首页 / 专利库 / 专利权 / 发明 / 半导体结构的制造方法

半导体结构的制造方法

阅读:988发布:2020-10-29

专利汇可以提供半导体结构的制造方法专利检索,专利查询,专利分析的服务。并且本 申请 涉及 半导体 结构的制造方法。所述方法的一者包含以下操作。接收衬底,且所述衬底包含具有第一导电区域的第一晶体管及具有第二导电区域的第二晶体管,其中所述第一晶体管及所述第二晶体管具有不同导电类型。对所述第一导电区域执行第一激光 退火 以修复晶格损坏。对所述第一导电区域及所述第二导电区域执行非晶化以促进关于后续操作中的所要 相变 的 硅 化物形成。在所述非晶化之后使预硅化物层形成于所述衬底上。对所述衬底执行热退火以由所述预硅化物层形成硅化物层。在形成所述预硅化物层之后对所述第一导电区域及所述第二导电区域执行第二激光退火。,下面是半导体结构的制造方法专利的具体信息内容。

1.一种用于制造半导体结构的方法,其包括:
接收包含具有第一导电区域的第一晶体管及具有第二导电区域的第二晶体管的衬底,其中所述第一晶体管及所述第二晶体管具有不同导电类型;
对所述第一导电区域执行第一激光退火
对所述第一导电区域及所述第二导电区域执行第一非晶化;
使预化物层形成于所述衬底上;
对所述衬底执行热退火以形成硅化物层;及
在形成所述预硅化物层之后对所述第一导电区域及所述第二导电区域执行第二激光退火。

说明书全文

半导体结构的制造方法

技术领域

[0001] 本发明实施例涉及半导体结构的制造方法。

背景技术

[0002] 半导体集成电路(IC)工业已经历快速成长。设计及IC材料的技术进步已产生连续IC世代,各代具有比前一代更小及更复杂的电路。复杂及减小的IC结构易受缺陷或物理损坏影响,且IC结构中电组件的电性质的小变化会导致IC结构的低性能。例如,IC结构中源极及漏极的电阻可显著影响IC结构的性能。然而,归因于半导体工艺的高复杂性及影响半导体结构的不同元件及层的相互依存因素,即使工艺的微小变化也很困难。

发明内容

[0003] 本发明的一实施例涉及一种用于制造半导体结构的方法,其包括:接收包含具有第一导电区域的第一晶体管及具有第二导电区域的第二晶体管的衬底,其中所述第一晶体管及所述第二晶体管具有不同导电类型;对所述第一导电区域执行第一激光退火;对所述第一导电区域及所述第二导电区域执行第一非晶化;使预化物层形成于所述衬底上;对所述衬底执行热退火以形成硅化物层;及在形成所述预硅化物层之后对所述第一导电区域及所述第二导电区域执行第二激光退火。
[0004] 本发明的一实施例涉及一种用于制造半导体结构的方法,其包括:接收包含第一导电区域及第二导电区域的衬底;使第一非晶结构形成于所述第一导电区域中;将物质引入至所述第一非晶结构中;使所述第一非晶结构结晶;使第二非晶结构及第三非晶结构分别形成于所述第一导电区域及所述第二导电区域中;将预硅化物层沉积于所述衬底上;使硅化物层由所述预硅化物层形成;及在沉积所述预硅化物层之后使所述第二非晶结构及所述第三非晶结构结晶。
[0005] 本发明的一实施例涉及一种用于制造半导体结构的方法,其包括:接收包含具有第一外延区域的第一类型晶体管及具有第二外延区域的第二类型晶体管的衬底;掺杂所述第一外延区域以由此使第一晶格受损结构形成于所述第一外延区域中;执行第一激光退火以将所述第一晶格受损结构转化为第一多晶结构;对所述第一多晶结构及所述第二外延区域执行第一非晶化以由所述第一多晶结构形成第二晶格受损结构及使第三晶格受损结构形成于所述第二外延区域中;形成覆盖所述第一外延区域及所述第二外延区域的预硅化物层;执行热退火;及执行第二激光退火以将所述第二晶格受损区域转化为所述第一外延结构中的第二多晶区域及将所述第三晶格受损区域转化为所述第二外延结构中的第二多晶
区域。
附图说明
[0006] 从结合附图来解读的以下详细描述最佳理解本揭露的实施例的方面。应注意,根据行业标准做法,各种结构未按比例绘制。事实上,为使讨论清楚,可任意增大或减小各种结构的尺寸。
[0007] 图1是根据本揭露的一些实施例的用于制造半导体结构的方法的流程图
[0008] 图2至图11是根据本揭露的一些实施例的各种制造阶段期间的半导体结构的剖面图。
[0009] 图12是根据本揭露的一些实施例的用于制造半导体结构的方法的流程图。
[0010] 图13是根据本揭露的一些实施例的用于制造半导体结构的方法的流程图。
[0011] 图14是根据本揭露的一些实施例的一或多个晶体管的三维图。

具体实施方式

[0012] 以下揭露提供用于实施所提供的主题的不同特征的诸多不同实施例或实例。下文将描述元件及布置的特定实例以简化本揭露。当然,这些仅为实例且不意在限制。例如,在以下描述中,“使第一构件形成于第二构件上方或第二构件上”可包含其中形成直接接触的所述第一构件及所述第二构件的实施例,且还可包含其中可形成介于所述第一构件与所述第二构件之间的额外构件使得所述第一构件及所述第二构件可不直接接触的实施例。另外,本揭露可在各种实例中重复元件符号及/或字母。此重复是为了简化及清楚且其本身不指示所讨论的各种实施例及/或配置之间的关系。
[0013] 此外,为便于描述,例如“下面”、“下方”、“下”、“上方”、“上面”、“上”、“在…上”及其类似者的空间相对术语可在本文中用于描述一元件或构件与另外(若干)元件或(若干)构件的关系,如图中所绘示。空间相对术语除涵盖图中所描绘的定向之外,还意图涵盖装置在使用或操作中的不同定向。设备可以其它方式定向(旋转90度或依其它定向)且还可因此解释本文所使用的空间相对描述词。
[0014] 如本文所使用,尽管例如“第一”、“第二”及“第三”的术语描述各种元件、组件、区域、层及/或区段,但这些元件、组件、区域、层及/或区段不应受限于这些术语。这些术语可仅用于使元件、组件、区域、层或区段彼此区分。除非内文明确指示,否则本文所使用的例如“第一”、“第二”及“第三”的术语不隐含序列或顺序。
[0015] 如本文所使用,术语“近似”、“大致上”、“大致”及“约”用于描述及解释小变动。当与事件或状况一起使用时,所述术语可涉及其中所述事件或状况精确发生的例子及其中所述事件或状况非常近似发生的例子。例如,当与数值一起使用时,所述术语可涉及小于或等于所述数值的±10%的变动范围,例如小于或等于±5%、小于或等±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%或小于或等于±0.05%。例如,如果两个数值之间的差小于或等于所述值的平均值的±10%(例如小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±
1%、小于或等于±0.5%、小于或等于±0.1%或小于或等于±0.05%),那么所述值可被视为“大致上”相同或相等。例如,“大致上”平行可涉及小于或等于±10°的相对于0°的变动范围,例如小于或等于±5°、小于或等于±4°、小于或等于±3°、小于或等于±2°、小于或等于±1°、小于或等于±0.5°、小于或等于±0.1°或小于或等于±0.05°。例如,“大致上”垂直可涉及小于或等于±10°的相对于90°的角变动范围,例如小于或等于±5°、小于或等于±
4°、小于或等于±3°、小于或等于±2°、小于或等于±1°、小于或等于±0.5°、小于或等于±
0.1°或小于或等于±0.05°。
[0016] 图1绘示根据本揭露的一些实施例的用于制造半导体结构W10的方法M10。方法M10包含:(O11)接收包含具有第一导电区域的第一晶体管及具有第二导电区域的第二晶体管的衬底,其中所述第一晶体管及所述第二晶体管具有不同导电类型;(O12)对所述第一导电区域执行第一激光退火;(O13)对所述第一导电区域及所述第二导电区域执行非晶化;(O14)使预硅化物层形成于所述衬底上;(O15)对所述衬底执行热退火以形成硅化物层;及(O16)在形成所述预硅化物层之后对所述第一导电区域及所述第二导电区域执行第二激光退火。应注意,图1中所展示的操作(O11至O16)的序列仅绘示本揭露的精神,且不意图限制操作(O11至O16)的制造序列。
[0017] 为进一步绘示本揭露的概念,下文将提供各种实施例。然而,不意图使本揭露受限于特定实施例。另外,可组合或修改不同实施例中所绘示的条件或参数以具有实施例的不同组合,只要所使用的参数或条件不冲突。
[0018] 参考图2,根据操作O11及本揭露的一些实施例,接收或提供衬底10。衬底10包含第一晶体管TS1及第二晶体管TS2。第一晶体管TS1及第二晶体管TS2具有不同导电类型。第一晶体管TS1及第二晶体管TS2可个别表示具有相同导电类型的晶体管群组;然而,为易于说明,图2至图11中仅展示第一晶体管TS1的部分及第二晶体管TS2的部分。以下描述中使用单一第一晶体管TS1及单一第二晶体管TS2。
[0019] 在一些实施例中,第一晶体管TS1是PMOS(P型金属化物半导体)晶体管,且第二晶体管TS2是NMOS(N型金属氧化物半导体)晶体管。在一些实施例中,第一晶体管TS1是NMOS晶体管且第二晶体管TS2是PMOS晶体管。为易于理解及说明,以下描述中使用包含第一晶体管TS1作为PMOS及第二晶体管TS2作为NMOS的实施例。第一晶体管TS1包含形成于衬底10中的第一导电区域11,且第二晶体管TS2包含形成于衬底10中的第二导电区域12。在一些实施例中,第一晶体管TS1及第二晶体管TS2是鳍式场效应晶体管(FinFET),第一导电区域11及第二导电区域12形成于衬底10的鳍式结构101中,如图14中所展示,其中为易于说明,图14仅展示第一晶体管TS1的部分。沿图14中所展示的线A-A'的第一晶体管TS1的剖面透视图类似于图2中所展示的第一晶体管TS1的剖面图。第二晶体管TS2的三维图可类似于图2中所展示的第一晶体管TS1,且省略重复图。在一些实施例中,通过外延生长来形成第一导电区域11及第二导电区域12,且此阶段中的第一导电区域11及第二导电区域12完全结晶。第一导电区域11及/或第二导电区域12的配置取决于不同外延技术,且其在本文中不受限制。在一些实施例中,第一导电区域11及第二导电区域12可包含锗(Ge)、硅锗(SiGe)、化硅(SiC)、硅磷(SiP)、硅锗碳(SiGeC)、硅碳磷(SiCP)或其它适合材料。
[0020] 多个栅极结构14形成于衬底10上邻近于第一导电区域11及第二导电区域12,且形成于衬底10的第一表面10a上。在一些实施例中,多个栅极结构14形成于衬底10的鳍式结构上且跨衬底10的鳍式结构。在一些实施例中,在形成鳍式结构之后且在形成第一导电区域11及第二导电区域12之前形成栅极结构14。在一些实施例中,如图14中所展示,栅极结构14跨鳍式结构101且在鳍式结构101上延伸且垂直于鳍式结构101延伸(例如在实施例中,衬底
10的鳍式结构101沿X方向延伸,且栅极结构沿Z方向延伸)。在一些实施例中,栅极结构14是多晶硅栅极结构。在一些实施例中,栅极结构14是金属栅极结构。栅极结构14的类型在本文中不受限制。在一些实施例中,各栅极结构14包含栅极电极141、栅极电介质142、硬掩模
143、一对间隔物144及介电材料145。栅极电介质142包围栅极电极141且安置于栅极电极
141与间隔物144之间,且栅极电介质142还安置于栅极电极141与鳍式结构101之间。硬掩模
143安置于栅极电极141的顶部上且介于间隔物对144之间。间隔物对144安置于栅极电极
141及硬掩模143的堆叠的两个横向侧壁上。介电材料145安置于栅极电极141、硬掩模143及间隔物对144的堆叠的两个横向侧壁上。栅极结构14的详细配置在本文中不受限制。
[0021] 参考图3至图4,根据本揭露的一些实施例,方法M10进一步包含在操作O13之前对第一晶体管TS1的第一导电区域11执行非晶化AP1及植入IP1。非晶化AP1界定第一导电区域11中的垂直掺杂物分布,且植入IP1将物质PA2或掺杂物引入至第一晶体管TS1的第一导电区域11中。在图3至图4所展示的一些实施例中,在非晶化AP1及植入IP1之前使光致抗蚀剂PR形成于第二晶体管TS2上。光致抗蚀剂PR覆盖及保护第二导电区域12免受第一非晶化AP1及植入IP1。
[0022] 如图3中所展示,非晶化AP1引起第一导电区域11的晶格受损以使第一非晶结构111形成于第一导电区域11中。第一导电区域11的晶体缺陷及错位密度增加,且第一导电区域11的表面部分在非晶化AP1时受第一物质PA1特别冲击。归因于非晶化AP1损坏晶格,通过将第一导电区域11的结晶结构的部分转化为非晶形式来使第一非晶结构111形成于第一导电区域11中。应注意,第一导电区域11的非晶密度增大主要集中于第一非晶结构111中。
[0023] 在一些实施例中,非晶化AP1包含将非掺杂离子物种作为第一物质PA1一或多次植入至暴露第一导电区域11。第一物质PA1选自不更改第一导电区域11的化学或导电性质的元素或离子。在一些实施例中,第一物质PA1选自包含于第一导电区域11中的元素或惰性原子。在一些实施例中,第一物质PA1选自周期表上IVA及VIIIA族中的一或多个元素。在一些实施例中,第一物质PA1选自锗及硅的群组中的一或多个元素。在一些实施例中,第一物质PA1包含一或多种稀有气体,例如氩气、氦气及/或其类似者。为得到较佳非晶化结果,氩气归因于氩的较大原子大小而优于氦气。
[0024] 在非晶化AP1期间,调整过程参数(例如操作能、离子/原子浓度或离子束电流)以实现充分损坏第一导电区域11的晶格。非晶化AP1用于建立邻近于第一晶体管TS1的沟道区域的所要垂直掺杂物分布。第一导电区域11的晶格损坏可减少后续离子植入IP1期间的沟道效应。在一些实施例中,非晶化AP1包含执行锗植入(即,锗是第一物质PA1)。在一些实施例中,植入的离子能是在3keV至10keV的范围内,且锗浓度是在4E14原子/cm2至5E13原子/cm2的范围内。在一些实施例中,第一导电区域11的深度D11是在40纳米至60纳米的范围内,且通过非晶化AP1所形成的第一非晶结构111的深度D111是在5纳米至10纳米的范围内。深度D11及深度D111从栅极结构14暴露的表面测量且垂直向下延伸至衬底10中导电区域11的底部。第一非晶结构111的深度D111可由植入IP1的离子能及离子浓度控制。
[0025] 如上文所绘示,非晶化AP1用于使第一物质PA1冲击第一导电区域11,如图3中所展示。通过非晶化AP1来减小第一导电区域11的结晶密度且尤其减小第一导电区域11的表面部分(即,图3中的第一非晶结构111)的结晶密度。本文所提及的表面部分是相对于接近第一导电区域11的表面、邻近于栅极结构14及由栅极结构14暴露的部分。换句话说,非晶化AP1用于增大第一导电区域11(尤其是第一导电区域11的表面部分)的非晶密度。
[0026] 在一些实施例中,第一晶体管TS1是PMOS晶体管,且植入IP1是为了将离子掺入至第一晶体管TS1的源极/漏极区域中。在图4所展示的一些实施例中,归因于结晶晶格与第一非晶结构111之间的晶界阻挡,将第二物质PA2植入或引入至第一导电区域11中,尤其是植入或引入至第一导电区域11的第一非晶结构111中。在一些实施例中,第二物质PA2包含。在一些实施例中,可通过植入IP1来进一步减小由非晶化AP1所得的第一导电区域11的结晶密度。在一些实施例中,可通过植入IP1来进一步增大由非晶化AP1所得的第一导电区域11的非晶密度。
[0027] 在一些实施例中,通过第一导电区域11的硅锗(SiGe)的外延生长及将物质PA2或掺杂物引入至第一导电区域11中的植入IP1来形成第一晶体管TS1的源极/漏极区域。在一些实施例中,第二晶体管TS2是NMOS晶体管,且通过外延生长第二导电区域12的硅磷(SiP)来形成第二晶体管TS2的源极/漏极区域,且无需额外植入或掺杂操作。然而,其不意图限制本揭露。在其它应用中,可执行另一植入以掺杂第二晶体管TS2,同时由掩模保护第一晶体管TS1。在植入IP1之后移除光致抗蚀剂PR。
[0028] 参考图5,根据本揭露的一些实施例,方法M10进一步包含使介电层15线性及保形形成于衬底10及栅极结构14上。在一些实施例中,在过程期间消耗栅极结构14的间隔物(例如图14中所展示的介电材料145及/或间隔物144),且减小间隔物的厚度。在一些实施例中,执行沉积操作以使介电层15形成于栅极结构14上以补偿栅极结构14的消耗间隔物。在一些实施例中,介电层15还形成于第一导电区域11及第二导电区域12上。介电层15具有与衬底10及栅极结构14的轮廓一致的轮廓。在一些实施例中,介电层15包含氧化硅(SiOa)、氮化硅(SiaNb)、氮化硼(BN)、氮化锗(GeN)、碳氮化硅(SiCN)、氮碳氧化硅(SiOCN)、氮氧化硅(SiON)、碳氧化硅(SiOC)或其组合,其中“a”及“b”是整数。在一些实施例中,介电层15由栅极结构14的间隔物的(若干)相同材料制成。在一些实施例中,通过保形沉积来形成介电层
15。
[0029] 为易于理解,在以下描述中,栅极结构14安置于其上的半导体结构W10的第一侧W10a指称“前侧”,且与半导体结构W10的第一侧W10a对置的半导体结构W10的第二侧W10b指称“后侧”。在一些实施例中,接近或面向半导体结构W10的第一侧W10a的衬底10的第一表面
10a指称“前表面”。在一些实施例中,与衬底10的第一表面10a对置的衬底10的第二表面10b指称“后表面”。
[0030] 参考图6,根据操作O12及本揭露的一些实施例,对第一导电区域11执行第一激光退火LA1以使第一非晶结构111结晶。在一些实施例中,从栅极结构14及衬底10的第一表面10a上朝向第一导电区域11执行操作O12的第一激光退火LA1。在一些实施例中,第一激光退火LA1的持续时间是以微秒标度。在一些实施例中,第一激光退火LA1的持续时间是在从200微秒至400微秒的范围内。在一些实施例中,第一激光退火LA1的温度是在从800摄氏度至
950摄氏度的范围内。在一些实施例中,第一激光退火LA1是针对整个衬底10且从使栅极结构14及第一导电区域11及第二导电区域12暴露的半导体结构W10的前侧W10a对第一导电区域11及第二导电区域12两者执行第一激光退火LA1。在一些实施例中,仅对第一晶体管TS1执行第一激光退火LA1。在一些实施例中,第一激光退火LA1包含激光峰值退火(LSA)、动态表面退火(DSA)、熔融激光退火(MLA)、超亚秒退火(uSSA)或其它适合激光退火技术。在一些实施例中,第一激光退火LA1用于在处理室中由激光束从半导体结构W10的前侧W10a或衬底
10的第一表面10a加热衬底10。
[0031] 第一激光退火LA1将能量直接提供至第一导电区域11或衬底10上。在一些实施例中,第一激光退火LA1将能量提供至第一导电区域11用于结晶以改善第一导电区域11的裸片结构,尤其是第一导电区域11的第一非晶结构111。第一非晶结构111从非晶形式结晶为多晶体。在一些实施例中,第一激光退火LA1的激光束依离散线(而非广效)的方式直接投射至衬底10的第一表面10a上。在一些实施例中,第一激光退火LA1将能量提供至衬底10的第一表面10a的部分上。在一些实施例中,第一激光退火LA1通过激光投射器来依点扫描或线扫描的方式投射激光束。
[0032] 在一些实施例中,通过第一激光退火LA1由第一非晶结构111形成的多晶体具有不同于第一导电区域11的原始裸片结构的裸片结构(例如来自外延生长的裸片结构)。由第一非晶结构111形成的多晶体的裸片结构取决于结晶及裸片生长的程度。为易于说明,图式仅展示第一导电区域11的集成结构,且因此不展示第一激光退火LA1之后不同裸片结构中的第一导电区域11的不同部分。
[0033] 参考图7,根据本揭露的一些实施例,方法M10进一步包含执行蚀刻操作ET1以移除介电层15的部分以形成保留于各栅极结构14的两个横向侧壁上的侧壁15'。如上图5中所绘示,在一些实施例中,第一导电区域11及第二导电区域12由介电层15覆盖,且蚀刻操作ET1的目的是暴露第一导电区域11及第二导电区域12用于以下硅化物形成。在一些实施例中,蚀刻操作ET1是施加于衬底10及栅极结构14上的定向干式蚀刻。在一些实施例中,定向干式蚀刻包含用于移除介电层15的平部分(平行于衬底10的第一表面10a延伸的部分)的垂直(垂直朝向衬底10的第一表面10a)各向异性反应性离子蚀刻(RIE)(例如沿Y方向朝向衬底10执行,其正交于X-Z平面)。移除第一导电区域11及第二导电区域12上的介电层15的部分。
在一些实施例中,还移除栅极结构14的顶部上的介电层15的部分。暴露第一导电区域11及第二导电区域12。在一些实施例中,栅极结构14的转角A14的部分由蚀刻操作ET1移除,如图
7中所展示。在一些实施例中,如图7中所展示,转角A14在蚀刻操作ET1之后变成斜角。在一些实施例中,转角A14在蚀刻操作ET1之后变成圆角(图中未展示)。
[0034] 在一些实施例中,在形成介电层15之前及植入IP1之后执行第一激光退火LA1。在一些实施例中,在形成介电层15之后及蚀刻操作ET1之前执行第一激光退火LA1。在一些实施例中,在形成侧壁15'之后执行第一激光退火LA1。在一些实施例中,在植入IP1之后实时执行第一激光退火LA1。
[0035] 参考图8,根据操作O13及本揭露的一些实施例,对第一导电区域11及第二导电区域12执行非晶化AP2。非晶化AP2引起第一导电区域11及第二导电区域12两者的晶格受损。第一导电区域11及第二导电区域12的晶体缺陷及错位密度增加。第一导电区域11及第二导电区域12的部分在非晶化AP2时受第三物质PA3特别冲击。通过将第一导电区域11的多晶结构的部分转化为非晶形式来使第二非晶结构111'形成于第一导电区域11中。通过将第二导电区域12的结晶结构的部分转化为非晶形式来使第三非晶结构121形成于第二导电区域12中。
[0036] 在一些实施例中,由非晶化AP2损坏第一导电区域11及第二导电区域12的晶格促进关于后续操作中将形成的硅化物层的所要相变的硅化物形成。非晶化AP2具有类似于非晶化AP1的性质及参数,且本文为了简洁而省略重复描述且其不意图限制本揭露。第三物质PA3具有类似于第一物质PA1的功能及性质。在一些实施例中,第三物质PA3相同于第一物质PA1。在一些实施例中,第三物质PA3不同于第一物质PA1。在一些实施例中,第一导电区域11的深度D11是在40纳米至60纳米的范围内,且通过非晶化AP2所形成的第三非晶结构121的深度D121是在5纳米至10纳米的范围内。在一些实施例中,第二非晶结构111的深度D111'是在5纳米至15纳米的范围内。在一些实施例中,第二非晶结构111的深度D111'大于第三非晶结构121的深度D121。第一导电区域11已接受比第二导电区域12多一次的非晶化,且由第一激光退火LA1改善的第一导电区域11的裸片结构可不如第二导电区域12的外延生长的裸片结构紧凑。深度D111'及深度D121从栅极结构14暴露的第一表面10a测量且垂直向下延伸至衬底10中导电区域11及12的底部。第二非晶结构111'的深度D111'及第三非晶结构121的深度D121可由植入AP2的离子能及离子浓度控制。
[0037] 参考图9,根据操作O14及本揭露的一些实施例,使预硅化物层16形成于衬底10上的第一导电区域11及第二导电区域12上。在一些实施例中,预硅化物层16保形形成于衬底10上且物理接触第一导电区域11的第二非晶结构111'及第二导电区域12的第三非晶结构
121。预硅化物层16具有与导电区域11及12及栅极结构14的轮廓一致的轮廓。在一些实施例中,预硅化物层16包含(Ti)、钽(Ta)、铒(Er)、钇(Y)、镱(Yb)、铕(Eu)、铽(Tb)、镥(Lu)、钍(Th)、钪(Sc)、铪(Hf)、锆(Zr)、铬(Cr)、铌(Nb)、钌(Ru)、钴(Co)、镍(Ni)、铂(Pt)、钨(W)、其它适合金属、含有上述金属的化合物(例如含有所列金属的氮化物化合物)或其组合。在一些实施例中,预硅化物层16是多层结构。在一些实施例中,预硅化物层16上依序包含钛(Ti)子层及氮化钛(TiN)子层(图中未展示)。在一些实施例中,通过保形沉积、化学气相沉积(CVD)、物理气相沉积(PVD)或任何其它适合操作来形成预硅化物层16。
[0038] 参考图10,根据操作O15及本揭露的一些实施例,对第一导电区域11、第二导电区域12及衬底10执行热退火以由此在第一导电区域11及第二导电区域12上由预硅化物层16的至少一部分形成硅化物层17。在一些实施例中,对半导体结构W10执行操作O15的热退火。
在一些实施例中,硅化物层17含有预硅化物层16的金属元素。在一些实施例中,硅化物层17包含硅化钛(TiSi)。
[0039] 本揭露中的热退火是依广效(而非离散线)的方式提供热。在一些实施例中,热退火的类型包含基于炉的退火及基于灯的退火。在一些实施例中,在热退火时加热整个衬底10或整个半导体结构W10。在一些实施例中,热退火对衬底10的第一表面10a或半导体结构W10的第一侧W10a提供热。在一些实施例中,热退火对半导体结构W10的第一侧W10a及第二侧W10b两者提供热。在一些实施例中,热退火仅对半导体结构W10的第二侧W10b或衬底10的第二表面10b提供热,且通过热传导来加热衬底10的第一表面10a或半导体结构W10的第一侧W10a。
[0040] 热退火提供能量来促进层之间的反应。驱动第一导电区域11与第一导电区域11上的预硅化物层16的部分之间及第二导电区域12与第二导电区域12上的预硅化物层16的部分之间的扩散以使硅化物层17形成于第一导电区域11及第二导电区域12上。硅化物层17分别由接触第一导电区域11及第二导电区域12的预硅化物层16的部分形成。
[0041] 在一些实施例中,控制热退火的温度及持续时间在特定范围内以控制硅化物层17的设计相变的热预算。在热退火期间使硅化物层17的晶格的相移位。硅化物层17的设计相变在本文中不受限制。硅化物层17的设计相变的平面定向与应用有关。设计相变经设计以提供半导体装置的源极/漏极触点的所要电阻。在一些实施例中,热退火的温度是在500摄氏度(℃)至650℃的范围内。在一些实施例中,热退火的持续时间是以秒标度。在一些实施例中,热退火的持续时间是在10秒至30秒的范围内。在一些实施例中,热退火用于在处理室中从半导体结构W10的第一侧W10a及第二侧W10b加热衬底10。在一些实施例中,热退火是快速热退火。
[0042] 参考图11,根据操作O16及本揭露的一些实施例,对第一导电区域11及第二导电区域12执行第二激光退火LA2以由此在形成预硅化物层16之后使第二非晶结构111'及第三非晶结构121结晶。在一些实施例中,在栅极结构14及衬底10的第一表面10a上朝向第一导电区域11及第二导电区域12执行操作O16的第二激光退火LA2。在一些实施例中,第二激光退火LA2的持续时间是在从200微秒至400微秒的范围内,且第二激光退火LA2的温度是在从800摄氏度至950摄氏度的范围内。在一些实施例中,第二激光退火LA2是针对整个衬底10且从半导体结构W10的前侧W10a对第一导电区域11及第二导电区域12两者执行第二激光退火LA2。第二激光退火LA2的其它限制及条件可参考第一激光退火LA1,且本文为了简洁而省略重复描述。
[0043] 类似于第一激光退火LA1,通过第二激光退火LA2(操作O16)来促进第一导电区域11的第二非晶结构111'及第二导电区域12的第三非晶结构121的晶格修复。使第二非晶结构111'及第三非晶结构121结晶成多晶体。
[0044] 在一些实施例中,通过第二激光退火LA2由第二非晶结构111'及第三非晶结构121形成的多晶体具有分别不同于第一导电区域11及第二导电区域12的原始裸片结构的裸片结构(例如来自外延生长的裸片结构)。由第二非晶结构111'及第三非晶结构121形成的多晶体的裸片结构取决于第二激光退火LA2的参数及结晶及裸片生长的程度。为易于说明,图式仅展示第一导电区域11的集成结构及第二导电区域12的集成结构。图式未展示第二激光退火LA2之后不同裸片结构中第一导电区域11的不同部分及不同裸片结构中第二导电区域
12的不同部分。
[0045] 本揭露中的第一激光退火LA1及第二激光退火LA2将能量直接提供至衬底10或半导体结构W10上。在一些实施例中,第一激光退火LA1及第二激光退火LA2将能量仅个别提供至衬底10的部分或半导体结构W10的部分上。在一些实施例中,归因于激光退火操作的短持续时间,激光退火仅加热衬底10的部分或半导体结构W10的部分。因而,由激光退火操作提供的热能不足以传导至整个衬底10或整个半导体结构W10。在一些实施例中,热退火比第一激光退火LA1或第二激光退火LA2更均匀加热整个衬底10或整个半导体结构W10。
[0046] 在一些实施例中,第一激光退火LA1(或第二激光退火LA2)与热退火之间的温差大于或等于150摄氏度(℃)。在一些实施例中,热退火的温度低于第一激光退火LA1(或第二激光退火LA2)的温度。在一些实施例中,热退火的持续时间大于第一激光退火LA1(或第二激光退火LA2)的持续时间。在一些实施例中,半导体结构W10是裸片、晶片、装置或封装的部分。在一些实施例中,在热退火之后执行第二激光退火LA2。在一些实施例中,在第二激光退火LA2之后执行热退火。
[0047] 在一些实施例中,归因于较高温度,第二激光退火LA2主导第二非晶结构111'及第三非晶结构121的结晶,且第二激光退火LA2的此高温可消除晶格缺陷。在一些实施例中,为修复晶体,控制第二激光退火LA2的温度及持续时间在特定范围内。还控制第二激光退火LA2的热预算以避免更改硅化物层17的设计相变。在一些实施例中,第二激光退火LA2的热预算小于热退火的热预算。在一些实施例中,还通过第二激光退火LA2(操作O16)来实现掺杂物活化。
[0048] 硅化物层17的形成可由第二激光退火LA2或热退火主导,其取决于先执行哪一个。在两种情形(激光退火或热退火)中,移位或调整相变。然而,我们观察到,热退火优先实施例的跨晶片的硅化物层17的电阻均匀性趋向于优于激光退火优先实施例的电阻均匀性。在热退火优先实施例中,硅化物层17的形成由热退火主导。归因于热退火的较长持续时间,热退火提供优于激光退火的跨晶片的热均匀性。换句话说,归因于激光退火的散射效应,激光退火提供不如热退火的跨晶片的热均匀性。
[0049] 在操作O16的第二激光退火LA2时或操作O16的第二激光退火LA2之后,分别增大第一导电区域11及第二导电区域12的结晶密度。换句话说,执行操作O16中的激光退火以通过使第二非晶结构111'的至少一部分及第三非晶结构121的至少一部分结晶来减小第一导电区域11的非晶密度及第二导电区域12的非晶密度。应注意,第一导电区域11及第二导电区域12的各自第一非晶结构111及第二非晶结构121的晶体结构无法恢复至非晶化AP1及/或非晶化AP2之前的第一导电区域11及第二导电区域12的晶体结构。然而,方法M10的操作O16可显著增大第一导电区域11及第二导电区域12的结晶密度。
[0050] 在相同概念下,且除上文所绘示的方法M10之外,本揭露还提供用于制造类似于半导体结构W10的半导体结构的方法M20,如图12中所展示。方法M20包含:(O21)接收包含第一导电区域及第二导电区域的衬底;(O22)使第一非晶结构形成于所述第一导电区域中;(O23)将第二物质植入至所述第一导电区域中;(O24)使所述第一非晶结构结晶;(O25)使第二非晶结构及第三非晶结构分别形成于所述第一导电区域及所述第二导电区域中;(O26)将预硅化物层沉积于所述衬底上;(O27)由所述预硅化物层形成硅化物层;及(O28)在沉积所述预硅化物层之后使所述第二非晶结构及所述第三非晶结构结晶。
[0051] 仍在相同概念下,针对具有导电区域11及12的外延生长的一些实施例,本揭露还提供用于制造类似于半导体结构W10的半导体结构的方法M30,如图13中所展示。方法M30包含:(O31)接收包含具有第一外延区域的第一类型晶体管及具有第二外延区域的第二类型晶体管的衬底;(O32)掺杂所述第一外延区域以由此使第一晶格受损结构形成于所述第一外延区域中;(O33)执行第一激光退火以将所述第一晶格受损结构转化为第一多晶结构;(O34)对所述第一多晶结构及所述第二外延区域执行第一非晶化以由所述第一多晶结构形成第二晶格受损结构及使第三晶格受损结构形成于所述第二外延区域中;(O35)形成覆盖所述第一外延区域及所述第二外延区域的预硅化物层;(O36)执行热退火;及(O37)执行第二激光退火以将所述第二晶格受损区域转化为所述第一外延结构中的第二多晶结构及将
所述第三晶格受损区域转化为所述第二外延结构中的第二多晶区域。
[0052] 本揭露的一些实施例提供一种用于制造半导体结构的方法。所述方法包含:接收包含具有第一导电区域的第一晶体管及具有第二导电区域的第二晶体管的衬底,其中所述第一晶体管及所述第二晶体管具有不同导电类型;对所述第一导电区域执行第一激光退火;对所述第一导电区域及所述第二导电区域执行非晶化;使预硅化物层形成于所述衬底上;对所述衬底执行热退火以形成硅化物层;及在形成所述预硅化物层之后对所述第一导电区域及所述第二导电区域执行第二激光退火。
[0053] 本揭露的一些实施例提供一种用于制造半导体结构的方法。所述方法包含:接收包含第一导电区域及第二导电区域的衬底;使第一非晶结构形成于所述第一导电区域中;将第二物质植入至所述第一导电区域中;使所述第一非晶结构结晶;使第二非晶结构及第三非晶结构分别形成于所述第一导电区域及所述第二导电区域中;将预硅化物层沉积于所述衬底上;由所述预硅化物层形成硅化物层;及在沉积所述预硅化物层之后使所述第二非晶结构及所述第三非晶结构结晶。
[0054] 本揭露的一些实施例提供一种用于制造半导体结构的方法。所述方法包含:接收包含具有第一外延区域的第一类型晶体管及具有第二外延区域的第二类型晶体管的衬底;掺杂所述第一外延区域以由此使第一晶格受损结构形成于所述第一外延区域中;执行第一激光退火以将所述第一晶格受损结构转化为第一多晶结构;对所述第一多晶结构及所述第二外延区域执行第一非晶化以由所述第一多晶结构形成第二晶格受损结构及使第三晶格
受损结构形成于所述第二外延区域中;形成覆盖所述第一外延区域及所述第二外延区域的预硅化物层;执行热退火;及执行第二激光退火以将所述第二晶格受损区域转化为所述第一外延结构中的第二多晶结构及将所述第三晶格受损区域转化为所述第二外延结构中的
第二多晶区域。
[0055] 上文已概述若干实施例的结构,使得所属领域的技术人员可较佳理解本揭露的方面。所属领域的技术人员应了解,其可容易地使用本揭露作为设计或修改用于实施相同目的及/或实现本文所引入的实施例的相同优点的其它过程及结构的基础。所属领域的技术人员还应认识到,这些等效构造不应背离本揭露的精神及范围,且其可在不背离本揭露的精神及范围的情况下对本文作出各种改变、取代及更改。
[0056] 符号说明
[0057] 10    衬底
[0058] 10a   第一表面
[0059] 10b   第二表面
[0060] 11    第一导电区域
[0061] 12    第二导电区域
[0062] 14    栅极结构
[0063] 15    介电层
[0064] 15'   侧壁
[0065] 16    预硅化物层
[0066] 17    硅化物层
[0067] 101   鳍式结构
[0068] 111   第一非晶结构
[0069] 111'  第二非晶结构
[0070] 121   第三非晶结构
[0071] 141   栅极电极
[0072] 142   栅极电介质
[0073] 143   硬掩模
[0074] 144   间隔物
[0075] 145   介电材料
[0076] A14   转角
[0077] AP1   非晶化
[0078] AP2   非晶化
[0079] D11   第一导电区域的深度
[0080] D111  第一非晶结构的深度
[0081] D111' 第二非晶结构的深度
[0082] D121  第三非晶结构的深度
[0083] ET1   蚀刻操作
[0084] IP1   植入
[0085] LA1   第一激光退火
[0086] LA2   第二激光退火
[0087] M10   方法
[0088] M20   方法
[0089] M30   方法
[0090] O11   操作
[0091] O12   操作
[0092] O13   操作
[0093] O14   操作
[0094] O15   操作
[0095] O16   操作
[0096] O21   操作
[0097] O22   操作
[0098] O23   操作
[0099] O24   操作
[0100] O25   操作
[0101] O26   操作
[0102] O27   操作
[0103] O28   操作
[0104] O31   操作
[0105] O32   操作
[0106] O33   操作
[0107] O34   操作
[0108] O35   操作
[0109] O36   操作
[0110] O37   操作
[0111] PA1   第一物质
[0112] PA2   第二物质
[0113] PA3   第三物质
[0114] PR    光致抗蚀剂
[0115] TS1   第一晶体管
[0116] TS2   第二晶体管
[0117] W10   半导体结构
[0118] W10a  第一侧
[0119] W10b  第二侧
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈