首页 / 专利库 / 专利权 / 实施例 / 使用不对称天线系统发现和跟踪通信方向的系统和方法

使用不对称天线系统发现和跟踪通信方向的系统和方法

阅读:350发布:2022-05-20

专利汇可以提供使用不对称天线系统发现和跟踪通信方向的系统和方法专利检索,专利查询,专利分析的服务。并且在此公开了一种用于发现和 跟踪 通信方向的系统和方法。在一个 实施例 中,公开了用于具有不对称天线系统的两个装置的通信方向。在一个实施例中,竞争 访问 段(CAP)被划分为可进一步被划分为与不同接收方相对应的子CAP的关联CAP和规则CAP。在一个实施例中,关联 请求 命令被装置在不同的关联子CAP发送,以训练装置的发送方向。在一个实施例中,由于当关联请求命令在不同的关联子CAP被发送时可发生冲突,所以进一步训练被执行,以找到最佳通信方向。,下面是使用不对称天线系统发现和跟踪通信方向的系统和方法专利的具体信息内容。

1.一种对在无线通信网络中的第一装置和第二装置选择方向的方法,所述方法包括如下步骤:
沿第二装置的一组接收方向接收一个或更多个信标,每个信标与第一装置的发送方向相关联;
基于接收的信标确定链接质量的指示;
基于链接质量的指示选择第一装置的特定发送方向;
基于链接质量的指示从第二装置的所述一组接收方向选择第二装置的特定接收方向;
沿第二装置的多个发送方向发送指示第一装置的选择的发送方向的数据,其中,所述沿第二装置的一组接收方向接收的步骤包括:
接收指示将竞争访问段划分为关联竞争访问段和规则竞争访问段的信标,其中,所述沿第二装置的多个发送方向发送的步骤包括在关联竞争访问段期间发送关联请求
2.如权利要求1所述的方法,其中,第二装置的发送方向与第二装置的接收方向不同。
3.如权利要求1所述的方法,其中,第一装置的发送方向或第二装置的接收方向包括全方向性方向。
4.如权利要求1所述的方法,其中,链接质量的指示包括信噪比SNR、信号与干扰加噪声比SINR、比特误码率BER、误包率PER或接收器信号强度指示RSSI中的至少一个。
5.如权利要求1所述的方法,其中,所述数据指示发送所述数据的第二装置的发送方向。
6.如权利要求5所述的方法,还包括步骤:接收指示第二装置的特定发送方向的数据。
7.如权利要求6所述的方法,其中,通过接收指示第二装置的特定发送方向的数据,来停止沿第二装置的多个发送方向发送。
8.如权利要求1所述的方法,其中,所述数据还包括第一装置的地址或第二装置的地址。
9.如权利要求1所述的方法,其中,所述数据还包括第一装置的性能或第二装置的性能。
10.如权利要求9所述的方法,其中,所述性能包括等级、最大发送功率、装置可支配的信道时间请求的最大数量、相关联装置的最大数量、优选的碎片大小或支持的数据中的至少一个。
11.如权利要求1所述的方法,其中,所述数据是关联请求。
12.如权利要求1所述的方法,其中,沿第二装置的多个发送方向发送的步骤包括:在包括在关联竞争访问段的多个子关联竞争访问段期间发送。
13.如权利要求1所述的方法,还包括步骤:
沿第二装置的每个发送方向发送训练信号;
接收指示第二装置的选择的发送方向的数据。
14.如权利要求13所述的方法,其中,沿第二装置的选择的接收方向接收所述指示第二装置的选择的发送方向的数据。
15.如权利要求1所述的方法,其中,所述沿第二装置的一组接收方向接收的步骤包括:
沿第一接收方向接收与特定发送方向相关联的第一信标;
沿第二接收方向接收与特定发送方向相关联的第二信标。
16.如权利要求15所述的方法,还包括步骤:发送指示选择的信息。
17.如权利要求15所述的方法,还包括步骤:将数据接收方向从第一接收方向改变到第二接收方向。
18.如权利要求15所述的方法,其中,第二信标包含少于第一信标的数据。
19.如权利要求15所述的方法,其中,链接质量的指示包括信噪比、信号与干扰加噪声比、比特误码率、误包率或接收器信号强度指示RSSI中的至少一个。
20.如权利要求1所述的方法,其中,数据是指示将关联竞争访问段或规则竞争访问段中的至少一个划分为与不同的方向相关联的多个子段。
21.一种用于对在无线通信网络中的第一装置和第二装置选择方向的系统,所述系统包括:
接收器,被配置为沿第二装置的一组接收方向接收一个或更多个信标,每个信标与第一装置的发送方向相关联;
选择器,被配置为基于与信标相关联的链接质量的测量选择第一装置的特定发送方向和第二装置的特定接收方向;
发送器,被配置为沿第二装置的多个发送方向发送指示第一装置的选择的发送方向的数据,
其中,接收器接收指示将竞争访问段划分为关联竞争访问段和规则竞争访问段的信标,
其中,发送器在关联竞争访问段期间发送关联请求。
22.如权利要求21所述的系统,其中,接收器包括一个或更多个接收天线,发送器包括与接收天线物理地分离的一个或更多个发送天线。
23.如权利要求21所述的系统,其中,发送器或接收器包括扇面天线。
24.如权利要求21所述的系统,其中,选择器包括确定模块,该确定模块被配置为基于接收的信标确定链接质量的测量。
25.一种对在无线通信网络中的第一装置和第二装置选择方向的方法,所述方法包括如下步骤:
沿第一装置的一组发送方向发送一个或更多个信标;
沿第一装置的接收方向接收指示第一装置的选择的发送方向和第二装置的发送方向的数据;
沿第一装置的选择的发送方向发送指示第二装置的发送方向的数据,
其中,所述发送一个或更多个信标的步骤包括发送指示将竞争访问段划分为关联竞争访问段和规则竞争访问段的信标,
其中,沿第一装置的接收方向接收的步骤包括在关联竞争访问段期间接收关联请求。
26.如权利要求25所述的方法,还包括步骤:确定所述指示第一装置的选择的发送方向和第二装置的发送方向的数据是否沿第一装置的多个接收方向被接收。
27.如权利要求25所述的方法,其中,第一装置的发送方向与第一装置的接收方向不同。
28.如权利要求25所述的方法,其中,第一装置的发送方向、第一装置的接收方向、第二装置的接收方向或第二装置的发送方向包括全方向性方向。
29.如权利要求25所述的方法,还包括步骤:
沿第一装置的每个接收方向接收训练信号;
基于训练信号确定链接质量的指示;
基于链接质量的指示选择第二装置的特定发送方向;
基于链接质量的指示选择第一装置的特定接收方向;
沿第一装置的选择的发送方向发送指示第二装置的选择的发送方向的数据。
30.如权利要求25所述的方法,其中,所述沿第一装置的一组发送方向发送一个或更多个信标的步骤包括:
在第一时间间隔期间沿一组发送方向发送一个或更多个第一信标;
在第二时间间隔期间沿该一组发送方向发送一个或更多个第二信标。
31.如权利要求30所述的方法,其中,第二信标包括少于第一信标的数据。
32.如权利要求30所述的方法,其中,第一信标包括前同步信号和净荷,第二信标包括前同步信号。
33.如权利要求30所述的方法,其中,信标是用于设置时序分配和通信关于无线网络的管理信息的数据包。
34.如权利要求30所述的方法,其中,第一时间间隔和第二时间间隔在单个超的信标段中。
35.如权利要求25所述的方法,其中,数据包指示将关联竞争访问段或规则竞争访问段中的至少一个划分为与不同的方向相关联的多个子段。
36.一种用于对在无线通信网络中的第一装置和第二装置选择方向的系统,所述系统包括:
发送器,被配置为沿第一装置的一组发送方向发送一个或更多个信标;
接收器,被配置为沿第一装置的接收方向接收指示第一装置的选择的发送方向和第二装置的发送方向的数据;
其中,发送器还被配置为沿第一装置的选择的发送方向发送指示第二装置的发送方向的数据,
其中,发送器发送指示将竞争访问段划分为关联竞争访问段和规则竞争访问段的信标,
其中,接收器在关联竞争访问段期间接收关联请求。
37.如权利要求36所述的系统,其中,发送器包括一个或更多个发送器天线,接收器包括一个或更多个与发送器天线物理地分离的接收器天线。
38.如权利要求36所述的系统,其中,接收器或发送器包括扇面天线。

说明书全文

使用不对称天线系统发现和跟踪通信方向的系统和方法

技术领域

[0001] 本发明涉及无线通信,更具体地讲,涉及在包括具有不对称天线系统的装置的无线网络中的发现和相关联。

背景技术

[0002] 无线通信网络一般与不使用线缆来实现网络的装置之间的相互连接的电信网络相关联。通常使用各种类型的远程信息发送系统来实现这些网络,其中,所述远程信息发送系统使用电磁波(例如,无线电波)作为载波。
[0003] 无线个人局域网(WPAN)是用于多个装置(例如,计算机、移动电话个人数字助理打印机数码相机、电视机、媒体播放器等)之间的通信的一种无线网络。通常WPAN覆盖多大10或20米的短范围。最近,已开发了用于这些短范围网络通信的许多标准,例如,包括蓝牙和IEEE 802.15。
[0004] WPAM的一些实施例在高频(例如,60GHz)工作,其中,由于自由空间路径损耗随着频率平方而增加的原因,在高频中的自由空间路径损耗高于在低频中。为了补偿这些高衰减,一些网络装置被配置为方向性地发送,其中,相对于其它位置,接收的信号在特定位置较强。为此,一些网络装置采用沿特定方向物理地引导天线的辐射模式(radiation pattern)的扇面天线。方向发送的其它方法包括波束形成(beamforming),在该方法中很多天线发送相同信号的加权版本,这导致在一些位置很多发送是同相并一起相加从而导致强的接收以及在其它位置很多发送是异相并导致较弱的接收。
[0005] 采用方向性发送的一些网络装置还采用方向性接收。在一些实施例中,相同天线用于接收和发送,导致对称天线系统(SAS),在该对称天线系统中发送方向和接收方向相同。在其它实施例中,不同的天线被用于接收和发送,导致不对称天线系统(AAS),在该不对称天线系统中发送方向和接收方向不同。如果发送方向和接收方向不同,则仅具有用于接收和发送二者的一组天线的装置还可包括不对称天线系统(AAS)。
[0006] 发明公开
[0007] 技术问题
[0008] 本发明的一方面是在无线网络中数据通信的方法,所述方法包括:在第一时间间隔沿一组发送方向发送一个或更多个第一信标(beacon),在第二时间间隔沿一组发送方向发送一个或更多个第二信标。
[0009] 有益效果
[0010] 可通过测量在关联处理期间先前被识别为具有高于阈值的信号质量的方向对的信号质量或再次测量具有最高信号质量的方向对的信号质量来减少功耗和时间。附图说明
[0011] 图1是无线装置的示例性无线个人局域网的示图。
[0012] 图2是示出根据一个实施例的用于通过无线介质发送数据的示例性通信系统的框图
[0013] 图3是根据一个实施例的示出多个超(SF)及其构成部分的时间线
[0014] 图4是包括具有对称天线系统的第一装置和第二装置的示例性无线网络的示图。
[0015] 图5是示出图4的示例性网络中的装置关联的方法的流程图
[0016] 图6A是示出多个超帧的构成部分的时间线,其中,在每个超帧的信标段(BP)发送一组方向性信标(Dir)。
[0017] 图6B是示出多个超帧的构成部分的时间线,其中,竞争访问周期(CAP)被划分为关联CAP和规则CAP并且关联或规则CAP还被划分为多个子CAP。
[0018] 图7是包括具有不对称天线系统的第一装置和第二装置的示例性无线网络的示图。
[0019] 图8是示出图7的示例性网络中的装置关联的方法的流程图。
[0020] 图9是示出图7的示例性网络中的装置关联的另一方法的流程图。
[0021] 图10是示出多个超帧的构成部分的时间线,其中,在每个超帧的信标段(BP)发送一组方向信标(Dir)和跟踪信号。
[0022] 最佳模式
[0023] 本发明的一方面是一种在无线网络中的数据通信的方法,所述方法包括:在第一时间间隔期间沿一组发送方向发送一个或更多个第一信标;在第二时间间隔期间沿一组发送方向发送一个或更多个第二信标。
[0024] 本发明的另一方面是一种在无线网络中的数据通信的方法,所述方法包括:沿第一方向接收沿特定发送方向发送的第一信标;沿第二方向接收沿特定发送方向发送的第二信标;对于接收的信标确定链接质量的指示,并基于链接质量的指示选择第一或第二接收方向。
[0025] 本发明的另一方面是一种将无线通信网络中的第一装置和第二装置相关联的方法,所述方法包括:发送指示将竞争访问段划分为关联竞争访问段和规则竞争访问段的数据包;在关联竞争访问段期间接收关联请求
[0026] 数据包还可指示将关联竞争访问段或规则竞争访问段中的一个或两个进一步划分为与不同方向相关联的子CAP。
[0027] 本发明的另一方面是一种将无线通信网络中的第一装置和第二装置相关联的方法,所述方法包括:接收指示将竞争访问段划分为关联竞争访问段和规则竞争访问段的数据包;在关联竞争访问段期间发送关联请求。
[0028] 本发明的另一方面是一种对在无线通信网络中的第一装置和第二装置选择方向的方法,所述方法包括如下步骤:沿第二装置的一组接收方向接收一个或更多个信标,每个信标与第一装置的发送方向相关联;基于接收的信标确定链接质量的指示;基于链接质量的指示选择第一装置的特定发送方向;基于链接质量的指示从第二装置的所述一组接收方向选择第二装置的特定接收方向;沿第二装置的多个发送方向发送指示第一装置的选择的发送方向的数据。
[0029] 本发明的另一方面是一种用于对在无线通信网络中的第一装置和第二装置选择方向的系统,所述系统包括:接收器,被配置为沿第二装置的一组接收方向接收一个或更多个信标,每个信标与第一装置的发送方向相关联;选择器,被配置为基于与信标相关联的链接质量的测量选择第一装置的特定发送方向和第二装置的特定接收方向;发送器,被配置为沿第二装置的多个发送方向发送指示第一装置的选择的发送方向的数据。
[0030] 本发明的另一方面是一种对在无线通信网络中的第一装置和第二装置选择方向的方法,所述方法包括如下步骤:沿第一装置的一组发送方向发送一个或更多个信标;沿第一装置的接收方向接收指示第一装置的选择的发送方向和第二装置的发送方向的数据;沿第一装置的选择的发送方向发送指示第二装置的发送方向的数据。
[0031] 本发明的另一方面是一种用于对在无线通信网络中的第一装置和第二装置选择方向的系统,所述系统包括:发送器,被配置为沿第一装置的一组发送方向发送一个或更多个信标;接收器,被配置为沿第一装置的接收方向接收指示第一装置的选择的发送方向和第二装置的发送方向的数据;其中,发送器还被配置为沿第一装置的选择的发送方向发送指示第二装置的发送方向的数据。

具体实施方式

[0032] 以下文本描述了本发明的特定示例性实施例。然而,本发明可被实现为由权利要求限定和覆盖的多个不同方式。在该描述中,参照附图,其中,相同部件始终由相同标号表示。
[0033] WPAN系统综述
[0034] 无线个人局域网(WPAN)系统是用于装置(例如,便携式计算机、电话或个人数字助理)之间通信的计算机网络。WPAN的范围一般为几米,但是在特定环境下其范围更大。WPAN可用于装置之间的通信,或者WPAN可用于使用诸如互联网的较高等级网络来进行相互连接。最近,已开发了用于网络通信的多个标准,包括例如蓝牙和IEEE 802.15。
[0035] 图1是示例性无线个人局域网的示例的示图。示出的网络100包括协调器120、第一装置130、第二装置140和第三装置150。其它WPAN实施例可采用自组织网络(ad hoc networking)方案,并因此缺少专用协调器。可使用各种不同参数来执行在网络中的各种装置之间的通信,所述各种不同的参数包括不同的调制和编码方案、不同的协议、不同的随机访问方案和不同的频带。
[0036] 在一些实施例中,协调器120负责协调协调器120与其他装置之间或者网络的其它装置之间的数据传送(transfer)。协调器120一般将无线信道划分为多个时间段并在那些时间段期间调度特定装置之间的通信。例如,协调器可以是电视机、机顶盒、个人计算机、膝上型计算机或专用控制盒。
[0037] 图1的网络100中,协调器120被配置为使用装置130、140、150执行方向性发送和接收。协调器120可利用扇面天线用于方向性发送和/或接收。每个扇面121表示沿轴远离协调器120的不同方向,所述每个扇面121可用于数据的发送或接收。协调器120选择扇面,并且当扇面被选择时,协调器120能够沿扇面的形状限定的大致方向发送和/或接收数据。
[0038] 第一装置130可利用全方向性(ommi-directional)发送和接收。第二装置140可利用具有多于或少于协调器120的扇面的扇面天线。另外,第三装置150可利用具有与协调器120相同数量的扇面的扇面天线。装置130、140、150中的每一个可以是,例如,电视机、台式计算机、膝上型计算机、机顶盒、DVD播放器或记录器、VCR、音频播放器、数字相机、便携式摄像机、游戏装置或计算机外围装置(例如,鼠标键盘、打印机、扫描仪等)。
[0039] 还可由协调器120或一个或更多个装置通过使用波束形成来实现方向性发送。在一些实施例中,协调器或一个或更多个装置采用不对称天线系统(AAS),导致不同的组的发送和接收。
[0040] 通常,装置可通过经由连接到收发器的一个或更多个天线来辐射电磁辐射,来进行通信。收发器可包括发送器、接收器或发送器和接收器二者。装置可包括提供给存储器的处理器。处理器可以是通用处理器、数字信号处理器(DSP),专用集成电路(ASIC)、现场可编程逻辑阵列(FPGA)或其它可编程逻辑装置、离散逻辑门或晶体管逻辑、离散硬件部件、或设计为执行在此描述的功能的任何合适的及其组合。通用处理器可以是微处理,但是可选地,处理器可以是任何传统处理器、控制器微控制器或状态机。处理器还可被实现为计算装置的组合(例如,DSP和微处理器的组合)、多个微处理器、一个或更多个结合了DSP核的微处理器,或任何其它这些配置。
[0041] 结合在此公开的实施例描述的方法或算法的步骤可被直接嵌入到硬件、处理器执行的软件或所述硬件和软件的组合。软件模块可位于任何合适的计算机可读介质,例如,存储器。存储器可以是易失性存储器或非易失性存储器,例如,DRAM存储器、闪速存储器、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动盘、CD-ROM或现有技术中其它任何形式的合适的存储介质。示例性存储介质连接到处理器,使得处理器可以从存储介质读取信息并将信息写入到存储介质。可选地,存储介质可以集成到处理器。处理器和存储介质可位于ASIC或任何合适的商业可用芯片集。
[0042] 图2示出表示示例性无线个人局域网(WPAN)系统200的概括框图。示例WPAN系统200包括无线发送器202和无线接收器204。发送器202包括物理(PHY)层206、媒体访问控制(MAC)层208、上层(upper layer)210和一个或更多个天线。相似地,接收器204包括PHY层214、MAC层216、上层218和一个或更多个天线。在一些实施例中,PHY层206、214包括射频(RF)模块207、217。PHY层206、214经过RF模块207、217和一个或更多个天线提供通过无线介质201的发送器202与接收器204之间的无线通信。
[0043] 上层210、218分别表示MAC层208、216之上的一个或更多个层,并将命令和/或数据消息发送到MAC层。在特定实施例(例如,OSI或TCP/IP模块)中,上层210、218包括网络层。在特定实施例中,网络层包括IP协议,所述协议执行将数据包从源带到目的地的基本任务。在其它实施例(例如,5层TCP/IP模块)中,上层210、218还包括传输层和应用层。在其它实施例(例如,7层OSI模块)中,除传输层和应用层之外,上层210、216还包括对话层和呈现层。OSI和TCP/IP是公知的数据网络模块,在此不再描述。
[0044] 在无线发送器202中,上层210将数据(例如,文本、图形或音频数据)和/或命令消息提供给MAC层208。在特定实施例中,MAC层208可包括将数据和/或命令消息打包为一个或更多个数据包的形式的打包模块(未示出)。然后,MAC层208将数据包传递(pass)给PHY层206。发送器202的PHY/MAC层将PHY和MAC头添加到数据包。PHY层206经由RF模块207通过无线信道201将包括数据包的无线信号发送给接收器204。
[0045] 在无线接收器204,PHY层214经由RF模块217接收包括数据包的发送的无线信号。然后,PHY/MAC层214、216处理接收的数据包以提取一个或更多个数据/命令消息。提取的数据/命令消息被传递给上层210,在所述上层210,所述消息被进一步处理和/或传送给其他模块或装置以被例如显示(文本或图形)或播放(音频)。
[0046] 采用信标信号的无线网络
[0047] 如上所述,图1的协调器120可将无线信道划分为多个时间段并在那些时间段期间调度特定装置之间的通信。图3是根据一个实施例的划分为多个超帧(SF)310的时间的示图。每个超帧310可被进一步划分为信标段320、竞争访问段(CAP)322和信道时间分配段(CTAP)324。熟练的技术人员应认识,根据网络的设计,超帧还可包括其它划分段,例如,保护时间段(guard time period)。
[0048] 在信标段320期间,协调器(例如,图1的协调器120)将信标发送到无线装置(例如,图1的装置130、140、150)。信标是电磁波形,装置可从该信标检索关于网络的信息。例如,信标可包括关于协调器的信息或关于超帧划分的信息。信标还可包括指示用于网络中的装置的保留调度信息的数据,例如,特定装置何时应将数据发送到协调器或反之。可以全方向地或沿一个或更多个特定方向发送信标。根据实施例,可使用任何调制和编码方案和包括正交频分复用(OFDM)和单载波发送的任何物理层发送方案来发送信标。信标可以是广播,使得任何装置可以接收并干扰信标,或者信标可被编址到特定装置或装置的组。在信标段320内发送的信标不是必须大小相同,因此,不是必须占用相同的时间量来进行发送。信标段320可被划分为子信标段,其中,在每个子信标段期间通过协调器沿一个方向发送信标。
[0049] 无线信道可以是竞争访问段(CAP)322期间的随机访问信道。任何随机访问方案可被用于网络,所述随机访问包括,但不限于,时隙阿罗哈(slotted Aloha)、载波感测多路访问(CSMA)、避免冲突的载波感测多路访问(CSMA/OA)或前同步信号感测多路访问(PSMA,preamble sense multiple access)。如在许多随机访问方案中一样,当多个装置同时地发送数据包时,可发生冲突。
[0050] 在竞争访问段(CAP)322期间,无线装置通过发送消息(例如,将关联请求发送到协调器)来向协调器宣布本身。响应于这些消息,协调器可在随后的超帧的CTAP 324期间保留时间以与装置进行通信,并且可在信标段320期间将指示保留的信息发送到装置。
[0051] 包括MAC命令的多个类型的消息可被包括在包中,并且可在超帧(SF)310的CAP322期间被发送。例如,装置可在CAP 322期间通过协调器将数据发送到另一装置。此外,在CAP 322期间,除关联消息之外的其它数据包可从装置发送到协调器。
[0052] 如上所述,信道时间分配段是为网络的特定装置之间的通信而保留的时间部分。在表示信道时间分配(CTA)的保留的信道时间期间,两个装置(例如,协调器和其它装置)可有效地发送大量数据(例如,音频或视频数据)。在保留的时间期间,还可执行其它非数据功能,例如,波束形成训练或跟踪处理。
[0053] 关联是装置加入到网络的处理。与网络进行关联可包括,例如,将唯一装置标识符提供给装置。关联处理还可包括提供关于由网络和/或装置提供的服务的信息。
[0054] 通常,关联是两个装置建立另一装置的认识的处理,并且还可包括选择特定参数并进行通信,以使进一步的通信更有效和/或更可靠。例如,在一个实施例中,第一装置与第二装置之间的关联处理包括交换涉及另一装置的优选发送方向的信息,例如,沿哪个发送方向时接收装置处的接收强。
[0055] 例如,当装置第一次上电时,可执行相关联以将该装置建立为无线网络的部分。图4是包括具有对称天线系统的第一装置和第二装置的示例性无线网络的示图,图4将用于解释示例性关联的处理。示例性网络400包括具有8个发送/接收方向415的第一装置410和具有4个发送/接收方向425的第二装置420。第一装置410包括对称天线系统(SAS),表示第一装置的发送和接收方向相同。相似地,第二装置的发送和接收方向相同。
[0056] SAS关联和方向选择
[0057] 图5是示出参照图4的示例性网络的关联和方向选择的方法的流程图。在块510,第一装置410发送信标来开始方法500。例如可在划分的超帧的信标段期间发送信标,所述划分的超帧包括前述的信标段以及竞争访问段和信道时间分配段。
[0058] 无线信道600被划分为多个超帧,每个超帧包括信标段(BP)、竞争访问段(CAP)和信道时间分配段(CTAP)。在第一超帧610的信标段612期间,第一装置沿第一组发送方向(例如,在图4中415a和415b标出的方向)发送一组方向性信标(Dirx)614。在第二超帧620的信标段622期间,第一装置沿第二组发送方向(例如,在图4中415c和415d标出的方向)发送一组方向性信标(Dirx)624。可以以循环形式重复该处理直到沿第一装置410的所有发送方向发送了信标。
[0059] 在一个实施例中,在每个SF中的一组发送方向仅包括一个发送方向。这样,沿所有方向发送信标占用的超帧的数量等于装置的发送方向的数量,例如,对于第一装置410,需要使用8个SF来覆盖所有方向。在另一实施例中,在每个SF中的一组发送方向包括装置的所有可能的发送方向。这样,仅需要一个SF来覆盖所有方向。可在任意特定超帧的信标段612期间发送包括如将在以下解释的跟踪信标和扇面训练信标的其它信标。
[0060] 在图5的块515,第二装置420从第一装置410接收信标。在一个实施例中,第二装置沿第一接收方向“收听”信标直到对第一装置的每个发送方向已发送了信标。使用图6的发送方案,这表示,对于多个超帧,第二装置应设置其对第一方向的接收方向(例如,
425a标出的方向)。然后,对于多个超帧,第二装置应设置其对第二方向的接收方向(例如,
425b标出的方向)。在多个超帧之后,第二装置具有对每个发送/接收方向组合的接收的信标。例如,如果第一装置410在每个超帧沿该装置的所有可能的方向发送方向性信标,则使第二装置420占用4个超帧以具有沿每个发送/接收方向的接收的信标。如果装置410在每个超帧仅沿一个方向发送方向性信标,则使第二装置420占用32个超帧以具有沿每个发送/接收方向的接收的信标。
[0061] 一旦在块515接收信标,图5的处理500移到块520,在块520中第二装置420基于接收的信标确定一个或更多个链接质量的指示符(indicator)。链接质量的指示符可包括,例如,信噪比(SNR)、信号与干扰加噪声比(SINR)、比特误码率(BER)、误包率(PER)或接收器信号强度指示(RSSI)。计算这些链接质量测量的方法是公知的,并且可在将来导出新的方法。链接质量的指示符可有助于确定用于最有效和/或最可靠的通信的发送和接收方向。然后,在块525,第二装置420选择第一装置的发送方向和第二装置的接收方向以用于该两个装置之间的通信。该选择通常基于链接质量的计算的指示符。例如,选择可以是潜在地具有最高SNR或最低BER的方向。
[0062] 在处理的该点,由于仅第二装置420知道选择的方向,所以使用选择的方向的该两个装置之间的有效地通信无法发生。因此,在块530,第二装置420发送至少包括第一装置的选择的方向的关联请求。关联请求还可包括第一装置或第二装置的地址、第一装置和第二装置的性能或涉及关联的性质的细节(例如,在不进行通信时,装置将保持(remain)关联多久等)。由于两个装置均采用对称天线系统,选择还指示第一装置的接收方向和第二装置的发送方向。当第二装置被配置为沿第一装置的指示的接收方向接收时,关联请求可优选地沿第二装置的指示发送方向发送。
[0063] 第一装置410被配置为在竞争访问段期间接收数据包。以与针对方向而划分信标段相似的方式,竞争访问段还可被划分为多个子CAP,其在申请人拥有的专利申请中进行了进一步描述,该专利由于2008年8月11日提交的名称为“System and method for multiple contention access periods”,美国专利申请号12/189,534确定,其通过参照完整地包括于此。图6B示出竞争访问段的划分。无线信道600被划分为多个超帧,每个超帧(SF)包括信标段(BP)、竞争访问段(CAP)和信道时间分配段(CTAP)。第一超帧630的竞争访问段634被分割为两个子竞争访问段:i)关联CAP 634和ii)规则CAP 636。第一装置410被配置为在关联CAP 634期间接收关联请求以及被配置为在规则CAP 636期间接收其它数据包。第一装置410还可在关联CAP 634或规则CAP 636期间发送控制或数据包。子CAP可通过保护时间间隔(未示出)分隔。
[0064] 关联CAP 634进一步被划分为方向性关联子CAP 638,第一装置410被配置为在子CAP 638中沿特定方向接收关联请求。可相似或不同地划分规则CAP 636。在第一帧630的关联CAP 634期间,第一装置410被配置为沿一组接收方向(例如,图4中415a和415b标出的方向)接收关联请求。在第二超帧640的关联CAP段644期间,第一装置410被配置为沿第二组接收方向(例如,图4中415c和415d标出的方向)接收关联请求。可以以循环方式重复该处理,直到覆盖了第一装置410的所有接收方向。由于网络400由具有对称天线的装置组成,装置的接收方向与发送方向基本相同。
[0065] 移动到图5的块535,第一装置410接收关联请求。在处理的该点,第一装置和第二装置二者知道用于两个装置的选择的发送方向和接收方向。因此,有效和/或可靠通信可在合适的调度时间开始(commence)。然而,第二装置420不知道关联已经成功。为了改变这种情况,在块545,第一装置410将包括至少该信息的关联响应发送至第二装置420。一般沿第一装置的选择的发送方向发送关联响应。在一些实施例中,可在信标段期间发送关联响应。可选地,可在CAP期间发送关联响应。
[0066] 在块550,第二装置420接收关联响应。在处理的该点,两个装置知道(选择的发送/接收方向)如何有效和可靠地相互通信。因此,第一装置和第二装置分别进行到数据通信的块555和560。还可包括交换通信细节,通信细节包括涉及协议的细节和涉及何时发生通信的细节(例如,信道时间分配请求和信道时间分配)。
[0067] AAS关联和方向选择
[0068] 通过使用不对称天线系统,使关联的处理更复杂。在一些装置中,发送器天线和接收器天线物理地分离,从而导致不同的发送方向和接收方向。在一些装置中,发送器天线和接收器天线的数量不同,再次导致不同的发送方向和接收方向。仍在其它装置中,即使在这些装置中发送器天线和接收器天线物理地相同,但是发送器和接收器增益或其它配置可能不同,从而导致根据不同的发送或接收配置的不同的方向性选择。
[0069] 图7是包括具有不对称天线系统的第一装置和第二装置的示例性无线网络的示图。示例性无线网络700包括具有4个发送方向715和4个接收方向717的第一装置710。网络700还包括具有4个发送方向725和4个接收方向727的第二装置720。在其它网络实施例中,第一装置或第二装置的发送方向的数量可不同于该装置的接收方向的数量。在一些实施例中,第一装置或第二装置的发送方向或接收方向中的至少一个包括全方向性方向。例如,即使第一装置的发送方向可包括多个扇面,但第一装置的接收方向可以是全方向。
[0070] 不对称的天线系统改变在针对图5描述的关联处理500中进行的一些假设。具体地,选择第一装置的发送方向不指示相同方向被选择为第一装置的接收方向。相似地,选择第二装置的接收方向不指示相同方向被选择为第二装置的发送方向。
[0071] 针对图8,在块810,不对称关联和方向选择处理800通过第一装置710发送信标来开始。例如,可在划分的超帧的信标段期间发送信标,所述划分的超帧包括信标段(BP)、竞争访问段(CAP)和信道时间分配段(CTAP)。如上所述,第一装置710在每个超帧的信标段期间沿一组发送方向发送一组信标,直到已沿第一装置的每个发送方向发送了信标。
[0072] 在图8的块815,第二装置720从第一装置710接收信标。在一个实施例中,第二装置720沿第一接收方向“收听”信标,直到对第一装置的每个发送方向已发送了信标。因此,第二装置720被配置为沿第一接收方向接收信标,至少直到对第一装置的每个发送方向已发送了信标。然后,第二装置720改变其配置,从而沿第二接收方向接收信标,直到(由第一装置720)已沿第一装置的每个发送方向发送了信标。在多个超帧之后,第二装置对每个发送/接收方向组合接收信标。
[0073] 在块815接收信标之后,第二装置移动到图8的块820,在块820基于接收的信标确定链接质量的指示符。如先前对对称天线配置的描述,链接质量的指示符可包括,例如,信噪比(SNR)、信号与干扰加噪声比(SINR)、比特误码率(BER)、误包率(PER)或接收器信号强度指示(RSSI)。链接质量的指示符可有助于确定用于最有效和/或最可靠的通信的第一装置的发送方向和第二装置的接收方向。在块825,第二装置选择第一装置的发送方向和第二装置的接收方向以用于两个装置之间的通信。该选择可基于链接质量的指示符。例如,选择可以是潜在地具有最高SNR或最低BER的方向。
[0074] 在处理的该点,由于仅第二装置知道选择的方向以及选择的方向仅允许(从第一装置710至第二装置720的)单向发送,所以使用选择的方向的该两个装置之间的有效地通信无法发生。此外由于还没有建立第二装置的工作发送方向和第一装置的接收方向,所以无法容易地将选择方向通信给第一装置。
[0075] 在块830,第二装置发送至少包括第一装置的选择的发送方向的关联请求。关联请求还可包括第一装置或第二装置的地址、第一装置和第二装置的性能或涉及关联的性质的细节(例如,在不进行通信时,装置将保留关联多久等)。由于第二装置710不知道第二装置的哪个发送方向发送关联请求或在哪个子关联CAP中发送关联请求,所以可以以与第一装置710的信标发送相似的方式发送关联请求。例如,在一个实施例中,第二装置720在每个子关联竞争访问段638期间沿第二装置的每个发送方向发送关联请求。可重复该过程,直到对每个发送/接收对发送了关联请求。在另一实施例中,进行了如下更详细的论述,一旦第一装置710接收了关联请求,停止发送关联请求。在另一实施例中,在第一超帧630的每个子关联竞争访问段638(参照图6B)期间,第二装置沿第二装置的第一发送方向发送关联请求。在下一超帧640,在超帧的每个子关联竞争访问段648期间,第二装置720沿第二装置的第二发送方向发送关联请求。在随后的超帧中,第二装置720在超帧的每个子竞争访问段期间沿第二装置的随后的发送方向发送关联请求,直到关联请求被第一装置710接收或已对每个发送/接收对发送了关联请求。
[0076] 在图8的块835,第一装置710接收至少一个关联请求。在一些实施例中,第一装置接收多个关联请求,其中,所述多个关联请求中的每一个与不同的方向对关联。在处理的该点,第一装置和第二装置二者知道第一装置的选择的发送方向,第二装置还知道第二装置的接收方向。因此,可在合适的调度时间开始(从第一装置至第二装置的)有效和/或可靠单向通信。然而,第二装置不知道该调度时间,双向通信不是有效和/或可靠的。
[0077] 在图8示出的实施例中,在块840,第一装置710基于接收的关联请求确定链接质量的指示符。如先前论述的,链接质量的指示符可包括,例如,信噪比(SNR)、信号与干扰加噪声比(SINR)、比特误码率(BER)、误包率(PER)或接收器信号强度指示(RSSI)。链接质量的指示符可有助于确定用于最有效和/或最可靠的通信的第二装置的发送方向和第一装置的接收方向。在块845,第一装置710选择第二装置的发送方向和第一装置的接收方向以用于两个装置之间的通信。该选择可基于链接质量的指示符。例如,选择可以是潜在地具有最高SNR或最低BER的方向。
[0078] 在该点,第二装置720不知道关联已成功(或第二装置的发送方向)。为了改变这种情况,在块855,第一装置710将包括至少该信息的关联响应发送给第二装置720。可以沿第一装置的选择的发送方向发送关联响应。可选地,可以作为全方向性发送来发送关联响应。可在信标段期间发送关联响应。可选地,可在CAP期间发送关联响应。
[0079] 在块860,第二装置720接收关联响应。在处理的该点,两个装置知道(选择的发送/接收方向)如何有效和可靠地相互通信。因此,第一装置和第二装置分别进行到数据通信的块865和870。还可包括交换通信细节,通信细节包括涉及协议的细节和涉及何时发生通信的细节(例如,信道时间分配请求和信道时间分配)。
[0080] 由于在竞争访问期间无线信道是随机访问信道,因此,在第一装置被配置为沿第一装置的“最佳”接收方向接收关联请求时,在沿第二装置的“最佳”发送方向发送关联请求期间可发生冲突。为了最优化该处理,当不发生冲突时,在相关联之后,例如,在CTAP的部分期间,可执行对所有可能的第二装置的发送方向和第一装置的接收方向的搜索。
[0081] 图9是示出图7的示例性网络中的关联和方向选择的方法的流程图,在该方法中执行搜索。在块910,该处理900通过第一装置710发送信标来开始。例如,可在划分的超帧的信标段期间发送信标,所述划分的超帧包括信标段、竞争访问段和信道时间分配段。如上论述的,第一装置710在每个超帧的信标段期间沿一组发送方向发送一组信标,直到已沿第一装置的每个发送方向发送了信标。
[0082] 在图9的块915,第二装置720从第一装置710接收信标。在一个实施例中,第二装置720沿第一接收方向“收听”信标,直到对第一装置的每个发送方向已发送了信标。因此,第二装置720被配置为沿第一接收方向接收信标,至少直到对第一装置的每个发送方向已发送了信标,然后,第二装置720改变其配置,从而沿第二接收方向接收信标,直到(由第一装置720)已沿第一装置的每个发送方向发送了信标。响应于接收信标,第二装置继续到图9的块920,在块920,第二装置720基于接收的信标确定链接质量的指示符。如先前论述的,链接质量的指示符可包括,例如,信噪比(SNR)、信号与干扰加噪声比(SINR)、比特误码率(BER)、误包率(PER)或接收器信号强度指示(RSSI)。链接质量的指示符可有助于确定用于最有效和/或最可靠的通信的第一装置的发送方向和第二装置的接收方向。在块925,第二装置720选择第一装置发送方向和第二装置的接收方向以用于两个装置之间的通信。该选择可基于链接质量的指示符。例如,选择可以是潜在地具有最高SNR或最低BER的方向。
[0083] 在处理的该点,由于仅第二装置720知道选择的方向以及选择的方向仅允许(从第一装置710至第二装置720的)单向发送,所以使用选择的方向的该两个装置之间的有效地通信无法发生。此外由于还没有建立第二装置的工作发送方向和第一装置的接收方向,所以无法容易地将选择的方向通知给第一装置。
[0084] 在块930,第二装置720发送至少包括第一装置的选择的方向的关联请求。关联请求还可包括第一装置或第二装置的地址、第一装置和第二装置的性能或涉及关联的性质的细节(例如,在不进行通信时,装置将保留相关联多久等)。由于第二装置710不知道第二装置的哪个发送方向发送关联请求或在哪个子关联CAP中发送关联请求,所以可以以与第一装置710的信标发送相似的方式发送关联请求。例如,在一个实施例中,在每个子关联竞争访问段638期间,第二装置720沿第二装置的每个发送方向发送关联请求。可重复该过程,直到对每个发送/接收对发送了关联请求。然而,由于在该实施例中,在关联之后的CTAP的部分期间对所有可能的发送/接收对执行搜索,所以这些重复不是必须的。因此,在一些实施例中,一旦第一装置710接收了关联请求(和/或第二装置720接收了对应的关联响应),停止发送关联请求。
[0085] 在另一实施例中,在第一超帧630的每个子关联竞争访问段638期间,第二装置720沿第二装置的第一发送方向发送关联请求。在下一超帧640,在超帧的每个子关联竞争访问段648期间,第二装置720沿第二装置的第二发送方向发送关联请求。在随后的超帧中,第二装置720在超帧的每个子竞争访问段期间沿第二装置的随后的发送方向发送关联请求,直到关联请求被第一装置710接收(和/或第二装置720接收对应的关联响应)或已对每个发送/接收对发送了关联请求。在图9的块935,第一装置710接收至少一个关联请求。在处理的该点,第一装置和第二装置二者知道第一装置的选择的发送方向,第二装置还知道第二装置的接收方向。因此,(从第一装置710至第二装置720的)有效和/或可靠单向通信(从第一装置至第二装置)可在合适的调度时间开始。然而,第二装置不知道该调度时间,双向通信不是有效和/或可靠的。
[0086] 在块940,第一装置710在信道时间分配段(CTAP)期间保留或调度时间,以确定第二装置的发送方向和第一装置的对应的接收方向。然而,第二装置720不知道该调度时间。为了改变此情况,在块945,第一装置710将包括该信息的关联响应发送给第二装置720。可以沿第一装置的选择的发送方向发送关联响应。可选地,可作为全方向性发送来发送关联响应。可在信标段期间发送关联响应。可选地,可在CAP期间发送关联响应。
[0087] 在块950,第二装置720接收关联响应。在处理的该点,两个装置知道(第一装置的选择的发送方向和第二装置的选择的接收方向)如何有效和可靠地执行(从第一装置710至第二装置720的)单向通信。它们还知道(保留的信道时间)何时执行搜索以选择第二装置的发送方向和第一装置的对应的接收方向。
[0088] 第一装置和第二装置分别进行到执行搜索的块955和块960。所述搜索可以是,例如,穷举搜索或者多级天线训练算法(multistage antenna training algorithm),其在申请人拥有的专利申请中进行了进一步描述,该专利由于2008年11月3日提交的名称为“System and method for multi-stage antenna training of beamforming vectors”,美国专利申请号12/264,100确定,其通过参照完整地包括于此。第二装置的发送方向和第一装置的接收方向被选择,并且可进行该两个装置之间的通信。例如,选择可以是潜在地具有最佳结果(例如,最高SNR或最低BER)的方向。第一装置和第二装置分别进行到在调度时间期间数据通信的块965和970。
[0089] 方向跟踪
[0090] 如果在关联已执行之后第一装置和第二装置(例如,图7中示出的)从其原始位置相互移动,则第二装置720无法使用第一装置的选择的发送方向和第二装置的选择的接收方向来准确地接收信标。即使使用选择的方向仍接收了信标,但是可使用不同的方向对获得更高的信号质量。已在申请人拥有的专利申请中针对采用对称天线系统的系统描述了这种情况,该专利申请由于2008年8月11日提交的名称为“System and method for maintaining reliable beacon transmission and reception in a wireless communication network”,美国专利申请号12/189,714确定,其通过参照完整地包括于此。
[0091] 在该实施例中,具有用于维持鲁棒信标通信(robust beacon communication)的方法。在这些方法中的一个中,在执行关联之后,第二装置720维持其选择的接收方向并测量沿第一装置的选择的发送方向发送的信标的信号质量以及沿第一装置的其它发送方向发送的其它信标的信号质量。除测量如上述针对图6描述的一样发送的装置发现信标的信号质量之外,第二装置720可测量编址的信标或沿第一装置的其它发送方向特定地发送给其它装置的信标的信号质量。通过对沿第一装置的选择的发送方向发送的信标的信号质量与沿除选择方向之外的其它方向发送的信标的信号质量相比较,第二装置720可确定使用第一装置的不同的发送方向的通信可获得更高的信号质量。如果这样确定,则第二装置720可通过发送信标方向切换请求来触发信标方向切换处理。这种请求可在使用随机访问处理的CAP期间发送(例如,用于原始关联请求),或者在用于第一装置710与第二装置720之间的通信的CTAP调度期间发送。作为响应,协调器710可在信标段、CAP或CTAP期间回复信标方向切换响应。
[0092] 在维持鲁棒信标通信的其它方法中,第二装置720在信标段期间从第二装置的选择的接收方向改变其装置接收方向(以及在CTAP期间切换回选择的接收方向),以测量从第一装置710发送的其它信标的信号质量。这样,随着时间,第二装置720可试图测量所有方向对的信号质量。可通过测量先前在关联处理期间识别为高于阈值的信号质量的方向对的信号质量,或者可通过在关联阶段期间再次测量具有最高信号质量的方向对(例如,最高三个、最高五个、或最高10个)的信号质量,来减少功耗和时间。如果确定方向对获得更高信号质量,则第二装置720可通过发送信标方向切换请求来触发信标方向切换处理。
[0093] 第二装置720可使用不同的标准来确定是否该发送信标方向切换请求。例如,可根据第一装置的不同的发送方向或方向对可获得更高信号质量的第一指示来发送切换请求。在另一实施例中,仅当第二装置720持续地检测到第一装置的不同的发送方向或方向对提供高于选择的方向的信号质量时,切换请求被发送。当超过特定数量(例如三个)的超帧,在超帧期间对特定方向的测量的信号质量高于在超帧期间对选择的方向的测量的信号质量时,可指示该情况。
[0094] 在一些情况中,装置可能无法测量包括第一装置的发送方向和第二装置的接收方向的所有可能的方向对的信号质量。例如,在示例性网络中,第一装置具有T0、T1、T2和T3表示的发送方向,第二装置具有接收方向R0、R1、R2和R3。在第一种情况中,相关联处理可指示获得最高信噪比的方向对是T0-R0以及获得第二高信噪比的方向对是T1-R1。在该情况中,假设在每个超帧期间第一装置沿每个方向发送信标,第二装置可通过当第一装置沿方向T0发送时将其接收方向设置为R0以及通过当第一装置沿方向T1发送时将其接收方向设置为R1,来在每个超帧期间测量两个方向对。然而,在第二种情况中,关联处理可表示获得最高信噪比的方向对是T0-R0以及获得第二高信噪比的方向对是T0-R1。在这种情况中,由于第一装置沿方向T0仅发送一次,以及第二装置无法同时设置方向R0和R1,所以第二装置无法在每个超帧期间测量两个方向对。
[0095] 在第二种情况中,可采用多种机制来克服这种问题。例如,在一些示例中,第一装置沿方向T0方向发送信标作为关联处理的一部分,并且可沿具体地编址的T0方向发送信标至第二装置。因此,当设置为R1方向时第二装置测量第一信标的信号质量,以及当设置为R0方向时第二装置测量第二信标的信号质量。在一个实施例中,第一装置被配置为在每个超帧的信标段期间接收涉及候选方向对的列表的信息以及发送足够多的信标,以确保每个或至少附加方向对可被跟踪。在另一实施例中,为了可以跟踪每个或至少附加方向对,CTAP的部分被调度用于额外信标的发送。
[0096] 在图10示出的另一实施例中,超帧650的信标段652包括i)具有多个方向性装置发现信标655的装置发现部分654,和ii)具有多个方向性跟踪信标657的方向跟踪部分656。通过沿第一装置的同一发送方向发送两次信息(在装置发现部分654期间一次和在方向性跟踪部分656期间再次),可测量包括第一装置的发送方向的两个方向对的信号质量。
[0097] 通常,由于两个信标类型用作不同的目的,因此方向性跟踪信标不是必须包括装置发现信标的所有信息。例如,方向性跟踪信标可以仅包括PHY前同步信号(preamble),而装置发现信标包括PHY前同步信号、PHY头、MAC头和MAC净荷。
[0098] 上述过程不需要进行信号质量测量的大量附加信道时间花费。然而,用于从第一装置的所有发送方向或所有方向对测量信号质量的时间量可能相对长。为了加快信标方向切换处理,可在CTAP期间,保留信道时间块以对包括第一装置的发送方向和第二装置接收方向的不同的方向对执行信号质量测量。相似地,可在关联之后的CTAP期间,保留信道时间块以对包括第二装置的发送方向和第一装置的接收方向中的至少一个的返回信道执行信号质量测量。
[0099] 例如,如果装置使用选择的方向测量信号质量以及发现信号质量低于阈值,则该装置可请求第一装置保留用于信号质量测量的信道时间。作为响应,第一装置可保留用于实现与针对图9的块955和块960描述相似的方向搜索的信道时间(例如,在CTAP期间或专用超帧段期间)。
[0100] 应该理解,网络的任何、一些或所有装置可从来自第一装置或第二装置的测量信号的发送收益。在信标段期间,已保留了信道测量段可被通信给网络的每个装置。例如,第一装置可指示在超帧的特定段发生信道测量,除第二装置之外的装置可基于从第一装置发送的信号进行测量。
[0101] 虽然上述描述已指出了作为应用到各种实施例的本发明的新的特征,但是本领域技术人员应该理解,在不脱离本发明的范围的情况下,可在形式和细节上进行示出的装置或处理的各种删除、替换以及改变。因此,由权利要求而不是上述描述限定了本发明的范围。来自权利要求的等同物的含义和范围之内的各种变化包括在权利要求的范围内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈