首页 / 专利库 / 物理 / 蒸汽 / 一种具有隔热特性的非织造复合材料及其制备方法

一种具有隔热特性的非织造复合材料及其制备方法

阅读:1发布:2020-07-02

专利汇可以提供一种具有隔热特性的非织造复合材料及其制备方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种具有 隔热 特性的非织造 复合材料 及其制备方法,属于非织造复合材料领域,该非织造复合材料是由蓬松非织造材料和梯度涂层组成,其制造方法为:(1)制造由耐热 纤维 和低熔点纤维组成的蓬松非织造材料,(2)耐热涂层的制备,(3)耐热涂层与蓬松非织造材料的梯度复合。所述非织造复合材料内部具有从致密到质疏的梯度分布结构涂层,并且涂层内含有耐热性能与隔热性优良的无机气凝胶颗粒和金属颗粒,因此具有蓬松性、高强度、柔性、弹性、耐高温、耐隔离 辐射 热,同时还具有穿着安全性,可以在消防服、保温隔热垫、高温过滤、隔热密封垫、耐火材料、 内燃机 隔热、油 罐车 隔热、排气管的消音隔热材料等领域具有良好的应用。,下面是一种具有隔热特性的非织造复合材料及其制备方法专利的具体信息内容。

1.一种具有隔热特性的非织造复合材料,其特征在于:所述非织造复合材料是由蓬松非织造材料和耐热涂层组成,所述耐热涂层在蓬松非织造材料的厚度方向上表现为梯度分布;所述蓬松非织造材料是由有机耐高温纤维、蓬松纤维和热粘结纤维组成面密度在30~
200 g/m2,孔隙率在85 99%的纤维集合体;所述蓬松非织造材料各组分的重量百分比为有~
机耐高温纤维70 85%、蓬松纤维0 10%、热粘结纤维15 20%;表层耐热涂层的孔隙为90 10 μ~ ~ ~ ~
m,底层耐热涂层的孔隙为1 3μm。
~
2.根据权利要求1所述的具有隔热特性的非织造复合材料,其特征在于:所述有机耐高温纤维是聚酰亚胺纤维、聚酰胺酰亚胺纤维、聚醚醚纤维、聚对苯撑苯并二噁唑纤维、聚苯并咪唑纤维、间位芳纶纤维、聚苯硫醚纤维、聚苯砜对苯二甲酰胺纤维、聚四氟乙烯纤维中的一种或几种,纤维细度为14 20μm,纤维卷曲度6 8个/cm,纤维长度为38 65mm。
~ ~ ~
3.根据权利要求1所述的具有隔热特性的非织造复合材料,其特征在于:所述蓬松纤维采用聚对苯二甲酸乙二醇酯,聚对苯二甲酸乙二醇酯的卷曲形态为正弦状立体卷曲,纤维细度为25 28 μm,卷曲度为8 25 个/cm;同心中空截面,中空度为15 50%。
~ ~ ~
4.根据权利要求1所述的具有隔热特性的非织造复合材料,其特征在于:所述热粘结纤维为偏心型皮芯双组分纤维,皮层熔点为110 130℃,芯层熔点> 160 ℃,纤维细度为14 18 ~ ~
μm,皮层比例为20 wt%  50wt%,芯层比例为50 wt%  80 wt %。
~ ~
5.根据权利要求1所述的具有隔热特性的非织造复合材料,其特征在于:所述梯度涂层的原料配方中包含以下质量百分数的组分:N,N-二甲基甲酰胺:60 80%;聚酯:0 10%;聚~ ~
酰亚胺:15 20%;无机气凝胶颗粒:10% 15%;金属化颗粒:1 3%;亲整理剂:1 3%;抗菌整~ ~ ~ ~
理剂:0 3%;纳米管:0 1%;石墨烯:0 1%。
~ ~ ~
6.根据权利要求5所述的具有隔热特性的非织造复合材料,其特征在于:
所述的无机气凝胶颗粒为SiO2气凝胶,粒径为10~15nm;所述金属氧化颗粒为三氧化二,粒径为30 1000 nm;所述碳纳米管的管径1-30nm,管长为10 60 μm。
~ ~
7.根据权利要求1-6任一所述的具有隔热特性的非织造复合材料的制备方法,其特征在于包括以下步骤:
(一)、蓬松非织造材料的制备;
(二)、耐热涂层的制备;
(三)、耐热涂层与蓬松非织造材料的梯度复合。
8.根据权利要求7所述的具有隔热特性的非织造复合材料的制备方法,其特征在于:所述蓬松非织造材料的制备方法如下:
(1)将有机耐高温纤维、蓬松纤维和热粘结纤维按照一定比例共混后得到混合纤维;
(2)混合纤维经过调湿、开松、成网成共混纤维层;
(3)此后共混纤维层经过铺网、针刺-热工艺制备成蓬松非织造材料,
针刺密度为80 120刺/cm2。
~
9.根据权利要求7所述的具有隔热特性的非织造复合材料的制备方法,其特征在于:所述耐热涂层的制备方法如下:
(1)首先将聚酰亚胺与N,N-二甲基甲酰胺按照一定共混配置成聚酰亚胺/N,N-二甲基甲酰胺溶液;
(2)此后将聚氨酯加入聚酰亚胺/N,N-二甲基甲酰胺溶液内配置成聚氨酯/聚酰亚胺/N,N-二甲基甲酰胺溶液;
(3)将无机气凝胶颗粒、金属颗粒、亲水整理剂、抗菌整理剂和阻燃整理剂加入聚氨酯/聚酰亚胺/N,N-二甲基甲酰胺溶液内配置成耐热涂层。
10.根据权利要求7所述的具有隔热特性的非织造复合材料的制备方法,其特征在于:
所述耐热涂层与蓬松非织造材料的梯度复合步骤如下:
(1)将蓬松非织造材料置放于涂层机上,将由步骤(二)制备的耐热涂层经引涂层机涂敷于蓬松非织造材料表层;
(2)将涂敷后的蓬松非织造材料放置于在多孔筛网上,并将耐热涂层一侧朝上,在多孔筛网下部放置抽吸风机;耐热涂层在负压风的作用下沿着蓬松非织造材料的厚度方向从一侧向另一侧渗透,形成涂层在蓬松非织造材料的厚度方向上表现为梯度分布;
(3)将步骤(2)中经过涂层渗透后的蓬松非织造布放入蒸汽浴内,通过水蒸汽置换DMF获得孔径成梯度分布的湿态涂层/蓬松非织造布;
(4)湿态涂层/蓬松非织造布放置在130~150℃环境中烘干即获得具有隔热特性的非织造复合材料。

说明书全文

一种具有隔热特性的非织造复合材料及其制备方法

技术领域

[0001] 本发明涉及非织造复合材料领域,特别是指一种具有隔热特性的非织造复合材料及其制备方法。

背景技术

[0002] 非织造材料作为通过物理和/或化学方法制成的具有工程结构完整性的纤维集合体,是介于传统纺织品、塑料、皮革和纸四大柔性材料之间的纤维材料。其不仅具有原料来源广,成网方法、固网方法和后整理方法多样化的加工特点,还具有多种几何工程结构,在能源与环境、医疗与卫生、过滤与分离、土工和建筑等众多关系国计民生的重要领域具有广泛的应用。非织造材料的工艺流程为原料准备-成网-固网和后整理,多种多样后整理工艺的应用可以获得各种特性的非织造复合材料。而气凝胶作为一种具有开放式结构的多孔介质具有大的比表面积和高的孔隙率,可以止多的静止空气,在隔离热传输等方面表现出优异的特性。因此,不少学者尝试将气凝胶与非织造材料结合起来应用,如:“201810377101.9,气凝胶改性聚丙烯、超轻隔热保温熔喷非织造布及其制备方法”将气凝胶与具有较低黏度物料进行共混,制备得到气凝胶改性聚丙烯熔喷非织造材料。
“201811185048.9,一种气凝胶复合芳纶非织造布的热防护材料及其制备方法”将气凝胶喷涂于芳纶非织造布上,使硅溶胶均匀渗透到芳纶非织造材料内部。“201910398183.X,一种高保暖服装材料及其制备方法”采用针刺或粘合复合工艺将复合气凝胶材料填充到聚酰亚胺纤维面料和驼绒面料之间提高保温层的保温隔热性能和舒适性。“201611092124.2,一种气凝胶隔热毡的制备方法”将预溶剂气凝胶粉末混合制备的气凝胶溶液喷洒于平铺的玻纤毡上,再将已喷洒了气凝胶溶液的玻纤毡针刺成毡以获得气凝胶隔热毡。
“201710122594.7,一种不掉粉尘的含纳米孔隙隔热材料的保温毡(板)及其制备方法”公开一种隔热保温毡的制备方法,该方法采用常规的针刺技术或梳技术将纤维制成片状或卷状毡的纤维基体材料,然后向该基体材料的纤维表面浸涂或者喷涂粘结剂,最后向纤维喷撒经过研磨的纳米孔隙隔热材料获得粘结有纳米孔隙材料的保温毡(板)。但是,上述方法均存在“掉粉”影响使用安全性,常规的气凝胶制品的“柔韧性不足”而限制了高值的使用范围,同时均一结构的气凝胶涂层在锁定静止空气的同时还造成成了液体和气体水的传输,因此会造成发霉、潮湿等问题。

发明内容

[0003] 本发明的目的是针对现有技术的不足,提供一种具有隔热特性的非织造复合材料及其制备方法,用于解决了现有市面上的常用耐高温隔热气凝胶非织造复合材料的缺点。
[0004] 为解决上述技术问题,本发明采用以下技术方案:一种具有隔热特性的非织造复合材料,所述非织造复合材料是由蓬松非织造材料和耐热涂层组成,所述耐热涂层在蓬松非织造材料的厚度方向上表现为梯度分布;所述蓬松非织造材料是由有机耐高温纤维、蓬松纤维和热粘结纤维组成面密度在30 200 g/m2,孔隙率~
在85 99%的纤维集合体;所述蓬松非织造材料各组分的重量百分比为有机耐高温纤维70~ ~
85%、蓬松纤维0 10%、热粘结纤维15 20%;表层耐热涂层的孔隙为90 10 μm,底层耐热涂层~ ~ ~
的孔隙为1 3μm。
~
[0005] 由有机耐高温纤维、蓬松纤维和热粘结纤维组成的蓬松热非织造材料具有大孔隙率和蓬松特性,可以容纳较多的静止空气,因此具有很好的隔热特性;进一步的,有机耐高温纤维赋予了其很好的耐热特性。
[0006] 优选的有机耐高温纤维为聚酰亚胺纤维、聚酰胺酰亚胺纤维、聚醚醚纤维、聚对苯撑苯并二噁唑纤维、聚苯并咪唑纤维、间位芳纶纤维、聚苯硫醚纤维、聚苯砜对苯二甲酰胺纤维、聚四氟乙烯纤维等中的一种或几种; 进一步的,基于对非织造成网技术的认识,有机耐高温纤维的特征优选为纤维细度14
20 μm,纤维卷曲度6 8 个/cm,纤维长度为38 65 mm;
~ ~ ~
同时蓬松纤维网的结构特征需要一定量的蓬松纤维来搭建骨架结构;因此本发明选择加入蓬松纤维;优选的蓬松纤维是聚对苯二甲酸乙二醇酯,优选特征为卷曲形态为正弦状立体卷曲,纤维细度为25 28 μm,纤维卷曲度为8 25 个/cm,同心中空截面,中空度为15~ ~ ~
50%;
进一步的,本发明选配了一定量的热粘结纤维;基于对偏心型皮芯纤维受热会进一步收缩和卷曲的认识,本发明优选的热粘结纤维为偏心型皮芯双组份纤维,其特征为皮层熔点为110 130 ℃,芯层熔点> 160 ℃,纤维细度为14 18 μm,皮层比例20 50%,芯层比例为~ ~ ~
50 80%;
~
同时基于对孔径差动毛细效应的认识,也就是在其它条件不变的情况下,液体从大的孔隙一侧小孔隙一侧具有很强的快速传输能,反之则传输能力较弱;因此,本发明设计了一种梯度结构的涂层穿插于蓬松非织造材料内作为具有液体单向传输能力的;所述梯度涂层的原料配方中包含以下质量百分数的组分:N,N-二甲基甲酰胺:60 80%;聚酯:0 10%;
~ ~
聚酰亚胺:15 20%;无机气凝胶颗粒:10% 15%;金属化颗粒:1 3%;亲水整理剂:1 3%;抗菌~ ~ ~ ~
整理剂:0 3%;纳米管:0 1%;石墨烯:0 1%;亲水整理剂:1 5%;
~ ~ ~ ~
本发明具有隔热特性的非织造复合材料的制备方法步骤如下:
(一)、蓬松非织造材料的制备
(1)将有机耐高温纤维、蓬松纤维和热粘结纤维按照一定比例共混后混合纤维;
(2)混合纤维经过调湿、开松、成网成共混纤维层;
(3)此后共混纤维层经过铺网、针刺-热风工艺制备成蓬松非织造材料
所述的针刺的特征为:针刺密度为80 120刺/cm2;
~
本发明优选的成网方式为短纤维梳理成网和短纤维气流成网,上述两种方法为常规的非织造成型技术,在此不再累述。
[0007] (二)、耐热涂层的制备(1)首先将聚酰亚胺与N,N-二甲基甲酰胺按照一定共混配置成聚酰亚胺/N,N-二甲基甲酰胺溶液;
(2)此后将聚氨酯加入聚酰亚胺/N,N-二甲基甲酰胺溶液内配置成聚氨酯/聚酰亚胺/N,N-二甲基甲酰胺溶液;
(3)将无机气凝胶颗粒、氧化金属颗粒、亲水整理剂加入聚氨酯/聚酰亚胺/N,N-二甲基甲酰胺溶液内配置成耐热涂层。
[0008] (三)、耐热涂层与蓬松非织造材料的梯度复合(1)将蓬松非织造材料置放于涂层机上,将由步骤二制备的耐热涂层经引涂层机涂敷于蓬松非织造材料表层;
(2)将涂敷后的蓬松非织造材料放置于在多孔筛网上,并将涂层一侧冲上,在多孔筛网下部放置抽吸风机;
(3)耐热涂层会在负压风的作用下沿着蓬松非织造材料的厚度方向从一侧向另一侧渗透,形成涂层在蓬松非织造材料的厚度方向上表现为从梯度分布;
(4)将步骤(3)中经过涂层渗透后的蓬松非织造布放如蒸汽浴内,通过水蒸汽置换DMF获得孔径成梯度分布的湿态涂层/蓬松非织造布;
(5)湿态蓬松非织造布放置130~150℃环境中烘干即获得隔热特性的非织造复合材料。
[0009] 本发明的有益效果在于:(1)、本发明所制备的非织造复合材料是由耐热性能优异的蓬松非织造材料和隔热特性好的多孔的梯度涂层组成,具有很好的耐高温特性(实施例的样品在250℃环境下强度损
2
失率率为1.5%,可以长期使用)、隔热特性(实施例(TPP)测试,30s后累积热能<0.9cal/cm •sec, 30s后温度升高<0.5 ℃)和湿的非对传输特性(实施例的样品经过液态水分管理测试仪测试,单向传输指数>980)。
[0010] (2)、本发明所制备的非织造复合材料具有非常好的柔性和蓬松性(压缩回弹率>99%),同时,本发明选择将气凝胶与聚氨酯、聚酰亚胺等柔韧性强的高分子聚合物共混成涂层的方式解决掉气凝胶使用过程的“掉粉”问题(实施例的样品在250℃环境下,掉粉率为
0%),保证了长期的使用性和安全性;
(3)、梯度结构的气凝胶涂层在锁定静止空气的同时还可以使得水和气的快速传输(实施例的样品的透气率>20 mm/s),因此会解决发霉、闷湿等湿传输不畅的问题。可以在消防服、保温隔热垫、隔热密封垫、耐火材料、内燃机隔热、油罐车隔热、排气管的消音隔热材料等领域得到应用。
附图说明
[0011] 图1为本发明具有隔热特性的非织造复合材料的截面电镜图。
[0012] 图2为本发明的制备工艺流程图

具体实施方式

[0013] 下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0014] 实施例1本实施例提供了如图1所示的隔热特性的非织造复合材料,结合图2具体步骤如下:
(一)、蓬松非织造材料的制备
(1)将60%的1.78dtex,38mm的聚酰亚胺纤维、30%的6D,38mm的三维卷曲聚酯纤维和10%的双组份纤维按照比例共混后经过开松、混合成共混纤维;
(2)共混后的纤维通过非织造梳理工艺制备成共混纤维层;
(3)将共混后的纤维网经过交叉铺网工艺成面密度为63g/m2后送入到预针刺机内针刺固网;针刺密度为120刺/cm2;
(4)将预针刺后的非织造材料送入烘箱内成型;优选的烘箱为6区烘箱,设定热风温度分别为120,130,140,145,140和120℃;风速为1.5 m/s;
(二)、耐热涂层的制备
(1)将聚酰亚胺与N,N-二甲基甲酰胺按照质量比10:80的比例配置成聚酰亚胺/N,N-二甲基甲酰胺溶液;配置过程中设定溶解温度80℃,溶解时间120min,搅拌转速1500 r/min;
(2)将10wt%聚氨酯加入到聚酰亚胺/N,N-二甲基甲酰胺溶液内,设定溶解温度50℃,溶解时间120min,搅拌转速1500 r/min;
(3)将0.1 wt%的亲水整理剂和10 wt%的无机气凝胶颗粒,1 wt%的三氧化二粉末加入到聚氨酯/聚酰亚胺/N,N-二甲基甲酰胺溶液内配置成耐热涂层。设定溶解温度50℃,溶解时间120min,搅拌转速1500 r/min;
(三)、耐热涂层与蓬松非织造材料的梯度复合
(1)将蓬松非织造材料置放于涂层机上,将由步骤二制备的耐热涂层经引涂层机涂敷于蓬松非织造材料表层,设定涂层速度为3m/min;
(2)将涂敷后的蓬松非织造材料放置于在40目筛网上,并将涂层一侧冲上,在多孔筛网下部放置抽吸风机,设定抽吸风机转速为900r/min;
(3)耐热涂层会在负压风的作用下沿着蓬松非织造材料的厚度方向从一侧向另一侧渗透,形成涂层在蓬松非织造材料的厚度方向上表现为梯度分布;
(4)将步骤(3)中经过涂层渗透后的蓬松非织造布放如蒸汽浴内,通过水蒸汽置换DMF获得孔径成梯度分布的湿态涂层/蓬松非织造布;设定蒸气浴温度为90℃,放置时间
120min;
(5)湿态蓬松非织造布放置130~150℃环境中烘干即获得隔热特性的非织造复合材料。
[0015] 实施例2实施例2与实施例1的区别在于预针刺密度为89刺/cm2。
[0016] 实施例3实施例3与实施例1的区别在于聚氨酯比例为15wt%;
实施例4
实施例4与实施例1的区别在于无机气凝胶颗粒比例为13wt%;
实施例5
实施例5与实施例1的区别在于金属粉末比例为3wt%;
实施例6
实施例6与实施例1的区别在于亲水整理剂比例为0.8wt%;
实施例7
实施例7与实施例1的区别在于聚酰亚胺纤维质量比例为50%、三维卷曲聚酯纤维为40%和10%的双组分纤维
[0017] 实施例8实施例8与实施例1的区别在于耐高温纤维为间位芳纶纤维。
[0018] 实施例9实施例9与实施例1的区别在于面密度为102g/m2。
[0019] 另外,实施例中的材料特性等通过以下方法来测定。
[0020] 面密度参照GB/T 24218.1—2009 《纺织品 非织造布试验方法 第1部分:单位面积质量的测定》测定样品的面密度,测试面积100cm2;孔径大小采用PSM165孔径分析仪进行测定;使用YG141D织物厚度仪(温州市大荣纺织仪器有限公司),参考GB/T 24218.2—2009对样品厚度进行测试,受压面积500 mm2;压脚质量100 cN。单向传输指数采用液体水分管理测试仪进行测试,30s后累积热能、30s后温度升高和开始累积热能时间采用TPP进行测试,结果如下表所示。
[0021] 以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈