channel tube extending in the axial direction within the distal end forming portion and including a parallel portion arranged parallel with the image pick-up unit, and the outer peripheral surface of the parallel portion includes a facing side diameter reducing portion arranged on a side facing the image pick-up unit and, with respect to a reference circumferential surface including a common central axis to the inner peripheral surface of the parallel portion, closer to a central axis side than the reference circumferential surface in a cross section orthogonal to the axial direction, and a diameter keeping portion arranged on a side other than the side facing the image pick-up unit and whose at least a part overlaps the reference circumferential surface.
US08643708B1 Multi-function image and video capture device for use in an endoscopic camera system
An image capture unit for use in a medical imaging system can be coupled to an endoscopic camera, an external monitor, and a network. The image capture unit includes a touch-screen display to generate a graphical user interface and to receive associated user inputs. The image capture unit receives live video generated by the endoscopic camera, displays the video on the external monitor and/or the display, and stores the live video. The image capture unit can also store the live video in a remote computer system via the network. The image capture unit further can capture and store still images based on the live video and can store the still images in the remote computer system. “One-touch” network login and storage allows these operations to be performed in response to a single touch by the user.
US08643707B2 Image signal processing apparatus, image signal processing method, recording medium, and integrated circuit
An image signal processing apparatus performs gradation control on respective pixels. Specifically, the image signal processing apparatus includes an image signal processing unit which controls light emission and non-light emission of respective subfields so as to provide a field having a level of brightness. Here, the field is a unit display period of the pixels and divided into the subfields which have different light emission periods and are arranged in a predetermined sequence. In the predetermined sequence, the subfields are arranged in a manner such that a subfield having the shortest light emission period among the subfields is in the first place, one of a subfield having the longest light emission period and a subfield having the second longest light emission period among the subfields is in the second place, and the other one is in the third place.
US08643703B1 Viewer tracking image display
Image information displayed on an electronic device can be adjusted based at least in part upon a relative position of a viewer with respect to a device. In some embodiments, image stabilization can be provided such that an image remains substantially consistent from the point of view of the viewer, not the display element of the device. The image can be stretched, rotated, compressed, or otherwise manipulated based at least in part upon the relative viewing position. Similarly, the viewer can move relative to the device to obtain different views, but views that are consistent with the viewer looking at an object, for example, through a piece of glass. The device can overlay information on the image that will adjust with the adjusted image. Three-dimensional modeling and display can be used to offset parallax and focus point effects.
US08643699B2 Method for processing video input by detecting if picture of one view is correctly paired with another picture of another view for specific presentation time and related processing apparatus thereof
A method of processing a video input which transmits pictures of a first view and pictures of a second view includes: checking the video input to detect if a first picture of one of the first and second views is correctly paired with a second picture of the other of the first and second views for a specific presentation time, and accordingly generating a detecting result; and referring to the detecting result for selectively performing a predetermined processing operation upon the video input.
US08643698B2 Method and system for transmitting a 1080P60 video in 1080i format to a legacy 1080i capable video receiver without resolution loss
A single progressive 1080P60 side-by-side 3D video or a single progressive 1080P60 2D video is captured for transmission to interlaced receivers such as a legacy 1080i capable video receiver. A video transmitter splits the captured 1080P60 video into a plurality of even-indexed line pictures and odd-indexed line pictures. Lines of the plurality of even-indexed line pictures and odd-indexed line pictures are reassembled to generate two interlaced video sequences such as two 1080i video sequences. The video transmitter compresses the generated two 1080i video sequences, respectively, utilizing different compression algorithms, for example. Pictures that originate from the same one of the plurality of pictures in the captured 1080P60 video may be synchronized for a progressive display at the legacy 1080i capable video receiver. The legacy 1080i capable video receiver may decode the synchronized pictures from the video transmitter so as to restore the captured 1080P60 video for display in progressive format.
US08643697B2 Video processing apparatus and video processing method
Video processing apparatus and method including a process for switching a 2D program and a 3D video program. The method has the steps of, for example: inputting a 3D video signal and a 2D video signal; discriminating whether the video signal which is inputted is the 3D video signal or the 2D video signal; and converting a clock frequency of the video signal which is determined as a 2D video signal.
US08643691B2 Gaze accurate video conferencing
A gaze accurate video conferencing system includes a screen that alternates between a light-scattering state and a substantially transparent state. A camera is positioned behind the screen and is configured to capture images of a user positioned in front of the screen when the screen is in its substantially transparent state. When the screen is in its substantially light-scattering state, a projector projects a display image on the screen.
US08643690B2 Developer cartridge for image-forming device
A developer cartridge provided in an image-forming device has a developer side casing that includes a toner-accommodating chamber and a developing chamber; and a plate wall disposed in the developing chamber for partitioning a thickness-regulating blade from the toner-accommodating chamber. When a thickness-regulating blade scrapes excess charged toner off the developing roller, the plate wall prevents this charged toner from returning to the toner-accommodating chamber. A flexible wiper for cleaning toner detection windows is attached to an agitator for stirring toner in the toner-accommodating chamber via a fixing member. The fixing member includes a support plate and a gripping plate disposed opposite each other with a slit formed therebetween. The wiper is inserted into the slit and is fixed to the fixing member when a boss protruding from a restricting plate becomes inserted into a through-hole formed in the wiper.
US08643689B2 Image processing method and image processing apparatus
An image processing method including: measuring a distance between a medium where an image is to be recorded and an image processing apparatus which stores a relation between irradiation energy and distance previously measured; calculating an irradiation energy from the distance measured in the measuring based on the relation stored in the image processing apparatus; and irradiating and heating the medium with laser beams having the irradiation energy obtained in the calculating to record an image in the medium.
US08643688B1 Printing device
A printing device includes a casing, an upper cover, plural light sources, and a sensing module. The plural light sources are used for emitting plural light beams. The upper cover is connected with the casing, and rotatable relative the casing. The plural light sources are disposed on the upper cover, and arranged in a row. The sensing module is disposed under the plural light sources, and movable relative to the casing along a specified direction. After the light beams transmitted through a gap of the transfer paper are received by the sensing module, the gap is detected by the sensing module. The plural light beams emitted by the plural light sources can be projected onto any movable position of the sensing module. In other words, it is not necessary to align the sensing module and the plural light beams.
US08643679B2 Storage medium storing image conversion program and image conversion apparatus
An image conversion apparatus converts an image, and displays a converted image on a display device. The image conversion apparatus displays an original image before conversion on the display device. Next, the image conversion apparatus sets a dividing line 52 for dividing an image displayed on the display device into a first area 53 and a second area 54 by an instruction from a user. Next, the image conversion apparatus converts the original image by changing at least a part of an image of the first area 53 to an image generated from an image of the second area 52, and displays an image after the conversion on the display device.
US08643676B2 Mixed reality space image providing apparatus
A mixed reality space image providing apparatus configured to provide a user with a mixed reality space image in which a virtual object image is superimposed on a real space image is provided includes a selection unit configured to select simulation processing from among a plurality of types of simulation processing based on an instruction from the user, a simulation processing unit configured to perform the simulation processing selected by the selection unit with respect to the virtual object image, and a providing unit configured to generate a mixed reality space image by superimposing the simulation-processed virtual object image on the real space image and to provide the generated mixed reality space image to the user.
US08643674B2 Rendering changed portions of composited images
Rendering graphics on a display of a device. In a portable or wireless device, a list of instructions needed to refresh or generate a frame is first created. The created instructions are then parsed or optimized to remove instructions that result in unnecessary processing instructions. The optimized list is then executed. During generation of a given frame, a view hierarchy is traversed to identify damaged portions of a display. The damaged portions are not copied to the frame. Also, information that has not changed is likewise not usually copied. Damage from the previous frame less damage from the current frame is copied to the appropriate buffer. The instructions are optimized to render only the portion of the frame that is necessary. Portions of the display that are not visible are not traversed in the view hierarchy and are not considered until visible on the display.
US08643669B1 Measurement and testing system
A measurement and testing system includes a measurement assembly having at least one measurement device, at least one visual display device, and a data acquisition and processing device operatively coupled to the at least one measurement device of the measurement assembly and the visual display device. In one embodiment, the data acquisition and processing device is further configured to generate a timeline bar with date icons on the output screen of the visual display device. In other embodiments, the data acquisition and processing device is further configured to automatically displace a side bar menu on the output screen when a user switches from a current mode to another mode, read external files containing one or more testing routines written off-site, and/or automatically alert a system user when one or more signals from a measurement device are no longer detected and/or are corrupted.
US08643662B2 Video entertainment picture quality adjustment
A system and method for dynamically changing the display parameters of a display device. The system includes a server that obtains information about display content, environmental factors and user preferences affecting the display device. This information is used to generate initial display parameters which can be downloaded to the display device. The display device can use the initial display parameters to select final display parameters based upon sensed real-time information about the display device, the user preferences and environmental factors affecting the display device.
US08643653B2 Web-based animation
Approaches providing web-based animations using tools and techniques that take into account the limited capabilities and resources available in the web environment are disclosed. In some embodiments, such web-based animations are implemented in JavaScript.
US08643649B2 Image processing apparatus, image processing method, and computer-readable medium
An image processing apparatus comprises an anchor point information extraction unit configured to decide coordinates of anchor points and attributes of the anchor points based on a plurality of predetermined extraction rules and a sequence of coordinate points that expresses an outline of image data; a tangential direction decision unit configured to decide tangential directions at an anchor point of interest based on the attribute of the anchor point of interest and coordinate points which are located within a predetermined range from the anchor point of interest; a control point coordinate calculation unit configured to calculate control point coordinates based on the tangential directions and the coordinates of the anchor point of interest; and a data output unit configured to output information including the coordinates of the anchor points and the control point coordinates.
US08643645B2 Method and apparatus for generating elemental image in integral imaging
A method and apparatus for generating an elemental image by an integral image technique are provided. The method includes normalizing coordinates of dots in a frustum formed in perspective projection by mapping the dots in the frustum into a cube; reversing a grade of depth of the cube viewed from a particular viewpoint; and generating a two-dimensional (2D) elemental image necessary for three-dimensional (3D) display from dots in the cube whose grade of depth is reversed.
US08643644B2 Multi-stage tessellation for graphics rendering
This disclosure describes a multi-stage tessellation technique for tessellating a curve during graphics rendering. In particular, a first tessellation stage tessellates the curve into a first set of line segments that each represents a portion of the curve. A second tessellation stage further tessellates the portion of the curve represented by each of the line segments of the first set into additional line segments that more finely represent the shape of the curve. In this manner, each portion of the curve that was represented by only one line segment after the first tessellation stage is represented by more than one line segment after the second tessellation stage. In some instances, more than two tessellation stages may be performed to tessellate the curve.
US08643642B2 System and method of time-resolved, three-dimensional angiography
A method for generating time-resolved 3D medical images of a subject by imparting temporal information from a time-series of 2D medical images into 3D images of the subject. Generally speaking, this is achieved by acquired image data using a medical imaging system, generating a time-series of 2D images of a ROI from at least a portion of the acquired image data, reconstructing a 3D image substantially without temporal resolution from the acquired image data, and selectively combining the time series of 2D images with the 3D image. Selective combination typically involves registering frames of the time-series of 2D images with the 3D image, projecting pixel values from the 2D image frames “into” the 3D image, and weighting the 3D image with the projected pixel values for each frame of the time-series of 2D images. This method is particularly useful for generating 4D-DSA images, that is, time-resolved 3D-DSA images, from a time-series of 2D-DSA images acquired via single plane or biplane x-ray acquisitions with 3D images acquired via a rotational DSA acquisition. 4D-DSA images can also be generated by selectively combining a time-series of 2D-DSA images generated from individual projections from a rotational x-ray acquisition with a 3D image reconstructed from substantially all of the projection views acquired during the rotational x-ray acquisition. These DSA images may have a spatial resolution on the order of 5123 pixels and a temporal resolution of about 30 frames per second, which represents an increase over traditional 3D-DSA frame rates by a factor between 150 and 600.
US08643640B2 Object processing apparatus and storage medium having object processing program stored thereon
An operation region is defined as being divided into at least two types of areas of a first area and a second area bordering on the first area. An indicated coordinate set is detected, and it is determined whether the indicated coordinate set is encompassed in the first area or the second area. When the indicated coordinate set is encompassed in the first area, the indicated coordinate set is set as the reference coordinate set. When the indicated coordinate set is encompassed in the second area, a predetermined coordinate set closer to the first area than the indicated coordinate set is set as the reference coordinate set. Based on the positional relationship between the reference coordinate set and the indicated coordinate set, an operation on an object in a virtual space is controlled.
US08643637B2 DC-DC converter and mobile communication terminal using the same
A DC-DC converter for converting an input power to generate a first power and for outputting the first power to a first output terminal, the DC-DC converter including: a resistor unit for electrically connecting a set resistor to the first output terminal when the voltage of input power is in a specific range, and a mobile communication terminal using the same. Here, the DC-DC converter is capable of reducing or removing a pulse skip mode by increasing a load of an output end if it is determined that the voltage of the input power is in the specific range, by sensing the input power.
US08643636B2 Active matrix display device
A driving circuit for driving a display panel includes a dynamic ratioless shift register which is operated in a stable manner and can expand the degree of freedom of design. In the dynamic ratioless shift register which is provided with thin film transistors having semiconductor layers made of p-Si on a substrate surface, a node which becomes the floating state is connected to a fixed potential through a capacitance element.
US08643631B2 Organic light emitting display and method of driving the same
There is provided a method of driving an organic light emitting display so that the organic light emitting display may be driven at a low driving frequency. The organic light emitting display includes pixels coupled to odd and even scan lines. The organic light emitting display is driven during frames. Each of the frames includes first, second, third, and fourth frame periods. The method includes: sequentially supplying scan signals to the odd scan lines in the first and third frame periods; and sequentially supplying scan signals to the even scan lines in the second and fourth frame periods. The pixels are in a non-emission state in the first and third frame periods.
US08643629B2 Color filter with touch screen function and liquid crystal display device
A color filter includes a transparent substrate, a conductive layer, a color filtering layer, and a protection layer. The conductive layer is formed on the transparent substrate for sensing touch signals, and the periphery of the conductive layer is provided with peripheral electrodes. The color filtering layer is formed on the conductive layer and includes multiple red light filtering sections, multiple green light filtering sections, and multiple blue light filtering sections, and a pixel of a liquid crystal display device includes at least one red light filtering section, at least one green light filtering section and at least one blue light filtering section. The protection layer is formed on the color filtering layer.
US08643627B2 Display device with touch panel
A touch panel includes a substrate having a plurality of first electrodes extending in a first direction on the substrate, and a plurality of second electrodes three-dimensionally intersecting the plurality of first electrodes. Each of the plurality of first electrodes includes a first portion formed on a layer different from a layer of the plurality of second electrodes to three-dimensionally intersect one of the plurality of second electrodes, and a second portion formed on the same layer as the layer of the plurality of second electrodes to be separated from the plurality of second electrodes. An insulating film made of negative resist is formed between the first portion and the second portion, and the first portion is electrically connected to the second portion via a contact portion formed through the insulating film.
US08643624B2 Capacitive sensing using a segmented common voltage electrode of a display
An integrated display and touch sensor device comprises a plurality of display pixels and a processing system communicatively coupled with a plurality of common voltage electrode segments and with a plurality of receiver sensor electrodes. The plurality of display pixels is configured for displaying information on the display. The processing system is configured for driving a voltage transition onto a common voltage electrode segment of the plurality of common voltage electrode segments. The voltage transition provides a common voltage for refreshing at least one display pixel of the plurality of display pixels, and generates a first electrical signal on at least one receiver sensor electrode of the plurality of receiver sensor electrodes. The processing system is also configured for acquiring a first measurement of a capacitive coupling between the driven common voltage electrode segment and the at least one receiver sensor electrode by measuring the first electrical signal.
US08643622B2 Advanced touch control of graphics design application via finger angle using a high dimensional touchpad (HDTP) touch user interface
A method for controlling a graphics design application executing on a computing device is disclosed. A user interface touch sensor is configured to be responsive to at least one angle of contact with at least one finger. A change in an angle of the finger with respect to the surface of the touch sensor is measured by the touch sensor to produce measured data. Real-time calculations on the measured data are performed to produce a measured-angle value. The measured-angle value is used to control the value of at least one user interface parameter of the graphics design application. At least one aspect of the graphics design application changes in response to the angle of the position of the finger with respect to the surface of the touch sensor.
US08643621B2 Touch-sensitive user interface
A touch-sensitive user interface includes a sensor element providing a plurality of sensing areas, a measurement circuit coupled to the sensor element and operable to iteratively acquire measurement signal values indicative of the proximity of an object to the respective sensing areas, and a processor operable to receive the measurement signal values from the measurement circuit and to classify a sensing area as an activated sensing area for a current iteration according to predefined selection criteria, wherein the predefined selection criteria are such that activation of at least a first sensing area in a current iteration is suppressed if at least a second sensing area has previously been classified as an activated sensing area within a predefined period before the current iteration. Thus a sensing area may be prevented from being activated for a predefined period of time after another sensing area has been activated.
US08643617B2 Method for allocating/arranging keys on touch-screen, and mobile terminal for use of the same
A method for allocating/arranging keys on a touch-screen and a mobile terminal for the same are disclosed. The method for allocating at least one key on a touch-screen includes establishing a plurality of sensing zones on the touch-screen, wherein sizes of the plurality of sensing zones change in sequential order according to a key-arrangement direction, and allocating the at least one key to at least one of the plurality of sensing zones.
US08643615B2 Techniques for recognizing multi-shape, multi-touch gestures including finger and non-finger touches input to a touch panel interface
Briefly, a method and apparatus for recognizing multi-shape, multi-touch gestures including finger and non-finger touches input to a touch panel interface is disclosed. The method may include receiving user input with a touch panel interface, recognizing a multi-shape, multi-touch gesture including finger and non-finger touches in the user input, and performing an action associated with the multi-touch gesture including finger and non-finger touches.
US08643610B2 Display device
An embodiment of this document provides a display device comprising a panel, a touch screen panel, and a sense unit. The panel comprises subpixels placed in a display region defined in one face of a first substrate and a second substrate bonded with the first substrate. The touch screen panel is placed on the panel and configured to comprise electrode units. The sense unit is coupled to the electrode units and configured to sense a position through the electrode units. At least some of the electrode units are formed of a multi-layer with heterogeneous metals.
US08643608B2 Optical touch panel having SMT components as optical gates
An optical touch panel and corresponding method are disclosed. The optical touch panel may comprise a rectangular position-detecting surface; a frame-shaped circuit board surrounding the rectangular position-detecting surface; a plurality of light-emitting elements configured for emitting a plurality of light beams, wherein the light-emitting elements are arranged along a first side of the rectangular position-detecting surface and disposed on the frame-shaped circuit board; a plurality of light-receiving elements configured for receiving light beams emitted by the plurality of light-emitting elements; a plurality of SMT components configured as optical gates for isolating ambient light to prevent erroneous light detection; and a control circuit. The plurality of SMT components and the plurality of light-receiving elements may be alternately arranged along a second side of the rectangular position-detecting surface opposite to the first side and disposed on the frame-shaped circuit board. The plurality of light-receiving elements may be arranged behind the plurality of SMT components.
US08643606B2 Method for scroll bar control on a touchpad and touchpad with scroll bar control function
A touchpad includes a controller connected to a touch sensor. The controller detects the fingers touching on the touch sensor to determine to start up and terminate a scroll bar control function. In the scroll bar control function, the movement of the finger or fingers touching on the touch sensor is detected for scrolling on a window, and the vertical distance and the horizontal distance of the movement are evaluated for determining the scrolling amount of a vertical scroll bar or a horizontal scroll bar of the window.
US08643601B2 Retractable cable mouse
A retractable cable mouse includes a casing, a cable reel member, a connector, a sliding member, and an elastic element. The connector is coupled with the cable reel member and contacted with the sliding member. The elastic element is contacted with the sliding member and coupled with the casing. When the sliding member is moved to a first position, the connector is stored within the casing, and the sliding member is sustained against elastic element, so that the elastic element is compressed. When the sliding member is pulled out of the casing, the compressed elastic element provides an elastic force. In response to the elastic force, the sliding member is moved to a second position. Meanwhile, a perforation of the casing is blocked by sliding member, so that the external dust or foreign material fails to be introduced into the internal portion of the casing.
US08643599B2 Washable mouse
Embodiments of a washable computer mouse are disclosed. In an embodiment, a water impermeable layer is sealably mounted to a housing so as to provide a water impermeable region and a water permeable region. Mouse circuitry, which includes a sensor and a light source and a responsive element, is positioned in the water impermeable region. A biased button is positioned in the water permeable region and is configured to engage the responsive element. In an embodiment, the mouse circuitry may be configured for wireless transmission of signals and may include a removable door that, in operation, sealably covers a replaceable power source. In an alternative embodiment, the housing may include an exposed connector and a plug that is configured to seal the connector may be attached to the housing by a tether.
US08643595B2 Electrophoretic display driving approaches
A system and method are disclosed for reducing reverse bias in an electrophoretic display. The system and method include the application of varying levels of voltages across an array of electrophoretic display cells of the electrophoretic display to move the cells towards a stable state in a driving cycle. In addition, the system and method disconnect the voltages from the electrophoretic display cells at a time duration prior to reaching step transitions of the voltages during the driving cycle. Pre-driving approaches apply a first pre-driving voltage at a first polarity to the display cells before driving the display cells with a second driving voltage at a second, opposite polarity. Varying the time duration and amplitude of the pre-driving signals produces further beneficial reduction in reverse bias.
US08643586B2 Liquid crystal display device
A first transistor, a second transistor, a third transistor, a fourth transistor are provided. In the first transistor, a first terminal is electrically connected to a first wiring; a second terminal is electrically connected to a gate terminal of the second transistor; a gate terminal is electrically connected to a fifth wiring. In the second transistor, a first terminal is electrically connected to a third wiring; a second terminal is electrically connected to a sixth wiring. In the third transistor, a first terminal is electrically connected to a second wiring; a second terminal is electrically connected to the gate terminal of the second transistor; a gate terminal is electrically connected to a fourth wiring. In the fourth transistor, a first terminal is electrically connected to the second wiring; a second terminal is electrically connected to the sixth wiring; a gate terminal is connected to the fourth wiring.
US08643581B2 Image processing device, display system, electronic apparatus, and image processing method
An image processing device performing a frame rate control a display timing control signal corresponding to an image data, includes: a brightness distribution generating unit that generates a brightness distribution on the basis of the image data; an image type determining unit that determines a type of an image on the basis of the brightness distribution; and a frame rate control unit that performs frame rate control corresponding to the determined image type.
US08643578B2 Method of driving a display panel and display apparatus having the display panel
A method of driving a display apparatus having first and second data lines includes applying a first data signal (to which a first gamma curve has been applied) and a first inverted data signal (having a phase opposite to a phase of the first data signal) to the first data line and the second data line, respectively, during a first frame interval. The method further includes applying a second data signal (to which a second gamma curve has been applied) and a second inverted data signal (having a phase opposite to a phase of the second data signal) to the first data line and the second data line, respectively, during a second frame interval temporally subsequent to the first frame interval.
US08643575B2 Organic light emitting display comprising a sink current generator that generates an initialization current corresponding to bit values of initialization data
A pixel circuit for an organic light emitting display is disclosed. The pixel uses both current and voltage driving methods. A voltage based on an input current and on an input voltage is stored, and current for an organic light emitting diode is generated based on the stored current.
US08643568B2 Wearable electronic display
A wearable display apparatus includes a display for providing viewable images. A display support assembly can support the display. The display support assembly can be self centering and telescoping for adjusting the position of the display for viewing by a user. The display support assembly can include right side and left side arm members spaced apart from each other, and a flexibly resilient support member to which the display is mounted between the arm members. The support member can be telescopically mounted to the arm members. The support member can have flexibly resilient right and left side portions secured to the display. Each side portion can be slidably mounted to a respective arm member for telescoping. The support member can have a material cross section that provides stiffness for supporting the display when in a generally horizontal orientation for viewing while also providing resilient flexibility between the arm members to self center the display between the arm members with changes in distances between the arm members.
US08643567B2 Multi-layer display
A display system suitable for controlling operations of a multifunction device, such as a printer, and a method which makes use of the display system are disclosed. The display system includes a front panel configured for selectively displaying a local user interface and being touch sensitive for controlling an associated device based on touch selectable graphic objects displayed on the local user interface. A rear panel is configured for selectively displaying the local user interface, which is viewable through the front panel. A switching component is configured for switching the display of the local user interface between the front panel and the rear panel.
US08643561B2 High-strength microwave antenna assemblies
Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
US08643560B2 Rotatable polarizer/filter device and feed network using the same
A feed network may include a cylindrical common waveguide terminating in a common port and an orthomode transducer having a first port for coupling a first linearly polarized mode to the cylindrical common waveguide and a second port for coupling a second linearly polarized mode to the cylindrical common waveguide, the second linearly polarized mode orthogonal to the first linearly polarized mode. A filter-polarizer element may be disposed within the cylindrical common waveguide. The filter-polarizer element may be rotatable about an axis of the cylindrical common waveguide. The filter-polarizer element may be configured to cause a predetermined relative phase shift between a first signal and a second signal propagating in the cylindrical common waveguide. The filter-polarizer element may be further configured to suppress propagation of at least one undesired mode in the cylindrical common waveguide.
US08643559B2 Triple stagger offsetable azimuth beam width controlled antenna for wireless network
A variably controlled stagger antenna array architecture is disclosed. The array employs a plurality of driven radiating elements that are spatially arranged having each radiating element or element groups orthogonally movable relative to a main vertical axis. This provides a controlled variation of the antenna array's azimuth radiation pattern without excessive side lobe radiation over full range of settings.
US08643558B2 Multi-frequency antenna
A multi-frequency antenna (1) includes a grounding portion (1) extending along a transversal direction; a radiating arm (11) extending along a transversal direction and disposed above the grounding portion; a connecting arm (12) connected to the grounding portion and the radiating arm; a capacitor (13) connected to the radiating portion and the connecting arm; and a cable (15) having an inner conductor connected to the connecting arm and an outer conductor connected to the grounding portion.
US08643555B2 Wireless communication device
The invention includes a first circuit board on which a plurality of first terminal sections is arranged, a high-frequency circuit arranged on the first circuit board and connected to at least one of the plurality of first terminal sections, a second circuit board on which is arranged a plurality of second terminal sections facing the plurality of first terminal sections, a first internal circuit arranged on the second circuit board and connected to at least one of the plurality of second terminal sections, and electrical continuity unit providing electrical continuity among the plurality of first terminal sections and the plurality of second terminal sections. At least two contiguous terminals of the plurality of first terminal sections and/or the plurality of second terminal sections including a terminal connected to the high-frequency circuit are connected via a capacitor and function as an antenna for wireless communication.
US08643553B2 Radiation power measuring method and radiation power measuring apparatus
Provided is a technique capable of accurately calculating the radiation power of an object to be measured using a spheroidal coupler even when there is a non-negligible loss in a measurement system.A phase rotating unit including a variable phase shifter, a two-branch circuit, and a reflective element that is connected to one of the branched outputs of the two-branch circuit is inserted between a receiving antenna and a power measuring device. The maximum value and the minimum value of power measured by a power measuring device when the variable phase shifter changes a phase are calculated. An output reflection coefficient of a coupler is calculated from the ratio of the maximum value to the minimum value, and an input reflection coefficient of an object to be measured which is approximate to the output reflection coefficient is estimated. In addition, an input reflection coefficient of a reference antenna which is used instead of the object to be measured is estimated in the same way. The total radiated power of the object to be measured is calculated on the basis of the estimated input reflection coefficients and the reception power when the power measuring device directly measures the output of the receiving antenna.
US08643551B2 Active reduction of electric field generated by a transmit antenna via an auxillary antenna structure
A wireless communication device and method includes an auxiliary antenna that can actively cancel at least a portion of a near-field component of an electric field generated by a main transmit antenna. The auxiliary antenna can help comply with specific absorption rate requirements and can reduce undesirable signal rectification in hearing aid components.
US08643550B2 Flexible antenna
A flexible antenna comprises a filmed layer, a flexible radiation conductor and a support member. The flexible radiation conductor has a crooked form and a feeder terminal. The filmed layer covers the upper surface of the flexible radiation conductor. The support member has a through-hole. The lower surface of the flexible radiation conductor is stuck to the upper surface of the support member. The feeder terminal is inserted through the through-hole to protrude from the lower surface of the support member. The flexible radiation conductor and the crooked feeder terminal thereof replace the conventional radiation conductor circuit layer and metallic contact terminal to overcome the problem that the conventional contact terminal damages the radiation conductor layer and protrudes the filmed layer. Further, the present invention integrates FPC and LDS technologies to enable the flexible radiation conductor to be arbitrarily stuck to complicated planes or complicated curved surfaces.
US08643545B2 Determining position of a node and representing the position as a position probability space
Methods and apparatus are provided for determining and representing a location or position of a node in a network. When the node receives position measurement information from a reference node, the node generates, based on the position measurement information, a position probability space (PPS) which defines a space that encompasses possible positions where the node is possibly positioned in the network. The PPS includes a centroid (i.e., a set of coordinates), and a set of vectors which originate from the centroid and define the space around the centroid. The magnitude of each vector reflects the accuracy of the position in the direction of the vector.
US08643540B2 Wide area positioning system
Systems and methods are described for determining position of a receiver. The positioning system comprises a transmitter network including transmitters that broadcast positioning signals. The positioning system comprises a remote receiver that acquires and tracks the positioning signals and/or satellite signals. The satellite signals are signals of a satellite-based positioning system. A first mode of the remote receiver uses terminal-based positioning in which the remote receiver computes a position using the positioning signals and/or the satellite signals. The positioning system comprises a server coupled to the remote receiver. A second operating mode of the remote receiver comprises network-based positioning in which the server computes a position of the remote receiver from the positioning signals and/or satellite signals, where the remote receiver receives and transfers to the server the positioning signals and/or satellite signals.
US08643536B2 Radio frequency positioning system for vehicles
A positioning system for radio frequency devices includes a two-way radio antenna, for vehicles, having a transmitting and a receiving element. Reference antennas have retro-directive arrays which can shape the signal beams in elevation; polarize transmission and reception signals according to a circular or a linear polarization, the polarized transmission retro-directively reflecting signals having the same polarization as the incident ones in the case of circular polarization, or retro-directively reflecting signals having orthogonal polarization in the case of linear polarization. An encoder is included for transmitting an identification code of the reference antenna. A controller processes the spatial and temporal data resulting from communication through the radio waves transmitted and received by the vehicle antennas and reflected by the reference antennas. The controller calculates the distance of the vehicle from the reference antennas that have reflected the signal transmitted by the antennas.
US08643534B2 System for sensing aircraft and other objects
A system for sensing aircraft and other objects uses bistatic radar with spread-spectrum signals transmitted from remotely located sources such as aircraft flying at very high altitudes or from a satellite constellation. A bistatic spread spectrum radar system using a satellite constellation can be integrated with a communications system and/or with a system using long baseline radar interferometry to validate the digital terrain elevation database. The reliability and safety of TCAS and ADS-B are improved by using the signals transmitted from a TCAS or ADS-B unit as a radar transmitter with a receiver used to receive reflections. Aircraft and other objects using spread spectrum radar are detected by using two separate receiving systems. Cross-Correlation between the outputs of the two receiving systems reveals whether a noise signal is produced by the receiving systems themselves or is coming from the outside.
US08643533B1 Altitude sensor system
A weather radar system improves electronics for receiving radar returns. The weather radar system determines an altitude above ground level using return data derived from the weather radar returns. The weather radar system can utilize movement data related to movement of the aircraft to calculate the altitude. In addition, the weather radar system can utilize previous calculations of the altitude to determine the current altitude underneath the aircraft. The weather radar system can reduce the need for a radio altimeter.
US08643532B1 Thin film emitter-absorber apparatus and methods
Methods and apparatus for providing a tunable absorption-emission band in a wavelength selective device are disclosed. A device for selectively absorbing incident electromagnetic radiation includes an electrically conductive surface layer including an arrangement of multiple surface elements. The surface layer is disposed at a nonzero height above a continuous electrically conductive layer. An electrically isolating intermediate layer defines a first surface that is in communication with the electrically conductive surface layer. The continuous electrically conductive backing layer is provided in communication with a second surface of the electrically isolating intermediate layer. When combined with an infrared source, the wavelength selective device emits infrared radiation in at least one narrow band determined by a resonance of the device. In some embodiments, the device includes a control feature that allows the resonance to be selectively modified. The device has broad applications including gas detection devices and infrared imaging.
US08643529B2 SAR assisted pipelined ADC and method for operating the same
A method for operating a SAR assisted pipelined ADC includes enabling a SAR ADC in a current stage circuit for converting an input analog voltage into a digital code during a first time interval, resetting an operational amplifier of an MDAC in the current stage circuit during the first time interval, maintaining the SAR ADC of the current stage circuit in an enabled state for outputting during a second time interval, and enabling the MDAC in the current stage circuit during the second time interval. The method also includes enabling the SAR ADC in the current stage circuit for sampling during a third time interval and connecting the output terminal of the MDAC in the current stage circuit to the input terminal of the next stage circuit during the third time interval. The first, second, and third time intervals are continuous and do not overlap each other.
US08643527B2 Switched-capacitor MDAC with common-mode hop regulation
A switched-capacitor digital-to-analog converter (DAC) circuit can include first and second sets of capacitors, an amplifier, a reference signal generator and interconnecting switches. The first and second sets of capacitors can be connected to first and second analog input signals responsive to a first clock signal, and to first and second reference voltages responsive to a second clock signal and digital control signals. The amplifier can be connected to the first and second sets of capacitors in response to the second clock signal. The reference signal generator can provide to the first and second sets of capacitors, responsive to the first clock signal, a common-mode reference signal to set a common-mode voltage at inputs of the amplifier, and can include components to replicate the operation of the first and second sets of capacitors. The switched-capacitor DAC circuit can be used to implement a multiplying DAC in a pipeline analog-to-digital converter.
US08643524B1 Feed-forward analog-to-digital converter (ADC) with a reduced number of amplifiers and feed-forward signal paths
An analog-to-digital converter (ADC) having a reduced number of amplifiers and feed-forward signal paths provides for reduced complexity and power consumption. The analog-to-digital converter includes a delta-sigma modulator having a loop filter with second-order stages implemented with a single amplifier each, provided by a series-connected capacitive feedback network with a switched capacitor shunt. The reduction in the amplifier stages reduces the number of inputs to, and dynamic range required from, the summing node that provides input to the quantizer, as well as reducing the power requirements and complexity of the circuit due to the reduced number of amplifiers.
US08643521B1 Digital-to-analog converter with greater output resistance
A DAC has at least one bit current-steering circuit. In the DAC, the current-steering circuit has a current source circuit, a switch, a feedback circuit, and an amplifier circuit. The current source circuit is disposed for outputting a bias current to the switch and coupled to the amplifier circuit. The switch has a first input/output terminal coupled to output an analog signal, a control terminal coupled to the feedback circuit, and a second input/output terminal for receiving the bias current, so that the first switch determines whether the first and the second input/output terminals are conducted according to a status of the control terminal.
US08643519B1 On-chip calibration method
A system for the calibration of a programmable system-on-a-chip is described. More specifically, embodiments of the present invention relate to a system that calibrates a programmable analog block in a system-on-a-chip without the use of external components.
US08643517B2 Gradient-based approach to sample-time mismatch error calibration in a two-channel time-interleaved analog-to-digital converter
Correcting phase error in a two-channel TIADC system in a manner that is independent of the Nyquist zone(s) occupied by the input signal. In the preferred approach this is done using the gradient of a phase error estimate. The gradient may be determined from a simplified expression of linear regression; the direction of the adaptation is then controlled by the sign of the gradient. The adaptive algorithm converges to the optimal value regardless of the Nyquist zone occupied by the input signal.
US08643514B1 Method for decoding data
Methods for decoding data are disclosed herein. The data is coded such that a transition from a first state to a second state represents a logic one and a transition from the second state to the first state represents a logic zero. An embodiment includes determining a pulse width for a first pulse and measuring the width of a second pulse, wherein the second pulse occurs directly after the first pulse. The method continues with comparing the second pulse width to at least one first predetermined period and assigning a value to the second pulse width when the second pulse width is within at least one of the first predetermined periods. The method also includes assigning a value to the second pulse width based on the value assigned to the first pulse width when the second pulse width is not within at least one of the first predetermined periods.
US08643506B2 Driving assisting device
In a driving assisting device in which a receiver acquires the time-series traffic signal information regarding a lighting state of the traffic signal and a display and a speaker provide the lighting time information regarding a time remaining until a red signal of the traffic signal changes, the display and the speaker provide the lighting time information regarding the time remaining until the red signal of the traffic signal changes only when it is confirmed from the traffic signal information that a signal after change of the red signal permits traveling of the host vehicle. Accordingly, for example, for a light color change or the like in which an arrow lamp other than the traveling direction lights up after a red signal, a red signal waiting time is not displayed. This makes it possible to suppress factors inducing a careless driver to start driving.
US08643503B2 Transportation security system and associated methods
A security system for monitoring a shipping container being transported on a cargo transport vehicle and methods for making and using same. A mounting device removably couples a container security device (CSD) to the cargo container. Monitoring cargo inside the container and detecting vehicle intrusions and container damage, the CSD includes an anti-tamper sensor, a microcontroller, a communication device, and a plurality of accelerometers and strain gages. The microcontroller generates an alarm signal based on output data from the anti-tamper sensor and records container events. The anti-temper sensor undergoes individual and integrated sensor processing procedures; whereas, the integrated sensor processing procedure determines a container alert status. The accelerometers and strain gages define a moment of inertia of the cargo container. Communicating with a telecommunications network, a network operations center of the security system receives data from the CSD for storage and creating an archive of the container events.
US08643494B1 Postural state attitude monitoring, caution, and warning systems and methods
A postural state attitude monitoring, caution, and warning system includes a multiple axis accelerometer carried by a node for generating output signals that are a function of positional orientation of the node along a path of attitude displacement of the node extending from a reference position of the node to a caution position of the node, and from the caution position of the node to a warning position of the node, and a signal device operatively coupled to the multiple axis accelerometer for issuing a caution signal in response to a caution positional state of the node at the caution position of the node and distally therebeyond to inside of the warning position of the node, and for issuing a warning signal different from the caution signal in response to a warning positional state of the node at the warning position of the node and distally therebeyond.
US08643490B2 Multi-mode RFID tag architecture
A multi-mode RFID tag includes a power generating and signal detection module, a baseband processing module, a transmit section, a configurable coupling circuit, and an antenna section. In near field mode, the configurable coupling circuit is operable to couple the transmit section to a coil or inductor in the configurable coupling circuit to transmit an outbound transmit signal using electromagnetic or inductive coupling to an RFID reader. In far field mode, the configurable coupling circuit is operable to couple the transmit section to the antenna section, and the multi-mode RFID tag then utilizes a back-scattering RF technology to transmit the outbound transmit signal to RFID readers.
US08643478B2 Mouth pipe unit for activating a device
A mouth pipe and porous filter unit for operation of a device, e.g. a pneumatically actuated device, comprises a mouth pipe in communication with an air tube for delivering blown air to the device. The mouth pipe comprises a one-piece transparent thermoplastic extrusion member and has an integral projection for grasping the mouth pipe. The porous filter has a pore size ranging from 90 microns to 130 microns for preventing saliva and/or blood of a patient from flowing into the air tube and surrounding environment. The mouth pipe comprises a first diameter section, a transition member, and an enlarged second diameter section which form a continuous airway therein and the porous filter is wedged within the enlarged second diameter section of the mouth pipe. The material of the mouth pipe may be polyvinyl chloride, and the material of the filter may be polystyrene.
US08643476B2 Dynamic labeling of patch panel ports
A patch panel for a communications patching system includes a plurality of connector ports. Each connector port is configured to detect insertion and removal of a patch cord. A controller is electrically coupled to the connector ports and monitors patch cord interconnections. An electronic display is positioned adjacent the connector ports and displays port identification information and real-time patch cord connection information for each respective connector port. The displayed patch cord connection information is dynamically updated by the controller as a patch cord is inserted or removed from a respective connector port.
US08643470B2 Semiconductor integrated circuit, IC card mounted with the semiconductor integrated circuit, and operation method for the same
A semiconductor integrated circuit and an IC card mounted with the same are provided, in which a signal of any one of at least three kinds of reception signals can be received for a short time. An RF signal from an antenna is supplied in parallel to a first and a second demodulator circuit included in a demodulator circuit. The first demodulator circuit demodulates a first reception signal of a first degree of modulation. The second demodulator circuit demodulates a second reception signal having a first communication start signal (SOF), and a third reception signal having a second communication start signal (Preamble). The demodulated output signals of the first and the second demodulator circuit are supplied to a determination circuit. When the demodulation output by the first demodulator circuit is determined, it is determined that the first reception signal is currently received. When the demodulation output of the second reception signal by the second demodulator circuit is determined, it is determined that the second reception signal is currently received. When the demodulation output of the third reception signal by the second demodulator circuit is determined, it is determined that the third reception signal is currently received.
US08643469B2 Access control system, and closing mechanism
In one embodiment of the invention, the access control system comprises a door with an integrated mechatronic closing mechanism which is equipped with a receiver device. The receiver device is designed to receive and evaluate capacitive-resistive signals that are emitted by a transmitter and are transmitted via a user's body. The closing mechanism opens or does open the door in accordance with a result of said evaluation. In said one embodiment of the invention, the closing mechanism is battery-operated and has no permanent electric connection to an object that is not located on or in the door.
US08643468B1 Electric strike with integrated proximity reader
An access control device for a closure such as a frame mounted door having a latch bolt. The device has a electric strike in a housing, the electric strike having a cavity cooperable with the latch bolt. A proximity reader is integrated into the electric strike housing and, when installed in the door frame, is located in a secure position at least partially shielded by the electric strike. The antenna for the proximity reader may be integrated into the electric strike housing or may be remotely installed in the frame or other convenient location proximate the reader.
US08643467B2 System and method for causing garage door opener to open garage door using sensor input
A system and a method for causing a garage door to open using a garage door opener having a wireless receiver is provided. The system comprises an interface coupled to an environment sensor and configured to receive data from the environment sensor. The system can include processing electronics coupled to the interface and configured to receive the data from the interface and to use the received data to determine whether an environmental condition exists. The processing electronics provide a command to cause the garage door opener to open the garage door based on the determination of whether the environmental condition exists.
US08643466B2 Method and system for setting security of a portable terminal
The present invention relates to a method and system for setting security of a portable terminal by utilizing an RFID (Radio Frequency Identification) function of a USIM (Universal Subscriber Identity Module) card used in Third Generation portable terminals. For this, USIM card information is registered in an access control server, and the USIM card information of the portable terminal is sensed through a RFID reader installed at a point of entry of a secure area, and the security setting of the portable terminal is automatically performed according to the registration of USIM card information in the access control server.
US08643463B2 Porous film sensor
A method of forming a film is described. The method begins by forming a mixture including a polymer and a plurality of unordered nanomaterial. The film is dried and a plurality of pores is formed within the film. A sensitive film transducer capable of detecting changes in pressure and applied force can be made using this method.
US08643459B2 Transformer and flat panel display device including the same
There are provided a transformer and a flat panel display device including the same capable of securing leakage inductance and allowing easy manufacturing. The transformer according to the embodiment of the present invention includes: a bobbin part including a plurality of bobbins each including a tube-shaped body part having a penetration hole therein and one of flange parts protruded outwardly from both sides of the body part; a core inserted into the penetration holes in the bobbins to form a magnetic circuit; a coil part including respective coils wound around the bobbins; and a bobbin fixing member combined with either side surface of the bobbin part in which at least two of the bobbins are laminated, to fix and combine at least two of the bobbins.
US08643457B2 Coil and method of forming the coil
A coil formed by winding one flat type wire material rectangularly edgewise thereby stacking the rectangularly edgewise wound flat type wire in rectangular tube shape, wherein not only one edge of the coil including the flat type wire including an end portion of start-of-winding thereof but also another edge of the coil including the flat type wire including an end portion of finish-of-winding thereof are formed to be projecting from an outer circumference of the coil.
US08643456B2 Form-less electronic device assemblies and methods of operation
Improved form-less electronic apparatus and methods for manufacturing the same. In one exemplary embodiment, the apparatus comprises a shape-core inductive device having a bonded-wire coil which is formed and maintained within the device without resort to a bobbin or other form(er). The absence of the bobbin simplifies the manufacture of the device, reduces its cost, and allows it to be made more compact (or alternatively additional functionality to be disposed therein). One variant utilizes a termination header for mating to a PCB or other assembly, while another totally avoids the use of the header by directly mating to the PCB. Multi-core variants and methods of manufacturing are also disclosed.
US08643454B2 Field emission system and method
An improved field emission system and method is provided that involves field emission structures having electric or magnetic field sources. The magnitudes, polarities, and positions of the magnetic or electric field sources are configured to have desirable correlation properties, which may be in accordance with a code. The correlation properties correspond to a desired spatial force function where spatial forces between field emission structures correspond to relative alignment, separation distance, and the spatial force function.
US08643452B2 Solenoid housing with elongated center pole
The invention relates to a solenoid housing having an elongated center pole comprising a non-magnetic region thereon for allowing actuation of an armature in response to electric current and a method of the making said solenoid housing. The instant invention eliminates the need for a two-piece construction of the center pole, leading to a simplified fabrication process, increased performance of product solenoid housing, and increased operational lifetimes as well.
US08643450B2 Variable distributed constant line, variable filter, and communication module
A variable distributed constant line includes a substrate, a signal line that is provided on the substrate, and includes a first line portion and a second line portion facing each other, a movable electrode that is provided above the substrate, and straddles both the first line portion and the second line portion in a manner to face the first line portion and the second line portion, and a driving electrode that is provided on the substrate in a manner to face the movable electrode, attracts the movable electrode by an action of a voltage applied between the driving electrode and the movable electrode, and changes a distance between the signal line and the movable electrode.
US08643449B2 Impedance matching circuit capable of efficiently isolating paths for multi-band power amplifier
In accordance with a representative embodiment, an impedance matching circuit for use at an output stage of a power amplifier is disclosed. The impedance matching circuit comprises: an input port for receiving a frequency band signal; and a plurality of paths, each path being allocated with a principal band signal to be transmitted therethrough and including a path on-off network and a fixed-value impedance matching network. Depending on a type of the received frequency band signal, the path on-off network is configured to activate a selected one of the plurality of paths by rendering an input impedance of the selected path to have a lower absolute magnitude so that the signal is transmitted therethrough, and to deactivate the remaining paths of the plurality of paths by rendering the input impedance thereof to have a higher absolute magnitude so that the signal is not transmitted therethrough. The fixed-value impedance matching network matches a load impedance of the output port of each path to the input impedance thereof, thereby rendering the input impedance thereof to have a prescribed reference value with respect to the principal band signal when said path is activated by the path on-off network.
US08643443B1 Comparator and relaxation oscillator employing same
A relaxation oscillator has a comparator that includes first through third bias current transistors coupled to a first supply rail. First and second input transistors form a pair of parallel coupled transistors connected to the first bias current transistor. A first current mirror control transistor connects the first input transistor to a second supply rail. A first current mirror output transistor is coupled to the first current mirror control transistor, and connects the second bias current transistor to the second supply rail. A second current mirror control transistor connects the second input transistor to the second supply rail. A second current mirror output transistor is coupled to the second current mirror control transistor, and connects the third bias current transistor to the second supply rail. A transition time reduction transistor, coupled across the third bias current transistor, is coupled to the second bias current transistor, and provides a comparator output.
US08643442B2 Oscillator circuit
An oscillator circuit includes a signal generator having a compensation frequency output node that provides a compensation frequency signal at the compensation frequency output node. A pulse generator having a pulsed signal output node and a pulse generator input node is coupled to the compensation frequency output node and converts the compensation frequency signal into a series of compensation binary pulses having a constant pulse duration regardless of variations in the duty cycle of the compensation binary pulses. An oscillator module having at least two capacitors, an oscillator output node and a pulsed signal input node is coupled to the pulsed signal output node, and provides an output signal that is at a frequency dependent on charging rates of the capacitors. Drift variations in the capacitors are offset by variations in a duty cycle of the compensation binary pulses supplied in order to maintain constant charging rates of the capacitors.
US08643441B2 Quantum interference device, atomic oscillator, and magnetic sensor
A quantum interference device includes: gaseous alkali metal atoms; and a light source for causing a resonant light pair having different frequencies that keep a frequency difference equivalent to an energy difference between two ground states of the alkali metal atoms, the quantum interference device causing the alkali metal atoms and the resonant light pair to interact each other to cause an electromagnetically induced transparency phenomenon (EIT), wherein there are a plurality of the resonant light pairs, and center frequencies of the respective resonant light pairs are different from one another.
US08643439B2 Oscillation circuit of semiconductor apparatus
An oscillation circuit of a semiconductor apparatus includes a first level regulation unit configured to regulate an output voltage at an output node according to a difference between a reference voltage and the output voltage, and a second level regulation unit coupled between a power supply voltage terminal and a source voltage terminal.
US08643438B2 Class-AB power amplifier
According to an embodiment, a class-AB power amplifier includes an amplifying element whose power supply voltage is expressed as Vdc and whose maximum current is expressed as Imax, a conduction angle θo of the amplifying element being more than π(rad) and less than 2·π(rad), and load impedance of a fundamental wave being expressed as Z1=R1+j·X1 and load impedance of a 2nd harmonic being expressed as Z2=R2+j·X2 which are observed from a dependent current source of an equivalent circuit of the amplifying element, wherein a relationship between variables X1 and R1 is set to −R1<=X1<=R1, variable R1 is set to R1=Vdc/Imax·π·{1−cos(θo/2)}/{θo/2−sin(θo)/2}, and variable X2/X1 is set to X2/X1=−{θo/2−sin(θo)/2}/{sin(θo/2)−sin(1.5·θo)/3}, or each of the variables is set thereto so as to become equal substantially.
US08643436B2 Multi-level boosted Class D amplifier
Techniques to generate boosted multi-level switched output voltages from a boosted multi-level Class D amplifier. The amplifier may include a multi-level H-bridge, which may include pairs of transistor switches coupled to a first, second, and third supply potential. The second supply potential may be a boosted representation of the first supply potential. The amplifier may receive an input signal, and from the input signal may generate pulse-modulated control signals to control the switching for the transistor switches of the multi-level H-bridge. The amplifier may generate the boosted multi-level switched output voltages from output nodes of the multi-level H-bridge.
US08643433B2 Bypass power amplifier for improving efficiency at low power
Embodiments of a two-stage bypass power amplifier are provided. In general, the two-stage bypass power amplifier is configured to receive a RF signal that is to be transmitted to a remote device and provide gain to the RF signal prior to the RF signal being transmitted to the remote device. The two-stage bypass power amplifier is configured to operate efficiently (in terms of power) at two different gain or output power levels and can be extended to operate efficiently at additional gain or output power levels.
US08643430B2 Device and circuit with improved linearity
A solution for compensating intermodulation distortion of a component is provided. A circuit element includes multiple connected components. At least two of the connected components comprise current-voltage characteristics of opposite signs (e.g., sublinear and superlinear current-voltage characteristics) such that the current-voltage characteristics of the circuit element produces a level of intermodulation distortion for the circuit element lower than a level of intermodulation distortion for each of the connected components.
US08643429B2 Sampling
There is disclosed current-mode time-interleaved sampling circuitry configured to be driven by substantially sinusoidal clock signals. Such circuitry may be incorporated in ADC circuitry, for example as integrated circuitry on an IC chip. The disclosed circuitry is capable of calibrating itself without being taken off-line.
US08643426B2 Voltage level shifter
A voltage level shifter has an input circuit with an inverter coupled to an input node, a pull-down control transistor with a gate coupled to a first node of the inverter, and a pull-up control transistor with a gate coupled to a second node of the inverter. Sources of the pull-down and pull-up control transistors are coupled to a low voltage reference. A transient connectivity limiter (TCL) has pull-down and pull-up transistors. Two control inputs are coupled to respective first and second nodes of the inverter and path inputs are coupled to respective drains of the pull-down and pull-up control transistors. An output circuit has inputs coupled to pull-up and pull-down nodes of the TCL. During a voltage level transition at the input node, the TCL connects the pull-up node to the low voltage reference through the TCL pull-up transistor transitioning from a saturation to a sub-threshold region of operation.
US08643425B2 Level shifter circuit
An embedded system includes a level shifter circuit for generating a forward supply voltage level in a predefined range. A sense circuit senses a core supply voltage level of the embedded system and compares the sensed core supply voltage level with a predetermined minimum core supply voltage level needed to generate the forward supply voltage. A reset circuit maintains one or more input nodes and one or more internal nodes of the level shifter circuit at a predetermined voltage level when the core supply voltage level is less than the predetermined minimum core supply voltage level.
US08643422B1 Slicer and method of operating the same
This description relates to a slicer including a first latch. The first latch includes an evaluating transistor configured to receive a first clock signal and a developing transistor configured to receive a second clock signal. The first clock signal is different from the second clock signal. The first latch includes first and second input transistors configured to receive first and second complementary inputs. The first latch includes at least one pre-charging transistor configured to receive a third clock signal. The first latch further at least one cross-latched pair of transistors, the at least one cross-latched transistor pair connected between the evaluating transistor and the first and second output nodes. The slicer includes a second latch connected to the first and second output nodes and to a third output node. The slicer includes a buffer connected to the third output node and configured to generate a final output signal.
US08643421B1 Implementing low power, single master-slave elastic buffer
A method and elastic buffer circuit are provided for implementing low power, single master-slave elastic buffers in a network chip design to provide a continuous stream of data to multiple sinks from multiple sources, and a design structure on which the subject circuit resides. An elastic buffer only uses a single master-slave register. The circuit includes a finite state machine, and a latch control block (LCB) to implement the single master-slave elastic buffer removing all ½ cycle paths between buffer locations enabling usage of the single master-slave register.
US08643416B2 Semiconductor device including a delay locked loop circuit
A semiconductor device includes a DLL circuit, which comprises: a delay unit generating a second clock signal by delaying a first clock signal; a phase comparator circuit comparing the first clock signal and a signal generated by further delaying the second clock signal; a counter circuit outputting a count value that determines a delay amount of the delay unit to the delay unit, and up/down operating in response to the result of the phase comparison by the phase comparator circuit; and an initial delay amount control circuit detecting a cycle of the first clock signal at the time of initial setting operation, and outputting an initial value of the count value depending upon the detected cycle to the counter circuit.
US08643412B2 Test apparatus, transmission apparatus, receiving apparatus, test method, transmission method and receiving method
Provided is a test apparatus that tests a device under test, comprising a phase comparing section that compares a phase of an internal clock generated in the test apparatus and a phase of a clock superimposed on a device signal output by the device under test; an adjusting section that adjusts a phase shift amount of the internal clock with respect to the device signal, based on the phase comparison result; an acquiring section that acquires the device signal according to the internal clock whose phase shift amount with respect to the device signal is adjusted; and an inhibiting section that inhibits change of the phase shift amount based on the phase comparison result, for at least a portion of a period during which the clock is not superimposed on the device signal. Also provided is a test method relating to the test apparatus.
US08643406B2 Semiconductor device including a power transistor and switchable element
A semiconductor device arrangement and a method. One embodiment includes at least one power transistor and at least one gate resistor located between a gate of the power transistor and a connecting point in the drive circuit of the power transistor. The semiconductor device arrangement includes a switchable element between the connecting point and a source of the power transistor.
US08643405B2 Passive capture adapter circuit for sensing signals of a high-speed circuit
A multi-stage passive capture adapter (PCA) circuit is configured to sense and recover digital signals present on a high-speed serial bus for capture and analysis in external test equipment. A first stage of the PCA circuit includes a differentiator that functions as a high impedance probe that contacts the serial bus to capture an original input signal waveform of the high-speed digital signals. The signal waveform is fed to a dual-slope comparator/driver that includes a plurality of high-speed comparators and drivers. The second stage includes a differential receiver/shaper that converts logic levels of differential receiver outputs to input signals that set and reset a signal restorer whose output signals are fed to a driver of a driver/shaper. The output of the driver is then fed to a shaper network configured to substantially match an output signal of driver/shaper to the input signal waveform sensed from the high-speed serial bus.
US08643404B1 Self-calibration of output buffer driving strength
An integrated circuit includes an output buffer and a control circuit. The output buffer has a signal input, a signal output, and a set of control inputs. The output buffer has an output buffer delay, and a driving strength adjustable in response to control signals applied to the set of control inputs. The control circuit is connected to the set of control inputs of the output buffer. The control circuit uses first and second timing signals to generate the control signals, and includes a reference delay circuit that generates the first timing signal with a reference delay, and a delay emulation circuit that generates the second timing signal with an emulation delay that correlates with the output buffer delay.
US08643402B2 Phase frequency detector circuit
A phase frequency detector circuit includes an edge detector circuit, a plurality of phase frequency detector sub-circuits, and a decision circuit. The edge detector circuit is configured to receive a first input signal and a second input signal. The decision circuit is configured to detect whether a blind condition exits based on outputs of the edge detector circuit and outputs of the plurality of phase frequency detector sub-circuits. Responsive to a result of the decision circuit, a corresponding frequency detector sub-circuit of the plurality of phase frequency detector sub-circuit is configured to provide signals for use in determining a phase difference between the first input signal and the second input signal.
US08643400B2 Semiconductor device, display device, and electronic device
To provide a semiconductor device which operates stably with few malfunctions due to noise, with low power consumption, and little variation in characteristics; a display device including the semiconductor device; and an electronic device including the display device. An output terminal is connected to a power supply line, thereby reducing variation in electric potential of the output terminal. In addition, a gate electrode potential which turns ON a transistor is maintained due to the capacitance of the transistor. Further, change in characteristics of the transistor is reduced by a signal line for reverse bias.
US08643399B1 Asymmetric signal routing in a programmable logic device
A programmable logic device includes an array of functional blocks and input/output elements disposed at the periphery of the programmable logic device. The programmable logic device also includes conductors configured to conduct signals between the functional blocks and between the functional blocks and the routing channels. The number of conductors that propagate signals in a direction toward the periphery and out of the array is greater than the number of conductors that propagate signals into the array in a direction away from the periphery.
US08643397B2 Transistor array for testing
A transistor array for testing is provided. The transistor array includes a plurality of tested units. Each of the tested unit includes a tested transistor and a first to third switches. The tested transistor has a control terminal, a first and a second terminals and a bulk. The first switch is coupled between the first terminal and a leakage transporting line. The second switch is coupled between the second terminal and the leakage transporting line. The third switch is coupled between the control terminal and a bias providing line. The first to third switches are turned on or turned off according to a control signal. When the tested transistor is selected to be tested, the first to third switches are turned on according to the control signal.
US08643396B2 Probing tip for a signal acquisition probe
A probing tip for a signal acquisition probe has a non-conductive substrate compatible with thin or thick film processing having opposing horizontal surfaces and side surfaces with two of the side surfaces converging to a point. A contoured probing tip contact is formed at the converging point on the non-conductive substrate with the probing tip contact having first and second intersecting arcuate surface. Electrically conductive material is deposited on the countered probing tip contact using thin or thick film processing for providing electrical contact to test points on a device under test. A resistive element is formed on the non-conductive substrate using thin film processing that is electrically coupled to the probing tip contact and to an input of an amplifier formed on an integrated circuit die mounted on the non-conductive substrate. The output of the amplifier is coupled to a transmission structure formed on a second non-conductive substrate.
US08643392B2 Pneumatically actuated IC socket with integrated heat sink
An IC socket is pneumatically actuated and has an integrated heat sink. Thermally conductive elements of the heat sink extend through an opening of a pneumatically actuated element shaped as a closed curve of finite width so that heat radiating from the thermally conductive elements may dissipate through a top opening of the IC socket. Downward force exerted by the pneumatically actuated element is transferred through a gimbaled multi-plate and spring arrangement to provide even pressure on the die and substrate of an IC device being held in place by the IC socket. A spring-loaded ground tab on the bottom of the IC socket simplifies grounding of the IC socket to avoid damaging the held IC device by static discharge.
US08643385B2 Method for the simulation of defects with spark testers and spark testers
Method for the simulation of defects in the case of spark testers, in which breakdowns are recognized and displayed by a detector and added by means of a defect counter, wherein the high voltage is applied to a stationary standard spark gap and pulsed test voltages of predetermined level, duration and frequency are generated by the high voltage generator of the spark tester in short regular intervals.
US08643381B2 Test arrangement for AC voltage testing of electrical high voltage components
A test arrangement is provided for AC voltage testing of high voltage components including at least one inverter, at least one test transformer, at least one high-voltage inductor and at least one further high voltage component arranged as test components in a common cuboid container. The at least one high-voltage inductor is movable at least partially out of the container through at least one opening on a boundary surface of the container, by means of a movement apparatus. The at least one further high voltage component is movable within the cuboid container from a transport position to a working position.
US08643380B1 Method and apparatus for reducing shock and arc-flash hazards in power distribution systems
It is known to insulate bus bars to reduce shock and arc-flash hazards. However, failed or damaged insulation may not be noticed, possibly presenting a greater hazard as it is unexpected and therefore not prepared for. A metal cladding at earth ground enhances the safety to personnel and reduces the likelihood of a more serious line to line arc-flash. Still better is the use of a guard conductor intermediate between the hot conductor and the earth ground insulated from both. Not only does it introduce an additional layer of insulation, it also provides a way to continuously monitor the integrity of the insulation. A resistor divider establishes the nominal voltage on the guard conductor. A departure from nominal voltage indicates a potential fault. The guard conductor can also be used as a node for connecting other sensors, or one of the insulation layers may be of thermally sensitive polymer, to detect hot spots.
US08643376B2 Voltage measuring apparatus of assembled battery
A voltage measuring apparatus for measuring an output voltage of an assembled battery in which a plurality of unit cells are connected in series and are divided into a plurality of blocks is provided. The voltage measuring apparatus includes: a block voltage detection unit which detects a voltage of at least one of the plurality of blocks; a sampling voltage generation unit which is provided in the block voltage detection unit and generates an analog sampling voltage applied in the sampling voltage generation unit; an A/D conversion unit which is provided in the block voltage detection unit and digitizes the analog sampling voltage to output a digital sampling voltage; and a voltage variation detection unit which obtains an error ratio of the voltage detected by the block voltage detection unit based on the digital sampling voltage.
US08643373B2 Electrode
An electrode for enhancing electrical conductivity between an oil or gas field downhole and the surrounding formation. The electrode may serve as a cathode to cooperate with a remote anode to produce an electric field through the formation. The electrode has an electrically conductive, elongated body with a proximal end adapted to be inserted into the production pipe and a distal end adapted to project into the formation. The body of the electrode has a series of radially-projecting flexible filaments. The filaments are composed of an electrically conductive material and are supported by the body so as to be electrically charged. At least one of the filaments project outwardly into engagement with the wall of the downhole. The filaments also project radially outward into the consolidated formation.
US08643366B2 Magnetic resonance imaging apparatus and magnetic resonance imaging method
According to one embodiment, a MRI apparatus includes a data acquisition unit, a phase correction amount calculation unit and an image data generating unit. The data acquisition unit acquires MR signals in 3D k-space according to an imaging condition for HFI. The phase correction amount calculation unit calculates a first phase correction amount by applying processing including a phase correction based on k-space data for calculating the first phase correction amount and data compensation for a non-sampling region with the MR signals in the 3D k-space. The k-space data for calculating the first phase correction are MR signals less than the MR signals in the 3D k-space. The image data generating unit generates MR image data by applying processing including a phase correction using a second phase correction amount based on the first phase correction amount and the data compensation with the MR signals in the 3D k-space.
US08643363B2 Method of visualizing segmented MR images with absolute-scale values independent of MR scanner settings
A segmented MR image is provided by measuring a number of Magnetic Resonance Imaging parameters on an absolute scale. For example T1 relaxation, T2 relaxation and Proton Density PD can be measured on an absolute scale. The absolute values are then compared with known values for at least one type of tissue. For human tissue these parameters typically are in the order 300-4500 ms for T1, 50-1000 ms for T2 and 0-100% water for PD. Both T1 and T2 depend on the field strength. Based on a comparison between normal values for a particular type of tissue the values obtained for the image each pixel/voxel can be labeled with a certain probability that the voxel contains this type of tissue and segmented accordingly.
US08643362B2 Magnetic resonance imaging apparatus having controller that sets carrier frequencies outside detected interference bands
According to one embodiment, a apparatus includes a coil, a clock generator, an echo transmitter, a carrier generator, a clock transmitter, a regenerator, an receiver, a reconstructor, a detector, and a controller. The echo transmitter generates and transmits an echo transmission signal synchronously with a clock signal generated by the clock generator to wirelessly transmit an echo signal output from the col. The carrier generator generates a carrier signal have a frequency within a variable range. The clock transmitter wirelessly transmits a clock transmission signal. The regenerator regenerates the clock signal based on the transmitted clock transmission signal. The receiver extracts the echo signal synchronously with the regenerated clock signal from the transmitted echo transmission signal. The detector detects a frequency of an interference wave. The controller controls the carrier generator to generate the carrier signal having a frequency which comparatively small interference with respect to the detected frequency.
US08643359B2 Method and apparatus to measure differential phase and frequency modulation distortions for audio equipment
A testing method or apparatus utilizes multiple frequencies applied to a device under test for measuring newly discovered frequency modulation effects. An embodiment may include a lower frequency signal with a smaller amplitude higher frequency signal to test a dynamic change in frequency response, gain, and or phase. This dynamic test can reveal frequency modulation effects. Another embodiment may include the use of a multiple frequency signal to dynamically induce a time varying phase or frequency distortion for the device that has differential phase distortion. The device's output is then measured with an FM detector to measure a shift in one of the frequencies used in the test signal or to measure frequency modulation effects of any signals, including distortion products, from the device. Yet another embodiment of the invention may include biasing a device with a voltage to span the output voltage range of the device while measuring harmonic or intermodulation distortion or phase or frequency response at the various operating points.
US08643357B2 Internal voltage generator
A internal voltage generator includes a plurality of voltage level detection units, each configured to detect a voltage level of a corresponding internal voltage terminal, based on a predetermined target voltage level assigned to the corresponding internal voltage terminal, and generate a detection signal, a common internal voltage generation unit configured to generate an internal voltage through a pumping operation in response to the detection signal outputted from the voltage level detection units, and a path multiplexing unit configured to selectively output the internal voltage to one of the internal voltage terminals.
US08643355B2 Method for generating a signal and structure therefor
In accordance with an embodiment, a modulator includes a comparator and ramp generating circuitry. A first comparison signal is generated in response to comparing a first input signal with a compensation signal. A second comparison signal is generated in response to comparing a second input signal with the compensation signal. A first latch signal is generated in response to the first comparison signal and a second latch signal is generated in response to the second comparison signal.
US08643350B2 Self-driven synchronous rectification boost converter having high step-up ratio
The present invention provides a self-driven synchronous rectification boost converter having high step-up ratio. The self-driven synchronous rectification boost converter having high step-up ratio has a first switch receiving a pulse driving signal, a first winding, a second winding and a synchronous rectification circuit constructed by an auxiliary winding and a second switch. The first winding inducts a reverse voltage when the first switch is repeatedly switched on and off. The reverse voltage then is raised via the second winding, and the auxiliary winding cooperates with a switch circuit to switch on/off the second switch according to an inducted voltage, so as to achieve an object of synchronous rectification. Under a condition of outputting high current, the present invention can greatly reduce power-consumption of rectifying and enhance efficiency.
US08643346B2 Device and method for converting a potential
A potential converter device with a first storage capacitor implemented to be supplied with energy from an energy source to acquire a first potential form at the first storage capacitor, and a second storage capacitor implemented to be supplied with energy from the first storage capacitor to acquire a second potential form at the second storage capacitor. The potential converter device further has a converter electrically connected between the first and second storage capacitors and implemented to execute an energy transmission from the first storage capacitor to the second storage capacitor if the first potential form reaches a first potential threshold value and until the first potential form reaches a second potential threshold value, wherein the first potential threshold value is greater regarding its magnitude than the second potential threshold value.
US08643341B2 Battery system and automobile
Disclosed is a battery system wherein safety of a lithium secondary battery can be enhanced by efficiently deactivating (inactivating) lithium metal deposited on a negative electrode of the lithium secondary battery. Also disclosed is an automobile. Specifically disclosed is a battery system comprising a lithium ion secondary battery and a temperature control unit for controlling the temperature of the lithium ion secondary battery. The temperature control unit performs such a control that the temperature T of the lithium ion secondary battery is maintained within the following range: 55° C.
US08643339B2 Battery pack including a status detection unit to detect an abnormal status and a notification unit to notify a user of an availability to restart a discharging operation
A battery pack includes a status detection unit for detecting a status of a battery; a switch unit for interrupting a discharging path of the battery; a notification unit for notifying a user of the status of the battery; an operation unit operable by the user; and control unit for opening and closing the switch unit. The control unit is configured to have the switch unit interrupt the discharging path of the battery when the status of the battery detected by the status detection unit is abnormal. Further, the control unit is configured to have the notification unit notify the user of the availability to restart a discharging operation and close the switch unit in response to an operation signal inputted from the operation unit to make the battery pack dischargeable when the status of the battery detected by the status detection unit is recovered from the abnormal status.
US08643337B2 Single-power-transistor battery-charging circuit using voltage-boosted clock
A charge/discharge protection circuit protects a battery from inadvertent shorting on a charger node that can connect to a charger or to a power supply of a portable electronic device. A single n-channel power transistor has a gate that controls a channel between the battery and the charger node. The gate is connected to the charger node by a gate-coupling transistor to turn off the power transistor, providing battery isolation. The gate is driven by a voltage-boosted clock through a switch activated by an enable signal. The enable signal also activates a grounding transistor to ground a gate of the gate-coupling transistor. A comparator compares voltages of the charger and battery nodes, and the compare output is latched to generate the enable signal. An inverse enable signal activates a second switch that drives the voltage-boosted clock to the gate of the gate-coupling transistor to turn off the power transistor.
US08643336B2 High speed feedback adjustment of power charge/discharge from energy storage system
The invention provides systems and methods for control of power charge/discharge from energy storage system. The invention also provides for power monitoring and management. A smart charge system may include a system sensor, one or more energy storage units, and a controller, which may receive information about the power demand, power provided by an electricity provider, and charge/discharge information from an energy storage unit. The information received may all be time synchronized in relation to a time based reference. The controller may provide instructions to an energy storage unit at a rapid rate.
US08643335B2 Power supply apparatus
A power supply apparatus includes: a plurality of power supply units; a positive polarity coupling portion; and a negative polarity coupling portion; each of the power supply units is provided with: battery units; first relays connected in series to the battery units, capable of disconnecting electrical connection between the battery units and any one of the positive polarity coupling portion and the negative polarity coupling portion; resistor elements having one ends which are connected to the battery units between the battery units and the first relay; a resistor coupling portion; and a second relay connected to the resistor coupling portion, capable of disconnecting electrical connection between the resistor coupling portion and any one of the positive polarity coupling portion and the negative polarity coupling portion which is connected to the first relays, the second relay having fewer in number than the number of the power supply units.
US08643334B2 Battery balancing circuit and balancing method thereof and battery activation method
Disclosed is a battery balancing circuit for balancing the voltages of a reference battery module and a detachable battery apparatus, which has a load channel, a charging-discharging channel, a MCU and a charging-discharging control circuit. The reference battery module and detachable battery apparatus are connected in parallel. The load channel is connected to the reference battery module. The charging-discharging channel is disconnected from the reference battery module. The load and charging-discharging channels are connected to the detachable battery apparatus respectively through a first and a second switches. When the voltage of the detachable battery apparatus is higher or lower than a threshold value, the MCU controls the first and second switches, such that the detachable battery apparatus is connected to the charging-discharging control circuit through the charging-discharging channel and disconnected from the load channel. Then the MCU charges or discharges the detachable battery apparatus through the charging-discharging control circuit.
US08643333B2 Battery stack cell monitor
A battery monitor system for determining a cell voltage between a low side contact and a high side contact of a cell in situ as one of a plurality of cells connected in series to form a battery. The system uses an arrangement of switches and capacitors to shift relatively high absolute voltages of a battery stack to a relative low voltage level so lower voltage electronics can be used to monitor cell voltages. The system may be configured to provide a single ended measurement or a differential measurement indicative of a cell voltage. The differential measurement may be advantageous to correct or offset signal noise caused by electromagnetic interference (EMI).
US08643330B2 Method of operating a multiport vehicle charging system
A method of distributing charging power among a plurality of charge ports of a battery charging station is provided, where the battery charging station includes a plurality of power stages where each power stage includes an AC to DC converter and provides a portion of the charging station's maximum available charging power, the method comprising the steps of (i) monitoring battery charging station conditions and operating conditions for each charging port; (ii) determining current battery charging station conditions, including current operating conditions for each charging port; (iii) determining power distribution for the battery charging station and the charging ports in response to the current battery charging conditions and in accordance with a predefined set of power distribution rules; and (iv) coupling the power stages to the charging ports in accordance with the power distribution.
US08643328B2 Battery management device, secondary battery device, and vehicle
According to one embodiment, a device includes a power management module to which a power is supplied from an external power source, a power source supply circuit to which a power is supplied from the power management module via a first input terminal, a latch circuit configured to be operated by a power supplied from the power supply circuit or a power supplied via a second input terminal, a circuit configured to output a logic signal that sets a shutdown signal output from the latch circuit to a third input terminal, and a logic communication circuit to which a logic signal is supplied via the third input terminal and which supplies the logic signal to a forth terminal of the larch circuit. The shutdown signal output from the latch circuit is set to an predetermined level when the logic signal is set to a second level from a first level.
US08643326B2 Tunable wireless energy transfer systems
Described herein are improved configurations for a wireless power transfer. A power source for driving a resonator includes a switching amplifier. The duty cycle of the switching amplifier may be adjusted as well as optionally inductors and/or capacitors of the circuit to improve the efficiency of power transfer from the power source to the resonators when the parameters of the resonant load change.
US08643323B2 Photovoltaic system
A photovoltaic system for generating an output voltage that is uninfluenced by varying irradiation, includes a photovoltaic source having an input terminal and an output terminal. The photovoltaic system includes a voltage adding arrangement having a first input terminal and an output terminal. The voltage adding arrangement is connected in series with the photovoltaic source, and includes a first route having a voltage source and a second route as a voltage source bypass. The first and second routes extend between the first input terminal and the output terminal of the voltage adding arrangement. The first and second routes being alternately activateable.
US08643321B2 Operator mechanism
An operator ratchet mechanism for effecting reciproctable lateral movement if an element of a geared drive train in a door, gate or barrier operator. The operator ratchet mechanism can be utilized to cause disconnection between the geared drive train and an electric motor of the door gate or barrier operator to enable the door gate or barrier to me manually moved, and subsequent reconnection between the geared drive connection and electric motor. An embodiment of a tilt door operator which enables disconnection and reconnection between a geared drive train and an electric motor of the operator by effecting lateral displacement of an element of the geared drive train is also disclosed.
US08643318B2 High-resolution and low-resolution sensors for phase detection
A phase detection system includes a low-resolution sensor and a high-resolution sensor for monitoring an alternating current (AC) voltage. A phase detector receives voltage samples from both the low-resolution sensor and the high-resolution sensor. The phase detector monitors the low-resolution sensor to detect approaching zero cross events (i.e., monitored voltage values approaching zero). In response to an approaching zero-cross event, the phase detector uses the magnitude of the high-resolution voltage samples measured on either side of the zero cross event to determine the phase of the monitored AC voltage.
US08643314B2 Particle accelerator and charged particle beam irradiation apparatus including particle accelerator
A particle accelerator that is a synchrocyclotron accelerating charged particles and which includes an acceleration electrode that accelerates the charged particles; a high frequency power source that supplies the electric power to the acceleration electrode; a control unit that adjusts the frequency of the electric power supplied from the high frequency power source based on energy of the charged particle which is accelerated; and a matching circuit that has a coil and a capacitor, and performing impedance matching between the acceleration electrode and the high frequency power source, wherein the matching circuit has an inductance adjustment unit electrically adjusting the inductance of the coil.
US08643313B2 Cyclotron actuator using a shape memory alloy
An actuator assembly for use within the vacuum field of a cyclotron, one embodiment of which comprises an interactor which is moveable between a first position and a second position, at least one support structure for supporting the interactor in the first and second positions, a shape memory alloy (SMA) element connected to the interactor and/or support structure and being adapted to exert a force on the interactor and/or support structure so as to urge the interactor from the first position to the second position, an electromagnetic activator operatively associated with the SMA element for causing the element to exert the force when the electromagnetic activator is selectably activated, and a return mechanism operatively connected to the interactor, the support structure and/or the SMA element so as to urge the interactor from the second position to the first position when the electromagnetic activator is deactivated.
US08643310B2 Driving circuit and optical connector having same
A driving circuit for driving a light source of an optical connector includes a controller, an equalizer, a pseudo-random binary sequence (PRBS) generator, and a driver. The controller controls the driving circuit such that the light source is driven to emit by the driver according to an input signal sending into the equalizer for transmitting the input signal or a PRBS test signal generated by the PRBS generator for test a bit error rate of the optical connector.
US08643308B2 Spectral shift control for dimmable AC LED lighting
Apparatus and associated methods involve operation of an LED light engine in which a relative intensities of selected wavelengths shift as a function of electrical excitation. In an illustrative example, current may be selectively and automatically diverted substantially away from at least one of a number of LEDs arranged in a series circuit until the current or its associated periodic excitation voltage reaches a predetermined threshold level. The diversion current may be smoothly reduced in transition as the excitation current or voltage rises substantially above the predetermined threshold level. A color temperature of the light output may be substantially changed as a predetermined function of the excitation voltage. For example, some embodiments may substantially increase or decrease a color temperature output by a solid state light engine in response to dimming the AC voltage excitation (e.g., by phase-cutting or amplitude modulation).
US08643307B2 Lighting device and luminaire
According to one embodiment, a lighting device includes a control circuit that includes a threshold for a case where a pair of the illumination lamps are connected in series between a positive output end and a negative output end of a power supply circuit, and a threshold for a case where one illumination lamp is connected between the positive output end and the negative output end of the power supply circuit. The control circuit determines the connected lamp number of the illumination lamps to a direct-current power supply device based on a voltage between the positive output end and the negative output end of the power supply circuit and a voltage between a non-potential connection end and the positive output end or the negative output end, and selects the threshold corresponding to the connected lamp number to control the direct-current power supply device.
US08643303B2 Adaptive dimmer detection and control for LED lamp
An LED lamp is provided in which the output light intensity of the LEDs in the LED lamp is adjusted based on the input voltage to the LED lamp. A dimmer control unit detects a type of dimmer switch during a configuration process. Using the detected dimmer type, the dimmer control unit generates control signals appropriate for the detected dimmer type to provide regulated current to the LEDs and to achieve the desired dimming effect. The LED lamp can be a direct replacement of conventional incandescent lamps in typical wiring configurations found in residential and commercial building lighting applications that use conventional dimmer switches.
US08643302B2 Switching power-supply device and luminaire
According to one embodiment, a switching power-supply device includes a switching element, a constant current element, a rectifying element, first and second inductors, and a constant voltage circuit. The switching element supplies, when the switching element is on, a power-supply voltage of a direct-current power supply to and feeds an electric current to the first inductor. The constant current element is connected to the switching element in series and turns off the switching element when the electric current of the switching element exceeds a predetermined current value. The rectifying element is connected to any one of the switching element and the constant current element in series. The second inductor is magnetically coupled to the first inductor and supplies induced potential to a control terminal of the switching element. The constant voltage circuit applies control potential to a control terminal of the constant current element.
US08643300B1 Power control system and method for providing an optimal power level to a designated light fixture
A control system and method for automatically and seamlessly providing optimal power and/or voltage levels to an integrated, connected or other designated light fixture. In particular, the control system comprises corresponding boost, buck and feedback circuitry cooperatively utilized to intelligently increase, decrease or maintain the signal or power delivered to the light fixture at an optimal level, thereby increasing efficiency and productivity of the light fixture and allowing the light fixture to operate even in the event of a severely degraded signal due to resistance or impedance resulting from a lengthy power wire or other factors.
US08643299B2 LED lamp and driving circuit for the same
An LED lamp driving circuit includes: a thermistor having one terminal through which an external voltage is applied; an AC-DC conversion unit connected to the other terminal of the thermistor and converting an AC voltage applied to the other terminal of the thermistor into a DC voltage; and a DC-DC conversion unit converting the DC voltage from the AC-DC conversion unit into a DC voltage required to drive the LED lamp.
US08643298B2 Illumination device including LEDs and a switching power control system
Disclosed herein is an illumination device having at least one LED and a power converter with a switching element for connection to an existing fluorescent lamp fixture including a conventional ballast. The illumination device includes a feedback circuit operable to provide a switching signal to the switching element according to a duty cycle, the feedback circuit configured to: increase the value of the duty cycle to decrease an output current signal through the at least one LED; and decrease the value of the duty cycle to increase the output current signal through the at least one LED.
US08643296B2 Color mixing and desaturation with reduced number of converters
A system is disclosed to automatically establish proper biasing for light sources in a color mixed projection system having multiple light sources which are active at the same time. Responsive to a feedback signal, a single DC-DC converter generates the bias voltage for the light sources. Comparators compare a headroom signal for each light source to a reference value to generate comparator output signals. The comparator output signals are processed by a channel selector and a digital filter/DAC module. The channel selector controls a switch to selectively provide and combine a headroom signal with an output of the digital filter/DAC module to create the feedback signal. By monitoring each headroom value, the bias voltage is adjusted, based on the feedback signal, until every headroom signal reaches the reference value thereby achieving sufficient biasing for every active light source in the color mixed projection system.
US08643295B2 Luminaire
When an operator operates an operation tool of a dimming operation terminal device in order to set the brightness of a lighting load to desired brightness, an energization electric signal, for example, a voltage level detected by a dimming control section changes. The dimming control section generates a dimming signal modulated according to the voltage level. Power supply to the dimming control section is performed by an insulated auxiliary power supply. Transmission of the dimming signal is performed via an insulating section.
US08643292B2 Digital dimming device and digital dimming method
The present invention discloses a digital dimming device and a digital dimming method, for controlling a plurality of light emitting device channels. The method comprises: generating a corresponding plurality of driving signals to control the plurality of light emitting device channels; receiving a PWM input signal having a duty ratio, and phase shifting the PWM input signal to generate multiple PWM output signals with about the same duty ratio as the PWM input signal, but with respectively shifted phases; and enabling or disabling corresponding driving signals by the multiple PWM output signals, respectively.
US08643289B2 PWM controlling circuit and LED driver circuit having the same
A Pulse Width Modulation (PWM) controlling circuit and a Light Emitting Diode (LED) driver circuit having the same are provided. An LED driver circuit includes a voltage detector connected to a plurality of LED arrays, the voltage detector being configured to determine a connection status of each of the LED arrays according to a corresponding level of the feedback voltage, and detect a minimum feedback voltage from feedback voltages of the LED arrays that are determined to be connected, a controller configured to output a control signal to one of abort and control boosting of the LED arrays according to the detected minimum feedback voltage, and a Pulse Width Modulation (PWM) signal generator configured to output a PWM signal corresponding to the outputted control signal according to an on/off state of a dimming signal that drives the LED arrays that are determined to be connected.
US08643284B2 LED assembly driving circuit
A circuit for driving a LED assembly comprising an LED illumination device. The circuit includes a switch, an inductor, in a series connection with the switch, the switch, in its closed state, charges the inductor and in its open state, allows the inductor to discharge. The circuit includes a current measurement element to measure a current flowing through the inductor and/or the LED illumination device in the open and closed state of the switch, and a comparator to compare a signal representing the current measured by the current measurement element with a reference. The switch, inductor and current measurement element establish, in operation, a series connection with the LED illumination device. An output of the comparator is provided to a driving input of the switch for driving the switch between its open and closed state upon a change of an output state of the output of the comparator.
US08643280B2 Method for controlling ion energy in radio frequency plasmas
A method of establishing a DC bias in front of at least one electrode in a plasma operating apparatus by applying an RF voltage with at least two harmonic frequency components with a controlled relative phase between the components, where at least one of the higher frequency components is established as an even multiple of the lower frequency component.
US08643278B2 Low profile transformer
The instant disclosure relates to a low-profile transformer and methods of providing the transformer. The transformer in accordance with the present invention comprises a core unit having a pair of opposingly arranged base portions, an inserting portion, and at least a primary coil and a secondary coil wound around the inserting portion. The top-facing edge of the lateral portions is chamfered to enable tighter fitment into a receiving housing, such as a light tube. The transformer may also include a frame unit having a rounded flange that conforms to the shape of the wound coil. The instant disclosure further provides a method for providing a low-profile transformer that is particularly suitable for adapting in a tubular light device. The physical features and dimension of the transformer may be determined by methods that utilize the analysis of a characteristic equation in accordance with specific operating requirements.
US08643277B2 Light source
A light source is powered by a magnetron and has a quartz crucible having a plasma void with an excitable fill, from which light radiates in use. Two aluminum attachment blocks are attached together and the block is attached to a casing of the magnetron by screws—not shown. The quartz crucible is attached to the block by a Faraday cage, in the form of a perforate metal enclosure secured at its rim to the block. An output formation of the magnetron has a conductive, copper cap fitted in electrical contact with it. The cap is extended by a copper rod. The rod extends through the blocks into a bore in the crucible for coupling microwaves from the magnetron into the crucible. An airspace is provided around the cap in the block. From the cap, the rod extends with negligible air gap in an alumina ceramic tube through the airspace and a boss of the block located in an aperture in an end wall of the block.
US08643275B2 Micro-plasma field effect transistors
In some aspects, a micro-plasma device comprises a plasma gas enclosure containing at least one plasma gas, a plasma generation circuit interfaced with the plasma gas enclosure, and a plurality of electrodes interfaced with the plasma gas enclosure. In other aspects, a micro-plasma circuitry apparatus comprises a first layer having plasma generating electrodes, a second layer having a cavity formed therein, and a third layer having a circuit formed therein. The circuit includes a micro-plasma circuit (MPC) that includes one or more micro-plasma devices (MPDs). A metallic layer covers the MPC except at locations of the MPDs. The first layer is bonded to the second layer and the second layer is bonded to the third layer, thereby forming an enclosure that contains at least one plasma gas.
US08643274B2 Methods for Chemical Equivalence in characterizing of complex molecules
The present invention provides for a method of characterizing and classifying a sample containing a complex molecule, such as a peptide or polypeptide mixture, protein, protein mixture, biologic and biosimilar by using physical analysis, such as mass spectrometry, and statistic methods.
US08643269B2 Organic EL device and method for manufacturing the same
A sealing layer covers more surely both of a display region and a peripheral region on a substrate. A dummy structure is formed in the peripheral region of the substrate. The dummy structure contains, for instance, at least one of the materials constituting an organic EL display structure. The dummy structure is located in the peripheral region so that the volume per unit area of the sealing layer in the peripheral region is substantially the same as that in the display region.
US08643258B2 Photomultiplier and its manufacturing method
The present invention relates to a photomultiplier having a structure for making it possible to easily realize high detection accuracy and fine processing, and a method of manufacturing the same. The photomultiplier comprises an enclosure having an inside kept in a vacuum state, whereas a photocathode emitting electrons in response to incident light, an electron multiplier section multiplying in a cascading manner the electron emitted from the photocathode, and an anode for taking out a secondary electron generated in the electron multiplier section are arranged in the enclosure. A part of the enclosure is constructed by a glass substrate having a flat part, whereas each of the electron multiplier section and anode is two-dimensionally arranged on the flat part in the glass substrate.
US08643253B1 Piezoelectric ultracapacitors
As disclosed herein, multiple piezoelectric ultracapacitors may be coupled together in such a manner as to create an output voltage that is substantially the sum of their individual output voltages.
US08643252B2 Vibration wave actuator
A vibration wave actuator includes a vibrator having at least an electro-mechanical energy conversion element and an elastic body to which the electro-mechanical energy conversion element is joined, with the elastic body including a contact portion formed therein, and a driven element that is in pressure contact with the contact portion of the vibrator and includes a magnetic substance. In addition, a vibrator holding portion holds the vibrator via a first elastic member having a stiffness lower than that of the vibrator, and a magnet is arranged on the vibrator holding portion such that the vibrator is placed between the driven element and the magnet.
US08643249B2 Electrostatic generator/motor configurations
Electrostatic generators/motors designs are provided that generally may include a first cylindrical stator centered about a longitudinal axis; a second cylindrical stator centered about the axis, a first cylindrical rotor centered about the axis and located between the first cylindrical stator and the second cylindrical stator. The first cylindrical stator, the second cylindrical stator and the first cylindrical rotor may be concentrically aligned. A magnetic field having field lines about parallel with the longitudinal axis is provided.
US08643246B2 Stator core module, stator core assembly and process for assembling a stator core assembly
The present invention comprises a stator core module, stator core assembly and process for assembling a stator core assembly to replace existing stator cores in electric power generators. First and second stator core modules are aligned such that one end of a fastener assembly in the second stator core module is nested in a counter-bore of the first stator core module and one end of a fastener assembly in the first stator core is nested in a counter-bore of the second stator core module.
US08643245B2 Rotational kinetic energy output device
A rotational kinetic energy output device includes a housing component, a rotational component and a magnetism generating component. The rotational component includes a rotational body pivotally connected to the housing component, and the rotational body has at least one magnetic element. The magnetism generating component includes a plurality of magnetizers and coils wound on the magnetizers, the magnetizers are disposed in the housing component and surround the rotational body. Each of the magnetizers has a first magnetic arm and a second magnetic arm extended respectively toward the rotational body, and the rotational body is disposed between the first magnetic arm and the second magnetic arm. Thereby, the rotational kinetic energy output device allows a force to be balancedly exerted on the rotational body and a thin shape is also achieved.
US08643239B2 Motor
A motor including a rotor and a stator. The rotor includes a rotor core, magnet pole portions, and core pole portions. First magnetic pole portions, which are the magnet pole portions or the core pole portions, each include a first and second opposing parts arranged in an axial direction. Each first opposing part includes an auxiliary groove, and each second opposing part does not include an auxiliary groove. Where M(°) represents an open angle of the first magnetic pole portion, G(°) represents an open angle of the void, and L represents the number of teeth, an angle D1 from a center line in the circumferential direction of the first magnetic pole portion to the side surface in the auxiliary groove that is closer to the center line in the circumferential direction satisfies D1=M/2+G−a×360(°)/L (where a is a natural number).
US08643237B2 Motor support structure and actuator incorporating same
There is provided an actuator including a motor and a case adapted to house the motor. In the actuator, an output shaft of the motor is supported by a structured configured such that an elastic member is disposed between the case and at least one end of the output shaft, wherein the elastic member is in contact with a portion of the case in an engaging manner whereby the elastic member is prevented from shifting relative to the case in the rotation direction of the output shaft, and also wherein the elastic member is in contact with a portion of the motor in an engaging manner whereby a body of the motor is prevented from shifting relative to the elastic member in the rotation direction of the output shaft.
US08643236B2 Multifunctional electromagnetic transducer
A multifunctional electromagnetic transducer includes a bracket, a vibrating unit including a magnetic circuit part receiving in the bracket, and a plurality of elastic members assembled to the bracket for sustaining the magnetic circuit part. The magnetic circuit part defines a pole plate, a first magnet disposed at a center portion of the pole plate, and a plurality of second magnets surrounding the first magnet and forming a magnetic gap corporately with the first magnet. Each of the second magnets forms a receiving gap corporately with an adjacent second magnet. Each of the receiving gap receives a weight therein. A voice coil is partially inserted into the magnetic gap.
US08643232B2 Stator manufacturing method for a motor and a stator manufactured using the same
A stator manufacturing method for a motor includes an assembling step coupling a magnetic driving assembly onto an outer circumferential wall of a shaft tube, a mold combining step disposing the shaft tube and the magnetic driving assembly in an intra-cavity of a fixture unit, a glue injecting and forming step injecting a filling glue into the intra-cavity, with the filling glue solidifying into a protective glue coating with which the shaft tube and magnetic driving assembly are coated, a mold removing step removing the fixture unit from the shaft tube, magnetic driving assembly and protective glue coating, and a shaft tube seat coupling step providing a shaft tube seat having an engaging portion and coupling the engaging portion with the shaft tube, allowing the shaft tube, the magnetic driving assembly, the protective glue coating and the shaft tube seat to be coupled together to form a stator for the motor.
US08643231B2 Water-resistant electric motor
Embodiments of the invention provide a water resistant electric motor and method of assembly. The motor includes a housing with a main body having a rear endbell, a stator compartment with stator windings, and a first ball bearing. The motor includes a lid having a second ball bearing, and a rotor with a shaft having a first end positioned in the first ball bearing and a second end positioned in the second ball bearing. An epoxy coating is used to overmold the stator compartment, the stator windings, and the rotor. The motor includes a printed circuit board assembly treated with an adhesion promotor and positioned adjacent to the rotor and stator windings. A silicone sealant is used to encapsulate the printed circuit board assembly, the rotor, and the stator windings and reacts with the adhesion promotor. The motor includes a gasket between the lid and the main body.
US08643230B2 Linear actuator and method of manufacturing linear actuator including a deaerating step
A linear actuator includes a linear actuator body (2), a casing (3) for housing the linear actuator body (2), and insulating oil (L) that fills the casing (3) with a coil (44) of the linear actuator body (2) submerged therein. In such a configuration, heat generated by the coil (44) is quickly released to the oil (L) and is then conducted to the casing (3). The oil (L) fully spreads into gaps in the coil (44), of course. Therefore, heat is released very efficiently. Thus, by improving the heat-releasing characteristic, a linear actuator having a reduced size and a reduced weight is provided.
US08643229B2 Linear vibration device
Disclosed is a linear vibration device, the linear vibration device including: a case formed with a storage space; a vibrator including a cylindrical back yoke accommodated in the storage space, a magnet mounted on the back yoke, a leaf spring coupled to the back yoke and a weight coupled to the back yoke; and a coil block accommodated in the case to face the magnet, wherein one lateral end of the leaf spring is coupled to the case, and the other lateral end of the leaf spring facing the one lateral end is coupled to the back yoke.
US08643228B2 Linear motor with permanent-magnetic self-holding
A linear motor for optical systems, for example, endoscopes, is described. The motor has a stator with a magnetic guiding member and two adjacently disposed coils which are energized in opposite directions. Furthermore permanent magnets polarized in opposite directions and in the axial direction are provided on both sides of the pair of coils. The armature of the motor has a permanent magnet which is polarized in the opposite direction to the permanent magnet of the stator and is connected to a pole piece at each end. The pole pieces are arranged so that in the rest position each pole piece lies at the centre of one of the coils. By applying current to the coil, the armature can be displaced from a rest position in the longitudinal direction.
US08643226B2 Linear motor and electronic component transfer device equipped with linear motor unit
One aspect of the present invention relates to a linear motor unit including a plurality of linear motors, each having a stator, a movable element that linearly reciprocates along the stator, and a magnetic sensor that can detect a position of the movable element, wherein the magnetic sensors of the adjacent linear motors are disposed so as to be placed in mutually different positions in a moving direction of the movable element.
US08643220B1 Toggle switch and variable actuator control
The present invention is directed to a device for controlling electrical power provided to at least one electrical load. The actuator retainer housing includes a toggle actuator disposed adjacent to a variable control actuator in a side-by-side arrangement within the actuator retainer housing with no framing or support structure disposed therebetween. The variable control actuator includes a rotatable axial variable control mounting structure coupled to the actuator retainer housing. The axial toggle mounting structure and the axial variable control mounting structure are substantially parallel to a central latitudinal axis. An electronic control circuit is coupled to the plurality of control terminals and the modular switch actuation assembly. The electronic control circuit is configured to respond to actuations of the toggle actuator and/or the variable control actuator.
US08643219B2 Electronic equipment and method for connecting electronic circuit substrate
Wireless power supply and information communication are achieved between electronic circuit substrates in the electronic equipment, and the size of the circuitry for achieving the above is reduced. There are provided a first electronic circuit substrate, a second electronic circuit substrate, a first coil connected to the first electronic circuit substrate, and a second coil connected to the second electronic circuit substrate. Power is transmitted from the first coil to the second coil by electromagnetic induction so that the first electronic circuit substrate and the second electronic circuit substrate are electrically connected.
US08643217B2 Apparatus and method for boosting output of a generator set
An apparatus and method for boosting output of a generator set are provided. The output of the generator set is connected to an electrical load. The apparatus includes an energy storage unit, and a power-electronic unit. The energy storage unit uses batteries and capacitors to store electric energy. The power-electronic unit measures an electrical parameter of the output of the generator set. Based on the measured electrical parameter and a predefined criterion, the power-electronic unit determines additional energy required by the electrical load. Thereafter, the power-electronic unit supplies the additional energy to the electrical load. The additional energy is drawn from the energy storage unit.
US08643213B2 Generator frequency controlled load shifting
In a power generation system that includes a ram air turbine that drives an electric generator and at least one electric bus that couples alternating current electric power from the electric generator to at least one electric load, a method of maintaining the speed of the ram air turbine within a desired range of speeds that comprises the step of uncoupling the at least one electric bus from the electric generator when the frequency of the alternating current falls under a desired minimum frequency.
US08643209B2 Air-floating carrier type wind power collection device
An air-floating carrier type wind power collection device includes a pair of ailerons provided on each of front, middle, and rear sections of a floating body. The pressure and temperature of an uprising gas in a compartment of the floating body is controlled by a floating assembly. A first set of air guiding tubes is extended through the compartment and located at the front section. A second set of air guiding tubes is located at the rear section and extended through the ailerons on the rear section. Each air guiding tube includes an air inlet and an air outlet. The air outlet includes a peripheral wall having a windward section and a guiding section. An air channel is formed between and in communication with the air inlet and the air outlet of each air guiding tube. A wind power generating assembly is mounted in each air channel.
US08643204B2 Efficient energy conversion devices and methods
In various embodiments, an apparatus for producing electricity includes a plurality of hydraulic-to-electric converters with each hydraulic-to-electric converters including a hydraulic motor coupled to a common high-pressure hydraulic line and a common low-pressure hydraulic line, a controllable hydraulic switch hydraulically coupled to each respective hydraulic motor, each controllable hydraulic switch being capable of controllably placing the respective hydraulic motor on-line by allowing flow of hydraulic fluid from the common high-pressure hydraulic line through its respective hydraulic motor or off-line by preventing flow of hydraulic fluid from the common high-pressure hydraulic line through its respective hydraulic motor, and an electric generator mechanically coupled to each respective hydraulic motor and configured to generate electricity when hydraulic fluid flows through the respective hydraulic motor. The apparatus further includes a control system coupled to each controllable hydraulic switch configured to place individual hydraulic motors on-line or off-line as a function of available energy provided by the high-pressure line.
US08643197B1 Encapsulant for a semiconductor device
A mold compound is provided for encapsulating a semiconductor device (101). The mold compound comprises at least approximately 70% by weight silica fillers, at least approximately 10% by weight epoxy resin system, and beneficial ions that are beneficial with respect to copper ball bond corrosion. A total level of the beneficial ions in the mold compound is at least approximately 100 ppm.
US08643194B2 Dicing tape-integrated film for semiconductor back surface
The present invention provides a dicing tape-integrated film for semiconductor back surface including: a dicing tape including a base material and a pressure-sensitive adhesive layer on the base material; and a film for flip chip type semiconductor back surface, which is provided on the pressure-sensitive adhesive layer, in which at least a part of the pressure-sensitive adhesive layer has been cured beforehand by irradiation with a radiation ray.
US08643193B2 Semiconductor packages and electronic systems including the same
A plurality of semiconductor chips may be stacked on the substrate, and each of them may include at least one electrode pad. At least one of the plurality of semiconductor chips may include at least one redistribution pad configured to electrically connect with the at least one electrode pad.
US08643190B2 Through substrate via including variable sidewall profile
A microelectronic structure, such as a semiconductor structure, and a method for fabricating the microelectronic structure, include an aperture within a substrate. Into the aperture is located and formed a via. The via may include a through substrate via. The aperture includes, progressing sequentially contiguously at least partially through the substrate: (1) a first comparatively wide region at a surface of the substrate; (2) a constricted region contiguous with the first comparatively wide region; (3) a second comparatively wide region contiguous with the constricted region; and (4) a tapered region contiguous with the second comparatively wide region. The structure of the aperture provides for ease in filling the aperture, as well as void isolation within the via that is filled into the aperture.
US08643187B1 On-chip interconnects VIAS and method of fabrication
An interconnection system is provided with reduced capacitance between a signal via and the surrounding dielectric material. By using a non-homogenous dielectric, the effective dielectric constant of the system is reduced. The signal vias are surrounded with some combination of open trenches and/or grounded vias to decrease the effective dielectric constant of the surrounding system, providing shielding from the interference of nearby signal lines and vias. The fabrication techniques provided are advantageous because they can be preformed using today's standard IC fabrication techniques.
US08643184B1 Crosstalk polarity reversal and cancellation through substrate material tuning
Transmission lines with a first dielectric material separating signal traces and a second dielectric material separating the signal traces from a ground plane. In embodiments, mutual capacitance is tuned relative to self-capacitance to reverse polarity of far end crosstalk between a victim and aggressor channel relative to that induced by other interconnect portions along the length of the channels, such as inductively coupled portions. In embodiments, a transmission line for a single-ended channel includes a material of a higher dielectric constant within the same routing plane as a microstrip or stripline conductor, and a material of a lower dielectric constant between the conductor and the ground plane(s). In embodiments, a transmission line for a differential pair includes a material of a lower dielectric constant within the same routing plane as a microstrip or stripline conductors, and a material of a higher dielectric constant between the conductors and the ground plane(s).
US08643182B2 Semiconductor film, method for manufacturing the same, and power storage device
Provided are a semiconductor film including silicon microstructures formed at high density, and a manufacturing method thereof. Further, provided are a semiconductor film including silicon microstructures whose density is controlled, and a manufacturing method thereof. Furthermore, a power storage device with improved charge-discharge capacity is provided. A manufacturing method in which a semiconductor film with a silicon layer including silicon structures is formed over a substrate with a metal surface is used. The thickness of a silicide layer formed by reaction between the metal and the silicon is controlled, so that the grain sizes of silicide grains formed at an interface between the silicide layer and the silicon layer are controlled and the shapes of the silicon structures are controlled. Such a semiconductor film can be applied to an electrode of a power storage device.
US08643181B2 Integrated circuit packaging system with encapsulation and method of manufacture thereof
A method of manufacture of an integrated circuit packaging system includes: forming a rounded interconnect on a package carrier having an integrated circuit attached thereto, the rounded interconnect having an actual center; forming an encapsulation over the package carrier covering the rounded interconnect; removing a portion of the encapsulation over the rounded interconnect with an ablation tool; calculating an estimated center of the rounded interconnect; aligning the ablation tool over the estimated center; and exposing a surface area of the rounded interconnect with the ablation tool.
US08643175B2 Multi-channel package and electronic system including the same
A multi-channel package has at least four channels and includes a package substrate having a first surface and a second surface, semiconductor chips mounted on the first surface of the package substrate, and external connection terminals disposed on the second surface of the package substrate and electrically connected to the semiconductor chips by the at least four channels. Each channel is dedicated to one or a group of the chips. An electronic system includes a main board, at least one such multi-channel package mounted on the main board, and a controller package that is mounted on the main board, has 4n channels (wherein n≧2) and controls the at least one multi-channel package.
US08643174B2 Calibration of temperature sensitive circuits with heater elements
One or more heating elements are disposed on a semiconductor substrate proximate a temperature sensitive circuit disposed on the substrate (e.g., bandgap circuit, oscillator). The heater element(s) can be controlled to heat the substrate and elevate the temperature of the circuit to one or more temperature points. One or more temperature measurements can be made at each of the one or more temperature points for calibrating one or more reference values of the circuit (e.g., bandgap voltage).
US08643171B1 Power semiconductor device
A power semiconductor device includes: a mold unit that includes a power semiconductor element, a base plate, and a mold unit, the power semiconductor element being mounted on one surface of the base plate, a convex portion being formed on an other surface of the base plate, the convex portion including a plurality of grooves, the mold unit having a mold resin with which the power semiconductor element is sealed in such a manner as to expose the convex portion; a plurality of radiation fins inserted into the grooves, respectively, and fixedly attached to the base plate by swaging; and a metal plate that includes a opening into which the convex portion is inserted, the metal plate being arranged between the mold unit and the radiation fins with the convex portion inserted into the opening, wherein the metal plate includes a protrusion that protrudes from an edge of the opening and that digs into a side surface of the convex portion when the convex portion is inserted into the opening.
US08643170B2 Method of assembling semiconductor device including insulating substrate and heat sink
Semiconductor dies are mounted on a heat sink array frame structure. The heat sink array frame structure and the semiconductor dies are assembled together with an insulating substrate that has a corresponding array of apertures on an adhesive tape. The semiconductor dies are connected electrically with electrical contacts on the insulating substrate. The semiconductor dies, heat sinks and electrical connections to the contacts are encapsulated with a mold compound and then the encapsulated array is de-taped and singulated.
US08643167B2 Semiconductor package with through silicon vias and method for making the same
The present invention relates to a stacked semiconductor package and a method for making the same. The method includes the steps of mounting a plurality of first dice to a wafer by conducting a reflow process; and thinning the wafer from the backside surface of the wafer, thereby reducing manufacturing time and preventing warpage.
US08643165B2 Semiconductor device having agglomerate terminals
A plastic package (100) in which a semiconductor chip (101) is adhesively (102) attached to a metal stripe (110a) having an agglomerate structure, and electrically connected to bondable and solderable metal stripes (120) having particulate structures; metal stripes (120) are touching metal stripes (110b) of agglomerate structure to form vertical stacks (150); coats of solder (140) are welded to the agglomerate metal stripes (100a and 110b).
US08643164B2 Package-on-package technology for fan-out wafer-level packaging
Methods, systems, and apparatuses for wafer-level package-on-package structures are provided herein. A wafer-level integrated circuit package that includes at least one die is formed. The wafer-level integrated circuit package includes redistribution interconnects that redistribute terminals of the die over an area that is larger than an active-surface of the die. Electrically conductive paths are formed from the redistribution interconnects at a first surface of the wafer-level integrated circuit package to electrically conductive features at a second surface of the wafer-level integrated circuit package. A second integrated circuit package may be mounted to the second surface of the wafer-level integrated circuit package to form a package-on-package structure. Electrical mounting members of the second package may be coupled to the electrically conductive features at the second surface of the wafer-level integrated circuit package to provide electrical connectivity between the packages.
US08643163B2 Integrated circuit package-on-package stacking system and method of manufacture thereof
An integrated circuit package-on-package stacking system includes: providing a first integrated circuit package, mounting a metalized interposer substrate over the first integrated circuit package, attaching a stiffener integrated with the metalized interposer substrate and having dimensions within package extents, and attaching a second integrated circuit package on the metalized interposer substrate adjacent the stiffener.
US08643160B2 High voltage and high power boost converter with co-packaged Schottky diode
A high voltage and high power boost converter is disclosed. The boost converter includes a boost converter IC and a discrete Schottky diode, both of which are co-packaged on a standard single common die pad. The bottom cathode is electrically connected to the common die pad. It is emphasized that this abstract is being provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. This abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
US08643158B2 Semiconductor package and lead frame therefor
A semiconductor package is assembled using first and second lead frames. The first lead frame includes a die flag and the second lead frame includes lead fingers. When the first and second lead frames are mated, the lead fingers surround the die flag. Side surfaces of the die flag are partially etched to form an extended die attach surface on the die flag, and portions of the top surface of each of the lead fingers also are partially etched to form lead finger surfaces that are complementary with the etched side surfaces of the die flag. A semiconductor die is attached to the extended die attach surface and bond pads of the semiconductor die are electrically connected to the lead fingers. An encapsulating material covers the die, electrical connections, and top surfaces of the die flag and lead fingers.
US08643156B2 Lead frame for assembling semiconductor device
A lead frame has a flag, a peripheral frame, and main tie bars coupling the flag to the peripheral frame. At least one cross tie bar extends between two of the main tie bars and an inner row of external connector pads extending from an inner side of the cross tie bar and an outer row of external connector pads extending from an outer side of the cross tie bar. Both an inner non-electrically conductive support bar and an outer non-electrically conductive support bar are attached across the two of the main tie bars. The inner non-electrically conductive support bar is attached to upper surfaces of the two of the main tie bars and to upper surfaces of the inner row of the external connector pads.
US08643155B2 Liquid crystal display and chip on film thereof
A chip on film (COF) is disclosed in the present disclosure, which comprises an adhesive base layer, a driving integrated circuit (IC), an adhesive layer and a copper layer. The driving IC is embedded on a surface of the adhesive base layer; the adhesive layer is located under the adhesive base layer; the copper layer is located under the adhesive layer. The adhesive base layer is formed with a heat and pressure spreading structure. A heat and pressure spreading structure is disposed on the adhesive base layer of the COF so that deformation or unevenness of the glass substrate in the bonded area can be avoided when the COF is thermally pressed to the glass substrate of the LCD. These guarantees the consistency between the bonded area and the unbounded area, the bonded area and the unbounded area of the glass substrate will have the same transmissivity and luminance.
US08643152B2 Double trench rectifier
A high power density or low forward voltage rectifier which utilizes at least one trench in both the anode and cathode. The trenches are formed in opposing surfaces of the substrate, to increase the junction surface area per unit surface area of the semiconductor die. This structure allows for increased current loads without increased horizontal die space. The increased current handling capability allows for the rectifier to operate at lower forward voltages. Furthermore, the present structure provides for increased substrate usage by up to 30 percent.
US08643150B1 Wafer-level package device having solder bump assemblies that include an inner pillar structure
Wafer-level package (semiconductor) devices are described that have a pillar structure that extends at least partially into a solder bump to mitigate thermal stresses to the solder bump. In implementations, the wafer-level package device may comprise an integrated circuit chip having a surface and a solder bump disposed over the surface. The wafer-level package device may also include a pillar structure disposed over the surface that extends at least partially into the solder bump.
US08643147B2 Seal ring structure with improved cracking protection and reduced problems
An integrated circuit structure includes a lower dielectric layer; an upper dielectric layer over the lower dielectric layer; and a seal ring. The seal ring includes an upper metal line in the upper dielectric layer; a continuous via bar underlying and abutting the upper metal line, wherein the continuous via bar has a width greater than about 70 percent of a width of the upper metal line; a lower metal line in the lower dielectric layer; and a via bar underlying and abutting the lower metal line. The via bar has a width substantially less than a half of a width of the lower metal line.
US08643146B2 Semiconductor device
A carrier is prevented from being stored in a guard ring region in a semiconductor device. The semiconductor device has an IGBT cell including a base region and an emitter region formed in an n− type drift layer, and a p type collector layer arranged under the drift layer with a buffer layer interposed therebetween. A guard ring region having a guard ring is arranged around the IGBT cell. A lower surface of the guard ring region has a mesa structure provided by removing the collector layer.
US08643140B2 Suspended beam for use in MEMS device
A suspended beam includes a substrate, a main body and a first metal line structure. A first end of the main body is fixed onto the substrate. A second end of the main body is suspended. The first metal line structure is embedded in the main body. The width of the first metal line structure is smaller than the width of the main body.
US08643139B2 Semiconductor device
A semiconductor device has an electrical fuse formed on a substrate, having a first interconnect, a second interconnect respectively formed in different layers, and a via provided in a layer between the first interconnect and the second interconnect, connected to one end of the second interconnect and connected also to the first interconnect; and a guard interconnect portion formed in the same layer with the second interconnect, so as to surround such one end of the second interconnect, wherein, in a plan view, the second interconnect is formed so as to extend from the other end towards such one end, and the guard interconnect portion is formed so as to surround such one end of the second interconnect in three directions, while placing such one end at the center thereof.
US08643138B2 High breakdown voltage integrated circuit isolation structure
A high breakdown voltage integrated circuit isolator device communicates a digital signal from a signal input on one semiconductor die to a signal output on another semiconductor die while providing high voltage isolation between the signal input and the signal output. Each die may include a respective capacitive isolation barrier structure that couple together via a bonding wire between combined top metal/bonding pads of the capacitive isolation barrier structures.
US08643135B2 Edge termination configurations for high voltage semiconductor power devices
This invention discloses a semiconductor power device disposed in a semiconductor substrate and having an active cell area and an edge termination area wherein the edge termination area comprises a wide trench filled with a field-crowding reduction filler and a buried field plate buried under a top surface of the semiconductor substrate and laterally extended over a top portion of the field crowding field to move a peak electric field laterally away from the active cell area. In a specific embodiment, the field-crowding reduction filler comprises a silicon oxide filled in the wide trench.
US08643134B2 GaN-based Schottky barrier diode with field plate
A method for fabricating a III-nitride semiconductor device includes providing a III-nitride substrate having a first surface and a second surface opposing the first surface, forming a III-nitride epitaxial layer coupled to the first surface of the III-nitride substrate, and removing at least a portion of the III-nitride epitaxial layer to form a first exposed surface. The method further includes forming a dielectric layer coupled to the first exposed surface, removing at least a portion of the dielectric layer, and forming a metallic layer coupled to a remaining portion of the dielectric layer such that the remaining portion of the dielectric layer is disposed between the III-nitride epitaxial layer and the metallic layer.
US08643132B2 In-pixel high dynamic range imaging
Embodiments of the invention describe providing high dynamic range imaging (HDRI or simply HDR) to an imaging pixel by coupling a floating diffusion node of the imaging pixel to a plurality of metal-oxide semiconductor (MOS) capacitance regions. It is understood that a MOS capacitance region only turns “on” (i.e., changes the overall capacitance of the floating diffusion node) when the voltage at the floating diffusion node (or a voltage difference between a gate node and the floating diffusion node) is greater than its threshold voltage; before the MOS capacitance region is “on” it does not contribute to the overall capacitance or conversion gain of the floating diffusion node.Each of the MOS capacitance regions will have different threshold voltages, thereby turning “on” at different illumination conditions. This increases the dynamic range of the imaging pixel, thereby providing HDR for the host imaging system.
US08643131B2 Solid-state imaging device and method of manufacturing the same
According to one embodiment, a solid-state imaging device includes a diffusion layer, first and second diffusion layers, and p-type amorphous silicon compound. The diffusion layer of a first conduction type is formed in a surface of a semiconductor substrate of the first conduction type. The diffusion layer functions as a charge accumulation part for accumulating electrons generated in the semiconductor substrate by light emitted from a back side of the semiconductor substrate to a surface side. The first and second diffusion layers of a second conduction type sandwich the charge accumulation part and are formed so as to reach the inside of the semiconductor substrate from the surface of the semiconductor substrate. The p-type amorphous silicon compound electrically isolates the charge accumulation part and is buried in the first and second trenches formed on the back side of the semiconductor substrate.
US08643126B2 Self aligned silicided contacts
Structures and methods of forming self aligned silicided contacts are disclosed. The structure includes a gate electrode disposed over an active area, a liner disposed over the gate electrode and at least a portion of the active area, an insulating layer disposed over the liner. A first contact plug is disposed in the insulating layer and the liner, the first contact plug disposed above and in contact with a portion of the active area, the first contact plug including a first conductive material. A second contact plug is disposed in the insulating layer and the liner, the second contact plug disposed above and in contact with a portion of the gate electrode, the second contact plug includes the first conductive material. A contact material layer is disposed in the active region, the contact material layer disposed under the first contact plug and includes the first conductive material.
US08643119B2 Substantially L-shaped silicide for contact
A structure for a semiconductor device, according to an embodiment, includes: a substantially L-shaped silicide element including a base member and an extended member, wherein the base member extends at least partially into a shallow trench isolation (STI) region such that a substantially horizontal surface of the base member directly contacts a substantially horizontal surface of the STI region; and a contact contacting the substantially L-shaped silicide element.
US08643116B2 Semiconductor device
A semiconductor device includes a first MISFET and a second MISFET which are formed over a semiconductor substrate and have the same conductive type. The first MISFET has a first gate insulating film arranged over the semiconductor substrate, a first gate electrode arranged over the first gate insulating film, and a first source region and a first drain region. The second MISFET has a second gate insulating film arranged over the semiconductor substrate, a second gate electrode arranged over the second gate insulating film, and a second source region and a second drain region. The first and the second gate electrode are electrically coupled, the first and the second source region are electrically coupled, and the first and the second drain region are electrically coupled. Accordingly, the first and the second MISFET are coupled in parallel. In addition, threshold voltages are different between the first and the second MISFET.
US08643115B2 Structure and method of Tinv scaling for high κ metal gate technology
A complementary metal oxide semiconductor (CMOS) structure including a scaled n-channel field effect transistor (nFET) and a scaled p-channel field transistor (pFET) which do not exhibit an increased threshold voltage and reduced mobility during operation is provided Such a structure is provided by forming a plasma nitrided, nFET threshold voltage adjusted high k gate dielectric layer portion within an nFET gate stack, and forming at least a pFET threshold voltage adjusted high k gate dielectric layer portion within a pFET gate stack. In some embodiments, the pFET threshold voltage adjusted high k gate dielectric layer portion in the pFET gate stack is also plasma nitrided. The plasma nitrided, nFET threshold voltage adjusted high k gate dielectric layer portion includes up to 15 atomic % N2 and an nFET threshold voltage adjusted species located therein, while the plasma nitrided, pFET threshold voltage adjusted high k gate dielectric layer portion includes up to 15 atomic % N2 and a pFET threshold voltage adjusted species located therein.
US08643113B2 Structure and method for metal gate stack oxygen concentration control using an oxygen diffusion barrier layer and a sacrificial oxygen gettering layer
A process is disclosed of forming metal replacement gates for NMOS and PMOS transistors with oxygen in the PMOS metal gates and metal atom enrichment in the NMOS gates such that the PMOS gates have effective work functions above 4.85 eV and the NMOS gates have effective work functions below 4.25 eV. Metal work function layers in both the NMOS and PMOS gates are oxidized to increase their effective work functions to the desired PMOS range. An oxygen diffusion blocking layer is formed over the PMOS gate and an oxygen getter is formed over the NMOS gates. A getter anneal extracts the oxygen from the NMOS work function layers and adds metal atom enrichment to the NMOS work function layers, reducing their effective work functions to the desired NMOS range. Processes and materials for the metal work function layers, the oxidation process and oxygen gettering are disclosed.
US08643112B2 Semiconductor device
A semiconductor device capable of dissipating heat, which has been produced in an ESD protection element, to the exterior of the device rapidly and efficiently includes an ESD protection element having a drain region, a source region and a gate electrode, and a thermal diffusion portion. The thermal diffusion portion, which has been formed on the drain region, has a metal layer electrically connected to a pad, and contacts connecting the drain region and metal layer. The metal layer has a first wiring trace extending along the gate electrode, and second wiring traces intersecting the first wiring trace perpendicularly. The contacts are connected to intersections between the first wiring trace and the second wiring traces. Heat that has been produced at a pn-junction of the ESD protection element and transferred through a contact is diffused simultaneously in three directions through the first wiring trace and second wiring trace in the metal layer and is released into the pad.
US08643111B1 Electrostatic discharge (ESD) protection device
An electrostatic discharge (ESD) protection device is provided. The ESD protection device includes an epitaxy layer disposed on a semiconductor substrate. An isolation pattern is disposed on the epitaxy layer to define a first active region and a second active region, which are surrounded by a first well region. A gate is disposed on the isolation pattern. A first doped region and a second doped region are disposed in the first active region and the second active region, respectively. A drain doped region is disposed in the first doped region. A source doped region and a first pick-up doped region are disposed in the second doped region. A source contact plug having an extended portion connects to the source doped region. A ratio of an area of the extended portion covering the first pick-up doped region to an area of first pick-up doped region is between zero and one.
US08643109B2 Isolation region fabrication for replacement gate processing
A semiconductor structure includes a silicon-on-insulator (SOI) substrate, the SOI substrate comprising a bottom silicon layer, a buried oxide (BOX) layer, and a top silicon layer; a plurality of active devices formed on the top silicon layer; and an isolation region located between two of the active devices, wherein at least two of the plurality of active devices are electrically isolated from each other by the isolation region, and wherein the isolation region extends through the top silicon layer to the BOX layer.
US08643106B2 Semiconductor device
A transistor capable of adjusting a threshold value is obtained by adjusting an impurity concentration of a silicon substrate supporting an SOI layer and by controlling a thickness of a buried insulating layer formed on a surface of the silicon substrate in contact with the SOI layer.
US08643105B2 Semiconductor memory device and manufacturing method thereof
This disclosure concerns a semiconductor memory device including a semiconductor substrate; a buried insulation film provided on the semiconductor substrate; a semiconductor layer provided on the buried insulation film; a source layer and a drain layer provided in the semiconductor layer; a body region provided in the semiconductor layer between the source layer and the drain layer, and being in an electrically floating state, the body region accumulating or discharging charges to store data; a gate dielectric film provided on the body region; a gate electrode provided on the gate dielectric film; and a plate electrode facing a side surface of the body region via an insulation film, in an element isolation region.
US08643100B2 Field effect transistor having multiple effective oxide thicknesses and corresponding multiple channel doping profiles
A FET includes a gate dielectric structure associated with a single gate electrode, the gate dielectric structure having at least two regions, each of those regions having a different effective oxide thickness, the FET further having a channel region with at least two portions each having a different doping profile. A semiconductor manufacturing process produces a FET including a gate dielectric structure associated with a single gate electrode, the gate dielectric structure having at least two regions, each of those regions having a different effective oxide thickness, the FET further having a channel region with at least two portions each having a different doping profile.
US08643099B2 Integrated lateral high voltage MOSFET
An integrated circuit containing a dual drift layer extended drain MOS transistor with an upper drift layer contacting a lower drift layer along at least 75 percent of a common length of the two drift layers. An average doping density in the lower drift layer is between 2 and 10 times an average doping density in the upper drift layer. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, using an epitaxial process. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, on a monolithic substrate.
US08643091B2 Semiconductor device
A semiconductor device includes first, second, third, and fourth semiconductor layers of alternating first and second conductivity types, an embedded electrode in a first trench that penetrates through the second semiconductor layer, a control electrode above the embedded electrode in the first trench, and first and second main electrodes. The fourth semiconductor layer is selectively provided in the first semiconductor layer and is connected to a lower end of a second trench, which penetrates through the second semiconductor layer. The first main electrode is electrically connected to the first semiconductor layer, and the second main electrode is in the second trench and electrically connected to the second, third, and fourth semiconductor layers. The embedded electrode is electrically connected to the second main electrode or the control electrode. A Shottky junction formed of the second main electrode and the first semiconductor layer is formed at a sidewall of the second trench.
US08643089B2 Semiconductor device and fabricating method thereof
A semiconductor device is provided. The semiconductor device includes a substrate having a first doping region and an overlying second doping region, wherein the first and second doping regions have a first conductivity type and wherein the second doping region has at least one first trench and at least one second trench adjacent thereto. A first epitaxial layer is disposed in the first trench and has a second conductivity type. A second epitaxial layer is disposed in the second trench and has the first conductivity type, wherein the second epitaxial layer has a doping concentration greater than that of the second doping region and less than that of the first doping region. A gate structure is disposed on the second trench. A method of fabricating a semiconductor device is also disclosed.
US08643088B2 Semiconductor device and method for forming the same
The present invention relates to a semiconductor device and a method of manufacture thereof, particularly, to a semiconductor device including a vertical type gate and a method of forming the same. According to the present invention, a semiconductor device includes a vertical pillar which is protruded from a semiconductor substrate, has a vertical channel, and has a first width; an insulating layer which has a second width smaller than the first width, provided in both sides of the vertical pillar which is adjacent in a first direction; and a nitride film provided in a side wall of the insulating layer.
US08643086B2 Semiconductor component with high breakthrough tension and low forward resistance
A semiconductor component having a semiconductor body is disclosed. In one embodiment, the semiconductor component includes a drift zone of a first conductivity type, a drift control zone composed of a semiconductor material which is arranged adjacent to the drift zone at least in places, a dielectric which is arranged between the drift zone and the drift control zone at least in places. A quotient of the net dopant charge of the drift control zone, in an area adjacent to the accumulation dielectric and the drift zone, divided by the area of the dielectric arranged between the drift control zone and the drift zone is less than the breakdown charge of the semiconductor material in the drift control zone.
US08643084B2 Vertical non-volatile memory device
A vertical non-volatile memory device includes a semiconductor pattern disposed on a substrate; and a plurality of transistors of first through n-th layers that are stacked on a side of the semiconductor pattern at predetermined distances from each other, wherein the transistors are spaced apart and insulated from one another at the predetermined distances via air gap, where n is a natural number equal to or greater than 2.
US08643081B2 Semiconductor memory device
According to one embodiment, a semiconductor memory device comprises a first layer, a first conductive layer, a insulating layer, and a second conductive layer stacked on a substrate, a block insulating layer on inner surfaces of a pair of through-holes formed in the first conductive layer, the insulating layer, and the second conductive layer, and on an inner surface of a connecting hole connecting lower ends of the pair of through-holes, a charge storage layer on the block insulating layer, a second layer on the charge storage layer, and a semiconductor layer on the second layer. The second layer includes an air gap layer on the charge storage layer in the pair of through-holes, and a third conductive layer on the charge storage layer in the connecting hole.
US08643077B2 Non-volatile memory devices including blocking insulation patterns with sub-layers having different energy band gaps
A non-volatile memory device may include a semiconductor substrate and an isolation layer on the semiconductor substrate wherein the isolation layer defines an active region of the semiconductor substrate. A tunnel insulation layer may be provided on the active region of the semiconductor substrate, and a charge storage pattern may be provided on the tunnel insulation layer. An interface layer pattern may be provided on the charge storage pattern, and a blocking insulation pattern may be provided on the interface layer pattern. Moreover, the block insulation pattern may include a high-k dielectric material, and the interface layer pattern and the blocking insulation pattern may include different materials. A control gate electrode may be provided on the blocking insulating layer so that the blocking insulation pattern is between the interface layer pattern and the control gate electrode. Related methods are also discussed.
US08643075B2 Semiconductor device having glue layer and supporter
A plurality of metal patterns are disposed on a substrate. A support structure is provided between the plurality of metal patterns. The support structure has a supporter and a glue layer. Each of the plurality of metal patterns has a greater vertical length than a horizontal length on the substrate when viewed from a cross-sectional view. The supporter has a band gap energy of at least 4.5 eV. The glue layer is in contact with the plurality of metal patterns. The supporter and the glue layer are formed of different materials.
US08643069B2 Semiconductor device having metal gate and manufacturing method thereof
A semiconductor device having a metal gate includes a substrate having a plurality of shallow trench isolations (STIs) formed therein, at least a metal gate positioned on the substrate, and at least a pair of auxiliary dummy structures respectively positioned at two sides of the metal gate and on the substrate.
US08643068B2 Integrated circuit having field effect transistors and manufacturing method
An integrated circuit having field effect transistors and manufacturing method. One embodiment provides an integrated circuit including a first FET and a second FET. At least one of source, drain, gate of the first FET is electrically connected to the corresponding one of source, drain, gate of the second FET. At least one further of source, drain, gate of the first FET and the corresponding one further of source, drain, gate of the second FET are connected to a circuit element, respectively. A dopant concentration of a body along a channel of each of the first and second FETs has a peak at a peak location within the channel.
US08643066B2 Multiple device types including an inverted-T channel transistor and method therefor
A method for making a semiconductor device is provided. The method includes forming a first transistor with a vertical active region and a horizontal active region extending on both sides of the vertical active region. The method further includes forming a second transistor with a vertical active region. The method further includes forming a third transistor with a vertical active region and a horizontal active region extending on only one side of the vertical active region.
US08643065B2 Semiconductor device and method for manufacturing the same
A JFET is a semiconductor device allowing more reliable implementation of the characteristics essentially achievable by employing SiC as a material and includes a wafer having at least an upper surface made of silicon carbide, and a gate contact electrode formed on the upper surface. The wafer includes a first p-type region serving as an ion implantation region formed so as to include the upper surface. The first p-type region includes a base region disposed so as to include the upper surface, and a protruding region. The base region has a width (w1) in the direction along the upper surface greater than a width (w2) of the protruding region. The gate contact electrode is disposed in contact with the first p-type region such that the gate contact electrode is entirely located on the first p-type region as seen in plan view.
US08643064B2 Materials, systems and methods for optoelectronic devices
A photodetector is described along with corresponding materials, systems, and methods. The photodetector comprises an integrated circuit and at least two optically sensitive layers. A first optically sensitive layer is over at least a portion of the integrated circuit, and a second optically sensitive layer is over the first optically sensitive layer. Each optically sensitive layer is interposed between two electrodes. The two electrodes include a respective first electrode and a respective second electrode. The integrated circuit selectively applies a bias to the electrodes and reads signals from the optically sensitive layers. The signal is related to the number of photons received by the respective optically sensitive layer.
US08643060B2 Method for manufacturing epitaxial crystal substrate, epitaxial crystal substrate and semiconductor device
Disclosed is a technology of manufacturing, at low cost, an epitaxial crystal substrate provided with a high-quality and uniform epitaxial layer, said technology being useful in the case of growing the epitaxial layer composed of a semiconductor having a lattice constant different from that of the substrate. The substrate, which is composed of a first compound semiconductor, and which has a step-terrace structure on the surface, is used, and on the surface of the substrate, a composition modulation layer composed of a second compound semiconductor is grown by step-flow, while changing the composition in the same terrace. Then, the epitaxial crystal substrate is manufactured by growing, on the composition modulation layer, the epitaxial layer composed of the third compound semiconductor having the lattice constant different from that of the first compound semiconductor.
US08643051B2 Light emission device
Disclosed are a light emission device comprising an LED element and a wavelength conversion section, the LED element emitting light of a specific wavelength and the wavelength conversion section converting the light emitted from the LED element to light of a specific wavelength, featured in that the wavelength conversion section is composed of a ceramic layer which has been formed employing, as a raw material, polysilazane containing a phosphor and inorganic fine particles with a particle size smaller than the phosphor.