首页 / 专利库 / 单位和数量 / 密度 / 低密度校验码的信道编码方法

密度校验码的信道编码方法

阅读:446发布:2021-09-19

专利汇可以提供密度校验码的信道编码方法专利检索,专利查询,专利分析的服务。并且一种用于数字 信号 传输领域的低 密度 校验码的信道编码方法,将低密度校验码的校验矩阵映射为一个几何体,通过不同的穿线方式分四层构造校验矩阵,每一层均对应几何体中的一种穿线方式,得到的四层结构构建成的校验矩阵再通过高斯消元法或上三 角 化的方法转化为对应的生成矩阵,生成矩阵用于 编码器 的码字生成,校验矩阵用于译码器的译码过程。本 发明 通过选取几何体中的穿线方式,可以构造出具有较大最小环长的校验矩阵,使低密度校验码得到更强的纠错性能,并在一定程度上克服了传统确定性构造方法码长与码率相互固定的缺点。构造的校验矩阵非常稀疏且具有一定的规律性,可以大大降低低密度校验码 解码器 的 硬件 复杂度。,下面是密度校验码的信道编码方法专利的具体信息内容。

1、一种低密度校验码的信道编码方法,其特征在于,将低密度校验码校验 矩阵映射成一个几何体,通过不同的穿线方式分四层构造校验矩阵,其中的点 代表校验矩阵的列,其中的线代表校验矩阵的行,每一层均对应几何体中的一 种穿线方式,选择穿线方式逐行生成校验矩阵,由构建成的校验矩阵再通过高 斯消元法或者上三化转化为对应的生成矩阵,生成矩阵用于编码器的码字生 成,校验矩阵用于译码器的译码过程。
2、根据权利要求1所述的低密度校验码的信道编码方法,其特征是,通过 以下的步骤进一步限定:
1)据所需的码长N,码率Rate选择参数k、L,令k与L均大于等于4且 L大于k,使低密度校验码校验矩阵列数N=k2*L,行数M=4*k*L,码率 Rate = 1 - 4 k , 最后得到的矩阵每一行包含k个“1”,每一列包含4个“1”,该校 验矩阵由四层构成,每一层ρ2行N列;
2)在三维坐标系中构造一个行,列,面边长分别为L、k、k的长方体, 并按照1至N的顺序为每个节点编号;
3)按照列的方向进行穿线,每条线包含k个节点,共有k*L条直线,每一 条直线对应校验矩阵的一行,将校验矩阵中的每一行对应直线穿过的节点设置 成1,其余的节点保持为0,构造校验矩阵的第一层;
4)同理,按步骤3)的方式在面的方向进行穿线,构造校验矩阵的第二层;
5)在行列方向构成的面上,按照步骤3)的方式在45度对角线方向进行 穿线,构造校验矩阵的第三层,需要注意的是,假设节点的行列坐标为(x,y), 当x>L时,取x=xmodL,同时当y>k时,取y=ymodk,这样就保证每个 节点都被取到一次,同时保证最小环长为8;
6)同理,在行面方向构成的面上,按照步骤5)的方式进行构造;
7)分别取k=k-1,k=k-2,并重复步骤1)-6),最后选择一个码 率最接近的码子;
8)将上述得到的四层结构构建成校验矩阵H,再将其通过高斯消元法或者 上三角化的方法转化为对应的生成矩阵G,生成矩阵G用于发端即LDPC编码器 端的码字生成,校验矩阵H用于收端即LDPC译码器端的译码过程,这样实现了 低密度校验码的信道编码。
3、根据权利要求1或者2所述的低密度校验码的信道编码方法,其特征是, 如果需要精确的码率,则通过裂行的方式进一步修正得到的校验矩阵。

说明书全文

技术领域

发明涉及一种信道编码方法,尤其涉及一种基于几何思想的低密度校验 码的信道编码方法。用于数字信号传输领域。

背景技术

低密度校验码(简称LDPC码)与传统的信道编码相比具有优越的性能。在 一个采用LDPC码的通信系统中,LDPC码可用生成矩阵和校验矩阵描述。在系 统的发端(编码器),生成矩阵用于码字的生成,而校验矩阵决定了生成矩阵的 产生;同时校验矩阵还直接用于接收端(译码器)的译码,因此一种LDPC码可 完全由它的校验矩阵所决定,LDPC码的性能好坏也取决于校验矩阵的构造。 LDPC码的校验矩阵是一个稀疏的矩阵,矩阵中“1”数目远小于“0”的数目。 校验矩阵由二进制数字“0”和“1”构成,大小为N*K的矩阵有N列K行,每 一列对应一个信息比特,每一行定义一个校验方程。如矩阵中第k行第n列为 “1”,意味着码字中的第n个比特参与了第k个校验方程。对于规则的LDPC 码校验矩阵每一列包含λ个“1”,每一行包含ρ个“1”,但LDPC码的校 验矩阵并不要求每一列每一行分别包含相同数目的“1”,因此在构造LDPC 码校验矩阵时λ和ρ是可变的,相应的可以用n和k的函数λ(n)、ρ(k)来表 示。给定λ(n)、ρ(k)时如何构造具有较大的最小环长的校验矩阵是提高LDPC 信道编码性能的关键之一。目前LDPC码的构造方法主要分为随机方法和确定 性地方法,随机方法可获得相对较好的纠错性能并可构造任意长度任意码率的 码子,但其生成的码子硬件实现都比较困难。确定性的方法构造的LDPC码具 有较强的规律,有利于硬件的实现。但当码长较长时其性能与随机构造的码子 仍有较大的差别。更重要的是,利用确定性的方法构造的LDPC码,其码长与 码率相对固定,这一点严重限制了确定性LDPC码在实际中的应用。目前的确 定性构造方法都不同程度的存在一些不足。
经对现有技术的文献检索发现,Y.Kou等人在《IEEE Trans.Inform. Theory》vol.47,pp2711-2736 Nov 2001发表的”Low-density parity-check codes based on finite geometries:A rediscovery and new results”, (IEEE信息理论学报2001年11月,第47卷,2711到2736页,基于有限几 何的低密度奇偶校验码:一些新发现与新结果)该文中提出利用有限几何的概 念通过生成多项式产生校验矩阵,虽然这种方法完全避免了长度为4的环的出 现,即最小环长为6(环长必为偶数),但该方法存在三个问题:(1)最小环 长为6,无法进一步提高最小环长,例如无法构造最小环长为8的校验矩阵。 (2)校验矩阵中“1”的数目比较多,导致LDPC译码器硬件复杂度较高。(3) 码长与码率相对固定,严重限制了其在实际情况中的应用。而其它一些确定性 构造方法也都不同程度的存在上述问题。

发明内容

本发明的目的在于克服现有技术中的不足,提出一种低密度校验码的信 道编码方法,使其译码性能更优,具有更强的纠错性能,编解码器硬件实现 容易。
本发明是通过以下技术方案实现的,本发明将核心的低密度校验码校验 矩阵映射成一个几何体分为四层分别构造,其中的点代表校验矩阵的列,其中 的线代表校验矩阵的行,每一层均对应几何体中的一种穿线方式,选择穿线方 式逐行生成校验矩阵,由构建成的校验矩阵再通过高斯消元法或者上三化转 化为对应的生成矩阵,生成矩阵用于编码器的码字生成,校验矩阵用于译码器 的译码过程。本发明通过选取穿线方式,可以构造出具有较大最小环长的校验 矩阵,使低密度校验码具有更强的纠错性能。
以下对本发明作进一步的说明,具体步骤如下:
1)据所需的码长N,码率Rate选择恰当的参数k、L。为了保证码子的 纠错性能,令K与L均大于等于4且一般情况下L大于k。使低密度校验码校 验矩阵列数N=k2*L,行数M=4*k*L,码率 Rate = 1 - 4 k , 由于构造的LDPC 码的校验矩阵一般而言都会包含冗余行(即矩阵不满秩),因此一般需要尝试 一下k与比k稍小一些的整数,以求找出最接近所需码率的设计参数。最后得 到的矩阵每一行包含k个“1”,每一列包含4个“1”。该校验矩阵由四层构 成,每一层ρ2行N列。
2)在一个坐标为(x,y,z)的三维坐标系中构造一个长方体,其x轴方向的 边长为L,y轴与z轴方向的边长为k并按照1至N的顺序为每个节点编号。
3)按照y轴的方向进行穿线,每条线包含k个节点,共有k*L条直线。 每一条直线对应校验矩阵的一行,将校验矩阵中的每一行对应直线穿过的节点 设置成1,其余的节点保持为0。构造校验矩阵的第一层。
4)同理,按照步骤3)的方式在z轴的方向上进行穿线,构造校验矩阵 的第二层。
5)在x与y方向构成的面上,按照步骤3)的方式在45度对角线方向进 行穿线,构造校验矩阵的第三层。这里需要注意的是,假设节点的行列坐标为 (x,y),当x>L时,取x=x mod L,同时当y>k时,取y=y mod k。这样一 来就可以保证每个节点都被取到一次,同时保证最小环长为8。
6)同理,在x与z方向构成的面上,按照步骤5)的方式进行构造。
7)分别取k=k-1,k=k-2,并重复步骤1)-6),最后选择一个码 率最接近的码子。
8)将上述得到的四层结构构建成校验矩阵H,再将其通过高斯消元法(或 者是上三角化的方法)转化为对应的生成矩阵G,生成矩阵G可用于发端(LDPC 编码器)的码字生成,校验矩阵H用于收端(LDPC译码器)的译码过程,这样实 现了低密度校验码的信道编码。
本发明通过以上的方法得到的码率非常接近要设计的码率。如果需要精 确的码率,则可以通过裂行的方式进一步的修正得到的校验矩阵。这种方式对 应的几何意义相当于将一条穿过k个节点的线段分成数段,因此不会影响最小 环长,也不会影响列重。而且该方法主要分裂冗余行,并且尽可能小的调整矩 阵,因此不会对矩阵的性能产生明显的影响。
本发明方法利用几何体性质将低密度校验码校验矩阵分为四层分别构造, 通过这种分层构造可以保证校验矩阵的最小环长为8,使译码性能更优。并且 在一定的程度上克服了传统确定性LDPC构造方法码长与码率相互固定的缺 点,同时该矩阵所特有的性质可以大大降低低密度校验码编解码器的硬件复杂 度,因此特别适用于数字信号传输(存储)系统高速编解码器的硬件实现。
附图说明
图1为本发明分层LDPC码校验矩阵第一层结构构成示意图。
图2基于几何思想的LDPC码对应立方体与穿线方式示意图。
图3基于几何思想的LDPC码码率调整方法几何思想示意图。
图4为一种码率0.5,码长1029的LDPC码校验矩阵第一层结构图。
图5为一种码率0.5,码长1029的LDPC码校验矩阵第二层结构图。
图6为一种码率0.5,码长1029的LDPC码校验矩阵第三层结构图。
图7为一种码率0.5,码长1029的LDPC码校验矩阵第四层结构图。
图8为一种码率0.5,码长1029的LDPC码校验矩阵结构图。
图4至8所示矩阵中,“1”用点表示,“0”未标出。

具体实施方式

为更好的理解本发明的技术方案,以下结合附图给出一个基于几何思想的 LDPC码构造方法的具体实施例
需要的LDPC码为码率0.5,码长1000,具体的步骤如下:
1)根据设计要求,选择参数选择k=7,L=21使低密度校验码校验矩 阵列数N=1029,行数K=588,每一行包含7个“1”,每一列包含4个“1”。 该校验矩阵由四层构成,每一层147行1029列。
2)在一个坐标为(x,y,z)的三维坐标系中构造一个长方体,其x轴方向的 边长为L,y轴与z轴方向的边长为k并按照1至N的顺序为每个节点编号。
3)按照y轴的方向进行穿线构造LDPC码校验矩阵的第一层。
4)按照z轴的方向进行穿线构造LDPC码校验矩阵的第二层。
5)在x与y方向构成的面上,按照45度对角线方向进行穿线,每条线包 含k个节点,共有k*L条直线。每一条直线也对应校验矩阵的一行,将校验矩 阵中的每一行对应直线穿过的节点设置成1,其余的节点保持为0。这里需要 注意的是,节点的坐标为(x,y),当x>L时,取x=x mod L,同时当y>k时, 取y=y mod k。
6)在x与z方向构成的面上,也按照45度对角线方向进行穿线,每条线 包含k个节点,共有k*L条直线。每一条直线也对应校验矩阵的一行,将校验 矩阵中的每一行对应直线穿过的节点设置成1,其余的节点保持为0。同理, 假设节点的坐标为(x,z),当x>L时,取x=x mod L,同时当z>k时,取 z=z mod k。此时码率为0.52。
7)为了进一步逼近设计码率,从冗余行中选出21行,每一行的1元素 平均分配到两行中。因此最后的校验矩阵一共609行,1029列。码率0.5。
8)将上述方法所得到的校验矩阵H,如图8所示,再将其通过高斯消元 法转化为对应的生成矩阵G。生成矩阵G用于发端(LDPC编码器)的码字生成, 校验矩阵H用于收端(LDPC译码器)的译码过程。
通过上述方法确定的基于几何思想的低密度校验码,为了其编译码器的 硬件实现方便,可对上述方法构造的校验矩阵进行行或列的互换,该互换不影 响低密度校验码性能。
相关专利内容
标题 发布/更新时间 阅读量
密度仪 2020-05-11 367
密度管道 2020-05-11 520
高密度PCB 2020-05-11 581
皇竹草中密度纤维板的制备方法 2020-05-11 163
密度计 2020-05-11 873
骨密度仪 2020-05-11 392
一种降低密度板甲醛的生产方法 2020-05-11 97
低厚度、高密度的存储器系统 2020-05-11 398
一种骨密度检测装置 2020-05-11 733
地板用中密度板 2020-05-11 583
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈