首页 / 专利库 / 其他金属加工 / 薄钢板 / / 高Cr铁素体系耐热钢

高Cr素体系耐热

阅读:175发布:2021-04-14

专利汇可以提供高Cr素体系耐热专利检索,专利查询,专利分析的服务。并且与以前的材料相比,得到高温特性优异的 涡轮 构件,使发电系统的效率提高。使用作为成分含有C:0.08~0.13%、Cr:8.5~9.8(10.2)%、Mo:0~1.5%、V:0.10~0.25%、Nb:0.03~0.08%、W:0.2~5.0%、Co:1.5~6.0%、B:0.002~0.015%、N:0.015~0.025%、并根据要求含有Re:0.01~3.0%、Si:0.1~0.50%、Mn:0.1~1.0%、Ni:0.05~0.8%、Cu:0.1~1.3%中的一种以上的耐热 钢 。通过提高长时间蠕变强度、将其用于涡轮 转子 和涡轮构件,使蒸气 温度 的高温 化成 为可能,有助于提高发电效率。通过限定抑制 加速 蠕变参数,可以使蠕变强度保持至更长时间侧。,下面是高Cr素体系耐热专利的具体信息内容。

1.一种高Cr素体系耐热,用质量%表示,含有(C):0.08~ 0.13%、铬(Cr):8.5~9.8%、钼(Mo):0~1.5%、(V):0.10~0.25%、铌 (Nb):0.03~0.08%、钨(W):0.2~5.0%、钴(Co):1.5~6.0%、(B):0.002~ 0.015%、氮(N):0.015~0.025%,余量由铁(Fe)及不可避免的杂质组成, 其中,在成分含量的关系中,用3[%Cr]+[%Mo]+[%W]-15[%Re]-31.5表示 的抑制加速蠕变参数为0以下,[%]表示元素的质量%。
2.根据权利要求1所记载的高Cr铁素体系耐热钢,其特征在于: 作为含有成分,还含有用质量%表示的(Si):0.1~0.50%,余量由铁(Fe) 及不可避免的杂质组成。
3.根据权利要求1所记载的高Cr铁素体系耐热钢,其特征在于: 作为含有成分,还含有用质量%表示的锰(Mn):0.1~1.0%、镍(Ni):0.05~ 0.8%、(Cu):0.1~1.3%中的1种或2种以上,余量由铁(Fe)及不可避 免的杂质组成。
4.根据权利要求2所记载的高Cr铁素体系耐热钢,其特征在于: 作为含有成分,还含有用质量%表示的锰(Mn):0.1~1.0%、镍(Ni):0.05~ 0.8%、铜(Cu):0.1~1.3%中的1种或2种以上,余量由铁(Fe)及不可避 免的杂质组成。
5.一种高Cr铁素体系耐热钢,其特征在于:用质量%表示,含有碳 (C):0.08~0.13%、铬(Cr):8.5~10.2%、钼(Mo):0~1.5%、钒(V):0.10~ 0.25%、铌(Nb):0.03~0.08%、钨(W):0.2~5.0%、钴(Co):1.5~6.0%、 硼(B):0.002~0.015%、氮(N):0.015~0.025%、铼(Re):0.01~3.0%,余 量由铁(Fe)及不可避免的杂质组成,其中,在成分含量的关系中,用 3[%Cr]+[%Mo]+[%W]-15[%Re]-31.5表示的抑制加速蠕变参数为0以下,[%] 表示元素的质量%。
6.根据权利要求5所记载的高Cr铁素体系耐热钢,其特征在于: 作为含有成分,还含有用质量%表示的硅(Si):0.1~0.50%,余量由铁(Fe) 及不可避免的杂质组成。
7.根据权利要求5所记载的高Cr铁素体系耐热钢,其特征在于: 作为含有成分,还含有用质量%表示的锰(Mn):0.1~1.0%、镍(Ni):0.05~ 0.8%、铜(Cu):0.1~1.3%中的1种或2种以上,余量由铁(Fe)及不可避 免的杂质组成。
8.根据权利要求6所记载的高Cr铁素体系耐热钢,其特征在于: 作为含有成分,还含有用质量%表示的锰(Mn):0.1~1.0%、镍(Ni):0.05~ 0.8%、铜(Cu):0.1~1.3%中的1种或2种以上、余量由铁(Fe)及不可避 免的杂质组成。

说明书全文

技术领域

发明涉及用于要求耐热性用途的耐热,是尤其能很好地适用 于涡轮转子以及涡轮叶片、涡轮圆盘、螺栓、配管等涡轮构件的耐热 钢。

背景技术

在火发电系统,为了进一步使发电效率高效率化,有越来越使 蒸气涡轮机的蒸气温度升高的趋势,其结果,涡轮机用材料所要求的 高温特性也变得更加严格。以前,作为这一用途可以使用的材料,提 出过许多种耐热钢。其中已经知道,在特开平4-147948号公报、特开 平8-3697号公报中提出的开发耐热钢的高温强度比较优异。
但是,高Cr素体系耐热钢在650℃长时间使用时,蠕变强度显 著降低。因此,目前的现状是将使用上限温度限制在没有发现蠕变强 度显著降低的620℃左右。为此,希望开发即使在650℃长时间使用也 不产生蠕变强度显著降低的涡轮机用材料。
本发明是以上述情况为背景而进行的,其目的在于:通过抑制伴 随650℃附近长时间使用的高温蠕变强度的显著降低,提供在长时间可 具有优异的高温特性、耐久性等的新型耐热钢。
发明的公开
为了解决上述课题,第1发明的耐热钢,其特征在于:以质量%表 示,含有(C):0.08~0.13%、铬(Cr):8.5~9.8%、钼(Mo):0~1.5%、 (V):0.10~0.25%、铌(Nb):0.03~0.08%、钨(W):0.2~5.0%、钴 (Co):1.5~6.0%、(B):0.002~0.015%、氮(N):0.015~0.025%, 余量由铁(Fe)及不可避免的杂质组成。
第2发明的耐热钢,其特征在于:以质量%表示,含有碳(C):0.08~ 0.13%、铬(Cr):8.5~10.2%、钼(Mo):0~1.5%、钒(V):0.10~0.25%、 铌(Nb):0.03~0.08%、钨(W):0.2~5.0%、钴(Co):1.5~6.0%、硼 (B):0.002~0.015%、氮(N):0.015~0.025%、铼(Re):0.01~3.0%, 余量由铁(Fe)及不可避免的杂质组成。
第3发明的耐热钢,其特征在于:在上述第1或第2发明中,还 含有以质量%表示的(Si):0.1~0.50%,余量由铁(Fe)及不可避免的 杂质组成。
第4发明的耐热钢,其特征在于:在上述第1~第3中的任一项发 明中,还含有以质量%表示的锰(Mn):0.1~1.0%、镍(Ni):0.05~ 0.8%、(Cu):0.1~1.3%中的1种或2种以上,余量由铁(Fe)及不可 避免的杂质组成。
第5发明的耐热钢,其特征在于:它具有上述第1~第4中的任一 项发明所记载的耐热钢组成,并且在成分含量的关系中,用 3[%Cr]+[%Mo]+[%W]-15[%Re]-31.5表示的抑制加速蠕变参数([%]表 示元素的质量)为0以下。
以下说明本发明耐热钢的成分元素的作用及其限定的理由。又, 各种成分的含量均以质量%表示。
C:0.08~0.13%
C在促进氏体相变的同时,与合金中的Fe、Cr、Mo、V、Nb、W等结合形成碳化物,是为了提高高温强度而不可缺少的元素,再者, 如果碳化物量少,则会促进(Fe,Cr)2(Mo,W)型金属间化合物拉弗斯 (Laves)相的凝聚·粗化,降低高温蠕变强度。从这一观点出发,要 求最低0.08%的C含量。另一方面,如果C含量超过0.13%,则容易引 起碳化物的粗化,降低高温蠕变强度,因此其含量限定在0.08~ 0.13%。
Cr:8.5~9.8%(10.2%)
Cr在本发明中与后文叙述的Re一起是最重要的元素之一。本发明 人对在650℃可看到的长时间蠕变强度显著降低的现象及其机理进行 了解析,而且对抑制长时间蠕变强度降低的方法实施了研究。其研究 结果,作为抑制长时间蠕变强度降低的重要要素,提出后文将叙述其 细节的抑制加速蠕变参数值,已经清楚:作为优选的形态,该参数值 在0以下。
构成其抑制加速蠕变参数公式的元素的系数,在Re之后,大的为 Cr,通过严格限制该Cr的添加量,作为本发明钢的特征的抑制长时间 蠕变强度的降低、经过长时间保持高的蠕变强度是可能的。
一般地,对于8~12%Cr的铁素体系耐热钢,历来伴随Cr%的提高, 室温抗拉强度和600℃以上温度的高应力·短时间(1000~2000hr前 后)的蠕变强度提高,因此认为,在不产生δ铁素体的范围,在高Cr侧为宜。但是,根据此次详细实施在650℃附近的长时间蠕变试验的结 果,Cr含量超过9.8%时,为了保持蠕变强度所需要的马氏体钢的微细 组织由于蠕变试验条件的高温和应力作用而显著变化,从微观组织观 察可以发现马氏体的微细组织出现回复以及等轴亚晶粒(二次结晶) 化。又,观察到微细析出的拉弗斯相消失、析出物的凝聚粗化显著地 进行,位错密度也显著减少。这样,判明马氏体钢的微细组织整体软 化,蠕变强度随着时间的推移极度地降低。这样,过剩的Cr使在650 ℃附近的长时间高温蠕变强度显著降低,因此Cr含量的上限定为 9.8%。
另一方面,Cr是提高抗化性和高温耐蚀性、以及在合金中国溶 的同时作为析出碳化物、微细拉弗斯相而析出、使高温蠕变强度提高 的元素,最低要求在8.5%以上。从以上的观点看,Cr的含量限定在 8.5~9.8%。又,以与上述同样的理由,希望上限不足9.5%。但是, 当添加Re时,由于增加了抑制Re导致的高温蠕变强度降低的效果, Cr的上限限定在10.2%,更希望限定在10.0%,进一步希望限定在不 足9.5%。
Mo:0~1.5%
Mo是在抑制碳化物的凝聚粗化且固溶于合金中使基体固溶强化、 并且作为拉弗斯相在基体中微细弥散析出、使高温强度以及高温蠕变 强度提高方面有效发挥作用的元素,根据要求来含有。另一方面,如 果过剩地含有,则容易生成δ-铁素体,而且促进拉弗斯相的凝聚粗 化,因此上限定为1.5%。又,为了使其充分地发挥这一效果,希望含 量在0.02%以上,基于同样的理由,下限确定在0.1%、上限确定在 0.5%更好。
V:0.10~0.25%
V是形成微细碳化物、碳氮化物并使高温蠕变强度提高的有效的元 素,最低要求0.10%。另一方面,如果超过0.25%,会过度地固定碳, 使碳化物的析出量增加,降低高温强度,因此限定在0.10~0.25%。
Nb:0.03~0.08%、
Nb是形成微细碳化物、碳氮化物并使高温蠕变强度提高的同时, 促进晶粒的微细化使低温韧性提高的元素,最低要求0.03%。但是,如 果使含量超过0.08%,则析出粗大碳化物以及碳氮化物,使塑韧性降 低,因此限定在0.03%~0.08%。
W:0.2~5.0%
W是在抑制碳化物的凝聚粗化、且固溶于合金中使基体固溶强化并 且作为拉弗斯相在基体中微细弥散析出使高温强度以及高温蠕变强度 提高方面有效发挥作用的元素,最低要求0.2%。另一方面,如果使含 量超过5.0%,则容易生成δ-铁素体,而且促进拉弗斯相的凝聚粗化, 因此限定在0.2~5.0%。又,基于同样的理由,下限限定在1.2%、上 限限定在4.0%更理想。
Co:1.5~6.0%
Co抑制δ-铁素体的生成,使高温强度以及高温蠕变强度提高。为 了有效防止δ-铁素体的生成,要求含量在1.5%以上,另一方面,如果 含量超过6.0%,则延性以及高温蠕变强度降低,而且成本提高,因此 限定在1.5~6.0%。基于同样的理由,下限限定在2.5%、上限限定在 4.5%更理想。
B:0.002~0.015%
B是具有在高温长时间抑制原奥氏体晶界、马氏体束 (マルテンサイトパケツト)、马氏体、以及马氏体板条内的析出碳 化物、析出碳氮化物以及析出拉弗斯相的凝聚粗化的效果,并通过与 W、Nb等合金元素复合添加使高温蠕变强度提高的有效的元素,最低要 求0.002%。另一方面,如果含量超过0.015%,则与氮结合形成BN析 出相,高温蠕变延性和韧性降低,因此其含量限定在0.002~0.015%。 又,基于同样的理由,下限在0.005%、上限在0.010%更理想。
N:0.015~0.025%
N与Nb、V等结合形成氮化物,使高温强度以及高温蠕变强度提 高,其含量不足0.015%时不能得到充分的高温强度以及高温蠕变强 度,另一方面,如果使其含量超过0.025%则与B结合形成BN析出相, 减低上述B的有效作用,高温蠕变延性和韧性降低,因此含量限定在 0.015~0.025%。
Re:0.01~3.0%
Re在本发明中与上述的Cr一起是重要的元素之一。Re以极其微 量(0.01%以上)地添加即可对固溶强化起着明显的作用,即使高温保 持,马氏体中的Re的浓度变化也小,提高基体高温长时间的组织稳定 性,具有使高温蠕变强度提高的效果,同时也具有使韧性提高的效果, 而且抑制在650℃附近的长时间蠕变强度的显著降低,因此根据要求来 含有。另一方面,Re是价格昂贵的金属,如果含量过剩,则导致加工 性能降低,因此其上限定为3.0%。又,为了充分发挥上述的效果,含 有0.1%以上为宜。基于同样的理由,下限在0.2%、上限在1.0%更好。
Si:0.1~0.50%
Si是提高抗蒸气氧化特性的元素,根据要求来含有。为了有效 地获得该效果,要求含量在0.1%以上。另一方面,如果含量过剩,会 使钢锭内部的偏析、回火脆化敏感性增大,因此其上限定在0.50%。为 了充分地发挥这一效果,下限在0.20%、上限在0.40%更好。
Mn:0.1~1.0%
Mn是便宜的奥氏体稳定化元素,并且有助于提高韧性,因此根据 要求含有Mn。在含量不足0.1%时,上述的效果不充分,如果使其含量 超过1.0%,则在使高温蠕变强度降低的同时,使回火脆化敏感性增大。 因此,Mn的含量限定在0.1~1.0%。在该范围中,下限在0.2%、上限 在0.7%更理想。
Ni:0.05~0.8%
Ni和Mn一样,是便宜的奥氏体稳定化元素,并且有助于提高韧 性,因此根据要求含有Ni。但是,在含量不足0.05%时,上述的效果 不充分,如果使其含量超过0.8%,则会助长碳化物、拉弗斯相的凝聚 粗化,使高温蠕变强度降低。因此,Ni含量限定在0.05~0.8%。在该 范围中,下限在0.1%、上限在0.5%为宜,上限在0.3%更好。
Cu:0.1~1.3%
Cu和Mn、Ni一样,是便宜的奥氏体稳定化元素,并且有助于提高 韧性,因此根据要求含有Cu。但是,在含量不足0.1%时,上述的效果 不充分,另一方面,如果使其含量超过1.3%,则使高温蠕变强度降低 的同时,使热加工性降低。因此,其含量限定在0.1~1.3%。在该范 围中,下限在0.3%、上限在0.8%更理想。
[抑制加速蠕变参数]
又,本发明在进行650℃附近的蠕变试验的情况下,在其蠕变应变 -时间曲线中,蠕变应变不连续地开始加速的时间向长时间侧移动,具 有能够抑制长时间蠕变强度显著降低的特征。业已清楚,该蠕变应变 不连续地开始加速的时间与材料的成分有很大的依存关系,作为其指 标,可以使用根据各成分的含量计算出来的以下的计算式(发明人称 为“抑制加速蠕变参数”)。当该计算值超过0时,不能抑制基体中 析出的拉弗斯相的粗化,蠕变应变不连续地开始加速的时间向短时间 侧移动,因此进行该参数为0以下的成分设计为宜。通过这种设计可 以使蠕变应变不连续地开始加速的时间在大约5万小时以上。又,在 下式中其计算值在-2以下更好。
(抑制加速蠕变参数式)
3[%Cr]+[%Mo]+[%W]-15[%Re]-31.5
发明的实施形态
本发明的耐热钢,必须得到上述成分,可按常规方法熔炼,对其 熔炼方法没有特别的限制。
对所得到的耐热钢,施以锻造等加工处理和在要求条件下的热处 理。
(淬火处理)
本发明耐热钢,通过淬火加热使析出碳氮化物固溶,在其后的回 火中使碳氮化物均匀地微细弥散析出,使高温蠕变强度提高。该耐热 钢,由于含有硼,析出碳化物、碳氮化物的固溶温度移向高温侧,因 此在不足1060℃的淬火加热温度下析出物的固溶不充分,很难得到良 好的高温蠕变强度;另一方面,如果超过1120℃,则晶粒粗化,韧性 降低,进而蠕变延性降低,因此上述温度范围为宜。又,淬火时的冷 却,在空冷以上的冷却速度下进行即可,可以选定适宜的冷却速度以 及冷却介质。
(回火)
回火是使上述淬火时生成的残余奥氏体分解,形成回火马氏体单 相组织,使碳化物、碳氮化物、拉弗斯相在基体中均匀地微细弥散析 出,并使位错回复,据此得到所要求的室温和高温强度、韧性,提高 高温蠕变强度。回火进行2次以上为宜,第1次回火为了使残余奥氏 体分解,要求加热到Ms温度以上的温度。该回火温度如果不足500℃, 则不能充分地分解残余奥氏体;另一方面,如果超过620℃,则在马氏 体组织区内碳化物、碳氮化物、以及拉弗斯相的析出优先进行,因此 在残余奥氏体区的碳化物、碳氮化物、以及拉弗斯相的析出变得不均 匀,高温蠕变强度降低,所以,第1次的回火温度在500℃~600℃的 范围为宜。又,第2次回火是得到良好的延性和韧性并使析出物稳定 化,以确保高温长时间蠕变强度。为此,在690℃以上的温度进行回 火为宜;另一方面,如果超过740℃进行回火,则不能得到所要求的室 温强度和高温强度,因此第2次的回火温度在690℃~740℃为宜。
发明的效果
根据本发明的耐热钢,提高长时间蠕变强度,通过将其用于涡轮 转子和涡轮构件所使用的材料,使得蒸气温度的高温化成为可能,有 助于提高发电效率。又,对于涡轮构件以外的用途,也可以提供高温 特性优异且耐久性优异的材料。
又,在本发明的成分范围,通过使以3[%Cr]+[%Mo]+[%W]- 15[%Re]-31.5表示的抑制加速蠕变参数为0以下,能够在更长时间保 持高的蠕变强度。
附图的简要说明
图1是表示本发明实施例(本发明钢)的蠕变应力与断裂时间的 关系的曲线图。
图2是表示本发明实施例(比较例)的蠕变应力与断裂时间的关 系的曲线图。
图3同样是表示基于Cr变动的蠕变应力与断裂时间的关系的曲线 图。
图4同样是表示蠕变应变速度与试验时间的关系的曲线图。
图5同样是表示抑制加速蠕变参数与蠕变速度不连续地开始加速 的时间的关系的曲线图。
图6同样是通过透射电子显微镜观察一部分供试验材料的调质状 态以及进行蠕变试验后的组织的照片图。
图7同样是通过透射电子显微镜观察另一部分供试验材料的调质 状态以及进行蠕变试验后的组织的照片图。
图8同样是表示一部分供试验材料随着在650℃的保持其硬度变 化的曲线图。
实施例
以下,一边与比较例对比一边说明本发明的实施例。
作为用于实施例的试验材料,准备了具有表1(本发明钢、比较钢) 所示组成(余量为Fe以及不可避免的杂质)的合金。这些合金作为50kg 试验钢锭经过熔炼和锻造后,实施规定的热处理。热处理是进行从1070 ℃开始的油冷淬火处理后,于570℃进行第1次回火,然后再于700℃ 进行第2次回火,得到各供试验材料。
表1 供试验 材料 No.     供试验材料化学成分(质量%)   抑制加速   蠕变参数                             合金成分                             选择成分    C    Cr    Mo    V    Nb    W    Co     B     N   Re   Si   Mn   Ni   Cu 本 发 明 钢   1   0.11   8.57   0.10   0.16   0.07   3.46   2.89   0.008   0.021   -   -   -   0.21   -     -2.23   2   0.12   8.96   0.11   0.16   0.06   3.46   2.88   0.008   0.020   -   -   -   0.21   -     -1.05   3   0.11   9.34   0.04   0.16   0.06   3.41   2.86   0.009   0.020   -   -   -   0.21   -     -0.03   4   0.11   9.77   0.10   0.16   0.06   3.88   2.88   0.008   0.020   -   -   -   0.20   -     1.79   5   0.12   9.02   0.08   0.16   0.06   3.91   2.82   0.008   0.021   0.23   -   -   0.20   -     -3.90   6   0.12   9.72   0.15   0.19   0.07   3.62   2.59   0.007   0.024   0.18   0.16   -   0.21   -     -1.27   7   0.12   8.97   0.14   0.18   0.06   3.60   2.60   0.007   0.017   0.20   -   -   0.05   0.43     -3.85   8   0.09   9.35   0.15   0.19   0.06   3.63   3.50   0.006   0.019   1.23   0.37   0.56   0.36   -     -18.12   9   0.09   9.81   0.15   0.18   0.06   3.70   5.26   0.008   0.019   2.24   -   -   0.14   -     -31.82   10   0.11   9.40   0.49   0.20   0.06   4.02   4.04   0.009   0.022   -   -   -   0.20   -     1.21   11   0.13   9.75   0.10   0.19   0.05   4.27   2.61   0.013   0.018   -   -   -   0.01   -     2.12   12   0.12   9.74   0.70   0.20   0.06   1.80   3.00   0.007   0.016   0.20   -   -   0.25   -     -2.78   13   0.12   9.78   0.16   0.20   0.06   2.77   2.66   0.007   0.017   0.21   -   -   0.25   -     -2.38 比 较 钢   21   0.12   10.53   0.10   0.15   0.06   3.46   3.00   0.008   0.019   -   -   -   0.20   -     3.65   22   0.12   11.37   0.10   0.15   0.06   3.40   3.05   0.010   0.020   -   -   -   0.22   -     6.11   23   0.11   10.55   0.12   0.20   0.06   5.40   5.49   0.008   0.018   -   -   -   0.18   -     5.67   24   0.10   11.99   0.10   0.15   0.06   3.50   9.02   0.009   0.017   -   -   -   0.20   -     8.07   25   0.06   10.06   0.48   0.15   0.04   3.84   3.03   0.008   0.021   -   -   -   1.11   -     3.00   26   0.06   10.33   0.81   0.15   0.04   4.26   4.96   0.008   0.018   -   -   -   0.55   -     4.56   27   0.11   7.58   0.10   0.16   0.06   3.45   2.85   0.007   0.023   -   -   -   0.20   -     -5.21   28   0.11   8.01   0.69   0.16   0.06   1.88   2.85   0.003   0.053   -   -   -   0.20   -     -4.90
抑制加速蠕变参数:3[%Cr]+[%Mo]+[%W]-15[%Re]-31.5
对于上述得到的供试验材料,于试验温度:650℃进行蠕变试验以 及蠕变断裂试验,评价蠕变强度。其结果示于图1和图2。
从图1和图2可以清楚看出,本发明钢尤其在长时间蠕变试验后 具有高的蠕变强度,并且蠕变应力-断裂时间曲线的倾斜也小、可经过 长时间仍然保持高的蠕变强度。
对于抑制加速蠕变参数,控制系数与添加量多的Cr尤其重要。图 3表示不同Cr含量的试验材料的蠕变应力-时间曲线,如果Cr含量过 低(比较钢No.27),则蠕变强度也低;如果Cr含量过高(比较钢No.21、 22),则即使短时间蠕变强度高,长时间侧的蠕变强度也降低。
又,在上述的本发明钢的钢种No.1、2、3、4、6以及上述比较 钢中的钢种No.21、22、27在650℃的蠕变应变速度-时间曲线示于图 4。对于比较钢No.21、22,在蠕变变形中途可看到不连续的蠕变应变 速度(即蠕变变形速度)的加速,但本发明钢1、2、3、6从蠕变初期 到蠕变断裂显示出连续的蠕变应变速度的变化。本发明钢No.4在9500 小时的位置可看到不连续的蠕变速度的加速,但与比较钢相比,可以 说显著地位于长时间侧。图4是在650℃、130MPa的蠕变条件下的试 验结果,如果再进一步在低应力条件下进行蠕变试验,则即使对于本 发明钢也发现了蠕变应变速度的不连续的加速。该不连续的加速开始 出现的时间位于短时间侧的钢种(比较钢)与在长时间侧开始出现的 钢种(本发明钢)相比较,在明显短的时间内发生蠕变断裂,又,比 较钢No.27、28的抑制加速蠕变参数低,虽看不到不连续的加速,但 与本发明钢相比较,总体上蠕变强度低。
如上所述,为了规定难以看到蠕变应变速度的不连续加速、并能 够间保持高蠕变强度到长时间的钢种,提出了抑制加速蠕变参数。图5 示出了在650℃的蠕变试验温度下抑制加速蠕变参数与可看到不连续 的蠕变应变的加速的时间的关系。抑制加速蠕变参数越大,不连续的 蠕变应变速度的加速越可在短时间侧看到,不能在长时间侧保持高的 蠕变强度。反之,抑制加速蠕变参数越小,则在长时间侧越看不到不 连续的蠕变应变速度的加速,能在长时间侧得到高的蠕变强度,
又,在曲线的左上方记载了本发明钢8种钢的数据,这些钢种是 在33,000小时的蠕变试验中看不到蠕变应变速度不连续地加速的钢 种。
又,本发明钢No.3和比较钢No.22在650℃、150MPa的条件下进 行蠕变试验后,将其平行部分的透射电子显微镜组织观察照片和调质 状态的组织观察照片一起示于附图(图6、7)中。图6的照片1(a) 是本发明钢No.3的蠕变前的显微组织,观察到微细的马氏体板条组织 以及微细的析出物(M23C6、拉弗斯相、MX)。图6的照片1(b)示出本 发明钢No.3在蠕变断裂后(6674小时)试验片平行部分的显微组织, 保持马氏体的微细组织,在板条内残留有微细析出的拉弗斯相,并观 察到位错的减少量少。
另一方面,图7的照片2(a)是比较钢No.22在蠕变前的显微组 织,与本发明钢No.3一样,观察到微细的马氏体板条组织。图7的照 片2(b)表示比较钢No.22在蠕变断裂后(2402小时)的显微组织, 与本发明钢No.3相比较,尽管在同一蠕变条件下进行了蠕变试验,但 比较钢No.22的断裂时间为2402小时,是在非常短的时间断裂的试验 片的显微组织,经过其显微组织观察,可看到马氏体的微细组织回复, 发生等轴的亚晶粒化。又,观察到微细析出的拉弗斯相消失、析出物 的凝聚粗化明显地进行,位错密度也显著减小。
图8表示本发明钢No.3和比较钢No.22伴随在650℃的保持其硬 度降低的行为。硬度测定是在蠕变试验片的螺纹区实施的,清楚表明, 与本发明钢No.3的硬度降低行为相比较,比较钢No.22的硬度降低显 著,这一行为可通过上述的显微组织观察加以说明。再者,造成该硬 度降低的显微组织的变化,同样也影响到长时间的蠕变强度,与图3 所看到的Cr含量对蠕变行为的影响一样,当Cr含量过高时,可看到 长时间蠕变强度降低。
相关专利内容
标题 发布/更新时间 阅读量
一种钢结构钢檩 2020-05-11 476
钢管 2020-05-11 1011
H型钢 2020-05-12 597
不锈钢复合钢 2020-05-12 943
钢坯翻钢机 2020-05-11 147
半钢炼钢造渣方法及半钢炼钢方法 2020-05-12 486
钢坯翻钢机 2020-05-11 319
半钢炼钢方法 2020-05-12 458
钢印机 2020-05-13 270
不锈钢板 2020-05-13 549
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈