首页 / 专利库 / 复合材料 / 复合材料 / 形成复合材料的方法

形成复合材料的方法

阅读:766发布:2021-04-14

专利汇可以提供形成复合材料的方法专利检索,专利查询,专利分析的服务。并且一种形成基本上不可渗透空气的 复合材料 的方法包括将片状膜和环形材料引入形成在第一辊与第二辊之间的辊隙;将熔融 树脂 引入所述膜与所述钩可接合材料之间的辊隙;以及允许所述熔融树脂冷却,使得所述膜变得通过经冷却的树脂连接至钩可接合材料。,下面是形成复合材料的方法专利的具体信息内容。

1.一种形成复合材料的方法,该方法包括:
将片状膜和钩可接合材料引入形成在第一辊与第二辊之间的辊隙;
将熔融树脂引入所述膜与所述钩可接合材料之间的辊隙;以及
允许所述熔融树脂冷却,使得所述膜变得通过经冷却的树脂连接至钩可接合材料;
其中,所述膜、钩可接合材料和熔融树脂其中的每个包括以重量计至少85%的第一聚合体。
2.根据权利要求1所述的方法,其中,所述复合材料是空气不可透过的。
3 2
3.根据权利要求1所述的方法,其中,所述复合材料具有0cm /s/cm的空气可渗透性。
4.根据权利要求1所述的方法,其中,延伸自所述钩可接合材料的表面的纤维能够在所述膜通过经冷却的树脂连接至所述钩可接合材料之后接合钩固紧件的钩子。
5.根据权利要求1所述的方法,其中,所述第一聚合体采用聚丙烯。
6.根据权利要求1所述的方法,其中,所述膜和钩可接合材料包括聚丙烯。
7.根据权利要求1-6任一项所述的方法,其中,所述熔融树脂为以重量计至少90%的聚丙烯。
8.根据权利要求1-6任一项所述的方法,其中,所述熔融树脂进一步包括聚乙烯。
9.根据权利要求1-6任一项所述的方法,其中,所述钩可接合材料包括17克/平方米的纺粘聚丙烯基底,多个钩型短纤维延伸穿过所述基底。
10.根据权利要求1-6任一项所述的方法,其中,所述钩可接合材料包括30克/平方米的SMS聚丙烯基底,多个钩型短纤维延伸穿过所述基底。
11.根据权利要求1-6任一项所述的方法,其中,被引入所述辊隙的熔融树脂的厚度为
1密尔,所述膜的厚度为3密尔,钩可接合材料的重量为1.3至2.0osy。
12.根据权利要求1-6任一项所述的方法,其中,所述钩可接合材料的重量为1.3至
1.6osy。
13.根据权利要求1-6任一项所述的方法,其中,在被引入所述辊隙时,所述熔融树脂处于至少500华氏度的温度
14.根据权利要求1-6任一项所述的方法,其中,在被引入所述辊隙时,所述熔融树脂处于550华氏度到600华氏度的温度。
15.根据权利要求1-6任一项所述的方法,其中,在被引入所述辊隙时,所述熔融树脂处于580华氏度的温度。
16.根据权利要求1-6任一项所述的方法,其中,所述膜为铸膜。
17.根据权利要求1-6任一项所述的方法,其中,所述熔融树脂被引入所述辊隙,使得所述熔融树脂同时地接触所述膜和所述钩可接合材料。
18.根据权利要求1-6任一项所述的方法,其中,通过将所述熔融树脂施加至所述钩可接合材料以及旋转所述第一辊和第二辊来将所述膜、钩可接合材料和熔融树脂带入所述辊隙,所述熔融树脂被引入所述辊隙。
19.根据权利要求1-6任一项所述的方法,其中,通过将所述熔融树脂施加至所述膜以及旋转所述第一辊和第二辊来将所述膜、钩可接合材料和熔融树脂带入所述辊隙,所述熔融树脂被引入所述辊隙。
20.根据权利要求1-6任一项所述的方法,其中,所述第一辊和第二辊其中的至少一个经冷铸从而便于冷却所述熔融树脂。
21.根据权利要求1-6任一项所述的方法,其中,所述第一辊和第二辊二者都受到冷铸。
22.根据权利要求1-6任一项所述的方法,还包括压印所述复合材料。
23.根据权利要求22所述的方法,其中,压印所述复合材料包括使所述复合材料通过压印辊与支承辊之间,所述压印辊具有将所述复合材料压在所述压印辊与支承辊之间的多个凸起特征。
24.根据权利要求23所述的方法,其中,所述压印辊为加热辊。
25.一种形成复合材料的方法,该方法包括:
将片状膜和钩可接合材料引入形成在第一辊与第二辊之间的辊隙;
将熔融树脂引入所述膜与所述钩可接合材料之间的辊隙;以及
允许所述熔融树脂冷却,使得所述膜变得通过经冷却的树脂而连接至所述钩可接合材料,
其中,所述膜、钩可接合材料和熔融树脂其中的每个包括按重量计至少90%的第一聚合体,所述复合材料是空气不可渗透的,延伸自所述钩可接合材料的表面的纤维能够在所述膜通过经冷却的树脂连接至所述钩可接合材料之后接合钩固紧件的钩子。

说明书全文

形成复合材料的方法

[0001] 相关申请的交叉引用
[0002] 本申请要求2010年4月15日提交的美国临时申请No.61/324,545的权益,其通过引用的方式结合于此。

技术领域

[0003] 本发明涉及形成复合材料的方法。

背景技术

[0004] 多层复合材料用于各种不同类型的应用。在特定情况下,这种复合材料形成为使得复合材料基本上是不可透过液体的和/或不可透过空气的。不可透过液体和/或不可透过空气的复合材料可使用在下述产品中,即用于防止液体和/或空气在使用期间从产品中逸出。

发明内容

[0005] 在本发明的一个方面,一种形成复合材料的方法,该方法包括:将片状膜和钩可接合材料引入形成在第一辊与第二辊之间的辊隙;将熔融树脂引入所述膜与所述钩可接合材料之间的辊隙;以及允许所述熔融树脂冷却,使得所述膜变得通过经冷却的树脂连接至钩可接合材料。所述膜、钩可接合材料和熔融树脂其中的每个包括至少大约85%重量份的第一聚合体。
[0006] 一种形成复合材料的方法,该方法包括:将片状膜和钩可接合材料引入形成在第一辊与第二辊之间的辊隙;将熔融树脂引入所述膜与所述钩可接合材料之间的辊隙;以及允许所述熔融树脂冷却,使得所述膜变得通过经冷却的树脂而连接至所述钩可接合材料。所述膜、钩可接合材料和熔融树脂其中的每个包括至少大约90%重量份的第一聚合体,所述复合材料基本上是空气不可渗透的,延伸自所述钩可接合材料的表面的纤维能够在所述膜通过经冷却的树脂连接至所述钩可接合材料之后接合钩固紧件的钩子。
[0007] 这些实施例可包括下述特征其中的一个或多个。
[0008] 在一些实施例中,所述复合材料基本上是空气不可透过的。
[0009] 在特定实施例中,所述复合材料具有0cm3/s/cm2的空气可渗透性。
[0010] 在一些实施例中,延伸自所述钩可接合材料的表面的纤维能够在所述膜通过经冷却的树脂连接至所述钩可接合材料之后接合钩固紧件的钩子。
[0011] 在特定实施例中,所述第一聚合体采用聚丙烯。
[0012] 在一些实施例中,所述膜和钩可接合材料基本上包括聚丙烯。
[0013] 在特定实施例中,所述熔融树脂为至少大约90%重量份的聚丙烯。
[0014] 在一些实施例中,所述熔融树脂进一步包括聚乙烯。
[0015] 在特定实施例中,所述钩可接合材料包括17克/平方米的纺粘聚丙烯基底,多个钩型短纤维延伸穿过所述基底。
[0016] 在一些实施例中,所述钩可接合材料包括30克/平方米的SMS聚丙烯基底,多个钩型短纤维延伸穿过所述基底。
[0017] 在特定实施例中,被引入所述辊隙的熔融树脂的厚度为大约1密尔,所述膜的厚度为大约3密尔,钩可接合材料的重量为大约1.3至大约2.0osy。
[0018] 在一些实施例中,所述钩可接合材料的基本重量为大约1.3至大约1.6osy。
[0019] 在特定实施例中,在被引入所述辊隙时,所述熔融树脂处于大约500华氏度(例如,大约550华氏度到大约600华氏度的温度)。
[0020] 在一些实施例中,所述膜为铸膜。
[0021] 在特定实施例中,所述熔融树脂被引入所述辊隙,使得所述熔融树脂基本上同时地接触所述膜和所述钩可接合材料。
[0022] 在一些实施例中,通过将所述熔融树脂施加至所述钩可接合材料以及旋转所述第一和第二辊来将所述膜、钩可接合材料和熔融树脂带入所述辊隙,所述熔融树脂被引入所述辊隙。
[0023] 在特定实施例中,通过将所述熔融树脂施加至所述膜以及旋转所述第一和第二辊来将所述膜、钩可接合材料和熔融树脂带入所述辊隙,所述熔融树脂被引入所述辊隙。
[0024] 在一些实施例中,所述第一和第二辊其中的至少一个经冷铸从而便于冷却所述熔融树脂。
[0025] 在特定实施例中,所述第一和第二辊二者都受到冷铸。
[0026] 在一些实施例中,所述方法还包括压印所述复合材料。
[0027] 在特定实施例中,压印所述复合材料包括使所述复合材料通过压印辊与支承辊之间,所述压印辊具有将所述复合材料压在所述压印辊与支承辊之间的多个凸起特征。
[0028] 在一些实施例中,所述压印辊为加热辊。
[0029] 实施例可包括下述优势其中的一个或多个。
[0030] 在特定实施例中,使用这里所述的各种方法形成的复合材料基本上完全包括单一类型的聚合体(例如,聚丙烯)。复合材料的每个成分或层例如包括重量份至少大约85%的单一类型的聚合体(例如,重量份至少大约90%,重量份至少大约95%)。这种复合材料可以是例如可以容易进行再循环。另外,这种复合材料可提供改善的可焊接性。例如,因为复合材料的各种成分基本上完全采用相同类型的材料形成,所以相对容易地将那些部件热结合到一起。
[0031] 在一些实施例中,使用这里所述的各种方法的复合材料是空气不可渗透的。因此,复合材料可用于形成可充气囊(例如,使用在医药产品中的可充气囊,诸如可充气压缩装置)。该复合材料可以可选择地或者额外地基本上不可渗透液体,允许该复合材料用作液体障碍。这种液体障碍可以有利地使用在产品中,诸如医疗冷外包,其中希望防止可冻结的冷却溶液或熔化以及泄漏离开该产品。
[0032] 在特定实施例中,使用这里所述的各种方法形成的复合材料包括钩可接合表面。在这种实施例中,该复合材料可用于形成可释放地固紧的产品。这种产品的实例包括医疗外包和压缩装置。
[0033] 在一些实施例中,该复合材料在形成入或结合入产品之前被压印。已经发现,所述复合材料的压印区域便于所述复合材料的折叠或弯折。当可充气产品,诸如医疗压缩装置,使用压印复合材料形成时,与对产品充气相关联的噪音可以由于压印的复合材料而减小。例如,通常与相对薄的材料的充气相关联的皱曲噪音可以由于复合材料方便沿着压印区域而折叠或弯折来减小。这可以尤其有利于用于血压检测装置的血压套袖,在充气和放气袖套的同时检测到声音信号
[0034] 这里所述的特定方法可用于快速地且高效地产生基本上完全采用单一类型的聚合体(例如,聚丙烯)形成的复合材料,其基本上是不可渗透空气的和/或不可渗透液体的,包括钩可接合表面。已经发现,例如,足够量的熔融树脂聚合体可施加在聚合体膜与聚合体环形材料之间从而实现基本上空气不可渗透和/或液体不可渗透的复合材料,而不损坏环形材料的环的功能性,即使当熔融树脂和环形材料基本上完全采用相同类型的聚合体材料形成(例如,即使当重量份至少大约85%的熔融树脂和重量份至少大约85%的开环形材料采用相同类型的聚合体材料,诸如聚丙烯),因此具有类似地熔融温度。
[0035] 其他方面、特征和优势将从说明书附图以及权利要求中变得清楚明了。

附图说明

[0036] 图1是在使用期间用于形成基本上不可透过空气的复合材料的层压系统的示意图。
[0037] 图2是图1中的区域2的放大视图,示出环,能够接合钩固件产品的钩子,延伸自复合材料的环材料层。
[0038] 图3是图1中的区域3的放大视图,示出复合材料的结合多层。
[0039] 图4和5分别是部分地采用使用图1示意性地示出的方法形成的基本上不可透过空气的复合材料制造的血压袖带的前视图和侧视图。
[0040] 图6示出使用期间的图4和5的血压袖带。
[0041] 图7示出通过折叠图1的单片复合材料并且然后将折叠片的重叠区域焊接到一起而制造图4-6所示的类型的多个血压袖带的方法。
[0042] 图8示出通过将图1的两片复合材料焊接到一起而制造图4-6所示类型的多个血压袖带的备选方法。
[0043] 图9是部分地采用使用图1示意性地示出的方法形成的基本上不可透过空气的复合材料制造的序贯压缩装置的前视图。
[0044] 图10示出配置使用的图9的序贯压缩装置。
[0045] 图11是尿液引流袋的透视图

具体实施方式

[0046] 图1示意性地示出使用期间的层压系统。如图1所示,系统100包括压辊102和两个支承辊104和106。辊102和104定位成彼此相邻并且在它们的外周表面之间形成辊隙108。压力辊102和支承辊104连接至达,马达配置成在使用期间沿相对方向旋转辊102和104,如箭头110和112所示。当采用这种方式操作时,压力辊102和支承辊104能够相互配合从而穿过辊隙108抽出材料(例如,膜,环形材料和/或树脂),同时将压力施加至穿过辊隙108的材料。
[0047] 支承辊106定位成相邻于压力辊112,支承辊106位于压力辊102的与支承辊104相对的一侧上。支承辊106装配有轴承,使得支承辊106能够响应于压力辊102的旋转而旋转。支承辊106用作压力辊102的支承从而帮助防止压力辊102由于辊隙108内部压力增加而向外扭曲。因此,支承辊106帮助确保在使用期间在辊隙108中保持所需的均匀压力。
[0048] 压力辊102是辊,涂覆有聚四氟乙烯(PTFE)。典型地,压力辊102的直径为大约18英寸到大约24英寸。支承辊104和106由钢形成并且不具有涂层。辊102、104和106的每个能够进行冷铸(chilled)。例如,这些辊可包括冷却通道,冷却液体诸如水可以在使用期间流动通过该冷却通道。冷却液体可以被促使在使用期间连续地通过该通道,从而保持这些辊处于降低的温度。
[0049] 开槽模具挤出器114定位在辊隙108的上方。挤出器114包括模具115,熔融树脂在使用期间被挤出通过该模具。挤出器114是竖直和水平可调节的,使得挤出器模具115可以定位在相对于辊隙108的多个不同位置
[0050] 两个可旋转的轴116和118定位在辊102和104的上方。可旋转的轴116和118连接至能够以多个不同转速驱动轴116和118的马达。如图1所示,轴116配置成使得膜辊128能够定位在其上,轴118配置成使得环形材料辊130能够装载到其上。如下所述,在使用期间,来自于膜辊128的膜122和环形材料辊130的环形材料124可以通过使轴116和118旋转而被引入辊隙108,致使辊128、130展开。
[0051] 系统100也包括称为卷绕器120的另一可旋转轴。卷绕器120,类似于轴116和118,连接至能够以多个不同转速驱动卷绕器120的马达。如下所述,基本上可透过空气的复合材料121从辊隙108离开,能够卷绕到卷绕器120上进行存储、运输或者进一步由旋转卷绕器120处理。辊102、104、106、轴116、118和卷绕器120的转速能够受到控制,使得所需的张力施加至离开辊隙108并且卷绕到卷绕器120上的复合材料。
[0052] 仍然参照图1,现在将说明制造基本上不透过空气的复合材料121的示例性方法。在制造过程期间,片状膜122、环形材料124和熔融树脂126输送至辊隙108。膜122和环形材料124通过其上安装有那些辊的旋转轴116和118从辊128和130输送至辊隙108,熔融树脂126从挤出器114挤出进入辊隙108。在示例性方法中,膜122、环形材料124和熔融树脂126基本上完全由相同类型的材料形成。尤其地,那些部件的每个基本上完全由聚丙烯形成。如下所述,这些部件其中的一个或多个可包括聚合体或者不同于聚丙烯的聚合体,但是用于形成这些部件的大多数材料(例如至少占重量的大约85%)是聚丙烯。
[0053] 形成膜122、环形材料124和熔融树脂126的材料的熔融温度典型地彼此不同,相差不超过25华氏度(例如,不超过大约20华氏度,不超过大约15华氏度,不超过大约10华氏度)。如上所述,膜122、环形材料124和熔融树脂126每个包括实质的量的聚丙烯。因此,形成这些部件所采用的实质部分的材料将具有类似(例如,基本上相同)的熔融温度。由于这些材料的类似熔融温度,所以可以相当复杂地将熔融树脂结合到环形材料125而不熔化环形材料124的环。但是,如下所述,已经发现这可以通过使用这里所述的制造过程参数和材料实现。
[0054] 膜122是片状的聚丙烯浇铸膜,厚度为大约1mil(密尔)至大约5mil(例如,大约3密尔)。使用膜122与熔融树脂126组合可以帮助确保复合材料基本上是不透空气的。
[0055] 简单参照图2,即图1中的区域2的放大视图,环形材料124包括纺粘(spunbond)聚丙烯基底125,具有针刺穿过以形成延伸自基板125的一侧的环131的聚丙烯短纤维127和129。基底125的基础重量为大约17克/平方米。短纤维127和129以4:1的比例设置在基底125上。短纤维127可从Asota Mills买到,产品号为L10D。短纤维129可从Asota Mills买到,产品号为CL10。环形材料124的整体基础重量为大约1.3盎司/平方码(osy)到大约1.6osy(例如,大约1.47osy)。
[0056] 为了形成环形材料124,短纤维127和129设置在基底125的表面上从而形成短纤维层。基底125与短纤维127和129的组合然后馈送通过针刺机,该针刺机包括定位在短纤维127、129上方的叉状针。随着基底125和短纤维127、129通过针的下方,针被驱动穿过短纤维层和基底125。由于针的构造,随着针被驱动向下通过基底125,它们承载短纤维127、129其中的一些穿过基底125从而形成环131。随着针然后退回离开基底125,环形短纤维131仍然延伸自基底125的与短纤维层相对的下侧。形成于类似于环形材料124的实例方法更详细地记载在US2004/0157036和US2009/0203280中,通过引用的方式结合于此。
[0057] 再次参照图1,熔融树脂126是聚丙烯和少量聚乙烯的混合物。该混合物一般地包括以重量计至少大约85%(例如,以重量计至少大约90%,以重量计至少大约95%)的聚丙烯以及至多大约15%重量份(例如,以重量计至多大约10%,以重量计至多5%)的聚乙烯。少量聚乙烯有助于增强熔融树脂126的流动特性,使得熔融树脂能够采用高度受控的方式从挤出器114输送到辊隙108。
[0058] 熔融树脂126输送至膜122与环形材料124之间的辊隙108。挤出器114定位在辊隙108上方的大约6英寸至大约18英寸(例如,大约12英寸)。熔融树脂126以大约2000psi标准量度至大约3000psi标准量度的压力(例如,大约2400psi标准量度)挤压通过挤出器模具115并且以大约500华氏度至大约650华氏度(例如,大约580华氏度)的温度输送至辊隙108。因此,树脂层126为大约0.5密尔至大约1.5密尔(例如,大约1密尔)厚,形成在膜122与环形材料124之间。
[0059] 如图1所示,挤出器114已经经过调节,使得熔融树脂126大概输送至辊隙108的中心。因此,熔融树脂126在基本上相同的时间接触膜122和环形材料124。
[0060] 辊102、104和106配置成产生大约10psi标准量度至大约15psi标准量度的辊隙压力。在一些情况下,辊102、104和106配置成产生大约12psi标准量度的辊隙压力,等于大约30磅/线性英寸的压力。以磅/线性英寸表示的压力可以确定为标准量度压力和压力辊102的直径和长度的函数。压力辊102和支承辊104沿相对方向的旋转吸引膜122、环形材料124和熔融树脂126穿过辊隙108。随着这些材料通过辊隙108,辊隙108内部的压力将树脂126压在膜122与环形材料124之间。相对低的辊隙压力帮助确保延伸自环形材料124、接触压力辊102的外周表面的环,在层压过程期间没有被损坏(例如,没有熔化)。
[0061] 另外,压力辊102和支承辊104冷铸至大约50华氏度至大约80华氏度的温度(例如,大约65华氏度)。冷却辊102和104便于在其通过辊隙108时冷却熔融树脂126。另外,辊102和104的温度降低有助于防止环形材料124的环由于熔融树脂125的高温而熔化。
[0062] 也已经发现,环形材料124的基底125的重量足以防止环形材料124的环131在上述处理条件下熔化。同时,环形材料124允许所得到的复合材料121具有所需的灵活性,并且因为环形材料124为相对便宜的材料,所以有助于保持制造复合材料121的成本低于使用特定传统制造技术制造基本上不透过空气的方法的成本。
[0063] 图3示出复合材料121的放大示意图。如图3所示,复合材料121包括由膜122形成的膜层,由环形材料124形成的环形材料层,以及由树脂126形成的树脂层。这些复合层粘合到一起作为上述层压过程的产物。尤其地,在层压过程期间接触熔融树脂125的膜122的部分熔化并且焊接到树脂层。类似地,如图3示意性地示出,在层压过程期间接触熔融树脂126的环形材料124的短纤维127、129和基底125的部分由熔融树脂126封装并且熔化,使得环形材料124变成焊接至树脂层。虽然熔融树脂126的高温以及环形材料124和熔融树脂126主要通过相同类型的材料(例如,聚丙烯)形成并因此具有类似的熔融温度这一事实,环形材料124的环131的钩子可接合性在层压过程期间被保留。熔融树脂126的温度和流量,冷铸辊102、104的温度以及环形材料124的构造经选择来防止环131熔化并因此失掉其钩子可接合性。因此,延伸自复合材料121的环形材料层的外表面的环131是钩子可接合的。复合材料121例如可以通过特定环固紧件产品的钩子接合,诸如HTH819钩子和/或HTH851钩子,都可以从Velcro USA(新罕布什尔州的曼彻斯特)买到。因此,由于上述制造过程,复合材料121可有利地用于制造产品,其好处为具有一个或多个钩子可接合的表面。
[0064] 再次参照图1,复合材料121在围绕卷绕机120缠绕入辊123之前被压印。为了压印复合材料121,复合材料121通过压印台150,包括压印辊152和橡胶(例如,化橡胶)支承辊154。辊隙156形成在压印辊152与支承辊154之间。压印辊152采用加热(例如,蒸汽加热)钢辊,具有延伸自其外表面的凸起蜂窝型区域158的模式。可选择地,压印辊152可以包括任何各种其他的凸起模式,诸如钻石型、方形、三形、圆形、直线、曲线(例如,正弦曲线)、标志等。
[0065] 压印辊152经加热达到大约300华氏度到大约400华氏度(例如,大约303华氏度)的温度,压印辊152和支承辊154配置成在辊隙156中产生大约35psi标准量度至大约80psi标准量度的压力(例如,大约65psi标准量度)。复合材料121以大约20英尺/分钟至大约80英尺/分钟(例如,大约30英尺/分钟)的速率通过辊隙156。随着复合材料121通过辊隙156,压印辊152的凸起区域158接触复合材料121的膜层并且将复合材料121的相邻区域压缩在压印辊152与橡胶支承辊154之间,在复合材料121中形成凹陷。可以相信,这些凹陷作为自然的铰接点,便于复合材料121的折叠或弯折,如下文将讨论的那样。
[0066] 在特定实施例中,复合材料121的环形材料层为复合材料121形成大约30克/英寸宽度到大约100克/英寸宽度(例如,大约35克/英寸宽度到大约45克/英寸宽度)的平均剥离强度。Velcro Group Corporation研发的测试用于确定复合材料121的剥离强度。该测试需要使用1.5英寸宽和2.0英寸长的复合材料121的样品,以及1.0英寸宽×1.0英寸长的851钩带样品,由VelcroUSA(新罕布什尔州的曼彻斯特)制造。1.0英寸宽×2.0英寸宽的SMS非织织物/无纺织物使用双面胶带固紧至钩子样品的背面,使得1.0英寸宽×1.0英寸长的SMS非织织物片延伸自钩子样品的端部。钩子带样品使用最小压力叠置在复合材料样品(面对面)上(即,产生仅足够的钩子和环接合从而能够继续进行测试过程所需的压力量)。钩子带和复合材料样品叠置成使得钩子样品的机器方向垂直于复合样品的钩子材料的机器方向。具有三个辊、每个辊的重量为大约4.5磅、宽度为大约1.75英寸并且硬度80的辊下机器(roll down machine)然后用于将复合材料样品的环形材料与钩子带样品的钩子接合。辊下机器的辊以12英寸/分钟的速度辊压在叠置的样品上。这些辊在叠置的样品上进行两个完整的循环,其中一个完整的循环构成在叠置样品的整个长度上的辊压,然后再回来。可用于这一过程的辊下机器的实例是可从Chem Instruments购买的RD-3000辊下机器。
[0067] 延伸自钩子样本的端部的SMS非织织物片和复合材料样品的对应端区域然后插入拉力测试器的夹板。延伸自钩子带样本的SMS非织织物片设置进入拉力测试器的可移动的上夹板,复合材料的端部区域设置入拉力测试器的固定的下夹板。夹板具有大约0.5英寸的最大标准量度长度(即,上夹板与下夹板之间的开度)。采用固紧在夹板中的样品,上夹板以12英寸/分钟的速率移动离开下夹板。拉力测试器配置成在测量到0.05磅的力时开始记录数据,拉力测试器配置成使夹片移动彼此离开直到夹片分离开至少1.5英寸。适当的拉力测试器的实例是MTS Sintech 1/S。上述测试以标准气压(69.8-77.0华氏度和45-55百分比的相对湿度)而执行,测试实例在测试之前在标准气压下预先调制22-26小时。
[0068] 随着夹片彼此分离,拉力测试器检测钩子与环接合得到的阻力。这一在样品分离的过程中的平均测量力然后确定并且除以接合样品的宽度(在这种情况下,1.0英寸)从而确定剥离强度,单位为克/线性英寸。上述测试重复十次,并且根据那十次测试确定平均剥离强度。
[0069] 在这些实施例中,复合材料121的环形材料层为复合材料121设置大约2000psi至大约5000psi的平均剪切强度(例如,大约3400psi到大约4200psi)。由Velcro Group Corporation研制的测试用于确定复合材料121的剪切强度。这一测试需要使用1.5英寸宽乘以2.0英寸长的复合材料121的样品以及1.0英寸宽乘以2.0英寸长的851钩子带的样品,由Velcro USA(新罕布什尔州的曼彻斯特)制造。钩子带样品由1.0英寸宽乘以2.0英寸长的掩模带件支承从而防止在测试期间钩子带样品断裂。钩子带样品叠置在复合材料样品上并且样品采用上述方式由辊下机器接合。因此,样品的端部区域重叠0.5英寸。因此,1.5英寸长的复合材料样品延伸自重叠区域的一端并且不是面接合钩子带样品,1.5英寸长的钩子带样品延伸自重叠区域的相对端并且不与复合材料样品进行面接合。钩子带和复合材料样品叠置成使得钩子样品的机器方向和复合材料的环形材料的机器方向沿着相同的方向延伸。钩子带和复合材料样品的自由的非面向接合端部区域然后插入拉伸测试器的夹板(例如,MTS Sintech 1/S拉力测试器)。钩子带样品的端部区域设置入拉伸测试其的可移动的上夹板,复合材料样品的端部区域设置入拉力测试器的固定的下夹板。夹板的最大标准计量长度(即,上夹板与下夹板之间的开度)为大约2.0yingcun。当样品的片固紧在夹板中时,上夹板以12英寸/分钟的速率移动离开下夹板。夹板移动离开足够的距离从而实现接合钩子带与复合材料样品的剪切。上述测试以标准大气压(69.8-77.0华氏度和45-55百分比相对湿度)执行,测试样品在标准气压下在测试之前预调制22-26小时。
[0070] 随着夹片彼此分离开,拉力测试器测量由钩子与环的接合得到的阻力。峰值载荷(即,最高测试力)然后除以样品的重叠区域(在这种情况下,0.5英寸长乘以1.0英寸宽)从而确定剪切强度,单位为磅/平方英寸。上述测试重复十次并且平均剪切强度根据这十次而确定。
[0071] 因此各种部件或复合材料121层的每个主要采用相同类型的材料形成(例如,聚丙烯),复合材料121是可循环的。因此,复合材料121可以容易地用于任何单独使用或限制使用产品,其中的一些如下所示,采用环境保护和成本有效的方式。
[0072] 除了可钩子接合并且可自循环,膜122、环形材料124和冷却树脂126的组合在其3
间配合从而使得复合材料121基本上可不透过空气。复合材料121可以例如具有0cm/s/
2 3 2
cm(0ft/min/ft),使用ASTM D737-96测试。
[0073] 在复合材料121离开辊隙108之后,复合材料围绕卷绕机120缠绕为辊123。随着复合材料121卷到卷绕器120上,卷绕器120能够提供大约50psi标准量度的张力到复合材料121。将复合材料121卷绕为辊可允许复合材料方便地运输或者大量存储。
[0074] 图1所示的示例性方法可用于高效地以高速率制造复合材料121。例如,该方法可用于以至少大约200线性英寸/分钟的速率制造复合材料121(例如,至少400线性英寸/分钟,至少大约600线性英寸/分钟)。在一些情况下,复合材料以大约200线性英寸/分钟至大约800线性英寸/分钟制造(例如,大约400线性英寸/分钟至大约600线性英寸/分钟)。所生产的复合材料121的宽度典型为大约6英尺宽。但是,复合材料可采用更宽或更窄的行形成。由于系统100的快速制造速度,示例性的方法可用于低成本地制造基本上空气不透过、钩子可接合并且可循环的材料。
[0075] 如上所述,复合材料121可用于形成任何各种不同的产品。一个这种产品的实例是医疗压缩装置(例如,血压袖带)200,示出为图4和5。压力袖带200包括可充气囊202以及整体地延伸自可充气囊202的带部204。配件208能够与柔性管210连接(如图6所示),柔性管210连接至手动操作的212(也示出为图6),与可充气囊202流体连通。如下所述,可充气囊202和带部204能够通过折叠复合材料121片而形成,然后将复合材料121的折叠片的重叠半焊接到一起。由于这一过程,焊缝214形成在可充气囊202的外周周围并且围绕带部204的外周。
[0076] 参照图5,复合材料121的环形材料层的环131延伸自可充气囊202和带部204的外表面。环131,如上所述,是钩子可接合的。另外,环131提供柔软的舒服的表面,在使用期间接触用户的皮肤。另外,包括环可接合钩阵列的钩子固紧件216连接(例如,焊接)至带部204的外表面。钩固紧件216布置成使得当血压袖带200卷绕围绕病人臂并且带部204重叠其本身时,钩固紧件216可以可释放地接合延伸自带部204的相对外表面的环131从而牢固地固紧血压袖套200围绕病人的胳膊。环固紧件216的环可接合钩可以例如模制于,从美国的Velcro买到,HTH819,HTH851,或者任何其他钩子,能够可释放地接合复合材料121的环131。典型地,钩子主要(或者完全)采用与复合材料121的各种部件相同的聚合物形成。在特定实施例中,例如,钩子固紧件216、复合材料121的膜122以及复合材料121的环形材料124采用基本上完全的聚丙烯形成,复合材料121的树脂126主要由聚丙烯形成。如上所述,例如,复合材料121的树脂层可包括按重量计至少大约85%(例如,至少大约90%重量份,至少大约95%重量份)的聚丙烯,重量计至多大约15%(例如,至多大约10%重量份,至多大约5%重量份)的聚乙烯。
[0077] 图6示出围绕病人胳膊218的上部卷绕的血压袖套200。随着泵212操作,柔性管210与配件208配合,用作延伸自泵212以采用空气填充可充气囊202的导管。这样将血压袖套200围绕病人的胳膊218紧固,直到血液流受到限制,并且能够在从囊202逐渐地释放空气期间测量血压。典型地,可以使用血压袖套200的自动血压检测装置,适于检测随着血压袖套200充气并且随着血压袖套200放气而通过病人胳膊的血液(例如,通过声音信号)。通过随着血液袖套正被充气而检测通过病人胳膊的血液,血压检测装置能够确定一个点,在该点,血液不再被检测流动通过病人的胳膊。在这一点,袖套缓慢地进行放气。随着袖套正被放气而由血压检测装置首先检测以及最后检测血液流时所处的点能够用于表示病人的脉动和舒张血压。
[0078] 已经发现,复合材料121的压印模式帮助减小与充气和放气血压袖套200相关的噪音。不需要被理论束缚,可以相信,在压印过程期间形成在复合材料121中的凹陷作为铰链,因此减小复合材料121的弯折阻力。进一步相信,这一减小的弯折阻力减小与充气和放气血压袖套200相关联的噪音,并因此改善血压检测装置精确地识别流过病人胳膊的血液可不再听到时所处的点的能力。这样能够,例如,减小血压检测装置由于由充气袖套导致的背景噪音造成的预先不能够检测通过病人胳膊的血液流的可能性。因此,能够减小血压检测装置预先使血压套袖200放气并且不得不重新启动血压检测过程的可能性。
[0079] 由于复合材料121能够使用这里所述的各种方法得以高效地制造,所以血压袖套200可以相对成本低廉地制造。这允许血压套袖200制造为有限的使用(例如,单独使用)装置,能够例如用于创伤室或者其他地方,在这些地方,袖套可能在使用期间被血液或者其他体液污染。在被污染之后,血压套袖200能够简单地被抛弃。另外,因为复合材料121的各种部件主要采用相同的材料形成(例如,聚丙烯),所以血压套袖200容易再循环使用。这对于血压套袖200的产品来说具有有益的特性,在被扔掉之前能够仅使用有限的次数(例如,十次或更少,或者仅一次)。
[0080] 图7示意性地示出制造图4-6所示的类型的多个医疗压缩装置的方法(例如,血压袖套)。如图7所示,这一示例性的方法使用水平囊带系统300来重叠(例如,通过折叠)并且焊接单片复合材料121在选定的粘合区域,从而形成血压袖套200的带部204和可充气囊202。在图7的右侧开始,复合材料121片从定位在可旋转轴302的复合辊123引入,进入成型器304,其中复合材料121围绕轴线A折叠从而形成复合材料121的重叠区域。一旦在成型器304上定心,那么复合材料121通过驱动台306和308,其分别定位在系统300的入口和出口附近并且相互连接从而一致地作用。驱动台306包括辊,延伸过折叠的复合材料的整个宽度从而拉动片状复合材料通过成型器304。与下游驱动台308相协调地,驱动台306也拉伸该材料。由于复合材料121处于复合辊123上的布置,在折叠之后,膜122的折叠区域接触彼此,环131延伸自折叠片的外表面。因此,折叠复合材料121的外表面是可钩子接合的。
[0081] 通过指引动作,片型复合材料121通过成型器304到达一对焊接台1310和312,其中密封杆将折叠复合材料121的选定重叠区域焊接到一起。经折叠的复合材料121然后通过焊接台310和312到达插入台314。随着折叠复合材料121通过插入台314,由焊接台310与312形成的焊条之间的折叠复合材料121的部分通过一对相对作用的吸入杯316接合。焊条之间的囊的上部打开从而使得配件208能够设置到焊缝之间的开口中。
[0082] 用于打开囊的侧面的一个备选方法是使用环可接合的固紧件(例如,钩子固紧件)来接合并且拉回折叠复合材料121的环承载侧。这可用于轻轻地打开侧面,此时撑杆刀片可插入并且扩展开从而完成该动作。用于打开的另一方法是使得折叠轴线A稍微偏离整个卷筒宽度的中心。因此,当围绕轴线A折叠时,折叠材料的一个边缘将延伸得高于另一个。假定相对边缘之间的高度差,吹入囊区域或机械装置诸如夹钳中的高压空气能够打开所述侧面。
[0083] 当配件208在开口中保持定位时,下游驱动台308,与驱动台306结合地,指引折叠且焊接的材料从插入台314到上部密封台318。上部密封台318的密封夹片的移动类似于焊接台310和312处的热密封杆的移动,能够向内移动从而焊接折叠复合材料121的上边缘并且能够向外移动从而释放折叠复合材料121的上边缘。虽然系统300在焊接台310和312处形成焊条,并且在插入台314插入配件208,但是在上部密封台318处的密封夹片接合从而沿着折叠复合材料121的最终变成血压袖套200的带部204的那一部分密封关闭折叠复合材料121的上部。同时地,在相邻上部密封台320处的密封夹片接合从而焊接折叠复合材料121的上边缘以焊接折叠复合材料121的上边缘从而形成血压袖套200的可充气囊202。这一焊条也用于将配件208稳固定位。如上所述,配件208可以随后地连接至导管210和泵212从而允许对囊202充气。
[0084] 下游的切断夹片322、324沿着相邻于可充气囊202的尾缘焊条切断已折叠的复合材料121。这从连续片状复合材料121的剩余部分切断牵引的血压袖套预成型件,该剩余部分处于形成为额外的血压套袖预成型件的过程中。在从复合材料121的剩余部分切断牵引的血压套袖预成型件之后,钩子固紧件216焊接至血压套袖预成型件从而完成血压套袖200的形成。
[0085] 用于系统300的重复长度L1通过所需长度的血压套袖200而形成并且延伸自密封杆310到达先前由密封杆310形成的下游焊条。类似地,焊接台310与312之间的距离A1通过血压袖套200的所需长度的可充气囊202实现。
[0086] 虽然已经描述特定实施例,但是其他实施例也是可行的。
[0087] 在特定实施例中,例如,复合材料121的压印可通过从系统100分离的压印台预形成。在这种实施例中,例如,复合材料121可缠绕到辊上,然后传递至压印台,其中,复合材料121的辊解绕并且通过形成在上述类型的压印辊与支承辊之间的辊隙。
[0088] 虽然复合材料121已经描述为被压印,但是在特定实施例中,复合材料121在形成为产品之前没有被压印,诸如压缩装置。在一些实施例中,作为压印复合材料121的备选或者额外方案,形成模式的膜可以随着熔融树脂和环形材料被引入辊隙。形成模式的膜便于该材料的折叠,在血压袖套采用复合材料形成的情况下,可以帮助减小随着其被充气而由套袖产生的噪音。
[0089] 虽然系统100的支承辊106已经描述为接触压力辊102从而防止或减小压力辊102由于辊隙108内部的高压而弯折,但是在特定实施例中,支承辊116移动到脱离接合位置,使得支承辊106不接触压力辊102。这种装置可用于,例如当辊隙108中的压力不足够高以导致压力辊102弯曲时。作为将支承辊106移动到脱离接合位置的备选方案,支承辊
106可以在特定情况下完全地从系统100移除。
[0090] 虽然压缩装置(例如,血压套袖)200已经描述为通过折叠复合材料121并然后将复合材料的重叠部分焊接到一起而进行制造,但是其他类型的制造技术也可使用。在特定实施例中,如图8所示,例如,两个分离的复合材料121片焊接到一起从而形成压缩装置。两片复合材料121从辊123采用重叠方式馈送。这些片使用类似于上述参照图7所述的焊接过程焊接到一起。但是,除了使用上部密封台318和320来设置焊条,底部密封台318’和320’设置成沿着这些片的底部边缘焊接复合材料121的重叠片。其他类型的制造过程基本上与上述参照图7所述的步骤相同。
[0091] 虽然上述制造方法描述在复合材料已经形成为血压套袖的形状之后将钩固紧件焊接至复合材料121,但是钩固紧件可以可选择地在将复合材料形成为血压套袖的形状之前焊接到复合材料121上。例如,在将复合材料121焊接到卷绕器120之前,复合材料可通过焊接台,在该焊接台处,在复合材料的纵向间隔开的区域处焊接钩子固紧件。因此,在将复合材料形成为血压套袖之后,钩固紧件将仅沿着血压套袖的长度的所需部分定位。
[0092] 可选择地,在将复合材料121卷绕到卷绕器120之前,复合材料可通过焊接台,该焊接台连续地将一个或多个钩固紧件带焊接到复合材料。该钩固紧件带可以例如设置在辊中并且能够输送至形成在支承辊与热密封部件之间的辊隙。在一些实施例中,钩固紧件带可设置为连续带,该连续带沿着血压套袖的整个长度延伸。
[0093] 虽然钩子固紧件已经描述为焊接至复合材料121,但是也可使用其他技术。在一些实施例中,例如,钩子固紧件就地连接至复合材料121。在这种情况下,复合材料121可伴随有熔融树脂而通过形成在包括钩子型腔的模制辊与压力辊之间的辊隙。熔融树脂压制入钩型腔从而形成钩子。同时,熔融树脂结合至复合材料121。就地层压的总体概念解释于Kennedy等的美国专利5260015中,模制钩子的带的就地层压本身公开在Shepard等的US6205623中,其通过引用的方式结合于此。
[0094] 虽然压缩装置200已经描述为血压套袖,但是其他类型的压缩装置可使用类似于上述的方法制造。图9例如示出序列压缩装置400,可以使用上述复合材料和类似于上述方法的方法制造。序列压缩装置400是一次性卷,包括多个可充气腔402。配件408连接至可充气腔402的每个。配件408允许泵(例如,空气泵)的管连接至此从而允许可充气腔402选择性地充气和放气。钩固紧件416沿着压缩装置400的下边缘连接至压缩装置400的复合材料的聚合体膜。环形材料131延伸自复合材料的与钩固紧件带416相对的表面,因此以虚线示出。如图10所示,钩固紧件带416能够接合环形材料131从而形成具有沿着其长度的多个环形可充气舱的套筒。
[0095] 在使用期间,序列压缩装置400通过围绕病人的肢体卷绕复合材料并且然后将钩固紧件带416的钩子固紧至环形材料131而稳固在围绕病人的肢体(例如,腿部)的套筒的形式。每个可充气腔402然后经由分离的管连接至泵(例如,空气泵)。可充气腔402然后顺序地充气并放气。采用这种方式使用序列压缩装置400能够改善血液流并且防止形成凝结物。这种使用可帮助防止在不能活动的病人中形成深静脉血栓(DVT)以及类似的状况。
[0096] 序列压缩装置400可使用类似于图7和8所示的系统和方法形成。但是,该系统将典型地装配有额外的焊接台,可用于沿着序列压缩装置400的长度形成增加数量的可充气腔402。另外,钩固紧件带416将沿着压缩装置400的纵向边缘其中的一个使用。
[0097] 虽然压缩装置400已经描述为使用钩固紧件带接合环形材料从而形成套筒,但是在特定实施例中,压缩装置的相对边缘区域热焊接以形成永久的套筒。在这种实施例中,在使用之前,压缩装置将滑动到病人的肢体,而不是围绕病人的肢体卷绕并然后固紧。
[0098] 除了血压套袖和序列压缩装置,各种其他类型的压缩装置可使用上述复合材料制造。一个这种装置是可充气压脉器袖套。该可充气压脉器袖套可以采用与上述血压套袖基本上相同的方式形成和操作。但是,压脉器袖套可设置在大范围的尺寸从而允许压脉器使用在不同病人的各种不同身体部分上。一些可充气压脉器套袖可以例如形成尺寸适于装配围绕病人的胳膊,其他可充气压脉器套型的尺寸适于围绕病人的腿部装备。这种压脉器套袖可用于在使用期间防止血液流到病人的胳膊或腿部。例如,在病人胳膊上进行外科处理期间,胳膊尺寸的套袖可以围绕病人的胳膊卷绕并且然后充气以停止血液流动到病人的胳膊。类似地,在病人的腿部上进行外科过程期间,胳膊尺寸的袖套可以围绕病人的腿部卷绕并且然后充气(例如,通过将气压泵的管连接到压脉器的袖套的配件并且操作该泵)从而停止血液流动到病人的胳膊。采用这种方式使用压脉器袖套能够允许外科医生在无血液的操作领域工作。也可制造较小的压脉器套袖从而用于病人的较小的肢体上,诸如手指和脚趾。
[0099] 使用上述复合材料制造的另一类型的装置是可充气固定装置,诸如可充气铸件。这种铸件例如可以形成为尺寸和形状用于病人的脚踝或手腕
[0100] 虽然膜122已经描述为两个密尔厚,铸造的聚丙烯膜。其他类型的膜可以可选择地使用。例如,具有大约1密尔到大约5密尔厚度的膜可以使用。
[0101] 虽然环形材料124已经描述为包括短纤维127和129针穿而过的17克/平方米的非纺织物聚丙烯基底,但是其他类型的非纺织物可以可选择地用于形成环形材料的基底。在一些实施例中,例如,短纤维127和129针刺穿过30克/平方米的聚丙烯SMS基底从而形成环形材料。在这种实施例中,上述描述或引用的各种针刺方法其中的任何可用于形成环形材料。所得到的环形材料具有大约1.7osy到大约2.0osy的整体基础重量。
[0102] 在一些实施例中,除了非纺材料的材料用作针刺环形材料的基底。这种材料的实例包括膜和针织物(knit)。
[0103] 虽然环形材料124已经描述为包括由从Asota Mills买到的产品号为L10D和CL10的短纤维形成的环,但是应当理解的是,各种其他类型的短纤维也可使用,只要那些短纤维能够刺穿过基底从而形成环并且采用用于形成特定复合材料所需的材料形成(例如,基本上完全由特定类型的聚合体材料诸如聚丙烯形成)。
[0104] 作为上述刺穿环材料的备选方案,在特定实施例中,可使用其他类型的钩可接合材料。这种钩可接合材料的实例包括SMS织物,纺粘(spundbond)织物(例如,纺粘聚丙烯(商品等级)),以及编织物(knit)。但是,我们已经发现上述刺穿环形材料在特定情况下是尤其有利的,因为它们典型地具有较长的使用寿命期望,可以相信,刺穿环形材料尤其有效地用于防止钩子可接合纤维(例如,环)在需要将熔融树脂施加至刺穿环形材料的制造过程期间被损坏(例如,通过熔融)。
[0105] 虽然熔融树脂126已经描述为聚合物的混合物(例如,聚丙烯和聚乙烯),但是在特定实施例中,熔融树脂完全由单个聚合体形成(例如,聚丙烯)。
[0106] 虽然上述这些复合材料的熔融树脂,和膜,钩可接合材料已经描述为主要或完全由聚丙烯形成,那么它们可以可选择地主要或完全由其他材料形成。在特定实施例中,例如,膜,钩可接合材料熔融树脂主要或完全由聚乙烯形成。这种构造的复合材料可以例如有利地从增加的柔性或可拉伸性获利,同时仍然提供基本上不透空气的阻碍。可选择地,膜,钩可接合材料和熔融树脂可主要或完全由尼龙形成(例如,重量轻的尼龙结)。
[0107] 虽然上述特定的复合材料已经描述为基本上不透空气,但是在特定实施例中,复合材料不是空气可透过的。在一些实施例中,例如,复合材料是液体不可透过但是是空气可透过的。这种复合材料的一项实例采用穿孔的聚合膜形成。穿孔的尺寸形成为使得液体不能够通过该膜,同时空气和其他气体允许通过穿孔。这种复合材料可用于例如形成,获利自液体不可透过但是不需要可充气的产品。
[0108] 除了上述压缩装置,任何各种其他类型的产品可以使用这里所述的复合材料制造。在一些实施例中,例如,医疗冷外套可使用类似于上述的制造过程形成。在特定实施例中,例如,除了将或配件放置到由复合材料形成的囊中,该囊可填充有冷却液体,诸如冷却化学溶液或水,然后复合材料可经过焊接从而将冷却液体密封到囊中。这种产品例如可用于医疗冷外套(coldwrap),可围绕用户的身体部分固定从而冷却该身体部分。为了使用这种类型的产品,该产品将放置在冷冻库中,直到冷却液体被冷却到所需温度然后围绕用户的身体部分卷绕并且固紧从而冷却该身体部分。这种产品用于例如减小身体部分的肿起。类似的外套的实例记载在美国2004/0181156中,其通过引用的方式结合于此。除了上述压缩装置和医疗外套,US2004/0181156中描述的任何各种其他类型的产品可使用这里所述的复合材料制造。
[0109] 在一些实施例中,复合材料用于构建尿液引流袋。如图11所示,例如,尿液引流袋500包括采用上述类型的液体不可渗透的并且钩可接合的复合材料形成的第一壁502。尿液引流袋500的第二壁504采用液体不可渗透的聚合体膜形成。该复合材料的环形层沿着尿液引流袋500的后壁的外表面露出。采用这种方式,尿液引流袋500可以可释放地固定至具有延伸自其的可接合钩的任何表面。在特定情况下,例如,钩带可以施加至医院的病床,尿液引流袋500能够方便地通过接合复合材料的钩子到钩带的钩子而固定到医院的病床。
这种结构可以更容易地使得尿液引流袋由医疗人员替换。任何各种其他类型的医疗袋可释放地固紧至表面是有利的,这样可以类似地由这里所述的钩可接合复合材料形成。
[0110] 再次参照图1,虽然熔融树脂126已经描述为直接地导引至辊隙108使得熔融树脂126基本上同时接触膜122和环形材料124,但是在特定实施例中,熔融树脂126首先施加至膜122,膜122然后将熔融树脂126带入辊隙108。这一技术可以使得熔融树脂126具有额外的时间在接触环形材料124之前冷却,这有助于防止延伸自环形材料124的外表面的环131熔化并且变得粘结到一起。因此,这一技术可以帮助确保延伸自环形材料124的环
131保持能够在环形材料124接合至膜122之后接合钩固紧件元件的钩子从而形成复合材料。
[0111] 虽然上述实施例的复合材料已经描述为包括钩可接合表面,但是在特定实施例中,可以形成仅具有非钩可接合的表面的复合物。这种复合物可使用类似于上述的制造过程而形成。在特定实施例中,例如,具有17克/平方米纺粘聚丙烯基地的刺穿环形材料馈送进入形成在压力辊102与支承辊104之间的辊隙108中。熔融树脂施加至环形材料从而形成大约2密尔厚的树脂层。然后,该环形材料将熔融树脂带入辊隙108。由于环形材料的相对薄的基底,增加量的熔融树脂,以及熔融树脂与环形材料之间的接触的持续时间延长,熔融树脂浸湿延伸自环形材料的环。这导致延伸自环形材料的外表面的环(即,与PTFE涂覆辊接触的表面)熔化并且变得彼此粘结。因此,所得到的复合材料的环形材料层不会容易地接合钩固紧件元件的钩子。这种结构可以例如有利地用于需要软的非钩可接合外表面的产品。
[0112] 其他实施例都处于随后的权利要求的范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈